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We present a general form of temporal effects for recursive types. Temporal effects have been adopted by

effect systems to verify both linear-time temporal safety and liveness properties of higher-order programs

with recursive functions. A challenge in a generalization to recursive types is that recursive types can easily

cause unstructured loops, which obscure the regularity of the infinite behavior of computation and make it

harder to statically verify liveness properties. To solve this problem, we introduce temporal effects with a

later modality, which enable us to capture the behavior of non-terminating programs by stratifying obscure

loops caused by recursive types. While temporal effects in the prior work are based on certain concrete formal

forms, such as logical formulas and automata-based lattices, our temporal effects, which we call algebraic
temporal effects, are more abstract, axiomatizing temporal effects in an algebraic manner and clarifying the

requirements for temporal effects that can reason about programs soundly. We formulate algebraic temporal

effects, formalize an effect system built on top of them, and prove two kinds of soundness of the effect system:

safety and liveness soundness. We also introduce two instances of algebraic temporal effects: one is temporal
regular effects, which are based on 𝜔-regular expressions, and the other is temporal fixpoint effects, which are

based on a first-order fixpoint logic. Their usefulness is demonstrated via examples including concurrent and

object-oriented programs.
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1 Introduction
1.1 Background: Effect Systems for Temporal Verification
Temporal program verification aims to reason about whether programs perform effectful operations

in a well-organized manner. For example, it can ensure the safety of resource usage [Aldrich et al.

2009; Igarashi and Kobayashi 2002], which is a safety property that resources, such as memory cells

and file objects, are manipulated in a correct order. Furthermore, temporal verification involves the

aspect of liveness verification. For instance, it can check that an infinite computation releases every

allocated resource eventually and every concurrent process is scheduled to be executed at some

time [Owicki and Lamport 1982]. We focus on linear-time temporal verification, which reasons
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about what sequences of events, called traces, are generated by programs. The examples mentioned

above can be formulated as linear-time temporal properties.

One approach to (linear-time) temporal verification of higher-order programs is to design a

type-and-effect system with a special form of effects, called temporal effects [Hofmann and Chen

2014; Koskinen and Terauchi 2014; Nanjo et al. 2018], which represent traces that a program may

yield. A benefit of such systems, called temporal effect systems, is to inherit a common nature of

effect systems: compositionality. That is, the temporal effect systems can verify expressions only

using the static information of their subexpressions.

The existing temporal effect systems have focused on higher-order languages that are equipped

with recursive functions as the only primitive that causes infinite computation. Such a language

makes it easier to prove soundness of the liveness verification with the temporal effects. When

infinite computation is caused only by a recursive function, the trace of the computation should be

generated by executing the body of the recursive function infinitely many times. The temporal

effect systems in the literature implement inference rules exploiting this nature of their target

languages.

However, their formalism specialized in recursive functions is not satisfactory because there

are programming constructs that are useful and powerful enough to perform infinite computation

without structuring loops explicitly as recursive functions. A crucial example of such constructs

is recursive types. The use of recursive types enables us to implement the fixed-point combina-

tor [Morris 1969], but their significance is not only that. More critically, a language with recursive

types can implement a variety of common programming features and paradigms such as recursive

data structures, object-oriented programming [Mitchell 1990], and concurrency [Kobayashi and

Igarashi 2013]. Extending temporal effect systems to recursive types enables verification of temporal

properties of programs with such features and paradigms implementable through recursive types.

1.2 This Work
The purpose of this work is to generalize temporal effect systems to recursive types. A challenge

involved in this generalization is that infinite computation caused by recursive types is unstructured,

that is, it cannot be determined lexically in general. For example, consider the following program:

let f : (rec𝛼.𝛼 → unit) → unit = 𝜆x . (unfold x) x in f (fold f )
which implements the Ω combinator with recursive type rec𝛼.𝛼 → unit. The infinity of this

program is caused by two separate operations for recursive types: fold and unfold. Thus, we need
a means to identify when and what infinite computation arises by their unstructured use. Note

that the use of fold and unfold does not necessarily give rise to infinite computation. For example,

consider finite lists over integers given as a recursive type rec𝛼.unit + (int×𝛼). We can implement

a total function that returns whether a given list is empty using unfold. Therefore, we need a

sophisticated method to reason about various computations caused by the flexible use of the fold
and unfold operations.

A key fact we utilize to address this challenge is that in a language with recursive types, infinite

computation is caused by an infinite series of unfolded computations. For example, the above

divergent program applies function f to fold f that inhabits recursive type rec𝛼.𝛼 → unit. The
application leads to a computation that applies f again after unfolding fold f . As a result, the

unfolding and running of the computation involved in fold f is repeated infinitely and leads to the

divergence. This fact indicates that identifying the trace of infinite computation can be reduced to

identifying the events performed by unfolded computations.

An established approach to organizing possibly infinitely many unfoldings is to use a later
modality ▸ [Appel et al. 2007; Nakano 2000]. A type ▸T formed with the later modality represents
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values of type T generated and accessed “later.” As shown by Nakano [2000], “later” can mean “after

unfolding” by restricting self-referential type variables of recursive types to occur only beneath ▸.
Under such a restriction, we can enforce that each of the unfolded computations constituting an

infinite computation has a type of the form ▸T .
Because the present work is interested in the behavior of computations rather than their results,

we introduce a later modality for temporal effects. The modality allows us to distinguish between

the events performed by the current computation and those performed by “later” (i.e., unfolded)

computations. Exploiting this ability, we provide a new temporal effect system that represents

the infinite trace of a divergent program by effect 𝜙1 ◦ ▸(𝜙2 ◦ ▸(𝜙3 ◦ · · ·)), which means: the

program first performs events represented by effect 𝜙1 and then executes an unfolded computation

with effect 𝜙2 ◦ ▸(𝜙3 ◦ · · ·), that is, it performs events in effect 𝜙2 and then executes an unfolded

computation with effect 𝜙3 ◦ · · · , etc.
Besides the support for recursive types, our effect system is abstracted over the representations

of temporal effects. While the effect systems in the prior work [Hofmann and Chen 2014; Koskinen

and Terauchi 2014; Nanjo et al. 2018] rely on temporal effects in some concrete forms, such as

logical formulas and automata-based lattices, we parameterize our effect system over such concrete

representations of temporal effects. Instead of relying on concrete forms, we define an algebraic

structure required for temporal effects to instantiate the effect system. We call temporal effects

with the proposed algebraic structure algebraic temporal effects, and build a temporal effect system

and its metatheory on top of them. This approach with the algebraic formulation clarifies the

assumptions and structures of temporal effects that can soundly reason about temporal properties.

As instances of algebraic temporal effects, we introduce temporal regular effects, which can

specify finite traces in a regular language and infinite traces in an 𝜔-regular language, and temporal
fixpoint effects, which can specify finite and infinite traces using predicates in a fixpoint logic.

Thanks to the expressive power of the fixpoint logic, temporal fixpoint effects can give non-regular

specifications for traces, but, for the return of the expressivity, automated verification with temporal

fixpoint effects would be more challenging. Our abstraction to algebraic temporal effects enables

guaranteeing soundness of both of the instances, allowing the user to choose an appropriate form

depending on their situation. That said, implementation matters like automated verification are

beyond the scope of the present work, and we do not discuss further details on the comparison

between the instances from the implementation perspective in this paper.

The contributions of this work are summarized as follows:

• We define algebraic temporal effects and build an effect system on top of them. The effect

system is equippedwith recursive types, later types (of the form▸T ), and effect polymorphism.

We demonstrate that our effect system can reason about temporal properties of higher-order

programs with recursive functions, objects, and concurrency.

• We prove two kinds of soundness of the effect system. The first property is safety soundness,
which states that the effect system correctly predicts the events performed by terminating

computation. The second property, liveness soundness, ensures that an effect assigned to a

divergent program accommodates the infinite trace generated by the program.

• We define temporal regular effects and temporal fixpoint effects as instances of algebraic tem-

poral effects. The correctness of the verification with these instances is proven as corollaries

of the soundness of the effect system.

The rest of the paper is organized as follows. Section 2 provides an overview of the present

work. In Section 3, we formalize algebraic temporal effects, define the effect system on top of

them, illustrate typing examples, and show the soundness properties of the effect system. Section 4

introduces the instances of algebraic temporal effects and presents the typechecking examples
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with them. In Section 5, we discuss the limitations and open problems in the current form of our

work and certain directions of future research. Finally, after discussing related work in Section 6,

we conclude the paper in Section 7. This paper only states key properties of the metatheory; the

auxiliary lemmas and detailed proofs, as well as the complete definition of the effect system, can be

found in the supplementary material.

Throughout the paper, we use the following notation. Let Σ be a set. We write Σ∗
for the set of

finite sequences, denoted by w, over Σ, and Σ𝜔 for the set of infinite sequences, denoted by 𝜛, over

Σ. We also write N for the set of natural numbers, and 𝜀 for the empty sequence. Given a (finite or

infinite) sequence 𝑠 and i ∈ N, 𝑠 (𝑖) stands for the (𝑖 + 1)-th element of 𝑠 (indices start at zero). For a

set 𝑆 , Pfin\∅ (𝑆) is the set of all the nonempty finite subsets of 𝑆 .

2 Overview
This section provides an overview of temporal effects, the challenge in generalizing them to

recursive types, and our approach to addressing it.

2.1 Temporal Effects
Temporal effects specify both finite and infinite traces generated by expressions, taking the form

of pairs (𝜙, 𝜄) of a predicate 𝜙 on finite traces and a predicate 𝜄 on infinite traces. We call 𝜙 and 𝜄

finite and infinite effects, respectively. Both finite and infinite effects are equipped with subeffecting

𝜙1 ⊑ 𝜙2 and 𝜄1 ⊑ 𝜄2, which mean that all the traces in 𝜙1 and 𝜄1 are contained in 𝜙2 and 𝜄2,

respectively. Temporal effect systems assign a computation type T & (𝜙, 𝜄) composed of value

type T and temporal effect (𝜙, 𝜄), to an expression that, if terminating, produces a value of type

T and a finite trace in predicate 𝜙 and, otherwise, generates an infinite trace in predicate 𝜄 (thus,

(𝜙, 𝜄) overapproximates the actual trace of the expression). The compositionality of temporal effect

systems rests on composition operation ▹ on temporal effects, which combines the effects of

expressions executed sequentially.

For example, consider the following program in ML-like syntax:

let rec repeat () =

let file = rand_str () in

if exists file then (

open file; print_str (read ()); close ();

repeat ()

) else ()

let _ = repeat ()

This program uses the following operations: rand_str to make a string at random; exists to check

if the specified file exists; open, read, and close to manipulate files globally (i.e., they share the

same file resource); and print_str to print a given string. The program calls function repeat, which

repeats printing the contents of a file chosen at random (if the file does not exist, the function call

terminates immediately).

Assume that we are interested in whether the program uses the file manipulation operations in a

valid manner. This can be confirmed formally by checking that the series of the calls to open, read,

and close conforms to regular expression (open · (read∗) · close)∗ when the program terminates

and, otherwise, 𝜔-regular expression (open · (read∗) · close)𝜔 .
The use of temporal effects enables this reasoning in a formal manner. Now, we focus only on the

file manipulation operations. We can find that a call to repeat terminates immediately (if the chosen

file does not exist) or calls itself recursively after operating open, read, and close. Thus, the temporal

effect (𝜙, 𝜄) of repeat should accommodate both (𝜀, ∅) and (open · read · close, ∅) ▹ (𝜙, 𝜄), where
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the empty trace set ∅ as an infinite effect means that the computation terminates. Temporal effect

systems in the literature infer that a finite effect 𝜙 and an infinite effect 𝜄 meeting this requirement

are (open · read · close)∗ and (open · read · close)𝜔 , respectively. Then, the temporal effect systems

assign function type unit → unit & (𝜙, 𝜄) to repeat.

It is noteworthy that this reasoning significantly rests on the structure of recursive functions,

which expose where recursion occurs through variables representing the recursive functions

themselves. For example, in the above program, the reference to variable repeat in the body of the

function elucidates that the generated trace is open, read, and close followed by the one generated by

the recursive call. The existing temporal effect systems utilize this structure to generate constraints

on temporal effects (such as the above one on 𝜙 and 𝜄).

2.2 Challenge with Recursive Types
Recursive types, which take the form rec𝛼.T in this paper, are powerful type representations

with the ability to encode recursive functions, recursive data structures, concurrency, and objects.

They—more precisely, isorecursive types—are equipped with two operations on expressions: unfold

and fold. Operation unfold unfolds the recursive type of the argument, that is, unfold M is given

type T [rec𝛼.T/𝛼] if expression M is of type rec𝛼.T . Operation fold is the counterpart of unfold:

fold M is given type rec𝛼.T if expression M is of type T [rec𝛼.T/𝛼].
These operations allow writing a variety of programs including divergent ones. For example,

consider the following function:

let f x = print_str (read ()); (unfold x) x (1)

It is easy to check that function f is of type (rec𝛼.𝛼 → unit) → unit and, therefore, application
f (fold f) is well typed. The application calls read and print_str in the order, and then runs

(unfold (fold f)) (fold f), which evaluates to f (fold f). Hence, f (fold f) only performs

read infinitely and will never close the file resource.

However, a naive adaption of temporal effects to recursively typed programs fails to deduce that

f does not call close. To see the detail, assume that the function f is given the following type:

(rec𝛼.𝛼 → unit & (𝜙, 𝜄)) → unit & (𝜙, 𝜄) .

