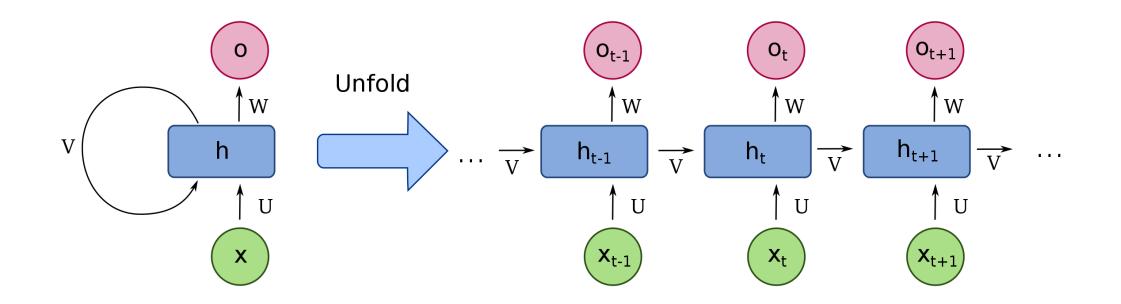
# Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces

<u>Takamasa Okudono</u>, Masaki Waga, Taro Sekiyama, Ichiro Hasuo SOKENDAI, the Graduate University for Advanced Studies, Japan /National Institute of Informatics, Japan LearnAut19, Vancouver, Canada 23 June 2019



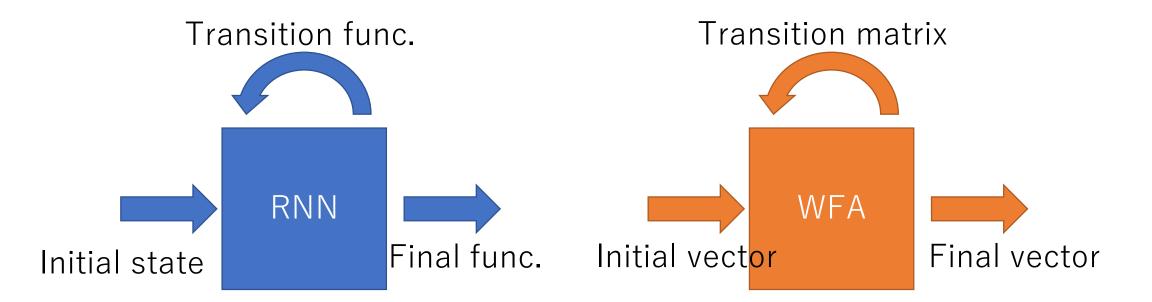
#### RNN is a neural network equipped with a internal state



Drawing by François Deloche (CC BY-SA 4.0)



Input: RNN *R* whose output is in  $\mathbb{R}$  (defines  $f_R: \Sigma^* \to \mathbb{R}$ ) Output: WFA A(R) (defines  $f_{A(R)}: \Sigma^* \to \mathbb{R}$ ) s.t.  $f_{A(R)} \simeq f_R$ 



#### Motivation

- Getting **lighter** (faster to infer) model of an RNN
  - Because the inference of RNNs are sometimes heavy
- Investigate the behavior of RNN R via the extracted WFA A(R)
  - WFA equips many operations and leads to model checking?
- In research line of RNN⇔DFA conversion as an acceptor
  - Ours is a quantitative extension

#### Contribution

- Proposed a method to apply Balle and Mohri's algorithm for the extraction
  - The key is checking if  $R \simeq A$  by using regression
- Our method extracts +7% more accurate models than the baseline
- The extracted WFAs are about 1,000 times faster to infer than the target RNNs

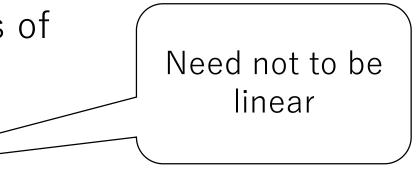
# Def. of RNN (Mathematically, in this work)

RNN R (of alphabet  $\Sigma$  and dimension d) consists of

- $\alpha \in \mathbb{R}^d$ : Initial state
- $\beta : \mathbb{R}^d \to \mathbb{R}$ : Final function
- $g_R: \mathbb{R}^d \times \Sigma \to \mathbb{R}^d$ : Transition function
  - $g_R: \mathbb{R}^d \times \Sigma^* \to \mathbb{R}^d$  is induced recursively

 $f_R: \Sigma^* \to \mathbb{R} \text{ is induced by } f_R(w_1 \dots w_N) = \beta \circ g_R(\alpha, w_1 \dots w_N)$ The configuration for  $w_1 \dots w_N$  is defined by  $\delta_R(w_1 \dots w_N) = g_R(\alpha, w_1 \dots w_N)$ 

"internal state"



# Def. of Weighted Finite Automaton (WFA)

WFA A (of size n and alphabet  $\Sigma$ ) consists of

- $\alpha \in \mathbb{R}^n$ : Initial vector
- $\beta \in \mathbb{R}^n$ : Final vector
- $A_{\sigma} \in \mathbb{R}^{n \times n}$ : Transition matrix ( $\sigma \in \Sigma$ )

WFA *A* is a formalism to define  $f_A: \Sigma^* \to \mathbb{R}$ 

(c.f.) A DFA is a formalism to define  $f: \Sigma^* \rightarrow 2$ WFA is an extension of DFA via the matrix representation.

#### Def. of WFA

• WFA A induces the function  $f_A: \Sigma^* \to \mathbb{R}$  as  $f_A(w_1 \dots w_N) = \alpha A_{w_1} \dots A_{w_N} \beta$ • The configuration ("internal state") of WFA A is  $\delta_A(w_1 \dots w_N) = \alpha A_{w_1} \dots A_{w_N} \in \mathbb{R}^n$ 

For example:

$$\begin{split} \bullet \ \Sigma &= \{0, 1\}, \alpha = (0.8 \quad 0.2), \beta = \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix}, A_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \\ \bullet \ f_A(10) &= (0.8 \quad 0.2) \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix} = 0.736 \\ \bullet \ \delta_A(10) &= (0.8 \quad 0.2) \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (0.18 \quad 0.82) \\ \end{split}$$

#### RNN and WFA

RNN R (of alphabet  $\Sigma$  and dimension d) consists of

- $\alpha \in \mathbb{R}^d$ : Initial state
- $\beta : \mathbb{R}^d \to \mathbb{R}$ : Final function
- $g_R: \mathbb{R}^d \times \Sigma \to \mathbb{R}^d$ : Transition function

WFA A (of alphabet  $\Sigma$  and size n) consists of

- $\alpha \in \mathbb{R}^n$ : Initial vector
- $\beta \in \mathbb{R}^n$ : Final vector
- $A_{\sigma} \in \mathbb{R}^{n \times n}$ : Transition matrix ( $\sigma \in \Sigma$ )

Similar formalism! Can we approximate RNN by WFA?

