Manifest Contracts for Datatypes (Supplementary Material)

Taro Sekiyama Yuki Nishida Atsushi Igarashi

*{*t-sekiym,nishida,igarashi*}*@fos.kuis.kyoto-u.ac.jp

January 29, 2016

1 Definition

In this section, we formalize our calculus.

1.1 Syntax

The syntax including both programs and run-time terms is given as follows.

Types

T \therefore Bool $\vert x: T_1 \to T_2 \vert x: T_1 \times T_2 \vert \{x: T \vert e\} \vert \tau \langle e \rangle$

Constants, Values, Terms

^c ∶∶= true [∣] false

v ∷= *c* | **f** ix $f(x:T_1):T_2 = e | (T_1 \leftarrow T_2)^{\ell} | (v_1, v_2) | C(e)v$

 $e = c |x|$ fix $f(x:T_1):T_2 = e |e_1 e_2| (e_1,e_2) |e.1| e.2 |C(e_1)e_2|$ match $e \text{ with } \overline{C_i x_i \rightarrow e_i}$ ∣ $\int f(x) \, dx = \int f(x) \, dx + \int f(x$

Datatype definitions

$$
\varsigma \quad ::= \quad \tau \langle x:T \rangle = \overline{C_i : T_i}^i \mid \tau \langle x:T \rangle = \overline{C_i \parallel D_i : T_i}^i
$$

$$
\Sigma \quad ::= \quad \emptyset \mid \Sigma, \varsigma
$$

Evaluation contexts

E \cong $\left[\right] \left| E \right| e_2 \left| v_1 E \right| (E, e_2) \left| (v_1, E) \right| E.1 \left| E.2 \right| C \left| e_1 \right\rangle E \right|$ $\frac{1}{\sqrt{2}}$ *c*_{*i*} $\frac{1}{\sqrt{2}}$ *i* $\frac{1}{\$ $\langle \{x:\mid T \mid e\}, E, v \rangle^{\ell} \mid \langle \langle \{x:\mid T \mid e \}, E \rangle \rangle^{\ell}$

Typing contexts

$$
\Gamma \quad ::= \quad \text{\varnothing} \mid \Gamma, x{:}T
$$

Table 1 shows metafunctions to look up information on datatype definitions. Their definitions are omitted since they are straightforward. A type specification, returned by $TypeSpecOf$ and written $x:T_1 \rightarrow T_2 \rightarrow \tau(x)$, of a constructor *C* consists of the datatype τ that *C* belongs to, the parameter *x* of τ and the type T_1 of *x*, and the argument type T_2 of *C*. In other words, $\tau = TypNameOf_{\Sigma}(C)$, $x:T_1 = ArgTypeOf_{\Sigma}(\tau)$ and $T_2 = CtrArgOf_{\Sigma}(C)$. We omit the type definition environment from these metafunctions for brevity if it is clear from the context.

We use the following familiar notations. We write FV(*e*) to denote the set of free variables in a term *e*, and $e\{e'/x\}$ capture avoiding substitution of e' for x in e . We apply similar notations to values and types. We say that a term/value/type is closed if it has no free variables, and identify *α*-equivalent ones. In addition, we introduce several syntactic sugars. A function type $T_1 \rightarrow T_2$ means $x:T_1 \rightarrow T_2$ where the variable x does not occur free in T_2 . We often omit type annotations of $fix f(x:T_1): T_2 = e$ and write $\lambda x:T.e$ to denote $fix f(x:T) = e$ if *f* does not occur

Table 1: Lookup functions.

in the term *e*. A let-expression let $x = e_1$ in e_2 denotes $(\lambda x : T \cdot e_2) e_1$ where T is an appropriate type. A datatype τ is said to be monomorphic when the definition of *τ* does not refer to a type argument variable, and then we write *τ* to denote an application of τ to a term. Given a binary relation R, the relation R^* denotes the reflexive transitive closure of *R*.

We define an auxiliary function *unref*, which maps a type to its underlying (non-refinement) type.

 $\text{unref}(\{x:\text{T} \mid e\}) = \text{unref}(\text{T})$ $\text{unref}(T)$ = *T* (if *T* is not a refinement type)

1.2 Semantics

The semantics of our calculus consists of two relations over closed terms: reduction (\rightarrow) and evaluation (\rightarrow) . The rules, shown in Figure 1, for these relations rest on a constructor choice function. A constructor choice function *δ* is a partial function that maps a term of the form $\langle \tau_1 \langle e_1 \rangle \leftarrow \tau_2 \langle e_2 \rangle \rangle^{\ell} C \langle e \rangle v$ to a constructor C_1 . We fix Γ and δ through this material and usually omit from relations and judgments.

1.3 Type System

A type system of our calculus consists of three judgments: context well-formedness ⊢ Γ, type well-formedness $\Gamma \vdash T$, and typing $\Gamma \vdash e : T$. The derivation rules for these judgments are shown in Figure 2. The typing rule (T_CONV) mentions type equivalence relation denoted by \equiv , which is defined as follows.

Definition 1 (Type Equivalence)**.**

- 1. The common subexpression reduction relation \Rightarrow over types is defined as follows: $T_1 \Rightarrow T_2$ *iff there exist some T*, *x*, *e*₁ *and e*₂ *such that* $T_1 = T \{e_1/x\}$ *and* $T_2 = T \{e_2/x\}$ *and* $e_1 \longrightarrow e_2$ *.*
- 2. The type equivalence \equiv *is the symmetric transitive closure of* \Rightarrow .

Next, we define well-formedness of type definition environments and constructor choice functions.

Definition 2 (Well-Formed Type Definition Environments)**.**

- *1.* Let $\varsigma = \tau \langle x : T \rangle = \overline{C_i : T_i}^{i \in \{1, ..., n\}}$. A type definition ς is well formed under a type definition environment Σ *if it satisfies the followings:* (a) $0 < n$ *.* (b) $\Sigma; \emptyset \vdash T$ *holds.* (c) For any $i \in \{1, ..., n\}$, $\Sigma, \varsigma; x : T \vdash T_i$ holds.
- 2. Let $\varsigma = \tau \langle x : T \rangle = \overline{C_i \parallel D_i : T_i^{i \epsilon \{1,...,n\}}}$. A type definition ς is well formed under a type definition environment Σ *if it satisfies the followings:* (a) 0 < *n*. (b) Σ ; \emptyset + *T holds.* (c) For any $i \in \{1, ..., n\}$, Σ , ς ; x : *T* + *T*_{*i*} *holds.* (d) *There exists some datatype* τ' *in* Σ *such that constructors* $\overline{D_i}^{i \in \{1,...,n\}}$ *belong to it.* (e) For any $i \in \{1,...,n\}$, *T*_{*i*} *is compatible with the argument type of* D_i *under* Σ *,* ς *, that is,* Σ *,* ς ⊢ T_i ∥ $CtrArgOf_{\Sigma}(D_i)$ *holds.*
- *3. A type definition environment* Σ *is* well formed *if for any* Σ_1 , *ς and* Σ_2 , $\Sigma = \Sigma_1$, *ς*, Σ_2 *implies that ς is well formed under* Σ_1 *. We write* ⊢ Σ *to denote that* Σ *is well formed.*

 $\boxed{e_1 \rightsquigarrow e_2}$ **Reduction Rules**

$$
(fix f(x:T_1):T_2 = e) v \rightsquigarrow e{v/x, fix f(x:T_1):T_2 = e/f}
$$
\n
$$
(v_1, v_2).1 \rightsquigarrow v_1 \qquad (R.PROJ1) \qquad if true then e_1 else e_2 \rightsquigarrow e_1 \qquad (R.LIFRUE)
$$
\n
$$
(v_1, v_2).2 \rightsquigarrow v_2 \qquad (R.PROJ2) \qquad if false then e_1 else e_2 \rightsquigarrow e_2 \qquad (R.LIFRUE)
$$
\n
$$
(Sol \Leftarrow Bool)^{\ell} v \rightsquigarrow v \qquad (R.BASE)
$$
\n
$$
(x:T_{11} \rightarrow T_{12} \Leftarrow x:T_{21} \rightarrow T_{22})^{\ell} v \rightsquigarrow (\lambda x:T_{11}.let y = \langle T_{21} \Leftarrow T_{11})^{\ell} x in \langle T_{12} \Leftarrow T_{22} \{y/x\}^{\ell} (vy)) \qquad (where y is fresh) \qquad (R.PNO)
$$
\n
$$
\langle x:T_{11} \times T_{12} \Leftarrow x:T_{21} \times T_{22})^{\ell} (v_1, v_2) \rightsquigarrow let x = \langle T_{11} \Leftarrow T_{21})^{\ell} v_1 in (x, \langle T_{12} \Leftarrow T_{22} \{y/x\}^{\ell} (vy)) \qquad (where y is fresh) \qquad (R.PNO)
$$
\n
$$
\langle T_1 \Leftarrow \{x:T_2 \mid e\}^{\ell} v \rightsquigarrow \langle T_1 \Leftarrow T_2 \}^{\ell} v \qquad (R.PROGE)
$$
\n
$$
\langle \{x:T_1 \mid e\} \Leftarrow T_2 \}^{\ell} v \rightsquigarrow \langle \{x:T_1 \mid e\}, \langle T_1 \Leftarrow T_2 \}^{\ell} v) \qquad (R.PRECHECK)
$$
\n
$$
\langle T_1(e_1) \Leftarrow T_2(e_2))^{\ell} C_2(e)v \rightsquigarrow C_1\{e_1\} (\langle T_1' \{e_1/x_1\} \Leftarrow T_2' \{e_2/x_2\}^{\ell} v) \qquad (R.PRATATE)
$$
\n
$$
\langle T_1(e_1) \Leftarrow T_2(e_2))^{\ell} C_2(e)v \rightsquigarrow C_1\{e_1\} (\langle
$$

 $\boxed{e_1 \rightarrow e_2}$ **Evaluation Rules**

$$
\frac{e_1 \rightsquigarrow e_2}{E[e_1] \longrightarrow E[e_2]} \text{ E_RED} \qquad \qquad \frac{E \neq []}{E[\Uparrow \ell] \longrightarrow \Uparrow \ell} \text{ E_BLAME}
$$

Figure 1: Semantics.

Definition 3 (Compatible Constructors)**.** *The compatibility relation* ∥ *over constructors is the least equivalence relation satisfying the following rule.*

$$
TypNameOf(C_i) = \tau
$$

\n
$$
TypDefOf(\tau) = \text{type } \tau \langle y: T \rangle = \overline{C_j \parallel D_j : T_j}
$$

\n
$$
C_i \parallel D_i
$$

The function CompatCtrsOf, which maps a datatype τ and a constructor C to the set of compatible constructors of τ , is defined as follows:

$$
CompactCtrsOf(\tau, C) = \{D \mid C \parallel D \text{ and } TypeNameOf(D) = \tau\}.
$$

Definition 4 (Term Equivalence)**.**

- 1. The common subexpression reduction relation \Rightarrow over terms is defined as follows: $e_1 \Rightarrow e_2$ iff there exist some e, x, e'_1 and e'_2 such that $e_1 = e\{e'_1/x\}$ and $e_2 = e\{e'_2/x\}$ and $e'_1 \longrightarrow e'_2$.
- 2. The term equivalence \equiv *is the symmetric transitive closure of* \Rightarrow .

