Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces

<u>Takamasa Okudono</u>, Masaki Waga, Taro Sekiyama, Ichiro Hasuo SOKENDAI, the Graduate University for Advanced Studies, Japan /National Institute of Informatics, Japan LearnAut19, Vancouver, Canada 23 June 2019

RNN is a neural network equipped with a internal state

Drawing by François Deloche (CC BY-SA 4.0)

Input: RNN *R* whose output is in \mathbb{R} (defines $f_R: \Sigma^* \to \mathbb{R}$) Output: WFA A(R) (defines $f_{A(R)}: \Sigma^* \to \mathbb{R}$) s.t. $f_{A(R)} \simeq f_R$

Motivation

- Getting **lighter** (faster to infer) model of an RNN
 - Because the inference of RNNs are sometimes heavy
- Investigate the behavior of RNN R via the extracted WFA A(R)
 - WFA equips many operations and leads to model checking?
- In research line of RNN⇔DFA conversion as an acceptor
 - Ours is a quantitative extension

Contribution

- Proposed a method to apply Balle and Mohri's algorithm for the extraction
 - The key is checking if $R \simeq A$ by using regression
- Our method extracts +7% more accurate models than the baseline
- The extracted WFAs are about 1,000 times faster to infer than the target RNNs

Def. of RNN (Mathematically, in this work)

RNN R (of alphabet Σ and dimension d) consists of

- $\alpha \in \mathbb{R}^d$: Initial state
- $\beta : \mathbb{R}^d \to \mathbb{R}$: Final function
- $g_R: \mathbb{R}^d \times \Sigma \to \mathbb{R}^d$: Transition function
 - $g_R: \mathbb{R}^d \times \Sigma^* \to \mathbb{R}^d$ is induced recursively

 $f_R: \Sigma^* \to \mathbb{R} \text{ is induced by } f_R(w_1 \dots w_N) = \beta \circ g_R(\alpha, w_1 \dots w_N)$ The configuration for $w_1 \dots w_N$ is defined by $\delta_R(w_1 \dots w_N) = g_R(\alpha, w_1 \dots w_N)$

"internal state"

Def. of Weighted Finite Automaton (WFA)

WFA A (of size n and alphabet Σ) consists of

- $\alpha \in \mathbb{R}^n$: Initial vector
- $\beta \in \mathbb{R}^n$: Final vector
- $A_{\sigma} \in \mathbb{R}^{n \times n}$: Transition matrix ($\sigma \in \Sigma$)

WFA *A* is a formalism to define $f_A: \Sigma^* \to \mathbb{R}$

(c.f.) A DFA is a formalism to define $f: \Sigma^* \rightarrow 2$ WFA is an extension of DFA via the matrix representation.

Def. of WFA

• WFA A induces the function $f_A: \Sigma^* \to \mathbb{R}$ as $f_A(w_1 \dots w_N) = \alpha A_{w_1} \dots A_{w_N} \beta$ • The configuration ("internal state") of WFA A is $\delta_A(w_1 \dots w_N) = \alpha A_{w_1} \dots A_{w_N} \in \mathbb{R}^n$

For example:

$$\begin{split} \bullet \ \Sigma &= \{0, 1\}, \alpha = (0.8 \quad 0.2), \beta = \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix}, A_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \\ \bullet \ f_A(10) &= (0.8 \quad 0.2) \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix} = 0.736 \\ \bullet \ \delta_A(10) &= (0.8 \quad 0.2) \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (0.18 \quad 0.82) \\ \end{split}$$

RNN and WFA

RNN R (of alphabet Σ and dimension d) consists of

- $\alpha \in \mathbb{R}^d$: Initial state
- $\beta : \mathbb{R}^d \to \mathbb{R}$: Final function
- $g_R: \mathbb{R}^d \times \Sigma \to \mathbb{R}^d$: Transition function

WFA A (of alphabet Σ and size n) consists of

- $\alpha \in \mathbb{R}^n$: Initial vector
- $\beta \in \mathbb{R}^n$: Final vector
- $A_{\sigma} \in \mathbb{R}^{n \times n}$: Transition matrix ($\sigma \in \Sigma$)

Similar formalism! Can we approximate RNN by WFA?

Goal and Our Approach

Goal

Input: RNN *R* whose output is in \mathbb{R} (defines $f_R: \Sigma^* \to \mathbb{R}$) Output: WFA A(R) (defines $f_{A(R)}: \Sigma^* \to \mathbb{R}$) s.t. $f_{A(R)} \simeq f_R$

Approach: Use <u>Balle and Mohri's algorithm</u>

• The challenge is to give the procedure to check if $f_A \simeq f_R$ for a candidate WFA A

Balle and Mohri's Algorithm

An extension of Angluin's L* Algorithm <u>for WFA</u>

- Input:
 - Membership query procedure $m \colon \Sigma^* \to \mathbb{R}$
 - Equivalence query procedure e: $\{WFAs\} \rightarrow \{Equivalent\} \sqcup \Sigma$
- Output:
 - Minimal WFA A'
- Property: Given WFA A, if $m = f_A$ and $e(\tilde{A}) = \begin{cases} \text{Equivalent}; f_A = f_{\tilde{A}} \\ w; f_A(w) \neq f_{\tilde{A}}(w) \checkmark$

Called "Counterexample"

then, it terminates by calling m, e polynomial times and $f_A = f_{A'}$

Idea of Overall Architecture (Detailed)

Implement

- Membership query m to be the RNN's induced function f_R
- Equivalence query *e* to be $e(\tilde{A}) = \begin{cases} \text{Equivalent}; f_R \simeq f_{\tilde{A}} & & \text{Generally it} \\ w; f_R(w) \neq f_{\tilde{A}}(w) & & \text{Cannot be "="} \end{cases}$

Then we would be able to get a WFA \tilde{A} s.t. $f_R \simeq f_{\tilde{A}}$!

