Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces

Takamasa Okudono, Masaki Waga, Taro Sekiyama, Ichiro Hasuo SOKENDAI, the Graduate University for Advanced Studies, Japan /National Institute of Informatics, Japan LearnAut19, Vancouver, Canada 23 June 2019

1

RNN is a neural network equipped with a internal state

[Drawing by François](https://commons.wikimedia.org/wiki/User:Ixnay) Deloche (**CC BY-SA 4.0**) 2

Goal

Input: RNN R whose output is in $\mathbb R$ (defines $f_R: \Sigma^* \to \mathbb R$) Output: WFA $A(R)$ (defines $f_{A(R)} : \Sigma^* \to \mathbb{R}$) s.t. $f_{A(R)} \simeq f_R$

Motivation

- Getting **lighter** (faster to infer) model of an RNN
	- Because the inference of RNNs are sometimes heavy
- Investigate the behavior of RNN R via the extracted WFA $A(R)$
	- WFA equips many operations and leads to model checking?
- In research line of RNN⇔DFA conversion as an acceptor
	- Ours is a quantitative extension

Contribution

- Proposed a method to apply Balle and Mohri's algorithm for the extraction
	- The key is checking if $R \simeq A$ by using regression
- Our method extracts +7% more accurate models than the baseline
- The extracted WFAs are about 1,000 times faster to infer than the target RNNs

Def. of RNN (Mathematically, in this work)

RNN R (of alphabet Σ and dimension d) consists of

- $\alpha \in \mathbb{R}^d$: Initial state
- β : $\mathbb{R}^d \to \mathbb{R}$: Final function
- g_R : $\mathbb{R}^d \times \Sigma \rightarrow \mathbb{R}^d$: Transition function
	- $g_R\!:\mathbb{R}^d\times \Sigma^*\to \mathbb{R}^d$ is induced recursively \blacksquare

 $f_R: \Sigma^* \to \mathbb{R}$ is *induced by* $f_R(w_1 \dots w_N) = \beta \circ g_R(\alpha, w_1 \dots w_N)$ The *configuration* for w_1 ... w_N is defined by $\delta_R(w_1 ... w_N) = g_R(\alpha, w_1 ... w_N)$

"internal state"

Need not to be

linear

Def. of Weighted Finite Automaton (WFA)

WFA A (of size n and alphabet Σ) consists of

- $\alpha \in \mathbb{R}^n$: Initial vector
- $\cdot \beta \in \mathbb{R}^n$: Final vector
- $A_{\sigma} \in \mathbb{R}^{n \times n}$: Transition matrix $(\sigma \in \Sigma)$

WFA A is a formalism to define $f_A: \Sigma^* \to \mathbb{R}$

(c.f.) A DFA is a formalism to define $f: \Sigma^* \to 2$ WFA is an extension of DFA via the matrix representation.

Def. of WFA

• WFA A induces the function $f_A: \Sigma^* \to \mathbb{R}$ as $f_A(w_1 ... w_N) = \alpha A_{w_1} ... A_{w_N} \beta$ • The *configuration* ("internal state") of WFA A is $\delta_A(w_1 \dots w_N) = \alpha A_{w_1} \dots A_{w_N} \in \mathbb{R}^n$

For example:

$$
\bullet \Sigma = \{0, 1\}, \alpha = (0.8 \quad 0.2), \beta = \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix}, A_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix}
$$

$$
\bullet f_A(10) = (0.8 \quad 0.2) \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix} = 0.736
$$

$$
\bullet \delta_A(10) = (0.8 \quad 0.2) \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (0.18 \quad 0.82)
$$

RNN and WFA

RNN R (of alphabet Σ and dimension d) consists of

- $\alpha \in \mathbb{R}^d$: Initial state
- β : $\mathbb{R}^d \to \mathbb{R}$: Final function
- g_R : $\mathbb{R}^d \times \Sigma \to \mathbb{R}^d$: Transition function

WFA A (of alphabet Σ and size n) consists of

- $\alpha \in \mathbb{R}^n$: Initial vector
- $\cdot \beta \in \mathbb{R}^n$: Final vector
- $A_{\sigma} \in \mathbb{R}^{n \times n}$: Transition matrix $(\sigma \in \Sigma)$

Similar formalism! Can we approximate RNN by WFA?

