
1

Rabbit: A Language to Model and Verify
Data Flow in Networked Systems

T. Inaba¹, Y. Ishikawa², A. Igarashi¹, T. Sekiyama²

¹Graduate School of Informatics
Kyoto University, Kyoto, Japan

²Information Systems Architecture Science
Research Division

National Institute of Informatics, Tokyo, Japan

● With increasing reliance on digital systems, cybersecurity is a growing concern.

● Threat modeling is an security-by-design approach where system designers

○ make abstract models of the target system and possible attackers,

○ identify security-critical data as assets, and

○ analyze security properties under the specified system model and the

attacker model.

● In threat modeling, tracking the data flows of assets are crucial.

○ “where each asset originates, is stored temporarily, and finally reaches”

2

Background

● UMLsec (2002, Jürjens) has laid important ground work, with

○ an ability to express data flows,

○ formal semantics, and

○ plug-ins to verify security properties.

● No low-level constructs such as processes, files, memory, and system calls.
3

Existing work

Ex. diagram of UMLsec

● We develop Rabbit, a language to model data flows, with

○ low-level constructs (processes, files, communication channels, etc.) and

○ formal syntax and semantics.

● In this paper, we demonstrate

○ that Rabbit can model a case study

(a client-server system),

○ that Rabbit can be systematically

translated into an input of Tamarin (a model checker), and

○ that a verification experiment discovers a potential security weakness.
4

Rabbit language

process Client(ch_net, ch_rpc) with client_t {

…

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

…

5

Client (Surveillance Camera) Server

verify

(img,sig)

Client AppClient TA Server AppNetwork

private key

img

sig

sign

img

The Cam-Image system TA ⋯ Trusted Application

(an application running in a secure module)

RPC

UDP public key

6

Client (Surveillance Camera) Server

verify

(img,sig)

Client AppClient TA Server AppNetwork

private key

img

sig

sign

img

eavesdrop

eavesdrop,

tamper, drop

eavesdrop

The Cam-Image system TA ⋯ Trusted Application

(an application running in a secure module)

RPC

UDP

protected

protected

7

Rabbit components consists of processes, file systems, channels.

Rabbit model

9

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

process ClientTA(ch_rpc) with clientTA_t {

func sign_image(image, privkey_path) {

let sig = sign(image, privkey0);

return sig;

} …

}

process Server(ch_net) with server_t {

…

let res = verify(p.fst, p.snd, pubkey);

if (res) {

skip @ ImgRecvValid(p.snd);

}

…

}

● Library functions like system calls in Linux

● Control Structures like for/if statements

Rabbit model

10

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

process ClientTA(ch_rpc) with clientTA_t {

func sign_image(image, privkey_path) {

let sig = sign(image, privkey0);

return sig;

} …

}

process Server(ch_net) with server_t {

…

let res = verify(p.fst, p.snd, pubkey);

if (res) {

skip @ ImgRecvValid(p.snd);

}

…

}

open system call

● Library functions like system calls in Linux

● Control Structures like for/if statements

Rabbit model

11

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

process ClientTA(ch_rpc) with clientTA_t {

func sign_image(image, privkey_path) {

let sig = sign(image, privkey0);

return sig;

} …

}

process Server(ch_net) with server_t {

…

let res = verify(p.fst, p.snd, pubkey);

if (res) {

skip @ ImgRecvValid(p.snd);

}

…

}

open system call

if statement

for statement

● Library functions like system calls in Linux

● Control Structures like for/if statements

Rabbit model

12

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

process ClientTA(ch_rpc) with clientTA_t {

func sign_image(image, privkey_path) {

let sig = sign(image, privkey0);

return sig;

} …

}

process Server(ch_net) with server_t {

…

let res = verify(p.fst, p.snd, pubkey);

if (res) {

skip @ ImgRecvValid(p.snd);

}

…

}

open system call

rpc communication if statement

for statement

digital signature

● Library functions like system calls in Linux

● Control Structures like for/if statements

Rabbit model

14

Security

property

φ

⦅M⦆ ⊧ ⦅φ⦆?

Tamarin Prover

(2016, Schmidt)

No

Yes

verified

falsified

Tamarin model

⦅M⦆

Lemma

⦅φ⦆

tr
a
n

s
la

te

● Systematic translation

● Security properties are directly written in Rabbit

System model

+

Attacker Model

M

Translation & Verification

15

System Model

● The Cam-Image system (N=1,2,3 where N is the number of loop iterations).

Attacker Model

● The attacker capable of eavesdropping on the main memory of the client &
server app.

● Parameter: Attacks on the network (eavesdrop, tamper, drop)

Property to verify

lemma Authenticity :

all-traces

"All x #i . ImgRecvValid(x) @ #i ==> Ex #j . ImgSend(x) @ #j & #j < #i"

When the server verifies signature successfully, then the image is

sent by the right client before (corresponding property).

