Manifest Contracts for Datatypes
(Supplementary Material)

Taro Sekiyama Yuki Nishida Atsushi Igarashi

{t-sekiym,nishida,igarashi}@fos.kuis.kyoto-u.ac.jp

January 29, 2016

1 Definition

In this section, we formalize our calculus.

1.1 Syntax
The syntax including both programs and run-time terms is given as follows.
Types
T == Bool|x:T) » Ty |x:Ty xTy | {z:T|e} | T{e)
Constants, Values, Terms
¢ == true|false
v ou= o clfix f(eT)Th = e| (Ty < Ta)" | (v1,02) | Clev .
e = c|la|fix f(xT)Te=e|eres| (e1,e2) | el e2| Cler)es | matchewithCra; — e;

if e thenegelsees | (T1 < Tg)Z B4 ({IEIT|61},€2,U>Z | «{JE:T|€1},62»Z
Datatype definitions

T(x:T)=C; : Tii |7{(x:T)=C; || D; : Tii
ZADINS

S
b

Evaluation contexts

E == []|Eey|vi E|(E,e2)|(v1,E)[E1[E2[C(e1)E |
match E with ml | if E'thenegelsees |
({zT|e}, E,0) | ({zT | e}, B)

Typing contexts
r == g|lzT

Table 1 shows metafunctions to look up information on datatype definitions. Their definitions are omitted
since they are straightforward. A type specification, returned by TypSpecOf and written x:Ty » To = 7(z), of a
constructor C' consists of the datatype 7 that C' belongs to, the parameter x of 7 and the type T1 of x, and the
argument type Ty of C. In other words, 7 = TypNameOfs(C), z:Ty = ArgTypeOfs(7) and Ty = CirArgOfs(C).
We omit the type definition environment from these metafunctions for brevity if it is clear from the context.

We use the following familiar notations. We write FV (e) to denote the set of free variables in a term e, and
e{e'[x} capture avoiding substitution of e’ for x in e. We apply similar notations to values and types. We say that
a term/value/type is closed if it has no free variables, and identify a-equivalent ones. In addition, we introduce
several syntactic sugars. A function type 77 - T5 means x:T7 — T where the variable z does not occur free in T5.
We often omit type annotations of fix f(z:T7):Ts = ¢ and write Az:T.e to denote £fix f(x:T)= e if f does not occur

TypDefOfs,(7) The definition of 7.

ArgTypeOfs: (T) The parameter of 7 and its type.
CtrsOfs, (1) The set of constructors that belong to .
TypSpecOfs,(C) The type specification of C.
TypNameOfs;(C) The data type that C belongs to.
CtrArgOfs,(C) The argument type of C.

Table 1: Lookup functions.

in the term e. A let-expression letx = ej inea denotes (Ax:T.e3) e; where T is an appropriate type. A datatype 7 is
said to be monomorphic when the definition of 7 does not refer to a type argument variable, and then we write 7
to denote an application of 7 to a term. Given a binary relation R, the relation R* denotes the reflexive transitive
closure of R.

We define an auxiliary function unref, which maps a type to its underlying (non-refinement) type.

unref({z:T'|e}) = unref(T)
unref(T) T (if T is not a refinement type)

1.2 Semantics

The semantics of our calculus consists of two relations over closed terms: reduction (~) and evaluation (—). The
rules, shown in Figure 1, for these relations rest on a constructor choice function. A constructor choice function ¢
is a partial function that maps a term of the form (71{e;) < m2(e2))* C{e)v to a constructor C;. We fix T’ and &
through this material and usually omit from relations and judgments.

1.3 Type System

A type system of our calculus consists of three judgments: context well-formedness + I', type well-formedness
I' - T, and typing I' + e : T. The derivation rules for these judgments are shown in Figure 2. The typing rule
(T_ConNv) mentions type equivalence relation denoted by =, which is defined as follows.

Definition 1 (Type Equivalence).

1. The common subezxpression reduction relation = over types is defined as follows: Ty = T iff there exist some
T, x, e; and ey such that Ty = T {e1/z} and Ty = T {ex/z} and e; —> es.

2. The type equivalence = is the symmetric transitive closure of =.
Next, we define well-formedness of type definition environments and constructor choice functions.

Definition 2 (Well-Formed Type Definition Environments).
1. Lets = 7{x:T)=C, : Tiie{l’m’n}. A type definition ¢ is well formed under a type definition environment X
if it satisfies the followings: (a) 0<n. (b) ;@ + T holds. (¢) For any i € {1,..,n}, X, ¢;a:T + T; holds.

—3¢e{l,...;n L A .. .
2. Letc =m{x:T)=C; || D; : T; { }. A type definition ¢ is well formed under a type definition environment
Y if it satisfies the followings: (a) 0<n. (b) X;@+ T holds. (c) For any i € {1,....,n}, ¥,¢;x:T + T; holds. (d)

There exists some datatype 7' in ¥ such that constructors Dize{ " belong to it. (¢) For any i € {1,...,n},

T; is compatible with the argument type of D; under ¥, that is, ¥2,¢ + T; || CtrArgOfs,(D;) holds.

3. A type definition environment X is well formed if for any X1, ¢ and Yo, ¥ = 31,6, X2 implies that ¢ is well
formed under ¥1. We write = X to denote that 3 is well formed.

Reduction Rules

(fix f(xTh)Te=e)v ~ e{v/z,fix f(x:T1)Te=¢/f} (R-BETA
(v1,v2).1 ~ vy (R-PrOJ1) if truethene; elseey ~ e (R_IFTRUE
(v1,v2).2 ~ vy (R_PrOJ2) if falsethen e elseeg ~ €5 (R_IFFALSE

match C; (e)v with mz ~ e;{vfz;} (where C; € az) (R_MATCH
(Bool <= Bool)fv ~ w (R_BASE

(:Ty = Thp <= 2Ty » Too)lv ~ (AzTyilety = (Toy <= Ti) zin (Thy < Too {y/2}) (vy))
(where y is fresh) (R-FunN
(2:Tyy x Tho <= 2:Toy x Tog)t (v1,v2) ~ leta = (Th1 < Toy) vrin (z, (Tio < Tog {vi/z})fvs) (R_PROD

— —

(T = {zThle})v ~ (Ty =T (R_.FORGET
({zTy e} = To)v ~ (({oTy e}, (Ty < Tr) v)’ (R-PRECHECK
(where T3 is not a refinement type

(ti{e1) <= molea)) Cole)v ~ Clel)((T] {e1)z1} < Ty {ea/zs}) v) (R_-DATATYPE
(where 71 # 75 or 71 is not monomorphic, and ({71 {e1) < m(e2))’ Ca{e)v) = C; and
ArgTypeOf(1;) = x;:T; and CtrArgOf(C;) = T} for i € {1,2})
(remfv ~ w (R_DATATYPEMONO)
(ti{e1) = mofea))v ~ £ (R_DATATYPEFAIL)
(where 71 # T3 or 71 is not monomorphic, and §({7;{e1) < m2(e2))’ v) is undefined)
({zT e}, v) ~ ({zT]e} e {v/a},v)f (R-CHECK)
({z:T|e},true,v)! ~ v (R_OK) ({z:T | e}, false, v)* ~ ¢ (R_FAIL)
Evaluation Rules
fa e E_RED _Bll E_BLAME
Elei] — Elea] Elf] — e

Figure 1: Semantics.

Definition 3 (Compatible Constructors). The compatibility relation || over constructors is the least equivalence
relation satisfying the following rule.
TypNameOf(C;) = T _
T
TypDefOf (7) = typer (y:T) = C; || D; : T}
Ci |l D;

The function CompatCtrsOf, which maps a datatype T and a constructor C' to the set of compatible constructors of
T, is defined as follows:

CompatCirsOf(1,C) ={D | C || D and TypNameOf(D) = 7}.
Definition 4 (Term Equivalence).

1. The common subexpression reduction relation = over terms is defined as follows: e = es iff there exist some
e, x, €] and e} such that e; = e{e}/x} and ex = e{es/x} and €] — €.

2. The term equivalence = is the symmetric transitive closure of =.

Definition 5 (Well-Formed Constructor Choice Functions). A constructor choice function § is well formed iff

1. if O = 6({m1{e1) <= mo(e2))! Cole)v), then
Cy € CompatCtrsOf(71,C3); and

2. for any ey, ea and C, if e; = es and §(ey) = C, then §(eq) = C.

Finally, we use notation =° to denote i-times composition of =.

Typing Context Well-Formedness Rules

I '+ T

WC_EXTENDVAR
DT

—— WC_EmMPTY
%)

Type Well-Formedness Rules

T I+ T1 F,:L’ZTl = T2 I+ T1 F,:L’:Tl = T2

WT_BASE WT_FuN WT_PrROD

I' + Bool 'r-a:1Ty -1 '+ 2Ty xTh

r : : = :
T T,2:T + e : Bool WT REFINE ArgTypeOf(1) = T T r e
I+ {xT|e} '+ 7(e)

Typing Rules

F T ce{true, false} FD T el FI g T

I + ¢ : Bool F'ra2:T F'e-qf¢:T

F7f:(a;‘:T1 —>T2),332T1 =e: TQ f ¢ FV (TQ) T_ABS I+ T1 I+ T2 T1 || TQ
I+ fix f(eT) Ty =€ : Ty > Ty N I (T =) Th-T,

F,,T:Tl [T2 I+ [T1 I+ €9 T2 {61/1’}

T WT_DATATYPE

T_CONST ———— T_VAR ————— T_BLAME

T_CAsT

I'-e Ty -1 F!—eQ:TlTAPP

I+ €1 €9 : T2 {62/1‘} I+ (61,62) : x:Tl XTQ
I're:xTyxTy T Proil I're:xdyxTs
Frel:Ty I+ e2:Th{el/x}

TypSpecOf (C) = x:Ty » Ty = 7{x)

T_ProOJ2

I'-e; :Bool I'Feg:T TI'e3:T F'rte Ty Trex:To{er/z} T+ 7(er)

T_Ir

T_PAIR

T_CTR

I' + ifeythenegelsees : T I' = Cer)ez = 7{e1)

Prey:7le) T+T CtrsOf(r) = aie{l’m’n} ArgTypeOf (1) = y:T'
for all ¢, CtrArgOf(C;) =Ty for all i, T,z T {efy} - e; = T

I - match €0 with Cz Ty —> €5
=T @I—{x:T|elg gruv:T
O~ ey : Bool e vé/x} —" € 1 A CHECK A {a:.T|el}L] T oey:
I ({z:T|ex}, e2,0)" : {w:T [er} e (({z:T|ex}, e2) : {w:T']er}
FT gre:Ty Th =T, Q'_T2T,CONV FT @rov:{xT|e}
I'e: Ty 'rov:T
T gr{xT|e} @rv:T

e{v/z} —* true

I'+ov:{zT|e}

T_EXACT

T, || T| Type Compatibility
TypDefOf (1) = (typer: (a:T) = C; [Dy : T)

T || Ts for all i, TypNameOf(D;) = 12

T_MATCH

{J?ITl ‘61} || T2 (CiREFINEL) 7-1<€1) || 7—2<€2)

Figure 2: Type system.

2 Properties of Type/Term Equivalence

Lemma 1 (Type and Term Equivalences are Equivalences).

(1) The relation = over types is a equivalence relation:

T
T_WCHECK

T_FORGET

(C_DATATYPE)

e T =T foranyT.
o I[fT) =15 and Ty = T3, then T = Ts.
o If Ty =15, thenTy = T7.

(2) The relation = over terms is a equivalence relation:

e ¢ = ¢ for any e.
e Ife; = eg and ey = e3, then e = e3.

o Ifel = eq, then ey = e7.

Proof. Since = is the transitive and symmetric closure of =, transitivity and symmetry hold obviously.
We show reflexivity of = over types. Let T' be a type, and = be a variable such that « ¢ FV (7). Suppose that
e1 — ey for some e; and ey (e.g., e; = Aa:Bool.x and ey = true). Then, we have T {e1/x} = T {es/x}. Since

T{ei/x} = T{ea/x} = T, we finish.

Reflexivity of = over terms can be shown similarly. Let e be a term, and = be a variable such that x ¢ FV (e).
Suppose that e; — es for some e; and es (e.g., e; = Ax:Bool.z and eg = true). Then, we have e {e1/z} = e{ea/x}.

Since e{e1/z} = e {ea/x} = e, we finish.
Lemma 2. Ife; — es, then e; = es.
Proof. Obvious because z {e1/z} = z{ea/z}.
Lemma 3.
(1) If ey = eq, then T {e1/x} = T {ea/x}.
(2) If e1 =% es, then T {e1/x} = T {es/x}.
(3) If ex = ez, then T {e1/x} = T {ea/zx}.
Proof.

1. Since e; = eg, there exist e, y, €] and e} such that e;

that z is a fresh variable. Here, we have

o T{erfa} = T{efeify}/z} = T{e{z/y}{e1/z}/x}
o T{e{zly}[x} {1z} = T{e{z[y}/x} {ez/z}, and

O

e{el/y} and ex = e{es/y} and €] — €. Suppose

T{e{zly}/x}{et/z},

o T{e{zly}[x}{es/z} = T{ef{z/y} {esr/z}/x} = T{e{es/y}[a} = T {es/w}.

Thus, T {e1/x} = T {es/x}.

2. By mathematical induction on the number of steps of e; =% es.

Case 0: Obvious because e; = es.

Case i+ 1: We are given e; = e3 =" e, for some e3. By the IH and the first case, we finish.

3. By induction on e; = es.

Case e; = ey: By the first case.

Case transitivity and symmetry: By the TH(s).
Lemma 4.
(1) If Ty = T, then Ty {e/x} = Ts{e/x}
(2) If Ty =* Ty, then Ty {e/z} =* Ty {e/x}
(8) If Ty = Ty, then Ty {e/z} = Ty {e/x}.
Proof.

1. By definition, there exist T, y, e; and ey such that T} = T'{e;/y} and Ty = T {ea/y} and e; —> ez. Suppose
that z is a fresh variable. Since the evaluation relation is defined over closed terms, it is found that e; and es
are closed. Here, we have

o Ti{e/x} = T{er/y}{e/z} = T{z/y}{ei/z}{e[z} = T{z/y}{e/x}{e:/z},
o T'{z/y}{e/z}{er/z} = T {z/y}{e/x}{e2/z}, and
o T'{z[y}{e/z}{ea/z} = T{z[y}{ez/z}{e/a} = T{ea/y}{e/x} = To{e/z}.
Thus, T1 {e/z} = Ty {e/z}.
2. By mathematical induction on the number of steps of T} =" T5.

Case 0: Obvious because T1 = T5.

Case i+ 1: We are given T} = T3 ="' T, for some T3. By the IH and the first case, we finish.
3. By induction on 77 = T5.

Case T} = Ty: By the first case.
Case transitivity and symmetry: Obvious by the TH(s). O

Lemma 5.
(1) If ey = ea, then e{e1/a} = e{eafa}.
(2) If ey =* e, then e{er/z} =* e{efa}.
(3) If ey = s, then ef{e1/z} = e{esfz}
Proof.

1. Since e; = e3, there exists some €', y, €] and e}, such that e; = e’ {€]/y} and e3 = €' {€}/y} and] — €.
Suppose that z is a fresh variable. Here, we have

o ef{ei/z} =e{e'{erfy}/z} = e{e'{z/y} {e1/z}/x} = e{e'{z/y}/x} {e1/z},
o e{e'{z/y}/x}{e1/z} = e{e'{z/y}/z}{e)/z}, and
o efe'{z/y}[x}{es/2} = e{e'{z[y} {er/2}/x} = e{e’{er/y}/x} = e{es/a}.
Thus, e{ei/z} = e{ez/x}.
2. By mathematical induction on the number of steps of e; =" es.

Case 0: Obvious because e; = es.

Case i+ 1: We are given e; = e3 =" e, for some e3. By the IH and the first case, we finish.
3. By induction on e; = es.

Case e; = ey: By the first case.

Case transitivity and symmetry: By the TH(s). O

3 Cotermination

Lemma 6 (Determinism). If e — e and e — eq, then ey = es.

Proof. Straightforward. O
Lemma 7 (Value Construction Closed Substitution). For any v, x, and e, v{e/z} is a value.

Proof. By structural induction on v.

Case v = ¢, fix f(z:T)=e or (T} < T3)*: Obvious.

Case v = (v1,v2) or C{e')v": By the IHs. O
Lemma 8. If e; is not a value and ey {e1/z} is, then ey is a value.

Proof. By structural induction on es.

Case es = y: If © = y, then ey {e1/x} = ey, which leads to a contradiction from the assumptions that e; is not
a value and ey {e1/x} is. Otherwise, if # y, then there is a contradiction because es {e1/x} is a value but
ez {e1/x} = y is not.

Case ey = v: By Lemma 7.

Case ey = €] €5, e.i, matchejwith C; y; — egl, if e then e, else ey, 1, ({y:T| e} }, eh,v")E, or ({y:T|e}},eh))’: Contra-
dictory.

Case e = (e1,e2) or C{eq)ve: By the TH(s).

O

Lemma 9. Let e; and ey are closed terms such that ey = ey, If (viva){e1/x} — e, then (viv2){ea/x} —
e’ {es/x} for some €' such that e = €' {e1/x}.

Proof. By Lemma 7, vy {e1/z}, v1{ez/x}, va{e1/z} and vy {ea/x} are values. We proceed by case analysis on
v1. Note that vy takes the form of either lambda abstraction or cast since (vyvg){e1/x} takes a step and that if
(v1v9) {e1/x} is closed, then so is (v v2) {ea/x}. In the following, let i € {1,2}.

Case vy = fix f(y:T) = e': Without loss of generality, we can suppose that y and f are fresh. By (E_RED)/(R_BETA),
((fix f(yT) = €') va) {eifx} — €' {ei/z} {va {eifa}/y, v1{ei/2}/f}.
Because e’ {e;/x} {va {ei/x}]y,v1 {e;/x}]f} = € {vafy,v1/f} {ei/x}, we finish.
Case v; = (Bool < Bool)’: Obvious because ({Bool < Bool)! v3) {e;/z} —> vy {e;/z} by (E_RED)/(R_BASE).

Case vy = (yT11 — Tio < yToy — Tyo)’: Without loss of generality, we can suppose that y is fresh. By
(E_RED)/(R_FUN),

(y:Ti1 > T2 < y:Ton — Taz)' v2) {eifa} —
Ay {eifa}. (N zTo {eifz} (Tia {ei/a} < Tor {eifx} {z/y})" (v2 {eifx} 2)) ((Tor {eifa} < Ti1 {ei/x}) y)
= ()\ y:Tn.()\ Z:T21.<T12 <= Thy {Z/y})e (’1)2 Z)) ((T21 < TH)E y)) {61/{11}

for some fresh variable z. Thus, we finish.

Case vy = (yT11 x Tho < y:Toy x T22>Z: Without loss of generality, we can suppose that y is fresh. It is found that
vy = (v}, v}) for some v} and v} because (1) ({(y:T11 x Tho < y:To1 x Tao) v) {e1/2} takes a step, (2) the only
rule applicable to the application term is (E_RED)/(R-PROD), and (3) vz is a value (thus not a variable). By
(E_RED)/(R_PROD),

(y:T11 x Tha < yTor x Taa)* (v],05)) {eifx} —
Ay T {eifz}.(y, (Tiz {eifz} < Toz {eifx} {v] {ei/x}[y}) v {ei/x})) ((Thr {ei/x} < Tor {eifx}) v} {ei/x})
= (A g1y, (Thz < Tog {0 Jy}) v5)) ((Th1 <= To1)* 01)) {es/a}.

Case v, = (T} < {yT>|e})": By (E_RED)/(R_FORGET),
(1 = {yTale}) v2) {esfa} — (Ti{eifa} < To{eifa}) va {eifa} = ((T1 < To) v2) {ei/}.
Case vy = ({yT1|e} < Tp)¢ where Ty is not a refinement type: By (E_RED)/(R_PRECHECK),

(({yTile} = o) vo) {es/zy — ({yThile} {ei/z}, (Ti{ei/x} < To{ei/z}) va{ei/x})
= (({yTile} (Th < To) va) {ei/x}.

