Control Effects

Verifying Effectful Programs with
Answer-Type Modification

Taro Sekiyama

National Institute of Informatics (NII)
Tokyo, Japan

@ OlivierFest

Control effects

¢ Effects influencing the control flow

¢ States, exception, async/await, coroutine, nondeterminism, etc.

¢ Implemented by control operators

O Able to manipulate continuations in a flexible manner

¢ A variety of control operators have been proposed, including
O shift/reset, shiftO/resetO [Danvy and Filinski ‘89]
¢ control/prompt [Felleisen '88]
O Effect handlers [Plotkin & Pretnar ‘09, 13]

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler | return x -> (x, 0)
counting how many | Tick 0O, >
1C) -2

times Tick is invoked
let (x, t) =k () in (x, t + 1)

in

with h handle
Installs handler h let a =n +min Tick ();
to handle Tick let b = a + 1 in Tick ();

invoked by the term

b

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler

. | return x -> (X, 0)
counting how many]
times Tick is invoked | Tick (), k ->

let (x, t) =k () in (x, t + 1)

in
with h handle
Installs handler h Tick ();

to handle Tick : . i
invoked by the term ;Et b =N+ 1in Tick ();

Example: Cost analysis with effect handlers

- let h = handler
Defines a handler | return x -> (x, 0)

counting how many]
times Tick is invoked | Tick (), k ->
let (x, t) =k () in (x, t + 1)

in
with

andle
Installs handler h

to handle Tick
invoked by the term

Tick ();
let b =N+ 1 in Tick ();
b

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler | return x -> (x, 0)
counting how many | Tick 0O, >
1C) -2

times Tick is invoked
let (x, t) = k () in (x, t + 1)

in

with h handle
let b =N+ 1 in Tick ();
b

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler | return x -> (x, 0)
counting how many | Tick 0O, >
1C) -2

times Tick is invoked
let (x, t) = k () in (x, t + 1)

in

with h handle
let b =N+ 1 in Tick ();
b

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler
. | return x -> (x, 0)
counting how many i
times Tick is invoked | Tick (), k ->
let (x, t) = k () in (x, t + 1)
in
let (x, t) =k () in (x, t + 1)

with h handle
let b =N+ 1 in Tick ();
b

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler
. | return x -> (x, 0)
counting how many i
times Tick is invoked | Tick (), k ->
let (x, t) = k () in (x, t + 1)
in
let (x, t) = k() in (x, t + 1)

with h handle
let b =N+ 1 in Tick ();
b

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler
. | return x -> (x, 0)
counting how many i
times Tick is invoked | Tick (), k ->
let (x, t) = k () in (x, t + 1)
in
let (x, t) = k() in (x, t + 1)

with h handle
let b =N+ 1 in Tick ();
b

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler | return x -> (x, 0)
counting how many | Tick 0O, >
1C) -2

times Tick is invoked
let (x, t) = k () in (x, t + 1)

in
let (x, t) =
with h handle
(0
let b =N+ 1 in Tick ();

b

in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler | return x -> (x, 0)
counting how many | Tick 0O, >
1C) -2

times Tick is invoked
let (x, t) = k () in (x, t + 1)

in
let (x, t) =
with h handle
O
let b =N+ 1 in Tick ();

b

in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler | return x -> (x, 0)
counting how many | Tick 0O, >
1C) -2

times Tick is invoked
let (x, t) = k () in (x, t + 1)
in
let (x, t) =
with h handle

Tick ();
M

in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler | return x -> (x, 0)
counting how many | Tick 0O, >
1C) -2

times Tick is invoked
let (x, t) = k () in (x, t + 1)
n
et (x, t) =
with h handle

Tick ();
M

in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler

. | return x -> (x, 0)
counting how many i
times Tick is invoked | Tick (), k ->

let (x, t) = k () in (x, t + 1)
in
let (x, t) =
let (x, t) =
with h handle

0);
M
in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler

. | return x -> (x, 0)
counting how many i
times Tick is invoked | Tick (), k ->

let (x, t) = k () in (x, t + 1)
in
let (x, t) =
let (x, t) =
with h handle

0);
M
in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler

. | return x -> (x, 0)
counting how many i
times Tick is invoked | Tick (), k ->

let (x, t) = k () in (x, t + 1)
in
let (x, t) =
let (x, t) =
with h handle

M
in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler

: return x -> (x, 0)
counting how many i
times Tick is invoked | Tick (), k ->

let (x, t) = k () in (x, t + 1)
in
et (x, t) =
let (x, t) =
with h handle

M
in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler

. | return x -> (x, 0)
counting how many i
times Tick is invoked | Tick (), k ->

let (x, t) = k () in (x, t + 1)
in
let (x, t) =
let (x, t) =
(M, @)

in (x, t + 1)
in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler

Defines a handler | return x -> (x, 0)
counting how many | Tick 0O, >
1C) -2

times Tick is invoked
let (x, t) = k () in (x, t + 1)
in
let (x, t) =
(M, 1)

in (x, t + 1)

Example: Cost analysis with effect handlers

| let h = handler
Defines a handler

counting how many | return x -> (x, 9)
times Tick is invoked | Tick (), k ->
let (x, t) = k () in (x, t + 1)
in
(M, 2)

Q. How can we statically reason about
the behavior of programs with control effects?

A. Answer-type modification (ATM)!

Draft 4.2 — July 22nd, 1989

A Functional Abstraction of Typed Contexts

Olivier Danvy & Andrzej Filinski

Q. How can we statically reason about
the behavior of programs with control effects?

A. Answer-type modification (ATM)!

.. + typing mechanism adequate for properties to be verified

¢ Refinement types for functional correctness [Kawamata+ '24]