This type uses the temporal effect (𝜙, 𝜄) to represent both traces yielded by applying unfold x and

f, respectively, so that fold f is well typed (in fact, it is given the type rec𝛼.𝛼 → unit & (𝜙, 𝜄)
with the typing discipline for fold explained above). Because f only calls read and then unfold x,

the only constraint on the temporal effect (𝜙, 𝜄) is that the effect (read, ∅) ▹ (𝜙, 𝜄) of f’s body is a

subeffect of the effect (𝜙, 𝜄) specified in the return type of f—in other words, any trace denoted by

(read, ∅) ▹ (𝜙, 𝜄) must be contained in (𝜙, 𝜄). For a solution of the constraint, consider the effect

(∅, (read+ · close · open)𝜔 ), which means that an expression given this effect does not terminate,

performs close after one ormore calls to read, and performs open before the next read. This temporal

effect satisfies the constraint because all the infinite traces specified by read · (read+ · close · open)𝜔 ,
which comes from (read, ∅)▹ (read+ · close · open)𝜔 , conform to (read+ · close · open)𝜔 . As a result,
the temporal effect system could erroneously conclude that the file, opened before calling f, will

eventually be closed, although this is not the case.

A critical reason for this problem is that the naive support for recursive types considered above

lacks the productivity guarantee [Sijtsma 1989] for infinite traces. This means that it does not ensure

that a temporal effect assigned to a program contains an infinite trace where every finite prefix is

eventually generated by the program. For the above example, any infinite trace in the predicate

(read+ · close · open)𝜔 assigned to function f takes the form read · · · · · read · close · open · · · · , but
its prefix read · · · · · read · close · open is not generated by f.
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The prior work [Hofmann and Chen 2014; Nanjo et al. 2018] on temporal effects guarantees the

productivity by relying on the structure of recursive functions. For example, Hofmann and Chen’s

effect system involves a typing rule tailored to recursive functions, which assigns to a recursive

function let rec f x = M a function type with the latent temporal effect (𝜙, (r∗ · 𝑜) ∪ r𝜔 ) if the body
M of f has an effect (𝜙, (r ·X ) ∪ 𝑜) under the assumption that the latent effect of 𝑓 is (𝜙,X ), where
r and 𝑜 are (abstractions of) regular and 𝜔-regular expressions, respectively, and X is a variable

over infinite temporal effects. The assigned infinite effect (r∗ · 𝑜) ∪ r𝜔 means that, if an application

of f diverges, it is caused by a finite number of recursive calls to f followed by some other infinite

computation (e.g., inner loops), or an infinite number of recursive calls to f . The typechecking
condition on the body M ensures that some finite trace in r happens before each recursive call to f
(if r is nonempty). Therefore, it is ensured that any finite prefix of an infinite trace in (r∗ · 𝑜) ∪ r𝜔

happens actually.

This approach in the prior work rests on the fact that the divergence caused by a recursive

function let rec f x = M is ascribed to the use of the self-referential variable f in the body M . It is

difficult to take a similar approach for recursively typed, higher-order programs because the root

cause of the divergence of such a program cannot be determined syntactically. For instance, consider

example (1). In the example, whether a call to f diverges depends on actual arguments for x. While

expression f (fold f) diverges due to the recursive call to f, expression f (fold (fun x -> ()))

terminates. It indicates that, in the presence of recursive types and higher-order functions, we

cannot identify (potential) loops in a lexical manner, unlike programs only with recursive functions.

Thus, the flexibility of recursive types hinders ensuring the productivity of temporal effect systems.

2.3 Solution: Temporal Effects with Later Modality
To achieve a temporal effect system with the productivity in the presence of recursive types, we

employ the later modality [Nakano 2000]. One actively studied application of the later modality is to

ensure the productivity of coinductively defined infinite data structures [Atkey and McBride 2013;

Birkedal and Møgelberg 2013; Clouston et al. 2015; Jaber and Riba 2021].
1
Inspired by the technique

for the productivity of infinite data structures, we adapt it to reason about infinite executions

complicated by recursive types.

The later modality ▸ is a type constructor to guard the self references of recursive types. For

example, recursive type rec𝛼.𝛼 → unit is represented as rec𝛼.▸𝛼 → unit in the form of guarded

recursive types. Intuitively, a type ▸T , which we call a later type, represents the values of unfolded
expressions of type T . For example, if variable x is of type rec𝛼.unit → ▸𝛼 , then expression (unfold

x) () has type ▸(rec𝛼.unit → ▸𝛼), which means that the result originates from the computation

arising by unfolding.
2
This indicates that the later modality can be seen as a type-based mechanism

to reason about the usage of the unfolding operation.

To exploit the later modality for temporal liveness verification, we equip infinite effects with a

later modality, and extend the modality to computation types: ▸(T & (𝜙, 𝜄)) def

= ▸T & (𝜙,▸𝜄). The
role of the later modality over infinite effects is twofold.

First, it is used to fold the infinite behavior of a divergent computation, which enables us to stratify

the infinite trace of the computation. To see it in more detail, consider a divergent expression M .

Since the divergence is caused by infinitely many unfolded computations as discussed in Section 1.2,

the evaluation of M reaches, after yielding some finite trace w1, the state that places a folded

1
The productivity of infinite data structures means that, informally speaking, any element of the infinite data structures can

be computed in finite time.

2
A similar discussion can be applied when the type variables of recursive types occur at negative positions, but the situation

becomes more complex.
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computation M1 at a redex position and then unfolds M1, which also diverges. Using temporal

effects with the later modality, we can express this behavior as follows: provided that an infinite

effect 𝜄1 is assigned to the unfolded M1, the infinite effect 𝜄 of M is a supereffect of the composition

w1 ◦▸𝜄1, that is, 𝜄 ⊒ w1 ◦▸𝜄1. For instance, in example (1), when fold f is passed as an argument to

f, it is unfolded to f after read, and then f is called again. Thus, 𝜄 ⊒ read ◦▸𝜄 should hold for some 𝜄

being the infinite effect of f. Returning to the execution of M , since the unfolded M1 diverges, we

can find that its evaluation also yields some finite trace w2 and then produces a folded computation

M2 that will cause divergence after unfolding. This behavior is represented by 𝜄1 ⊒ w2 ◦ ▸𝜄2, where
𝜄2 is the infinite effect of M2, and allows us to derive w1 ◦ ▸𝜄1 ⊒ w1 ◦ ▸(w2 ◦ ▸𝜄2).3 By repeating

this process, we can find that

𝜄 ⊒ w1 ◦▸𝜄1 ⊒ w1 ◦▸(w2 ◦▸𝜄2) ⊒ w1 ◦▸(w2 ◦▸(w3 ◦▸𝜄3)) ⊒ · · · ⊒ w1 ◦▸(w2 ◦▸(w3 ◦▸(w4 ◦ · · ·)))

with some finite traces w2,w3,w4, · · · , each of which is generated between successive unfoldings

leading to divergence. This observation indicates that the later operation ▸ produces an infinite

effect (▸𝜄1) by folding the finite traces (w2,w3,w4, · · · ) between the successive unfoldings.

The second role of ▸ over infinite effects is to ensure the productivity. This is achieved by

requiring that ▸𝜄1 contain the infinite trace w2 ·w3 · · · · when ▸𝜄1 ⊒ ▸(w2 ◦ ▸(w3 ◦ · · ·)), because
then it is easy to ensure that the infinite effect 𝜄 meeting 𝜄 ⊒ w1 ◦ ▸𝜄1 accommodates the generated

infinite trace w1 ·w2 ·w3 · · · · . To accomplish this requirement, we assume that (1) the infinite

effect ▸𝜄1 supplies a set of finite effects {𝜙1, · · · , 𝜙n} and that (2) when ▸𝜄1 ⊒ ▸(w2 ◦ ▸(w3 ◦ · · ·))
holds, there exists a finite effect 𝜙i in the supplied set that is an upper bound of all the finite traces

w2,w3, · · · yielded between the successive unfoldings. Under these assumptions, the productivity

is guaranteed (that is, ▸𝜄1 accommodates w2 ·w3 · · · · ) by interpreting the set of infinite traces

captured by ▸𝜄1 to be

⋃
𝑖∈[1,𝑛] 𝜙

𝜔
i , where 𝜙

𝜔
i is the set of infinite traces constituting some infinitely

many finite traces in the finite effect 𝜙i. We formulate assumption (1) by equipping infinite effects

with a finitization operation fin, which maps infinite effects to finite effect sets {𝜙1, · · · , 𝜙n}. For
assumption (2), we introduce inequational axioms with the operations ▸ and fin (see inequations

(9) and (10) in Definition 1).

The above interpretation of infinite effects means that our framework reduces the infinite

behavior of a program (described by ▸𝜄1) to the infinite repetition of the upper-bounded finite

behavior between successive unfoldings (described by some 𝜙i ∈ fin (▸𝜄1)). The later operation ▸
plays a role in finding the behavior between successive unfoldings that is overapproximated by 𝜙i.

This view guides how we can implement ▸ and fin for concrete instances of temporal effects. For

instance, consider implementing infinite effects by 𝜔-regular expressions. An 𝜔-regular expression

r𝜔 represents the infinite repetition of the finite behavior r . Thus, we can interpret that r in r𝜔

describes the finite behavior between successive unfoldings. Given an 𝜔-regular expression r1 · r𝜔
2
,

r1 expresses the behavior before the first unfolding. If a computation with the effect r1 · r𝜔
2
is folded

(thus, it will be unfolded to be executed), the effect r1 · r𝜔
2
is also “folded” to (r1 ∪ r2)𝜔 because the

finite behavior between successive unfoldings in the folded computation is captured by r1 or r2.
Based on these observations, we can implement the operations ▸ and fin for 𝜔-regular expressions

as ▸(r1 · r𝜔
2
) = (r1 ∪ r2)𝜔 and fin(r𝜔 ) = {r}. Because fin only applies to infinite effects of the form

▸𝜄, it is enough to consider the case that fin takes 𝜔-regular expressions of the form r𝜔 . Temporal

regular effects given in Section 4.1 generalize this idea to more general 𝜔-regular expressions, such

as the union of 𝜔-regular expressions, where finmay return a set with multiple regular expressions,

but the core idea behind it is the same as described here.

3
We need the monotonicity of ▸ with respect to ⊑ to derive it formally.
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Variables x, y, z, f Type variables 𝛼 Effect variables X

Constants c ::= () | true | false | 0 | · · ·
Values V ::= x | c | 𝜆x .M | ΛX .M | foldV | nextV

Expressions M ::= V | o(V ) | V1 V2 | V e | unfoldV | let x = M1 inM2 |
if V thenM1 elseM2 | nextM | V1

⃝∗ V2 | prevV
Base types B ::= unit | bool | int | · · ·
Value types T ::= B | 𝛼 | T → C | ∀X .C | rec𝛼.T | ▸T

Computation types C ::= T & e
Syntactic effects e ::= 𝜖 | X | e1 ∨ e2 | e1 ▹ e2 | ▸e | e
First-order types 𝜏 ::= B | ▸𝜏
Typing contexts Γ ::= ∅ | Γ, x : T | Γ,X | Γ, 𝛼

Fig. 1. Syntax.

Revisiting The Example. Finally, we show that how the extension introduced in this section

prevents us to conclude that example (1) generates an infinite trace conforming to the specification

(read+ · close · open)𝜔 . Asmentioned before, to typecheck example (1), the subeffecting read ◦▸𝜄 ⊑ 𝜄

needs to hold where 𝜄 is the latent infinite effect of the function f. Assume that finite effects and

infinite effects are respectively represented as regular expressions and 𝜔-regular expressions of the

form r1 · r𝜔
2
. Let the infinite effect 𝜄 in the example be read∗ · (read+ · close · open)𝜔 . Here, read∗

represents finite traces generated between the call and recursive call to f. Because

read ◦ ▸𝜄 = read ◦ ▸(read∗ · (read+ · close · open)𝜔 )
= read · (read∗ ∪ (read+ · close · open))𝜔 ,

read𝜔 , which is the actually generated trace, is in read ◦▸𝜄 but not in 𝜄. Thus, read ◦▸𝜄 ̸⊑ 𝜄, so we

find the example program ill-typed as desired.
4
If 𝜄 = read∗ · read𝜔 , the required subeffecting

read ◦ ▸𝜄 = read · (read∗ ∪ read)𝜔 ⊑ read∗ · read𝜔 = 𝜄

holds. Therefore, we can conclude that the infinite trace yielded by the example conforms to

read∗ · read𝜔 .
The crux to prevent the unsound reasoning about the example is the use of the later modality ▸.

The later modality folds the finite effect read∗ specifying finite traces generated between successive

(recursive) calls to f into the finite effect to be repeated infinitely. This folding effect of the later

operation is guided by the requirement on fin, enforcing the infinite effect 𝜄 to involve the possibility
that the call to f may diverge at the infinite trace read𝜔 . Thus, if an infinite effect that does not

accommodate read𝜔 is given as 𝜄, the typechecking of example (1) results in failure. Algebraic

temporal effects, introduced in Section 3.2, are an abstract formulation capturing this idea.