Case vy = (1i(e]) < m2(ey))*: There are three reduction rules by which (vy v2) {e1/x} takes a step.

Case (E_RED)/(R-DATATYPE): We find that vy = Ca(e”)v"” for some Cs, " and v” since vq is a value (thus
not a variable). We are given

({rief) <= ma(es)) Cafe”)o") {er/a} —
Culef {ex/x}) (T {ef {ex/x}/yn} <= T3 {e5 {e1/w}/y2}) 0" {er/a})
= (Cle!)(TY {ef fyn} = T {es [y21) v")) {ea [}

where 5(({71(e}) < Ta(ef))t Cale” ") {e1/2}) = Oy and, for j € {1,2}, ArgTypeOf(7;) = y;:T; and
CtrArgOf(Cj) = T;. Note that only y; and y» can occur free in 77 and T3, respectively, because of well-
formedness of the type definition environment. Since e; = es, we have (vive) {e1/x} = (vive2) {e2/x}

by Lemma 5 (3). From well-formedness of the constructor choice function, we have §((vyv2) {ez2/z}) =
0((v1v2){e1/x}) = C1. Thus, by (E_RED)/(R_DATATYPE),

({rie)) <= ma(es))* Cafe)o") {ez/a} —
Culef {ea/a}) (T {ef {ez/x}[yn} <= T3 {ef {ez/w}/y2})" 0" {ea/a})
= (CUe)(Ti {ef /yn} = T3{e5 /y2}) v")) {e2/x}.

Case (E_RED)/(R_DATATYPEMONO): By (E_RED)/(R_DATATYPEMONO), ({11 < 7o) vo) {e;/2} —> vy {ei/x}.

Case (E_RED)/(R_DATATYPEFAIL): We are given ({1(e}) < 7o(e¥))fva) {e1/z} — fi£ and 6(({r1{e}) <=
(e)Y va) {e1/x}) is undefined. Since e; = ea, we have (v v2) {e1/z} = (v1v2) {ea/x} by Lemma 5 (3).
If 6((vy v2) {ea/x}) is defined, then so is §((vy v2) {e1/z}) from well-formedness of the constructor choice
function but it contradicts. Thus, §((vy v2) {ea/x}) is also undefined and so, by (E_RED)/(R_DATATYPEFAIL),

((1ulef) = 2(es)) v2) {e2/z} — fIL. 0
Lemma 10. Let e; and eq be terms such that e — es.
(1) If (vive) {e1/z} — e, then (v1v2){ea/x} —> €' {ea/x} for some €' such that e = €' {e1/z}.
(2) If (v1ve) {eafx} — e, then (viv2){ei/x} —> €' {e1/x} for some e’ such that e = e’ {ea/x}.

Proof. Since the evaluation relation is defined over closed terms, e; and es are closed. Thus, we finish by Lemma 9.

O

Lemma 11. Let ey and eq are closed terms, and i € {1,2}. If (v.i){e1/z} — e, then (v.i){ea/x} — €' {ez/x}
for some €’ such that e = e’ {e1/x}.

Proof. By Lemma 7, v{e1/x} and v {es/x} are values. We find that v takes the form of pair since (v.7) {e1/x} takes
a step. Note that if (v.i) {e1/x} is closed, then so is (v.i) {ea/x}.
We are given v = (v1,v2) for some v; and ve. By (E_RED)/(R_-PRoJi), for j € {1,2},

((v1,v2).0){e; [z} — vife;/z}.
Thus, we finish. O

Lemma 12. Let e; and es be terms such that e — es, and i € {1,2}.

(1) If (v.i){e1/z} — e, then (v.i){ea/x} —> €' {ea/x} for some e’ such that e = e’ {e)[x}.

(2) If (v.i) {eafx} —> e, then (v.i){e1/x} — €' {e1/x} for some e such that e = e’ {ea/x}.

Proof. Since the evaluation relation is defined over closed terms, e; and e, are closed. Thus, we finish by Lemma 11.
O

Lemma 13. Let e; and ey are closed terms. If (if vtheneelseel) {e1/x} — e, then (if vthene] elsee)) {ex/z} —
e’ {ea/x} for some e’ such that e = €' {e1/x}.

Proof. By Lemma 7, v {e1/x} and v {ez/x} are values. Note that v takes the form of Boolean value since (if vthen e} elseef) {e1/z}
takes a step and that if (if vthene] elseel) {e1/x} is closed, then so is (if vthene] elseel) {e2/x}. By case analysis
on v. In the following, let ¢ € {1,2}.

Case v = true: By (E_RED)/(R_IFTRUE),

(if truethene] elsees) {e;/x} — €] {e;/z}.

Case v = false: By (E_RED)/(R_IFFALSE),

(if falsethen e elsee}) {e;/x} — €5 {e;/x}. O

Lemma 14. Let e; and ey be terms such that e; — es.

(1) If (ifvthene]elseel) {e1/x} — e, then (ifvthene)elsee)) {ea/r} — €' {ea/x} for some €' such that e =

e’ {e1/x}.

2) If (ifvthenefelseel) {ea/x} — e, then (ifvthenejelseel) {ei/x} — €' {ei/z} for some e’ such that e =
1 2 1 2
e {esfx}.

Proof. Since the evaluation relation is defined over closed terms, e; and e, are closed. Thus, we finish by Lemma 13.
O

Lemma 15. Let ey and ey are closed terms. If (matchvwith C; y; — e;i) {e1/x} — e, then (matchvwithC; y; — e;i) {eaf2x} —
e’ {eafx} for some e’ such that e = €' {e1/x}.

Proof. Without loss of generality, we can suppose that each y; is fresh. By Lemma 7, v{ei/z} and v{ez/z} are
values. We find that v takes the form of constructor application since (match v with ml) {e1/x} takes a step.
Note that if (match v with mz) {e1/x} is closed, then so is (match v with ml) {ea/x}.

We are given v = C;(e’)v’ for some C; € ai, e/ and v'. By (E_RED)/(R_-MATCH), for k € {1,2},

(match Cj(e’)v" with C; y; — e;i) {ex/z} — el {ex/z}{v'{ex/x}/y;}
= e {v'/y;} {ex/x}.
Thus, we finish. O

Lemma 16. Let e; and e be terms such that e — es.

(1) If (matchvwithC;y; — e;i) {e1/x} —> e, then (matchvwithC;y; > e;i) {eafx} — €' {ea/x} for some €
such that e = e’ {e1/x}.

(2) If (matchvwithC;y; - e’ii) {ea/z} —> e, then (matchvwithC;y; — e’ii) {er/x} — €' {ei/x} for some €'
such that e = €' {ex/x}.

Proof. Since the evaluation relation is defined over closed terms, e; and es are closed. Thus, we finish by Lemma 15.
O

Lemma 17. Let ey and ey are closed terms. If {({y:T|e}}, o) {e1/x} —> e, then
({y:T| e}y, v {ea)x} —> €' {ea]x} for some €' such that e = €' {e;/x}.

Proof. Without loss of generality, we can suppose that y is fresh. By Lemma 7, v{ej/z} and v{ez/x} are
values. Note that if ({y:T|e}},v)* {e1/x} is closed, then so is {({y:T|e}},v)’ {ea/x}. Letting i € {1,2}, by
(E_.RED)/(R-CHECK),

({yTler}, o) {eifey — ({yTler}{eifa},ei{ei/a} {v{ei/a}y},v{eifa})*
= ({yTle} el {v/y} v) {eifa}.
Thus, we finish. O
Lemma 18. Let e; and ey be terms such that ey — es.
(1) If ({yT et} o) {erfa} — e, then ({yTler}, v) {ea/a} —> €' {ez/a} for some ¢’ such that e = ¢’ {e1/x}.
(2) If ({yTler}, o) {eafx} — e, then ({yT]er}, o) {er/a} — €' {e1/a} for some e’ such that e = €' {ez/x}.

Proof. Since the evaluation relation is defined over closed terms, e; and e; are closed. Thus, we finish by Lemma 17.
O

Lemma 19. Let e, and ey are closed terms. If ({y:T|e}},v1,v0) {e1/x} — e, then
{yT e} Y, v1,v0) {ea)x} — € {ex]x} for some e’ such that e = €' {e1/z}.

Proof. By Lemma 7, vy {e1/x} and vy {e2/z} are values. Note that v; takes the form of Boolean value since
({y:T| €)Y, v1,v2) {e1/x} takes a step and that if ({y:T'| e} },v1,v2)" {e1/x} is closed, then so is ({y:T| €} }, vy, v2)¢ {ea/z}.
By case analysis on v;. In the following, let ¢ € {1,2}.

Case vy = true: By (E_RED)/(R_OK), ({y:T| €} },true,va)* {e;/x} —> vo {es/x}.
Case vy = false: By (E_RED)/(R_FaIL), ({y:T|e}},false,v2)* {e;/x} — {iL. O

Lemma 20. Let e; and ey be terms such that e; — es.

(1) If {y:T|e}},v,v2) {er]x} —> e, then ({y:T|e}},vi,v2) {eafx} —> € {ea/x} for some €' such that e
e {e1/x}.

(2) If ({y:T|e)},v1,v2) {eafx} — e, then ({y:T|e}},v1,v2)" {e1/x} —> e {e1/x} for some €' such that e
e’ {ea/x}.

Proof. Since the evaluation relation is defined over closed terms, e; and ey are closed. Thus, we finish by Lemma 19.
O

Lemma 21.
(1) If ey —™ ey is derived by (E_RED), then E[e;] —" E[es] is derived by applying only (E_RED).
(2) If e —* (¢, then E[e] —* L.
Proof.
1. By induction on the number of evaluation steps of e; —" es.

Case 0: Obvious.
Case i+ 1: We are given e; —> e3 —" ey for some e3. Since e; — e3 is derived by (E_RED), there exist
some E’, e} and e} such that €] ~ e}. Since E[E’'[e]]] — E[E’'[e5]] by (E_RED), we finish by the TH.

2. By induction on the number of evaluation steps of e; —* {|£.

Case 0: Since e = ¢, we finish by (E_BLAME) if E # [].

Case n+1: We are given e — ¢/ —" ()£ for some €’. If the evaluation rule applied to e is (E_RED), then
e = E'[e1] and ¢’ = E'[e2] for some E’, e; and ey such that e; ~ e3. Since E[E'[e1]] — E[E'[e2]]
by (E_RED), we finish by the TH. Otherwise, if the evaluation rule applied to e is (E_.BLAME), then
e = E'[{¢] for some E’, and ¢’ = {{. By (E_BLAME), E[E'[{]] — 1¢.

10

O
Lemma 22. Suppose that e; — eo. If e{e1/x} = E1[f}{], then there exists some Ey such that e {eafx} = Ea[({].
Proof. By structural induction on e
Case e = z: It is found that e; = e{e1/z} = E1[¢]. Since E1[i¢{] — (¢ by (E_BLAME), e3 = .

Case e = v: Contradictory.

Case e = f}¢: If ¢/ = ¢, then obvious. Otherwise, if ¢’ # ¢, then contradictory since e {ej/x} = E1[fi{].

Case e = ¢ e}: Since e{e1/x} = E1[f{¢], there are two cases we have to consider.

Case Ey = Ejehy{e1/x}: Since €] {e1/x} = E{[f{], there exists some F} such that e} {ez/z} = E5[¢], by the
IH. Since EY e {ea/x} is an evaluation context and e{ez/x} = Ej[f1€] e} {e2/x}, we finish.

Case E; = ¢ {e1/z} E] where € {e1/z} is a value: Since ej {e1/x} = E{[{|{], there exists some E) such that
eh{eafx} = E}[f4], by the IH. Since €] {ei/x} is a value and e; is not a value from e; — eg, it is

found by Lemmas 8 and 7 that €] {ez/z} is a value. Thus, since e} {e2/z} Ef is an evaluation context
and e{ex/x} = e} {ea/x} F5[N1¢], we finish.

Case e = (e],e}) which is a not value: Since e{ej/x} = E1[fi{], there are two cases we have to consider.

Case Ey = (Ef,e5{e1/x}): Since €] {e1/x} = Ei[¢], there exists some Ej such that e {ea/z} = Ei[fi¢], by
the TH. Since (Ef,eh {ea/x}) is an evaluation context and e {ea/x} = (F5[11¢], €5 {ea/x}), we finish.

Case E; = (e} {e1/x}, E}) where e] {e1/x} is a value: Since e} {e1/z} = E{[f}{], there exists some E} such that
eh{ea/x} = EL[f1(], by the IH. Since e} {e1/x} is a value, it is found by Lemmas 8 and 7 that e} {ea/x} is
a value. Thus, since (e} {ea/2}, FY) is an evaluation context and e {ez/z} = e} {ea/x} E5[11¢], we finish.

Case e = €'.i (i € {1,2}): Since e{ej/x} = E1[f}{], there exists some E] such that e’ {e;/z} = E{[{¢]. By the IH,
there exists some E4 such that e’ {ea/x} = E{[f1{]. Since e{ea/x} = E5[1¢].7, we finish.

Case e = C(e})eh which is a not value: Since e {ej/z} = E1[f}{], there exists some F1 such that e} {e;/x} = Ei[{{].
By the IH, there exists some EY, such that e}, {ea/z} = E,[fi£]. Since C(e} {e2/x})F} is an evaluation context
and e{ex/z} = C(e] {e2/x})E5[11¢], we finish.

Case e = matchejwithC; y; — e;i: Since e{e1/z} = E1[¢], there exists some E{ such that e {e1/z} = E{[f¢]. By
the IH, there exists some E} such that e|{ez/x} = E}[i¢]. Since match EjwithC;y; — egl is an evaluation
context and e {es/x} = match E{[f¢]withC; y; — e;z, we finish.

Case e = ife] thenejelsees: Since e{ej/x} = E1[fif], there exists some E] such that e} {e1/z} = E{[f}¢{]. By the
TH, there exists some E} such that e {ea/2x} = E5[1£]. Since if E} thene), {ea/x} elseel {ea/x} is an evaluation
context and e {ea/x} = if E5[(¢]thenel {ea/x}else el {ea/x}, we finish.

Case e = (({y:T|e}},eb): Since e{e;/z} = E1[¢], there exists some E} such that e} {ei/z} = E{[f¢]. By the
IH, there exists some Ej such that e} {ea/x} = E[f1¢]. Since ({y:T|e}} {ez/x}, E5)¢ is an evaluation context
and e {ez/z} = (({y:T |e}} {ez/w}, E5[10])", we finish.

Case e = ({y:T|e}},eh,v")e: Since e{ei/z} = Ei[f1f], there exists some E} such that e} {ei/x} = E;[fi{]. By the
TH, there exists some EY such that e} {es/2z} = E4[f1¢]. Since ({y:T'|e}} {ea/x}, B, v {ea/2})’ is an evaluation
context by Lemma 7 and e {ea/2} = ({y:T|e}} {ea/x}, E5[10],v" {ea/x})¢, we finish. O

Lemma 23 (Cotermination: Reduction on the Left). Let e; and ea be terms such that ey, — eqa. Ife{ei/z} — €,
then e{ex/x} —* €" {eafx} for some €” such that ¢ = e"{e1/x}. Moreover, if e{e1/x} — €' is derived by
(E_RED), then the evaluation e{ez/x} —* €"{ea/x} is derived by applying only (E_RED).

11

Proof. By structural induction on e. If e{e;/x} —> €’ is derived by (E_BLAME), then there exist some E; and ¢
such that e{ei/z} = E1[(¢] and €’ = f{¢. By Lemma 22, there exists some E5 such that e{ey/z} = Es[f{¢]. Thus,
by (E_BLAME), e {es/z} — fiL.

In what follows, we suppose that e{e;/x} — ¢’ is derived by (E_RED). We proceed by case analysis on e.
Note that e; is not a value from e; — es.

Case e = y: If # = y, then we have e{e1/x} = e; and e{ea/x} = ep. We finish by letting e” = es because
e{ei/z} =ey —> ey and e {e1/x} = es{eaf/x} = es. Note that e, is closed since the evaluation relation is
defined over closed terms.

Otherwise, if « # y, then there is a contradiction because the assumption says that e {e;/z} = y takes a step.

Case e = fi¢: Contradictory.
Case e = v: Contradictory by Lemma 7 since e {e;/x} takes a step.
Case e = €] eh: Since e{e;/x} takes a step, there are three cases we have to consider.

Case ¢ {e1/x} — €” by (E_RED): By the IH, there exists some e} such that €] {e2/r} —* €} {e2/x} and
e = e {e1/x}. Moreover, the evaluation e} {ea/z} —* e {ez2/z} is derived by applying only (E_RED).
Thus, by Lemma 21 (1), (e e5){e1/z} — (e ey) {e1/z} and (€] e}) {ea/x} —* (e €) {ea/x}.

Case €] {e1/x} is a value and e} {e;/x} — €” by (E_RED): By Lemmas 8 and 7, €} {ea/z} is a value. By
the TH, there exists some e} such that e} {ea/x} —* ef{ea/x} and e’ = e} {ei1/x}. Moreover, the
evaluation e} {eafz} —* e {ea/z} is derived by applying only (E_RED). Thus, by Lemma 21 (1),
(erex){er/z} — (e eq) {er/x} and (€] e3) {ez2fx} —" (e} €3) {ea/x}.

Case e} {e1/z} and e} {e1/x} are values: Since e] and ef are values by Lemma 8, we finish by Lemma 10 (1).

Case e = (€),¢e}): Similarly to the case for application term. Since e{e;/x} takes a step, there are two cases we
have to consider.

Case ¢ {e1/x} — €” by (E_RED): By the IH, there exists some e} such that €] {e2/x} —* €} {e2/x} and
e’ = e {e1/x}. Moreover, the evaluation e} {ea/z} —* el {e2/x} is derived by applying only (E_RED).
Thus, by Lemma 21 (1), (e7,e5) {e1/z} — (ef,e){e1/x} and (e],eh) {ea/x} —* (e, €h) {ea/x}.

Case ¢ {e1/x} is a value and e} {e;/r} — €’ by (E_RED): By Lemmas 8 and 7, €] {ea/z} is a value. By
the TH, there exists some e} such that e {ea/z} —* e {es/x} and e’ = el {e;/x}. Moreover, the
evaluation ef {ea/x} —* el {es/z} is derived by applying only (E_RED). Thus, by Lemma 21 (1),

(eh,ez) {erfa} — (e,ez) {er/x} and (€, e5) {ea/w} —" (€], €5) {ea/a}.

Case e = €'.i for i € {1,2}: Similarly to the case for application term except for use of Lemma 12 (1). Since
e{e1/x} takes a step, there are two cases we have to consider.

Case e'{e1/z} — € by (E_RED): By the IH, there exists some e”’ such that e’ {es/x} —* "’ {e2/x} and
e"” = e {e1/x}. Moreover, the evaluation e’ {es/x} —* € {ea/x} is derived by applying only (E_RED).

Thus, by Lemma 21 (1), (¢’.7) {e1/z} — (e"".i){e1/z} and (e'.i){ea/x} —* (".i){ea/x}.

Case €' {e1/x} is a value: Since €’ is a value by Lemma 8, we finish by Lemma 12 (1).

Case e = C(e})ey: Similarly to the case for application term. Since e{e;/x} takes a step, it is found that
ehb{ei/r} — ¢€" by (E_RED) for some €¢”. By the IH, there exists some ej such that ef {es/z} —*
eh {eafx} and e" = el {e1/x}. Moreover, the evaluation e} {es/x} —* el {ea/x} is derived by applying
only (E_RED). Thus, by Lemma 21 (1), (C(e})es) {e1/z} — (C(e})ey) {e1/x} and (C{e})ey) {ea/x} —*
(Cler)es) {ea/x}.

Case e = matchejwithC; y; — e;l: Similarly to the case for application term except for use of Lemma 16 (1). Since
e{e1/x} takes a step, there are two cases we have to consider.