But how can we implement such an equivalence query e?

How do we know $f_R \simeq f_A$?

Both calculate their configurations ("internal states")

If there is a "good" relation between δ_R and δ_A , A and R would behave similarly

"Good" relation between δ_R and δ_A

• This work views $p: \mathbb{R}^d \to \mathbb{R}^n$ satisfying the following property as a good relation:

$$\forall w \in \Sigma^*. p(\delta_R(w)) \simeq \delta_A(w)$$

Equivalence Query by approximating p

Let's approximate *configuration translator* $p: \mathbb{R}^d \to \mathbb{R}^n$ such that $\forall w \in \Sigma^*$. $p(\delta_R(w)) \simeq \delta_A(w)$

by applying **regression** on sampled data.

The data is sampled by observing Σ^* in Breadth-First Search.

config. space of R (\mathbb{R}^d)

BFS-based Equivalence Query	BFS-based	Equiva	lence	Query	
-----------------------------	-----------	--------	-------	-------	--

Рор	W
fror	n
quel	le

Equivalence query proceeds based on Breadth-First Search

w': a word already visited in the BFS loopw: a word just popped

w': a word already visited in the BFS loopw: a word just popped

Finding Counterexample

Returning "Equivalent"

Returning "Equivalent"

Experiments (Target RNNs)

90 target RNNs to evaluate our algorithm are made by

- 1. Generate a random WFA A of size $n \in \{10, 20, 30\}$ and alphabet Σ of size $a \in \{10, 15, 20, 30, 40, 50\}$
- 2. Learn RNN R(A) from A
- 3. Repeat Step 1-2 for each (n, s) 5 times.

RNNs consist of two-stacked LSTM with 50 cells.

Experiments (Settings)

<u>Methods</u>

- Our algorithm with M = 5
- Baseline algorithm (comes later)

<u>Evaluation</u>

- Time to extract (timeout=10,000 sec.)
- Accuracy
 - If $|f_R(w) f_{A(R)}(w)| < 0.05$ then it is "correct"
 - Calculated by randomly generating 1000 words
- Time to infer the words in R(A), A(R(A))

Experiments (Baseline algorithm)

Experiments (Baseline algorithm)

Result (Overall)

Difference of accuracy and extracting time between ours and baseline

Result (Overall)

Average (and Std)	Ours(M=5)	Baseline
Accuracy[%]	81.9% (std=18.8%)	74.1% (std=22.9%)
Time [s]	8805 (std=2220)	6277 (std=2966)

- The accuracy of "Ours (M=5)" exceeded those of "Baseline" in 59 tasks.
- The extracting time of "Ours (M=5)" longer than those of "Baseline" in 80 tasks.
- (90 tasks in total)

Result (WFA size n = 10)

Difference of accuracy and extracting time between ours and baseline

Result (alphabet size a = 10)

Difference of accuracy and extracting time between ours and baseline

Time to Infer a Value from a Word

- To test our motivation "Getting **lighter** (faster to infer) model of an RNN" is feasible.
- We compared the time to compute $f_R(w)$ and $f_{A(R)}(w)$ for 1,000 words whose lengths are ≤ 20 .

	Average
Time on RNN <i>R</i> [s]	32.0 (std=2.0)
Time on WFA A(R) [s]	0.028 (std=0.007)

Conclusion

- Proposed a method to extract the WFA A(R) from a given RNN R so that $f_{A(R)} \simeq f_R$.
- Compared our method to the baseline algorithm in the accuracy and time
 - Our algorithm achieved higher accuracy and took more time than the baseline.
- The extracted WFA A(R) took less time to infer values than the original RNN R

Future Work

- Adding experiment
 - To reveal the overall tendency clearly
 - To reveal what is happening when the accuracy is quite low
- \bullet Adding the idea of bisimulation to p
- Think of questionable parts in the loop?
 - Refining p at the different timing could be better?
- Modifying Balle and Mohri's algorithm to generate probabilistic WFA
- Finding good hyper parameter *M* experimentally or theoretically

"Checking if p is OK" could be like this?

Def. of WFA

- WFA A is probabilistic if
 - $\alpha \cdot \mathbf{1} = 1$
 - For all $\sigma \in \Sigma$, the sums of rows are 1
 - $0 \le \beta \le 1$

For example:

•
$$\Sigma = \{0, 1\}, \alpha = (0.8 \quad 0.2), \beta = \begin{pmatrix} 0.9 \\ 0.7 \end{pmatrix}, A_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix}$$