Verification of authenticity property

=
= # of images sent

16

Observation

- e t d et ed td etd

N = 1 6.538s 6.732s 7.890s 6.600s 8.150s 6.790s 8.020s 8.430s

N = 2 125.622s 137.198s 525.380s 354.025s 510.905s 334.795s 1427.480s 1418.890s

● When the attacker is able to tamper messages, the corresponding
property is falsified.

● The increase of N largely affect the verification time.
● The verification time is large when attackers can perform active attacks.

eavesdrop

(on network)
tamper drop

eavesdrop &

tamper & drop

verified falsified

Verification results

17

send (sig1, img1)

@ ImgSend(img1)

ch_net
Client app Server

Automatically-found trace (falsified)

18

send (sig1, img1)

@ ImgSend(img1)

ch_net

(sig1, img1)

Server

Automatically-found trace (falsified)

Client app

19

send (sig1, img1)

@ ImgSend(img1)

ch_net

(sig1, img1)

Server

Automatically-found trace (falsified)

Client app

20

send (sig1, img1)

@ ImgSend(img1)

let img2

let sig2

ch_net

(sig1, img1)

Server

Automatically-found trace (falsified)

Client app

send (sig2, img2)

@ ImgSend(img2)

21

send (sig1, img1)

@ ImgSend(img1)

let img2

let sig2

Attacker’s Knowledge

ch_net

eavesdrop

sig2, img2

(sig1, img1)

Server

Automatically-found trace (falsified)

Client app

send (sig2, img2)

@ ImgSend(img2)

22

send (sig1, img1)

@ ImgSend(img1)

let img2

let sig2

Attacker’s Knowledge

ch_net

eavesdrop
tamper

sig2, img2

(sig1, img1)

(sig2, img2)

Server

Automatically-found trace (falsified)

Client app

send (sig2, img2)

@ ImgSend(img2)

23

send (sig1, img1)

@ ImgSend(img1)

let img2

recv (sig, img)

& verify sig

res = true

@ ImgRecvValid(...)

let sig2

Attacker’s Knowledge

ch_net

eavesdrop
tamper

sig2, img2

(sig1, img1)

(sig2, img2)

Server

Automatically-found trace (falsified)

Client app

send (sig2, img2)

@ ImgSend(img2)

24

Discussion

● The falsified path implies the ability to automatically detect a nontrivial

attack scenario (a path where the violation of security property occurs).

● It should be noted the falsified path is very rare case. In reality, adversary

usually attacks parts of a system, but is not able to perform a variety of

attacks.

25

Future Directions

● On modeling, possible directions are

○ to support other classes of objects, such as a shared memory, and

○ to support other operations on objects, such as forking processes or

executing files

● On verification, possible directions are

○ to develop an automatic translator, and

○ to improve encoding strategy in Tamarin

Thank you

26

Appendix

27

28

Enhancement of the protocol

● Enhancing the protocol can be either to attach a sequence number to

image data or to introduce nonce.

Threat Modeling on IoT Systems

29

In Internet of Things (IoT), security is one of the top priorities [1][2].

Background

[1] Al-Fuqaha, ….: Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications, IEEE Communications Surveys & Tutorials, Vol. 17, No. 4, pp. 2347–2376 (2015).

[2] Kumar, S., Tiwari, P. and Zymbler, M. L.: Internet of Things is a revo- lutionary approach for future technology enhancement: a review, J. Big Data, Vol. 6, p. 111 (2019).

[3] Sion, L., Yskout, K., Van Landuyt, D., van den Berghe, A. and Joosen, W.: Security Threat Modeling: Are Data Flow Diagrams Enough?, Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW ’20,

New York, NY, USA, Association for Computing Machinery, pp. 254–257 (2020). event-place: Seoul, Republic of Korea.

[4] Union, E.: Regulation (EU) 2016/679, Official Journal of the European Union, Vol. 59, No. 119, pp. 1–88 (2016).

There are various approaches to fortify system security:
dev. life cycledesign [3][4] source code runtime

data-flow level

Confidentiality,

Integrity,

Authenticity, etc.

- model a system and identify potential threats

- identify security flaw before they become real

Threat Modeling

Formal Verification

30

Background

Not easy to use for those who do not have expertise of the tool.
→ We want a tool that is friendly for system programmers.

→ It can verify a property in a mathematically rigorous and provable way.
To thoroughly investigate data flow, formal verification is a promising approach.

Ex: the Tamarin prover (Basin et al. 2015, [5])

[5] Schmidt, B., Meier, S., Cremers, C. and Basin, D.: Automated Analysis of Diffie-Hellman Protocols and Advanced Security Properties, 2012 IEEE 25th Computer Security

Foundations Symposium, pp. 78–94 (2012).

rule Client_1:

[Fr(~k) , !Pk($S, pkS)] → [Client_1($S, ~k), Out(aenc(~k, pkS))]

rule Serv_1:

[!Ltk($S, ~ltkS), In(request)]

--[AnswerRequest($S, adec(request, ~ltkS))]->[Out(h(adec(request, ~ltkS)))]

Rabbit Language

Rabbit is a language for both modeling and verification of data-flow security.