3 Algebraic Temporal Effect System
This section starts by defining a higher-order language with effectful operations, recursive types,

later types, and effect polymorphism. We then introduce algebraic temporal effects and an effect

system, illustrate typing examples, and show the properties of our system.
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3.1 Language
Our language is based on those in the prior work on guarded recursion, an application of the later

modality [Atkey and McBride 2013; Birkedal and Møgelberg 2013; Clouston et al. 2015], while

our use of the later modality aims to directly reason about applications of the unfolding as in

the work of Dreyer et al. [2011]. Inspired by the works on guarded recursion, we introduce the

next constructor for later types. As an eliminator of later types, we introduce a term construct

prev, which allows eliminating the later type constructor ▸ from first-order types of the form

▸ · · ·▸B with some base type B. We restrict the application of prev to first-order values because

the unrestricted elimination of ▸ from higher-order types can cause bypassing the enforcement

of the effect folding via ▸, which leads to unsoundness. The notion of prev is not original in this

work. For example, Clouston et al. [2015] studied a calculus supporting prev that can eliminate

▸ even from higher-order types under a certain condition concerning typing. We could relax the

restriction on our prev as in Clouston et al.’s calculus, but it makes our language more complex.

We strike a balance between simplicity and usefulness of prev by allowing prev to be applied only

to first-order values.

Note that the present work aims to study a theoretical aspect of temporal verification for

recursively typed programs. Thus, we allow our language to be equipped with some constructs—

next, prev, ⃝∗ , fold, and unfold—that work as annotations. We could design a surface language that

hides the use of these annotations from programmers by providing only structured programming

features, like recursive functions, algebraic data types/pattern matching, and objects, that can be

implemented in our core language, but it is a matter of practice and beyond the scope of this work.

3.1.1 Syntax. The syntax of our language is shown in Figure 1. We assume that constants include

the Boolean value true and false. Values, ranged over by V , consist of: variables; constants; lambda

abstractions 𝜆x .M ; effect abstractionsΛX .M ; foldings foldV ; and next-values nextV , which indicate
that argument values V are the results of “later” computations. Expressions, ranged over by M ,

are: values; applications of possibly effectful operations o(V ), where o is a primitive operation and

V is a finite sequence of values; function applications V1 V2; effect applications V e; unfoldings
unfoldV ; let-expressions let x = M1 inM2; if-expressions if V thenM1 elseM2; next-expressions
nextM , which mean that expressions M are “later” computations; later applications V1

⃝∗ V2, which

allow function applications at the “later” time point (i.e., allow applying the function V1 of a type

▸(T → C) to the argument V1 of a type ▸T ); or destructors for later types prevV . The term

constructors next and ⃝∗ come from the previous work on the later modality, forming an applicative

functor denotationally [Atkey and McBride 2013].

Value types T specify values, and computation types C, which are pairs of a value type and

an effect, specify the behavior of computations. In addition to the type constructors explained in

Section 2, the language supports effect-polymorphic types ∀X .C. As in the prior work [Birkedal and

Møgelberg 2013; Clouston et al. 2015; Nakano 2000], we restrict types to meet a guard condition. A
type variable 𝛼 is guarded in a type if every occurrence of 𝛼 in the type is beneath an occurrence of

▸. We assume that, for every recursive type rec𝛼.T ′ occurring in any type, type variable 𝛼 is guarded
in type T ′

. First-order types are base types with zero or more applications of the later modality, as

explained above.

Syntactic effects (or effects for short) e are a syntactic representation of temporal effects. We

use algebraic temporal effects as their denotations in subeffecting. The constructor 𝜖 represents

that computation is pure, that is, no effectful operation is invoked. Join ∨, sequential composition

4
If we take 𝜄 = (read+ · close · open)𝜔 , our temporal effect system enforces ▸𝜄 to involve the possibility that the internal,
unobservable computation continues infinitely, but then read ◦▸𝜄 ⊑ 𝜄 does not hold because 𝜄 does not include such infinite

internal computation.
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Reduction rules M1 ⇝ M2

(𝜆x .M) V ⇝ M [V/x] R_Beta

(nextV1) ⃝∗ (nextV2) ⇝ next (V1 V2) R_NBeta

(ΛX .M) e ⇝ M [e/X ] R_EBeta

let x = V1 inM2 ⇝ M2 [V1/x] R_Let

unfold (foldV ) ⇝ V R_Unfold

prev (nextV ) ⇝ V R_Back

if true thenM1 elseM2 ⇝ M1 R_IfT

if false thenM1 elseM2 ⇝ M2 R_IfF

Evaluation rules M1 −→ M2 & 𝜙

M1 ⇝ M2

M1 −→ M2 & 1
E_Red

o(c) −→ 𝛿v (o, c) & 𝛿e (o)
E_Op

M1 −→ M ′
1
& 𝜙

let x1 = M1 inM2 −→ let x1 = M ′
1
inM2 & 𝜙

E_Let

M −→ M ′
& 𝜙

nextM −→ nextM ′
& 𝜙

E_Next

Multi-step evaluation
M1 −→n M2 & 𝜙

def

= ∃M ′
0
, · · · ,M ′

n, 𝜙
′
1
, · · · , 𝜙 ′

n .

M1 = M ′
0
∧ M2 = M ′

n ∧ 𝜙 = 1 · 𝜙 ′
1
· · · · · 𝜙 ′

n ∧ ∀ i < n. M ′
i −→ M ′

i+1 & 𝜙 ′
i+1.

Divergence
M ⇑ 𝜛

def

= ∀ i,M ′, 𝜙 . M −→i M ′
& 𝜙 =⇒ ∃M ′′. M ′ −→ M ′′

& 𝜛(i)

Fig. 2. Semantics.

▹, and effect-level later modality ▸ are supported syntactically. The metavariable e represents

effect constructors specific to concrete representations of temporal effects. Because we aim at a

general framework for temporal effects, we do not assume constructors specialized in specific effect

representations, such as operations on regular expressions. Instead, we parameterize our language

over effect constructors e and their denotations (i.e., how to interpret them as algebraic temporal

effects). We give operations for (𝜔-)regular expressions as an instance in Section 4.1. When parsing

syntactic effects, we assume ▸ has higher precedence than ∨ and ▹. For example, we may write

▸e1 ▹ e2 to express (▸e1) ▹ e2.
We use the following notation. For an expressionM , fv(M) is the set of all the variables occurring

free in M . We also write M [V/x] to denote the expression obtained by substituting value V for

variable x inM in a capture-avoiding manner. We use similar notation for other kinds of substitution.

The later modality is extended to computation types as: ▸(T & e) def

= (▸T ) & (▸e).

3.1.2 Semantics. The behavior of programs rests on effects performed by primitive operations. As

the present work aims at a general theory of temporal effects, we define the effects of operations ab-

stractly. There are two requirements for those effects. First, they should be sequentially composable

because temporal verification is interested in the order in which effects occur. Second, they should

include an effect that represents pure computation such as 𝛽-reduction. By these requirements,

we assume that the effects of operations form a monoid (F, ·, 1), where operation (·) enables the
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composition of multiple effects and the unit element 1 denotes the effect of pure computation. We

use the metavariable 𝜙 to denote elements in F.
The semantics consists of reduction relation M1 ⇝ M2, which represents the pure computation

from M1 to M2, and evaluation relation M1 −→ M2 & 𝜙 , which represents the computation from

M1 to M2 with effect 𝜙 . They are the smallest relations satisfying the rules in Figure 2.

The reduction rules are standard except for (R_Back), which represents that prev is an eliminator

for next. The rule (R_NBeta) implements the beta-reduction under next.
The evaluation rules allow reduction (R_Red), applying operations (R_Op), and evaluating

subexpressions ((E_Let) and (E_Next)). The rule (R_Op) assumes two metafunctions: 𝛿v, which

maps tuples of an operation and zero or more constants to constants, and 𝛿e, which assigns an

element of F to every operation.

Figure 2 also defines multi-step evaluation and divergence of programs. Multi-step evaluation

M1 −→n M2 & 𝜙 means that expression M1 evaluates to M2 with effect 𝜙 by n steps. We write

M1 −→∗ M2 & 𝜙 ifM1 −→n M2 & 𝜙 for some n. Assume that the metavariable𝜛 denotes elements

in F𝜔 . Then, program divergence M ⇑ 𝜛 defined in Figure 2 means that expression M can evaluate

forever and, for any i ∈N, 𝜛(i) is the effect of the evaluation at the (𝑖 + 1)-th step.

3.2 Algebraic Temporal Effects
This section defines an algebraic formulation of temporal effects. As in the prior work on temporal

effects [Hofmann and Chen 2014; Koskinen and Terauchi 2014; Nanjo et al. 2018; Sekiyama and

Unno 2023], algebraic temporal effects are defined to be pairs of finite effects, which represent the

traces of terminating programs, and infinite effects, which represent those of divergent programs.

Definition 1 (Algebraic Temporal Effects). Algebraic temporal effects, ranged over by 𝜁 , are
elements in set E, which is the Cartesian product F × I of sets F and I such that:

• finite effect set F forms a monoid (F, ·, 1) and a join semilattice (F, +);
• infinite effect set I forms a join semilattice (I,⊔) with the least element 0;
• there exist a later operation ▸ : I→ I, a mixed-product operation ◦ : F×I→ I, and a finitization
operation fin : I→ Pfin\∅ (F).

Metavariable 𝜄 ranges over the elements of I. Partial orders ⊑ on F and on I are induced by the join

operations: 𝜙1 ⊑ 𝜙2

def

= 𝜙1 + 𝜙2 = 𝜙2 and 𝜄1 ⊑ 𝜄2
def

= 𝜄1 ⊔ 𝜄2 = 𝜄2.
We also define the three notions to state the assumptions on fin. The first is the join of a finite effect

𝜙 and a set of finite effects 𝑆 ⊆ F:

𝜙 + 𝑆
def

= {𝜙 + 𝜙 ′ | 𝜙 ′ ∈ 𝑆} .

The second is a binary relation ⊏∼ on Pfin\∅ (F):

𝑆1 ⊏∼ 𝑆2
def

= ∀𝜙1 ∈ 𝑆1. ∃𝜙2 ∈ 𝑆2. 𝜙1 ⊑ 𝜙2 .

Finally, an infinite effect 𝜄 is called infinitely expandable when, for any n > 0, there exist some
𝜙1, · · · , 𝜙n, and 𝜄 ′ such that 𝜙1 ◦ ▸(𝜙2 ◦ ▸( · · · (𝜙n ◦ ▸𝜄 ′) · · ·)) ⊑ 𝜄. It defines a class of infinite effects
that can be given to divergent expressions because the effect system presented shortly ensures that any
infinite effect assigned to a well-typed divergent expression is infinitely expandable.
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Then, algebraic temporal effects are required to meet the following:

(1) 𝜙 ◦ 0 = 0 (2) (𝜙 · 𝜙1) + (𝜙 · 𝜙2) ⊑ 𝜙 · (𝜙1 + 𝜙2)
(3) 1 ◦ 𝜄 = 𝜄 (4) (𝜙1 · 𝜙) + (𝜙2 · 𝜙) ⊑ (𝜙1 + 𝜙2) · 𝜙
(5) 𝜙1 ◦ (𝜙2 ◦ 𝜄) = (𝜙1 · 𝜙2) ◦ 𝜄 (6) (𝜙 ◦ 𝜄1) ⊔ (𝜙 ◦ 𝜄2) = 𝜙 ◦ (𝜄1 ⊔ 𝜄2)
(7) ▸(𝜄1 ⊔ 𝜄2) = (▸𝜄1) ⊔ (▸𝜄2) (8) (𝜙1 ◦ 𝜄) ⊔ (𝜙2 ◦ 𝜄) ⊑ (𝜙1 + 𝜙2) ◦ 𝜄
(9) 𝜙 + fin (▸𝜄0) ⊏∼ fin (▸(𝜙 ◦ ▸𝜄0)) (10) 𝜄1 ⊑ 𝜄2 =⇒ fin (𝜄1) ⊏∼ fin (𝜄2)

where every metavariable appearing in each (in)equation is supposed to be universally quantified, and
𝜄0 in inequation (9) is supposed to be infinitely expandable.

Join operations + and⊔ allow forming one effect from the effects of different control flows. Infinite

effect 0 represents termination of programs. Mixed-product operation ◦ enables us to represent the

effect of sequential composition of a terminating, preceding expression with a divergent, succeeding

expression. As explained in Section 2.3, later operation ▸ folds finite effects into infinite effects

and finitization operation fin supplies a set of finite effects that are upper bounds of finite traces

between successive unfoldings that cause divergence.

We define operations on algebraic temporal effects using the operations on F and those on I.

Definition 2 (Operations on Algebraic Temporal Effects). Later operation ▸, join ∨, pure
effect 𝜖 , and sequential composition ▹ on algebraic temporal effects are defined as follows:

▸(𝜙, 𝜄) def

= (𝜙,▸𝜄) (𝜙1, 𝜄1) ∨ (𝜙2, 𝜄2)
def

= (𝜙1 + 𝜙2, 𝜄1 ⊔ 𝜄2)
𝜖E

def

= (1, 0) (𝜙1, 𝜄1) ▹ (𝜙2, 𝜄2)
def

= (𝜙1 · 𝜙2, 𝜄1 ⊔ (𝜙1 ◦ 𝜄2)) .