## Goal and Our Approach

Goal

Input: RNN *R* whose output is in  $\mathbb{R}$  (defines  $f_R: \Sigma^* \to \mathbb{R}$ ) Output: WFA A(R) (defines  $f_{A(R)}: \Sigma^* \to \mathbb{R}$ ) s.t.  $f_{A(R)} \simeq f_R$ 

Approach: Use <u>Balle and Mohri's algorithm</u>

• The challenge is to give the procedure to check if  $f_A \simeq f_R$  for a candidate WFA A

## Balle and Mohri's Algorithm

An extension of Angluin's L\* Algorithm <u>for WFA</u>

- Input:
  - Membership query procedure  $m \colon \Sigma^* \to \mathbb{R}$
  - Equivalence query procedure e:  $\{WFAs\} \rightarrow \{Equivalent\} \sqcup \Sigma$
- Output:
  - Minimal WFA A'
- Property: Given WFA A, if  $m = f_A$  and  $e(\tilde{A}) = \begin{cases} \text{Equivalent}; f_A = f_{\tilde{A}} \\ w; f_A(w) \neq f_{\tilde{A}}(w) \checkmark$

Called "Counterexample"

then, it terminates by calling m, e polynomial times and  $f_A = f_{A'}$ 

# Idea of Overall Architecture (Detailed)

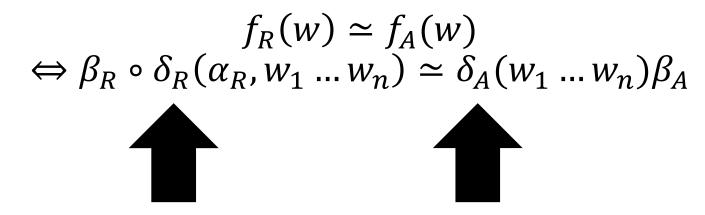
Implement

- Membership query m to be the RNN's induced function  $f_R$
- Equivalence query *e* to be  $e(\tilde{A}) = \begin{cases} \text{Equivalent}; f_R \simeq f_{\tilde{A}} & & \text{Generally it} \\ w; f_R(w) \neq f_{\tilde{A}}(w) & & \text{Cannot be "="} \end{cases}$

Then we would be able to get a WFA  $\tilde{A}$  s.t.  $f_R \simeq f_{\tilde{A}}$  !

But how can we implement such an equivalence query e?

## How do we know $f_R \simeq f_A$ ?



Both calculate their configurations ("internal states")

If there is a "good" relation between  $\delta_R$  and  $\delta_A$ , A and R would behave similarly

#### "Good" relation between $\delta_R$ and $\delta_A$

• This work views  $p: \mathbb{R}^d \to \mathbb{R}^n$  satisfying the following property as a good relation:

$$\forall w \in \Sigma^*. p(\delta_R(w)) \simeq \delta_A(w)$$

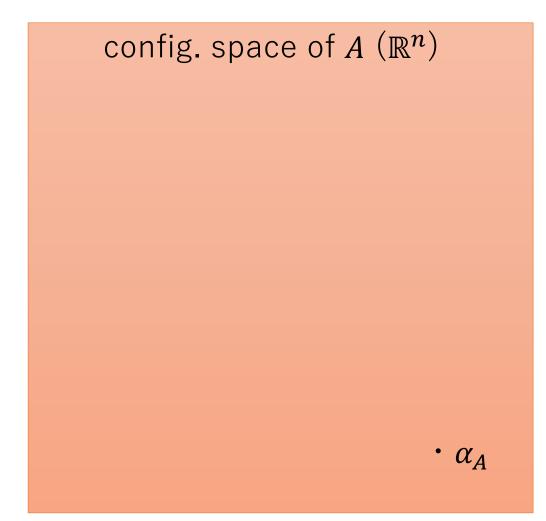
#### Equivalence Query by approximating p

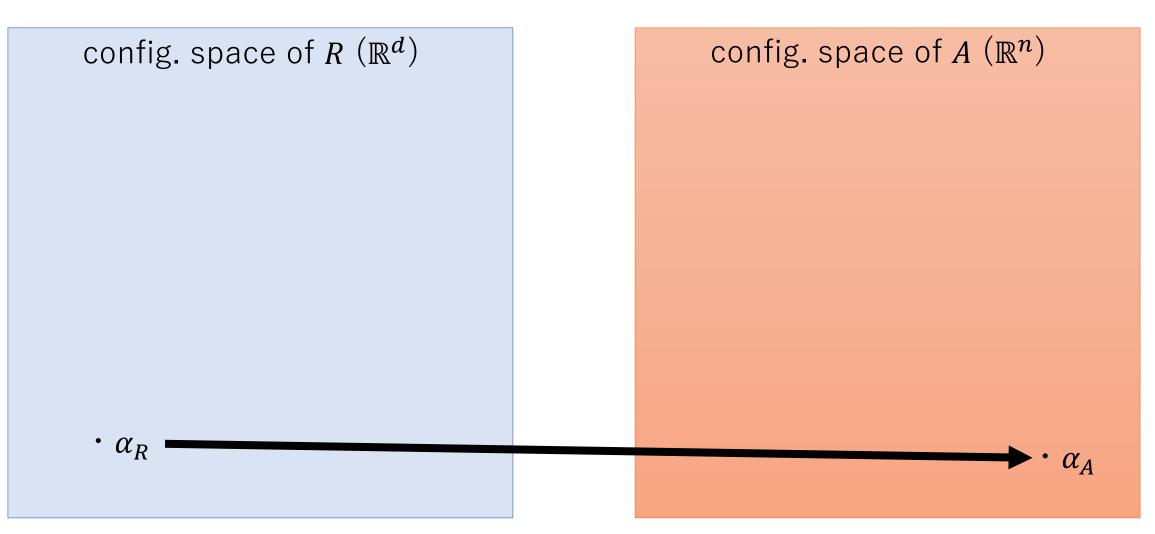
Let's approximate *configuration translator*  $p: \mathbb{R}^d \to \mathbb{R}^n$  such that  $\forall w \in \Sigma^*$ .  $p(\delta_R(w)) \simeq \delta_A(w)$ 

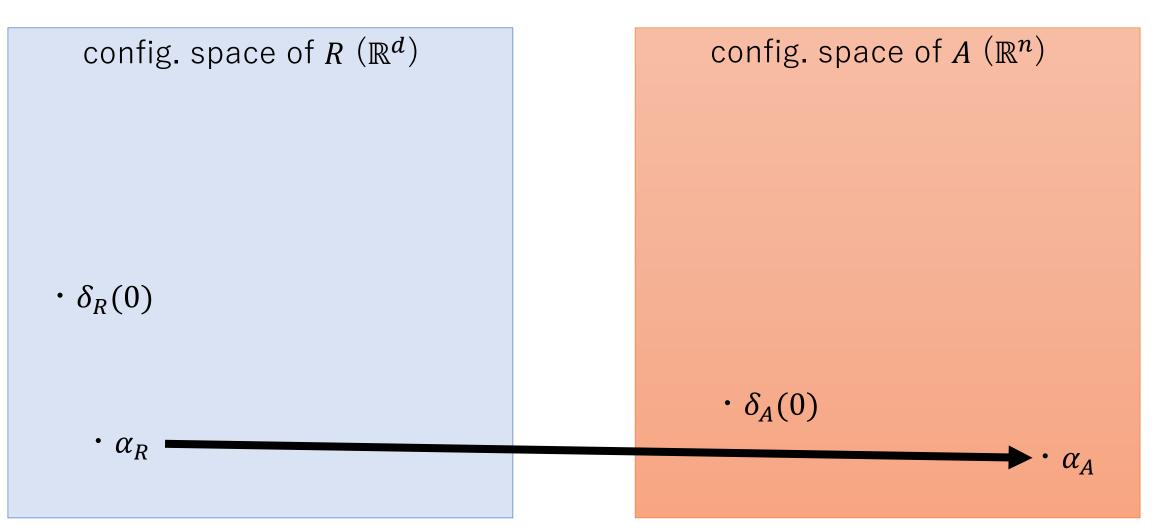
by applying **regression** on sampled data.