31

Introduction

Contributions

● Friendly modeling for system programmers
● Supports primitives for IoT security requirements [6]

○ secure execution environment

○ cryptography

○ access control

● Flexible specification of attacker models

process Client(ch_net, ch_rpc) with client_t {

…

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

…

allow attacker_t server_file_t [eavesdrop]

allow attacker_t chan_net_t [eavesdrop, tamper, drop]

allow server_t server_file_t [read, write]

allow client_t client_net_t [send, recv]

[6] T. A. Ahanger and A. Aljumah, "Internet of Things: A Comprehensive Study of Security Issues and Defense Mechanisms," in IEEE Access, vol. 7, pp. 11020-11028, 2019, doi:

10.1109/ACCESS.2018.2876939.

Comparison of Rabbit and Other Tools

32

Introduction

Familiar to system

programmer

IoT Security

Solutions

Flexibility of

Attacker models

Other features

Rabbit ◎ ◯ ◯ –

Tamarin prover
✕ △ ◯

Unbounded

Sessions

SAPIC+ [7]
△ ◯ △

Reducible to many

verification tools

PSec [8]
△ ◯ △

Programming

language

UML-based Tools [9] ◯ △ △ Visualizer

[7] Kremer, S. and K¨unnemann, R.: Automated analysis of security protocols with global state, J. Comput. Secur., Vol. 24, No. 5, pp. 583–616 (2016).
[8] Kushwah, S., Desai, A., Subramanyan, P. and Seshia, S. A.: PSec: Programming Secure Distributed Systems Using Enclaves, Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, ASIA CCS ’21, New York, NY,
USA, Association for Computing Machinery, pp. 802–816 (2021). event-place: Virtual Event, Hong Kong.
[9] Ju ̈rjens, J.: UMLsec: Extending UML for Secure Systems Develop- ment, UML 2002 - The Unified Modeling Language, 5th International Conference, Dresden, Germany, September 30 - October 4, 2002.

Verification with Rabbit

Rabbit verifies a security property by translating Rabbit model into Tamarin.

33

Introduction

System model

+

Attacker Model

M

Security

property

φ

⦅M⦆ ⊧ ⦅φ⦆?

Tamarin Prover

No

Yes

verified

falsified

Tamarin model

⦅M⦆

Lemma

⦅φ⦆

tr
a
n

s
la

te

Verification with Rabbit

34

Introduction

Security

property

φ

⦅M⦆ ⊧ ⦅φ⦆?

Tamarin Prover

No

Yes

verified

falsified

Tamarin model

⦅M⦆

Lemma

⦅φ⦆

tr
a
n

s
la

te

● Systematic (but not automated) translation

● Security properties are directly written in Rabbit

System model

+

Attacker Model

M

● Rabbit Language

○ Modeling Overview

○ Rabbit Program

● Translation to Tamarin

● Experiments

○ Experiment 1: Reachabitlity

○ Experiment 2: Authenticity

● Conclusions

Outline

35

● Rabbit Language

○ Modeling Overview

○ Rabbit Program

● Translation to Tamarin

● Experiments

○ Experiment 1: Reachabitlity

○ Experiment 2: Authenticity

● Conclusions

Outline

36

The Cam-Image System

37

Rabbit Language - Modeling Overview
TA ⋯ Trusted Application

(running in a secure execution environment)

Client (Surveillance Camera) Server

verify

(img,sig)

Client AppClient TA Server AppNetwork

private key

img

sig

sign

img

The Cam-Image System

38

Rabbit Language - Modeling Overview
TA ⋯ Trusted Application

(running in a secure execution environment)

Client (Surveillance Camera) Server

verify

(img,sig)

Client AppClient TA Server AppNetwork

private key

img

sig

sign

img

Remote

Procedure Call

UDP

communication

The Cam-Image System

39

Rabbit Language - Modeling Overview
TA ⋯ Trusted Application

(running in a secure execution environment)

Client (Surveillance Camera) Server

verify

(img,sig)

Client AppClient TA Server AppNetwork

private key

img

sig

sign

img

Remote

Procedure Call

UDP

communication

eavesdrop

eavesdrop,

tamper, drop

eavesdrop

Rabbit Model of the Cam-Image System

40

Rabbit Language - Modeling Overview

Rabbit components consists of processes, file systems, channels

read/write

send/recv

Rabbit Model of the Cam-Image System

41

Rabbit Language - Modeling Overview

Access control is configured by MAC (Mandatory Access Control)

Process Declaration

42

Rabbit Language - Rabbit Program

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

process ClientTA(ch_rpc) with clientTA_t {

func sign_image(image, privkey_path) {

let sig = sign(image, privkey0);

return sig;

} …

}

process Server(ch_net) with server_t {

…

let res = verify(p.fst, p.snd, pubkey);

if (res) {

skip @ ImgRecvValid(p.snd);

