
Weighted Automata Extraction 
from Recurrent Neural 

Networks via Regression on 
State Spaces

Takamasa Okudono, Masaki Waga, Taro Sekiyama, Ichiro Hasuo

SOKENDAI, the Graduate University for Advanced Studies, Japan

/National Institute of Informatics, Japan

LearnAut19, Vancouver, Canada

23 June 2019

1



RNN

RNN is a neural network equipped with a internal state

Drawing by François Deloche (CC BY-SA 4.0)
2

https://commons.wikimedia.org/wiki/User:Ixnay


Goal

Input: RNN 𝑅 whose output is in ℝ (defines 𝑓𝑅: Σ
∗ → ℝ)

Output: WFA 𝐴(𝑅) (defines 𝑓𝐴(𝑅): Σ
∗ → ℝ) s.t. 𝑓𝐴(𝑅) ≃ 𝑓𝑅

RNN WFA

Initial state Final func.

Transition func. Transition matrix

Initial vector Final vector

3



Motivation

• Getting lighter (faster to infer) model of an RNN
• Because the inference of RNNs are sometimes heavy

• Investigate the behavior of RNN 𝑅 via the extracted WFA 𝐴 𝑅
• WFA equips many operations and leads to model checking?

• In research line of RNN⇔DFA conversion as an acceptor
• Ours is a quantitative extension

4



Contribution

• Proposed a method to apply Balle and Mohri’s algorithm for 
the extraction
• The key is checking if 𝑅 ≃ 𝐴 by using regression

• Our method extracts +7% more accurate models than the 
baseline

• The extracted WFAs are about 1,000 times faster to infer 
than the target RNNs

5



Def. of RNN (Mathematically, in this work)

RNN 𝑅 (of alphabet Σ and dimension 𝑑) consists of

• 𝛼 ∈ ℝ𝑑: Initial state

• 𝛽:ℝ𝑑 → ℝ: Final function

• 𝑔𝑅: ℝ
𝑑 × Σ → ℝ𝑑: Transition function

• 𝑔𝑅: ℝ
𝑑 × Σ∗ → ℝ𝑑 is induced recursively■

𝑓𝑅: Σ
∗ → ℝ is induced by 𝑓𝑅 𝑤1…𝑤𝑁 = 𝛽 ∘ 𝑔𝑅(𝛼, 𝑤1…𝑤𝑁)

The configuration for 𝑤1…𝑤𝑁 is defined by 𝛿𝑅 𝑤1…𝑤𝑁 = 𝑔𝑅 𝛼,𝑤1…𝑤𝑁

Need not to be 
linear

“internal state”
6



Def. of Weighted Finite Automaton (WFA)

WFA 𝐴 (of size 𝑛 and alphabet Σ) consists of

• 𝛼 ∈ ℝ𝑛: Initial vector

• 𝛽 ∈ ℝ𝑛: Final vector

• 𝐴𝜎 ∈ ℝ𝑛×𝑛: Transition matrix (𝜎 ∈ Σ) ■

WFA 𝐴 is a formalism to define 𝑓𝐴: Σ
∗ → ℝ

(c.f.) A DFA is a formalism to define 𝑓: Σ∗ → 2

WFA is an extension of DFA via the matrix representation.

7



Def. of WFA

• WFA 𝐴 induces the function 𝑓𝐴: Σ
∗ → ℝ as

𝑓𝐴 𝑤1…𝑤𝑁 = 𝛼𝐴𝑤1
…𝐴𝑤𝑁

𝛽

• The configuration (“internal state”) of WFA 𝐴 is
𝛿𝐴 𝑤1…𝑤𝑁 = 𝛼𝐴𝑤1

…𝐴𝑤𝑁
∈ ℝ𝑛

For example:

• Σ = 0, 1 , 𝛼 = 0.8 0.2 , 𝛽 =
0.9
0.7

, 𝐴0 =
0 1
1 0

, 𝐴1 =
0.9 0.1
0.5 0.5

• 𝑓𝐴 10 = 0.8 0.2
0.9 0.1
0.5 0.5

0 1
1 0

0.9
0.7

= 0.736

• 𝛿𝐴 10 = 0.8 0.2
0.9 0.1
0.5 0.5

0 1
1 0

= 0.18 0.82
8



RNN and WFA

RNN 𝑅 (of alphabet Σ and dimension 𝑑) consists of

• 𝛼 ∈ ℝ𝑑: Initial state

• 𝛽:ℝ𝑑 → ℝ: Final function

• 𝑔𝑅: ℝ
𝑑 × Σ → ℝ𝑑: Transition function■

WFA 𝐴 (of alphabet Σ and size 𝑛) consists of

• 𝛼 ∈ ℝ𝑛: Initial vector

• 𝛽 ∈ ℝ𝑛: Final vector

• 𝐴𝜎 ∈ ℝ𝑛×𝑛: Transition matrix (𝜎 ∈ Σ) ■

Similar formalism!
Can we approximate 

RNN by WFA?
9



Goal

Input: RNN 𝑅 whose output is in ℝ (defines 𝑓𝑅: Σ
∗ → ℝ)

Output: WFA 𝐴(𝑅) (defines 𝑓𝐴(𝑅): Σ
∗ → ℝ) s.t. 𝑓𝐴(𝑅) ≃ 𝑓𝑅

Approach: Use Balle and Mohri’s algorithm

• The challenge is to give the procedure to check if 𝑓𝐴 ≃ 𝑓𝑅 for 
a candidate WFA 𝐴

Goal and Our Approach

10



Balle and Mohri’s Algorithm

An extension of Angluin’s L* Algorithm for WFA

• Input: 
• Membership query procedure m: Σ∗ → ℝ

• Equivalence query procedure e: WFAs → Equivalent ⊔ Σ∗

• Output:
• Minimal WFA 𝐴′

• Property: Given WFA 𝐴, if 𝑚 = 𝑓𝐴 and 

𝑒 ሚ𝐴 = ቊ
Equivalent ; 𝑓𝐴 = 𝑓 ෨𝐴

𝑤 ; 𝑓𝐴 𝑤 ≠ 𝑓 ෨𝐴(𝑤)

then, it terminates by calling 𝑚, 𝑒 polynomial times and 𝑓𝐴 = 𝑓𝐴′

Called 
“Counterexample”

11



Idea of Overall Architecture (Detailed)

Implement 

• Membership query 𝑚 to be the RNN’s induced function 𝑓𝑅
• Equivalence query 𝑒 to be

𝑒 ሚ𝐴 = ቊ
Equivalent ; 𝑓𝑅 ≃ 𝑓 ෨𝐴

𝑤 ; 𝑓𝑅 𝑤 ≠ 𝑓 ෨𝐴(𝑤)

Then we would be able to get a WFA ሚ𝐴 s.t. 𝑓𝑅 ≃ 𝑓 ෨𝐴 !

Generally it 
cannot be “=“

But how can we implement such an equivalence query 𝑒?

12



How do we know 𝑓𝑅 ≃ 𝑓𝐴?

𝑓𝑅 𝑤 ≃ 𝑓𝐴(𝑤)
⇔ 𝛽𝑅 ∘ 𝛿𝑅 𝛼𝑅, 𝑤1…𝑤𝑛 ≃ 𝛿𝐴(𝑤1…𝑤𝑛)𝛽𝐴

Both calculate their configurations 
(“internal states”)

If there is a “good” relation between 𝛿𝑅 and 𝛿𝐴,
𝐴 and 𝑅 would behave similarly

13



“Good” relation between 𝛿𝑅 and 𝛿𝐴

• This work views 𝑝: ℝ𝑑 → ℝ𝑛 satisfying the following property 
as a good relation:

∀𝑤 ∈ Σ∗. p 𝛿𝑅 w ≃ 𝛿𝐴(𝑤)

14



Equivalence Query by approximating 𝑝

Let’s approximate configuration translator 𝑝:ℝ𝑑 → ℝ𝑛 such that
∀𝑤 ∈ Σ∗. p 𝛿𝑅 w ≃ 𝛿𝐴(𝑤)

by applying regression on sampled data.