The later operation on E is reduced to that on I. The temporal effect 𝜖E is the pure effect, given

to terminating, pure expressions. The definition of sequential composition ▹ originates from the

prior work on temporal effects. It indicates that, for a program that runs expressionsM1 with effect

(𝜙1, 𝜄1) and M2 with effect (𝜙2, 𝜄2) sequentially, it terminates when both M1 and M2 terminate (and

then 𝜙1 · 𝜙2 can be assigned as the finite effect of the entire program), and it diverges when M1

diverges or when M1 terminates and M2 diverges (and then the infinite effect is 𝜄1 or 𝜙1 ◦ 𝜄2).
Subeffecting on E is induced by join operation ∨. Subeffecting ⊑ on E is defined as

𝜁1 ⊑ 𝜁2
def

= 𝜁1 ∨ 𝜁2 = 𝜁2 .

The equational theory of algebraic temporal effects allows us to prove certain properties of the effect

equality and subeffecting, as shown in Section 3.5. Especially, inequation (9) requires fin (▸(𝜙◦▸𝜄0))
to contain an upper bound of the finite effect 𝜙 happening between successive unfoldings.

Inequations (9) and (10) for fin are introduced to ensure assumption (2) mentioned in Section 2.3.

Recall that the assumption is that, when ▸𝜄0 ⊒ ▸(w0 ◦▸(w1 ◦▸(w2 ◦· · ·))), there exists a finite effect
𝜙 ∈ fin (▸𝜄0) that is an upper bound of the finite traces w0,w1,w2, · · · . To see how the inequations

ensure this assumption, consider ▸𝜄0 ⊒ ▸(w0 ◦ ▸(w1 ◦ ▸(w2 ◦ · · ·))). For every i ≥ 1, let 𝜄i =

wi ◦ ▸(wi+1 ◦ · · · ▸(wn ◦ ▸𝜄 ′
0
) · · · ) and assume that it is infinitely expandable. First, because

▸𝜄0 ⊒ ▸(w0 ◦ ▸𝜄1), we have fin (▸𝜄0) ⊐∼ fin (▸(w0 ◦ ▸𝜄1)) by inequation (10). That is,

∀𝜙0 ∈ fin (▸(w0 ◦ ▸𝜄1)) . ∃𝜙 ′
0
∈ fin (▸𝜄0). 𝜙0 ⊑ 𝜙 ′

0
. (2)

By instantiating inequation (9) with w0 and 𝜄1, we have w0 + fin (▸𝜄1) ⊏∼ fin (▸(w0 ◦ ▸𝜄1)), that is,
∀𝜙1 ∈ fin (▸𝜄1). ∃𝜙 ′

1
∈ fin (▸(w0 ◦ ▸𝜄1)) . w0 + 𝜙1 ⊑ 𝜙 ′

1
. (3)

By inequations (2) and (3),

∀𝜙1 ∈ fin (▸𝜄1). ∃𝜙 ′
1
∈ fin (▸(w0 ◦ ▸𝜄1)). ∃𝜙 ′

0
∈ fin (▸𝜄0). w0 + 𝜙1 ⊑ 𝜙 ′

1
∧ 𝜙 ′

1
⊑ 𝜙 ′

0
.
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Because w0 + 𝜙1 ⊑ 𝜙 ′
1
∧ 𝜙 ′

1
⊑ 𝜙 ′

0
=⇒ w0 + 𝜙1 ⊑ 𝜙 ′

0
, we have

∀𝜙1 ∈ fin (▸𝜄1). ∃𝜙 ′
0
∈ fin (▸𝜄0). w0 + 𝜙1 ⊑ 𝜙 ′

0
. (4)

Next, instantiating inequation (9) with w1 and 𝜄2 implies w1 + fin (▸𝜄2) ⊏∼ fin (▸(w1 ◦ ▸𝜄2)), that is,
∀𝜙2 ∈ fin (▸𝜄2). ∃𝜙 ′

2
∈ fin (▸(w1 ◦ ▸𝜄2)). w1 + 𝜙2 ⊑ 𝜙 ′

2
. (5)

Because ▸𝜄1 = ▸(w1 ◦ ▸𝜄2), inequations (4) and (5) imply

∀𝜙2 ∈ fin (▸𝜄2) . ∃𝜙 ′
2
∈ fin (▸(w1 ◦ ▸𝜄2)) . ∃𝜙 ′

0
∈ fin (▸𝜄0). w1 + 𝜙2 ⊑ 𝜙 ′

2
∧ w0 + 𝜙 ′

2
⊑ 𝜙 ′

0
.

Because w1 + 𝜙2 ⊑ 𝜙 ′
2
∧ w0 + 𝜙 ′

2
⊑ 𝜙 ′

0
=⇒ w0 + w1 + 𝜙2 ⊑ 𝜙 ′

0
, we have

∀𝜙2 ∈ fin (▸𝜄2). ∃𝜙 ′
0
∈ fin (▸𝜄0). w0 + w1 + 𝜙2 ⊑ 𝜙 ′

0
.

By repeating this process for the remaining 𝜄3, 𝜄4, · · · , we can find

∀𝜙n ∈ fin (▸𝜄n). ∃𝜙 ′
0
∈ fin (▸𝜄0). w0 + w1 + · · · + wn−1 + 𝜙n ⊑ 𝜙 ′

0
.

for an arbitrary 𝑛. Because fin (▸𝜄n) is nonempty, there exist some 𝜙n ∈ fin (▸𝜄n) and 𝜙 ′
0
∈ fin (▸𝜄0)

such that w0 + w1 + · · · + wn−1 + 𝜙n ⊑ 𝜙 ′
0
. This means that fin (▸𝜄0) includes an upper bound of

the finite traces w0,w1,w2, · · · that are, respectively, generated between successive unfoldings (as

indicated by the use of ▸ in ▸(w0 ◦ ▸(w1 ◦ ▸(w2 ◦ · · ·)))).5 Instances of algebraic temporal effects

have to implement ▸ and fin meeting inequations (9) and (10). One way to do so is to record finite

effects between successive applications of ▸ (i.e., 𝜙 in ▸(𝜙 ◦▸𝜄)) and have fin return an upper bound

of all the finite effects recorded. This is exactly how the instances given in Section 4 implement ▸
and fin.

Note that inequation (9) assumes that 𝜄0 is infinitely expandable, which means that a computation

may diverge; conversely, a computation given a non-infinitely-expandable effect must terminate

because, if diverging, it involves infinitely many unfolded computations, which requires the assigned

effect be infinitely expandable. Because the inequation is used only when divergent computation is

focused on, we can assume that 𝜄0 is infinitely expandable. If the restriction to infinitely expandable

effects was lifted, the instance given in Section 4.1 would not satisfy inequation (9).

3.3 Type-and-Effect System
This section defines our effect system, which is parameterized over algebraic temporal effects.

We here assume that their set E is given. Well-formedness of typing contexts ⊢ Γ, value types
Γ ⊢ T , computation type Γ ⊢ C, and effects Γ ⊢ e are defined in a straightforward way; see the

supplementary material for their definitions.

Figure 3 shows all the typing and subtyping rules. Typing judgments take the form Γ ⊢ M : C. We

abbreviate it to Γ ⊢ M : T if C = T & 𝜖 , which means that expression M terminates with no effect.

Most of the typing rules are standard or straightforward variants of those in the prior work [Birkedal

and Møgelberg 2013; Koskinen and Terauchi 2014; Nakano 2000] except for (T_Prev). The rule

(T_Var) for variables uses the notation Γ(x), which stands for the type assigned to variable x by

typing context Γ; it is undefined if Γ assigns no type to x. The rules (T_Const) and (T_Op) rest

on metafunction ty, which assigns a base type to every constant and a first-order function type

B1 → · · · → Bn → B0, abbreviated to B → B0, to every primitive operation. The effect assigned to

application of an operation o is given by metafunction eff and we assume that it is closed. The rule

(T_Let) uses sequential composition ▹ to concatenate the effect of a preceding expression with that

of a succeeding one. For next constructs, there are two typing rules: (T_Next) for computations and

5
The discussion here considers only finitely many traces w0,w1, · · · ,wn, but we can adapt it to infinitely many traces

w0,w1, · · · using the assumption that fin returns finite sets. Readers interested in the detail are referred to the proof of

Theorem 2 (Liveness Soundness) in the supplementary material.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 78. Publication date: January 2025.



78:14 Taro Sekiyama and Hiroshi Unno

Typing rules Γ ⊢ M : C Γ ⊢ M : T def

= Γ ⊢ M : T & 𝜖

⊢ Γ

Γ ⊢ x : Γ(x) T_Var
⊢ Γ

Γ ⊢ c : ty(c) T_Const
⊢ Γ ty(o) = B → B0 Γ ⊢ V : B

Γ ⊢ o(V ) : B0 & eff (o)
T_Op

Γ, x : T ⊢ M : C
Γ ⊢ 𝜆x .M : T → C

T_Abs

Γ ⊢ V1 : T → C Γ ⊢ V2 : T
Γ ⊢ V1 V2 : C

T_App

Γ ⊢ V : bool Γ ⊢ M1 : C Γ ⊢ M2 : C
Γ ⊢ if V thenM1 elseM2 : C

T_If

Γ ⊢ M1 : T1 & e1 Γ, x : T1 ⊢ M2 : T2 & e2
Γ ⊢ let x1 = M1 inM2 : T2 & e1 ▹ e2

T_Let

Γ ⊢ V : T [rec𝛼.T/𝛼]
Γ ⊢ foldV : rec𝛼.T

T_Fold

Γ ⊢ V : rec𝛼.T
Γ ⊢ unfoldV : T [rec𝛼.T/𝛼] T_Unfold

Γ ⊢ M : C
Γ ⊢ nextM : ▸C

T_Next

Γ ⊢ V : T
Γ ⊢ nextV : ▸T

T_NextV

Γ ⊢ V : ▸𝜏

Γ ⊢ prevV : 𝜏
T_Prev

Γ ⊢ V1 : ▸(T → C) Γ ⊢ V2 : ▸T
Γ ⊢ V1

⃝∗ V2 : ▸C
T_LApp

Γ ⊢ M : C Γ; ∅ ⊢ C <: C ′

Γ ⊢ M : C ′ T_Sub

Γ,X ⊢ M : C
Γ ⊢ ΛX .M : ∀X .C T_EAbs

Γ ⊢ V : ∀X .C Γ ⊢ e
Γ ⊢ V e : C [e/X ] T_EApp

Subtyping rule for computation types Γ;Δ ⊢ C1 <: C2

Γ;Δ ⊢ T1 <: T2 Γ ⊢ e1 ⊑ e2
Γ;Δ ⊢ T1 & e1 <: T2 & e2

Subtyping rules for value types Γ;Δ ⊢ T1 <: T2
Γ ⊢ T ⊢ Δ dom(Δ) ∩ ftv(T ) = ∅

Γ;Δ ⊢ T <: T
Γ ⊢ 𝛼 Γ ⊢ 𝛽 ⊢ Δ 𝛼 <: 𝛽 ∈ Δ

Γ;Δ ⊢ 𝛼 <: 𝛽

Γ;Δ ⊢ T2 <: T1 Γ;Δ ⊢ C1 <: C2

Γ;Δ ⊢ T1 → C1 <: T2 → C2

Γ,X ;Δ ⊢ C1 <: C2

Γ;Δ ⊢ ∀X .C1 <: ∀X .C2

𝛼 ∉ftv(T2) 𝛽 ∉ftv(T1) Γ, 𝛼, 𝛽 ;Δ, 𝛼 <: 𝛽 ⊢ T1 <: T2
Γ;Δ ⊢ rec𝛼.T1 <: rec 𝛽.T2

Γ;Δ ⊢ T1 <: T2
Γ;Δ ⊢ ▸T1 <: ▸T2

Subeffecting rule Γ ⊢ e1 ⊑ e2

Γ ⊢ e1 Γ ⊢ e2 ∀𝑑E ∈D[domeff (Γ)] . E[e1] (𝑑E) ⊑ E[e2] (𝑑E)
Γ ⊢ e1 ⊑ e2

Fig. 3. Typing and subtyping rules.

(T_NextV) for values. The difference between them is effect assignment: while (T_Next) assigns

effect ▸e to expression nextM if M has effect e, (T_NextV) assigns the pure effect 𝜖 . Note that
the interpretation of ▸𝜖 in algebraic temporal effects may be different from that of 𝜖 in general;

indeed, we assign different denotations to them in temporal regular effects. The rule (T_Prev)

represents that the eliminator prev makes first-order values produced by unfolded computation
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currently available. The rule (T_LApp) expresses that ⃝∗ allows function applications for functions

and arguments of later types.

The subtyping rules are standard in the presence of recursive types and later types [Bengtson et al.

2011; Nakano 2000]. The metavariable Δ represents finite sequences of type variable bindings of the

form 𝛼 <: 𝛽 , which means that type variable 𝛼 is a subtype of type variable 𝛽 . The well-formedness

judgment ⊢ Δ means that the type variables bound by Δ are distinct from each other. Subtyping

between computation types compare effects using subeffecting.

Subeffecting relies on the interpretation of syntactic effects to algebraic temporal effects. We

assume that an algebraic temporal effect 𝛿E (e) is assigned for every effect constructor e.