\ T

4 N
¢ Denoting a set of values of base type B satisfying formula
{x:B| ¢} g yp ying ¢

¢ Eg,4:{xint|xmod2=0}1[1;2;3]:{xintlist | len(x) > 0}
_ J

Answer types

¢ CPSview: [e] : ([t] = a) = a with answer type «

¢ Direct-style view
O Return types of captured continuations

0 = Types of clauses of effect handlers (continuation delimiters)

Unit » Int X Int Int X Int

let h =~kandler
| return X -> (x, 0)
| Tick O, k ->
let (x, t) = k () in (x, t + 1)

Answer-type modification (ATM)

¢ Allows two kinds of answer types to be different

¢ CPSview: [e]: ([T]=a) = B

Int X { x:Int | x=0}

Unit->Int X { x:Int | x=n} Int X { x:Int | x=n+1}

Ghost parameter for let h = handMer
contextual information
|_return x > (X, 0) Tick : Vn.Unit - Unit/
| Tick OF -2 int X {x:Int | x=n}=

let (x, t) = k () in (x, t + 1)I int X { x:Int | x=n+1}

Reasoning by ATM

let h = handler

| return x -> (X, @) :int X {x :int | x=0}
| Tick (), k -> vn.Unit » Unit/
let (x, t) = k () in (x, t + 1) : intxX{x:Int|x=n}>=
in int X { x:Int | x=n+1}

with h handle

let a =n+min Tick ();
let b =a + 1 in Tick ();
b

Reasoning by ATM

let h = handler

| return x -> (x, @) :int X {x:int | x=0} 4—\

| Tick (), k -> vn.Unit » Unit/
let (x, t) = k () in (x, t + 1) : intx{x:Int|x=n}=
in int X { x:Int | x=n+1}

with h handle

let a =n+ min Tick ();

let b =a+ 1 in Tick (); _—”’//////
b

Reasoning by ATM

let h = handler

| return x -> (X, @) :int X {x :int | x=0}
| Tick (), k -> vn.Unit » Unit/
let (x, t) = k () in (x, t + 1) : intxX{x:Int|x=n}>=
in int X { x:Int | x=n+1}

with h handle

let a =n+min Tick ();
let b =a + 1 in Tick ();
b

Reasoning by ATM

let h = handler

| return x -> (x, @) :int X {x:int | x=0}
| Tick (), k -> vn.Unit » Unit/
let (x, t) = k () in (x, t + 1) : int X {x:Int|[x=n}>=
in int X { x:Int | x=n+1}

with h handle /‘ n=0

let a =n+min Tick ();
let b = a + 1 in Tick ();
b

Reasoning by ATM

let h = handler

| return x -> (x, @) :int X {x:int | x=0}
| Tick (), k -> vn.Unit » Unit/
let (x, t) = k () in (x, t + 1) : intX{x:Int |[x=n}>=
in int X { x:Int | x=n+1}
with h handle An=1

let a =n+min Tick ();
let b =a+ 1 in Tick ();
b

Reasoning by ATM

let h = handler
| return x -> (x, @) :int X {x:int | x=0}

| Tick (), k ->
let (x, t) =k () in (x, t + 1) :
in
with h handle
let a =n+min Tick ();

let b =a+ 1 in Tick ();
b

Reasoning by ATM

let h = handler
| return x -> (X, @) :int X {x :int | x=0}

| Tick (), k ->
let (x, t) =k () in (x, t + 1) :
in
with h handle
let a =n+ min Tick ();

let b = a + 1 in Tick ();
b

Example: Typestate

let h = handler

return Xx -> .. . CLOSE

Open x, k -> .. : ../ OPEN = CLOSE

Read X, k -> .. : ../ 0OPEN = OPEN

Write X, k -> .. : ../ OPEN = OPEN can be as expected
Close x, k -> .. : ../ CLOSE = OPEN

in
with h handle
Open (); Write (); Close ();

Other applications

¢ Temporal verification [sekiyama & Unno ‘23]
O Veritying trace properties for both safety and liveness
¢ Equipped with effect systems

¢ Higher-order model checking (HOMC) [Sekiyama+ '24, '25]
O HOMC is an extension of model checking to HO programs [Ong '09]
¢ Effect handlers make HOMC undecidable in general
O ATM can make HOMC decidable by restricting the usage of continuations
O Will be presented on Oct 18 (Sat) at SPLASH

Open questions

¢ ATM for other control operators
O Multi-prompt (tagged) control operators

¢ cupto [Gunter+ '95]
¢ Lexical effect handlers [Biernacki+ '19,20; Zhang & Meyers '19; Brachthauser+ '20]

¢ Shallow / bidirectional / scoped / selection effect handlers, and others

¢ Relationship to predicate transformer

¢ Known that CPS semantics is closely relevant to predicate transformer
[Polak ‘81; Ahman+ "17; Kura '23]

O ATM is based on CPS transformation
O What's a relationship between ATM and predicate transformer?

Takeaway

¢ Answer-type modification is an effective tool to reason about
higher-order programs with control effects

¢ It can lift type-based reasoning for languages without control effects
to those with them

A Functional Abstraction of Typed Contexts

Olivier Danvy & Andrzej Filinski

	Verifying Effectful Programs with Answer-Type Modification
	Control effects
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	Example: Cost analysis with effect handlers
	スライド番号 22
	スライド番号 23
	Answer types
	Answer-type modification (ATM)
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Reasoning by ATM
	Example: Typestate
	Other applications
	Open questions
	Takeaway