}

…

}

- Library functions like system calls in Linux

- Control Structures like for/if statements

Process Declaration

43

Rabbit Language - Rabbit Program

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

process ClientTA(ch_rpc) with clientTA_t {

func sign_image(image, privkey_path) {

let sig = sign(image, privkey0);

return sig;

} …

}

process Server(ch_net) with server_t {

…

let res = verify(p.fst, p.snd, pubkey);

if (res) {

skip @ ImgRecvValid(p.snd);

}

…

}

- Library functions like system calls in Linux

- Control Structures like for/if statements

open system call

Process Declaration

44

Rabbit Language - Rabbit Program

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

process ClientTA(ch_rpc) with clientTA_t {

func sign_image(image, privkey_path) {

let sig = sign(image, privkey0);

return sig;

} …

}

process Server(ch_net) with server_t {

…

let res = verify(p.fst, p.snd, pubkey);

if (res) {

skip @ ImgRecvValid(p.snd);

}

…

}

- Library functions like system calls in Linux

- Control Structures like for/if statements

open system call

if statement

for statement

Process Declaration

45

Rabbit Language - Rabbit Program

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

process ClientTA(ch_rpc) with clientTA_t {

func sign_image(image, privkey_path) {

let sig = sign(image, privkey0);

return sig;

} …

}

process Server(ch_net) with server_t {

…

let res = verify(p.fst, p.snd, pubkey);

if (res) {

skip @ ImgRecvValid(p.snd);

}

…

}

- Library functions like system calls in Linux

- Control Structures like for/if statements

open system call

rpc communication if statement

for statement

digital signature

Comparison with Tamarin

Rabbit Language - Rabbit Program

process Client(ch_net, ch_rpc) with client_t {

let dev_path = "/dev/camera"; …

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

let sig = invoke(ch_rpc, invoke_func, …);

send(ch_net, (sig, image)) @ ImgSend(image);

}

}

}

- Library functions like system calls in Linux

- Control Structures like for/if statements

46

rule Rule_ClientTA_76_1 :

[

F_Proc_ClientTA_75_1(

called('1')

, <'0', image_init_0, image_now_0>

, <'0', privkey_path_init_0, privkey_path_now_0>

, <'0', fek_init_0, fek_now_0>

, <'1', fek_init_1, fek_now_1>

)

]

-->

[

F_Proc_ClientTA_76_1(

called('1')

, <'0', fd(privkey_path_now_0),

fd(privkey_path_now_0)>

, <'0', image_init_0, image_now_0>

, <'0', privkey_path_init_0, privkey_path_now_0>

, <'0', fek_init_0, fek_now_0>

, <'1', fek_init_1, fek_now_1>

)

]

File System & Channel

47

Rabbit Language - Rabbit Program

filesys Client_FS = [

{ path: "/dev/camera", data: dont_care, type: client_file_t }

]

filesys Server_FS = [

{ path: "/secret/pub", data: pk(priv_k), type: server_file_t }

]

filesys ClientTA_FS = [

{ path: "/secret/priv", data: enc(priv_k, sym_k), type: clientTA_file_t }

]

channel ch_net = { connection: datagram, type: chan_net_t }

channel ch_rpc = { connection: stream, type: chan_rpc_t }

Access Control Policy

48

Rabbit Language - Rabbit Program

allow server_t server_file_t [read, write]

allow client_t chan_net_t [send, recv]

allow attacker_t client_t [eavesdrop]

allow attacker_t chan_net_t [eavesdrop, tamper, drop]

Access control policies ⋯ Configuration of permissions from subject to objects

Attacker is also modeled by allow rules.

a type for subject a type for object permissions

49

Rabbit Language - Rabbit Program

system

Client([ch_net, ch_rpc]) with ClientFS

|| ClientTA([ch_rpc]) with ClientTA_FS

|| Server([ch_net]) with ServerFS

requires [

"lemma Authenticity :

all-traces

"All image #i. ImgRecvValid(image) @ #i

==> Ex #j . ImgSend(image) @ #j & #j < #i"

"]

System Instantiation

Process Instantiation

Properties to verify

● Rabbit Language

○ Modeling Overview

○ Rabbit Program

● Translation to Tamarin

● Experiments

○ Experiment 1: Reachabitlity

○ Experiment 2: Authenticity

● Conclusions

Outline

50

Translated Tamarin Model

51

Translation from Rabbit to Tamarin

process Client(ch_net, ch_rpc) with

client_t {

main {

let image_fd = open(dev_path);

for i in range(1, 4) {

let image = read(image_fd);

}

}

system

Client([ch_net, ch_rpc]) with ClientFS

|| ClientTA([ch_rpc]) with

ClientTA_FS

|| Server([ch_net]) with ServerFS

requires [

"lemma Authenticity : … "

]