Definition 5 (Well-Formed Constructor Choice Functions). *A constructor choice function* δ *is* well formed *iff*

- *1. if* $C_1 = \delta(\langle \tau_1 \langle e_1 \rangle \leftarrow \tau_2 \langle e_2 \rangle) \langle e \rangle C_2 \langle e \rangle v)$, then $C_1 \in CompactCrsOf(\tau_1, C_2)$ *; and*
- *2. for any* e_1 , e_2 *and* C , *if* $e_1 \equiv e_2$ *and* $\delta(e_1) = C$ *, then* $\delta(e_2) = C$ *.*

Finally, we use notation \Rightarrow ^{*i*} to denote *i*-times composition of \Rightarrow .

⊢ Γ **Typing Context Well-Formedness Rules**

$$
\frac{\vdash \Gamma \quad \Gamma \vdash T}{\vdash \Gamma, x:T} \quad \text{WC_EMENTY}
$$

$|\Gamma \vdash T|$ **Type Well-Formedness Rules**

$$
\frac{\Gamma \vdash \Gamma}{\Gamma \vdash \text{Bool}} \text{ WT_Base} \qquad \frac{\Gamma \vdash T_1 \quad \Gamma, x : T_1 \vdash T_2}{\Gamma \vdash x : T_1 \to T_2} \text{ WT_Fun} \qquad \frac{\Gamma \vdash T_1 \quad \Gamma, x : T_1 \vdash T_2}{\Gamma \vdash x : T_1 \times T_2} \text{ WT_PROD}
$$
\n
$$
\frac{\Gamma \vdash T \quad \Gamma, x : T \vdash e : \text{Bool}}{\Gamma \vdash \{x : T \mid e\}} \text{ WT_REFINE} \qquad \frac{\text{ArgTypeOf}(\tau) = x : T \quad \Gamma \vdash e : T}{\Gamma \vdash \tau \langle e \rangle} \text{ WT_DATATIVE}
$$

$\boxed{\Gamma \vdash e : T}$ **Typing Rules**

$$
\frac{\Gamma \Gamma \ c \in \{true, false\}}{\Gamma + c : Bool} T \cdot \frac{\Gamma \Gamma}{\Gamma + x : T} T \cdot \text{VAR} \qquad \frac{\Gamma \Gamma \ \mathcal{Q} + T}{\Gamma + \mathcal{U} : T} T \cdot \text{Black} \qquad \frac{\Gamma \Gamma \ \mathcal{Q} + T}{\Gamma + \mathcal{U} : T} T \cdot \text{Black} \qquad \frac{\Gamma \Gamma \mathcal{Q} + T}{\Gamma + \mathcal{U} : T} T \cdot \text{Black} \qquad \frac{\Gamma \Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{Black} \qquad \frac{\Gamma \Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{Black} \qquad \frac{\Gamma \Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{LAST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{LAST} \qquad \frac{\Gamma \Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{LAST} \qquad \frac{\Gamma \Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{LAST} \qquad \frac{\Gamma \Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{LAST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{LST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot \text{RST} \qquad \frac{\Gamma \Gamma}{\Gamma + \mathcal{U} : T} T \cdot
$$

$$
T_1 \parallel T_2
$$

 T_2 \vert **Type Compatibility**

$$
\frac{T_1 \parallel T_2}{\{x:T_1 \mid e_1\} \parallel T_2} \text{ (C_REFINEL)} \qquad \frac{\text{TypDefOf}(\tau_1) = (\text{type } \tau_1 \langle x:T \rangle = \overline{C_i \parallel D_i : T_i}^i)}{\text{for all } i, \text{ TypNameOf}(D_i) = \tau_2} \qquad (\text{C_DATATIVE})
$$

Figure 2: Type system.

2 Properties of Type/Term Equivalence

Lemma 1 (Type and Term Equivalences are Equivalences)**.**

(1) The relation ≡ *over types is a equivalence relation:*

- $T \equiv T$ *for any* T *.*
- *• If* T_1 ≡ T_2 *and* T_2 ≡ T_3 *, then* T_1 ≡ T_3 *.*
- *If* $T_1 \equiv T_2$ *, then* $T_2 \equiv T_1$ *.*
- *(2) The relation* ≡ *over terms is a equivalence relation:*
	- $e \equiv e \text{ for any } e$.
	- *If* $e_1 \equiv e_2$ *and* $e_2 \equiv e_3$ *, then* $e_1 \equiv e_3$ *.*
	- *If* $e_1 \equiv e_2$ *, then* $e_2 \equiv e_1$ *.*

Proof. Since ≡ is the transitive and symmetric closure of ⇒, transitivity and symmetry hold obviously.

We show reflexivity of \equiv over types. Let *T* be a type, and *x* be a variable such that $x \notin \text{FV}(T)$. Suppose that $e_1 \longrightarrow e_2$ for some e_1 and e_2 (e.g., $e_1 = \lambda x$ **:Boo**l.x and $e_2 = \text{true}$). Then, we have $T\{e_1/x\} \Rightarrow T\{e_2/x\}$. Since $T\{e_1/x\} = T\{e_2/x\} = T$, we finish.

Reflexivity of \equiv over terms can be shown similarly. Let *e* be a term, and *x* be a variable such that $x \notin FV(e)$. Suppose that $e_1 \longrightarrow e_2$ for some e_1 and e_2 (e.g., $e_1 = \lambda x$ **:Bool**.x and $e_2 = \text{true}$). Then, we have $e\{e_1/x\} \Rightarrow e\{e_2/x\}$.
Since $e\{e_1/x\} = e\{e_2/x\} = e$, we finish. Since $e \{e_1/x\} = e \{e_2/x\} = e$, we finish.

Lemma 2. *If* $e_1 \rightarrow e_2$ *, then* $e_1 \Rightarrow e_2$ *.*

Proof. Obvious because $x \{e_1/x\} \Rightarrow x \{e_2/x\}$.

Lemma 3.

- (1) *If* $e_1 \Rightarrow e_2$ *, then* $T\{e_1/x\} \Rightarrow T\{e_2/x\}$.
- (2) If e_1 ⇒[∗] e_2 , then $T\{e_1/x\}$ ⇒[∗] $T\{e_2/x\}$.
- *(3) If* $e_1 \equiv e_2$, *then* $T \{e_1/x\} \equiv T \{e_2/x\}$.

Proof.

- 1. Since $e_1 \Rightarrow e_2$, there exist e, y, e'_1 and e'_2 such that $e_1 = e\{e'_1/y\}$ and $e_2 = e\{e'_2/y\}$ and $e'_1 \longrightarrow e'_2$. Suppose that *z* is a fresh variable. Here, we have
	- $T\{e_1/x\} = T\{e\{e'_1/y\}/x\} = T\{e\{z/y\}\{e'_1/z\}/x\} = T\{e\{z/y\}/x\}\{e'_1/z\},\$
	- $T\{e\{z/y\}/x\}$ { e'_1/z } \Rightarrow $T\{e\{z/y\}/x\}$ { e'_2/z }, and
	- $T\{e\{z/y\}/x\}\{e'_2/z\} = T\{e\{z/y\}\{e'_2/z\}/x\} = T\{e\{e'_2/y\}/x\} = T\{e_2/x\}.$

Thus, $T\{e_1/x\} \Rightarrow T\{e_2/x\}$.

2. By mathematical induction on the number of steps of $e_1 \Rightarrow^* e_2$.

Case 0: Obvious because $e_1 = e_2$.

Case $i + 1$: We are given $e_1 \Rightarrow e_3 \Rightarrow^i e_2$ for some e_3 . By the IH and the first case, we finish.

3. By induction on $e_1 \equiv e_2$.

Case $e_1 \Rightarrow e_2$: By the first case.

Case transitivity and symmetry: By the IH(s).

Lemma 4.

$$
(1) If T_1 \Rightarrow T_2, then T_1\{e/x\} \Rightarrow T_2\{e/x\}
$$

- *(2) If* T_1 \Rightarrow $*$ T_2 *, then* T_1 {*e*/*x*} \Rightarrow $*$ T_2 {*e*/*x*}
- *(3) If* $T_1 \equiv T_2$ *, then* $T_1 \{e/x\} \equiv T_2 \{e/x\}$ *.*

Proof.

 \Box

- 1. By definition, there exist *T*, *y*, e_1 and e_2 such that $T_1 = T\{e_1/y\}$ and $T_2 = T\{e_2/y\}$ and $e_1 \longrightarrow e_2$. Suppose that z is a fresh variable. Since the evaluation relation is defined over closed terms, it is found that e_1 and e_2 are closed. Here, we have
	- $T_1\{e/x\} = T\{e_1/y\}\{e/x\} = T\{z/y\}\{e_1/z\}\{e/x\} = T\{z/y\}\{e/x\}\{e_1/z\},\$
	- $T\{z/y\} \{e/x\} \{e_1/z\} \Rightarrow T\{z/y\} \{e/x\} \{e_2/z\}$, and
	- $T\{z/y\}\{e/x\}\{e_2/z\} = T\{z/y\}\{e_2/z\}\{e/x\} = T\{e_2/y\}\{e/x\} = T_2\{e/x\}.$

Thus, $T_1 \{e/x\} \Rightarrow T_2 \{e/x\}.$

2. By mathematical induction on the number of steps of $T_1 \Rightarrow^* T_2$.

Case 0: Obvious because $T_1 = T_2$.

Case $i + 1$: We are given $T_1 \Rightarrow T_3 \Rightarrow^i T_2$ for some T_3 . By the IH and the first case, we finish.

3. By induction on $T_1 \equiv T_2$.

Case $T_1 \Rightarrow T_2$: By the first case.

Case transitivity and symmetry: Obvious by the IH(s).

Lemma 5.

- (1) *If* $e_1 \Rightarrow e_2$, *then* $e \{e_1/x\} \Rightarrow e \{e_2/x\}$.
- (2) If e_1 ⇒* e_2 , then $e \{e_1/x\}$ ⇒* $e \{e_2/x\}$.
- *(3) If* $e_1 \equiv e_2$, *then* $e \{e_1/x\} \equiv e \{e_2/x\}$

Proof.

- 1. Since $e_1 \Rightarrow e_2$, there exists some e' , y , e'_1 and e'_2 such that $e_1 = e' \{e'_1/y\}$ and $e_2 = e' \{e'_2/y\}$ and $e'_1 \longrightarrow e'_2$. Suppose that *z* is a fresh variable. Here, we have
	- $e\{e_1/x\} = e\{e'\{e'_1/y\}/x\} = e\{e'\{z/y\}\{e'_1/z\}/x\} = e\{e'\{z/y\}/x\}\{e'_1/z\},\$
	- $e \{e' \{z/y\}/x\} \{e'_1/z\} \Rightarrow e \{e' \{z/y\}/x\} \{e'_2/z\}$, and
	- $e \{e' \{z/y\}/x\} \{e'_2/z\} = e \{e' \{z/y\} \{e'_2/z\}/x\} = e \{e' \{e'_2/y\}/x\} = e \{e_2/x\}.$

Thus, $e\{e_1/x\} \Rightarrow e\{e_2/x\}$.

2. By mathematical induction on the number of steps of $e_1 \Rightarrow^* e_2$.

Case 0: Obvious because $e_1 = e_2$.