Definition 3 (Effect Interpretation). The interpretationE[e] (𝑑E) of an effect ewith amapping
𝑑E from effect variables to algebraic temporal effects is an algebraic temporal effect, defined as follows:

E[𝜖] (𝑑E) def

= 𝜖E E[X ] (𝑑E) def

= 𝑑E (X )
E[e] (𝑑E) def

= 𝛿E (e) E[▸e] (𝑑E) def

= ▸E[e] (𝑑E)
E[e1 ∨ e2] (𝑑E) def

= E[e1] (𝑑E) ∨ E[e2] (𝑑E) E[e1 ▹ e2] (𝑑E) def

= E[e1] (𝑑E) ▹ E[e2] (𝑑E)

The subeffecting rule uses the notation domeff (Γ), which denotes the set of effect variables bound

by typing context Γ, and D[S], which, given a set S of effect variables, denotes the set of functions
that map effect variables in S to algebraic temporal effects. Hence, it means that effect e1 is a
subeffect of e2 if the interpretation of e1 is a subeffect of that of e2 under any interpretation 𝑑E

of

free effect variables in e1 and e2.

3.4 Examples
This section illustrates how programs in our language behave and are typechecked through a few

examples. For that, in this section we assume that: the finite effect set F accommodates Σ∗
(i.e., finite

sequences) over a finite symbol set Σ; for w1,w2 ∈ Σ∗
, the finite effect composition w1 ·w2 is defined

to be the concatenation of w1 and w2; and the finite effect 1 coincides with the empty sequence

𝜀. We also assume an operation ev[a], which raises event a ∈ Σ. This behavior is formulated by

letting 𝛿e (ev[a])
def

= a. Furthermore, we use the following shorthand for simplicity:

M1;M2

def

= let x1 = M1 inM2 unfold▸
def

= next (𝜆x .unfold x) fold▸
def

= next (𝜆x .fold x)
T1 → T2

def

= T1 → (T2 & 𝜖) ∀X .T def

= ∀X . (T & 𝜖)

We often place a non-value expression at the position where a value is expected. In such a case,

we assume that let constructs are inserted appropriately. For example, a function application

M1 M2 is regarded as let x = M1 in let y = M2 in x y implicitly if neither M1 nor M2 is a value. Note

that unfold▸ unfolds a recursive type beneath ▸. Namely, given a value V of type ▸rec𝛼.T , the
application unfold▸ ⃝∗ V is of the type ▸T [rec𝛼.T/𝛼] & ▸𝜖 . Similarly, given a value V of type

▸T [rec𝛼.T/𝛼], the application fold▸ ⃝∗ V has the type ▸rec𝛼.T & ▸𝜖 .

Example 1. The first example is a variant of the Ω combinator presented in Section 1. It is changed

so that function f raises event a when applied; therefore, the program diverges with infinite trace

a𝜔 = a · a · · · · . In our language, the example is described as follows:

let f = V in f (next (fold f ))

where

V def

= 𝜆x . (ev[a] ();M) M def

= let y = (unfold▸ ⃝∗ x) ⃝∗ (next x) in prev y .
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First, let us confirm the behavior of the program. (here, M1 & 𝜙1 −→∗ M2 & 𝜙2 means M1 −→∗

M2 & 𝜙2, and 𝜙1 is the effect caused by the previous computation):

let f = V in f (next (fold f ))
−→ V (next (foldV )) & 1
−→ ev[a] ();M [next (foldV )/x] & 1
−→ M [next (foldV )/x] & a
= let y = (unfold▸ ⃝∗ (next (foldV ))) ⃝∗ (next (next (foldV ))) in prev y & a

−→∗ let y = (nextV ) ⃝∗ (next (next (foldV ))) in prev y & 1
−→ let y = next (V (next (foldV ))) in prev y & 1
−→ let y = next (ev[a] ();M [next (foldV )/x]) in y & 1

The above evaluation shows that the program’s behavior conforms to the following pattern:

Ei [ev[a] ();M [next (foldV )/x]] −→∗ Ei+1 [ev[a] ();M [next (foldV )/x]] & a

for any natural number i, where E0, E1, · · · are evaluation contexts defined as follows: E0
def

= [ ] ;
and Ei+1

def

= let y = next Ei in prev y (note that [ ] is the hole and E[M] denotes the expression
obtained by filling the hole in E with the expression M). Therefore, the program diverges with a𝜔 :

V (next (foldV )) −→ E0 [ev[a] ();M [next (foldV )/x]] & 1
−→∗ E1 [ev[a] ();M [next (foldV )/x]] & a
−→∗ E2 [ev[a] ();M [next (foldV )/x]] & a
−→∗ · · ·

Next, let us see the effect constraint imposed on the program. Let T def

= rec𝛼.▸𝛼 → unit & e for
some effect e. Then, function V has type ▸T → unit & e if the subeffecting eff (ev[a]) ▹ ▸𝜖 ▹ ▸e ▹
𝜖 ⊑ e holds (where ▸𝜖 , ▸e, and 𝜖 comes from unfold▸ ⃝∗ x, its application to next x, and prev z,
respectively; readers interested in the detail are referred to the supplementary material), and the

remaining is typechecked by:

f :▸T → unit & e ⊢ f : (▸T → unit & e)
f :▸T → unit & e ⊢ next (fold f ) : ▸T

(T_App)

f :▸T → unit & e ⊢ f (next (fold f )) : unit & e
By the equational theory of algebraic temporal effects, we can find that

e ⊒ eff (ev[a]) ▹ ▸𝜖 ▹ ▸e ▹ 𝜖

⊒ eff (ev[a]) ▹ ▸𝜖 ▹ ▸(eff (ev[a]) ▹ ▸𝜖 ▹ ▸e ▹ 𝜖) ▹ 𝜖

⊒ eff (ev[a]) ▹ ▸𝜖 ▹ ▸(eff (ev[a]) ▹ ▸𝜖 ▹ ▸(eff (ev[a]) ▹ · · ·) ▹ 𝜖) ▹ 𝜖 ⊒ · · · .
It indicates that (the interpretation of) the effect e only involves the infinite trace a𝜔 . In turn, by the

productivity of our temporal effect system, it is ensured that the program generates the trace a𝜔 .
Section 4.1 provides a concrete effect representation for e that enables to prove this claim formally.

Example 2. The second example is a fixed-point combinator with recursive types. In our language,

it can be expressed by function fix defined as follows:

V def

= 𝜆g.𝜆y.f ((unfold▸ ⃝∗ g) ⃝∗ (next g)) y fix
def

= 𝜆f .V (next (foldV ))

Given type T1, T2, and effect e, let T0
def

= T1 → (T2 & e). The effect system assigns a type (▸T0 →
T0) → T0 to the fixed-point combinator fix if ▸𝜖 ▹ ▸𝜖 ▹ e ⊑ e holds. The assigned type is similar to

the type assigned to a fixed-point combinator by Nakano [2000]. The supplementary material gives

a typing derivation for this type assignment.
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Example 3. Next, we consider a simple scheduler sc for two nonterminating concurrent processes.

It is defined using fixed-point combinator fix, as follows:

V def

= 𝜆x ′. (unfold y) (𝜆y′.let z = f ⃝∗ x ′ in z ⃝∗ y′)
sc

def

= fix 𝜆f .𝜆x .𝜆y. (unfold x) V .

Function sc takes two functions x and y, which represent concurrent processes executed alternately.

When called, sc begins by executing (the result of unfolding) the first process x. The argument V is

a function that may be invoked by the first process x to switch the control to the second process

y. To call V , x passes its continuation x ′. Then, V executes (the result of unfolding) the process y.
Similarly to x, y also takes as an argument a function applied when switching the control back to x.
The function argument to y takes y’s continuation y′, and then resumes x’s continuation x ′ by
calling scheduler sc recursively via function f passed by fixed-point combinator fix.

Scheduler sc has a type T0 defined as follows:

Tx
def

= rec𝛼. ((▸𝛼 → (B & ey)) → (B & ex))
Ty

def

= rec𝛼. ((▸𝛼 → (▸B & ▸𝜖 ▹ ▸ex)) → (B & ey))
T0

def

= Tx → (Ty → (B & ex))
where ex and ey are the effects performed by processes x and y, respectively, and B is the type of

the computation results of x and y (if any). The type Tx of x is defined recursively because x passes

its continuation to the argument, and the continuation is expected to behave as x. For a similar

reason, the type of y is also expressed using a recursive type. The effects ▸𝜖 and ▸ex in the type

of y are caused by f ⃝∗ x ′ and z ⃝∗ y′ in V , respectively. A typing derivation for sc is found in the

supplementary material.

As example processes to be scheduled by sc, we consider the following two functions px and py:

px
def

= fix 𝜆f .𝜆g.ev[x] (); let z = fold▸ ⃝∗ f in g z

py
def

= fix 𝜆f .𝜆g.ev[y] (); let z = fold▸ ⃝∗ f in prev (g z).
They repeatedly raise events x and y, respectively, and then pass the control to the other process.

Their continuations are (the results of folding) themselves represented by variable f . To typecheck

sc with px and py, assume eff (ev[x]) ▹ ▸𝜖 ▹ ey ⊑ ex and eff (ev[y]) ▹ ▸𝜖 ▹ (▸𝜖 ▹ ▸ex) ⊑ ey .
Under these assumptions, functions px and py have type (▸Tx → (B & ey)) → (B & ex) and
(▸Ty → (▸B & ▸𝜖 ▹ ▸ex)) → (B & ey), respectively (again, readers interested in the typing

derivations are referred to the supplementary material). Because the types of px and py are matched

with the results of unfolding the types Tx and Ty , fold px and fold py have the types Tx and

Ty , respectively. Then, expression sc (fold px) (fold py) has type B & ex . We can find that ex ⊒
eff (ev[x]) ▹ ▸𝜖 ▹ (eff (ev[y]) ▹ ▸𝜖 ▹ (▸𝜖 ▹ ▸ex)) holds. It indicates that the expression repeats

the sequential raise of events x and y infinitely.

The use of prev in py enables returning the result from the continuation of process x, if any,
as the result of process y. If prev were unsupported, there would be no means to bridge the gap

between the type ▸B of the return value of x’s continuation and the type B of the return value of y.

Example 4. Finally, we verify the following program with functional objects in a syntax like Java.

interface P { void print(); }

class Int extends P {

int x; void print() { ev[I](); print_int(x); }

}

class Seq extends P {
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P x; P y; void print() { x.print(); y.print(); }

}

class Omega extends P {

void print() { ev[O](); this.print(); }

}

// main expression

new Seq(new Seq(new Int(0), new Int(1)), new Omega()).print();

We adopt the convention that, given a class C with fields f1, · · · , f𝑛 , expression new C(𝑉1, · · ·, 𝑉𝑛)

creates a new object of class C by assigning values 𝑉1, · · · , 𝑉𝑛 to fields f1, · · · , f𝑛 . All the classes
give method print, but its behavior varies depending on the class. The objects of class Int print the

value of field x after raising event I. The objects of class Seq call print of fields x and y sequentially.

The objects of class Omega raise event O and then call method print of themselves recursively.

To encode this program, we use type T , defined as follows, that expresses class P.

T def

= rec𝛼. (▸𝛼 → unit → (unit & X ))
Hereinafter, we write Te for type ▸T [e/X ] → unit → (unit & e). It expresses class P with

method print to which effect e is assigned. Type Te indicates that functions representing objects of
class P take themselves as first arguments and then return functions representing print of type

unit → (unit & e). A call to print of an object V with type Te is denoted by expression

V .print () def

= let x = V (next (foldV )) in x ()
of type unit & e. Similarly, a call to print of a self-referential variable this, which has type ▸T [e/X ],
is encoded by expression

self .print () def

= let x = (unfold▸ ⃝∗ this) ⃝∗ (next this) ⃝∗ (next ()) in prev x
of type unit & ▸𝜖 ▹ ▸𝜖 ▹ ▸e. Then, for each class C, object constructor new C(· · ·) is encoded into a
function as follows:

cInt
def

= 𝜆x .𝜆this.𝜆z.ev[I] (); print_int(x) : int → Teff (ev[I])

cSeq
def

= ΛX1 .ΛX2 .𝜆x .𝜆y.𝜆this.𝜆z.x .print (); y.print () : ∀X1.∀X2. (TX1
→ TX2

→ TX1▹X2
)

cOmega
def

= 𝜆this.𝜆z.ev[O] (); self.print () : TeO
where we assume eff (ev[O]) ▹ ▸𝜖 ▹ ▸𝜖 ▹ ▸eO ⊑ eO for some effect eO. The main expression is

denoted by

let x = cSeq eff (ev[I]) eff (ev[I]) (cInt 1) (cInt 2) in
let y = cSeq (eff (ev[I]) ▹ eff (ev[I])) eO x cOmega in
y.print () : unit & eff (ev[I]) ▹ eff (ev[I]) ▹ eO .

By the above subeffecting assumption on eO, the effect eff (ev[I]) ▹ eff (ev[I]) ▹ eO of the program

accommodates the trace I · I · O𝜔
it generates.