12

Case e {e1/x} — ¢ by (E_RED): By the IH, there exists some ej such that ef {ea/x} —* e {e2/z} and
e’ = ef {e1/x}. Moreover, the evaluation e {ea/x} —* ef {e2/x} is derived by applying only (E_RED).
Thus, by Lemma 21 (1),

(matchegwith C; y; — e;i) {e1/r} — (matcheywithC;y; » e;i) {e1/x}

(match ey with C; y; — e;i) {eaJz} —* (matchegywithC;y; — e;i) {ea/x}.
Case e {e1/x} is a value: Since e is a value by Lemma 8, we finish by Lemma 16 (1).

Case e = ife]thenejelsees: Similarly to the case for application term except for use of Lemma 14 (1). Since
e{e1/x} takes a step, there are two cases we have to consider.

Case ¢ {ei1/x} — €” by (E_RED): By the IH, there exists some e} such that €] {e2/r} —* €} {e2/x} and
e’ = e {e1/x}. Moreover, the evaluation e} {ea/z} —* el {e2/x} is derived by applying only (E_RED).
Thus, by Lemma 21 (1),

(ife| theneselsees) {e1/x} — (ife] thenejelseel) {e1/z}

*

(ife] thenelelseel) {ea/x} —* (ife] theneselsees) {ea/x}.

Case €] {e1/x} is a value: Since €] is a value by Lemma 8, we finish by Lemma 14 (1).

Case e = ({y:T|e}},eh,v)’: Similarly to the case for application term except for use of Lemma 20 (1). Since
e{e1/z} takes a step, there are two cases we have to consider.

Case e {e1/x} — €” by (E_RED): By the IH, there exists some e} such that e} {es/r} —* e {e2/x} and
e"” = el {e1/x}. Moreover, the evaluation e}, {ea/x} —* el {ea/x} is derived by applying only (E_RED).
Thus, by Lemma 21 (1),

({({yT et} en o)) ferfay — (({yTler}es,0)) {er/a}
({({yTler} en,0)) feaf} —* (({yTler},en,0)") {ea/a}.
Case e} {e1/x} is a value: Since e} is a value by Lemma 8, we finish by Lemma 20 (1).

Case e = (({y:T|e}},)t Similarly to the case for application term except for use of Lemma 18 (1). Since e {e;/x}
takes a step, there are two cases we have to consider.

Case e} {e1/x} — ¢’ by (E_RED): By the IH, there exists some e} such that e} {ea/x} —* e {ea/z} and
e = el {e1/x}. Moreover, the evaluation e} {es/x} —* e} {ea/x} is derived by applying only (E_RED).
Thus, by Lemma 21 (1),

((lyTlerh eV {erfz} — (({yTler} es)) {er/z)
(({yTler} ea)’) feafa} —* (({yTler},es)) {ez/a}.
Case e} {e1/x} is a value: Since e is a value by Lemma 8, we finish by Lemma 18 (1). O
Lemma 24. Ife; — es, and e{ea/x} is a value, then there exists some e’ such that
o e{ei/z} —* €' {e1/x},
e ¢'{e1/x} is a value, and
o e{esfz} = €' {exfx}.
Proof. By structural induction on e.

Case e = y: If © = y, then e{es/x} = e is a value. Thus, we finish by letting e’ = es because es {e1/x} =
es {ea/x} = eg. Note that es is closed since the evaluation relation is defined over closed terms. Otherwise, if
x # y, then contradiction because e {ez/z} is a value but e{es/x} = y is not.

13

Case e = v: Obvious by letting e’ = v because v {e1/z} is a value by Lemma 7.

Case e = f}{, e] e5, e’ .ifor i € {1,2}, matchejwithC; y; > e;i, if e then e} else e, ({y:T | e} }, e, v)’ or ({y:T | e}, eb)
Contradictory: e{es/z} is a value.

Case e = (e],e5): Let i € {1,2}. By the assumption, e} {ez/x} is a value. By the TH, there exists some e} such
that e} {e1/x} —* e {e1/x} and € {e1/z} is a value and ¢ {ex/x} = e {ea/x}. Thus, (e},e5) {e1/x} —*
(ef,ef){er/x} and (ef,ey){e1/x} is a value and e{es/z} = (e, el) {ea/x}.

Case e = C(e])ey: By the assumption, e) {ea/z} is a value. By the IH, there exists some e such that e}, {e1/z} —*
ey {e1/z} and ef {e1/x} is a value and e} {ea/x} = ef {ea/x}. Thus, (C{e})es) {e1/x} —* (C{ef)ey) {e1/x}
and (C(e])ey) {e1/z} is a value and (C(e})es) {ea/x} = (C(e])ey) {e2/x}. O

Lemma 25. Ife; — es and e{es/x} = Es[f], then e{e1/x} —* L.
Proof. By structural induction on e.

Case e = x: Obvious since e; —> e = e{ea/x} = Ex[1{] — L.

Case e = fi£: Obvious.

Case e = y where y # x, f¢' where £ # ¢/, and v: Contradictory (by Lemma 8 in the case that e = v) since
e{es/z} = Ea[f{].
Case e = ¢ e}: Since e{es/x} = Eo[fif], there are two cases we have to consider.
Case Ey = Ejeh{eafx}: Since €] {ea/xz} = E4[¢], we have e} {e1/x} —* ¢ by the IH. Thus, we finish by
Lemma 21 (2).

Case Ey = ¢ {ea/x} F} where e] {ea/x} is a value: By Lemma 24, there exists some ef such that] {e;/x} —*
el {e1/z} and ef {e1/x} is a value and e {ea/x} = €Y {ez/x}. Since e} {ea/x} = EL[N€], we have
eh{e1/x} —* ¢ by the IH. Thus, (e} e5){e1/z} —* (efe)){e1/z} —* (¢ by Lemmas 21 (1) and
(2)-

Case e = (e],eh): Since e{ea/x} = Eo[f¢], there are two cases we have to consider.

Case Ey = (E4,e5{ea/x}): Since e} {eafx} = E5[({], we have €] {e1/z} —* (¢ by the TH. Thus, we finish

by Lemma 21 (2).

Case Ey = (e} {ez/z}, F}) where €] {ea/x} is a value: By Lemma 24, there exists some e such that e} {e;/x} —*
el {e1/x} and €Y {e1/x} is a value and e} {ea/z} = ef{ea/x}. Since e){ea/x} = E5[1¢], we have
eh{er/z} —* ¢ by the IH. Thus, (ef,e}){e1/x} —* (ef,e){e1/x} —* £ by Lemmas 21 (1)
and (2).

Case e = ¢'.i for 1 € {1,2}: Since e{ex/x} = Es[fi¢], there exists some E) such that Fy = Ej.i. Since e’ {ea/x} =
E5[1¢], we have e’ {e1/x} —* ¢ by the IH. By Lemma 21 (2), we finish.

Case e = C(e])eh: Since e{ex/x} = E3[1¢], there exists some F) such that Fy = C(e] {ea/z})ES. Since ef {ea/x} =
E5[1¢], we have e}, {e1/xz} —* {{¢ by the ITH. By Lemma 21 (2), we finish.

Case e = matchejwithC; y; — e;i: Since e {ea/x} = Ea[{¢], there exists some EJ such that Fy = match Ej with C; y; — e;i.
Since ej {ea/x} = E5[)1¢], we have e{ {e1/x} —* ¢ by the IH. By Lemma 21 (2), we finish.

Case e = if €] thenejelsees: Since e {ea/x} = E[fi¢], there exists some Ej such that Ey = if Ejthenel {ea/x} elseef {ea/x}.
Since €} {ea/z} = E4[N¢], we have €] {e1/z} —* £ by the IH. By Lemma 21 (2), we finish.

Case e = ({y:T|e}},eh,v)": Since e {ey/x} = Es[f1€], there exists some Ej such that By = ({y:T'|e}} {ea/x}, B} v {ea/z}) .
Since e {ea/z} = E5[N1¢], we have €5 {e1/x} —* £ by the IH. By Lemma 21 (2), we finish.

Case e = (({y:T|e}}, eh): Since e {esfx} = E5[11{], there exists some E} such that By = ({y:T'|e}} {ea/a}, B4 .
Since e} {ea/x} = E5[(1¢], we have e {e;/x} —* ¢ by the IH. By Lemma 21 (2), we finish. O

14

Lemma 26 (Cotermination: Reduction on the Right). Suppose thate; — es. Ife{ea/z} — €, thene{ei/z} —
e {e1/x} for some €” such that e’ = e"{ex/x}. Moreover, if e{es/x} — €' is derived by (E_RED), then the eval-
uation e{e1/x} —* €" {e1/x} is derived by applying only (E_RED).

Proof. By structural induction on e. If e {ea/x} —> €’ is derived by (E_BLAME), then there exist some Ey and ¢
such that e {es/x} = E3[f}¢] and ¢’ = f}¢. By Lemma 25, e {e;/x} —* f}£. We finish by letting " = {}¢.
In what follows, we suppose that e {ez/x} is derived by (E_RED). We proceed by case analysis on e.

Case e = y: If = y, then we have e{ej/z} = e; and e{ez/x} = es. Thus, we finish by letting ¢} = e} because
eh{er/x} = ey {eax} = e). Note that the evaluation relation is defined over closed terms. Otherwise, if
x # y, then contradiction because e {ea/x} = y takes a step.

Case e = fi¢: Contradictory.
Case e = v: Contradictory by Lemma 7 since e {ea/z} — €}.
Case e = ¢ e}: Since e {ea/x} takes a step, there are three cases we have to consider.

Case €] {ea/x} — ¢ by (E_RED): By the IH, there exists some e} such that e} {e;/z} —* ef{e1/z} and
e = e {ea/x}. Moreover, the evaluation e} {e1/z} —* e {e1/z} is derived by applying only (E_RED).
Thus, by Lemma 21 (1), (e] e5) {ea/z} — (e e) {ez/x} and (e} e}) {e1/x} —* (e €) {e1/x}.

Case e} {ea/x} is a value and e} {ea/z} — €” by (E_RED): By Lemma 24, there exists some ef such that
el {er/z} —* e {e1/x} and e {e1/z} is a value and e} {ea/z} = e} {ea/x}. By the IH, there exists
some e such that e} {e;/x} —* e {e1/x} and e” = e {ez/x}. Moreover, the evaluation ej {e; /x} —*
el {e1/x} is derived by applying only (E_RED). Thus, by Lemma 21 (1), (e} e5) {ea/z} —> (€] €5) {ea/x}
and (eq ep) {er/r} —* (ef) {er/x}.

Case e {ea/x} and e} {es/x} are values: Let 7 € {1,2}. By Lemma 24, there exist some e/ such that

1 2 i
ei{erfx}y —* el{e1/z} and e {e1/x} is a value and e {ez/x} = e} {ea/x}. Since ef and e} are
values by Lemma 8, we finish by Lemmas 10 (2) and 21 (1).

Case e = (€],¢e}): Similarly to the case for application term. Since e{ey/x} takes a step, there are two cases we
have to consider.

Case ¢ {ez2/x} — €” by (E_RED): By the IH, there exists some ef such that €] {e;/x} —* €} {e1/x} and
e = e {ea/x}. Moreover, the evaluation e} {e1/x} —* e/ {e1/x} is derived by applying only (E_RED).
Thus, by Lemma 21 (1), (e, 5) {ea/x} — (€7, e5) {ea/a} and (e, e5) {er/x} —* (€7, €3) {er/x}.

Case ¢ {ea/x} is a value and e} {ea/x} — ¢” by (E_RED): By Lemma 24, there exists some e such that
el {er/z} —* e {e1/x} and e {ei/z} is a value and €] {es/z} = e} {ea/x}. By the IH, there exists
some ef such that e}, {e;/z} —* e {e1/x} and " = €] {ez/x}. Moreover, the evaluation e} {e; [z} —*
el {e1/x} is derived by applying only (E_RED). Thus, by Lemma 21 (1), (e],e5) {ea/x} — (e, e5) {e2/x}
and (e, e5) {er/w} —" (ef,e5) {e1/a}.

Case e = €'.i for ¢ € {1,2}: Similarly to the case for application term except for use of Lemma 12 (2). If there
exists some e” such that e’ {es/r} — € by (E_RED), then, by the IH, there exists some e’ such that
e’ {ei/z} —* " {ei/z} and €” = €' {ez/x}. Moreover, the evaluation e’ {e;/z} —* € {e1/z} is derived
by applying only (E_RED). Thus, by Lemma 21 (1), (¢’.7) {e2/z} — (&"".i) {ea/z} and (¢'.i) {e1/z} —*
(e"".i) {e1/x}. Otherwise, if e’ {ea/x} is a value, then there exists some e’ such that e’ {e;/z} —* € {e;/x}
and e” {e1/x} is a value and e’ {ea/x} = € {ea/x}. Since e” is a value by Lemma 8, we finish by Lemmas 12 (2)
and 21 (1).

Case e = C(e})es: Similarly to the case for application term. Since e{es/z} takes a step, there exists some
e such that e} {ea/z} — €’ by (E_RED). By the IH, there exists some ej such that e} {e;/z} —*
eh {e1/z} and e” = el {es/x}. Moreover, the evaluation e {ej/x} —* e {e;/x} is derived by applying
only (E_RED). Thus, by Lemma 21 (1), (C(e})es) {ez/x} —> (C(e})eh) {ea/z} and (C{ef)es) {e1/x} —*
(Cler)ez) {ex/x}.

15

Case

Case

Case

Case

e = matchejwith C; y; — e;l: Similarly to the case for application term except for use of Lemma 16 (2). If
there exists some e’ such that e {ea/z} —> €” by (E_RED), then, by the IH, there exists some e, such that
eg{erf/r} —* ef {e1/x} and " = e {ea/x}. Moreover, the evaluation ej {e1/x} —* ef {e1/x} is derived
by applying only (E_RED). Thus, by Lemma 21 (1),

(match e with C; y; — e;i) {eaJr} —> (matcheywithC;y; — e;i) {ea/z}
(match e with Cyy; — €) {er/x} —* (matchelwithC,y; — ¢,) {ei/z}.

Otherwise, if e(, {ea/x} is a value, then there exists some ef such that ef {e1/z} —* ef {e1/z} and e} {e1/x}
is a value and e({ea/z} = efj {e2/x}. Since e{ is a value by Lemma 8, we finish by Lemmas 16 (2) and 21 (1).

e = ife] thenejelseef: Similarly to the case for application term except for use of Lemma 14 (2). If there
exists some e” such that e} {es/z} — €’ by (E_RED), then, by the TH, there exists some e} such that
el{er/z} —* ef {e1/x} and " = e {ea/x}. Moreover, the evaluation e] {e;/x} —* e} {e1/x} is derived
by applying only (E_RED). Thus, by Lemma 21 (1),

(ife] theneselsees) {ea/x} — (ife theneselsees) {ea/x}

(ife] theneselseey) {e1/z} —* (ifef theneselsees){e1/z}.
Otherwise, if €] {e2/x} is a value, then there exists some e such that e} {e1/z} —* e {e1/z} and €} {e1/x}
is a value and €} {ea/z} = el {ea/x}. Since ! is a value by Lemma 8, we finish by Lemmas 14 (2) and 21 (1).

e = ({y:T|e}},eh,v): Similarly to the case for application term except for use of Lemma 20 (2). If there
exists some e” such that e} {es/z} — €’ by (E_RED), then, by the TH, there exists some e} such that
eh{erfx} —* ef{e1/x} and " = e} {ea/x}. Moreover, the evaluation e} {e;/x} —* ej {e1/x} is derived
by applying only (E_RED). Thus, by Lemma 21 (1),

({({yTler},eq,0)) {eafe} — (({yTler},es,v)) {ea/a}
({({yTler},en,0)) {erfey —* (({yTlei}e5,0)") {er/a}.

Otherwise, if €}, {ea/x} is a value, then there exists some e such that e} {e;/x} —* €] {e1/x} and ef {e1/x}
is a value and e {ez/x} = €5 {ea/x}. Since €} is a value by Lemma 8, we finish by Lemmas 20 (2) and 21 (1).

e = {({y:T|e}},es): Similarly to the case for application term except for use of Lemma 18 (2). If there
exists some e’ such that e){ea/z} — €” by (E_RED), then, by the IH, there exists some e such that
eh{erfz} —* e {e1/x} and e’ = el {ea/x}. Moreover, the evaluation e} {e;/z} —* e {e1/x} is derived
by applying only (E_RED). Thus, by Lemma 21 (1),

((yTlerh s feafz} — (({yTler},es)) {ez/)
((LyTlerh ea)) {erfey —* (({yTlet},ex)) {er/fa}.
Otherwise, if e} {ea/x} is a value, then there exists some ef such that e} {e1/z} —* e} {e1/z} and e {e1/x}

is a value and e} {ea/x} = ef {ea/x}. Since ef is a value by Lemma 8, we finish by Lemmas 18 (2) and 21 (1).
O

Lemma 27. Suppose that e — es.

(1)

(2)

If e{e1/x} —* vy, then e{eafx} —* €' {eaf/x} for some €' such that vy = €' {e1/x}, and €' {ex/x} is a

value.

If e{es/z} —* vy, then e{e1/xz} —* €' {e1/x} for some €' such that vo = €' {es/x}, and €' {e1/x} is a
value.

Proof.

1.

By mathematical induction on the number of evaluation steps of e {e1/z}.

16

Case 0: We are given e{ej/z} is a value. Since e; is not a value from e; — eq, we find that e is a value by
Lemma 8. By Lemma 7, so is e {ea/z}. Thus, we finish when letting e’ = e.

Case i+1: We are given e {e;/z} — €] —" v;. By Lemma 23, there exists some e’ such that e {ey/r} —*
e"{eafx} and e] = " {e;/x}. By the IH, there exists some e’ such that e” {ea/x} —* €' {ea/x} and
v1 = € {e1/z}, and €’ {ea/x} is a value. Thus, we finish.

2. By mathematical induction on the number of evaluation steps of e {ea/x}.

Case 0: We are given e {ea/z} is a value. By Lemma 24, there exists some e’ such that e {e;/z} —* ¢’ {e1/x}
and e{ex/x} = ¢’ {ea/x} and e’ {e1/z} is a value.

Case i+1: We are given e {es/z} —> e, —* vy. By Lemma 26, there exists some e’ such that e {e;/z} —*
e"{e1/z} and e} = e" {es/x}. By the IH, there exists some e’ such that e” {e1/x} —* €' {e1/x} and
vy = €' {ea/x}, and €' {e1/x} is a value. Thus, we finish. O

Lemma 28. Suppose that ey =* es.

(1) If e, —* vy, then e —* vy for some vo such that vy = vs.
(2) If e —* wq, then ey —™ vy for some v1 such that vi =* vs.
Proof. By mathematical induction on the number of steps of e; = es.

Case 0: Obvious because e; = es.

Case i+ 1: We are given e; = ez =' e;. We are given some e, €}, e5 and z such that e; = e{e}/z} and
es = e{ef/x} and ¢f —> e}. Thus, we finish by Lemma 27 and the IHs and transitivity of =*. O

Lemma 29.
(1) If c =" v, then v
(2) If v =" ¢, then v
Proof.

I
o

I
o

1. By mathematical induction on the number of steps of ¢ =* v.

Case 0: Obvious.

Case i+1: We are given ¢ = e =* v. We are given €', e1, e2 and x such that ¢ = ¢’ {e1/z} and e = €' {es/x}
and e; —> e. Since e is not a value from e; —> ey, we find that e’ is a value by Lemma 8. Thus,
e’ = cand so e = ¢. By the TH, we finish.

2. By mathematical induction on the number of steps of v =% c.

Case 0: Obvious.

Case i+1: We are given v = e =* ¢. We are given ¢/, e1, e3 and z such that v = €’ {e1/z} and e = €' {e2/x}
and e; —> ey. Since e; is not a value from e; — eg, we find that €’ is a value by Lemma 8. Thus, so
is e’ {ea/2} by Lemma 7. By the IH, e’ {ea/x} = c. Since €’ is a value, e’ = c and so v = ¢. O

Lemma 30 (Cotermination at true). Suppose that e; =* es.

(1) If e —* true, then ea —* true.