Case $i + 1$: We are given $e_1 \Rightarrow e_3 \Rightarrow^i e_2$ for some e_3 . By the IH and the first case, we finish.

3. By induction on $e_1 \equiv e_2$.

Case $e_1 \Rightarrow e_2$: By the first case.

Case transitivity and symmetry: By the IH(s).

 \Box

3 Cotermination

Lemma 6 (Determinism). *If* $e \rightarrow e_1$ *and* $e \rightarrow e_2$ *, then* $e_1 = e_2$ *.*

Proof. Straightforward.

Lemma 7 (Value Construction Closed Substitution)**.** *For any v, x, and e, v* {*e*/*x*} *is a value.*

Proof. By structural induction on *v*.

Case $v = c$, fix $f(x:T) = e$ or $\langle T_1 \leftarrow T_2 \rangle^{\ell}$: Obvious.

Case $v = (v_1, v_2)$ or $C \langle e' \rangle v'$: By the IHs.

Lemma 8. *If* e_1 *is not a value and* $e_2 \{e_1/x\}$ *is, then* e_2 *is a value.*

Proof. By structural induction on e_2 .

- Case $e_2 = y$: If $x = y$, then $e_2 \{e_1/x\} = e_1$, which leads to a contradiction from the assumptions that e_1 is not a value and $e_2 \{e_1/x\}$ is. Otherwise, if $x \neq y$, then there is a contradiction because $e_2 \{e_1/x\}$ is a value but $e_2 \{e_1/x\} = y$ is not.
- Case $e_2 = v$: By Lemma 7.
- Case $e_2 = e'_1 e'_2, e.i, \text{match} e'_0 \text{ with } C_i y_i \rightarrow e'_i$ e'_{1} then e'_{2} else e'_{3} , $\Uparrow \ell$, $\langle \{y:T \,|\, e'_{1}\}, e'_{2}, v'\rangle^{\ell}$, or $\langle \langle \{y:T \,|\, e'_{1}\}, e'_{2}\rangle \rangle^{\ell}$: Contradictory.

Case $e = (e_1, e_2)$ or $C\langle e_1 \rangle v_2$: By the IH(s).

Lemma 9. Let e_1 and e_2 are closed terms such that $e_1 \equiv e_2$. If $(v_1 \, v_2) \{e_1/x\} \rightarrow e$, then $(v_1 \, v_2) \{e_2/x\} \rightarrow$ e' { e_2/x } *for some* e' *such that* $e = e'$ { e_1/x }.

Proof. By Lemma 7, $v_1 \{e_1/x\}$, $v_1 \{e_2/x\}$, $v_2 \{e_1/x\}$ and $v_2 \{e_2/x\}$ are values. We proceed by case analysis on *v*₁. Note that *v*₁ takes the form of either lambda abstraction or cast since $(v_1 v_2) \{e_1/x\}$ takes a step and that if $(v_1 v_2) \{e_1/x\}$ is closed, then so is $(v_1 v_2) \{e_2/x\}$. In the following, let $i \in \{1,2\}$.

Case $v_1 = \text{fix } f(y:T) = e'$: Without loss of generality, we can suppose that *y* and *f* are fresh. By $(E \text{_RED})/(R \text{_BETA})$,

$$
((\text{fix } f(y:T) = e') v_2) \{e_i/x\} \longrightarrow e' \{e_i/x\} \{v_2 \{e_i/x\}/y, v_1 \{e_i/x\}/f\}.
$$

Because $e' \{e_i/x\} \{v_2 \{e_i/x\}/y, v_1 \{e_i/x\}/f\} = e' \{v_2/y, v_1/f\} \{e_i/x\}$, we finish.

Case $v_1 = \langle \text{Bool} \Leftarrow \text{Bool} \rangle^{\ell}$: Obvious because $(\langle \text{Bool} \Leftarrow \text{Bool} \rangle^{\ell} v_2) \{e_i/x\} \longrightarrow v_2 \{e_i/x\}$ by $(\text{E_RED})/(\text{R_BASE})$.

Case $v_1 = \langle y: T_{11} \rangle \rightarrow T_{12} \Leftarrow y: T_{21} \rightarrow T_{22} \rangle^{\ell}$: Without loss of generality, we can suppose that *y* is fresh. By $(E$ _{-RED} $)/(R$ -FUN $),$

$$
(\langle y:T_{11} \to T_{12} \Leftarrow y:T_{21} \to T_{22}\rangle^{\ell} v_2) \{e_i/x\} \to
$$

\n
$$
\lambda y:T_{11} \{e_i/x\}.(\lambda z:T_{21} \{e_i/x\}.(T_{12} \{e_i/x\} \Leftarrow T_{22} \{e_i/x\} \{z/y\})^{\ell} (v_2 \{e_i/x\} z)) (\langle T_{21} \{e_i/x\} \Leftarrow T_{11} \{e_i/x\})^{\ell} y)
$$

\n
$$
= (\lambda y:T_{11}.(\lambda z:T_{21}.(T_{12} \Leftarrow T_{22} \{z/y\})^{\ell} (v_2 z)) ((T_{21} \Leftarrow T_{11})^{\ell} y)) \{e_i/x\}
$$

for some fresh variable *z*. Thus, we finish.

Case $v_1 = \langle y: T_{11} \times T_{12} \Leftarrow y: T_{21} \times T_{22} \rangle^{\ell}$: Without loss of generality, we can suppose that *y* is fresh. It is found that $v_2 = (v'_1, v'_2)$ for some v'_1 and v'_2 because (1) $((y:T_{11} \times T_{12} \Leftrightarrow y:T_{21} \times T_{22})^{\ell} v_2) \{e_1/x\}$ takes a step, (2) the only rule applicable to the application term is $(E_{\text{RED}})/(R_{\text{PROD}})$, and (3) v_2 is a value (thus not a variable). By $(E$ _{-RED} $)/(R$ _{-PROD} $),$

$$
(\langle y:T_{11} \times T_{12} \leftarrow y:T_{21} \times T_{22})^{\ell} (v'_1, v'_2) \rangle \{e_i/x\} \longrightarrow
$$

\n
$$
(\lambda y:T_{11} \{e_i/x\}.(y, \langle T_{12} \{e_i/x\} \leftarrow T_{22} \{e_i/x\} \{v'_1 \{e_i/x\}/y\}^{\ell} v'_2 \{e_i/x\}) (\langle T_{11} \{e_i/x\} \leftarrow T_{21} \{e_i/x\}^{\ell} v'_1 \{e_i/x\})
$$

\n
$$
= ((\lambda y:T_{11}.(y, \langle T_{12} \leftarrow T_{22} \{v'_1/y\})^{\ell} v'_2)) (\langle T_{11} \leftarrow T_{21}^{\ell} v'_1)) \{e_i/x\}.
$$

 \Box

 \Box

Case $v_1 = \langle T_1 \leftarrow \{y:T_2 \mid e\} \rangle^{\ell}$: By $(E \text{-} RED) / (R \text{-}FORGET)$,

$$
(\langle T_1 \leftarrow \{y: T_2 \mid e\} \rangle^{\ell} v_2) \{e_i/x\} \longrightarrow \langle T_1 \{e_i/x\} \leftarrow T_2 \{e_i/x\} \rangle^{\ell} v_2 \{e_i/x\} = (\langle T_1 \leftarrow T_2 \rangle^{\ell} v_2) \{e_i/x\}.
$$

Case $v_1 = \langle \{y : T_1 | e \} \leftarrow T_2 \rangle^{\ell}$ where T_2 is not a refinement type: By (E_RED)/(R_PRECHECK),

$$
(\langle \{y:T_1 \mid e\} \leftarrow T_2 \rangle^{\ell} v_2) \{e_i/x\} \longrightarrow \langle \langle \{y:T_1 \mid e\} \{e_i/x\}, \langle T_1 \{e_i/x\} \leftarrow T_2 \{e_i/x\} \rangle^{\ell} v_2 \{e_i/x\} \rangle^{\ell} \\ = \langle \langle \{y:T_1 \mid e\}, \langle T_1 \leftarrow T_2 \rangle^{\ell} v_2 \rangle^{\ell} \{e_i/x\}.
$$

Case $v_1 = \langle \tau_1 \langle e_1'' \rangle \Leftarrow \tau_2 \langle e_2'' \rangle \rangle^{\ell}$: There are three reduction rules by which $(v_1 \, v_2) \, \{e_1 \mid x\}$ takes a step.

Case $(E_{-}RED)/(R_{-}DATATYPE)$: We find that $v_2 = C_2\langle e'' \rangle v''$ for some C_2 , e'' and v'' since v_2 is a value (thus not a variable). We are given

$$
(\langle \tau_1 \langle e_1'' \rangle \Leftarrow \tau_2 \langle e_2'' \rangle)^{\ell} C_2 \langle e'' \rangle v'' \rangle \{e_1/x\} \rightarrow
$$

\n
$$
C_1 \langle e_1'' \{e_1/x\} \rangle (\langle T_1' \{e_1'' \{e_1/x\}/y_1\} \Leftarrow T_2' \{e_2'' \{e_1/x\}/y_2\})^{\ell} v'' \{e_1/x\})
$$

\n
$$
= (C_1 \langle e_1'' \rangle (\langle T_1' \{e_1''/y_1\} \Leftarrow T_2' \{e_2''/y_2\})^{\ell} v'') \} \{e_1/x\}
$$

where $\delta((\tau_1(e_1'') \leftarrow \tau_2(e_2''))^{\ell} C_2(e'')v'') \{e_1/x\}) = C_1$ and, for $j \in \{1,2\}$, $ArgTypeOf(\tau_j) = y_j \cdot T_j$ and $CtrArgOf(C_j) = T'_j$. Note that only y_1 and y_2 can occur free in T'_1 and T'_2 , respectively, because of wellformedness of the type definition environment. Since $e_1 \equiv e_2$, we have $(v_1 v_2) \{e_1/x\} \equiv (v_1 v_2) \{e_2/x\}$ by Lemma 5 (3). From well-formedness of the constructor choice function, we have $\delta((v_1 v_2) \{e_2/x\})$ $\delta((v_1 v_2) \{e_1/x\}) = C_1$. Thus, by $(E \text{-} RED)/(R \text{-}DATATYPE)$,

$$
(\langle \tau_1 \langle e_1'' \rangle \Leftarrow \tau_2 \langle e_2'' \rangle)^{\ell} C_2 \langle e'' \rangle v'' \rangle \{e_2/x\} \rightarrow
$$

\n
$$
C_1 \langle e_1'' \{e_2/x\} \rangle (\langle T_1' \{e_1'' \{e_2/x\}/y_1\} \Leftarrow T_2' \{e_2'' \{e_2/x\}/y_2\})^{\ell} v'' \{e_2/x\})
$$

\n
$$
= (C_1 \langle e_1'' \rangle (\langle T_1' \{e_1''/y_1\} \Leftarrow T_2' \{e_2''/y_2\})^{\ell} v'') \{e_2/x\}.
$$

Case $(E_{-RED})/(R_{-DATATYPEMONO})$: By $(E_{-RED})/(R_{-DATATYPEMONO})$, $(\tau_1 \Leftarrow \tau_2)^{\ell} v_2) \{e_i/x\} \longrightarrow v_2 \{e_i/x\}.$ Case $(E \text{-} Rep)/(R \text{-}D \text{ATATYPEFAIL})$: We are given $(\langle \tau_1 \langle e_1'' \rangle \Leftarrow \tau_2 \langle e_2'' \rangle)^{\ell} v_2) \{e_1/x\} \rightarrow \hat{\mathcal{M}} \text{ and } \delta((\langle \tau_1 \langle e_1'' \rangle \Leftarrow \langle \tau_2 \rangle)^{\ell} v_2)$ $\tau_2(e''_1)$ ^{*e*} v_2) {*e*₁/*x*}) is undefined. Since $e_1 \equiv e_2$, we have $(v_1 \, v_2)$ {*e*₁/*x*} $\equiv (v_1 \, v_2)$ {*e*₂/*x*} by Lemma 5 (3). If $\delta((v_1 v_2) \{e_2/x\})$ is defined, then so is $\delta((v_1 v_2) \{e_1/x\})$ from well-formedness of the constructor choice function but it contradicts. Thus, $\delta((v_1 v_2) \{e_2/x\})$ is also undefined and so, by $(E \text{-} RED)/(R \text{-}DATATYPEFAIL)$, $((\tau_1 \{e''_1\}) \in \tau_2 \{e''_2\}) \{e_2/x\} \longrightarrow \hat{\mathcal{H}}$.