3.5 Properties
This section states the properties of algebraic temporal effects and then shows two soundness

properties: safety and liveness soundness, which guarantee the correctness of the effects predicted

for terminating and diverging programs, respectively. Hereinafter, for algebraic temporal effect

𝜁 = (𝜙, 𝜄), we write 𝜁 .F and 𝜁 .I to denote 𝜙 and 𝜄, respectively. We assume that, for every operation

o, E[eff (o)] (∅) = (𝛿e (o), 0), which means that the syntactic effect eff (o) statically assigned to the

operation o is matched with the finite effect 𝛿e (o) that happens at run time in calling o.
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Lemma 1. The following (in)equations hold.
(Reflexivity) ∀𝜁 . 𝜁 ⊑ 𝜁 .
(Transitivity) ∀𝜁1, 𝜁2, 𝜁3 . 𝜁1 ⊑ 𝜁2 ∧ 𝜁2 ⊑ 𝜁3 =⇒ 𝜁1 ⊑ 𝜁3.
(Monotonicity of Later) ∀𝜁1, 𝜁2 . 𝜁1 ⊑ 𝜁2 =⇒ ▸𝜁1 ⊑ ▸𝜁2.
(Monotonicity of Composition) ∀𝜁1, 𝜁2. 𝜁1 ⊑ 𝜁2 =⇒ ∀𝜁 . 𝜁1 ▹ 𝜁 ⊑ 𝜁2 ▹ 𝜁 ∧ 𝜁 ▹ 𝜁1 ⊑ 𝜁 ▹ 𝜁2.
(Associativity of Composition) ∀𝜁1, 𝜁2, 𝜁3. 𝜁1 ▹ (𝜁2 ▹ 𝜁3) = (𝜁1 ▹ 𝜁2) ▹ 𝜁3.
(Pre-Effect Identity) ∀𝜁 . 𝜖E ▹ 𝜁 = 𝜁 .

Proof. By the algebraic properties of temporal effects. □

3.5.1 Safety Soundness. Safety soundness is formulated as type safety, which is shown via progress

and preservation [Wright and Felleisen 1994].

Theorem 3.1 (Safety Soundness). If ∅ ⊢ M : T & e and M −→∗ M ′
& 𝜙 and M ′ cannot

evaluate further, then M ′ = V and ∅ ⊢ V : T for some V , and 𝜙 ⊑ E[e] (∅).F .

Subeffecting 𝜙 ⊑ E[e] (∅).F means that the effect 𝜙 performed by M is contained in the finite

part of the assigned effect e.

3.5.2 Liveness Soundness. Liveness soundness states that the infinite effects assigned to divergent

programs correctly predict infinite sequences of the effects performed by the programs. To formalize

liveness soundness, we characterize how programs diverge. To this end, we refer to Example 1 in

Section 3.4. In what follows, we call evaluation contexts guarded if their holes are placed immediately

beneath the next constructor. Formally, they are described by the following grammar:

E ::= next [ ] | let x = E inM2 .

We can find two observations from Example 1. First, a divergent program evaluates to an expression

of the form E0 [M0] for some M0 and E0. Second, there exist infinitely many Mi and Ei (i > 0) such

that Mi−1 evaluates to Ei [Mi]. These two phenomenons are not specific to Example 1; they occur in

any divergent program. Using this fact, we can prove the following property.

Lemma 2 (Infinite Guarded Reduction Chain). If ∅ ⊢ M : C and M ⇑ 𝜛, then there exist
infinitely many expressions Mi, value types Ti, effects ei, and finite effects 𝜙i (i ≥ 0) such that:
M = M0; C = T0 & e0; and, for any i, ∅ ⊢ Mi : Ti & ei and ∃ Ei+1. Mi −→∗ Ei+1 [Mi+1] & 𝜙i and
𝜙i ◦ ▸E[ei+1] (∅).I ⊑ E[ei] (∅).I .

In subeffecting 𝜙i ◦▸E[ei+1] (∅) .I ⊑ E[ei] (∅) .I , the infinite subeffect 𝜙i ◦▸E[ei+1] (∅) .I represents
the evaluation Mi −→∗ Ei+1 [Mi+1] & 𝜙i precisely: the evaluation performs 𝜙i, and the remaining

computation Ei+1 [Mi+1] has infinite effect ▸E[ei+1] (∅) .I because divergent expression Mi+1 with
effect ei+1 is at the redex position under constructor next. Our proof of this lemma rests on the

fact that a divergent program evaluates to an expression of the form E[M] for some divergent

expression M and guarded evaluation context E. We prove it using a logical relation. Interested

readers are referred to the supplementary material.

Now, we show liveness soundness.

Theorem 3.2 (Liveness Soundness). If ∅ ⊢ M : T & e and M ⇑ 𝜛, then there exist some 𝜄 ∈ I,
infinitely many 𝜙0, 𝜙1, · · · ∈ F, and i1, i2, · · · ≥ 0 such that: (1) 𝜙0 = 𝜛(0) · · · · ·𝜛(i1 − 1); (2) for any
j > 0, 𝜙j = 𝜛(ij) · · · · · 𝜛(ij+1 − 1) and ij < ij+1; (3) 𝜙0 ◦ ▸𝜄 ⊑ E[e] (∅).I ; and (4) there exists some
𝜙 ∈ fin (▸𝜄) such that ∀ j > 0. 𝜙j ⊑ 𝜙 .

To see what this theorem means, assume that a programM uses only the event-raising operation

ev[a]. The assumption M ⇑ 𝜛 means that M generates some infinite trace 𝜛. The theorem means
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that the trace 𝜛 can be split into a finite prefix w0 (corresponding to 𝜙0 in the theorem) and an

infinite suffix 𝜛0, and, furthermore, 𝜛0 can be split into infinitely many finite traces w1,w2, · · ·
(corresponding to𝜙1, 𝜙2, · · · in the theorem) such that some𝜙 ∈ fin (▸𝜄) contains all of them. Because

the infinite effect E[e] (∅).I of the syntactic effect e assigned to M overapproximates w0 ◦ ▸𝜄, it
recognizes the infinite trace w0 · w1 · w2 · · · · .

4 Instances of Algebraic Temporal Effects
This section provides two instances of algebraic temporal effects: temporal regular effects and
temporal fixpoint effects.

4.1 Temporal Regular Effects
This section introduces temporal regular effects, regular effects for short. Regular effects enable us

to check that the finite traces of terminating programs conform to a regular expression and that

the infinite traces of divergent programs conform to an 𝜔-regular expression.

4.1.1 Definition and Properties. We employ regular expressions as finite effects in regular effects.

Definition 4 (Regular Expressions). Regular expressions over a set Σ are defined as follows:

r ::= Ø | 1r | a | r1 ·r r2 | r1 +r r2 | r∗

where a ∈ Σ. We write r+ for r ·r r∗. The language L(r) ⊆ Σ∗ of a regular expression r is the set of
all the finite words conforming to r , defined in a standard manner. A partial order ⊑r on regular
expressions is defined as: r1 ⊑r r2 if and only if L(r1) ⊆ L(r2). Regular expressions r1 and r2 are
equivalent, written r1 ≡r r2, if L(r1) = L(r2). Re(Σ) is the set of regular expressions modulo ≡r.

To give an instance of infinite effects with 𝜔-regular expressions, we use the fact that any

𝜔-regular expression can be represented in the form r11 ·r r𝜔
12
+r · · · +r rn1 ·r r𝜔n2 (n > 0) [Perrin

and Pin 2004]. Our formulation of infinite effects represents such an 𝜔-regular expression by a

finite set of pairs of regular expressions as {(r11, r12), · · · , (rn1, rn2)}. Once deciding to adopt this

formulation, a join and mixed-product operation can be defined naturally as shown shortly. A later

operation is implemented as explained in Section 2.3. That is, it maps a set {(r11, r12), · · · , (rn1, rn2)}
to {(1r, r11 +r r12), · · · , (1r, rn1 +r rn2)} by folding each ri1 into ri2 because ri1 represents the finite
effect between two successive unfoldings when the later operation is applied.

We need to handle the representation of zero infinite effect 0with care. One seemingly reasonable

approach might be to take the empty set as 0 and define the later operation on it to return ∅ as

is. However, in general, the later modality with ▸0 = 0 hinders concluding that programs with

the infinite effect 0 terminate although we intend it to denote the termination of programs. One—

perhaps the only—way to guarantee that a program with the infinite effect 0 terminates (more

precisely, guarantee that it generate no infinite trace) is to define fin (0) to be the set {𝜙0} with the

finite effect 𝜙0 that contains no finite trace (for regular expressions in Definition 4, 𝜙0 corresponds to

Ø). With such a definition, it is easy to check that any programM with 0 generates no infinite trace.
IfM ⇑ 𝜛, the liveness soundness (Theorem 3.2) implies that some nonempty finite traces comprising

𝜛 are contained in 𝜙0, although 𝜙0 is assumed to contain no finite trace; thus, the assumption

M ⇑ 𝜛 implies a contradiction, that is, the program M terminates. The infinite effect 0 meeting

▸0 = 0 disables this reasoning. To see it, assume ▸0 = 0. Then, 0 is infinitely expandable because

∀𝜙. 𝜙 ◦ ▸0 = 𝜙 ◦ 0 = 0. Thus, by inequation (9) in Definition 1, ∀𝜙. 𝜙 + fin (▸0) ⊏∼ fin (▸(𝜙 ◦ ▸0)).
Since ▸0 = ▸(𝜙 ◦ ▸0) = 0, we have

∀𝜙. 𝜙 + fin (0) ⊏∼ fin (0) . (6)
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However, property (6) makes it impossible to define fin (0) = {𝜙0} for some 𝜙0 that contains no

finite trace. If both property (6) and fin (0) = {𝜙0} hold, we have ∀𝜙. 𝜙 +𝜙0 ⊑ 𝜙0, that is, ∀𝜙. 𝜙 ⊑ 𝜙0,

which means that 𝜙0 is the “top” finite effect and is contradictory with the requirement that 𝜙0

contain no finite trace.

Our solution to this problem is to represent infinite effects for termination by natural numbers
6

and to define the later operation to increment the numbers. Intuitively, number n as an infinite

effect means that, on the course of the evaluation, the next constructor is nested at most n times.

Because infinite computation needs next constructors nested infinitely many times, a program

given n as an infinite effect is guaranteed to terminate.

We define subeffecting on infinite effects so that r11 · r𝜔
12

⊑ r21 · r𝜔
22
if and only if r11 ⊑ r21 ·r r∗22 and

r12 ⊑ r+
22
. This means that a finite effect that (potentially) happens between successive unfoldings

can be split into multiple finite effects, and each of them can be regarded as if it happens between

some successive unfoldings. This definition guarantees the productivity while expressive enough to

allow, e.g., ab · (c𝜔 ) ⊑ a · (b+rc)𝜔 and (aa)𝜔 ⊑ a𝜔 . We also slightly modify the finitization function

given in Section 2.3 to show the monotonicity with respect to the subeffecting.

Definition 5 (Temporal Regular Effects). Given a set Σ, let Re𝜔 (Σ) def

= Pfin\∅ (Re(Σ) ×Re(Σ))
and I(Σ) def

= Re𝜔 (Σ) ∪N. We use the metavariable 𝜌 to denote the elements of I(Σ). We define binary
relation ⪯ on I(Σ) as follows:

{(𝑚,𝑛) ∈ N × N | 𝑚 ≤ 𝑛} ∪ (N × Re𝜔 (Σ)) ∪
{(𝜌1, 𝜌2) ∈ Re𝜔 (Σ) × Re𝜔 (Σ) |
∀ (r11, r12) ∈ 𝜌1. ∃ (r21, r22) ∈ 𝜌2. r11 ⊑r r21 ·r r∗22 ∧ r12 ⊑r r+22}

Binary relation ≡I(Σ) on I(Σ) is {(𝜌1, 𝜌2) | 𝜌1 ⪯ 𝜌2 ∧ 𝜌2 ⪯ 𝜌1}.
A temporal regular effect over Σ is defined to be an element of Er (Σ) def

= Re(Σ) × (I(Σ)/≡I(Σ) )
where:

• set Re(Σ) is equipped with operation ·r and element 1r to form a monoid, and with operation +r
to form a join semilattice;

• set In (Σ)/≡In (Σ) is equipped with operation
r
⊔, defined as

(𝜌1, 𝜌2) ↦→


max(𝜌1, 𝜌2) (if 𝜌1, 𝜌2 ∈ N)
𝜌i (if 𝜌i ∈ Re𝜔 (Σ) and 𝜌3−i ∈ N for i ∈ {1, 2})
𝜌1 ∪ 𝜌2 (if 𝜌1, 𝜌2 ∈ Re𝜔 (Σ)) ,

to form a join semilattice with number 0 as the least element;
• later operation

r
▸ is defined as

𝜌 ↦→
{
𝜌 + 1 (if 𝜌 ∈ N)
{(1r, r1 +r r2) | (r1, r2) ∈ 𝜌} (if 𝜌 ∈ Re𝜔 (Σ)) ;

• mixed product
r◦ is defined as

(r, 𝜌) ↦→
{
𝜌 (if 𝜌 ∈ N)
{(r ·r r1, r2) | (r1, r2) ∈ 𝜌} (if 𝜌 ∈ Re𝜔 (Σ)) ;

and

6
We can generalize to a well-founded set with a least element and a successor function as seen in Section 4.2.
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• finitization finr is defined as

𝜌 ↦→
{{Ø } (if 𝜌 ∈ N)
{r+

2
| (r1, r2) ∈ 𝜌} (if 𝜌 ∈ Re𝜔 (Σ)) .

The relation ⪯ indicates that infinite effects may overapproximate the number of unfoldings in a

terminating expression (by allowing number n to be a subeffect of number m if n ≤ m) and they

can regard terminating expressions as divergent ones (by allowing number n to be a subeffect of

any set in Re𝜔 (Σ)). It represents the subeffecting on infinite effects, coinciding with the partial

order ⊑ induced by

r
⊔.

Lemma 3. ∀𝜌1, 𝜌2 ∈ In (Σ). 𝜌1 ⪯ 𝜌2 ⇐⇒ 𝜌1 ⊑ 𝜌2.

We first show that regular effects are algebraic temporal effects.

Theorem 4.1. For any Σ, temporal regular effects over Σ are algebraic temporal effects.