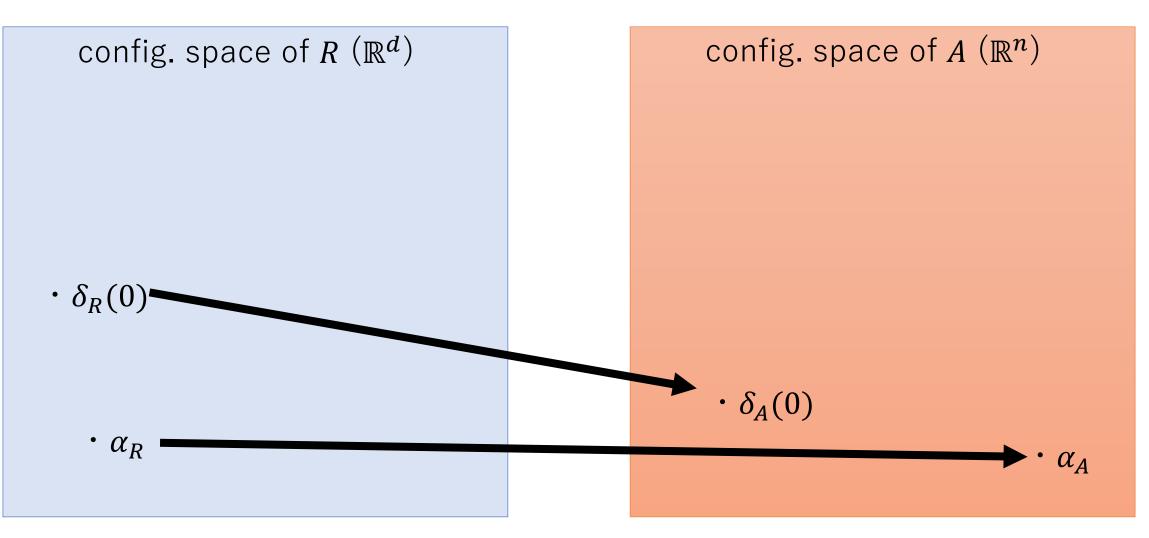
The data is sampled by observing  $\Sigma^*$  in Breadth-First Search.

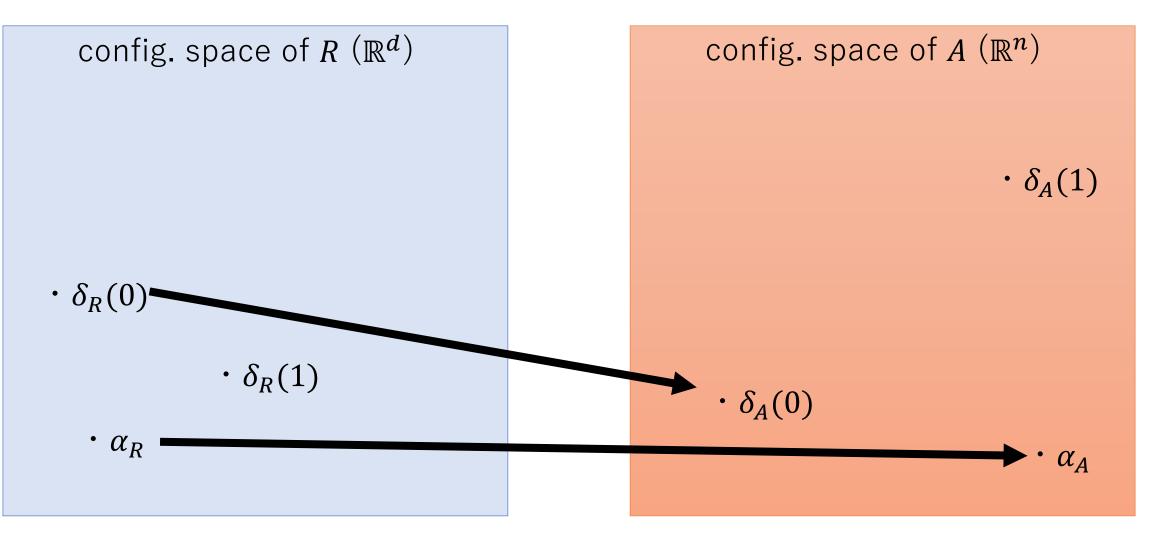
config. space of R ( $\mathbb{R}^d$ )