Lemma 10. *Let* e_1 *and* e_2 *be terms such that* $e_1 \rightarrow e_2$ *.*

 $(\langle \tau_1 \langle e_1'' \rangle \leftarrow \tau_2 \langle e_2'' \rangle) \langle e_2 \rangle \langle e_2 \rangle x) \longrightarrow \hat{\parallel} \ell.$

(1) If $(v_1 v_2) \{e_1/x\} \longrightarrow e$, then $(v_1 v_2) \{e_2/x\} \longrightarrow e' \{e_2/x\}$ for some e' such that $e = e' \{e_1/x\}$.

(2) If $(v_1 v_2) \{e_2/x\} \longrightarrow e$, then $(v_1 v_2) \{e_1/x\} \longrightarrow e' \{e_1/x\}$ for some e' such that $e = e' \{e_2/x\}$.

Proof. Since the evaluation relation is defined over closed terms, e_1 and e_2 are closed. Thus, we finish by Lemma 9. \Box

Lemma 11. Let e_1 and e_2 are closed terms, and $i \in \{1,2\}$. If $(v.i)$ $\{e_1/x\} \longrightarrow e$, then $(v.i)$ $\{e_2/x\} \longrightarrow e'$ $\{e_2/x\}$ for some e' such that $e = e' \{e_1/x\}$.

Proof. By Lemma 7, $v \{e_1/x\}$ and $v \{e_2/x\}$ are values. We find that *v* takes the form of pair since $(v,i) \{e_1/x\}$ takes a step. Note that if $(v.i)$ $\{e_1/x\}$ is closed, then so is $(v.i)$ $\{e_2/x\}$.

We are given $v = (v_1, v_2)$ for some v_1 and v_2 . By $(E \text{-} RED)/(R \text{-} Proofi)$, for $j \in \{1, 2\}$,

$$
((v_1,v_2).i)\{e_j/x\} \longrightarrow v_i\{e_j/x\}.
$$

Thus, we finish.

Lemma 12. *Let* e_1 *and* e_2 *be terms such that* $e_1 \rightarrow e_2$ *, and* $i \in \{1, 2\}$ *.*

(1) If $(v.i)$ { e_1/x } \longrightarrow e, then $(v.i)$ { e_2/x } \longrightarrow e' { e_2/x } for some e' such that $e = e'$ { e_1/x }.

(2) If $(v.i)$ { e_2/x } \longrightarrow e, then $(v.i)$ { e_1/x } \longrightarrow e' { e_1/x } for some e' such that $e = e'$ { e_2/x }.

Proof. Since the evaluation relation is defined over closed terms, e_1 and e_2 are closed. Thus, we finish by Lemma 11.

Lemma 13. Let e_1 and e_2 are closed terms. If (if v then e'_1 else e'_2) $\{e_1/x\} \longrightarrow e$, then (if v then e'_1 else e'_2) $\{e_2/x\} \longrightarrow e$ e' { e_2/x } *for some* e' *such that* $e = e'$ { e_1/x }.

Proof. By Lemma 7, $v \{e_1/x\}$ and $v \{e_2/x\}$ are values. Note that v takes the form of Boolean value since (if v then e'_1 else e'_2) $\{e_1/x\}$ takes a step and that if (if *v* then e'_1 else e'_2) $\{e_1/x\}$ is closed, then so is (if *v* then e'_1 else e'_2) $\{e_2/x\}$. By case analysis on *v*. In the following, let $i \in \{1,2\}$.

Case $v = true$: By $(E_{-}RED)/(R_{-}IFTRUE)$,

(if true then
$$
e'_1
$$
 else e'_2) $\{e_i/x\} \longrightarrow e'_1 \{e_i/x\}.$

Case $v = \text{false}$: By $(E \text{-} \text{RED}) / (R \text{-} \text{IFFALSE})$,

(if false then
$$
e'_1
$$
 else e'_2) $\{e_i/x\} \longrightarrow e'_2 \{e_i/x\}$.

Lemma 14. *Let* e_1 *and* e_2 *be terms such that* $e_1 \rightarrow e_2$ *.*

- (1) If (if v then e'_1 else e'_2) $\{e_1/x\} \longrightarrow e$, then (if v then e'_1 else e'_2) $\{e_2/x\} \longrightarrow e' \{e_2/x\}$ for some e' such that $e =$ *e* ′ {*e*¹/*x*}*.*
- (2) If (if v then e'_1 else e'_2) $\{e_2/x\} \longrightarrow e$, then (if v then e'_1 else e'_2) $\{e_1/x\} \longrightarrow e' \{e_1/x\}$ for some e' such that $e =$ e' { e_2/x }.

Proof. Since the evaluation relation is defined over closed terms, e_1 and e_2 are closed. Thus, we finish by Lemma 13.

Lemma 15. Let e_1 and e_2 are closed terms. If (match *v* with C_i $y_i \rightarrow e'_i$ e^{i}) $\{e_1/x\} \longrightarrow e$, then (match *v* with $\overline{C_i y_i \rightarrow e'_i}$ $i)$ { e_2/x } \longrightarrow e' { e_2/x } *for some* e' *such that* $e = e'$ { e_1/x }.

Proof. Without loss of generality, we can suppose that each y_i is fresh. By Lemma 7, $v \{e_1/x\}$ and $v \{e_2/x\}$ are values. We find that *v* takes the form of constructor application since (match *v* with $C_i y_i \rightarrow e'_i$ i) { e_1/x } takes a step. Note that if $(\text{match } v \text{ with } C_i y_i \rightarrow e'_i)$ \int ^{*i*}) { e_1/x } is closed, then so is (match *v* with $\overline{C_i y_i \rightarrow e'_i}$ i) { e_2/x }.

We are given $v = C_j \langle e' \rangle v'$ for some $C_j \in \overline{C_i}^i$, e' and v' . By $(\text{E_RED})/(\text{R_MATOR})$, for $k \in \{1, 2\}$,

$$
(\operatorname{match} C_j \langle e' \rangle v' \operatorname{with} \overline{C_i y_i \rightarrow e_i'} \rangle \{e_k/x\} \longrightarrow e'_j \{e_k/x\} \{v' \{e_k/x\}/y_j\}
$$

= $e'_j \{v'/y_j\} \{e_k/x\}.$

Thus, we finish.

Lemma 16. *Let* e_1 *and* e_2 *be terms such that* $e_1 \rightarrow e_2$ *.*

- *(1) If* (match *v* with $C_i y_i \rightarrow e'_i$ \int ^{*i*}) { e_1/x } \longrightarrow *e*, *then* (match *v* with $\overline{C_i y_i \rightarrow e'_i}$ e^{i} $\{e_2/x\}$ \longrightarrow e^{i} $\{e_2/x\}$ *for some* e^{i} *such that* $e = e' \{e_1/x\}$.
- *(2) If* (match *v* with C_i $y_i \rightarrow e'_i$ \int ^{*i*}) { e_2/x } \longrightarrow *e*, *then* (match *v* with $\overline{C_i y_i \rightarrow e'_i}$ e^{i} $\{e_1/x\}$ \longrightarrow e^{i} $\{e_1/x\}$ *for some* e^{i} *such that* $e = e' \{e_2/x\}$.

Proof. Since the evaluation relation is defined over closed terms, e_1 and e_2 are closed. Thus, we finish by Lemma 15. \Box

Lemma 17. *Let* e_1 *and* e_2 *are closed terms. If* $\langle \langle \{y:T | e'_1 \}, v \rangle \rangle^{\ell} \{e_1/x\} \longrightarrow e$ *, then* $\langle \langle \{y:T \mid e_1'\}, v \rangle \rangle^{\ell} \{e_2/x\} \longrightarrow e' \{e_2/x\}$ for some *e*' such that $e = e' \{e_1/x\}.$

Proof. Without loss of generality, we can suppose that *y* is fresh. By Lemma 7, $v \{e_1/x\}$ and $v \{e_2/x\}$ are values. Note that if $\langle \langle yT | e'_1 \rangle, v \rangle \rangle^{\ell} \{e_1/x\}$ is closed, then so is $\langle \langle yT | e'_1 \rangle, v \rangle \rangle^{\ell} \{e_2/x\}$. Letting $i \in \{1,2\}$, by $(E$ _{-RED} $)/(R$ _{-CHECK} $),$

$$
\langle \langle \{y:T \,|\, e'_1\}, v \rangle \rangle^{\ell} \{e_i/x\} \longrightarrow \langle \{y:T \,|\, e'_1\} \{e_i/x\}, e'_1 \{e_i/x\} \{v \{e_i/x\}/y\}, v \{e_i/x\} \rangle^{\ell} = \langle \{y:T \,|\, e'_1\}, e'_1 \{v/y\}, v \rangle^{\ell} \{e_i/x\}.
$$

Thus, we finish.

Lemma 18. Let e_1 and e_2 be terms such that $e_1 \rightarrow e_2$.

(1) If $\langle \langle y: T | e_1' \rangle, v \rangle \rangle^{\ell} \{e_1/x\} \longrightarrow e$, then $\langle \langle y: T | e_1' \rangle, v \rangle \rangle^{\ell} \{e_2/x\} \longrightarrow e' \{e_2/x\}$ for some e' such that $e = e' \{e_1/x\}$. (2) If $\langle \langle y \cdot T | e_1' \rangle, v \rangle \rangle^{\ell} \{e_2/x\} \longrightarrow e$, then $\langle \langle y \cdot T | e_1' \rangle, v \rangle \rangle^{\ell} \{e_1/x\} \longrightarrow e' \{e_1/x\}$ for some e' such that $e = e' \{e_2/x\}$.