A statement in Rabbit is translate into one or more rules in Tamarin

● 30 lines of statements → 99 rules in Tamarin

LOC: 123 LOC: 1467

● Rabbit Language

○ Modeling Overview

○ Rabbit Program

● Translation to Tamarin

● Experiments

○ Experiment 1: Reachabitlity

○ Experiment 2: Authenticity

● Conclusion

Outline

52

Experiments Overview

53

Machine specification

● OS: Ubuntu 22.04, Memory: 252 GB, CPU: Xeon E5-2687 W, 3.1G Hz, 8 core

Experiments

Experiment 1 Experiment 2

Check the validity of translation

- the Cam-Image system
- No attacks

Check how different attacker
models affect results

- the Cam-Image system
- various attacks on network

Version of the Tamarin prover: 1.7.1

Experiment 1: Reachability

54

Experiments

Property to verify

Target Model

● The same system model as the Cam-Image system.
● We consider no attacks on the system.

lemma Finish :

exists-trace

"Ex #i #j #k. ClientFin() @ #i & TAFin() @ #j & ServerFin() @ #k"

Experiment 1: Reachability

55

Experiments

Property to verify

Target Model

● The same system model as the Cam-Image system.
● We consider no attacks on the system.

lemma Finish :

exists-trace

"Ex #i #j #k. ClientFin() @ #i & TAFin() @ #j & ServerFin() @ #k"

Is there any trace where three processes finish their executions?

Experiment 1: Result

56

The increase of N (N := # of iterations) largely affect
the verification time.

Experiments

→ Non-determinism in conditional branching and
random receptions of messages (in UDP) increases.

// if (res)

rule Rule_Server_98_true_1 :

[F_Proc_Server_97_1(...)]

--[Eq(res_now_0, true)]->

[F_Proc_Server_98_true_1(...)]

rule Rule_Server_98_false_1 :

[F_Proc_Server_97_1(...)]

--[Neq(res_now_0, true)]->

[F_Proc_Server_98_false_1(...)]

rule Rule_Server_96_1 :

[F_Proc_Server_95_1(...)

, Msg('ch_net', 's', i, p)]

-->

[F_Proc_Server_96_1(...)]

Experiment 2: Authenticity with Different Attacker Models

57

Experiments

Target Model

● The same system model as the Cam-Image system
● We consider an attacker that is capable of

○ eavesdropping on the main memory of the client & server app.
○ combination of attacks (eavesdrop, tamper, drop) on network messages.

Property to verify

lemma Authenticity :

all-traces

"All x #i . ImgRecvValid(x) @ #i ==> Ex #j . ImgSend(x) @ #j & #j < #i"

Experiment 2: Authenticity with Different Attacker Models

58

Experiments

Target Model

● The same system model as the Cam-Image system
● We consider an attacker that is capable of

○ eavesdropping on the main memory of the client & server app.
○ combination of attacks (eavesdrop, tamper, drop) on network messages.

Property to verify

lemma Authenticity :

all-traces

"All x #i . ImgRecvValid(x) @ #i ==> Ex #j . ImgSend(x) @ #j & #j < #i"

When the server verifies signature successfully, then the image is

sent by the right client formerly (correspondence assertion).

Experiment 2: Result

59

Experiments

Observation

- e t d et ed td etd

N = 1 6.538s 6.732s 7.890s 6.600s 8.150s 6.790s 8.020s 8.430s

N = 2 125.622s 137.198s 525.380s 354.025s 510.905s 334.795s 1427.480s 1418.890s

● When the attacker is able to tamper messages, the authenticity is falsified.
● The increase of N largely affect the verification time.
● The verification time is large when we consider active attacks.

eavesdrop

(on channel)
tamper drop

eavesdrop &

tamper & drop

verified falsified

Experiment 2: Falsified Trace

60

Experiments

send (sig1, img1)

@ ImgSend(img1)

ch_net
Client Server

Experiment 2: Falsified Trace

61

Experiments

send (sig1, img1)

@ ImgSend(img1)

ch_net

(sig1, img1)

Client Server

Experiment 2: Falsified Trace

62

Experiments

send (sig1, img1)

@ ImgSend(img1)

ch_net

(sig1, img1)

Client Server

Experiment 2: Falsified Trace

63

Experiments

send (sig1, img1)

@ ImgSend(img1)

let img2

let sig2

ch_net

(sig1, img1)

Client Server

Experiment 2: Falsified Trace

64

Experiments

send (sig1, img1)

@ ImgSend(img1)

let img2

let sig2

Attacker’s Knowledge

ch_net

eavesdrop

sig2, img2

(sig1, img1)

Client Server

Experiment 2: Falsified Trace

65

Experiments

send (sig1, img1)

@ ImgSend(img1)

let img2

let sig2

Attacker’s Knowledge

ch_net

eavesdrop
tamper

sig2, img2

(sig1, img1)

(sig2, img2)

Client Server

Experiment 2: Falsified Trace

66

Experiments

send (sig1, img1)

