
Formal Support for Threat Modeling
with Attack Decision Diagrams

Misato Nakabayashi1 Taro Sekiyama2 Ichiro Hasuo2 Yutaka Ishikawa2
1SOKENDAI, NTT 2National Institute of Informatics

This work was supported by JST CREST JPMJCR21M3, Japan

Background

2

● Security vulnerabilities in the system can cause serious
damage, such as leakage of confidential information or
unauthorized use of equipment, and

● Once deployed, a system cannot be easily modified

● Important to conduct threat analysis at the design phase of
the system to understand and manage security risks
⁃ However, exhaustive threat analysis is difficult

Background

3

Threat analysis is conducted by four steps:
1. Determine assets to be protected,
2. Identify threats against the assets,
3. Identify attack methods rousing the threats to organize the

risks caused by the identified threats, and
4. Assessment risk: score the identified risks to prioritize

countermeasures

Contribution

4

We propose the Formal Support for Threat Modeling (FSTM) system, a method
to visualize threats to support threat modeling using a formal verification tool

● Exhaustive verification requires verification of all attack combination patterns, but the number
of verification times can be reduced by considering the monotonicity of security

● Automatic generation of codes for each attack combination from a single verification code
● Outputs verification results in an AND-OR tree format that shows the causal relationship

between the attacker's behavior and security

Set of
Attack Patterns

Verification using
Formal Verification

Set of Attack Patterns
with Security Labels

Attack Decision
Diagram (ADD)

Proposed Method Overview

5

Set of
Attack Patterns

Verification using
Formal Verification

Set of Attack Patterns
with Security Labels

Attack Decision
Diagram (ADD)

Determine attack
elements based on

assumed threats and
create attack patterns

1
Reduce the number of

verifications using
monotonicity of security

2
Create attack decision
diagrams (ADD) using

verification results

3

Proposed Method Case Study

6

Security Requirement:
The software executed by the SU must have been
developed by a valid developer SD and verified for
vulnerabilities by VS

Software Authentication System
Software Developer

(SD)
Verification Service Admin

(VS)
Software User

(SU)

Generate Software

Generate certificate
and signature Software, Certificate,

Signature

Verify Signature

Check Software

Generate Certificate
and Signature

Verify Signature

Execute Software

Software, Certificate,
Signature

Proposed Method
Generate attack patterns based on assumed threats

7

1

Assumed Threats
● Leakage of secret information
● Tampering with messages in communication channels
● Eavesdropping on messages in communication channels

We call each element attack component
⁃ 𝑎!: Reveal SDʼs secret key for signing, 𝑎": Reveal VSʼs secret key for signing
⁃ 𝑎#: Tamper message 1, 𝑎$: Tamper message 2
⁃ 𝑎%: Eavesdrop message 1, 𝑎&: Eavesdrop message 2

We call the combination of attack components attack pattern
⁃ 𝑝!: 𝑎! ∧ 𝑎", 𝑝": 𝑎! ∧ 𝑎#, ... (64 patterns)

Assumed Threats
● Leakage of secret information
● Tampering with messages in communication channels
● Eavesdropping on messages in communication channels

● E.g., if a system is insecure on “𝑎!: Reveal SDʼs secret key for signing”,
it is also insecure on “𝑎!: Reveal SDʼs secret key for signing ∧
𝑎": Reveal VSʼs secret key for signing”

8

Proposed Method
Reducing the Number of Verification Using Monotonicity2

Monotonicity of Security
For attack patterns 𝑝! and 𝑝" with 𝑝! ≤ 𝑝", if a system is insecure on 𝑝!,
then it is also insecure on 𝑝"

9

Attack
Capability

Weak

︓insecure
︓secure

Exhaustive Verification

Labelling all attack patterns as
secure or insecure

＝
Verification times can be reduced

using inference based on monotonicity

In the case study,
64 times → 20 times

Strong

Proposed Method
Reducing the Number of Verification Using Monotonicity2

10

Find the minimal attack patterns that
are insecure and connect them

with logical sums

insecure

a1 a2 a1 a3

∨

∧ ∧

Represents Verification Results
in DNF-Format

Proposed Method
Generating ADDs using Verification Results3

Attack
Capability

Weak

︓insecure
︓secure

Strong

Proposed Method
Generating ADDs using Verification Results

11

Verification Results and ADD of case study
3

Security Requirement:
The software executed by the SU must have been
developed by a valid developer SD and verified for
vulnerabilities by VS

● To perform exhaustive verification, verification codes corresponding to
each attack pattern are required

● Consider how to automatically generate verification codes
corresponding to each attack pattern from the original code

Implementation Using Tamarin Prover

12

Set of
Attack Patterns

Verification using
Formal Verification

Set of Attack Patterns
with Security Labels

Attack Decision
Diagram (ADD)

Implementation Using Tamarin Prover

13

Tamarin Prover
● Formal Verification Tool for Security Systems

⁃ System specifications are described using multiset rewriting rules and
security requirements are described using first-order logic formulas

System
specification

Security
requirement

(include attacker model)

System satisfies
security requirement
or not

Implementation Using Tamarin Prover

14

Generate Code for Each Attack Pattern
● Automatic generation of Tamarin code for each attack

pattern from Tamarin code for the weakest attack pattern

System specification

Security requirement

• Attacker model
(weakest)

Original Tamarin Code Tamarin Code for Each Attack Pattern

...

for 𝒑𝟏

for 𝒑𝒏#𝟏

Summary

15

● We propose a threat visualization method based on
exhaustive verification using formal verification tools

● This tool can be used to discover threats that have not
appeared in informal threat analysis, to assist in generating
attack trees, and to confirm the correctness of threat
modeling

Future Issues
⁃ Extension of Targeted Threats
⁃ Improvement of ADD format