(2) If e —* true, then e; —* true.
Proof. By Lemmas 28 and 29. O
Lemma 31. Suppose that e; = es.

(1) If e —* true, then e —* true.

(2) If ea —* true, then e —* true.

Proof. Straightforward by induction on e; = es. In particular, if e; = es, then we finish by Lemma 30. O

17

4

Type Soundness

Lemma 32 (Weakening). Suppose that x is a fresh variable and I'y + T7.

(1)
(2)
(3)

IfFl,FQ =e: T, then F17SCZT1,F2 Fe:T.
IfFl,FQ [T, then Fl,l‘lTl,FQ = 1.
Ifl— Fl,Fg, then + Fh.fEZTl,FQ.

Proof. Straightforward by induction on each derivation. O

Lemma 33 (Substitution). Suppose that Ty + €' : T".

(1)
(2)
(3)

IfTy, T To - e: T, then Ty, To{e'[z} + e{e'[x} : T {e'/x}.
IfTy,zT", Ty = T, then T'1,To {e'[x} + T{e'/x}.
Ifl— Fl,ZC:T,,FQ, then + F1,F2 {GI/ZE}.

Proof. Straightforward by induction on each derivation. The only interesting cases are for (T_CTR) and (T _MATCH).

Case

Case

(T_CTR): We are given 'y, 27", T + Clej)es : 7(e1) for some C, e, e; and 7. By inversion, we have
TypSpecOf(C) = yT1 » To » 7(y) and I'y,zT".Ts + e; : Ty and T'1,z:T". T2 + ey : Th{ei/y} and
Ty, 27", Ty + 7(e1). Without loss of generality, we can suppose that y is fresh.

By the IHs, T'1,To{e'/z} + ei{e'/z} : Th{e'/z} and T1,Ty{e'/z} + ex{e’'/z} : To{e1/y}{e'/z} and
I, Ty {e'/z} + 7(e1{€'[x}). From well-formedness of the type definition environment, it is found that
Ty {e'[x} =Ty and To {e1/y} {€'[/x} = To{e1 {€'/x}/y}. Thus, we finish by (T_CTR).

(T-MarcH): We are given I'1,z:T", 'y + matchegwithC;y; - eii : T. By inversion, we have I'y,z:T", s +

eo : 7(e”) and 'y, 2:T", Ty + T and CtrsOf(7) = C; and ArgTypeOf(7) = zT" and, for all i, CtrArgOf(C;) =
T; and Ty, T Ty, y;: Ty {€" 2} + e; : T. Without loss of generality, we can suppose that ;" and z are fresh.

By the THs, 'y, Iy {€'/z} + eq {€'[z} : (" {€'[/x}) and T, Ts{e'/z} + T{e [z} and T'1,To{e'[x},y;:T; {€"]2} {e'[x} +

e;{e'[x} : T{e'[/z}. From well-formedness of the type definition environment, it is found that T; {e"/z} {e' [z} =
T; {e" {€'[x}/z}. Thus, we finish by (T_MATCH). O

Lemma 34 (Base Types Equivalence Inversion). If T} = Ty, then

(1)
(2)

Ty = Bool implies T = Bool, and

15

Bool implies Ty = Bool.

Proof. Straightforward by induction on 77 = T5. In particular, if 7} = T5, then there exist some T, x, e; and e such
that Ty = T'{e1/x} and Ty = T {es/x}. Since Ty = Bool or T = Bool, we have T' = Bool. Thus 77 = T5 = Bool. O

Lemma 35 (Dependent Function Types Equivalence Inversion). If Ty = Ty, then

(1)

(2)

Ty = x:T1, — Tio tmplies

o ' = x:T5 - Tho,
[Tll = TQl, and
[T12 = T22

for some Ty and Tss, and
T = x:T5 - Too tmplies

o Th = w11 — Tha,
[T11 = Tgl, and

18

4 T12 = T22
for some T11 and Tys.

Proof. Straightforward by induction on 77 = T5. In particular, if 77 = T5, then there exist some T, y, e; and
es such that Ty = T {e1/y} and To = T {es/y} and ey —> ey. Without loss of generality, we can suppose that x
is fresh for ey, eg and y. Since Ty = x:Ty1 = T1o or Ty = 151 — Tho, we have T' = x:T} — T3 for some 77 and
Tp. Thus, 1 = zTy{e1/y} - To{e1/y} and Tp = =13 {e2/y} - T>{ea/y}. We have T’ {e1/y} = T1{e2/y} and
Tr{ei/y} = To{ea/y} by definition. O

Lemma 36 (Dependent Product Types Equivalence Inversion). If Ty = Ty, then
(1) Ty = x:T11 xT1o tmplies

[T2 = l‘ZTgl XTQQ,
o T11 = Tgl, and
o Ty = T

for some Ty and Ths, and
(2) Ty = x:T x Toy implies

o 17 = w11 xT1a,
[T11 = Tgl, and
o Tio = Th.

for some T11 and Tys.

Proof. Similarly to Lemma 35, straightforward by induction on 77 = T5. In particular, if 77 = T5, then there exist
some T, y, e; and ey such that T7 = T'{e1/y} and Ty = T {ez/y} and e; — ea. Without loss of generality, we can
suppose that x is fresh for ey, es and y. Since T} = x:T11 x T19 or T = x5 x Thy, we have T = x:T7 x T for some
Ty and Tp. Thus, T1 = Ty {e1/y} xTa{e1/y} and To = x:T3 {ea/y} x Ta {ea/y}. We have T {e1/y} = T1{e2/y}
and Ty {e1/y} = To{ea/y} by definition. O

Lemma 37 (Datatypes Equivalence Inversion). If Ty = Ty, then

(1) Ty = 7(e1) implies To = T(e2) and e; = ey for some ez, and

(2) T
Proof. Similarly to Lemma 35, straightforward by induction on 17 = T5. In particular, if 77 = T3, then there exist
some T, x, €] and e} such that T} = T {e}/z} and Ty = T {e5/z} and] — e}. Since Ty = 7(e1) or Ty = 7(ea),
we have T' = 7(e) for some e. Thus, T} = 7{e{e}/x}) and Ty = 7(e{e)/x}). We have e{e]/x} = e{e}/x} by
definition. O

T(ea) implies T) = 7{e1) and e; = ey for some e;.

Lemma 38 (Refinement Types Equivalence Inversion). If Ty = T5, then

(1) Ty = {xT7} |e}} implies

Ty = {wTy]es},
e T/ =Ty, and

I — !
€1 = €y

for some Ty and efy, and
(2) Ty = {x:Ty|eh} implies

o T1 = {xTq|e1},
e T/ =Ty, and

19

® | = €y
for some T| and €.

Proof. Similarly to Lemma 35, straightforward by induction on T} = T5. In particular, if T} = T5, then there exist
some T, y, e} and ef such that T1 = T'{e{/y} and Tz = T {e5/y} and ef — ef. Without loss of generality, we can
suppose that x is fresh for e, e} and y. Since Ty = {@:T7 |€e}} or Ty = {x:Ty|eL}, we have T = {x:T"|e’} for some
T and e'. Thus, Th = {&:T" {ef/y}|e'{eY[y}} and Ty = {x:T" {5y} |e' {e5[y}}. We have T' {e] [y} = T'{e5/y}
and e’ {ef [y} = €' {e}) [y} by definition. O

Lemma 39 (Type Equivalence Closed Under Unrefine). If Ty = Ts, then unref(T1) = unref(Ts).
Proof. By induction on Tj.

Case Ty = Bool, z:T] - Ty, x:T| x T4, or 7{e): We have unref(Ty) = Ty. Since T} = T3, we find that unref(Ty) = Ts
by Lemmas 34 (1), 35 (1), 36 (1) and 37 (1). Thus, we finish.

Case Ty = {x:T{|e}}: By Lemma 38 (1), there exist some Ty and e, such that Tp = {a:T5|e5} and T} = Ty. By
the TH, unref(T]) = unref(Ty). Because unref(Ty) = unref(T]) and unref(Ty) = unref(Ts), we finish.

O
Lemma 40 (Lambda Inversion). IfT' + fix f(x:11)1% =e : T, then
o I fi(xTy »Ty),xTh + e: Ty,
o [¢ FV(Ty), and
o v:T - Ty = unref(T).
Proof. By induction on the typing derivation. Only four rules can be applied to the lambda abstraction.

Case (T_ABS): Since T' = x:T7 — T», we have :T7 - To = unref(T') by Lemma 1 (reflexivity). By inversion, we
finish.

Case (T_Conv): By inversion, we have @ + fix f(x:T1) Ty =€ : T' and T" = T for some T'. By the IH, we have
fi(xTh - Ty),zTy + e: Ty and f ¢ FV(T3) and x:T) — Ty = unref(T"). Because unref(T') = unref(T) by
Lemma 39, we have ©:T) - T» = unref(T) by Lemma 1 (transitivity). By Lemma 32, we finish.

Case (T_FORGET): By inversion, we have @ + fix f(z:T1):T5 = e : {y:T'| €'} for some y and ¢’. By the IH, f:(x:T} —
To),zTy + e : Ty and f ¢ FV(T3) and Ty - Ts = unref({y:T|e’'}). Since unref(T) = unref({y:T|e'}), we
have z:T7 - Ty = unref(T). By Lemma 32, we finish.

Case (T_EXAcT): We are given I' + fix f(z:Th1):Ty=e : {yT'|e'} for some y, T’ and €. By inversion, we
have @ + fix f(a11)Ts =e : T'. By the IH, we have f:(x17 —» Ty), Ty + e : Ty and f ¢ FV(T3) and
xdy - To = unref(T"). Since unref(T") = unref({y:T"|e'}), we have ©:Ty — Ty = unref({y1"|e'}). By
Lemma 32, we finish. O

Lemma 41 (Cast Inversion). IfT' + (T} < T5)* : T, then
o '+ 1T,
o I' - T5,
o T || Tz, and
o Ty — Ty = unref(T).
Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the cast.

Case (T_CasT): Since T' = To » T3, we have Th - 11 = unref(T) by Lemma 1 (reflexivity). By inversion, we
finish.

20

Case (T_CONV): By inversion, we have @ + (T} < T5)’ : T" and T' = T for some T". By the IH, we have & ~ T}
and @ + Ty and Ty || T2 and Ty - Ty = unref(T'). Because unref(T') = unref(T) by Lemma 39, we have
Ty - Ty = unref(T) by Lemma 1 (transitivity). By Lemma 32, we finish.

Case (T_FORGET): By inversion, we have @ (T} < T5)* : {y:T'|e} for some y and e. By the IH, @ + T} and
@+ Tyand Ty || To and Ty - Ty = unref({y:T|e}). Since unref({y:T|e}) = unref(T), we have Tp - T} =
unref(T). By Lemma 32, we finish.

Case (T_ExAcT): We are given I' + (T} < T5)* : {a:T"|e'} for some x, T’ and ¢’. By inversion, we have
@+ (T} < Tp)* : T'. By the IH, we have @ + T} and @ + Ty and T} || T and Ty — Ty = unref(T"). Since
unref(T") = unref({x:T"|e'}), we have To - T1 = unref({x:T"|e’}). By Lemma 32, we finish. O

Lemma 42 (Pair Inversion). IfT' + (v1,v3) : T, then
o '+ vy : 17,
o '+ vy : Ty {v/a},
o ' wTh + Ty, and
o w1y xTy = unref(T)
for some Ty, Ty and x.
Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the pair.

Case (T_PAIR): Since T = x:Ty x Ty, we have x:Ty xTo = unref(T) by Lemma 1 (reflexivity). By inversion, we
finish.

Case (T_ConvV): By inversion, we have @ + (v1,v9) : 7" and T’ = T for some T"'. By the TH, we have @ + vy : T}
and @ + vg : To{vi/z} and ©:T) + Tp and Ty x Ty = unref(T"). Because unref(T") = unref(T) by Lemma 39,
we have x:T7 x Ty = unref(T) by Lemma 1 (transitivity). By Lemma 32, we finish.

Case (T_FORGET): By inversion, we have @ + (v1,v2) : {y:T|e'} for some y and ¢’. By the TH, we have @ + vy : T}
and @ + vg : To{vi/x} and =17 + Ty and x:T) x Ty = unref({y:T'|e'}). Since unref({y:T|e'}) = unref(T),
we have x:T7 x Ty = unref(T). By Lemma 32, we finish.

Case (T_ExAcT): We are given I' + (v1,v2) : {y:T"|e'} for some y, T’ and €’. By inversion, we have @ + (v1,v2) :
T’'. By the IH, we have @ + vy : T} and @ + vg : To{v1/z} and :T} + Ty and T} x Ty = unref(T"). Since
unref(T") = unref({y:T"|e'}), we have x:Ty x Ty = unref({y:T"|e’'}). By Lemma 32, we finish. O

Lemma 43 (Constructor Inversion). IfT' + C(e)v : T, then
e TypSpecOf(C) = Ty » Ty = 7(x),
o'+ uv:T{elx},
e '+ 7(e), and
o 7(e) = unref(T).

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the
constructor application.

Case (T_CTR): Since T = 7(e), we have 7(e) = unref(T) by Lemma 1 (reflexivity). By inversion, we finish.

Case (T_ConvV): By inversion, we have @ + C(e)v : T and T" = T for some T’. By the IH, we have TypSpecOf(C) =
Ty » Ty > 7(x) and @ + v : Th{e/z} and @ + 7(e) and 7(e) = unref(T"). Because unref(T’) = unref(T)
by Lemma 39, we have 7(e) = unref(T) by Lemma 1 (transitivity). By Lemma 32, we finish.

Case (T_FORGET): By inversion, we have @ + C{e)v : {y:T|e'} for some y and e¢’. By the TH, we have
TypSpecOf(C) = =Ty » Ty » 7(z) and @ + v : Th{e/x} and @ + 7(e) and 7(e) = unref({y:T|e'}).
Since unref({y:T'|e'}) = unref(T), we have 7(e) = unref(T). By Lemma 32, we finish.

21

Case (T_EXAcCT): We are given I' - C(e)v : {y:T"|e'} for some y, T' and ¢’. By inversion, we have @ + C{e)v :
T’. By the IH, we have TypSpecOf(C) = x:Ty » Tp » 7(z) and @ + v : Ty{e/z} and @ + 7(e) and
7(e) = unref(T"). Since unref(T") = unref({y:T"|e'}), we have 7(e) = unref({y:T"|e'}). By Lemma 32, we
finish. O

Lemma 44 (Canonical Forms). Suppose that @ + v : T.
(1) If unref(T") = Bool, then v = true or false.
(2) If unref(T) = ©:Ty - Ta, then

(a) v = fix f(a:T])Ty =e for some f, T}, Ty and e, or
(b) v = (Ty < T})* for some T5, T} and {.

(3) If unref(T") = x:Ty x Ty, then v = (v1,v2) for some v and va.

(4) If unref(T) = 7{e), then v = C{e')v" for some C, ¢’ and v'.
Proof. By induction on the typing derivation.

Case (T_ConsT): We are given @ + ¢ : Bool. By inversion, c € {true, false}. Since unref(Bool) = Bool, we are in
the case (1).

Case (T_VAR), (T_BLAME), (T-APpP), (T_-PrOoJ:) for i € {1,2}, (T_-MatcH), (T_IF), (T_ACHECK), (T_-WCHECK):
Contradictory: v is a value.

Case (T_ABs): We are given @ + fix f(a:T1)Ts =e : a1y - Ty. Since unref(z:Ty - Tz) = x:Ty — Ty, we are in
the case (2).

Case (T_CasT): We are given @ + (T < T1)* : Ty — Ty. Since unref(Ty - Ty) = Ty — Ty, we are in the case (2).
Case (T_PAIR): We are given @ + (v1,v2) : 2Ty x Ty. Since unref(z:Th xTo) = x:Ty x Ty, we are in the case (3).
Case (T_CTR): We are given @ + C{e')v’ : 7(e’). Since unref(r(e’)) = 7(e’), we are in the case (4).

Case (T_Conv): By inversion, we have @ + v : T' for some T" such that 77 = T. By Lemma 39, unref(T") =
unref(T). By case analysis on unref(T"):

Case unref(T') = Bool: By the IH, v € {true,false}. By Lemma 34 (1), unref(T) = Bool and so we are in the
case (1).

Case unref(T") = x:Ty - T5: By the TH, v is a lambda abstraction or a cast. By Lemma 35 (1), unref(T) =
x:T] — Ty for some T] and T3 and so we are in the case (2).

Case unref(T") = Ty x Ty: By the IH, v = (v1,v2) for some v; and vy. By Lemma 36 (1), unref(T) = o1} x Ty
for some T and T3 and so we are in the case (3).

Case unref(T") = 7(e): By the IH, v = C(e”)v"” for some e and v". By Lemma 37 (1), unref(T) = ("""} for

some e’ and so we are in the case (4).

Case (T_FORGET): By inversion, we have @ + v : {z:T'| e} for some x and e. Since unref(T) = unref({z:T|e}), we
finish by the IH.

Case (T_ExAcT): We are given @ + v : {z:T"|e} for some z, T" and e. By inversion, we have @ + v : T". Since
unref({x:T" |e}) = unref(T"), we finish by the TH. O

Lemma 45 (Progress). If @ + e : T, then
1. e — ¢’ for some €',
2. e is a value, or

3. e = ¢ for some L.

22

Proof. By induction on the typing derivation.

Case (T_ConsT), (T_BLAME), (T_ABs), (T_CasT), (T_-FORGET), (T-EXACT): The term e is a blaming or a value.
Case (T_VAR): Contradictory: @ + z : T cannot be derived for any x.

Case (T_App): We are given @ + ejeg : To {ea/z} for some e, ez, To and x. By inversion, we have @ + e :
Ty - Ty and @ + eq : Ty for some Tj.

By the IH, e; and ey are reducible, values, or blamings. If e; is reducible or a blaming, then e es steps by
one of evaluation rules. If e; is a value and es is reducible or a blaming, then e; es steps by one of evaluation
rules. Otherwise, if e; and e, are values, then there are two cases which we consider on e; by Lemma 44.

Case e = fix f(a:T]) = e12: The term e; e5 steps by (E_RED)/(R-BETA).

Case e; = (T < Ts)*: If Ty is a refinement type, then we finish by (E_RED)/(R_FORGET). In the following,
we suppose that T is not a refinement type. By Lemma 41, we have TY || T3 and Ty — T} = Ty > Ty
We perform case analysis on T7.

Case T = Bool: It is found from Bool || T5 that 75 = Bool since Ty is not a refinement type. We then
finish by (E_RED)/(R-BASE).

Case T] = y:T11 — T1o: Tt is found that from y:T11 — T1o || Ty that T4 = y:To; — Toe for some Toy and Thy
since Ty is not a refinement type. We then finish by (E_RED)/(R_-FUN).

Case T] = yT11 xT12: Tt is found that from y:T11 x T1o || Ty that Ty = y:Toy x Tao for some Thy and Tho
since Ty is not a refinement type. By Lemmas 35 and 36 (1), 71 = y:T7; x T}, for some Tj; and
T{,. Since @ + eg : Ty = y:T{; xT], and ey is a value, we have es = (vy,vy) for some vy and vy by
Lemma 44 (3). We then finish by (E_RED)/(R-PRrROD).

Case T] = mi(e}): Tt is found that from 3 + 7y (e}) || Ty that Ty = mo(ef) for some 75 and e, since T} is not a
refinement type. If 71 = 75 and 71 is monomorphic, then we apply (E_RED)/(R-DATATYPEMONO); if
71 # Ty or 71 is not monomorphic, and § ({71 (e}) < T2(eh)) e2) is defined, then (E_RED)/(R_DATATYPE);
otherwise, (E_RED)/(R_DATATYPEFAIL).

Case T = {y:T{|e{}: Since T3 is not a refinement type, we finish by (E_RED)/(R_PRECHECK).

Case (T_PAIR): We are given @ + (e1,eq) : a1y xTy for some ey, es, x, T3 and T5. By inversion, we have
@re T and @+ ey : Th{er/x}. By the IH, e; and eq are reducible, values, or blamings. If e; is reducible
or a blaming, then we finish by one of evaluation rules. If e; is a value and es is reducible or a blaming, then
we finish by one of evaluation rules. Otherwise, if e; and ey are values, then so is (e,) is.