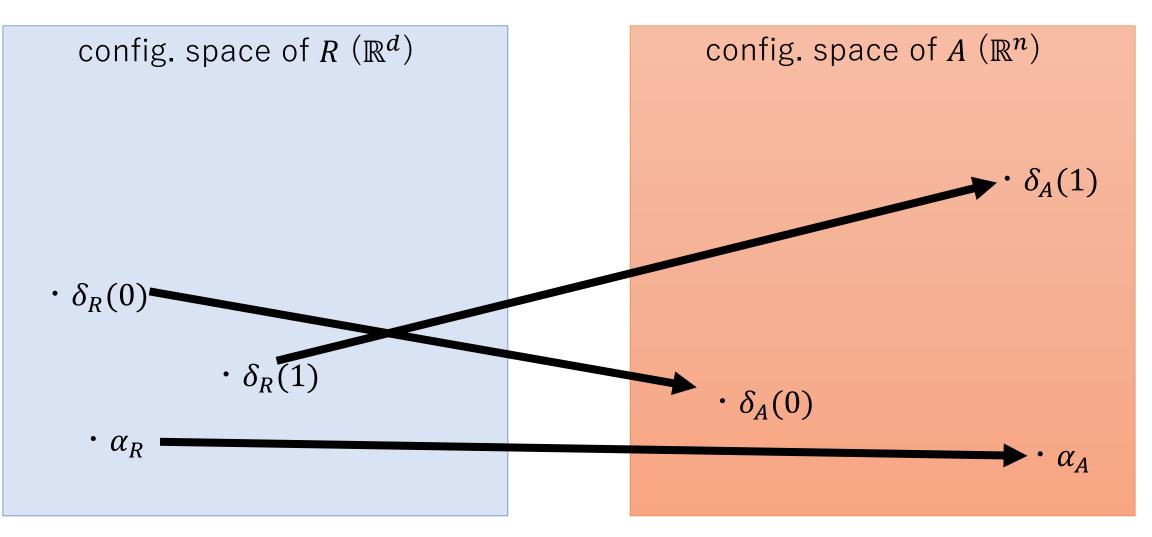


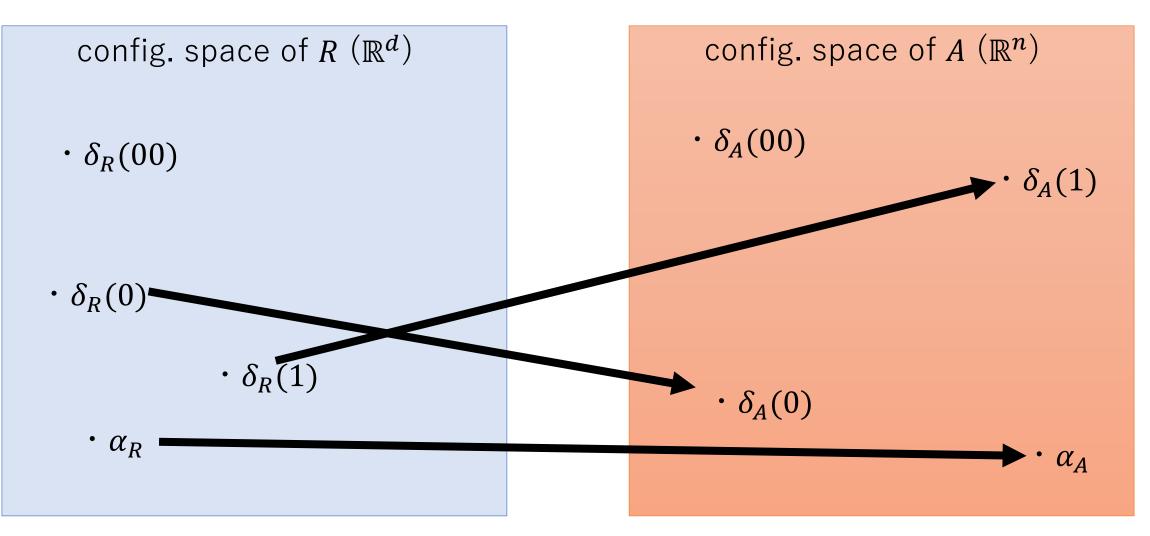


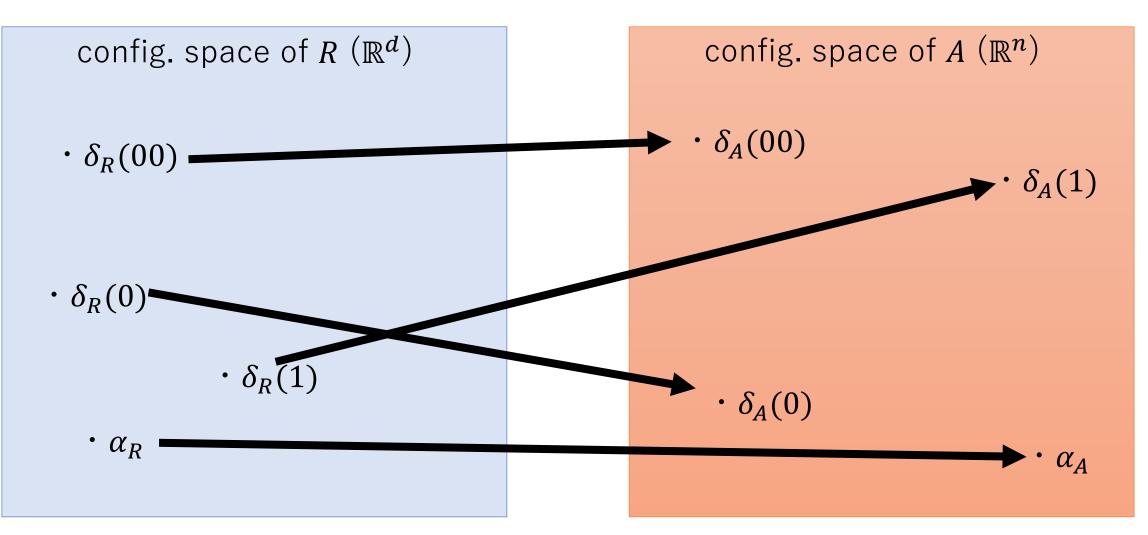


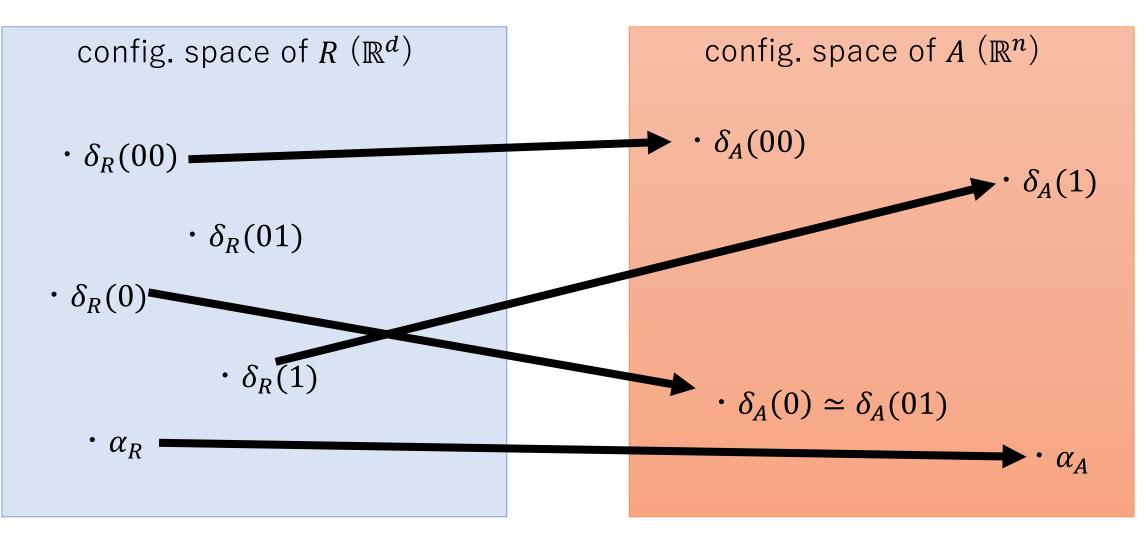


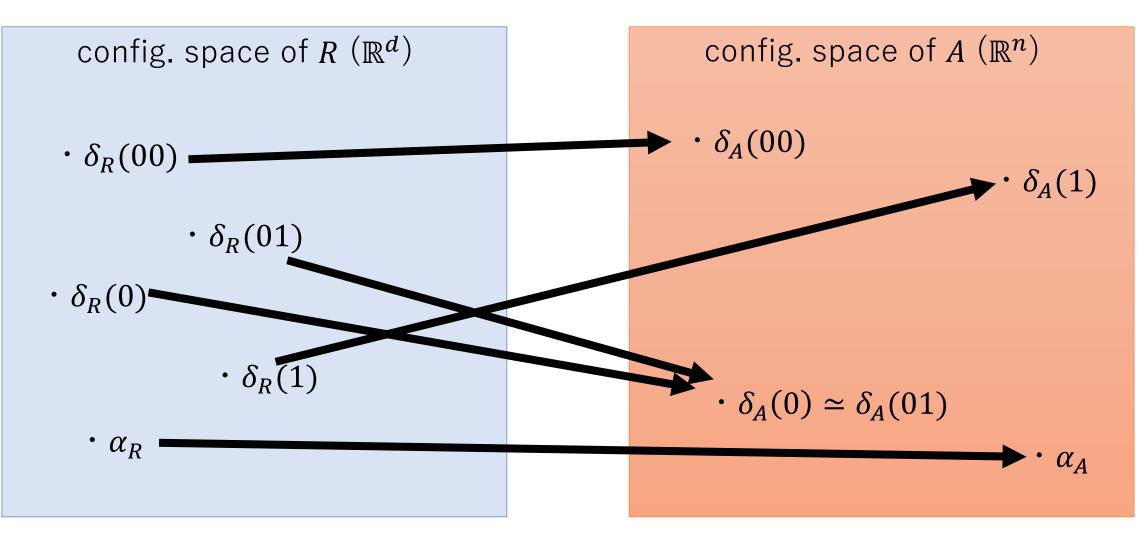






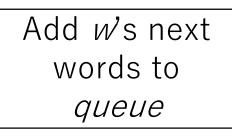




