
Verifying Effectful Programs with
Answer-Type Modification

Taro Sekiyama
National Institute of Informatics (NII)

Tokyo, Japan

@ OlivierFest

Control Effects

Control effects

♦ Effects influencing the control flow
◊ States, exception, async/await, coroutine, nondeterminism, etc.

♦ Implemented by control operators
◊ Able to manipulate continuations in a flexible manner

♦ A variety of control operators have been proposed, including
◊ shift/reset, shift0/reset0 [Danvy and Filinski ‘89]

◊ control/prompt [Felleisen ’88]

◊ Effect handlers [Plotkin & Pretnar ‘09, ‘13]

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

Installs handler h
to handle Tick
invoked by the term

Handling effects

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();
 let b = a + l in Tick ();
 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

Installs handler h
to handle Tick
invoked by the term

Handling effects

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

Installs handler h
to handle Tick
invoked by the term

Handling effects

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) = k () in (x, t + 1)

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) = k () in (x, t + 1)
with h handle
 let a = n + m in Tick ();

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) = k () in (x, t + 1)

with h handle
 let a = n + m in Tick ();
 let b = N + l in Tick ();
 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 with h handle
 let a = n + m in () ;
 let b = N + l in Tick ();
 b

in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 with h handle
 let a = n + m in () ;
 let b = N + l in Tick ();
 b

in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 with h handle
 let a = n + m in () ;
 Tick ();
 M

in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 with h handle
 let a = n + m in () ;
 Tick ();
 M

in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 let (x, t) =
 with h handle
 ();
 M
 in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 let (x, t) =
 with h handle
 ();
 M
 in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 let (x, t) =
 with h handle

 M
 in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 let (x, t) =
 with h handle
 ();
 M
 in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 let (x, t) =
 (M, 0)

 in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
let (x, t) =
 (M, 1)

in (x, t + 1)

Example: Cost analysis with effect handlers

Effect handler
Defines a handler
counting how many
times Tick is invoked

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
(M, 2)

Q. How can we statically reason about
the behavior of programs with control effects?

A. Answer-type modification (ATM)!

♦ Refinement types for functional correctness [Kawamata+ ‘24]

Q. How can we statically reason about
the behavior of programs with control effects?

A. Answer-type modification (ATM)!
... + typing mechanism adequate for properties to be verified

{ x:B | φ } ♦ Denoting a set of values of base type B satisfying formula φ
♦ E.g., 4 : { x:int | x mod 2 = 0 }, [1; 2; 3] : { x:int list | len(x) > 0 }

Answer types

♦ CPS view: 𝑒𝑒 ∶ 𝜏𝜏 → 𝛼𝛼 → 𝛼𝛼 with answer type 𝛼𝛼
♦ Direct-style view
◊ Return types of captured continuations
◊ ≈ Types of clauses of effect handlers (continuation delimiters)

Int × IntUnit → Int × Int

let h = handler
 | return x -> (x, 0)
 | Tick {n} (), k ->
 let (x, t) = k () in (x, t + 1)

Answer-type modification (ATM)

♦ Allows two kinds of answer types to be different

♦ CPS view: 𝑒𝑒 ∶ 𝑇𝑇 → 𝛼𝛼 → 𝛽𝛽

Int × { x:Int | x = 0 }
Unit → Int × { x:Int | x = n } Int × { x:Int | x = n+1 }

Ghost parameter for
contextual information

Tick : ∀n. Unit → Unit /
 int × { x:Int | x = n } ⇒
 int × { x:Int | x = n+1 }

let h = handler
 | return x -> (x, 0)
 | Tick {n} (), k ->
 let (x, t) = k () in (x, t + 1)

Reasoning by ATM

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0) : int × { x : int | x = 0 }

 | Tick (), k ->
 let (x, t) = k () in (x, t + 1) :
in
with h handle // answer types

 let a = n + m in Tick (); // int × { x : int | x = 1 }
 let b = a + l in Tick (); // int × { x : int | x = 0 }
 b // int × { x : int | x = 0 }

∀n. Unit → Unit /
 int × { x:Int | x = n } ⇒
 int × { x:Int | x = n+1 }

Reasoning by ATM

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0) : int × { x : int | x = 0 }

 | Tick (), k ->
 let (x, t) = k () in (x, t + 1) :
in
with h handle // answer types

 let a = n + m in Tick (); // int × { x : int | x = 1 }
 let b = a + l in Tick (); // int × { x : int | x = 0 }
 b // int × { x : int | x = 0 }