Case (T_ProJ1): We are given @ + e;1.1 : T for some e; and Ty. By inversion, we have @ + e; : x:T) x Ty for
some x and T5. By the IH, e; is reducible, a value, or a blaming. If e; is reducible or a blaming, then we finish
by one of evaluation rules. Otherwise, if e; is a value, then e; = (v1,v2) for some v; and vy by Lemma 44 (3),
and so we finish by (E_RED)/(R-PrOJ1).

Case (T_Pro0J2): Similarly to the case for (T_PROJ1). We are given @& + e€3.2 : Ty {ez.1/z} for some ey, T, and
x. By inversion, we have @ + ey : 17 x Ty for some T;. By the IH, ey is reducible, a value, or a blaming.
If ey is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if es is a value, then
es = (v1,v3) for some v; and ve by Lemma 44 (3), and so we finish by (E_RED)/(R_-PR0J2).

Case (T_CTR): We are given @ + C{ej)es : 7(e1). By inversion, we have @ + es : T' {e;/x} for some T’ and
x such that TypSpecOf(C) = x:T" > T" » 7(x). By the IH, es is reducible, a value, or a blaming. If ey
is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if ey is a value, then so is
C<61)62.

i1e{l,...,n} 1e{l,...,n}

Case (T_MAarcH): We are given I' + match egwith C; z; — e; : T for some eg and C; x; — e; . By
inversion, we have T' + ey : 7(e’} for some 7 and e’. By the IH, ¢y is reducible, a value, or a blaming. If
eo is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if ey is a value, then, by
Lemma 44 (4), we have ey = C(e])vs for some C, e} and ve. By Lemmas 43 and 37, C' is a constructor of
7. There therefore exists j € {1,...,n} such that C = Cj; since patterns are exhaustive. By (R-MATCH), we
finish.

23

Case

Case

Case

Case

(T_Ir): We are given @ + ifej theneselsees : T for some eq, e and e3. By inversion, we have @ + e; : Bool.
By the IH, e; is reducible, a value, or a blaming. If e; is reducible or a blaming, then we finish by one of
evaluation rules. Otherwise, if e; is a value, then e; is true or false by Lemma 44 (1). If e; is true (resp. false),
then we finish by (R_IFTRUE) (resp. (R_IFFALSE)).

(T_WCHECK): We are given @ + (({:T"|e1},e2))’ : {:T"|e1} for some z, T', €1, eo and £. By inversion, we
have @ + es : T'. By the IH, e is reducible, a value, or a blaming. If e is reducible or a blaming, then we
finish by one of evaluation rules. Otherwise, if ez is a value, we finish by (R_CHECK).

(T_ACHECK): We are given & + ({z:T"|e1},ez,v)¢ : {2:T"| ey} for some z, T', e1, ez, v and £. By inversion,
we have & + es : Bool. By the IH, es is reducible, a value, or a blaming. If ey is reducible or a blaming, then
we finish by one of evaluation rules. Otherwise, if ey is a value, then ey is true or false by Lemma 44 (1). If
eg is true (resp. false), then we finish by (R_-OK) (resp. (R-FAIL)).

(T_ConNvV): By inversion, we have @ + e : T'. By the IH, we finish.

Lemma 46 (Context and Type Well-Formedness).

1.
2.

IfT'-e:T,then+T andT + T.
IfT' = T, then + T.

Proof. By induction on the derivation of each judgment.

1.

By case analysis on the typing derivation.

Case (T_ConsT): We are given I' + ¢ : T for some c¢. By inversion, we have + T' and T = Bool. By
(WT_BasE), I' + Bool.

Case (T_VAR): We are given I" + z : T for some x. By inversion, we have - I" and #:T € T. Let I'; and T's be
typing contexts such that 'y, z:T,I's = I'. By inversion of - I', we have I'; + T. Since for any y:T" € I's,
[y, x:T, T4 + T" where T'y = T}, y:T", T'5 for some I'j, we have I'y,2:T,T's + T by Lemma 32.

Case (T_BLAME): We are given I' + f{¢ : T for some ¢. By inversion, we have + I" and @ + T. By Lemma 32,
'-T.

Case (T_ABs): We are given I' + fix f(a:Ty)Ts = es : 2Ty — Ty for some f, x, T1, T» and es. By inversion,
we have I, f:(z:Ty - To),x:T1 + eo : To. By the IH, we have + T, f:(x:Ty - T3), 2:T;. By inversion of it,
FTland '~z : Ty = Ts.

Case (T_CAsT): We are given I’ + (T} < T2)£ 1 Ty — T for some 17, Ty, ¢ and z. Without loss of generality,
we can suppose that z is fresh. By inversion, we have I' + T7 and I' + T5. By the IH, we have + I". By
Lemma 32, T, x:T% + Ty. By (WT_FUN), we have I + o : Ty — T.

Case (T_ApPP): We are given I' + ej ey : Th{ea/x} for some Ty, ez and z. By inversion, we have I' + e; :
- Ty and I' + ey : T7. By the IH, we have - ' and I' + x : T7 — T5. By inversion of the latter, we
have T, x:T} + Ty. By Lemma 33, we have T + T, {ea/x}.

Case (T_PAIR): We are given I’ + (e1,eq) : a:Th x 15 for some ey, e, ¢, T1 and Th. By inversion, we have
[,z:Ty - Tb. By the IH, + T, x:Ty. By inversion of it, we have — I'. Since I',z:T7 + T5, we finish by
(WT_PROD).

Case (T_ProJjl): We are given I' + €’.1 : T for some e’. By inversion, we have T' + €’ : :T' xT" for some z
and 7. By the IH, we have - I' and I" + x:T' x T”. By inversion of the latter, we have I' + T.

Case (T_PRr0J2): we are given I' + ¢'.2 : Ty {e'.1/z} for some €', T5 and z. By inversion, we have I' + ¢ :
x:T1 x Ty for some T7. By the IH, - I' and I'' + a:T} x Ts. By inversion of the latter, we have I', 2T +~ T5.
Since I' + €’ : 27y x Ty, we have I + ¢’.1 : T} by (T_ProJ1). By Lemma 33, we have I' - T5 {e’.1/x}.

Case (T_CTR): We are given I' - C(eq)es : 7{ey) for some C, ey, ez and 7. By inversion, we have I' + 7(ey).
By the IH, we have + T'.

24

Case (T_MATCH): We are given I' + matcheqwithC; z; — eil : T for some eq and C; z; — eiz. By inversion,
we have I' + T. By the IH, we have + T

Case (T_IF): We are given I" + if e; thenegelsees : T for some eq, e5 and e3. By inversion, we have I' + eg : T.
By the IH, we have - "'and I' + T.

Case (T_WCHECK): We are given I' = (({2:T} |e1},)¢ : {2} |e1} for some x, Ty, ey, e and £. By inversion,
we have - I' and @ + {2:71|e1}. By Lemma 32, we have I' + {z:11|e1}.

Case (T_ACHECK): We are given I' +~ ({x:T1|e1},e2,v) ¢ {21 |e;} for some z, Ty, ey, ez, v and £. By
inversion, we have + I and @ + {x:T} |e; }. By Lemma 32, we have T + {z:T} |e; }.

Case (T_Conv): By inversion, we have - I" and @ + T. By Lemma 32, we have I + T.

Case (T_FORGET): We are given I' + v : T for some v. By inversion, we have + ' and @ + v : {a:T'| e} for
some z and e’. By the IH, @ + {a:T'|e’}. By inversion of it, we have @ + T. By Lemma 32, T + T.

Case (T_EXACT): We are given I' + v : {z:T"|€e’} for some v, z, T' and e’. By inversion, we have + I' and
@ + {zT"|e'}. By Lemma 32, we finish.

2. By case analysis on the well-formedness derivation.

Case (WT_BASE): We are given I' + Bool for some Bool. By inversion, we have + T

Case (WT_FuUN): We are given I' + = : Ty — Ty for some x, T} and T». By inversion, we have I' + T;. By

the TH, - T

Case (WT_REFINE): We are given I' + {2:T"|e'} for some z, T" and e’. By inversion, we have I' + T". By
the TH, - .

Case (WT_Prob): We are given I' + :T} x T3 for some x, Ty and T». By inversion, we have I' + T7. By the
IH, - T.

Case (WT_DATATYPE): We are given I' + 7(e) for some 7 and e. By inversion and the IH, we finish. O

Lemma 47. If Ty | {z:Tz|es}, then T || To.
Proof. By induction on Tj || {x:T2|e2}. There are only two cases where T} || {z:T%|ea} can be derived.
Case {x:T7]|e}} || {xT2|e2}: By inversion, we have T} || T5. By (C_REFINEL), {x:T7 |e}} || To.

Case (C_REFINEL): We are given {y:T7|e}} || {z:T2|e2}. By inversion, we have Ty || {x:Tz|ez}. By the IH, we
have TY || T». By (C_REFINEL), we finish. O

Lemma 48. If T} || Ta, then T || Ta {e/x} for any e and .
Proof. Straightforward by induction on T} || T5. O
Lemma 49 (Preservation). Suppose that @ + e : T.
(1) Ife ~ €', then @+ € : T.
(2) Ife — €', then@ + ¢ : T.
Proof.
1. By induction on the typing derivation.

Case (T_ConsT), (T_VAR), (T_-BLAME), (T_ABs), (T_CAsT), (T_PAIR), (T_CTR), (T_FORGET) or (T_EXACT):
Trivial because e does not step in the reduction relation.

Case (T_APP): We are given @ + e ey : To {ea/x} for some ey, es, To and x. Without loss of generality, we
can suppose that x is fresh. By inversion, we have @ + e : 17 - T5 and @ + ey : T} for some T;. By
case analysis on the reduction rule applied.

25

Case

Case

Case

Case

(R-BETA): We are given (fix f(x:17)Ty = e12) va ~ eiz{ve/z,fix f(x:1])=e12/f} for some f,
T{, T3, e12 and ve. Without loss of generality, we can suppose that f is fresh. By Lemma 40, we
have f:(xd] — Ty),z:T] + e12 : Ty and f ¢ FV(Ty) and ©:T] — Ty = =Ty — T» for some Ty.
Note that z (resp. f) does not occur in Ty (resp. 77 and T3). By Lemma 46 and inversion, we
have @ + x:T] - Ty, and thus @ + T7. Because @ + ey : 1] - Ty by Lemma 1 (symmetry) and
(T_Conv), we have x:T] + eja{e1/f} : Ty by Lemma 33. Since 77 = 7] by Lemma 35, we have
@ + vy : T by (T_Conv). By Lemma 33, & + e1a{e1/f,vo/x} : T5{ve/x} (note that e is closed).
Since Ty = Ty by Lemma 35, we have T {ve/2} = T5 {va/2} by Lemma 4 (3). Because @ + T {va/x}
by Lemma 46, we have @ + ej2 {e1/f,va/x} : To {va/x} by Lemma 1 (symmetry) and (T_CoNV).
(R_BASE): We are given (Bool < Bool)’ vy ~ vy for £ and vy. By Lemmas 41, 35 and 34, we have
Ty, = Ty = Bool. Since Ty {ea/x} = Bool and so & + v : Bool, we finish.

(R_-FuN): We are given

(y:Tll — T12 <~ yZT21 — T22>€ Vg ~r)\yTll()‘ Z:Tgl.(T12 <~ T22 {Z/y})e (Ug Z)) (<T21 <~ Tll)é y)

for some y, T11, Th2, To1, Tao, £, v2 and z such that z is fresh. By Lemma 41, we have & + y:T11 — 112,
@+ yToy = Tog, 111 = Tha || y:T21 = Tao and z:(y:To — Tae) = (y:T11 = Th2) = a1y - To. Note
that = does not occur in y:7T7; — T12. By inversion of derivations, @ + 111, @ + To1, y:111 + Tio,
Y1 + Too, Thy || To1, and Tha || Tho.

Since T || Th1 by symmetry of the compatibility relation, we have @ + (Ty < TH)@ : T — To
by (T_CasT). Since @ + Ti1, we have y:Ty; + (T <= Ti1)* + Ty — Tp; by Lemma 32. Since
yT1 + y : Ti1 by (T_VAR), we have y:T1; + (To < Tu)zy : Ty by (T_App).

By Lemma 35, y:T51 = The = Ty and y:T11 — T12 = T, and thus, by Lemma 35 (1), Ty = y:Ty, — Tos
and Ty = y:17; — TY, for some T3, T5,, 11, and T7,. Since @ + vy : y:Tsy > Thy and @ + y:Tsy — Tha,
we have @ + vy : y:To1 — The by Lemma 1 (symmetry) and (T_CoNV). We have 2:T51 + vy @ y:To; —
T5o by Lemma 32, and thus 2:T5; + vy 2z : Tos {2/y} by (T_VAR) and (T_ApP).

Since y:Ts + The, we have 2Ty, y:To1 + Toe and thus y:Tiq, 2:Te; + Tee {z/y} by Lemmas 33 and
32. Since y:T1,2:T2; + Ti2 by Lemma 32, and Tys || Ta2 {2/y} by Lemma 48, we have y:T11, 2751 +
<T12 < T59 {Z/y})e : Too {Z/y} - Tis by (T,CAST).

By Lemma 32 and (T_App), 4Ty, 2151 + (Tia < Too {z/y})* (v22) : Tia. By Lemma 32 and
(T_ABS), we have y:Ty1 = A2To1.(Tie < Too {z/y}) (v22) : Toy — Tip. (Note that z does not
occur T1o.) Since y:T11 + (To <= Tn)ey : To1, by (T_APpP) we have y:T11 + (AzT91.(T12 <
Tz {2[y})" (v22)) ((To1 < T11)*y) : Thz. By Lemma 32 and (T_ABS), @ + Ay:T11.(\ 2T (Tio <
T {2/y})" (v22)) ((Tor < Ti1)") = (y:Ti1 = Tha).

Since y:T11 — T12 = To, we have (y:T11 — Ti2) {va/x} = To {ve/x} by Lemma 4 (3). Since (y:T11 —
Ti2) {ve/z} = yT11 > Ti2 and @ + T {ve/z} by Lemma 46, we finish by (T_Conv).

(R-PrOD): Similarly to the case for (R_FUN). We are given

(y:T11 x Thg <= y:To1 x Taz) (vi,v2) ~ (AyTu1.(y, (Thz <= Taz {v1/y}) v2)) ((Th1 <= To1)* v1)

for some y, T11, Tho, To1, Tao, ¢, v1 and vo. Without loss of generality, we can suppose that y is
fresh. By Lemma 41, we have @& + y:T11 x T12 and @ + y:To; x Toy and y:T11 x Tho || y:121 x To2 and
x:(y:To1 x Tag) = y:T11 x Ty = Ty - Ty. Note that « does not occur in y:T7; x T1o. By inversion of
derivations, g+ T11 and @ + Tgl and y:Tll = T12 and yZT21 = T22 and T11 || T21 and T12 || TQQ.

By Lemma 42, we have @ + v; : Ty and @ + vy : Ty {v1/y} and y:Ty, + Tay and y:Ty, x T5y
unref(Ty) for some Ty, and T3,. Since y:T51 xThy = T by Lemma 35, we have y:Th1 x Tho
YTy, x Ty, and thus Ty = T5; and The = Ty, by Lemma 36. Since @ + Th1, we have @ + vy : Ty by
Lemma 1 (symmetry) and (T_CONV). Therefore, we have @ + (Ty1 < To1) vy @ Thy by (T_CAST)
and (T_App).

Since y:To; + Too and @ + vy : Toy, we have yT1; + Th {v1/y} by Lemmas 33 and 32. By
Lemma 48, Thy || Too {v1/y}. By (T_CAST), we have y:Th; + (Tha < Tog {v1/y})¢ : Tao {v1/y} — Tho.
Since Thy = Ty,, we have Ty {v1/y} = Ty, {v1/y} by Lemma 4 (3). Since @ + Tha{vi/y} by
Lemma 33, we have @ + vg : T {v1/y} by Lemma 1 (symmetry) and (T_-Conv). By Lemma 32
and (T,APP), y:Tll [(T12 = T22 {1}1/y}>Z Vo ¢ T12.

Let z be a fresh variable. Since z:Ty1,y:T11 + (Ti2 < Taz {v1/y}) ve : Tio by Lemma 32, we have
2Ty = ((Tha < Too {v1/y}) va) {2/y} : Tia{z/y} by Lemma 33. Since 2:Ty; + z : T1; by (T_VAR),

26

Case

Case

Case

Case

Case

and z:Ty1,y:T11 + Tio by Lemmas 32 and 33, we have 2Ty + (2, ((Tha < Tao {v1/y}) v2) {2/y}) :
y:T11 x Th2 by Lemma 32 and (T_PAIr). By Lemmas 32 and 33,
YT - (2, ({Tas <= T {nfy})) {2/9)) {wl2} + (iTon x Too) (=), that s,

yTi1 = (y, ((Thz < Toz {v1/y}) v2)) + (yTi1 x Tha).

By Lemma 32 and (T,ABS), [)\y:Tll-(:% <T12 <= Ty {vl/y})gm) Ty -yl xThs. By
(T,APP), = ()\yiTll.(y, <T12 <= The {’Ul/y}y ’02)) (<T11 = T21>e ’l)1) : y:Tll x 1.

Since y:T11 xTi2 = To by Lemma 36, we have (y:T11 x Th2) {va/z} = To{va/xz} by Lemma 4 (3).
Since (y:T11 x Ti2) {vafz} = y:T11 xT12 and @ + T {ve/z} by Lemma 46, we finish by (T_-CoNvV).
(R_FORGET): We are given (T} < {y:T5|es})va ~ (T] < T5) vy for some T}, y, Ty, €5 and vs.
Without loss of generality, we can suppose that y is fresh. By Lemma 41, we have @ + T| and
@+ {yT5|eh} and TY || {y:Ts|esy} and z:{y:Ts|es} — Ty = x:Ty — T». Note that = does not occur
in Ty. By inversion and Lemma 47, @ + Ty and 77 || T5.

By (T_CAST), we have @ + (T} < T3)¢ : Ty - T}. Since {y:T4|e,} = T) by Lemma 35, we have
@+ vy : {y:T5]es} by Lemma 1 (symmetry) and (T_CoNv). By (T_FORGET), @ + vy : Ty. Thus,
@+ (T] < T5) vy : T}. Since T| = Ty by Lemma 35, T} {va/2} = Ty {v2/z} by Lemma 4 (3). Since
T{ {vy/x} = T}, we have @ + (T| < T3) vy : To {v2/x} by Lemma 46 and (T_CONV).
(R_PRECHECK): We are given ({y:T]|e}} < To)ova ~ ({y:T] | e}y, (T] < T3 va))* for some y, T,
e}, Ts, £ and vy. Without loss of generality, we can suppose that y is fresh. By Lemma 41, we have
@+ {yT]|el} and @ + T3 and {y:T7 | e} || T and a:Ty — {y:T} |e}} = x:T1 - T». Note that x does
not occur in {y:77 |e}}. By inversion and Lemma 47, @ + T7 and TY | T5.

By (T_CAsT), we have @ + (T] < T3) : Ty - TJ. Since Ty = T by Lemma 35, we have
@+ vy : Ty by (T_CoNv). Thus, by (T_ApPpP), @ + (T] < T5)‘vs : T{. By (T_-WCHECK),
@ = (({yT] ey (T < To)ev))’ « {yT]|e}}. Since {y:T]|e}} = T by Lemma 35, we have
{yTi[er} {va/w} = To{vafa}. Since {yT7 |1} {vafa} = {yT7|er}, we have @ = ({y:T7[e1}, (T] <
T5Y v)t Ty {va/x} by Lemma 46 and (T_ConvV).

(R-DATATYPE): We are given

{rifer) <= males)) Cale)v ~ CUENUTY {el /i } < T3 {e3/y2})" v)

for some T, €}, 1o, €, £, Ca, €', v, C1, T, y1, Ty, and ys such that 7 # 75 or 7y is not monomor-
phic, and C; = 6({Ti(e}) < Toleh)) Cafe’)v) and, for i € {1,2}, ArgTypeOf(r;) = yiT! and
CtrArgOf(C;) = T/'.