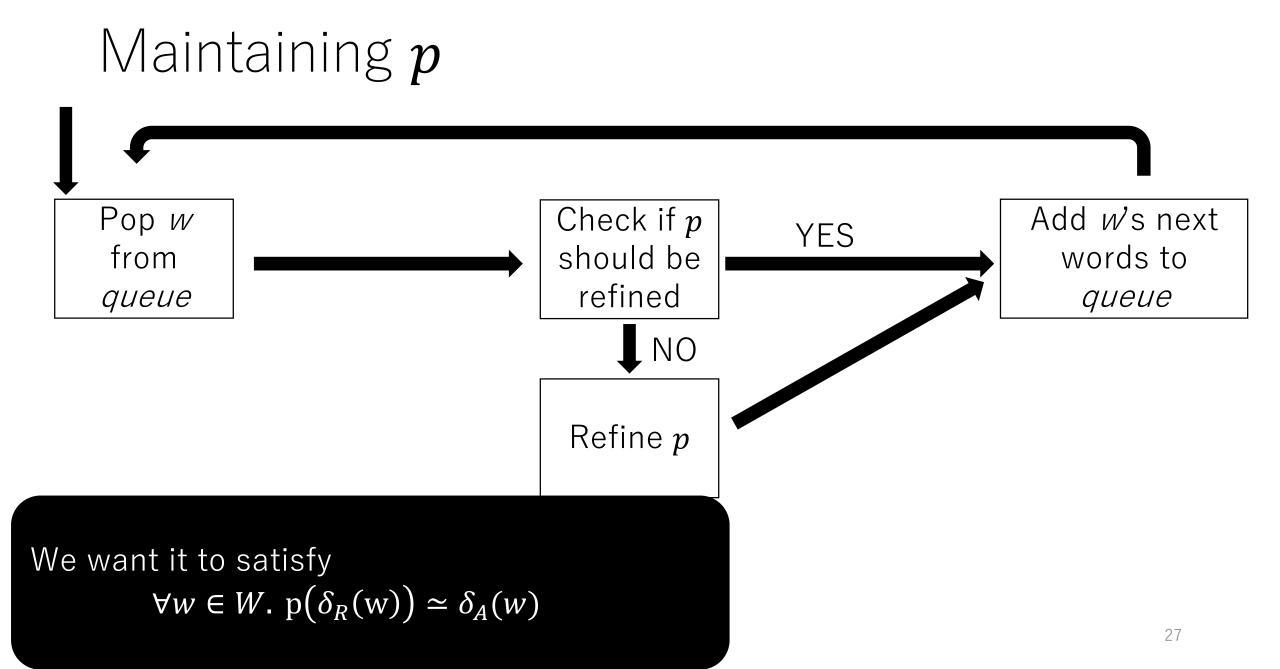


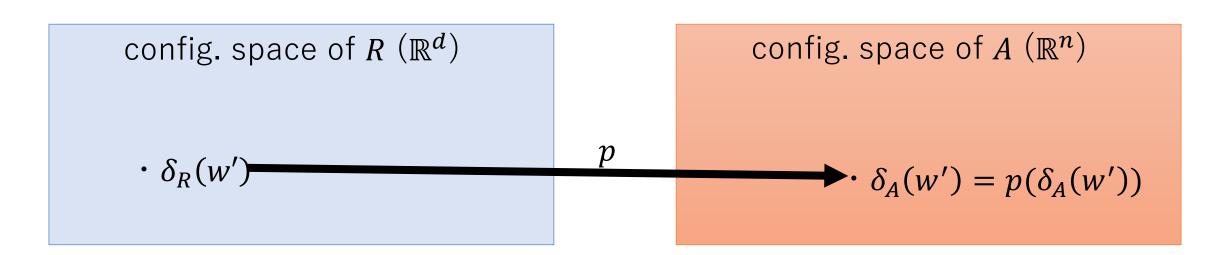
| BFS-based Equivalence Query | BFS-based | Equiva | lence | Query |  |
|-----------------------------|-----------|--------|-------|-------|--|
|-----------------------------|-----------|--------|-------|-------|--|