Proof. Since the evaluation relation is defined over closed terms, e_1 and e_2 are closed. Thus, we finish by Lemma 17. \Box

Lemma 19. *Let* e_1 *and* e_2 *are closed terms. If* $\langle \{y:T | e'_1\}, v_1, v_2 \rangle^{\ell} \{e_1/x\} \longrightarrow e$ *, then* $\langle \{y:T | e'_1\}, v_1, v_2 \rangle^{\ell} \{e_2/x\} \longrightarrow e' \{e_2/x\}$ *for some e' such that* $e = e' \{e_1/x\}$ *.*

Proof. By Lemma 7, $v_1 \{e_1/x\}$ and $v_1 \{e_2/x\}$ are values. Note that v_1 takes the form of Boolean value since $\langle \{yT|e'_1\}, v_1, v_2\rangle^{\ell} \{e_1/x\}$ takes a step and that if $\langle \{yT|e'_1\}, v_1, v_2\rangle^{\ell} \{e_1/x\}$ is closed, then so is $\langle \{yT|e'_1\}, v_1, v_2\rangle^{\ell} \{e_2/x\}$. By case analysis on v_1 . In the following, let $i \in \{1,2\}$.

Case v_1 = true: By $(E \text{-} RED)/(R \text{-} OK)$, $\langle \{y:T | e'_1 \}, \text{true}, v_2 \rangle^{\ell} \{e_i/x\} \longrightarrow v_2 \{e_i/x\}.$

Case v_2 = false: By $(E_{\text{RED}})/(R_{\text{FAIL}}), \langle \{y:T | e'_1\}, \text{false}, v_2 \rangle^{\ell} \{e_i/x\} \longrightarrow \mathcal{M}$

Lemma 20. *Let* e_1 *and* e_2 *be terms such that* $e_1 \rightarrow e_2$ *.*

- (1) If $\langle \{y:T | e'_1\}, v_1, v_2 \rangle^{\ell}$ $\{e_1/x\} \longrightarrow e$, then $\langle \{y:T | e'_1\}, v_1, v_2 \rangle^{\ell}$ $\{e_2/x\} \longrightarrow e' \{e_2/x\}$ for some e' such that $e =$ e' { e_1/x }.
- (2) If $\langle \{y:T | e'_1\}, v_1, v_2 \rangle^{\ell}$ { $e_2/x \}$ $\longrightarrow e$, then $\langle \{y:T | e'_1\}, v_1, v_2 \rangle^{\ell}$ { $e_1/x \}$ $\longrightarrow e'$ { e_1/x } for some e' such that $e =$ e' { e_2/x }.

Proof. Since the evaluation relation is defined over closed terms, *e*¹ and *e*² are closed. Thus, we finish by Lemma 19.

Lemma 21.

(1) If
$$
e_1 \rightarrow^n e_2
$$
 is derived by (E_{RED}), then $E[e_1] \rightarrow^n E[e_2]$ is derived by applying only (E_{RED}).

$$
(2) If $e \longrightarrow^* \mathcal{L}$, then $E[e] \longrightarrow^* \mathcal{L}$.
$$

Proof.

1. By induction on the number of evaluation steps of $e_1 \longrightarrow^n e_2$.

Case 0: Obvious.

Case $i + 1$: We are given $e_1 \longrightarrow e_3 \longrightarrow^i e_2$ for some e_3 . Since $e_1 \longrightarrow e_3$ is derived by (E_RED), there exist some *E'*, e'_1 and e'_2 such that $e'_1 \sim e'_3$. Since $E[E'[e'_1]] \longrightarrow E[E'[e'_3]]$ by (E_RED), we finish by the IH.

2. By induction on the number of evaluation steps of $e_1 \longrightarrow^* \mathcal{L}$.

Case 0: Since $e = \frac{\hat{\pi}}{\hat{\epsilon}}$, we finish by (E_BLAME) if $E \neq [\cdot]$.

Case $n+1$: We are given $e \longrightarrow e' \longrightarrow^n \Uparrow \ell$ for some e' . If the evaluation rule applied to e is (E_RED), then $e = E'[e_1]$ and $e' = E'[e_2]$ for some E' , e_1 and e_2 such that $e_1 \rightsquigarrow e_2$. Since $E[E'[e_1]] \longrightarrow E[E'[e_2]]$ by (E Red), we finish by the IH. Otherwise, if the evaluation rule applied to *e* is (E Blame), then $e = E'[\hat{\mathcal{H}}]$ for some E' , and $e' = \hat{\mathcal{H}}$. By (E_BLAME), $E[E'[\hat{\mathcal{H}}]] \longrightarrow \hat{\mathcal{H}}$.

 \Box

 \Box

П

Lemma 22. Suppose that $e_1 \longrightarrow e_2$. If $e\{e_1/x\} = E_1[\Uparrow \mathcal{C}],$ then there exists some E_2 such that $e\{e_2/x\} = E_2[\Uparrow \mathcal{C}].$ *Proof.* By structural induction on *e*

Case $e = x$: It is found that $e_1 = e\{e_1/x\} = E_1[\hat{\mathcal{H}}]$. Since $E_1[\hat{\mathcal{H}}] \longrightarrow \hat{\mathcal{H}}$ by (E_BLAME), $e_2 = \hat{\mathcal{H}}$.

- Case *e* = *v*: Contradictory.
- Case $e = \frac{\mathcal{C}}{\mathcal{C}}$: If $\ell' = \ell$, then obvious. Otherwise, if $\ell' \neq \ell$, then contradictory since $e \{e_1/x\} = E_1[\mathcal{C}]$.

Case $e = e'_1 e'_2$: Since $e \{e_1/x\} = E_1[\| \ell],$ there are two cases we have to consider.

- Case $E_1 = E'_1 e'_2 \{e_1/x\}$: Since $e'_1 \{e_1/x\} = E'_1[\hat{\mathcal{H}}]$, there exists some E'_2 such that $e'_1 \{e_2/x\} = E'_2[\hat{\mathcal{H}}]$, by the IH. Since $E'_2 e'_2 \{e_2/x\}$ is an evaluation context and $e \{e_2/x\} = E'_2[\hat{\pi}\ell] e'_2 \{e_2/x\}$, we finish.
- Case $E_1 = e'_1 \{e_1/x\} E'_1$ where $e'_1 \{e_1/x\}$ is a value: Since $e'_2 \{e_1/x\} = E'_1[\mathcal{N}]$, there exists some E'_2 such that e'_2 { e_2/x } = E'_2 [\Uparrow *l*], by the IH. Since e'_1 { e_1/x } is a value and e_1 is not a value from $e_1 \longrightarrow e_2$, it is found by Lemmas 8 and 7 that $e'_1 \{e_2/x\}$ is a value. Thus, since $e'_1 \{e_2/x\} E'_2$ is an evaluation context and $e\{e_2/x\} = e'_1\{e_2/x\} E'_2[\hat{\mathcal{H}}\hat{\ell}],$ we finish.
- Case $e = (e'_1, e'_2)$ which is a not value: Since $e \{e_1/x\} = E_1[\| \ell],$ there are two cases we have to consider.
	- Case $E_1 = (E'_1, e'_2 \{e_1/x\})$: Since $e'_1 \{e_1/x\} = E'_1[\hat{\mathcal{H}}]$, there exists some E'_2 such that $e'_1 \{e_2/x\} = E'_2[\hat{\mathcal{H}}]$, by the IH. Since $(E'_2, e'_2 \{e_2/x\})$ is an evaluation context and $e \{e_2/x\} = (E'_2[\hat{\parallel}\hat{\ell}], e'_2 \{e_2/x\})$, we finish.
	- Case $E_1 = (e'_1 \{e_1/x\}, E'_1)$ where $e'_1 \{e_1/x\}$ is a value: Since $e'_2 \{e_1/x\} = E'_1[\hat{\uparrow} \ell]$, there exists some E'_2 such that e'_2 { e_2/x } = E'_2 [\Uparrow *l*, by the IH. Since e'_1 { e_1/x } is a value, it is found by Lemmas 8 and 7 that e'_1 { e_2/x } is a value. Thus, since $(e'_1 \{e_2/x\}, E'_2)$ is an evaluation context and $e \{e_2/x\} = e'_1 \{e_2/x\} E'_2[\nparallel \ell],$ we finish.
- Case $e = e' \cdot i \ (i \in \{1,2\})$: Since $e \{e_1/x\} = E_1[\mathcal{M}]$, there exists some E'_1 such that $e' \{e_1/x\} = E'_1[\mathcal{M}]$. By the IH, there exists some E'_2 such that $e' \{e_2/x\} = E'_2[\hat{\uparrow} \ell]$. Since $e \{e_2/x\} = E'_2[\hat{\uparrow} \ell] \cdot i$, we finish.
- Case $e = C\langle e'_1 \rangle e'_2$ which is a not value: Since $e\{e_1/x\} = E_1[\hat{e}]\hat{e}_1$, there exists some E'_1 such that $e'_2\{e_1/x\} = E'_1[\hat{e}]\hat{e}_1$. By the IH, there exists some E'_2 such that e'_2 { e_2/x } = $E'_2[\hat{\mathcal{H}}]$. Since $C\{e'_1\{e_2/x\}}E'_2$ is an evaluation context and $e \{e_2/x\} = C \{e'_1 \{e_2/x\} \} E'_2[\nuparrow \ell],$ we finish.
- Case $e = \text{match} \, e'_0 \, \text{with} \, C_i \, y_i \to e'_i$ ^{*i*}
: Since $e \{e_1/x\} = E_1[\hat{\mathcal{H}}]$, there exists some E'_1 such that $e'_0 \{e_1/x\} = E'_1[\hat{\mathcal{H}}]$. By the IH, there exists some E'_2 such that e'_0 $\{e_2/x\} = E'_2[\Uparrow \ell]$. Since match E'_2 with C_i $y_i \rightarrow e'_i$ i ⁱ is an evaluation context and $e\{e_2/x\}$ = match $E'_2[\hat{\parallel}\ell]$ with $C_i y_i \rightarrow e'_i$ i , we finish.
- Case $e = \text{if } e'_1 \text{ then } e'_2 \text{ else } e'_3$: Since $e \{e_1/x\} = E_1[\hat{\mathcal{H}}]$, there exists some E'_1 such that $e'_1 \{e_1/x\} = E'_1[\hat{\mathcal{H}}]$. By the IH, there exists some E'_2 such that e'_1 { e_2/x } = E'_2 [$\Uparrow \ell$]. Since if E'_2 then e'_2 { e_2/x } else e'_3 { e_2/x } is an evaluation context and $e \{e_2/x\} = \text{if } E'_2[\Uparrow \ell] \text{ then } e'_2\{e_2/x\} \text{ else } e'_3\{e_2/x\}$, we finish.
- Case $e = \langle \langle \{y \cdot T | e_1' \}, e_2' \rangle \rangle^{\ell}$: Since $e \{e_1/x\} = E_1[\hat{\pi}\ell]$, there exists some E_1' such that $e_2' \{e_1/x\} = E_1'[\hat{\pi}\ell]$. By the IH, there exists some E'_2 such that e'_2 { e_2/x } = $E'_2[\hat{\mathcal{H}}\hat{\ell}]$. Since $\langle \langle \{y:T \,|\, e'_1\} \, \{e_2/x\}, E'_2 \rangle \rangle \hat{\ell}$ is an evaluation context and $e \{e_2/x\} = \langle (\{y:T \mid e'_1\} \{e_2/x\}, E'_2[\{\uparrow \ell\}])\rangle^{\ell}$, we finish.
- Case $e = \langle \{y:T | e_1'\}, e_2', v'\rangle^{\ell}$: Since $e\{e_1/x\} = E_1[\hat{v}|\ell]$, there exists some E_1' such that $e_2'\{e_1/x\} = E_1'[\hat{v}|\ell]$. By the IH, there exists some E'_2 such that e'_2 { e_2/x } = $E'_2[\hat{\uparrow}\ell]$. Since {{ $y:T|e'_1$ } { e_2/x }, E'_2, v' { e_2/x }}^{ℓ} is an evaluation context by Lemma 7 and $e \{e_2/x\} = (\{y:T | e'_1\} \{e_2/x\}, E'_2[\|l\|], v' \{e_2/x\})^l$, we finish.