Since the constructor choice function ¢ is well-formed, we find that C; € CompatCirsOf(r,Cs), that
is, Cy € CtrsOf(m) and Ty | T5' from well-formedness of the type definition environment. Also,
y1:1y + T) and yo:Ty + T4 from well-formedness of the type definition environment.

By Lemma 48, T{"{e|/y1} | T4 {€5/y2}. By Lemma 41, we have @ + 7i(e}) and @ + m(e}) and
x:mo(eh) = m1(e}) = Ty — Ty. Note that 2 does not occur in 71(e}). By inversion of derivations, and
Lemma 33, we have @ + T} {e}/y1} and @ + Ty {e}/y=2}. Thus by (T_CasT), @ + (T {el /1 } <
Ty {ebfu}) : T {ebfun} » TV (€4 fon)

By Lemma 43, @ + v : To' {€'[y2} and mo{e’) = unref(T1). Since 7o{e5) = unref(T1) by Lemmas 35
and 39, we have 7o(e’) = 72(e}) by Lemma 35 and Lemma 1 (transitivity). Thus, ¢’ = e} by
Lemma 37. Since Ty {e'/y2} = Ty {e/y2} by Lemma 3 (3), we have @ + v : To {e5/y2} by
(T_Conv). By (T_App), we have @ ~ (T} {e}/y1} < Ty {eb)y=}) v + T} {€|/y1}. By inversion of
@ + 71{e}), we have @ + e} : T]. Thus, by (T_CTR), @ + Ci{e})((T] {e}[y1} < Ty {es]y2}) v) :
7'1(6,1).

By Lemma 35, we have 71 (e]) = Ts. Since 71 (e}) {Ca(e')v/z} = 11{e]), we have T1{e1) = T {Ca{e’)v/z}
by Lemma 4 (3). By Lemma 46 and (T_CONV), we finish.

(R_DATATYPEMONO): We are given (7 < 7)‘vy ~ vy for some 7, ¢ and vy. By Lemma 41,
x:7 > 7 = x17 - T5. Note that x does not occur in 7. By Lemma 35, 7 = T} and 7 = T5, and so
Ty = Ty by Lemma 1. Since Ty {va/x} = Ty by Lemma 46, Ty = T2 {ve/x} by Lemma 4 (3). Since
@+ vg : T1, we have @ + vy : Ty {va/x} by Lemma 46 and (T_CoONV).

(R_DATATYPEFAIL): We are given (7i(e}) < Ta(eh))*
Lemma 46 and (T_BLAME), we finish.

vy ~ € for some 11, €, T2, €5, £ and ve. By

27

Case (T_ProJ1): We are given @ + e1.1 : T for some e;. By inversion, we have @ + e; : @:T x Ty for some x
and T,. The term steps only by (R_-PROJ1): (v1,v2).1 ~ vy for some v; and vy such that e; = (vq,v2).
By Lemma 42, we have @ + vy : T and x:T] xTy = x:T xT; for some T] and Ty. By Lemma 36, we
have T} = T. Since @ + T by Lemma 46, we have @ + v : T by (T_Conv).

Case (T_PR0J2): We are given @ + e5.2 : T {es.1/x} for some ey, T» and z. By inversion, we have @ + ey :

x:Ty x Ty for some T;. The term steps only by (R_PR0J2): (v1,v2).2 ~ v for some v; and vs such that
€y = (’U1,112).
By Lemma 42, we have @ + vg : Ty {vi/x} and x:T| xTy = xTy xTy for some T and Tj. Since
(v1,v2).1 — wv1 by (E_RED)/(R-PRrOJ1), we have Ty {(v1,v2).1/x} = Ty{vi/x} by Lemmas 2 and
3 (3). Since Ty = T5 by Lemma 36, we have Tj {(v1,v2).1/z} = To {(v1,v2).1/x} by Lemma 4 (3), and
thus Ty {v1/x} = To {(v1,v2).1/2} by Lemma 1 (symmetry and transitivity). Since @ + T {(v1,v2).1/2}
by Lemma 46, we have @ + vo : T {(v1,v2).1/x} by (T_ConNv).

Case (T_MaTcH): We are given @ + match egwithC; x; — eiie{l’""n} : T for some eg and C; x; — eiie{l """ n}.
By inversion, we have @ + ¢eg : 7(e”}) and @ + T and CtrsOf(7) = ale{l’m’n} and ArgTypeOf(7) =
yT" and, for ¢ € {1,....n}, CtrArgOf(C;) = T; and x;:T;{e"/y} + e; : T. The term steps only by

(R_MATCH):
match C; (¢"")o' with Gy z; > ey - ™

~ e; {v'[x;}

for some j € {1,...,n}, €', v' such that e = C;j(e"")0".
By Lemma 43, we have @ + o' : T;{e"’ [y} and 7(e"") = 7(e”). Since " = €" by Lemma 37, we
have T; {e"' [y} = Tj{e" [y} by Lemma 3 (3). Since x;:T; {€"/y} + e; : T, we have & ~ T; {€"/y} by
Lemma 46 and inversion. Thus we have @ + v’ : T; {e" [y} by (T_CoNvV). Since x; does not occur in T,
we have @ + e; {v'/z;} : T by Lemma 33.

Case (T_IF): We are given @ + if eg theneselsees : T for some eq, es and e3. By inversion, we have @ + es : T
and @ + ez : T. Only two reduction rules can be applied to the term: (R_IFTRUE) and (R_IFFALSE).
The case of (R_IFTRUE) follows from & + ey : T, and (R_IFFALSE) from @ + e3 : T.

Case (T_WCHECK): We are given @ + (({z:T1 |e1},e2))* : {@:T1 |e;} for some x, Ty, e1, ea and £. By inversion,
we have @ + {z:T)|e;} and @ + ey : Ti. The term steps only by (R_CHECK): {({z:T}|e1},v2))* ~
({2:Ty |1}, e1 {va/z},v2)t for some vy such that ey = vy,

From @ + {x:Ty|e1}, we find that 2:7} + e; : Bool. By Lemma 33, @ + e; {va/x} : Bool. Because
e1 {vafz} —* ey {ve/x}, we finish.

Case (T_ACHECK): We are given @ + ({z:T1|e1},e2,v)¢ : {@:Ty|ey} for some z, Ti, e1, ez and v. By
inversion, we have @ + {x:T}|e1} and @ + v : T} and e; {v/x} —* es. Only two reduction rules can
be applied to the term: (R_OK) and (R_FAIL). The case of (R_-OK) follows from (T_EXAcCT), and
(R_FAIL) from (T_BLAME).

Case (T_Conv): By inversion, we have @ + e : T and 7" = T and @ + T for some T’. If e steps to €', then
we have @ + ¢’ : T' by the IH. By (T_CoNvV), we finish.

2. By induction on the typing derivation. If e — {i¢ by (E_BLAME), then we finish by Lemma 46 and
(T_BLAME). In the following, we suppose that e steps by (E_RED).

Case (T_ConsTt), (T_VAR), (T_BLAME), (T_ABS), (T_CaAsT), (T_FORGET) or (T_EXAcCT): Trivial because
e does not step in the evaluation relation.

Case (T_ApPP): We are given @ + ejey : Th{ea/x} for some e, ez, To and z. By inversion, we have
e :xd] - Ty and @ + ey : Ty for some T7.
If e; is not a value, then e; — €] for some e} (noting e; is not a blaming; if so, (E_BLAME) is applied
to ey ez, but it is contradictory). By the IH, @ + €} : T3 — T» and thus @ + efes : Th{es/z} by
(T_App).
If e; is a value but e is not, then es — ¢f for some e;,. By the TH, @ + ¢} : T} and thus @ +
ereh + To{es/x} by (T_App). Because Th{ej/x} = To{ez/x} by Lemmas 2, 3 (3) and 1, we have
@+ erey: Th{es/r} by Lemma 46 and (T_CONV).
Otherwise, if e; and ey are values, then we finish by the case (1).

28

Case

Case

Case

Case

Case

Case

Case

Case

Case

(T_PAIR): We are given @ + (e1,ez) : Ty x Ty for some ey, e, x, T1 and T5. By inversion, we have
gre Tiand @ F ey : To{er/a} and Ty + Ts.

If e; is not a value, then e; — ¢} for some e]. By the IH, @ + e} : T} and thus @ + Tx{e}/z} by
Lemma 33. Because Ty {ei/z} = T>{e}/x} by Lemmas 2 and 3 (3), we have @ + ey : To{e}/x} by
(T_Conv). Thus, by (T_PAIR), @ + (e],e2) : a1 x Th.

If e; is a value but ey is not, then es — €} for some e}. By the IH, @ + e : Ta {e1/x} and thus
2+ (e1,eh) : w1y xTs.

Otherwise, if e; and ey are values, then so is (e, e3).

(T-ProJ1): We are given @ + e;.1 : T for some e;. By inversion, we have @ + e : x:T x Ty for some
x and T5. If ey is not a value, then e; — e} for some e]. By the IH, @ + e} : :T xT, and thus
@+ e}.1: T by (T_.PrRoJ1). Otherwise, if e; is a value, we finish by the case (1).

(T_PrOJ2): We are given @ + e3.2 : Ts {e2.1/x} for some eq, To and x. By inversion, we have @ + es :
x:Ty x Ty for some Tj. If es is not a value, then ey — e/, for some ef. By the IH, @ + e} : :T x T, and
thus @ + e,.2 : Th {e5.1/x} by (T_PR0J2). Because Ty {e}.1/x} = T {es.1/x} by Lemmas 2, 3 (3) and
1, we have @ + €}.2 : Ty {e3.1/z} by Lemma 46 and (T_CoNv). Otherwise, if es is a value, we finish by
the case (1).

(T_IF): We are given @ + ifejthenegelsees : T for some e, es and e3. By inversion, we have @ +
e1 : Booland @ + ey : T and @ + e3 : T. If e; is not a value, e — ¢} for some ej. By the IH,
@ + e} : Bool and thus @ + ife]theneselsees : T by (T_IF). Otherwise, if e; is a value, then we finish
by the case (1).

(T_CTR): We are given @ + C(ej)es : 7(e1) for some C, ej, e3 and 7. By inversion, we have
TypSpecOf(C) = Ty » To » 7(z) and @ + e; : Th and @ + eg : To{er/x} and @ + 7(e1). If es
is not a value, then ey — ¢} for some ef. By the IH, @ + e}, : Tz {e1/x} and thus @ + C(ei)eh : 7(e1)
by (T_CTR). Otherwise, if eq is a value, then so is C{ej)es.

(T_MATCH): We are given @ + match e with C'; z; — eii : T. By inversion, we have @ + ¢p : 7(e")
and @ + T and CtrsOf(r) = C;' and ArgTypeOf(7) = yT" and, for all i, CtrArgOf(C;) = T; and
ziTi{e"[y} + e; : T. If eg is not a value, then eg — e for some ej. By the IH, @ + ej : 7(e”) and
thus @ + matchejwithC; z; — e; : T by (T_MATCH). Otherwise, if eq is a value, then we finish by the
case (1).

(T_-WCHECK): We are given @ ~ (({2:T} |e1},ea)) : {2:Ty | ey} for some z, T}, €1, e5 and £. By inversion,
we have @ + {z:T}|e1} and @ + ez : Ty. If es is not a value, then es — €} for some ef. By the TH,
@+ ey o Ty and thus @ + ({1 |e1},eb))’ : {71 |e1} by (T-WCHECK). Otherwise, if es is a value,
then we finish by the case (1).

(T_ACHECK): We are given @ + ({z:T1|e1},e2,v)’ : {2} |e1} for some z, Ty, €1, e, v and £. By
inversion, we have @ + {x:Ti|e;} and @ + v : T} and @ + es : Bool and e; {v/z} —* eq. If ey is
not a value, then ey — ¢j for some e}. By the IH, @ + €} : Bool. Because e; {v/z} —* e}, we have
@+ ({x:Ty|e1},eh,v) + {a:Ty|e1}. Otherwise, if e; is a value, then we finish by the case (1).

(T_Conv): By inversion, we have @ + e : 7" and 7" = T and @ + T for some T". Since e — €', we
have @ + €’ : T’ by the TH. By (T_ConvV), @ + €' : T. O

Definition 6. We define a function refines from types to sets of pairs of a bound variable and a term, as follows.

refines ({z:T'| e}) {(z,e)} urefines(T)
refines (T) = o (If T is not a refinement type.)

In addition, we write — v : refines(T) if (1) v is a closed value, and (2) for any (x,e) € refines(T), e{v/z} —*

true.

Lemma 50.

(1) If Ty = Ty, then + v : refines(Ty) iff - v : refines(T3).
(2) If Ty = Ty, then + v : refines(Th) iff - v : refines(Ty).

29

Proof.

1. From T} = T5, there exist some T, z, €] and e} such that T} = T {e}/x} and Ty = T'{e}/x} and €| — €.
By induction on T

Case T = Bool, y:T] — T, y:T] x T3, or 7(e): Obvious because refines(T1) and refines(T3) are empty.

Case T = {y:T"|e’'}: Without loss of generality, we suppose that y is a fresh variable. Since T'{e}/x} =
T’ {e}/x}, it suffices to show that e’ {e]/x} {v/y} —* true iff ¢’ {e}/x} {v/y} —* true by the IH. For
i € {1,2}, since v and e} are closed values (recall that the evaluation relation is defined over closed

‘ierms)7 \évg have e’ {e}/x} {v/y} = ' {v/y}{e;/xz}. Since ' {v/y}{ej/xz} = € {v/y}{e,/x}, we finish by

2. By induction on T} = T5.

Case Ty = Ty: By the case (1).
Case transitivity and symmetry: By the TH(s).

Lemma 51. If @ + v : T, then + v : refines(T).
Proof. By induction on @ + v : T.
Case (T_ConsT), (T_ABS), (T_CasT), (T_PAIR) or (T_CTR): Obvious because refines(T") = {}.

Case (T_VAR), (T_BLAME), (T_App), (T_ProJ1), (T-PrOJ2), (T_-MATCH), (T_IF), (T-WCHECK) or (T_ACHECK):
Contradictory.

Case (T_CoNv): By inversion, we have @ + v : T” for some 7" such that 77 = T'. By the IH and Lemma 50 (2),
we finish.

Case (T_FORGET): By inversion, we have @ + v : {z:T'|e} for some z and e. By the TH, we finish.

Case (T_ExAcCT): We are given @ + v : {z:T"|e'} for some x, T’ and e’. By inversion, we have @ + v : T’ and
e’ {v/x} —* true. Since refines({x:T"|e'}) = refines(T") u {(x,e")}, we finish by the TH. O

Theorem 1 (Type Soundness). If @ + e : T, then
1. e —* v for some v such that @ + v : T and + v : refines(T);
2. e —* ¢ for some {£; or
8. there is an infinite sequence of evaluation e — €1 —> -

Proof. Suppose that e —* ¢’ for some e’ such that ¢’ cannot reduce. We show the theorem by mathematical
induction on the number of evaluation steps of e.

1. 0: We know that e cannot reduce. Since & + e : T, we find that e is a value or a blaming by Lemma 45.
Moreover, if e is a value, then + e : refines(T) by Lemma 51.

2. i+ 1: We are given ¢ — ¢’ —* ¢’ for some ¢”. By Lemma 49 (2), @ + €¢” : T and thus we finish by the
TH. O

30

Trans

input:
fix f(y:T,z:int list) = matchzwith[] > €1 | 2120 > €9
returns:
1 let 7 be a fresh type name in
2 let {Tz}z =

.) (eopt,€) € GenContracts(ez),| .
{zl.lnt x{z2:Tp | ep} (T, ¢0) = Aua(T, copt, €) in
3 let D and D; be fresh constructor names, and

z be a fresh variable in

typer (y:T) = D || [] : {zunit|ex}| D; [() : T,

where

Auz (T, eopt, €) =
let e’ = e{fix f(y:T,z:int list)=.../f} in
match eqpy with
| Somee” — (T(e"),let z5 = (int list <= 7(e"))
| None — (int list,e’)

W

t2pine’)

Figure 3: Translation.

5 Translation

We assume two things through this section. First, type definition environments include int list. Second, we make
type definition environment as well as constructor choice function explicit sometimes; we write (X,0);T + e : T,
(X,0);T + T, and (X,9) + T to expose both in typing judgments and § - e; —> ez and § + e; —* ea to expose
constructor choice functions in evaluation. We still assume that type definition environments and constructor choice
functions are well formed.

5.1 Definition
We define a class of predicate functions which can be given to the translation.

Definition 7. A recursive predicate function F = fix f(y:T,a:int list) = matchaxwith[] = e; | 21520 — eg s
translatable under X if

e (X,2);0+ F : T —int list > Bool,

o (X,9);y T+ ey : Bool, and

e (X,9); [T — int list - Bool, y:T, z1:int, zo:int list - e : Bool.
We omit % if it is clear from the context or not important.

The empty constructor choice function means that F' does not contain run-time terms. We refer to metasymbols
(f, v, z, ey, etc.) included by definition of F' as ones with subscript F. For example, y in F is written as y* when
we want to emphasize that it is from F'.

The translation algorithm Trans is shown in Figure 3, where uses the auxiliary function GenContracts defined
in Figure 4.

5.2 Static Correctness

We first show that the new datatype generated from a translatable function by the translation algorithm is well
formed.

Lemma 52 (Type Definition Weakening). Let ¢ be a type definition.
(1) If (£,6);T + e : T, then (¥,6,;T e : T.

31

GenContracts (true) = {(None, true)} GenContracts (false) = @

GenContracts (if f e1 22 thenes else es)

GenContracts (if e; then ez else e3)

GenContracts (match eg with C; x; — ¢,

{(Someey,e2)} U
{(eopt., if f e1 zathenfalseelsees) | (eopt,eh) € GenContracts(es)}
(if FV(e1) € {y,21})

{(eopt, if €1 thenej elsefalse) | (eopt, €5) € GenContracts(ez)} U
eont, If €1 then false else e/, eont, k) € GenContracts(es
P 3 pt) €3
(if a term of the form fezs occurs in es or e3)

i1e{l,...,n}

) = Ujeqr,....n1{(eopt, match eq with C 2 — e;ie{l’m’n}) |

(€opt;€;) € GenContracts(e;) AVi #j. e; = false}
(if a term of the form fezs occurs in some e;)

GenContracts(e) = {(None,e)} (otherwise)

Figure 4: Generation of base contracts and argument terms to a manifest datatype.

(2) If (£,6);T +~ T, then (X,¢,0);T + T.
(3) If (%,8) + T, then (X,c,8) + T.
Proof. Straightforward by induction on each derivation. O

Definition 8 (Free Variables in Typing Contexts). We write FV (') to denote the set of free variables in a typing
context I'. Formally, it is defined as follows:

FV (@) = g
FV([,z:T) = FV(I)u(FV(T)\dom (T'))

where dom (I') means the set of binding variables in T.
Lemma 53 (Strengthening).
(1) If T1,2:T".To - e: T and x ¢ FV(T'2) UFV (e), then T1,To +e: T.
(2) If T1,2:T".To + T and x ¢ FV(T2) UFV (T), then T'1,Ta + T.
(3) If v T1,2T",Ty and ¢ FV (I'), then - I'y,T5.
Proof. By induction on each derivation. The interesting cases are for (T_ABs), (T_APP) and (T-MATCH).
1. By case analysis on the rule applied last.

Case (T_ConsT): We are given I'1,z:T",T's + ¢ : Bool. By inversion, we have + I'y,x:T",T5. By the IH,
+ I'1,T2 and thus I'1, Iy + ¢ : Bool by (T_CONST).

Case (T_VAR): We are given I'1,2:7", Ty + y : T. By inversion, we have + I'1,2:7", Ty and y:T € T'y, 21", 5.
By the IH, + T'y,T's. We find that # y from = ¢ FV (y). Thus, T';,Ts + y : T by (T_VAR).