| Рор  | W  |
|------|----|
| fror | n  |
| quel | le |

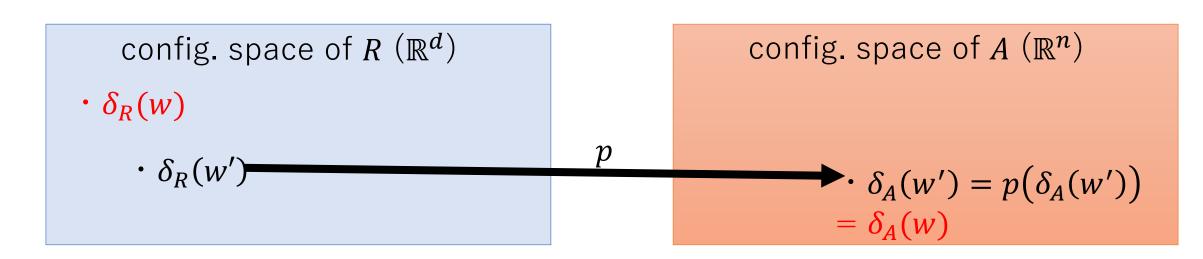


#### Equivalence query proceeds based on Breadth-First Search

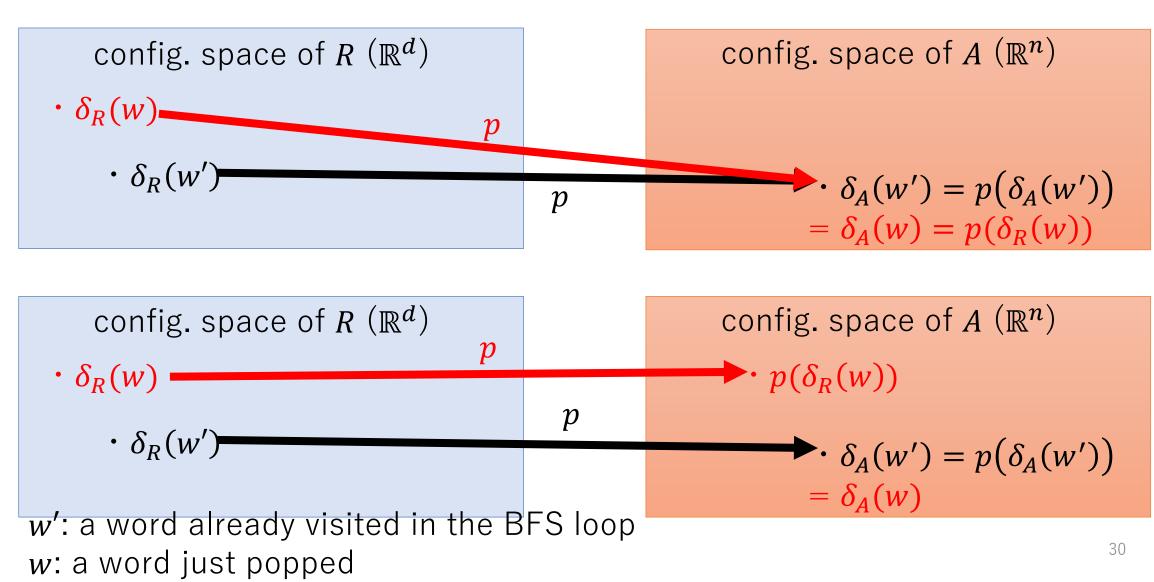


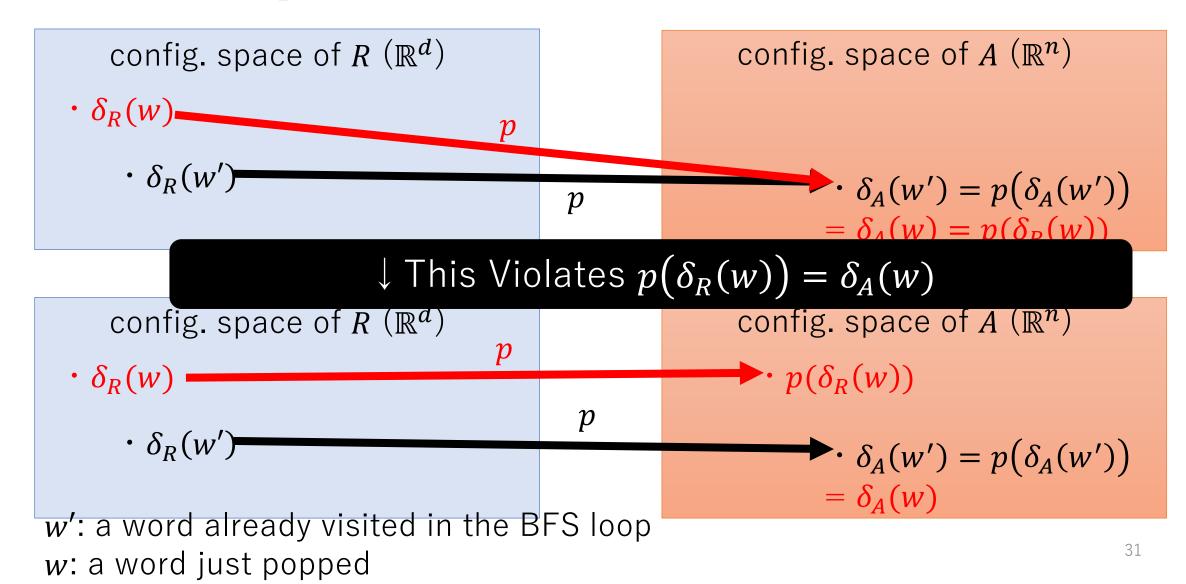


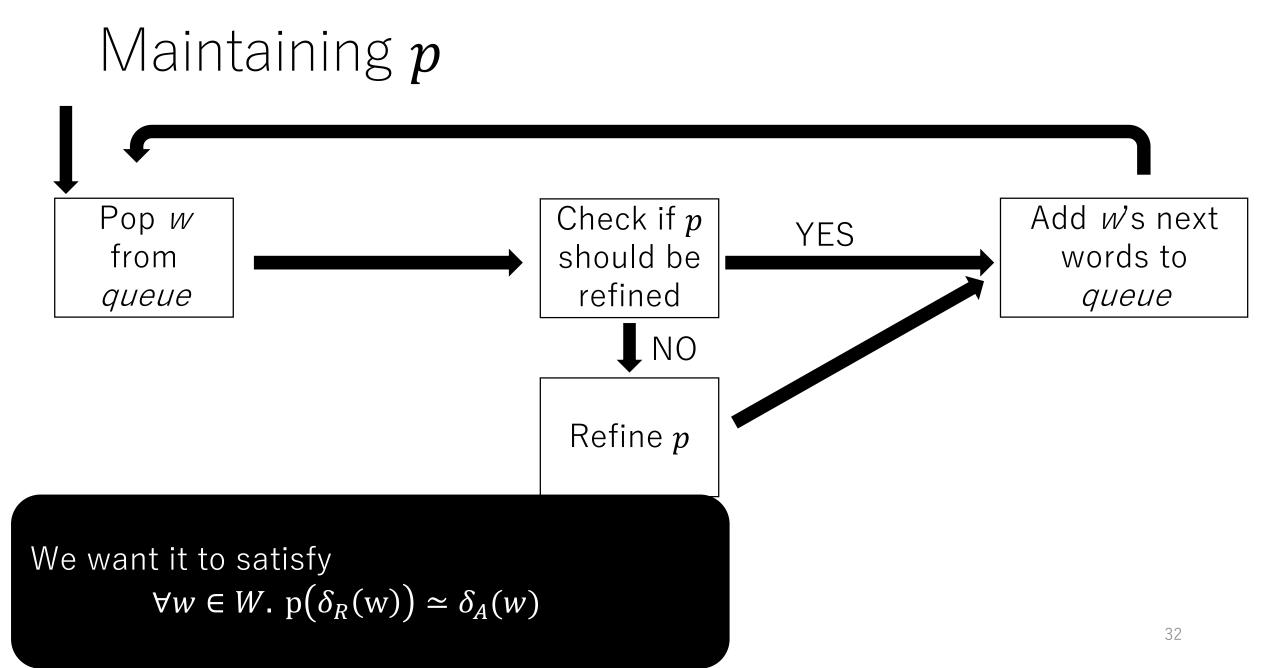
w': a word already visited in the BFS loopw: a word just popped



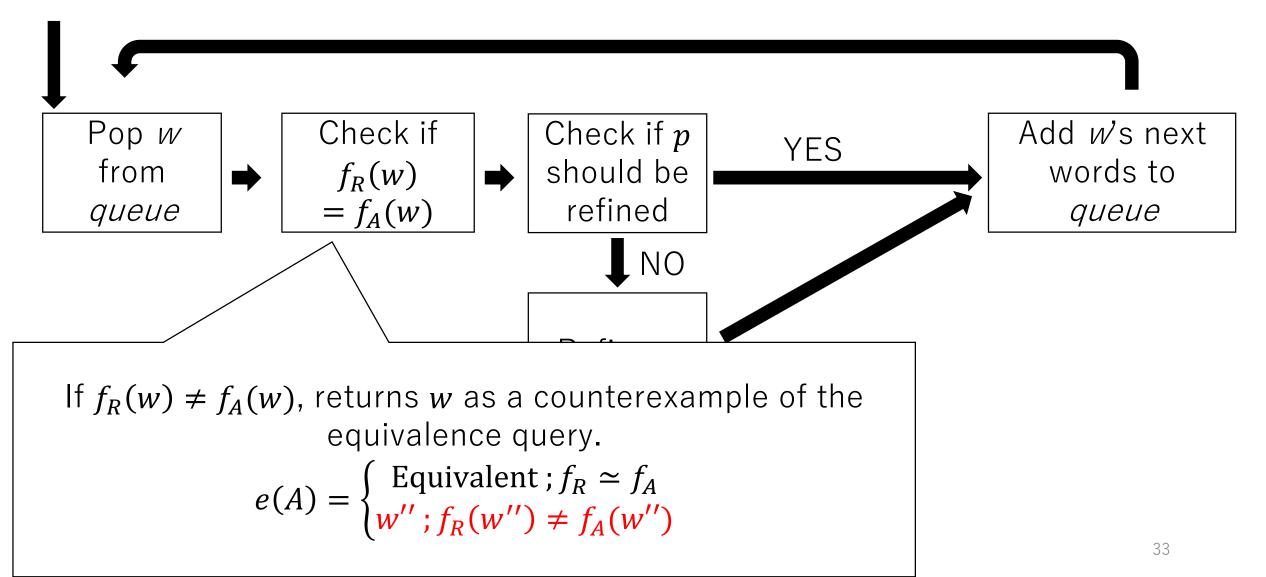
w': a word already visited in the BFS loopw: a word just popped