Lemma 23 (Cotermination: Reduction on the Left). Let e_1 and e_2 be terms such that $e_1 \longrightarrow e_2$. If $e \{e_1/x\} \longrightarrow e'$, then $e\{e_2/x\} \longrightarrow^* e''\{e_2/x\}$ for some e'' such that $e' = e''\{e_1/x\}$. Moreover, if $e\{e_1/x\} \longrightarrow e'$ is derived by $(E$ **RED**), then the evaluation $e\{e_2/x\} \longrightarrow^* e''\{e_2/x\}$ is derived by applying only (E_RED).

Proof. By structural induction on *e*. If $e\{e_1/x\} \longrightarrow e'$ is derived by (E_BLAME), then there exist some E_1 and ℓ such that $e\{e_1/x\} = E_1[\hat{P}(\hat{P})]$ and $e' = \hat{P}(\hat{P}(\hat{P}))$. By Lemma 22, there exists some E_2 such that $e\{e_2/x\} = E_2[\hat{P}(\hat{P})]$. Thus, by (E_BLAME), $e\{e_2/x\} \longrightarrow \hat{\parallel} \ell$.

In what follows, we suppose that $e\{e_1/x\} \longrightarrow e'$ is derived by (E_RED). We proceed by case analysis on *e*. Note that e_1 is not a value from $e_1 \longrightarrow e_2$.

Case $e = y$: If $x = y$, then we have $e\{e_1/x\} = e_1$ and $e\{e_2/x\} = e_2$. We finish by letting $e'' = e_2$ because $e\{e_1/x\} = e_1 \longrightarrow e_2$ and $e_2\{e_1/x\} = e_2\{e_2/x\} = e_2$. Note that e_2 is closed since the evaluation relation is defined over closed terms.

Otherwise, if $x \neq y$, then there is a contradiction because the assumption says that $e \{e_1/x\} = y$ takes a step.

Case *e* = ⇑*ℓ*: Contradictory.

- Case $e = v$: Contradictory by Lemma 7 since $e \{e_1/x\}$ takes a step.
- Case $e = e'_1 e'_2$: Since $e \{e_1/x\}$ takes a step, there are three cases we have to consider.
	- Case $e'_1\{e_1/x\} \longrightarrow e''$ by (E_RED): By the IH, there exists some e''_1 such that $e'_1\{e_2/x\} \longrightarrow^* e''_1\{e_2/x\}$ and $e^{\hat{i}'} = e_1'' \{e_1/x\}$. Moreover, the evaluation $e_1' \{e_2/x\} \longrightarrow^* e_1'' \{e_2/x\}$ is derived by applying only (E RED). Thus, by Lemma 21 (1), $(e'_1e'_2)$ { e_1/x } \longrightarrow $(e''_1e'_2)$ { e_1/x } and $(e'_1e'_2)$ { e_2/x } \longrightarrow^* $(e''_1e'_2)$ { e_2/x }.
	- Case $e'_1\{e_1/x\}$ is a value and $e'_2\{e_1/x\} \longrightarrow e''$ by (E_RED): By Lemmas 8 and 7, $e'_1\{e_2/x\}$ is a value. By the IH, there exists some e''_2 such that $e'_2 \{e_2/x\} \longrightarrow^* e''_2 \{e_2/x\}$ and $e'' = e''_2 \{e_1/x\}$. Moreover, the evaluation e'_2 { e_2/x } $\rightarrow^* e''_2$ { e_2/x } is derived by applying only (E_RED). Thus, by Lemma 21 (1), $(e'_1 e'_2) \{e_1/x\} \longrightarrow (e'_1 e''_2) \{e_1/x\} \text{ and } (e'_1 e'_2) \{e_2/x\} \longrightarrow^* (e'_1 e''_2) \{e_2/x\}.$
	- Case e'_1 { e_1/x } and e'_2 { e_1/x } are values: Since e'_1 and e'_2 are values by Lemma 8, we finish by Lemma 10 (1).
- Case $e = (e'_1, e'_2)$: Similarly to the case for application term. Since $e\{e_1/x\}$ takes a step, there are two cases we have to consider.
	- Case $e'_1 \{e_1/x\} \longrightarrow e''$ by (E_RED): By the IH, there exists some e''_1 such that $e'_1 \{e_2/x\} \longrightarrow^* e''_1 \{e_2/x\}$ and $e'' = e''_1 \{e_1/x\}$. Moreover, the evaluation $e'_1 \{e_2/x\} \longrightarrow^* e''_1 \{e_2/x\}$ is derived by applying only (E_R Thus, by Lemma 21 (1), $(e'_1, e'_2) \{e_1/x\} \longrightarrow (e''_1, e'_2) \{e_1/x\}$ and $(e'_1, e'_2) \{e_2/x\} \longrightarrow^* (e''_1, e'_2) \{e_2/x\}.$
	- Case $e'_1\{e_1/x\}$ is a value and $e'_2\{e_1/x\} \longrightarrow e''$ by (E_RED): By Lemmas 8 and 7, $e'_1\{e_2/x\}$ is a value. By the IH, there exists some e''_2 such that $e'_2 \{e_2/x\} \longrightarrow^* e''_2 \{e_2/x\}$ and $e'' = e''_2 \{e_1/x\}$. Moreover, the evaluation $e'_2\{e_2/x\} \longrightarrow^* e''_2\{e_2/x\}$ is derived by applying only (E_RED). Thus, by Lemma 21 (1), $(e'_1, e'_2) \{e_1/x\} \longrightarrow (e'_1, e''_2) \{e_1/x\} \text{ and } (e'_1, e'_2) \{e_2/x\} \longrightarrow^* (e'_1, e''_2) \{e_2/x\}.$
- Case $e = e'$ *i* for $i \in \{1,2\}$: Similarly to the case for application term except for use of Lemma 12 (1). Since $e\{e_1/x\}$ takes a step, there are two cases we have to consider.
	- Case $e' \{e_1/x\} \longrightarrow e''$ by (E_RED): By the IH, there exists some e''' such that $e' \{e_2/x\} \longrightarrow^* e''' \{e_2/x\}$ and $e'' = e''' \{e_1/x\}$. Moreover, the evaluation $e' \{e_2/x\} \longrightarrow^* e''' \{e_2/x\}$ is derived by applying only (E_RED). Thus, by Lemma 21 (1), $(e'.i) \{e_1/x\} \longrightarrow (e''''.i) \{e_1/x\}$ and $(e'.i) \{e_2/x\} \longrightarrow^* (e''''.i) \{e_2/x\}.$

Case $e' \{e_1/x\}$ is a value: Since e' is a value by Lemma 8, we finish by Lemma 12 (1).

- Case $e = C\langle e'_1 \rangle e'_2$: Similarly to the case for application term. Since $e \{e_1/x\}$ takes a step, it is found that $e'_2\{e_1/x\} \rightarrow e''$ by (E_RED) for some e''. By the IH, there exists some e''_2 such that $e'_2\{e_2/x\} \rightarrow^* e''_2\{e_2/x\}$ and $e'' = e''_2\{e_1/x\}$. Moreover, the evaluation $e'_2\{e_2/x\} \rightarrow^* e''_2\{e_2/x\}$ is derived by applying only (E_RED). Thus, by Lemma 21 (1), $(C\langle e'_1 \rangle e'_2) \{e_1/x\} \longrightarrow (C\langle e'_1 \rangle e''_2) \{e_1/x\}$ and $(C\langle e'_1 \rangle e'_2) \{e_2/x\} \longrightarrow^*$ $(C\langle e'_1 \rangle e''_2) \{e_2 \rangle x\}.$
- Case $e = \text{match} \, e'_0 \, \text{with} \, C_i \, y_i \to e'_i$ i : Similarly to the case for application term except for use of Lemma 16 (1). Since $e\{e_1/x\}$ takes a step, there are two cases we have to consider.

Case e'_0 { e_1/x } \rightarrow e'' by (E_RED): By the IH, there exists some e''_0 such that e'_0 { e_2/x } \rightarrow * e''_0 { e_2/x } and $e'' = e_0'' \{e_1/x\}$. Moreover, the evaluation $e'_0 \{e_2/x\} \longrightarrow^* e''_0 \{e_2/x\}$ is derived by applying only (E_RED). Thus, by Lemma 21 (1) ,

$$
(\text{match } e'_0 \text{ with } \overline{C_i y_i \rightarrow e'_i}^i) \{e_1/x\} \longrightarrow (\text{match } e''_0 \text{ with } \overline{C_i y_i \rightarrow e'_i}^i) \{e_1/x\}
$$

\n
$$
(\text{match } e'_0 \text{ with } \overline{C_i y_i \rightarrow e'_i}^i) \{e_2/x\} \longrightarrow^* (\text{match } e''_0 \text{ with } \overline{C_i y_i \rightarrow e'_i}^i) \{e_2/x\}.
$$

Case e'_0 { e_1/x } is a value: Since e'_0 is a value by Lemma 8, we finish by Lemma 16 (1).

- Case $e =$ if e'_1 then e'_2 else e'_3 : Similarly to the case for application term except for use of Lemma 14 (1). Since $e\{e_1/x\}$ takes a step, there are two cases we have to consider.
	- Case $e'_1\{e_1/x\} \longrightarrow e''$ by (E_RED): By the IH, there exists some e''_1 such that $e'_1\{e_2/x\} \longrightarrow^* e''_1\{e_2/x\}$ and $e^{\hat{i}'} = e_1^{\hat{i}'} \{e_1/x\}$. Moreover, the evaluation $e_1' \{e_2/x\} \longrightarrow^* e_1'' \{e_2/x\}$ is derived by applying only (E_RED). Thus, by Lemma 21 (1),

$$
\begin{array}{ccc}\n\text{(if } e'_1 \text{ then } e'_2 \text{ else } e'_3 \text{)} & \{e_1/x\} & \longrightarrow & \text{(if } e''_1 \text{ then } e'_2 \text{ else } e'_3 \text{)} & \{e_1/x\} \\
\text{(if } e'_1 \text{ then } e'_2 \text{ else } e'_3 \text{)} & \{e_2/x\} & \longrightarrow^* & \text{(if } e''_1 \text{ then } e'_2 \text{ else } e'_3 \text{)} & \{e_2/x\}.\n\end{array}
$$

Case $e'_1\{e_1/x\}$ is a value: Since e'_1 is a value by Lemma 8, we finish by Lemma 14 (1).