Case (T_BLAME): We are given I'y,z:T",T'y + f{¢ : T. By inversion, we have + I'y,z:T', Ty and @ + T. By
the IH, + I';,T'y and thus I'1,I's + ¢ : T by (T_BLAME).

Case (T_ABS): We are given 'y, x:T", Ty + fix f(y:T1):Ts = es : y:T1 — To. Without loss of generality, we can
suppose that f and y are fresh for z. By inversion, we have 'y, x:T", Ty, f:(y:T1 — T2),yT1 + eg : To.
Since x ¢ FV (I'2) UFV (fix f(y:T1)T» = e3), we find that x ¢ FV (D, f:(yT1 - T2),y:T1) UFV (e2).
Note that, thanks to type annotation 7% in the lambda abstraction, we can find x ¢ FV (T3). Thus, by
the TH, Ty, Ta, f:(y:Th = T2),y:Th + ea : To. By (T_ABS), we finish.

Case (T_CAsT): We are given I'y,z:T", Ty + (T} < Tp)* : Tp - Ty. By inversion, we have I'y,z:T",Ty + T}
and Ty, 27", Ty + Ty and T} || Ty. Since x ¢ FV (I'y) UFV ((Ty < Ty)Y), we find that = ¢ FV(I'y)u
FV (T1) UFV (T3). Thus, by the IHs, I'1,I's + T} and I'1, T’y + T». By (T_CAsT), we finish.

32

Case (T_ApPP): We are given I'y,x:T", Ty + ey es : To {e2/y}. By inversion, we have I'y, 27", T + ey : y:T) -
Ty and 'y, x:T", Ty + eg : Ty. Since z ¢ FV (I'3) UFV (eg e2), we find that o ¢ FV (I's) UFV (e1) UFV (e3).
Thus, by the THs, I'1,T'y + ey : y:Th = To and I'1,T's + ey : T1. By (T_APP), we finish.

Case (T_PAIR): We are given ', 27", Ts + (e1,e2) : y:T) x To. Without loss of generality, we can suppose
that y is fresh for x. By inversion, we have I'1,z:T", Ty + e; : Ty and T'y1,2:7", Ty + es : To {e1/y} and
Iy, x:T' Ty, yTy + To. Since x ¢ FV (I'2) UFV ((e1,e2)), we find that x ¢ FV (I's) UFV (e1) UFV (e2).
Thus, by the IHs, T'1,Ts + e; : T} and I'1,T'y + ey : Th{e1/y}. By Lemma 46, z ¢ FV (T1) U FV (T3).
Thus, by the TH, T'y, T, y:T7 + T. By (T_PAIR), we finish.

Case (T_Projl): We are given I'y,x:T",Ts + e1.1 : T. By inversion, we have I',x:T", Ty + ey : y:T1 x Th.
Since z ¢ FV (I's)UFV (e;.1), we find that x ¢ FV (Is)UFV (e1). Thus, by the TH, T'y,Ts + ey @ y:Ty x Ts.
By (T_-ProJl), we finish.

Case (T_ProJj2): We are given I'y,z:T", Ty + 2.2 : To{es.1/y}. By inversion, we have I'y,z:T", Ty + ey :
y:T1 xTy. Since x ¢ FV (I's) UFV (e2.2), we find that © ¢ FV (I's) UFV (e2). Thus, by the TH, T';, Ty +
es : y:Ty xTy. By (T_PROJ2), we finish.

Case (T_CTR): We are given [G1,z : T',G2| — Cele2 : tel]. By inversion, we have TypSpecOf(C) = y:T
Ty > 7(y) and T'1,z:7", Ty + e; : Ty and Ty, zT" . Ts + ex : To{e1/y} and T'1, 7", Ty + 7({e1). Since
x ¢ FV(I'2)UFV (C(e1)ez), we find that x ¢ FV (T'2)UFV (e1)UFV (e2). Thus, by the IHs, I';,T's + €1 : T}
and Fl,rg = T2 {El/y} and Fl,FQ = T(61>. By (T,CTR), we finish.

Case (T_MATCH): We are given I'y,z:T",T'y + matchegwith C; y; — eii : T'. We can suppose that each y; is
fresh for z. By inversion, we have I'1, 27", Ty + eg : 7(¢/) and I'1,z:7", Ty + T and CtrsOf(7) = C; and
ArgTypeOf(7) = yT" and for any i, CtrArgOf(C;) = T; and 'y, x:T", T, yiT; {€'[y} + e; : T. Since
x ¢ FV(Ty) uFV (matcheqwithC; y; > eil), we find that « ¢ FV (T'2) UFV (ep) uU; FV (e;). Thus, by
the TH, I';,T'y + eg : 7(¢’). By Lemma 46 and its inversion, = ¢ FV (¢’). From well-formedness of the
type definition environment, = ¢ FV (7;). Thus, by the IHs, for any i, I'1,T'9, y;:T; {€'/y} + e; : T. By
Lemma 46, = ¢ FV (T') (noting 7 has at least one constructor from well-formedness of the type definition
environment). By the IH, ',y + T. By (T_-MATCH), we finish.

Case (T_IF): We are given I'y,x:T",T's + if ej thenegelsees : Bool. By inversion, we have I'y, 227", Ts + €3 :
Bool and 'y, 2:7", Ty + ey : T and I'y,x:T", Ty + e3 : T. Since ¢ FV (I'y) UFV (if ey theneselsees), we
find that « ¢ FV(I's) UFV (e1) UFV (e2) UFV (e3). By the IHs, I';,Ts + e; : Bool and I'y,T's + eg : T
and I'1, Ty + e3 : T. By (T_IF), we finish.

Case (T_ACHECK): We are given I'y,z:T", Ty + ({y:T1|e1},ea,v)¢ : {y:T1|e1}. By inversion, we have
I,zT" Ty and @ + {yTi|e1} and @ - v : T} and @ + ez : Bool and e; {v/y} —* es. By the IH,
+ I'1,T9. By (T_ACHECK), we finish.

Case (T_WCHECK): We are given I'y, 27", Ty + ({y:Ti|e1},e2)’ + {y:Ti|e1}. By inversion, we have
I',zT" Ty and @ + {yT1|e1} and @ + es : Ty. By the IH, + I'1,T'5. By (T_ACHECK), we finish.

Case (T_Conv): By inversion, we have + I'1, 27", Ts and @ + e : 7" and T” = T and @ + T. By the IH,
+I'y,Ts. By (T_CoNvV), we finish.

Case (T_FORGET): We are given I'y,x:T", Ty + v : T. By inversion, we have + T'y, 27" Ty and @ + v :
{y:T'|e'}. By the IH, + I'1,T'5. By (T_FORGET), we finish.

Case (T_ExAcT): We are given 'y, 27", T2 + v : {y:T"|e”}. By inversion, we have + T'y,z:7", Ty and
gruv:T"and @ + {y:T"|e"} and e” {v/y} —* true. By the IH, + I'1,I'5. By (T_EXACT), we finish.

2. By case analysis on the rule applied last.

Case (WT_BASE): We are given I'y,2:T", Ty + Bool. By the IH and (WT_BASE), we finish.

Case (WT_FUN): We are given I',x:T", Ty + y : T} - To. Without loss of generality, we can suppose
that y is fresh for z. By inversion, we have I'y,z:7",I's + T1 and I'y,z:T', T, y:Ty + Tb. Since z ¢
FV (Fg) uFV (yZTl g Tg), we find that x ¢ FV (Fg) uFV (Tl) uFVvV (Tg) By the IHb, Fl,Fg = T1 and
Fl,FQ,y:Tl [TQ. By (WT,FUN), we finish.

33

Case (WT_ProD): We are given I'1,2:T", Ty + y:T7 x Ty. Without loss of generality, we can suppose that y
is fresh for z. By inversion, we have I'y,2:7", Ty + T} and 'y, a7, Ty, y:Ty + Ty. Since x ¢ FV (I'2) U
FV (y:TI X T‘Q)7 we find that = ¢ FV (FQ)UFV (T]_)UFV (Tg) By the IHS, F17F2 = Tl and Fl,rg, yZTl = TQ.
By (WT_PROD), we finish.

Case (WT_REFINE): We are given I'y,z:T" Ty + {y:T"|e"”}. Without loss of generality, we can suppose
that ¥ is fresh for z. By inversion, we have I'y,z:7",I's + T" and I'y,z:T",T5, y:T" + €” : Bool. Since
x ¢ FV(D2)uFV ({y:T" |e"}), we find that « ¢ FV (I'2)UFV (T")UFV (e”). Thus, by the IHs, I'y, Ty + T
and I'y, Ty, y:T" + ¢ : Bool. By (WT_REFINE), we finish.

Case (WT_DATATYPE): We are given I'y,2:T", Ty + 7(e’). By the IH and (WT_DATATYPE), we finish.
3. By case analysis on the rule applied last.

Case (WC_EMPTY): Obvious.

Case (WC_EXTENDVAR): If 'y = @, then, by inversion, we have + I'y and thus we finish. Otherwise, if T'y =
T, y:T", then, by inversion, + 'y, 27", T4 and T'y, 7", T + y : T”. By the IHs and (WC_EXTENDVAR),
we finish. O

Lemma 54 (Application Inversion). IfI' + ejea : T, then
e '+ e xTy =Ty,
e I'+ey: Ty, and
o To{egfax} =T

for some x, Ty and Ts.

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only two rules can be applied to the
application.

Case (T_APP): Since T' = Ty {ea/x}, we have T {ea/2} = T by Lemma 1 (reflexivity). By inversion, we finish.

Case (T_Conv): By inversion, we have @ + ey es : 7" and 77 = T for some T”. By the IH, we have @ + e; : a:T} -
Tr and @ + es : Ty and Ty {ea/x} = T'. We have Ty {es/x} = T by Lemma 1 (transitivity). By Lemma 32,
we finish. 0

Lemma 55 (Variable Inversion). IfT + x : T, then+ T and x:T € T.
Proof. Obvious because only (T_VAR) can drive I' + 2 : T O

Lemma 56. Let F be a translatable function, e be a subterm of e, I'y = f¥:TF - int list - Bool, y©:TF, 2, iint,
and Ty be a typing context. If T'1,T'y + e : Bool and (eqpty, €0) € GenContracts(e), then:

e for any €', if eopty = Somee’, then yITF 2 Fint - e 2 TF; and
e I'y,I's + e : Bool.
Proof. By structural induction on e with case analysis on I';,I's + e : Bool.
Case (T_ConsT): Obvious because GenContracts (true) = {(None,true)} and GenContracts(false) = @.

T_VAR), (T_ABs), (T_Cast), (T_AppP), (T_PAIR), (T_PrOJ:) for i € {1,2}, (T_CTR), (T_-FORGET),

Case (
(T_Exact), (T_BLAME), (T_ACHECK), and (T_WCHECK): Obvious because GenContracts(e) = {(None,e)}.

Case (T_IF): We are given I';,T'y + ifejtheneselsees : Bool. By inversion, we have I'1,I's + e; : Bool and
I'1,T'y + es : Bool and I'1,I's + e3 : Bool. There are three cases which we have to consider.

34

Case e; = fFe} 2z where FV (eh) € {y¥, 1"} Then,
GenContracts(e) = {(Somee}, e2) Yu{(eopt, if 1 €} zthhen falseelsees) | (€opt,€5) € GenContracts(es)}

We first show y/TF 2 Ftint + e} : TF. Since T'1,Ty + fFe) zzF : Bool, we find that I';,I'y + fF :
xTy - Ty and T'1,T9 + €] : Ty for some z, Ty and T3, by applying Lemma 54 twice. By Lemma 55,
w1y - Ty = TF — int list - Bool since ff::T) - To € Ty. Thus, Ty = TF and so I'1,T'y + ¢} : TF.
Since FV (e}) ¢ {y¥', 217}, and fF' ¢ FV(TT) by Lemma 46, we have y7:TF 2 Fiint + ¢} : TF by
Lemma 53 (1). In addition, we have I';,I's + es : Bool from the premise of the typing derivation.

Let (eopt,€5) € GenContracts(es). It suffices to show that (1) for any €', if eopt = Somee’, then
yPTF 2 Fint — ¢+ TF and (2) Ty, Ty v if fF el 2" thenfalseelsee : Bool. The case (1) is shown
by the TH. The case (2) is obvious by (T_IF) because I';,I'y + false : Bool by Lemmas 46 and 32 and
I't, Ty + €5 : Bool by the TH.

F F
Case e; # fFe) 2z for any e} such that FV (e}) ¢ {y¥, 217}, and a term of the form f¥ e} z," for some e}
occurs in e or eg: Similarly to the above. We have

GenContracts(e) = {(eopt,if e1thenejelsefalse) | (eopt,eh) € GenContracts(ez)} U
{(eopt., if €1 thenfalseelsee}) | (eopt, €5) € GenContracts(es)}.

Since I'y, 'y + e : Bool and I'1,I's + e3 : Bool, we finish by the IHs.

Case otherwise: Obvious because GenContracts(e) = {(None,e)}.

Case (T_MATcCH): Similarly to the case for (T_IF). We are given I';,T's + matcheqwithC; z; — eiie :
Bool. By inversion, we have I'1,T's + eq : 7(¢’) and ArgTypeOf(7) = z":T" and, for any i € {1,...,n},
ie{l,...,n}

CtrArgOf(C;) = Ty and T'y, Ty, x,:T; {e’'[2'} + €; : Bool for some 7, €', ', T', and T;
If some e; contains a term of the form f¥ e} ng for some e/, then we have

GenContracts(e) = Uje{l,...,n}{(eopt,matcheowithmie{l““’n})‘

i

(€opt,€)) € GenContracts(e;) AVi #j. e = false}.

We finish by the IHs with the fact that, for any 4, T';,T's, 2;:T; {€’/2'} + false : Bool by Lemmas 46 and 32,
and so 'y, T'9, 2;:T; {€'[/2'} + €l : Bool.

Otherwise, obvious because GenContracts(e) = {(None, e)}.

Case (T_CoNv): By inversion, wehave @ + e : Tand T' = Bool. If e = false, then obvious because GenContracts (false) =

@. Otherwise, since ff' (and 2%)

e = true) and so we finish.

does not occur in e, we have GenContracts(e) = {(None,e)} (even if

O

Lemma 57 (Translation Generates Well-Formed Datatype). Let 3 be a well-formed type definition environment
and F be a translatable function under 3. Then, Trans(F) is well formed under 2, that is, so is X, Trans (F).

Proof. By definition, Trans(F) = typet (yF:TT) =D || [] : {zunit|e,F}|D; | (2) T;' where z is fresh. It suffices
to show that the type definition satisfies five conditions from definition of well-formedness of type definition under
type definition environment.

(a) We show that 7 has constructors more than zero, which is obvious.
(b) We show that ¥; @ + T, Since F is well typed, we have ¥;@ + TF by Lemma 46 and its inversion.

(c) We show that (1) X, Trans (F);y":TF + {zwunit| eI’} and (2) X, Trans (F);y"T* + T; for any i.

(1) Since F is translatable under %, we have (2, @); 47 TF + ;¥ : Bool. By Lemma 52, (2, Trans (F),@);y"TF +

e1f" : Bool. By Lemma 32 and (T_REFINE), (X, Trans (F),2);y" T + {z:unit|e; I'}.

35

(2) By definition of GenContracts, T; is defined based on GenContracts (ea”). Let (eopt,e) € GenContracts(ex™)
and I' = fE:TF - int list > Bool, y™:T%, 2 Fiint, 2o int list. Since F is translatable under ¥, we have
(2,2);T ez : Bool. By Lemma 56, (X,2);I' e : Bool. Since (2,2);@+ F : TF — int list > Bool,
we have (,2);y"TF, 21 int, zp™int list - e {F/fF} : Bool by Lemma 33. Note that TF is closed by
Lemma 46 and its inversion. By Lemma 52,

(2, Trans (F),2);y"TF, 2, Fiint, 2o int list - e {F/ £} : Bool.

By case analysis on eop, letting I' = yI T 2 Fint.

Case eopt = Somee’”: By Lemma 32 and (T_ABS),
(2, Trans (F),2);T" + Az int list.e {F/f¥} : int list - Bool.

By Lemmas 56 and 52,
(S, Trans (F),2); T +e" : TF.

Thus,
(3, Trans (F),);T" + 7(e")

by (WT_DATATYPE). By (C_DATATYPE), X, Trans (F) + 7(e") | int list. Since (X, Trans(F),@);T" +
int list by Lemmas 46 and 32 and (WT_DATATYPE), we find

(3, Trans (F),2):T" F (int list < 7(e”"))* : 7(e”) — int list
for any ¢, by (T_CAsT). By Lemma 32, (T_VAR) and (T_APP), we have
rans ,@); T 297 (e} + (int list < 7(e ZQF int list.
(3, Trans (F), @); 1", 25" 7(e”) - (int list < 7(e"))*
Letting eg = (A 2zo™tint list.e {F/fF}) ({int list < 7(e"))* zzF)7 we have
(2, Trans (F),2): T, 2 7 (e”") - eq : Bool

by Lemma 32 and (T_APP). Note that ey can be written as let 2o = (int list < 7(e”))* 22F ine {F/fF}.
Letting Ty = (e}, we have

(3, Trans (F),2): T F {z5Ty | ey}
by (WT_REFINE). Thus, by (WT_PrROD),
(2, Trans (F), @)y TF - 2.7 s intx {251y | e}

Note that Tz = le:int X {ZQFZTO |€0}.
Case eopt = None: By (WT_REFINE) and (WT_PROD), we have

(2, Trans(F),2);y" T = 217« intx {zo"int list| e {F/f"}}.
Note that T = 215 tint x {20 int list | e {F/fF}}.
d) We show that ¥ includes int list, which is proven by the assumption.
(: P ¥y p

(e) We show that (1) X, Trans(F) + {zwunit|e; ¥} || unit and (2) ¥, Trans(F) + T; || intxint list. The case (1)
is obvious by (C_REFINEL) and reflexivity of the compatibility relation. The case (2) is straightforward
because T; takes either of the form z;fint x {z5:int list|eo} or 217 tint x {207:7(e”) | €0}, and reflexivity of the
compatibility relation and X, Trans (F) + 7(e") || int list. O

36

5.3 Dynamic Correctness

Next, we show correctness of translation in the dynamic aspect: casts between refinement types with a translatable
function F' and the datatype generated from F' succeed always. In particular, such casts convert “constructors”
but not “structures”. In this section, we assume that type definition environments include the datatype generated
from a translatable function F'.

Definition 9. A constructor choice function ¢ is said to be trivial for T when, if the type definition of T takes the

form typer (x:T) =C; || D; : Til and each D; belongs to T2, then 6({ma{ez) < T1{e1)) Ciles)es) = D; for any e,
€2, €3, and ey.

We say that a constructor choice function is trivial when it is trivial for Trans(F).

Lemma 58. Let § be a trivial choice function. Suppose that

Trans(F) = typeT(yF:TF) =D | []: {z:unit|elF} [D; || () : 21 Ftint x {ng:Ti|ei}i.

If @ + (int list < 7(e))*v : int list under &, then (int list < 7(e))‘v —* v' under § for some v' which is obtained
by replacing data constructor D and D; of which v consists with [] and (), respectively.

Proof. We proceed by structural induction on v. Since @ + (int list < 7(e))*v : int list, we have @ + (int list <
m(e))f : T] - Ty and @ + v : T] and T4 {v/x} = int list for some x, T{, and Ty by Lemma 54. By Lemma 37,
T5 = int list. By Lemmas 41 and 35, we have @ + 7(e) and 7(e) = T{. We perform case analysis on v by
Lemmas 44 (4) and 43.

Case v = D(e’)v": Since ¢ is trivial, §({int list < 7(e))* D{(e')v") = []. Thus, by (R_DATATYPE), (R_FORGET) and
(R_BasE) with (E_RED),
(int list < 7(e))! D(e’)o’ —* [].