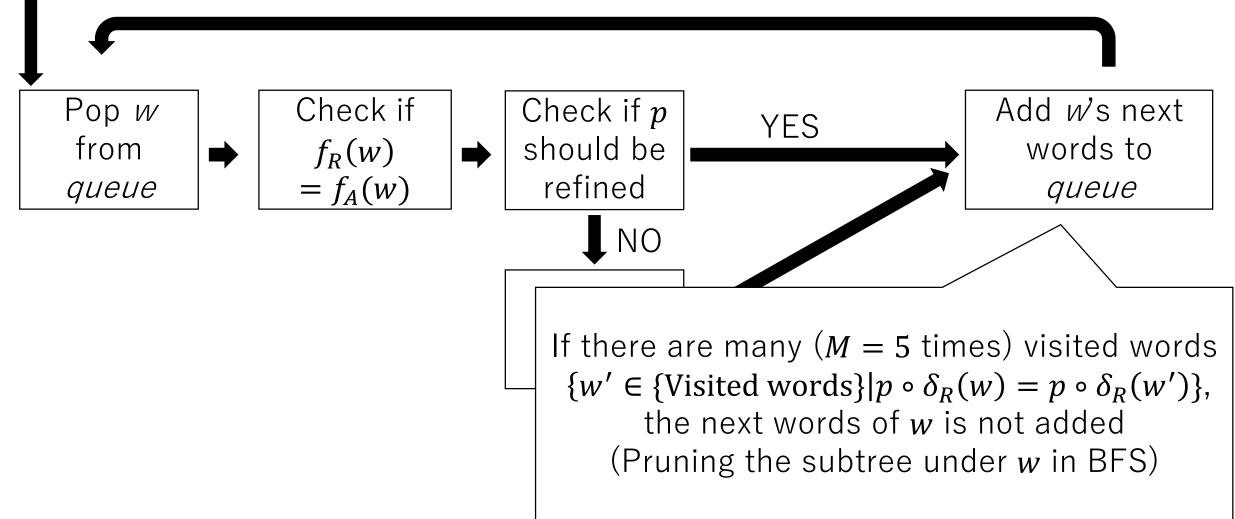




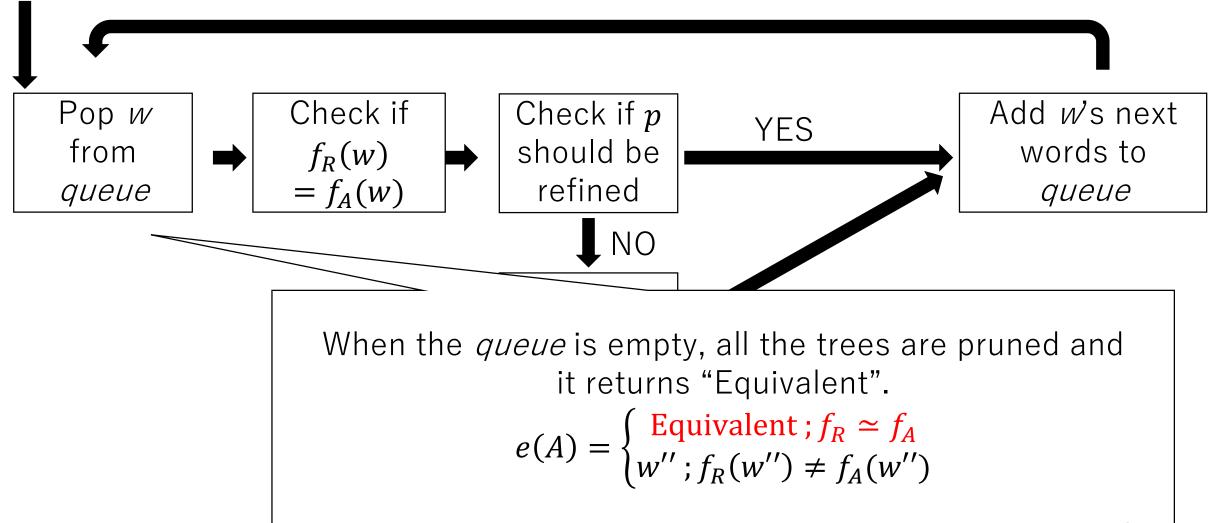
#### Finding Counterexample



## Returning "Equivalent"



## Returning "Equivalent"



# Experiments (Target RNNs)

90 target RNNs to evaluate our algorithm are made by

- 1. Generate a random WFA A of size  $n \in \{10, 20, 30\}$  and alphabet  $\Sigma$  of size  $a \in \{10, 15, 20, 30, 40, 50\}$
- 2. Learn RNN R(A) from A
- 3. Repeat Step 1-2 for each (n, s) 5 times.

#### RNNs consist of two-stacked LSTM with 50 cells.

# Experiments (Settings)

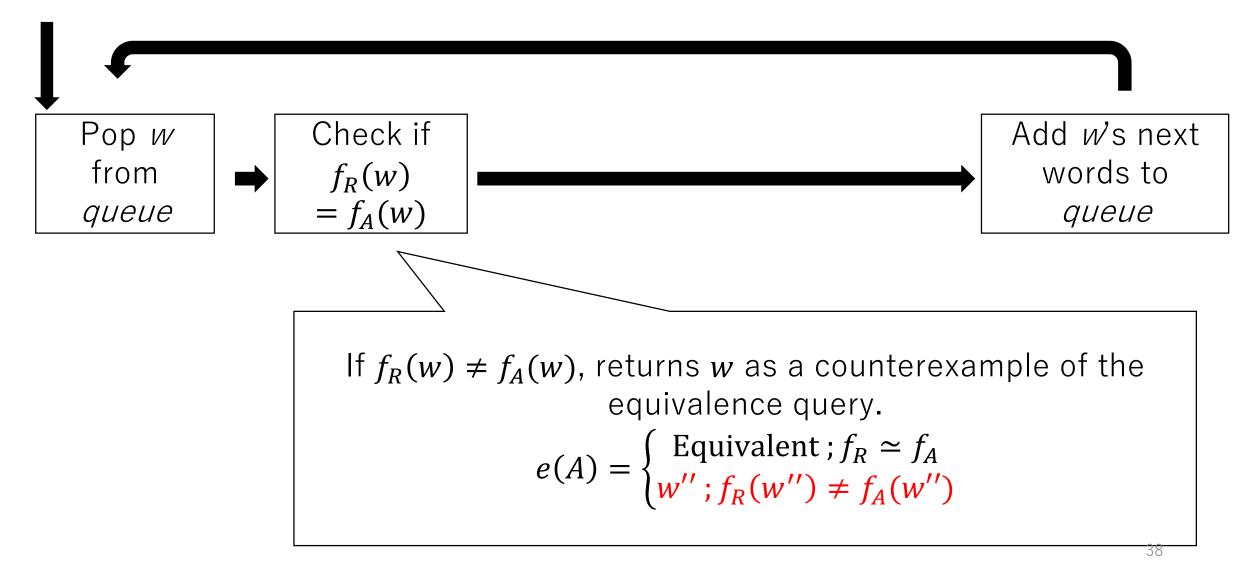
#### <u>Methods</u>

- Our algorithm with M = 5
- Baseline algorithm (comes later)

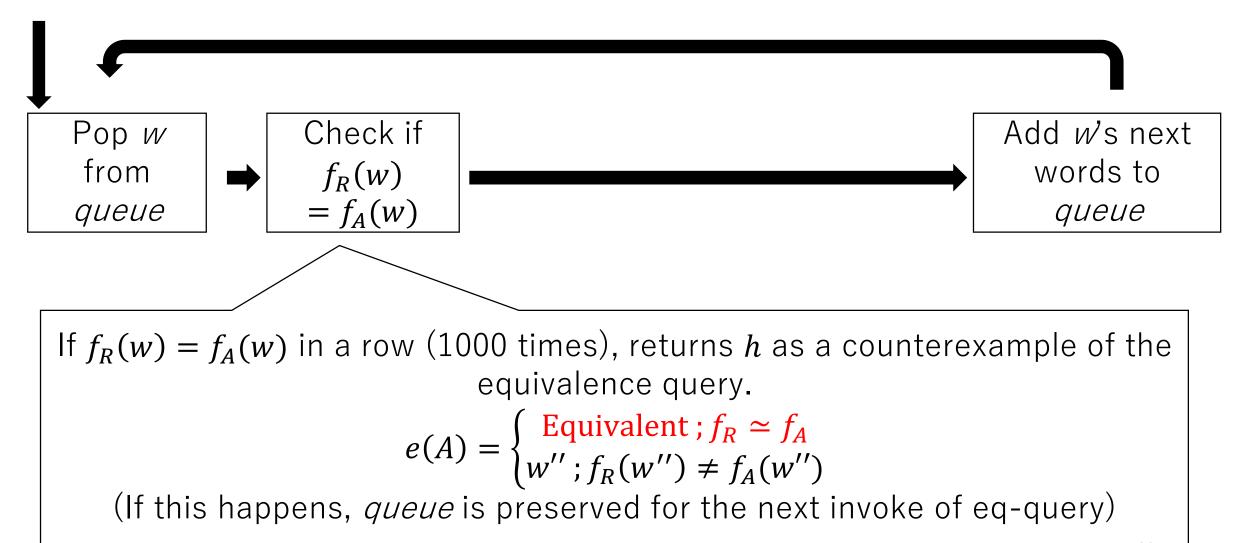
#### <u>Evaluation</u>

- Time to extract (timeout=10,000 sec.)
- Accuracy
  - If  $|f_R(w) f_{A(R)}(w)| < 0.05$  then it is "correct"
  - Calculated by randomly generating 1000 words
- Time to infer the words in R(A), A(R(A))

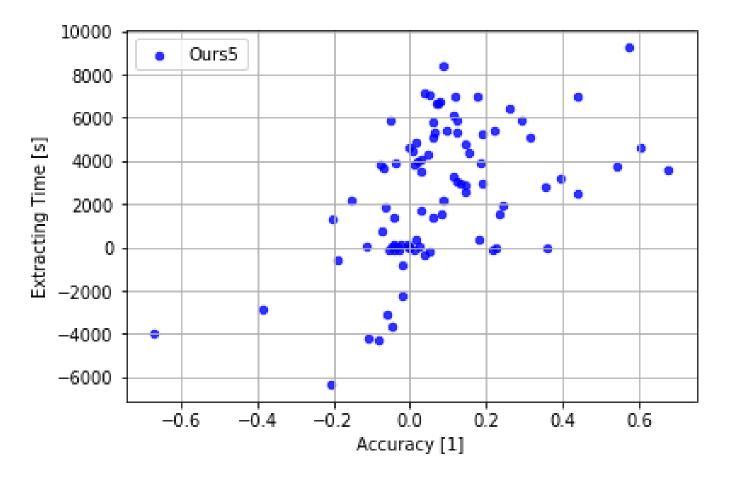
## Experiments (Baseline algorithm)