The data is sampled by observing Σ∗ in Breadth-First Search.

15



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

16



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

17



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

・𝛿𝑅(0)

・𝛿𝐴(0)

18



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

・𝛿𝑅(0)

・𝛿𝐴(0)

19



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

・𝛿𝑅(0)

・𝛿𝐴(0)
・𝛿𝑅(1)

・𝛿𝐴(1)

20



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

・𝛿𝑅(0)

・𝛿𝐴(0)
・𝛿𝑅(1)

・𝛿𝐴(1)

21



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

・𝛿𝑅(0)

・𝛿𝐴(0)
・𝛿𝑅(1)

・𝛿𝐴(1)
・𝛿𝑅(00)

・𝛿𝐴(00)

22



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

・𝛿𝑅(0)

・𝛿𝐴(0)
・𝛿𝑅(1)

・𝛿𝐴(1)
・𝛿𝑅(00)

・𝛿𝐴(00)

23



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

・𝛿𝑅(0)

・𝛿𝐴 0 ≃ 𝛿𝐴(01)
・𝛿𝑅(1)

・𝛿𝐴(1)
・𝛿𝑅(00)

・𝛿𝐴(00)

・𝛿𝑅(01)

24



Relation 𝑝 between 𝑅 and 𝐴

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛼𝑅 ・𝛼𝐴

・𝛿𝑅(0)

・𝛿𝐴 0 ≃ 𝛿𝐴(01)
・𝛿𝑅(1)

・𝛿𝐴(1)
・𝛿𝑅(00)

・𝛿𝐴(00)

・𝛿𝑅(01)

25



BFS-based Equivalence Query

Pop w 
from 

queue

Add w’s next 
words to 
queue

Equivalence query proceeds based on Breadth-First Search

26



Maintaining 𝑝

Pop w 
from 

queue

Add w’s next 
words to 
queue

Check if 𝑝
should be 

refined

Refine 𝑝

NO

YES

We want it to satisfy

∀𝑤 ∈ 𝑊. p 𝛿𝑅 w ≃ 𝛿𝐴(𝑤)
27



Check if 𝑝 should be refined

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛿𝑅 𝑤′ ・𝛿𝐴 𝑤′ = 𝑝(𝛿𝐴 𝑤′ )
𝑝

𝑤′: a word already visited in the BFS loop
𝑤: a word just popped

28



Check if 𝑝 should be refined

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛿𝑅 𝑤′ ・𝛿𝐴 𝑤′ = 𝑝 𝛿𝐴 𝑤′

= 𝛿𝐴(𝑤)

・𝛿𝑅(𝑤)

𝑝

𝑤′: a word already visited in the BFS loop
𝑤: a word just popped

29



Check if 𝑝 should be refined

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛿𝑅 𝑤′ ・𝛿𝐴 𝑤′ = 𝑝 𝛿𝐴 𝑤′

= 𝛿𝐴 𝑤 = 𝑝(𝛿𝑅 𝑤 )

・𝛿𝑅(𝑤)

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛿𝑅 𝑤′ ・𝛿𝐴 𝑤′ = 𝑝 𝛿𝐴 𝑤′

= 𝛿𝐴(𝑤)

・𝛿𝑅(𝑤)
𝑝

𝑝

𝑝

・𝑝(𝛿𝑅 𝑤 )
𝑝

𝑤′: a word already visited in the BFS loop
𝑤: a word just popped

30



Check if 𝑝 should be refined

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛿𝑅 𝑤′ ・𝛿𝐴 𝑤′ = 𝑝 𝛿𝐴 𝑤′

= 𝛿𝐴 𝑤 = 𝑝(𝛿𝑅 𝑤 )

・𝛿𝑅(𝑤)

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛿𝑅 𝑤′ ・𝛿𝐴 𝑤′ = 𝑝 𝛿𝐴 𝑤′

= 𝛿𝐴(𝑤)