∀n. Unit → Unit /
 int × { x:Int | x = n } ⇒
 int × { x:Int | x = n+1 }

Reasoning by ATM

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0) : int × { x : int | x = 0 }

 | Tick (), k ->
 let (x, t) = k () in (x, t + 1) :
in
with h handle // answer types

 let a = n + m in Tick (); // int × { x : int | x = 1 }
 let b = a + l in Tick (); // int × { x : int | x = 0 }
 b // int × { x : int | x = 0 }

∀n. Unit → Unit /
 int × { x:Int | x = n } ⇒
 int × { x:Int | x = n+1 }

Reasoning by ATM

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0) : int × { x : int | x = 0 }

 | Tick (), k ->
 let (x, t) = k () in (x, t + 1) :
in
with h handle // answer types

 let a = n + m in Tick (); // int × { x : int | x = 1 }
 let b = a + l in Tick (); // int × { x : int | x = 0 }
 b // int × { x : int | x = 0 }

∀n. Unit → Unit /
 int × { x:Int | x = n } ⇒
 int × { x:Int | x = n+1 }

n = 0

Reasoning by ATM

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0) : int × { x : int | x = 0 }

 | Tick (), k ->
 let (x, t) = k () in (x, t + 1) :
in
with h handle // answer types
 // int × { x : int | x = 2 }
 let a = n + m in Tick (); // int × { x : int | x = 1 }
 let b = a + l in Tick (); // int × { x : int | x = 0 }
 b // int × { x : int | x = 0 }

∀n. Unit → Unit /
 int × { x:Int | x = n } ⇒
 int × { x:Int | x = n+1 }

n = 1

Reasoning by ATM

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0) : int × { x : int | x = 0 }

 | Tick (), k ->
 let (x, t) = k () in (x, t + 1) :
in
with h handle // answer types
 // int × { x : int | x = 2 }
 let a = n + m in Tick (); // int × { x : int | x = 1 }
 let b = a + l in Tick (); // int × { x : int | x = 0 }
 b // int × { x : int | x = 0 }

Reasoning by ATM

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

 b

let h = handler
 | return x -> (x, 0) : int × { x : int | x = 0 }

 | Tick (), k ->
 let (x, t) = k () in (x, t + 1) :
in
with h handle // answer types
 // int × { x : int | x = 2 }
 let a = n + m in Tick (); // int × { x : int | x = 1 }
 let b = a + l in Tick (); // int × { x : int | x = 0 }
 b // int × { x : int | x = 0 }

int × { x : int | x = 2 }

Example: Typestate

let h = handler
 | return x -> (x, 0)
 | Tick (), k ->
 let (x, t) = k () in (x, t + 1)
in
with h handle
 let a = n + m in Tick ();

 let b = a + l in Tick ();

let h = handler
 | return x -> … : CLOSE
 | Open x, k -> … : … / OPEN ⇒ CLOSE
 | Read x, k -> … : … / OPEN ⇒ OPEN
 | Write x, k -> … : … / OPEN ⇒ OPEN
 | Close x, k -> … : … / CLOSE ⇒ OPEN
in
with h handle
 Open (); Write (); Close ();
 Read ();

can be rejected as expected

Other applications

♦ Temporal verification [Sekiyama & Unno ‘23]

◊ Verifying trace properties for both safety and liveness
◊ Equipped with effect systems

♦ Higher-order model checking (HOMC) [Sekiyama+ ‘24, ‘25]

◊ HOMC is an extension of model checking to HO programs [Ong ‘09]

◊ Effect handlers make HOMC undecidable in general
◊ ATM can make HOMC decidable by restricting the usage of continuations
◊ Will be presented on Oct 18 (Sat) at SPLASH

Open questions

♦ ATM for other control operators
◊ Multi-prompt (tagged) control operators
◊ cupto [Gunter+ ‘95]

◊ Lexical effect handlers [Biernacki+ ‘19,’20; Zhang & Meyers ‘19; Brachthäuser+ ‘20]

◊ Shallow / bidirectional / scoped / selection effect handlers, and others

♦ Relationship to predicate transformer
◊ Known that CPS semantics is closely relevant to predicate transformer

[Polak ‘81; Ahman+ ‘17; Kura ’23]
◊ ATM is based on CPS transformation
◊ What’s a relationship between ATM and predicate transformer?

Takeaway

♦ Answer-type modification is an effective tool to reason about
 higher-order programs with control effects

♦ It can lift type-based reasoning for languages without control effects
 to those with them

	Verifying Effectful Programs with Answer-Type Modification
	Control effects
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	スライド番号 22
	スライド番号 23
	Answer types
	Answer-type modification (ATM)
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Example: Typestate
	Other applications
	Open questions
	Takeaway