@ ImgSend(img1)

let img2

recv (sig, img)

& verify sig

res = true

@ ImgRecvValid(...)

let sig2

Attacker’s Knowledge

ch_net

eavesdrop
tamper

sig2, img2

(sig1, img1)

(sig2, img2)

Client Server

Future Direction

67

On Modeling

● Other classes of objects, such as a shared memory
● Other permissions on objects, such as forking processes or executing files
● Dynamic update of access control policies
● Various communication protocols (e.g., TLS)

On Verification

● Automatic translator
● Further encoding optimization using Tamarin’s advanced feature
● Conversion for multiple verifiers (c.f. SAPIC+)

Conclusions

68

● Rabbit, a modeling language for security verification on data flow

○ Easy to write for system programmers

○ Various IoT security solutions

○ Flexible specification of attacker models

● Rabbit’s Formal syntax and semantics

● Case study on a client-server system with TEE

● Validity of manual translation via experiments

Other Formal Verification Tools

69

Background

SAPIC+ [5] PSec [6] UML-based Solutions

No IoT solutions, Limited

attacker models

Limited attacker models
(Passive Network Observer, Active

Man-in-the-Middle, Privileged

Attacker)

UML⋯ Unified Modeling Language

UMLSec [7]

Limited attacker models,

Unfamiliar styles for

system programmers.

[5] Kremer, S. and K¨unnemann, R.: Automated analysis of security protocols with global state, J. Comput. Secur., Vol. 24, No. 5, pp. 583–616 (2016).
[6] Kushwah, S., Desai, A., Subramanyan, P. and Seshia, S. A.: PSec: Programming Secure Distributed Systems Using Enclaves, Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, ASIA CCS ’21, New York, NY,
USA, Association for Computing Machinery, pp. 802–816 (2021). event-place: Virtual Event, Hong Kong.
[7] Ju ̈rjens, J.: UMLsec: Extending UML for Secure Systems Develop- ment, UML 2002 - The Unified Modeling Language, 5th International Conference, Dresden, Germany, September 30 - October 4, 2002.

The Cam-Image System)

70

Rabbit Language - Modeling Overview

App

TA

App

TA ⋯ Trusted Application (running in a secure execution environment)

Client Server

3.verify signature

with public key
1. make signature

with secret key 2. send (img,sig)
remote

procedure call

communication

over network

Outline

● Rabbit Language

○ Modeling Overview

○ Rabbit Program

● Translation to Tamarin

● Experiments

○ Experiment 1: Reachabitlity

○ Experiment 2: Authenticity

● Conclusions

※ Explanations of Semantics, details of the Tamarin prover and Translation are omitted today.
71

Formal Semantics

72

We define semantics by state transitions caused by statements.

(P, F, C, K) ⋯ (process state, file system state, channel state, attacker’s knowledge)

Rabbit Language - Rabbit Program

Ex. open statement

Overview of the Tamarin prover

73

The Tamarin prover [4] is a state-of-the-art tool for security of cryptographic
protocols. It is used also for a real-world IoT system (Brun et al. 2023, [8])

Translation from Rabbit to Tamarin

rule ExampleRule :

[SomeFact(x), AnotherFact(y, z)] --> [NewFact(x, y, z)]

A model in Tamarin is specified as multiset rewriting rules, which define a
labeled transition system.

Precondition Postcondition

(an instance of) fact

[4] Schmidt, B., Meier,... : Automated Analysis of Diffie-Hellman Protocols and Advanced Security Properties, 2012 IEEE 25th Computer Security Foundations Symposium, pp. 78–94 (2012).

[8] Brun, L., Hasuo, I., Ono, Y. and Sekiyama, T.: Automated Security Analysis for Real-World IoT Devices, Proceedings of the 12th International Workshop on Hardware and Architectural

Support for Security and Privacy, HASP ’23, New York, NY, USA, Association for Computing Machinery, pp. 29–37 (2023).

Overview of the Tamarin prover

74

Translation from Rabbit to Tamarin

rule GenerateNonce:

[Fr(~n)]

--[NonceGenerated(~n)]->

[NonceAvailable(~n)]

rule UseNonce:

[NonceAvailable(n)]

--[NonceUsed(n)]->

[NonceConsumed(n)]

lemma ExampleLemma :

all-traces

"All #i. NonceUsed(n) @ #i ==> Ex #j. NonceGenerated(n) @ #j"

The application of rules is recorded by adding instantiated action facts to the trace.

A lemma is a property to be verified in the system and is given on the trace.

Translation of Simple Statements

75

We manually translated the configuration & each statement in processes.

A statement is translated into multiple rules in Tamarin.

Translation from Rabbit to Tamarin

rule Rule_Client_65_1 :

[F_Proc_Client_64_recv_1(...)]

--[ImgSend(image_now_0)]->

[F_Proc_Client_65_1(...)