・𝛿𝑅(𝑤)
𝑝

𝑝

𝑝

・𝑝(𝛿𝑅 𝑤 )
𝑝

↓This Violates 𝑝 𝛿𝑅 𝑤 = 𝛿𝐴(𝑤)

𝑤′: a word already visited in the BFS loop
𝑤: a word just popped

31



Maintaining 𝑝

Pop w 
from 

queue

Add w’s next 
words to 
queue

Check if 𝑝
should be 

refined

Refine 𝑝

NO

YES

We want it to satisfy

∀𝑤 ∈ 𝑊. p 𝛿𝑅 w ≃ 𝛿𝐴(𝑤)
32



Check if 𝑝
should be 

refined

Refine 𝑝

Finding Counterexample

Pop w 
from 

queue

Add w’s next 
words to 
queue

NO

YES
Check if 

𝑓𝑅 𝑤
= 𝑓𝐴(𝑤)

If 𝑓𝑅 𝑤 ≠ 𝑓𝐴(𝑤), returns 𝑤 as a counterexample of the 
equivalence query.

𝑒 𝐴 = ቊ
Equivalent ; 𝑓𝑅 ≃ 𝑓𝐴
𝑤′′ ; 𝑓𝑅 𝑤′′ ≠ 𝑓𝐴(𝑤′′)

33



Check if 𝑝
should be 

refined

Refine 𝑝

Returning “Equivalent”

Pop w 
from 

queue

Add w’s next 
words to 
queue

NO

YES
Check if 

𝑓𝑅 𝑤
= 𝑓𝐴(𝑤)

If there are many (𝑀 = 5 times) visited words
𝑤′ ∈ {Visited words} 𝑝 ∘ 𝛿𝑅 𝑤 = 𝑝 ∘ 𝛿𝑅 𝑤′ },

the next words of 𝑤 is not added 
(Pruning the subtree under 𝑤 in BFS)

34



Check if 𝑝
should be 

refined

Refine 𝑝

Add w’s next 
words to 
queue

NO

YES

Returning “Equivalent”

Pop w 
from 

queue

Check if 

𝑓𝑅 𝑤
= 𝑓𝐴(𝑤)

When the queue is empty, all the trees are pruned and 
it returns “Equivalent”.

𝑒 𝐴 = ቊ
Equivalent ; 𝑓𝑅 ≃ 𝑓𝐴
𝑤′′ ; 𝑓𝑅 𝑤′′ ≠ 𝑓𝐴(𝑤′′)

35



Experiments (Target RNNs)

90 target RNNs to evaluate our algorithm are made by

1. Generate a random WFA 𝐴 of size 𝑛 ∈ {10, 20, 30} and alphabet 
Σ of size a ∈ {10,15,20,30,40,50}

2. Learn RNN 𝑅(𝐴) from 𝐴

3. Repeat Step 1-2 for each (𝑛, 𝑠) 5 times.

RNNs consist of two-stacked LSTM with 50 cells.

36



Experiments (Settings)

Methods

• Our algorithm with 𝑀 = 5

• Baseline algorithm (comes later)

Evaluation

• Time to extract (timeout=10,000 sec.)

• Accuracy
• If 𝑓𝑅 𝑤 − 𝑓𝐴 𝑅 (𝑤) < 0.05 then it is “correct”

• Calculated by randomly generating 1000 words

• Time to infer the words in 𝑅 𝐴 , 𝐴(𝑅 𝐴 )

37



Experiments (Baseline algorithm)

Pop w 
from 

queue

Add w’s next 
words to 
queue

Check if 

𝑓𝑅 𝑤
= 𝑓𝐴(𝑤)

If 𝑓𝑅 𝑤 ≠ 𝑓𝐴(𝑤), returns 𝑤 as a counterexample of the 
equivalence query.