Goal and Our Approach

Goal

Input: RNN R whose output is in \mathbb{R} (defines $f_R: \Sigma^* \to \mathbb{R}$) Output: WFA $A(R)$ (defines $f_{A(R)} : \Sigma^* \to \mathbb{R}$) s.t. $f_{A(R)} \simeq f_R$

Approach: Use Balle and Mohri's algorithm

• The challenge is to give the procedure to check if $f_A \simeq f_R$ for a candidate WFA

Balle and Mohri's Algorithm

An extension of Angluin's L* Algorithm for WFA

- Input:
	- Membership query procedure m: Σ^{*} → R
	- Equivalence query procedure e: {WFAs} → {Equivalent} ⊔ ∗
- Output:
	- Minimal WFA A'
- Property: Given WFA A, if $m = f_A$ and $e(\tilde{A}) = \{$ Equivalent ; $f_A = f_{\tilde{A}}$

Called "Counterexample"

then, it terminates by calling m , e polynomial times and $f_A = f_{A}$,

 w ; $f_A(w) \neq f_{\tilde{A}}(w)$

Idea of Overall Architecture (Detailed)

Implement

- Membership query m to be the RNN's induced function f_R
- \bullet Equivalence query e to be $e(\tilde{A}) = \{$ Equivalent ; $f_R \simeq f_{\tilde{A}}$ w ; $f_R(w) \neq f_{\tilde{A}}(w)$ Generally it cannot be "="

Then we would be able to get a WFA \tilde{A} s.t. $f_R \simeq f_{\tilde{A}}$!

But how can we implement such an equivalence query e ?

How do we know $f_R \simeq f_A$?

Both calculate their configurations ("internal states")

If there is a "good" relation between δ_R and δ_A , A and R would behave similarly

"Good" relation between δ_R and δ_A

• This work views $p: \mathbb{R}^d \to \mathbb{R}^n$ satisfying the following property as a good relation:

$$
\forall w \in \Sigma^* \colon p(\delta_R(w)) \simeq \delta_A(w)
$$

Equivalence Query by approximating p

Let's approximate *configuration translator* $p: \mathbb{R}^d \to \mathbb{R}^n$ such that $\forall w \in \Sigma^*$. $p(\delta_R(w)) \simeq \delta_A(w)$

by applying **regression** on sampled data.

The data is sampled by observing Σ^* in Breadth-First Search.

config. space of $R(\mathbb{R}^d)$

$$
\cdot
$$
 α_R

Add w's next words to queue

Equivalence query proceeds based on Breadth-First Search

 w' : a word already visited in the BFS loop w: a word just popped

 w' : a word already visited in the BFS loop w: a word just popped

Finding Counterexample

Returning "Equivalent"

Returning "Equivalent"

Experiments (Target RNNs)

90 target RNNs to evaluate our algorithm are made by

- 1. Generate a random WFA A of size $n \in \{10, 20, 30\}$ and alphabet Σ of size $a \in \{10, 15, 20, 30, 40, 50\}$
- 2. Learn RNN $R(A)$ from A
- 3. Repeat Step 1-2 for each (n, s) 5 times.

RNNs consist of two-stacked LSTM with 50 cells.

Experiments (Settings)

Methods

- Our algorithm with $M = 5$
- Baseline algorithm (comes later)

Evaluation

- Time to extract (timeout=10,000 sec.)
- Accuracy
	- If $|f_R(w) f_{A(R)}(w)| < 0.05$ then it is "correct"
	- Calculated by randomly generating 1000 words
- Time to infer the words in $R(A)$, $A(R(A))$

Experiments (Baseline algorithm)

Experiments (Baseline algorithm)

Result (Overall)

Difference of accuracy and extracting time between ours and baseline

Result (Overall)

- The accuracy of "Ours (M=5)" exceeded those of "Baseline" in 59 tasks.
- The extracting time of "Ours (M=5)" longer than those of "Baseline" in 80 tasks.
- (90 tasks in total)

Result (WFA size $n = 10$)

Difference of accuracy and extracting time between ours and baseline

Result (alphabet size $a = 10$)

Difference of accuracy and extracting time between ours and baseline

Time to Infer a Value from a Word

- To test our motivation "Getting **lighter** (faster to infer) model of an RNN" is feasible.
- We compared the time to compute $f_R(w)$ and $f_{A(R)}(w)$ for 1,000 words whose lengths are ≤ 20 .

Conclusion

- Proposed a method to extract the WFA $A(R)$ from a given RNN *R* so that $f_{A(R)} \simeq f_R$.
- Compared our method to the baseline algorithm in the accuracy and time
	- Our algorithm achieved higher accuracy and took more time than the baseline.
- The extracted WFA $A(R)$ took less time to infer values than the original RNN R

Future Work

- Adding experiment
	- To reveal the overall tendency clearly
	- To reveal what is happening when the accuracy is quite low
- Adding the idea of bisimulation to p
- Think of questionable parts in the loop?
	- Refining p at the different timing could be better?
- Modifying Balle and Mohri's algorithm to generate **probabilistic** WFA
- Finding good hyper parameter M experimentally or theoretically

"Checking if p is OK" could be like this?

Def. of WFA

- WFA A is *probabilistic* if
	- $\alpha \cdot \mathbf{1} = 1$
	- For all $\sigma \in \Sigma$, the sums of rows are 1
	- $0 \leq \beta \leq 1$

For example:

•
$$
\Sigma = \{0, 1\}, \alpha = (0.8 \quad 0.2), \beta = \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix}, A_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix}
$$