Soundness of safety and liveness verification with regular effects are immediately derived from

the soundness of the effect system. In what follows, suppose Ern (Σ) as E and assume that, for every

operation o, L(𝛿e (o)) is a singleton set (that is, every operation raises only a single event). We

define the language L(𝜌) of 𝜌 ∈ Re𝜔 (Σ) as
{w0 ·w1 ·w2 · · · · ∈ Σ𝜔 | ∃ (r1, r2) ∈ 𝜌. w0 ∈ L(r1) ∧ ∀ i > 0. wi ∈ L(r2) \ {𝜀}} .

Given 𝜛 ∈ Re(Σ)𝜔 such that, for any 𝑖 ∈ N, L(𝜛(i)) ∈ Σ ∪ {𝜀} and ∃ 𝑗 > 𝑖 .L(𝜛(j)) ∈ Σ, we can
construct an infinite trace in Σ𝜔 by concatenating the interpretations L(𝜛(i)) of all 𝜛(i) in the

order. We denote such an infinite trace by 𝜛c
.

Corollary 1 (Safety Soundness of Regular Effects). If ∅ ⊢ M : T & e and M −→∗ M ′
& w

and M ′ cannot evaluate further, there exist some V and r = E[e] (∅).F ∈ Re(Σ) such that M ′ = V
and ∅ ⊢ V : T and w ∈ L(r).

Corollary 2 (Liveness Soundness of Regular Effects). If ∅ ⊢ M : T & e and M ⇑ 𝜛 and 𝜛c

is well defined, then there exists some 𝜌 ∈ Re𝜔 (Σ) such that E[e] (∅) .I = 𝜌 and 𝜛c ∈ L(𝜌).

Note that we can ensure that, when M ⇑ 𝜛, the infinite trace 𝜛c
is always well defined by, e.g.,

assuming that M raises a “dummy” event each time unfolding is performed.

4.1.2 Examples. This section revisits Examples 1 and 3 in Section 3.4. We suppose that temporal

regular effects can be used as syntactic effects directly by providing them as effect constructors e.
Example 1 is a program raising event a infinitely. The effect e assigned to it has to meet

eff (ev[a]) ▹ ▸𝜖 ▹ ▸e ▹ 𝜖 ⊑ e. For e, consider regular effect (r1, {(r21, r22)}) for some r1, r21, and r22.
Because

E[eff (ev[a]) ▹ ▸𝜖 ▹ ▸e ▹ 𝜖] (∅)
= (a, 0) ▹ (1r, 1) ▹ (r1, {(1r, r21 +r r22)}) ▹ (1r, 0)
= (a ·r r1, {(a, r21 +r r22)}) ,

a sufficient condition to solve the subeffect constraint on e is the conjunction of a ·r r1 ⊑ r1 and
a ⊑ r21 and r21 +r r22 ⊑ r22. We can solve this by letting r1 = Ø and r21 = r22 = a. Thus, by
Corollary 2, it turns out that the programs generate an infinite trace conforming to a · a𝜔 .
Example 3 provides a concurrent program that raises event x and y alternately. The effect ex

assigned to the program is required to satisfy eff (ev[x]) ▹ ▸𝜖 ▹ (eff (ev[y]) ▹ ▸𝜖 ▹ (▸𝜖 ▹ ▸ex)) ⊑
ex . For ex , consider regular effect (r1, {(r21, r22)}) for some r1, r21, and r22. Because

E[eff (ev[x]) ▹ ▸𝜖 ▹ (eff (ev[y]) ▹ ▸𝜖 ▹ (▸𝜖 ▹ ▸ex))] (∅)
= (x ·r y ·r r1, {(x ·r y, r21 +r r22)}) ,
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the subeffect constraint on e is reduced to the conjunction of x ·r y ·r r1 ⊑ r1 and x ·r y ⊑ r21 and
r21 +r r22 ⊑ r22. By solving this, we can find that scheduler sc with processes px and py generates
an infinite trace conforming to x ·r y ·r (x ·r y)𝜔 .
To confirm that the constraint solving on regular expressions is possible actually, we have

implemented a constraint solver based on grammar-based synthesis [Alur et al. 2015] of regular

expressions. Our tool, which is available at https://github.com/hiroshi-unno/coar, solved the con-

straints of Examples 1–3 within 1 second. The investigation of the scalability to more complex

constraints and further improvement of efficiency is left as future work.

4.2 Temporal Fixpoint Effects
This section presents temporal fixpoint effects, or fixpoint effects for short, which are another

instance of algebraic temporal effects. In fixpoint effects, finite and infinite effects are described in

a first-order fixpoint logic over traces. We assume an alphabet Σ in this section.

4.2.1 Definition and Properties. A part of the syntax of the fixpoint logic is given as follows:

Sorts s ::= B | Σ∗ | Σ𝜔 Predicates P ::= X | 𝜇X(x : s) .p | 𝜈X(x : s).p | (=) | · · ·
Terms t ::= x | c | a | F (t) Formulas p ::= ⊥ | P (t) | ¬p | p1 ∨ p2 | ∃ x : s. p

where X is a predicate variable and F is some term-level function (such as (·) to concatenate finite

traces and (◦) to concatenate a finite and infinite trace). The sort Σ∗
and Σ𝜔 represent the sets

of finite and infinite traces over Σ, respectively. The 𝜇 and 𝜈 operators added to predicates are

the least and greatest fixpoint operators, respectively. They are useful to state traces in the logic.

For example, the sets of finite and infinite traces consisting only of event a are expressed using

the 𝜇 and 𝜈 operators, respectively, as follows: 𝜇X(x : Σ∗).(x = 𝜀) ∨ (∃ y : Σ∗ . x = a · y ∧ X(y))
and 𝜈X(x : Σ𝜔 ).∃ y : Σ𝜔 . x = a ◦ y ∧ X(y). Note that other standard logical connectives, such as

conjunction and implication, can be expressed in the logic. We write 𝜃 |= p if the formula p is valid

under a model 𝜃 , which is a mapping from variables occurring in p to their denotations. We omit 𝜃

if it is the empty mapping. Readers interested in a more detail are referred to the supplementary

material or the prior work [Kobayashi et al. 2019; Sekiyama and Unno 2023; Unno et al. 2023]. We

also write 𝜆x : s. p for predicate 𝜇X(x : s) .p when X does not occur in p.
Fixpoint effects are defined in a way similar to regular effects, but there are two main differences.

First, finite and infinite effects of fixpoint effects are defined using logical predicates of the form

𝜆x : Σ∗ . p, instead of regular expressions. Second, while regular effects use natural numbers to

represent termination with infinite effects, fixpoint effects allow an arbitrary set S with necessary

operations and relations to ensure termination.

Definition 6 (Temporal Fixpoint Effects). Let
• Pred be the set of closed predicates of the form 𝜆x : Σ∗ . p;
• ⊑Σ∗ be a partial order on Pred, which contains ((𝜆x : Σ∗ . p1), (𝜆x : Σ∗ . p2)) if |= ∀ x : Σ∗ . (p1 ⇒
p2);

• S be a set equipped with a partial, well-founded order ≺wf , the least element 0wf , a join operation
⊔wf , and a monotonic function succ such that, for any 𝜌 ∈ S, 𝜌 ≺wf succ(𝜌); and

• Ifix be the set Pfin\∅ (Pred × Pred) ∪ S.
We define a binary relation ⪯ on Ifix as follows:

{(𝜌1, 𝜌2) ∈ S2 | 𝜌1 ≺wf 𝜌2} ∪ (S × (Ifix \ S))
∪ {(𝜌1, 𝜌2) ∈ (Ifix \ S)2 | ∀ (P11, P12)∈ 𝜌1. ∃ (P21, P22)∈ 𝜌2. P11 ⊑Σ∗ P21 ∧ P12 ⊑Σ∗ P22} .

A binary relation ≡fix
S on Ifix is defined to be {(𝜌1, 𝜌2) | 𝜌1 ⪯ 𝜌2 ∧ 𝜌2 ⪯ 𝜌1}.

Temporal fixpoint effects are elements in set Efix defined to be Pred × (Ifix/≡fix
S ) where:
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• set Pred is equipped with operations ·fix, +fix, and element 1fix defined as

(𝜆x1 : Σ∗ . p1) ·fix (𝜆x2 : Σ∗ . p2)
def

= 𝜆x : Σ∗ . ∃ x1 : Σ∗ . ∃ x2 : Σ∗ . (x = x1 · x2) ∧ p1 ∧ p2
(𝜆x : Σ∗ . p1) +fix (𝜆x : Σ∗ . p2)

def

= 𝜆x : Σ∗ . p1 ∨ p2
1fix

def

= 𝜆x : Σ∗ . x = 𝜀

(where x, x1, and x2 are distinct from each other) to form a monoid (Pred, ·fix, 1fix) and a join
semilattice (Pred, +fix);

• set Ifix/≡fix
S is equipped with operation ⊔fix, which is defined as

(𝜌1, 𝜌2) ↦→


𝜌1 ⊔wf 𝜌2 (if 𝜌1, 𝜌2 ∈ S)

𝜌i (if 𝜌i ∈ Ifix \ S and 𝜌3−i ∈ S for i ∈ {1, 2})
𝜌1 ∪ 𝜌2 (if 𝜌1, 𝜌2 ∈ Ifix \ S) ,

to form a join semilattice with 0wf as the least element;
• later operation ▸fix is defined as

𝜌 ↦→
{succ(𝜌) (if 𝜌 ∈ S)
{(1fix, P1 +fix P2) | (P1, P2)∈ 𝜌} (if 𝜌 ∈ Ifix \ S) ;

• mixed-product operation ◦fix is defined as

(P, 𝜌) ↦→
{
𝜌 (if 𝜌 ∈ S)
{(P ·fix P1, P2) | (P1, P2)∈ 𝜌} (if 𝜌 ∈ Ifix \ S) ;

and
• finitization finfix is defined as

𝜌 ↦→
{{ 𝜆x : Σ∗ .⊥ } (if 𝜌 ∈ S)

{P2 | (P1, P2)∈ 𝜌} (if 𝜌 ∈ Ifix \ S) .
This definition can be read as follows. Predicate P1 ·fix P2 contains finite traces that can be split

into two traces accepted by P1 and P2, respectively, and predicate P1 +fix P2 contains finite traces
accepted by P1 or P2. The predicate 1fix expresses the singleton set of the empty trace. The join

operation on infinite effects and the later, mixed-product, and finitization operations are defined

similarly to those in regular effects.

Now, we state the soundness of fixpoint effects after defining the languages of fixpoint effects.

Definition 7 (Languages of Fixpoint Effects). Given a predicate 𝜆x : Σ∗ . p ∈ Pred, the
language L(𝜆x : Σ∗ . p) ⊆ Σ∗ is defined by {w | {x ↦→ w} |= p}. Given an infinite fixpoint effect
𝜌 ∈ Ifix \ S, the language L(𝜌) ⊆ Σ𝜔 is defined as:

L(𝜌) def

= {w0 ·w1 ·w2 · · · · | ∃ (P1, P2)∈ 𝜌. w0 ∈ L(P1) ∧ ∀ i > 0. wi ∈ L(P2) \ {𝜀}} .
Given an event a, we write Pa for the predicate 𝜆x : Σ∗ . x = a. As in Section 4.1.1, we assume that,

for every operation o, 𝛿e (o) is a predicate Pa for some event a. Moreover, for simplicity, we identify

a finite (resp. infinite) sequence of predicates Pa1 , Pa2 , · · · with a finite trace in Σ∗
(resp. an infinite

trace in Σ𝜔 ). This allows us to write M −→∗ M ′
& w and M ⇑ 𝜛 when M reaches M ′

with the

finite trace w ∈ Σ∗
and M diverges with the infinite trace 𝜛 ∈ Σ𝜔 , respectively.

Theorem 4.2. Temporal fixpoint effects are algebraic temporal effects.

Corollary 3 (Safety Soundness of Fixpoint Effects). If ∅ ⊢ M : T & e andM −→∗ M ′
& w

andM ′ cannot evaluate further, there exist some V and P = E[e] (∅).F ∈ Pred such thatM ′ = V and
∅ ⊢ V : T and w ∈ L(P).
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Corollary 4 (Liveness Soundness of Fixpoint Effects). If ∅ ⊢ M : T & e and M ⇑ 𝜛, then
there exists some 𝜌 ∈ Ifix \ S such that E[e] (∅).I = 𝜌 and 𝜛 ∈ L(𝜌).

As in regular effects, this theoremmeans that, if an infinite fixpoint effect {(P11, P12), · · · , (Pn1, Pn2)}
is assigned to a divergent program, the infinite trace yielded by the program is recognized by the

predicate 𝜆x : Σ𝜔 . ∃ y : Σ∗ . ∃ z : Σ𝜔 . (x = y ◦ z) ∧ Pi1 (y) ∧ P (z) where

P def

= 𝜈X(z : Σ𝜔 ).∃ z1 : Σ∗ . ∃ z2 : Σ𝜔 . (z = z1 ◦ z2) ∧ Pi2 (z1) ∧ X(z2)

for some i.