- Case $e = \langle \{y:T | e'_1\}, e'_2, v \rangle^{\ell}$: Similarly to the case for application term except for use of Lemma 20 (1). Since $e\{e_1/x\}$ takes a step, there are two cases we have to consider.
	- Case e'_2 { e_1/x } \rightarrow e'' by (E_RED): By the IH, there exists some e''_2 such that e'_2 { e_2/x } $\rightarrow^* e''_2$ { e_2/x } and $e'' = e''_2$ { e_1/x }. Moreover, the evaluation e'_2 { e_2/x } $\rightarrow^* e''_2$ { e_2/x } is derived by Thus, by Lemma 21 (1),

$$
(\langle \{y:T | e'_1\}, e'_2, v \rangle^{\ell}) \{e_1/x\} \longrightarrow (\langle \{y:T | e'_1\}, e''_2, v \rangle^{\ell}) \{e_1/x\} \n(\langle \{y:T | e'_1\}, e'_2, v \rangle^{\ell}) \{e_2/x\} \longrightarrow^* (\langle \{y:T | e'_1\}, e''_2, v \rangle^{\ell}) \{e_2/x\}.
$$

Case $e'_2\{e_1/x\}$ is a value: Since e'_2 is a value by Lemma 8, we finish by Lemma 20 (1).

- Case $e = \langle \langle \{y:T \mid e'_1\}, e'_2 \rangle \rangle^{\ell}$: Similarly to the case for application term except for use of Lemma 18 (1). Since $e \{e_1/x\}$ takes a step, there are two cases we have to consider.
	- Case e'_2 { e_1/x } \rightarrow e'' by (E_RED): By the IH, there exists some e''_2 such that e'_2 { e_2/x } \rightarrow * e''_2 { e_2/x } and $e'' = e''_2 \{e_1/x\}$. Moreover, the evaluation $e'_2 \{e_2/x\} \longrightarrow^* e''_2 \{e_2/x\}$ is derived by applying only (E_RED). Thus, by Lemma $21(1)$,

$$
\begin{array}{ccc} (\langle \langle \{y:T \, | \, e'_1\}, e'_2 \rangle \rangle^{\ell}) \{e_1/x\} & \longrightarrow & (\langle \langle \{y:T \, | \, e'_1\}, e''_2 \rangle \rangle^{\ell}) \{e_1/x\} \\ (\langle \langle \{y:T \, | \, e'_1\}, e'_2 \rangle \rangle^{\ell}) \{e_2/x\} & \longrightarrow^* & (\langle \langle \{y:T \, | \, e'_1\}, e''_2 \rangle \rangle^{\ell}) \{e_2/x\}.\end{array}
$$

Case $e'_2\{e_1/x\}$ is a value: Since e'_2 is a value by Lemma 8, we finish by Lemma 18 (1).

Lemma 24. *If* $e_1 \longrightarrow e_2$, and $e \{e_2/x\}$ *is a value, then there exists some* e' *such that*

- $e\{e_1/x\} \longrightarrow^* e'\{e_1/x\},$
- e' { e_1/x } *is a value, and*
- $e\{e_2/x\} = e'\{e_2/x\}.$

Proof. By structural induction on *e*.

Case $e = y$: If $x = y$, then $e\{e_2/x\} = e_2$ is a value. Thus, we finish by letting $e' = e_2$ because $e_2\{e_1/x\} = e_2$ $e_2 \{e_2/x\} = e_2$. Note that e_2 is closed since the evaluation relation is defined over closed terms. Otherwise, if $x \neq y$, then contradiction because $e \{e_2/x\}$ is a value but $e \{e_2/x\} = y$ is not.

- Case $e = v$: Obvious by letting $e' = v$ because $v \{e_1/x\}$ is a value by Lemma 7.
- Case $e = \mathcal{C} \mid \ell, e'_1 e'_2, e'.i \text{ for } i \in \{1, 2\}, \text{match } e'_0 \text{ with } C_i y_i \to e'_i$ e'_{1} then e'_{2} else e'_{3} , $\langle \{y{:}T\,|\,e'_{1}\},e'_{2},v \rangle^{\ell}$ or $\langle \langle \{y{:}T\,|\,e'_{1}\},e'_{2}\rangle \rangle^{\ell}$: Contradictory: $e\{e_2/x\}$ is a value.
- Case $e = (e'_1, e'_2)$: Let $i \in \{1, 2\}$. By the assumption, $e'_i \{e_2/x\}$ is a value. By the IH, there exists some e''_i such that $e'_i \{e_1/x\} \longrightarrow^* e''_i \{e_1/x\}$ and $e''_i \{e_1/x\}$ is a value and $e'_i \{e_2/x\} = e''_i \{e_2/x\}$. Thus, $(e'_1, e'_2) \{e_1/x\} \longrightarrow^*$ $(e''_1, e''_2) \{e_1/x\}$ and $(e''_1, e''_2) \{e_1/x\}$ is a value and $e \{e_2/x\} = (e''_1, e''_2) \{e_2/x\}.$
- Case $e = C\langle e_1' \rangle e_2'$: By the assumption, $e_2' \{e_2/x\}$ is a value. By the IH, there exists some e_2'' such that $e_2' \{e_1/x\} \longrightarrow^*$ $e''_2\{e_1/x\}$ and $e''_2\{e_1/x\}$ is a value and $e'_2\{e_2/x\} = e''_2\{e_2/x\}$. Thus, $(C(e'_1)e'_2)\{e_1/x\} \longrightarrow^* (C(e'_1)e''_2)\{e_1/x\}$ and $(C\langle e'_1 \rangle e''_2 \rangle \{e_1/x\}$ is a value and $(C\langle e'_1 \rangle e'_2 \rangle \{e_2/x\} = (C\langle e'_1 \rangle e''_2 \rangle \{e_2/x\}$.

Lemma 25. *If* $e_1 \longrightarrow e_2$ *and* $e \{e_2/x\} = E_2[\hat{\mathcal{H}}]$ *, then* $e \{e_1/x\} \longrightarrow^* \hat{\mathcal{H}}$ *.*

- *Proof.* By structural induction on *e*.
- Case $e = x$: Obvious since $e_1 \longrightarrow e_2 = e \{e_2/x\} = E_2[\Uparrow \ell] \longrightarrow \Uparrow \ell$.
- Case *e* = ⇑*ℓ*: Obvious.
- Case $e = y$ where $y \neq x$, $\Uparrow \ell'$ where $\ell \neq \ell'$, and *v*: Contradictory (by Lemma 8 in the case that $e = v$) since $e\{e_2/x\} = E_2[\|ell\|].$
- Case $e = e'_1 e'_2$: Since $e \{e_2/x\} = E_2[\| \ell],$ there are two cases we have to consider.
	- Case $E_2 = E_2' e_2' \{e_2/x\}$: Since $e_1' \{e_2/x\} = E_2'[\hat{\uparrow}\ell]$, we have $e_1' \{e_1/x\} \longrightarrow^* \hat{\uparrow}\ell$ by the IH. Thus, we finish by Lemma 21 (2).
	- Case $E_2 = e'_1 \{e_2/x\} E'_2$ where $e'_1 \{e_2/x\}$ is a value: By Lemma 24, there exists some e''_1 such that $e'_1 \{e_1/x\} \longrightarrow^*$ $e''_1\{e_1/x\}$ and $e''_1\{e_1/x\}$ is a value and $e'_1\{e_2/x\} = e''_1\{e_2/x\}$. Since $e'_2\{e_2/x\} = E'_2[\hat{\uparrow} \ell]$, we have $e'_2\{e_1/x\} \longrightarrow^*$ $\Uparrow \ell$ by the IH. Thus, $(e'_1e'_2)\{e_1/x\} \longrightarrow^* (e''_1e'_2)\{e_1/x\} \longrightarrow^* \Uparrow \ell$ by Lemmas 21 (1) and (2).

Case $e = (e'_1, e'_2)$: Since $e \{e_2/x\} = E_2[\hat{\mathcal{H}}]$, there are two cases we have to consider.

- Case $E_2 = (E_2', e_2' \{e_2/x\})$: Since $e_1' \{e_2/x\} = E_2'[\Uparrow \ell],$ we have $e_1' \{e_1/x\} \longrightarrow^* \Uparrow \ell$ by the IH. Thus, we finish by Lemma 21 (2).
- Case $E_2 = (e'_1 \{e_2/x\}, E'_2)$ where $e'_1 \{e_2/x\}$ is a value: By Lemma 24, there exists some e''_1 such that $e'_1 \{e_1/x\} \longrightarrow^*$ $e''_1\{e_1/x\}$ and $e''_1\{e_1/x\}$ is a value and $e'_1\{e_2/x\} = e''_1\{e_2/x\}$. Since $e'_2\{e_2/x\} = E'_2[\hat{\parallel}\ell]$, we have $e'_2\{e_1/x\} \longrightarrow^* \hat{\parallel}\ell$ by the IH. Thus, $(e'_1,e'_2)\{e_1/x\} \longrightarrow^* (e''_1,e'_2)\{e_1/x\} \longrightarrow^* \hat{\parallel}\ell$ by Lemmas 21 (1) and (2).
- Case $e = e' \cdot i$ for $i \in \{1,2\}$: Since $e\{e_2/x\} = E_2[\Uparrow \ell],$ there exists some E'_2 such that $E_2 = E'_2 \cdot i$. Since $e'\{e_2/x\} =$ $E'_2[\hat{\parallel} \ell]$, we have $e' \{e_1/x\} \longrightarrow^* \hat{\parallel} \ell$ by the IH. By Lemma 21 (2), we finish.
- Case $e = C\langle e'_1 \rangle e'_2$: Since $e\{e_2/x\} = E_2[\Uparrow \ell],$ there exists some E'_2 such that $E_2 = C\langle e'_1 \{e_2/x\} \rangle E'_2$. Since $e'_2 \{e_2/x\} = E'_2[\Uparrow \ell],$ we have $e'_2 \{e_1/x\} \longrightarrow^* \Uparrow \ell$ by the IH. By Lemma 21 (2), we finish.
- Case $e = \text{match} \, e_0'$ with $C_i \, y_i \to e_i'$ ^{*i*}: Since $e\{e_2/x\} = E_2[\hat{\mathcal{T}}(\ell], \text{there exists some } E'_2 \text{ such that } E_2 = \text{match } E'_2 \text{ with } \overline{C_i y_i \rightarrow e'_i}$ *i* . Since e'_0 { e_2/x } = E'_2 [$\Uparrow \ell$], we have e'_0 { e_1/x } \longrightarrow^* $\Uparrow \ell$ by the IH. By Lemma 21 (2), we finish.
- Case $e =$ if e'_1 then e'_2 else e'_3 : Since $e\{e_2/x\} = E_2[\mathcal{M}]$, there exists some E'_2 such that $E_2 =$ if E'_2 then $e'_2\{e_2/x\}$ else $e'_3\{e_2/x\}$. Since e'_1 { e_2/x } = E'_2 [$\Uparrow \ell$], we have e'_1 { e_1/x } \longrightarrow^* $\Uparrow \ell$ by the IH. By Lemma 21 (2), we finish.
- Case $e = \langle \{y:T | e'_1\}, e'_2, v \rangle^{e'}$: Since $e \{e_2/x\} = E_2[\hat{\pi}\hat{e}],$ there exists some E'_2 such that $E_2 = \langle \{y:T | e'_1\} \{e_2/x\}, E'_2, v \{e_2/x\} \rangle^{e'},$ Since e'_2 { e_2/x } = E'_2 [$\Uparrow \ell$], we have e'_2 { e_1/x } \longrightarrow^* $\Uparrow \ell$ by the IH. By Lemma 21 (2), we finish.
- Case $e = \langle \langle \{y:T | e'_1\}, e'_2 \rangle \rangle^{\ell'}$: Since $e \{e_2/x\} = E_2[\{\mathcal{X}], \{\mathcal{X}\}$ here exists some E'_2 such that $E_2 = \langle \langle \{y:T | e'_1\}, e'_2 \rangle \rangle^{\ell'}$. Since e'_2 { e_2/x } = E'_2 [↑ ℓ], we have e'_2 { e_1/x } \longrightarrow^* ↑ ℓ by the IH. By Lemma 21 (2), we finish.