, Msg('ch_net', 's', '1', pair(sig_now_0, image_now_0))]

Ex. send_datagram(ch_net, (sig, image)) @ ImgSend(image); (at line

65)

Translation of Simple Statements

76

We manually translated the configuration & each statement in processes.

A statement is translated into multiple rules in Tamarin.

Translation from Rabbit to Tamarin

rule Rule_Client_65_1 :

[F_Proc_Client_64_recv_1(...)]

--[ImgSend(image_now_0)]->

[F_Proc_Client_65_1(...)

, Msg('ch_net', 's', '1', pair(sig_now_0, image_now_0))]

Line number

(program counter)

Ex. send_datagram(ch_net, (sig, image)) @ ImgSend(image); (at line

65)

Translation of Simple Statements

77

We manually translated the configuration & each statement in processes.

A statement is translated into multiple rules in Tamarin.

Translation from Rabbit to Tamarin

rule Rule_Client_65_1 :

[F_Proc_Client_64_recv_1(...)]

--[ImgSend(image_now_0)]->

[F_Proc_Client_65_1(...)

, Msg('ch_net', 's', '1', pair(sig_now_0, image_now_0))]

current iteration

Ex. send_datagram(ch_net, (sig, image)) @ ImgSend(image); (at line

65)

Translation of Simple Statements

78

We manually translated the configuration & each statement in processes.

A statement is translated into multiple rules in Tamarin.

Translation from Rabbit to Tamarin

rule Rule_Client_65_1 :

[F_Proc_Client_64_recv_1(...)]

--[ImgSend(image_now_0)]->

[F_Proc_Client_65_1(...)

, Msg('ch_net', 's', '1', pair(sig_now_0, image_now_0))]

Process memory

Channel message

Ex. send_datagram(ch_net, (sig, image)) @ ImgSend(image); (at line

65)

Translation of Simple Statements

79

We manually translated the configuration & each statement in processes.

A statement is translated into multiple rules in Tamarin.

Translation from Rabbit to Tamarin

rule Rule_Client_65_1 :

[F_Proc_Client_64_recv_1(...)]

--[ImgSend(image_now_0)]->

[F_Proc_Client_65_1(...)

, Msg('ch_net', 's', '1', pair(sig_now_0, image_now_0))]

Event (Action fact)

Ex. send_datagram(ch_net, (sig, image)) @ ImgSend(image); (at line

65)

Translation of Attacker’s Behavior

80

Translation from Rabbit to Tamarin

rule Rule_Server_96 :

[F_Proc_Server_95 (...), Msg(’ch_net’, ’s’, %1, pair(sig, image))] -->

[F_Proc_Server_96(<’0’, pair(sig, image), pair(sig, image)>, ...)]

rule Rule_Server_96_tampered :

[F_Proc_Server_95 (...), Msg(’ch_net’, ’s’, %1, pair(sig, image)), In(x)]

--> [F_Proc_Server_96(<’0’, x, x>, ...)]

Attacker generates the system inputs in the In facts.

rule Rule_Server_93 :

[F_Proc_Server_init(...)]-->

[F_Proc_Server_93(<'0', fd(pubkeyPath_now_0), …>)

, Out(fd(pubkeyPath_now_0))]

Ex. tampering on
channel messages
(Msg)

Attacker receives any messages from the Out facts.

Ex. eavesdropping on memory

Visualization of Searching Algorithm

81

Translation from Rabbit to Tamarin

Visualization of Searching Algorithm

82

Translation from Rabbit to Tamarin

lemma Finish :

exists-trace

"Ex #i #j #k. ClientFin() @ #i & ClinentTAFin() @ #j … “

Security Requirements for IoT

83

Security Requirements for IoT

● resilience to attacks

● data authentication

● access control

● secure data communication

● availability

● secure network access

● secure content

● secure execution

environment

● tamper resistance

[6] T. A. Ahanger and A. Aljumah, "Internet of Things: A Comprehensive Study of Security Issues and Defense Mechanisms," in IEEE Access, vol. 7, pp. 11020-11028, 2019, doi:

10.1109/ACCESS.2018.2876939.

Never-Ending Example

84

Induction in Tamarin

85

References

86

● Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and Ayyash, M.: Internet of Things: A Survey on Enabling
Technologies, Protocols, and Applications, IEEE Communications Surveys & Tutorials, Vol. 17, No. 4, pp. 2347–2376
(2015).

● Kumar, S., Tiwari, P. and Zymbler, M. L.: Internet of Things is a revo- lutionary approach for future technology
enhancement: a review, J. Big Data, Vol. 6, p. 111 (2019).

● Masys, A.: Security by Design: Innovative Perspectives on Complex Prob- lems, Advanced Sciences and Technologies for
Security Applications, Springer International Publishing (2018).

● Schmidt, B., Meier, S., Cremers, C. and Basin, D.: Automated Analysis of Diffie-Hellman Protocols and Advanced Security
Properties, 2012 IEEE 25th Computer Security Foundations Symposium, pp. 78–94 (2012).