Case v = D;{e')v": By Lemma 43, @ + o' : 21 tint x {277} | e;} {€//y"}. By Lemmas 44 (3) and 42, v’ = (v1,v2)
for some v; and vy such that @ + v1 : int and @ + vy : {27 |e;} {e'[yF, v1/z1T}. Note that €’ is a closed
term. Since § is trivial, 5({int list < 7(e)) D;{e')v’) = (:). Thus, by (R_DaTATYPE), (R_PROD), (R_-BASE)
and (R_FORGET) with (E_RED),

(int list <= 7(e))’ D;(e'yo' —* vy = ({int list < T; {e' [y, v1 /217 1) vg).

From Trans, there are two cases we have to consider. If T; = int list, then (int list < 7(e))* D;(e’)v' —*
vy vy by (R-DATATYPEMONO).. Otherwise, if T; = 7(e”) for some e”, then we finish by the IH, noting
@+ (intlist < T;{e'/y",v1/z1F}) vy ¢ int list, which follows from well-typedness of vs, compatibility of
int list and 7, (T_CAST), and (T_APP). O

Definition 10 (Notation). Let o be a (simultaneous) substitution. Then, we write o(e) to denote application of o
to e.

Lemma 59. Let F' be a translatable function, v, v1 and ve be closed values, o be a simultaneous substitution
including {F[fF,vfyF vi/z1F va)2F}, and e be a subterm of ex™'. If o(e) —* true, then there is a unique pair
(eoptg: €0) € GenContracts(e) such that

e o(ey) —* true and

o for any ', eqpyy = Somee’ implies Fo(e')vy — true.
Proof. By structural induction on e.
Case e = true: Obvious since GenContracts (true) = {(None, true)}.

Case e = false: Contradictory; o(e) —* false.

37

Case e = if fF e’ 25" then ey elseel where FV (e) ¢ {y¥,21T'}: By definition of GenContracts, we have
_ F
GenContracts(e) = {(Somee’, e5)} U{(eopty:if f7 €' 20" thenfalseelseel) | (eopty,€h) € GenContracts(eh)}.

By case analysis on evaluation of o(f¥ e’ 2") = Fo(e')vs. Note that the evaluation result is either true or
false.

Case Fo(e')vyg —* true: We have

o(if fF e 2" thenejelseel) —* iftruetheno(el)elsec(el)
— o(ey).

Since o(e) —* true, we find that o(e;) —* true. Because

, F .
o(if ff e’ 25" thenfalseelsee) —* iftruethenfalseelsec(ey)
— false,

pair (Somee’,e}) is the unique one satisfying the property above.

Case Fo(e')vy —* false: We have

g(iffFe’zQFthene’Qelseeg) —* iffalsetheno(e;) elseo(e})
— O'(Gé).

Since o(e) —* true, we find that o(e3) —* true. By the IH, there is a unique pair (eopt,e5) €
GenContracts (e}) satisfying the above property. We have o(if f ¢’z thenfalseelseef) —* true.

Since F o(e’) vy —* false, pair (eopt,if f7 €’ 22" thenfalseelseel) is the unique one satisfying the prop-
erty above.

. F :
Case e = ife]thene)elsee; where) # fI e’z for any e’ such that FV (¢/) ¢ {y¥,217}: By case analysis on
evaluation of o(e]). Note that the evaluation result is either true or false.

Case o(e}) —* true: Since o(if €| thenejelsees) —* o(e)) —* true, there a unique pair (eopt,eh) €
GenContracts (eh) satisfying the above property, by the IH. Since o(if €] thenfalseelsee) —* false for
any e, pair (eopt, if €] then e elsefalse) is the unique one satisfying the property above.

Case o(e]) —* false: Since o(if] thenejelsees) —* o(ef) —* true, there a unique pair (eopt,ef) €
GenContracts(e3) satisfying the above property, by the TH. Since o(if €] then e} else false) —* false for
any ey, pair (eopt, if €] thenfalseelseef) is the unique one satisfying the property above.

Case e = matche{withC; z; — egle{l""7n}: Without loss of generality, we can suppose that each x; is fresh for
o. Since o(e) —* true, we find that o(ej) —* C;(e/)v’ for some j € {1,....,n}, ¢ and ¢, and thus
o(ef){v'[/z;} — true. By the IH, there is a unique pair (eopt,€;) € GenContracts(e}) satisfying the above

property. Since o(match ey with C; x; — false | C; z; — g € (N

!) —* false, pair (eopt, match ej with C; z; —
ie{l,..,n}\{j}

ef | Cya; — false) is the unique one satisfying the property above.
Case otherwise: Obvious because Trans(e) = {(None,e)}.
O

In what follows, we compute constructor choice functions to convert data structures. Before it, we show that
extensions of constructor choice functions are conservative with respect to evaluation results.

Lemma 60. Let &' be an extension of constructor choice function §. If § - e —* v, then §' + e —* v.

Proof. From the two facts: (1) § returns a constructor whenever taking cast applications in the evaluation e —* v
and (2) ¢’ returns the same constructor as § for cast applications contained by the domain of 4. O

38

Definition 11 (Notation). We write §; w dy to denote the disjoint union of constructor choice functions §1 and ds.

Theorem 2 (From Refinement Types to Datatypes). Suppose that

Trans (F) = type (y":TF) =D || [] : {zunit|e"} | D; || (=) : 21 Fsint x {ng:Ti|ei}l.

Let § be a trivial constructor choice function such that 6(({e') < int list)*v') is undefined for any €' and sublist v’

of v.
If o + (1{e) < {wint list| Fex})‘v : 7(e) under &, then there exists an extension &' of § such that (T(e) <=
{Lint list| Fel})fv —* o' under 6" where v’ is obtained by replacing some occurrences of data constructors [] and

(:2) of which v consists with D and one of EZ, respectively.

Proof. By Lemma 54, we have @ + (7{e) < {atint list| Fex}) : 20:To; = To2 and @ + v : Tyy and Too {v/z0} = 7(e)

for some zg, To; and Tpz. By Lemmas 41 and 35 and (T_-CoNV), @ + v : {azint list| Fex} and so Fev —* true

by Theorem 1 (noting that e is a closed term since since @ + 7(e) by Lemma 46). Thus, e —* v’ for some v'.
We proceed by case analysis on v by Lemmas 44 (4) and 43.

*

Case v = []: Let 6’ = 6 w {((e) < int list)[] = D}. Then, by (R_FORGET) and (R_DATATYPE) with (E_RED),
6"+ (1(e) < {wint list| Fex}) [] —* D{e)({{zunit|e;" {e/x}} < unit) ().
Since Fv'v —* true, we find that e; ¥ {F/fF v'/yf" v/aF} —* true. Since F is translatable, we have
yT + er¥ : Booland so e X {F/fF v [yF v]zt'} = eiF {0 [yF'}. Thus, e; ¥ {v'[yF'} —* true. Since e =* v’

by Lemma 2, we have e, {e/y"} =* €1 {v'/y"} by Lemma 5 (2). By Lemma 30 (2), e; ¥ {e/y""} —* true.
Since &' + e; ' {e/yF'} —* true by Lemma 60, we have

(T(e) < {wint list| Fex}) [] —* D{e)().
by (R-PRECHECK), (R-BASE), (R_.CHECK), and (R_-OK) with (E_RED).
Case v = (v1:vg): Since Fv'v —* true, we find that
e (P[50 [y ozt v) T va 20T} —7 true.
Since F is translatable, fF:TF - int list - Bool, y™ T, z; Fiint, 2o tint list - ex? : Bool and so
es’” {F/fFvU//yF’U/vavl/ZvavZ/ZQF} = ey’ {F/fF7U//yF,Ul/Z1F,v2/ZzF}-

By Lemma 59, there is a unique pair (€optq,€o) € GenContracts (ex') satisfying the property stated in
Lemma 59. We perform case analysis on eopt,-

Case €opty = Somee(: There exists some Dj such that
CtrArgOf(D;) = 2 Fiint x T

where Tj = {zF:7(ef) | let 2o = (int list <= 7(e))* zQF ineg {F/fF}}. For any &', if ' ({7(e) < int list)! (v,
Dj, then by (R_FORGET), (R_DATATYPE), (R_PROD), and (R_BASE) with (E_RED),

8"+ (1(e) < {wint list| Fex})’ (v1mva) —* Dj{e)(vr, (Tj, (1{eh) < int list) v) {e/y" v/ }).

Let ef = ef{e/y",v1/21T"}. By Lemmas 56 and 33, we have @ + ejj : T since @ + vy : int by Lemma 43,
and @ + e : T from inversion of @ 7(e). Thus, z:int list - F e} x : Bool by Lemma 32, (T_VAR) and
(T_APpp), and so @ + {x:int list| Fej z} by (WT_REFINE).

Since e —* v, we have Felj vy =* Fef {v' [y, v1/21F } va by Lemmas 2 and 5 (2). Since

Fey {v'[yF v1/z1F } vy —* true by Lemma 59, we have Fejvy —* true by Lemma 30 (2). Thus,
by (T_EXACT), @ + wvg : {wintlist|Fejxz} since @ + vy : intlist by Lemma 43. Since 7(ej) |

39

fvg)) =

{z:int list| Fej 2} by (C_DATATYPE) and (C_REFINEL) (noting the compatibility relation is a equiv-
alence one), and @& + 7(e() by (WT_DATATYPE), we have

@+ (1(el) < {wint list| Fef x}) vy = 7(ef))
by (T_CasT) and (T_APP). By the IH, there exist some 6" and v} such that
8"+ (7{el)) <= {axint list| F e 2}) vy —* v}

and ¢” is an extension of §, and v is obtained by replacing data constructor [] and (:) of which vy
consists with D and one of D;, respectively. Let 6" = {(r(e) <= int list)’ (v :vs) D;} w 6", Then,

6"+ (1(e) < {awint list| Fex})! (vy mvp) —* Dj(e)(v1, (T; {e/yr v}, 0h)0).

Since @ + vj : T{el) by Theorem 1, we have @ + (int list < 7(ef))‘v} : int list by (T_CaST) and

(T_ApP). By Lemma 58, we have (int list < 7(efj))¢ vl —* vy since d is trivial. Since eq {F/fF,v'[yF v1/21 T v2)22}
true by Lemma 59, we have eq {F/f¥, eyt ,vi/z1T ,va/22"} —* true by Lemmas 2, 5 (2) and 30 (2).

Thus,

(let 2o = (int list < 7(ef))* 2 ineg {FIE) {efy" o)zt v 2"} —* true.

Therefore, by (R-CHECK) and (R_-OK) with (E_RED) and Lemma 60,
8"+ (1(e) < {wint list| Fex})’ (v1mv9) —* Dj(e)(v1,vh).
Case €opty = None: There exists some D; such that
CirArgOf(D;) = 2 int x Ty

where T; = {zFint list|eq {F/fF}}. Let 6’ = § w {{r(e) < int list)’ (vy =v2) = D;}. By (R_FORGET),
(R_DATATYPE), (R_PROD), (R_BASE) with (E_RED),

8" (1{e) < {wint list| Fex})’ (v1:v2) —* Dj(e)(v1, (T, (int list <= int list)’ va))* {e/y" ,v1/217}).
Since (int list < int list)’ v; —* vy by (R_DATATYPEMONO), we have
8" (7{e) < {wint list| Fex})’ (v1:vg) —* Dj(e)(v1,(Ty,e0 {F/fF va) 2™}, 02) {efy" 01/ "))

by (E_RED)/(R_CHECK). Since eq {F/fF v [y",v1/z1" ,va)2e"} —* true by Lemma 59, we have
eo {F[fF efyr v1]z1F va) 2T} —* true by Lemmas 2, 5 (2) and 30 (2). Thus, by (E_RED)/(R_OK)
and Lemma 60,,

8"+ (1(e) < {wint list| Fex})’ (v mva) —* Dj(e)(v1,va).

O

Lemma 61. Let F be a translatable function, e be a subterm of es™, and o be a simultaneous substitution including
{FIfE e [y" v)zt vaf22"} . If (opty,€0) € GenContracts(e) and o(eg) —* true and eopy, = Somee” implies
Fo(e")Yvy —* true for any e”, then o(e) —* true.

Proof. By structural induction on e.
Case e = true: Obvious.

Case false: Contradictory; GenContracts(false) = @.

. F . .
Case e = if fI'¢” 25" thenelelsee; where FV (e”) ¢ {y,2,7}: There are two cases which we have to consider by
case analysis on eg.

. _ F
Case eg = €): Since eopt, = Somee”, we have Fo(e”)vy —* true. Thus, o(if f7e” 25" thenegelseel) —*
o(eg) —* true.

40

. F .
Case ey = if ffe” 25" thenfalseelseef where (eopty,e4) € GenContracts(ey): Since o(eg) —* true, we
find that Fo(e"”)vy, —* false and o(ej) —* true. Since (eopty,€5) € GenContracts(ez), we have

o(ey) —* true by the IH. Thus, o(if f¥e” ZQFthen ehelseel) —* true.

: F
Case e = ife] thene)elsee; where ¢f # fFe” 2" for any e such that FV (e”) ¢ {y¥, 2 f}: There are two cases
which we have to consider by case analysis on ey.

Case eg = if e thenej elsefalse where (eopty,€5) € GenContracts(ey): Since o(eg) —* true, we find that
o(ey) —* true and o(ey) —* true. Since (eopty,ey) € GenContracts(ey), we have o(ep) —* true
by the TH. Thus, o(if €] then e} elseel) —* true.

Case eg = if e thenfalseelsee; where (eopty,e5) € GenContracts(es): Since o(eg) —* true, we find that
o(ey) —" false and o(ey) —* true. Since (eopty,e3) € GenContracts(es), we have o(e3) —* true
by the TH. Thus, o(if €] then e} elseel) —* true.

Fie{l,...,n}

Case e = matchefwithC;z; — €/ {L...n}\{5}

! : For some j, we have ey = match e with C; z; — e;’ | Cixy —> false
where (eopt, €;j) € GenContracts(e}). Since 0(eg) —* true, we have o(ey) —* Cj{e”)v" and o(e) {v'/z;} —~

——ie{1,.,
true for some " and v’. By the IH, o(e}) {v'/z;} —* true. Thus, o(match e with C; x; — e;”{ n}) —*
true.
Case otherwise: Obvious since GenContracts(e) = {(None,e)}. O

Definition 12 (Termination). A closed term e terminates at a value, written as e, if e —* v for some v. We
say that argument terms to datatype T in v terminate at values, written v, when, for any E, C € CtrsOf(7), e1
and vy, if v = E[C(e1)va], then eq |.

Lemma 62. Let F' be a translatable function and 6 be a trivial constructor choice function. If v}, and & +
(int list <= 7(e))‘v : int list, then F e ({int list < 7(e))*v) —* true.

Proof. By structural induction on v. Suppose that

Trans(F) = typeT(yF:TF) =D | []: {z:unit|elF} [D; || () : 21 Ftint x {ng:Ti|eZ—};.

By Lemmas 54 and 41 and (T_CoNV), we have @ + v : 7(e). By Lemmas 44 (4) and 43, there are two cases which
we have to consider by case analysis on v.

Case v = D{e/)v": Since v |,, ¢/ —* v” for some v”. By Lemmas 43 and 37, we have @ + v’ : {zunit|e, " {//yF'}}
and ¢/ = e. By Theorem 1, we find that e;¥ {//yf",v/2} = e;F {e//yF"} —* true. Since (int list <
7(e))* D{e/)v" —* [] by Lemma 58, we have

Fe({intlist = 7(e))fv) = Fe'({intlist = 7(e))v) (by Lemmas 1 and 5 (3))
—* Fo" ({int list < 7{e))* v)
_>>'r FU,, []
—* el {vfy"}
= ey} (by Lemmas 2, 5 (3) and 1)

Thus, by Lemma 31 (2),
Fe((int list < 7(e))‘v) —* true.

Case v = D;(e/)v": By definition of Trans, there is a unique pair (eopty,€0) € GenContracts(ex™) such that
CtrArgOf(Dy) is constructed from the pair. By case analysis on egpt,-

Case eopt,, = Somee(;: We have

CtrArgOf(D;) = 2 tint x {277 (e)) | let 20 = (int list <= 7(ep))" z2F ineg {F/f"1}.

By Lemmas 43, 44 (3), 42 and 37, we have v’ = (v1,v2) and @ + vy : intand @ + vy @ {227 :7(ef) |let 25 =

(int list < 7(e))* zzFin eo {F/fE3} e [y v1/z1F} and e = € for some vy and vy. By Lemma 46, we

41

have @ + e : TF. Since y™:TF, 2, Fiint + ¢fy : TF by Lemma 56, we have @ +~ ef, {e/y",v1/z1F} + TF.
Since @ + 7{ef) {e/y",v1/z17} by Lemmas 57 and 33 (2) and (T_FORGET), we have
@ vz s T(eg) {efy" v/ ")
by Lemma 5 (3), (T_FORGET), and (T_CoNV). Thus, we have & + (int list < 7(e}, {e/y", v1/21F})) vq
int list by (T_FORGET), (T_-CasT) and (T_APP). By Lemma 58, there exists some v4 such that
(int list <= (e}, {e/y",v1/z1T})) vy —* 0b.
By the IH, we have
Fey{e/y™ vi1]z1"} (int list < (e, {e/y",v1/217})) va) — true.
Thus, there exists some v}, such that ef, {e/y*,v1/z1F} —* v and F v} vl —* true. Since F e {e/y" ,vi /21T } vl =~
F v v} by Lemmas 2 and 5 (2), we have
Feb{ely" vz} vy —* true
by Lemma 30 (2). By applying Lemma 51 to vy, we have e {F/fF, e’ [yf" vi/z1F vh 2"} —* true.
Thus, by Lemmas 5 (3) and 31, we have
eo {F/fF ey vz vh]2} —* true.
By Lemma 61,
ex" {F/f efy" vz 052"} —* true.
Since e/ —* v" for some v” from v |, we have v" = e. By Lemmas 5 (3) and 31,
e {F 150" [y o T v 20Ty —* true.
Thus,
Fé ({int list < 7(e))* Dj{e/)v")
—* Fo" ((int list < 7(e))* D;{e')v")
—* Fo" (vy=({int list <= 7(eh {e/yT,v1/217})) v2))
—* Fo" (vy20h)

—* e {FIfF 0" [y o/ vy}
— true.
Case eopt, = None: We have CtrArgOf(D;) = z " iint x {2 int list|eg {F/f¥}}. By Lemmas 43, 44 (3), 42
and 37, wehave @ + ¢’ : T and v’ = (vi,v2) and @ + vy @ intand @ + vy : {zpint list|eg {F/fEY} {e/JyF 01/ T}
for some v; and vy. By Lemma 51, eq {F/fF ¢/ [y" ,v1/z1F,v2/20F} —* true. By Lemma 61, we
have ex™ {F/fF € [y vi/z1F va)22T} —* true. Since ¢/ —* v for some v” from v|,, we have
eI {F)fE 0" [yt vy 21T va)22t} —* true by Lemmas 2, 5 (2) and 30 (1). Thus,

Fe' ({int list <= 7(e))’ Dj(e')v') —* Fo" (v;:v5) —* true.

Theorem 3 (From Datatypes to Refinement Types). Suppose that

Trans(F) = typeT(yF:TF) =D | []: {z:unit|elF} |D; || () : 21 Ftint x {ng:Ti|eZ—};.

Let § be a trivial constructor choice function.
Ifvl, and @ + v : 7{(e), then ({zint list| Fex} < 1{e))v —* o' for some v' obtained by replacing data
constructor D and D; in v with [| and (3:), respectively.

Proof. Since @ + 7(e) Lemma 46 and int list || 7(e), we have @ + (int list < 7(e))‘v : int list by (T_CasT) and
(T_App). By Lemma 58, (int list < 7(e))‘v —* v’ for some v’ which satisfies the property in the statement above.
By Lemma 62, we have Fe ({int list < 7(e))*v) —* true. Thus, letting v” be a value such that e —* v", we find
that Fv" v —* true. By Lemmas 2, 5 (2) and 30 (2), Fev’ —* true. Thus, by (R_.PRECHECK) and (R_-OK)
with (E_RED),

({zint list| Fex} < 7(e)) v —* 0.

42