## Experiments (Baseline algorithm)



## Result (Overall)



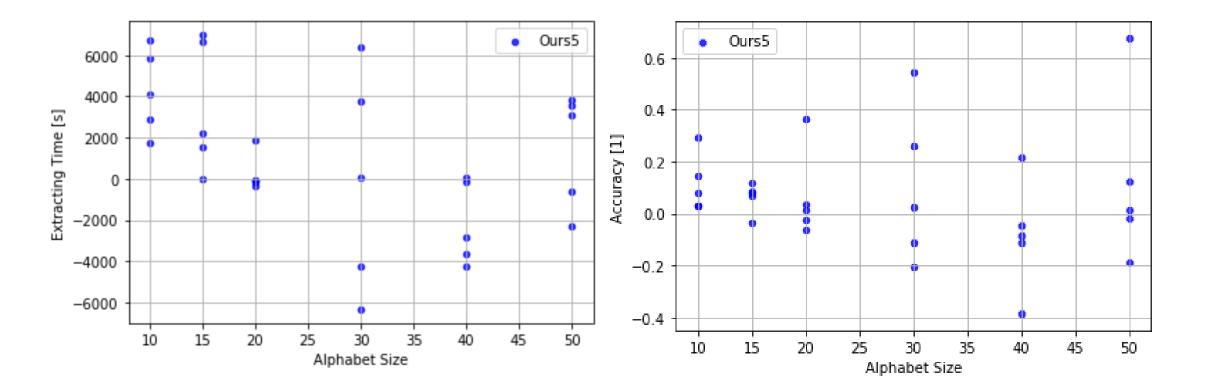
**Difference** of accuracy and extracting time between ours and baseline

# Result (Overall)

| Average (and Std) | Ours(M=5)         | Baseline          |
|-------------------|-------------------|-------------------|
| Accuracy[%]       | 81.9% (std=18.8%) | 74.1% (std=22.9%) |
| Time [s]          | 8805 (std=2220)   | 6277 (std=2966)   |

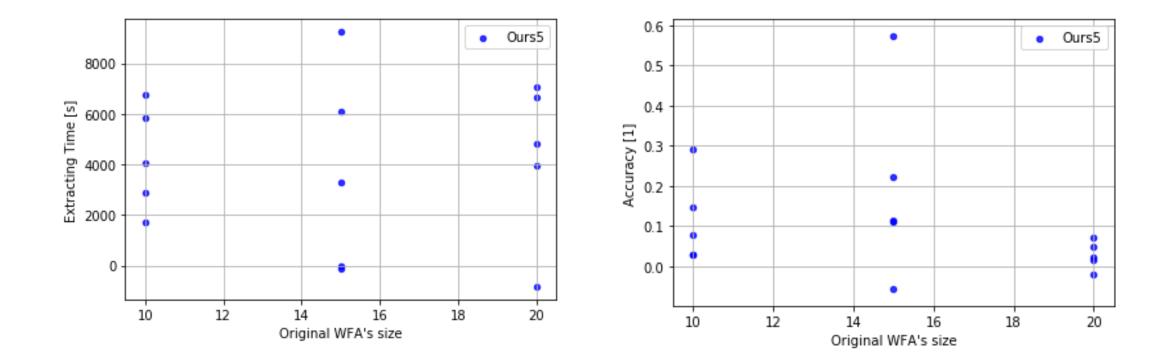
- The accuracy of "Ours (M=5)" exceeded those of "Baseline" in 59 tasks.
- The extracting time of "Ours (M=5)" longer than those of "Baseline" in 80 tasks.
- (90 tasks in total)

#### Result (WFA size n = 10)



**Difference** of accuracy and extracting time between ours and baseline

#### Result (alphabet size a = 10)



Difference of accuracy and extracting time between ours and baseline

### Time to Infer a Value from a Word

- To test our motivation "Getting **lighter** (faster to infer) model of an RNN" is feasible.
- We compared the time to compute  $f_R(w)$  and  $f_{A(R)}(w)$  for 1,000 words whose lengths are  $\leq 20$ .

|                          | Average           |
|--------------------------|-------------------|
| Time on RNN <i>R</i> [s] | 32.0 (std=2.0)    |
| Time on WFA A(R) [s]     | 0.028 (std=0.007) |

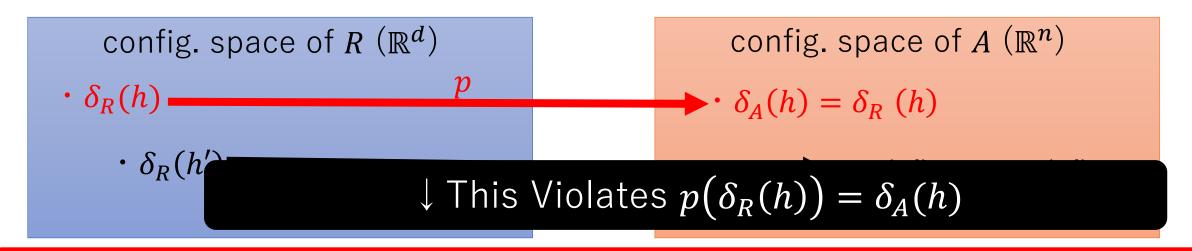
#### Conclusion

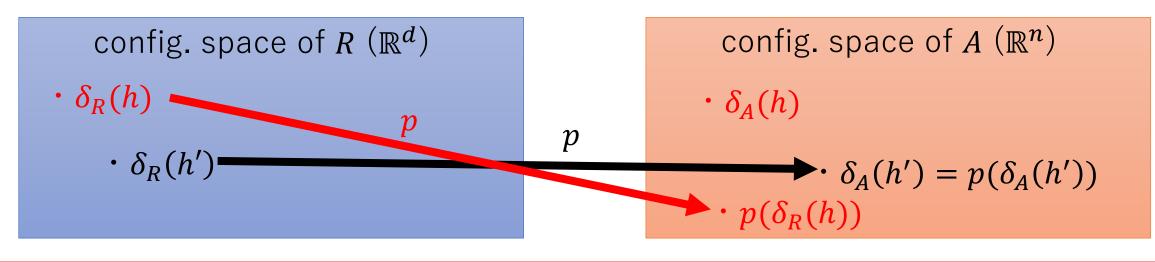
- Proposed a method to extract the WFA A(R) from a given RNN R so that  $f_{A(R)} \simeq f_R$ .
- Compared our method to the baseline algorithm in the accuracy and time
  - Our algorithm achieved higher accuracy and took more time than the baseline.
- The extracted WFA A(R) took less time to infer values than the original RNN R

## Future Work

- Adding experiment
  - To reveal the overall tendency clearly
  - To reveal what is happening when the accuracy is quite low
- $\bullet$  Adding the idea of bisimulation to p
- Think of questionable parts in the loop?
  - Refining p at the different timing could be better?
- Modifying Balle and Mohri's algorithm to generate probabilistic WFA
- Finding good hyper parameter *M* experimentally or theoretically

### "Checking if p is OK" could be like this?





### Def. of WFA

- WFA A is probabilistic if
  - $\alpha \cdot \mathbf{1} = 1$
  - For all  $\sigma \in \Sigma$ , the sums of rows are 1
  - $0 \le \beta \le 1$

#### For example:

• 
$$\Sigma = \{0, 1\}, \alpha = (0.8 \quad 0.2), \beta = \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix}, A_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix}$$