● Kremer, S. and K¨unnemann, R.: Automated analysis of security protocols with global state, J. Comput. Secur., Vol. 24,
No. 5, pp. 583–616 (2016).

● Kushwah, S., Desai, A., Subramanyan, P. and Seshia, S. A.: PSec: Programming Secure Distributed Systems Using
Enclaves, Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, ASIA CCS ’21, New
York, NY, USA, Association for Computing Machinery, pp. 802–816 (2021). event-place: Virtual Event, Hong Kong.

● Ju ̈rjens, J.: UMLsec: Extending UML for Secure Systems Develop- ment, UML 2002 - The Unified Modeling Language, 5th
International Conference, Dresden, Germany, September 30 - October 4, 2002, Pro- ceedings (Je ́ze ́quel, J.-M.,
Hußmann, H. and Cook, S., eds.), Lecture Notes in Computer Science, Vol. 2460, Springer, pp. 412–425 (on- line),
https://doi.org/10.1007/3-540-45800-X_32 (2002).

● Brun, L., Hasuo, I., Ono, Y. and Sekiyama, T.: Automated Security Analysis for Real-World IoT Devices, Proceedings of the
12th International Workshop on Hardware and Architectural Support for Security and Privacy, HASP ’23, New York, NY,
USA, Association for Computing Machinery, pp. 29–37 (2023).

	Slide 1
	Slide 2: Background
	Slide 3: Existing work
	Slide 4: Rabbit language
	Slide 5: The Cam-Image system
	Slide 6: The Cam-Image system
	Slide 7: Rabbit model
	Slide 9: Rabbit model
	Slide 10: Rabbit model
	Slide 11: Rabbit model
	Slide 12: Rabbit model
	Slide 14: Translation & Verification
	Slide 15: Verification of authenticity property
	Slide 16: Verification results
	Slide 17: Automatically-found trace (falsified)
	Slide 18: Automatically-found trace (falsified)
	Slide 19: Automatically-found trace (falsified)
	Slide 20: Automatically-found trace (falsified)
	Slide 21: Automatically-found trace (falsified)
	Slide 22: Automatically-found trace (falsified)
	Slide 23: Automatically-found trace (falsified)
	Slide 24: Discussion
	Slide 25: Future Directions
	Slide 26: Thank you
	Slide 27: Appendix
	Slide 28: Enhancement of the protocol
	Slide 29: Threat Modeling on IoT Systems
	Slide 30: Formal Verification
	Slide 31: Rabbit Language
	Slide 32: Comparison of Rabbit and Other Tools
	Slide 33: Verification with Rabbit
	Slide 34: Verification with Rabbit
	Slide 35: Outline
	Slide 36: Outline
	Slide 37: The Cam-Image System
	Slide 38: The Cam-Image System
	Slide 39: The Cam-Image System
	Slide 40: Rabbit Model of the Cam-Image System
	Slide 41: Rabbit Model of the Cam-Image System
	Slide 42: Process Declaration
	Slide 43: Process Declaration
	Slide 44: Process Declaration
	Slide 45: Process Declaration
	Slide 46: Comparison with Tamarin
	Slide 47: File System & Channel
	Slide 48: Access Control Policy
	Slide 49: System Instantiation
	Slide 50: Outline
	Slide 51: Translated Tamarin Model
	Slide 52: Outline
	Slide 53: Experiments Overview
	Slide 54: Experiment 1: Reachability
	Slide 55: Experiment 1: Reachability
	Slide 56: Experiment 1: Result
	Slide 57: Experiment 2: Authenticity with Different Attacker Models
	Slide 58: Experiment 2: Authenticity with Different Attacker Models
	Slide 59: Experiment 2: Result
	Slide 60: Experiment 2: Falsified Trace
	Slide 61: Experiment 2: Falsified Trace
	Slide 62: Experiment 2: Falsified Trace
	Slide 63: Experiment 2: Falsified Trace
	Slide 64: Experiment 2: Falsified Trace
	Slide 65: Experiment 2: Falsified Trace
	Slide 66: Experiment 2: Falsified Trace
	Slide 67: Future Direction
	Slide 68: Conclusions
	Slide 69: Other Formal Verification Tools
	Slide 70: The Cam-Image System)
	Slide 71: Outline
	Slide 72: Formal Semantics
	Slide 73: Overview of the Tamarin prover
	Slide 74: Overview of the Tamarin prover
	Slide 75: Translation of Simple Statements
	Slide 76: Translation of Simple Statements
	Slide 77: Translation of Simple Statements
	Slide 78: Translation of Simple Statements
	Slide 79: Translation of Simple Statements
	Slide 80: Translation of Attacker’s Behavior
	Slide 81: Visualization of Searching Algorithm
	Slide 82: Visualization of Searching Algorithm
	Slide 83: Security Requirements for IoT
	Slide 84: Never-Ending Example
	Slide 85: Induction in Tamarin
	Slide 86: References