𝑒 𝐴 = ቊ
Equivalent ; 𝑓𝑅 ≃ 𝑓𝐴
𝑤′′ ; 𝑓𝑅 𝑤′′ ≠ 𝑓𝐴(𝑤′′)

38



Experiments (Baseline algorithm)

Pop w 
from 

queue

Add w’s next 
words to 
queue

Check if 

𝑓𝑅 𝑤
= 𝑓𝐴(𝑤)

If 𝑓𝑅 𝑤 = 𝑓𝐴(𝑤) in a row (1000 times), returns ℎ as a counterexample of the 
equivalence query.

𝑒 𝐴 = ቊ
Equivalent ; 𝑓𝑅 ≃ 𝑓𝐴
𝑤′′ ; 𝑓𝑅 𝑤′′ ≠ 𝑓𝐴(𝑤′′)

(If this happens, queue is preserved for the next invoke of eq-query)
39



Result (Overall)

Difference of accuracy and extracting time between ours and baseline
40



Result (Overall)

Average (and Std) Ours(M=5) Baseline

Accuracy[%] 81.9% (std=18.8%) 74.1% (std=22.9%)

Time [s] 8805 (std=2220) 6277 (std=2966)

• The accuracy of “Ours (M=5)” exceeded those of “Baseline” 
in 59 tasks.

• The extracting time of “Ours (M=5)” longer than those of 
“Baseline” in 80 tasks.

• (90 tasks in total)

41



Result (WFA size 𝑛 = 10)

Difference of accuracy and extracting time between ours and baseline

42



Result (alphabet size 𝑎 = 10)

Difference of accuracy and extracting time between ours and baseline
43



Time to Infer a Value from a Word

• To test our motivation “Getting lighter (faster to infer) model 
of an RNN” is feasible.

• We compared the time to compute 𝑓𝑅(𝑤) and 𝑓𝐴 𝑅 (𝑤) for 
1,000 words whose lengths are ≤ 20.

Average

Time on RNN 𝑅 [s] 32.0 (std=2.0)

Time on WFA 𝐴(𝑅) [s] 0.028 (std=0.007)

44



Conclusion

• Proposed a method to extract the WFA 𝐴(𝑅) from a given 
RNN 𝑅 so that 𝑓𝐴(𝑅) ≃ 𝑓𝑅.

• Compared our method to the baseline algorithm in the 
accuracy and time 
• Our algorithm achieved higher accuracy and took more time than the 

baseline.

• The extracted WFA 𝐴 𝑅 took less time to infer values than 
the original RNN 𝑅

45



Future Work

• Adding experiment
• To reveal the overall tendency clearly
• To reveal what is happening when the accuracy is quite low

• Adding the idea of bisimulation to 𝑝

• Think of questionable parts in the loop?
• Refining 𝑝 at the different timing could be better?

• Modifying Balle and Mohri’s algorithm to generate 
probabilistic WFA

• Finding good hyper parameter 𝑀 experimentally or 
theoretically

46



“Checking if 𝑝 is OK” could be like this?

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛿𝑅 ℎ′ ・𝛿𝐴 ℎ′ = 𝑝(𝛿𝐴 ℎ′ )

・𝛿𝑅(ℎ) ・𝛿𝐴 ℎ = 𝛿𝑅 ℎ

config. space of 𝑅 (ℝ𝑑) config. space of 𝐴 (ℝ𝑛)

・𝛿𝑅 ℎ′ ・𝛿𝐴 ℎ′ = 𝑝(𝛿𝐴 ℎ′ )

・𝛿𝑅(ℎ) ・𝛿𝐴(ℎ)
𝑝

𝑝

𝑝

・𝑝(𝛿𝑅(ℎ))

↓This Violates 𝑝 𝛿𝑅 ℎ = 𝛿𝐴(ℎ)

𝑝

47



Def. of WFA

• WFA 𝐴 is probabilistic if
• 𝛼 ⋅ 𝟏 = 1

• For all 𝜎 ∈ Σ, the sums of rows are 1

• 0 ≤ 𝛽 ≤ 1 ■

For example:

• Σ = 0, 1 , 𝛼 = 0.8 0.2 , 𝛽 =
0.9
0.7

, 𝐴0 =
0 1
1 0

, 𝐴1 =
0.9 0.1
0.5 0.5

48