4.2.2 Example. As an example, we consider a variant of Example 4. Recall that class cInt has
method print and integer field x. We now suppose that print of cInt is changed to

𝜆x .𝜆this.𝜆z.if x = 0 then () else (ev[I] (); this.print (x − 1); ev[J] ()) ,

which raises events I and J before and after, respectively, the recursive call. We assume that any finite

and infinite fixpoint effect can be described as a syntactic effect. A call to this method terminates

at a finite trace I𝑥 · J𝑥 if x is nonnegative and, otherwise, diverges with the infinite trace I𝜔 . Note
that no regular expression can specify the set of such finite traces. Then, we can assign to cInt type

int → Te with effect e def

= (𝜆y : Σ∗ . P (y), {(PI, PI)}) where

P def

= 𝜇X(z : Σ∗).(y = 𝜀) ∨ ∃ z′ : Σ∗ . ((z = I · z′ · J) ∧ X(z′))

(recall that type Te is the shorthand introduced for Example 4 in Section 3.4). This effect addresses

both of the case that the call to print terminates (by 𝜆y : Σ∗ . P (y)) and the one that the call diverges
(by {(PI, PI)}). The program in Example 4 creates two objects of cInt, sequentializes the calls to
print of them, and then invokes print of an object of cOmega. The effect eO of cOmega’s print
has to meet eff (ev[O]) ▹ ▸𝜖 ▹ ▸𝜖 ▹ ▸eO ⊑ eO. For eO, we can assign effect (𝜆x : Σ∗.⊥, {(PO, PO)}).
Then, the effect assigned to the entire program is

(𝜆x : Σ∗ .⊥, {(PI, PI), (P ·fix PI, PI), (P ·fix P ·fix PO, PO)}) ,

which means that the program diverges with one of the the infinite traces I𝜔 , I𝑛 · J𝑛 · I𝜔 , or
I𝑛 · J𝑛 · I𝑚 · J𝑚 · O𝜔

for some n,m ≥ 0.

5 Discussion
This section discusses the limitations and open problems of the present work as well as certain

directions of future research.

5.1 Value Dependency
A limitation in the current form of our temporal effect system is the lack of support for value
dependency, a crucial feature to enable precise type-based verification. For example, consider a

recursive function let rec f n = ev[a] (); if n <= 0 then () else f(n-1). A call to this function

terminates after𝑚𝑎𝑥 (0, 𝑛) recursive calls. Our temporal effects are unaware of program values, so

they cannot precisely express this termination condition. More specifically, using temporal regular

effects, an effect given to the function f can only specify (𝑎∗, 𝑎𝜔 ), which cannot guarantee the

termination of the call to f. This problem could be resolved if we extend algebraic temporal effects

to be value-dependent as Nanjo et al. [2018] and Sekiyama and Unno [2023] did. Bizjak et al. [2016]

extended guarded type theory involving later types to dependent typing using delayed substitutions.
We could adapt this approach to algebraic temporal effects, but it is left for future.
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5.2 Expressivity of Instances of Algebraic Temporal Effects
Our framework reduces the reasoning about the infinite behavior of a program to the reasoning

about the finite behavior to be repeated infinitely. This reduction is carried out by the effect system

with the help of later types, and instances of algebraic temporal effects can focus on finding upper

bounds of the finite effects between successive unfoldings (determined by the later types). This is the

reason why the infinite effects of the instances presented in Section 4 only involve representations

for specifying finite traces: the infinite effects of regular effects only involve regular expressions,

not 𝜔-regular expressions themselves; and those of fixpoint effects only involve fixpoint logical

formulas over Σ∗
, not ones over Σ𝜔 . However, these representations of infinite effects are, at least

superficially, different from those in the previous work on temporal effects [Hofmann and Chen

2014; Nanjo et al. 2018; Sekiyama and Unno 2023], where infinite effects are represented by 𝜔-

regular expressions or logical formulas over Σ𝜔 . Our effect system with the presented instances can

reason about the infinite behavior, as stated in the liveness soundness of each instance (Corollaries 2

and 4), but it is worth exploring whether it is possible to directly employ 𝜔-regular expressions or

logical formulas over Σ𝜔 as representations of infinite effects in the presence of recursive types,

possibly by extending algebraic temporal effects or the effect system, and, if it is possible, how

expressive they are compared to regular effects or fixpoint effects.

5.3 Implementation
The present work sheds light on the nontrivial theoretical aspects of algebraic temporal effects in

the presence of recursive types, but we also plan to implement a verifier based on the proposed effect

system with a specific instance of algebraic temporal effects, such as regular effects and fixpoint

effects. Here, we discuss potential challenges in the implementation. In our verifier, the verification

process will consist of three phases: type inference, constraint generation, and constraint solving.

Phase 1: Type Inference. The first phase is type inference, inferring the value type of each ex-

pression, while the remaining phases are for inferring and checking effects. If we can admit the

use of term constructors for annotations (fold, unfold, next, prev, ⃝∗ , and effect abstractions and

applications), we expect the type inference to be decidable. Otherwise, we would need to design a

surface language that hides the use of such term constructors. This might be possible by focusing on

structured programming features, such as algebraic data types, objects, and concurrency. We believe

that the constructs fold and unfold for recursive types can be completely hidden, but whether the

constructs for later types (next, prev, and ⃝∗ ) can be hidden requires an exploration. We may also

need to restrict effect polymorphism to be in a prenex form to make the type inference decidable.

Phase 2: Constraint Generation. This phase generates constraints on effect variables in terms of

subeffecting, which are sufficient conditions for programs to be well typed. We could implement

this phase according to the typing rules of the proposed effect system. The user often writes effect

annotations to specify the expected behavior of some expression or to give a hint to help constraint

solving (phase 3). Such information would also be collected during this phase.

Phase 3: Constraint Solving. Finally, the verification process checks that the generated constraints

are met by finding solutions, i.e., concrete effects that satisfy the constraints. Because algebraic

temporal effects are pairs of finite and infinite effects, we would need solvers for finite and infinite

effects, respectively, depending on chosen instances of algebraic temporal effects.

For regular effects, we have developed a solver for finite effect constraints on variables that

represent unknown regular expressions, as mentioned in the last paragraph of Section 4.1. For

infinite effects, which are finite sets of pairs of regular expressions, we could apply the solver
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for finite effects if the cardinality of the finite set that represents an infinite effect is fixed. The

development of a solver that can lift the restriction of fixing the cardinality is under exploration.

For fixpoint effects, finite effects are fixpoint logical formulas. A solver for fixpoint logical

formulas could be implemented based on the techniques proposed by the previous work [Nanjo

et al. 2018; Unno et al. 2023]. We believe that a solver for infinite effects could be implemented in a

similar strategy as the solver for infinite effects of regular effects.

6 Related Work
6.1 Temporal Verification of Higher-Order Programs
Many approaches to temporal safety verification have been proposed thus far. Typestate [Strom and

Yemini 1986] and resource usage analysis [Igarashi and Kobayashi 2002] address temporal safety

properties for each resource, such as individual files and memory cells, in the presence of recursion.

Skalka and Smith [2004] introduced an effect system to reason about finite traces generated by

programs. Gordon [2017] generalized it to an effect system with an abstract algebraic formulation

of effects, called effect quantales. Effect quantales expose algebraic structures of effects for temporal

safety verification, similar to our formulation of finite effects in that they form a monoid and join

semilattice with the equational laws to distribute the (finite) effect composition over joins (i.e.,

𝜙 · (𝜙1 + 𝜙2) = (𝜙 · 𝜙1) + (𝜙 · 𝜙2) and (𝜙1 + 𝜙2) · 𝜙 = (𝜙1 · 𝜙) + (𝜙2 · 𝜙) in our notation). Algebraic

temporal effects only require inequations for distribution of the composition (·) (inequations (2)
and (4) in Definition 1) instead of equations because they are sufficient to prove soundness, at

least in our case. Gordon [2021] demonstrated the experssivity of effect quantales by encoding a

variety of effect-based verification frameworks. Note that the system of Skalka and Smith and that

of Gordon only target higher-order programs with recursive functions. Skalka [2008] extended

the prior system [Skalka and Smith 2004] to verify temporal safety properties of object-oriented

programs.

Kobayashi and Ong [2009] introduced an intersection type system that enables verification

of branching-time temporal properties of higher-order programs with recursive functions and

finite data domains. Tsukada and Ong [2014] extended Kobayashi and Ong’s system to infinite

intersection types, which can express recursive types by expanding them infinitely. Therefore, our

effect system could be reduced to their system, and then the soundness of our effect system could

be derived from that of their system under some restriction such as finite data domains. In contrast

to Tsukada and Ong’s system, our effect system does not need the restriction on data domains and

enables program reasoning only with types in finite representations, which we believe are desirable

for automated verification. Kobayashi and Igarashi [2013] proposed a recursive intersection type

system for verifying safety properties of programs with recursive types.

Several works have proposed effect systems for verifying linear-time temporal properties of

programs with recursive functions. The effect system of Hofmann and Chen [2014] can verify that

the traces generated by programs conform to given 𝜔-regular expressions. They target first-order

programs and an extension to higher-order programs is sketched, but completing the extension is

addressed later [Hofmann and Ledent 2017; Salvati and Walukiewicz 2015]. Koskinen and Terauchi

[2014] introduced temporal effects, which are pairs of a set of finite traces and a set of infinite

traces. Their effect system can address higher-order programs, but the reasoning about recursive

functions—which is the only source of divergence in their target language—rests on an oracle.

Nanjo et al. [2018] improve this situation by inferring traces of recursive functions using least and

greatest fixpoint predicates instead of an oracle. Temporal effects in the prior work take the form of

pairs of trace sets or pairs of logical formulas on traces. Instead of adopting such a concrete form,

we express temporal effects in an abstract form with an algebraic characterization.
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There also exist the works on temporal verification in the presence of control operators [Gordon

2020; Sekiyama and Unno 2023; Song et al. 2022]. The effect systems of Gordon [2020] and Sekiyama

and Unno [2023] address recursive functions but not recursive types. Song et al. [2022] do not deal

with recursive functions explicitly, but their system allows writing recursive programs using effect-

level recursion. Song et al.’s system supports only temporal safety properties, and it is nontrivial to

extend it to verification of liveness properties of programs with general recursive types.

As far as we know, our work is the first to enable temporal liveness verification of programs that

can manipulate general recursive data structures. The existing type systems for liveness verification

of recursive data structures [Unno et al. 2018; Vazou et al. 2014; Xi 2002] are unsound without

restricting self-referential type variables of recursive data types to positive positions (otherwise,

recursive types can cause infinite computation). There is no such a limitation in this work.

6.2 Modality for Recursion
Our effect system exploits the later modality introduced by Nakano [2000] to structure unfolding

operations of recursive types. The later modality has several other applications such as reactive

programming [Krishnaswami and Benton 2011; Krishnaswami et al. 2012] and guarded recur-

sion [Atkey and McBride 2013; Birkedal and Møgelberg 2013; Clouston et al. 2015]. These prior

works utilize the later modality to ensure the productivity of values or the totality of programs with

recursive types—that is, they are interested in at which time values are produced. By contrast, this

work is interested in at which time unfolding and effects occur. Thus, we allow simply eliminating

the later modality attached to first-order types (the modality elimination from higher-order types is

not allowed because higher-order values may involve unfolding or effects). While some of the prior

works introduced alternative, more sophisticated approaches to eliminating the modality [Atkey

andMcBride 2013; Clouston et al. 2015], we did not employ them to make the effect system as simple

as possible. Jaber and Riba [2021] used guarded recursive types for verifying infinite objects like

streams and infinite trees. By contrast, our proposal focuses on the verification of infinite executions

exhibited by control structures, like higher-order recursive functions, objects, and concurrency,

in a unified, abstract framework. It is an interesting direction to explore how their refinement

specifications can be incorporated into our framework.

Iris [Jung et al. 2018], a framework for concurrent separation logic, also relies on a later modality.

The semantics of Iris is indexed by the steps of computation to avoid the circularity incurred in

introducing higher-order ghost state, which is essential to encode advanced features of Iris. The

later modality of Iris is a mechanism to allow users to access to propositions that hold at the next

step in an abstract manner. A key difference from Iris is that the logic of Iris focuses on safety

properties such as partial correctness, and liveness properties are not focused. Tassarotti et al. [2017]

extend Iris to address concurrent termination-preserving refinement, which is a liveness property,

but the semantics of their extension is indexed by computation steps, which imposes a restriction

on programs to be verified such that their possible behavior is bounded. Spies et al. [2021] lift this

restriction by extending the semantics of Iris to be indexed by ordinals, demonstrating that the

extension can verify termination and termination-preserving refinement. A key difference from

these works is that their liveness verification is based on simulation. Therefore, expressions to be

verified need to be able to be evaluated, but this prevents the verification of open terms. By contrast,

our approach estimates the behavior of expressions as effects, which work even for open terms if

appropriate assumptions on variables are provided. Combining these two different approaches is

an interesting direction for further research.
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7 Conclusion
We proposed algebraic temporal effects, a novel abstract form of temporal effects with a modality,

for temporal verification of programs with recursive types. The reasoning with our type system is

guaranteed to be sound and we demonstrate that our type system can reason about higher-order

programs with recursive types extensively. For future work, besides addressing the limitations

and open problems described in Section 5, we are also interested in adapting our technique with

the modality to other features involving circularity such as general mutable references and to the

calculi studied in the previous work on temporal verification [Hofmann and Chen 2014; Koskinen

and Terauchi 2014; Nanjo et al. 2018; Sekiyama and Unno 2023]. Another future direction is to

support the verification of temporal properties per resource as in resource usage analysis [Igarashi

and Kobayashi 2002]; the current system focuses only on global traces.
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