Lemma 26 (Cotermination: Reduction on the Right). Suppose that $e_1 \rightarrow e_2$. If $e \{e_2/x\} \rightarrow e'$, then $e \{e_1/x\} \rightarrow^*$ $e''\{e_1/x\}$ for some e'' such that $e' = e''\{e_2/x\}$. Moreover, if $e\{e_2/x\} \longrightarrow e'$ is derived by (E_RED), then the eval*uation* $e^{i}e_{1}/x$ \rightarrow * e'' $\{e_{1}/x\}$ *is derived by applying only (E_RED).*

Proof. By structural induction on *e*. If $e\{e_2/x\} \longrightarrow e'$ is derived by (E_BLAME), then there exist some E_2 and ℓ such that $e\{e_2/x\} = E_2[\hat{\mathcal{H}}]$ and $e' = \hat{\mathcal{H}}$. By Lemma 25, $e\{e_1/x\} \longrightarrow^* \hat{\mathcal{H}}$. We finish by letting $e'' = \hat{\mathcal{H}}$. In what follows, we suppose that $e\{e_2/x\}$ is derived by (E_RED). We proceed by case analysis on *e*.

Case $e = y$: If $x = y$, then we have $e\{e_1/x\} = e_1$ and $e\{e_2/x\} = e_2$. Thus, we finish by letting $e'_1 = e'_2$ because $e'_2\{e_1/x\} = e'_2\{e_2/x\} = e'_2$. Note that the evaluation relation is defined over closed terms. Otherwise, if $x \neq y$, then contradiction because $e\{e_2/x\} = y$ takes a step.

Case *e* = ⇑*ℓ*: Contradictory.

Case $e = v$: Contradictory by Lemma 7 since $e \{e_2/x\} \longrightarrow e'_2$.

Case $e = e'_1 e'_2$: Since $e \{e_2/x\}$ takes a step, there are three cases we have to consider.

- Case $e'_1\{e_2/x\} \longrightarrow e''$ by (E_RED): By the IH, there exists some e''_1 such that $e'_1\{e_1/x\} \longrightarrow^* e''_1\{e_1/x\}$ and $e'' = e''_1 \{e_2/x\}$. Moreover, the evaluation $e'_1 \{e_1/x\} \longrightarrow^* e''_1 \{e_1/x\}$ is derived by applying only (E RED). Thus, by Lemma 21 (1), $(e'_1 e'_2) \{e_2/x\} \longrightarrow (e''_1 e'_2) \{e_2/x\}$ and $(e'_1 e'_2) \{e_1/x\} \longrightarrow^* (e''_1 e'_2) \{e_1/x\}$.
- Case $e'_1\{e_2/x\}$ is a value and $e'_2\{e_2/x\} \longrightarrow e''$ by (E_RED): By Lemma 24, there exists some e''_1 such that $e'_1\{e_1/x\} \longrightarrow^* e''_1\{e_1/x\}$ and $e''_1\{e_1/x\}$ is a value and $e'_1\{e_2/x\} = e''_1\{e_2/x\}$. By the IH, there exists some e''_2 such that e'_2 { e_1/x } $\longrightarrow^* e''_2$ { e_1/x } and $e'' = e''_2$ { e_2/x }. Moreover, the evaluation e'_2 { e_1/x } $\longrightarrow^* e''_1$ $e_2''\{e_1/x\}$ is derived by applying only (E_RED). Thus, by Lemma 21 (1), $(e'_1e'_2)\{e_2/x\} \longrightarrow (e''_1e''_2)\{e_2/x\}$ and $(e'_1 e'_2) \{e_1/x\} \longrightarrow^* (e''_1 e''_2) \{e_1/x\}.$
- Case $e'_1\{e_2/x\}$ and $e'_2\{e_2/x\}$ are values: Let $i \in \{1,2\}$. By Lemma 24, there exist some e''_i such that $e'_i \{e_1/x\} \longrightarrow^* e''_i \{e_1/x\}$ and $e''_i \{e_1/x\}$ is a value and $e'_i \{e_2/x\} = e''_i \{e_2/x\}$. Since e''_1 and e''_2 are values by Lemma 8, we finish by Lemmas 10 (2) and 21 (1).
- Case $e = (e'_1, e'_2)$: Similarly to the case for application term. Since $e\{e_2/x\}$ takes a step, there are two cases we have to consider.
	- Case $e'_1\{e_2/x\} \longrightarrow e''$ by (E_RED): By the IH, there exists some e''_1 such that $e'_1\{e_1/x\} \longrightarrow^* e''_1\{e_1/x\}$ and $e^{\hat{i}'} = e''_1 \{e_2/x\}$. Moreover, the evaluation $e'_1 \{e_1/x\} \rightarrow^* e''_1 \{e_1/x\}$ is derived by applying only (E_RED). Thus, by Lemma 21 (1), $(e'_1, e'_2) \{e_2/x\} \longrightarrow (e''_1, e'_2) \{e_2/x\}$ and $(e'_1, e'_2) \{e_1/x\} \longrightarrow^* (e''_1, e'_2) \{e_1/x\}.$
	- Case $e'_1\{e_2/x\}$ is a value and $e'_2\{e_2/x\} \longrightarrow e''$ by (E_RED): By Lemma 24, there exists some e''_1 such that $e'_1\{e_1/x\} \longrightarrow^* e''_1\{e_1/x\}$ and $e''_1\{e_1/x\}$ is a value and $e'_1\{e_2/x\} = e''_1\{e_2/x\}$. By the IH, there exists some e''_2 such that e'_2 { e_1/x } $\longrightarrow^* e''_2$ { e_1/x } and $e'' = e''_2$ { e_2/x }. Moreover, the evaluation e'_2 { e_1/x } $\longrightarrow^* e''_1$ e''_2 { e_1/x } is derived by applying only (E_RED). Thus, by Lemma 21 (1), (e'_1, e'_2) { e_2/x } \longrightarrow $\overline{(e''_1, e''_2)}$ { e_2/x } and $(e'_1, e'_2) \{e_1/x\} \longrightarrow^* (e''_1, e''_2) \{e_1/x\}.$
- Case $e = e' \cdot i$ for $i \in \{1,2\}$: Similarly to the case for application term except for use of Lemma 12 (2). If there exists some e'' such that $e' \{e_2/x\} \rightarrow e''$ by (E_RED), then, by the IH, there exists some $e^{i''}$ such that $e' \{e_1/x\} \longrightarrow^* e''' \{e_1/x\}$ and $e'' = e''' \{e_2/x\}$. Moreover, the evaluation $e' \{e_1/x\} \longrightarrow^* e''' \{e_1/x\}$ is derived by applying only (E_RED). Thus, by Lemma 21 (1), $(e', i) \{e_2/x\} \longrightarrow (e''', i) \{e_2/x\}$ and $(e', i) \{e_1/x\} \longrightarrow^*$ (e''',i) { e_1/x }. Otherwise, if e' { e_2/x } is a value, then there exists some e'' such that e' { e_1/x } $\rightarrow^* e''$ { e_1/x } and $e''\{e_1/x\}$ is a value and $e'\{e_2/x\} = e''\{e_2/x\}$. Since e'' is a value by Lemma 8, we finish by Lemmas 12 (2) and 21 (1).
- Case $e = C\langle e'_1 \rangle e'_2$: Similarly to the case for application term. Since $e\{e_2/x\}$ takes a step, there exists some e'' such that e'_2 { e_2/x } \rightarrow e'' by (E_RED). By the IH, there exists some e''_2 such that e'_2 { e_1/x } \rightarrow * e''_2 {*e*₁/*x*} and $e'' = e''_2$ {*e*₂/*x*}. Moreover, the evaluation e'_2 {*e*₁/*x*} $\rightarrow^* e''_2$ {*e*₁/*x*} is derived by applying only (E_RED). Thus, by Lemma 21 (1), $(C\langle e'_1 \rangle e'_2) \{e_2 \rangle x\} \longrightarrow (C\langle e'_1 \rangle e''_2) \{e_2 \rangle x\}$ and $(C\langle e'_1 \rangle e'_2) \{e_1 \rangle x\} \longrightarrow^*$ $(C\langle e'_1 \rangle e''_2) \{e_1/x\}.$

Case $e = \text{match} \, e_0' \, \text{with} \, C_i \, y_i \to e_i'$ i : Similarly to the case for application term except for use of Lemma 16 (2). If there exists some *e''* such that e'_0 { e_2/x } \rightarrow *e''* by (E_RED), then, by the IH, there exists some e''_0 such that $e'_0\{e_1/x\} \longrightarrow^* e''_0\{e_1/x\}$ and $e'' = e''_0\{e_2/x\}$. Moreover, the evaluation $e'_0\{e_1/x\} \longrightarrow^* e''_0\{e_1/x\}$ is derived by applying only $(E$ _{-RED}). Thus, by Lemma 21 (1) ,

$$
\begin{array}{lll} \text{(match } e'_0 \text{ with } \overline{C_i y_i \rightarrow e'_i}^i \text{)} \{e_2/x\} & \longrightarrow & \text{(match } e''_0 \text{ with } \overline{C_i y_i \rightarrow e'_i}^i \text{)} \{e_2/x\} \\ \text{(match } e'_0 \text{ with } \overline{C_i y_i \rightarrow e'_i}^i \text{)} \{e_1/x\} & \longrightarrow^* & \text{(match } e''_0 \text{ with } \overline{C_i y_i \rightarrow e'_i}^i \text{)} \{e_1/x\}. \end{array}
$$

Otherwise, if e'_0 { e_2/x } is a value, then there exists some e''_0 such that e'_0 { e_1/x } $\rightarrow^* e''_0$ { e_1/x } and e''_0 { e_1/x } is a value and e'_0 { e_2/x } = e''_0 { e_2/x }. Since e''_0 is a value by Lemma 8, we finish by Lemmas 16 (2) and 21 (1).

Case $e =$ if e'_1 then e'_2 else e'_3 : Similarly to the case for application term except for use of Lemma 14 (2). If there exists some $e^{i\theta}$ such that $e'_1 \{e_2/x\} \rightarrow e''$ by (E_RED), then, by the IH, there exists some e''_1 such that $e'_1\{e_1/x\} \longrightarrow^* e''_1\{e_1/x\}$ and $e'' = e''_1\{e_2/x\}$. Moreover, the evaluation $e'_1\{e_1/x\} \longrightarrow^* e''_1\{e_1/x\}$ is derived by applying only (E_{RED}) . Thus, by Lemma 21 (1),

$$
\begin{array}{ccc}\n\text{(if } e'_1 \text{ then } e'_2 \text{ else } e'_3 \text{)} \{e_2/x\} & \longrightarrow & \text{(if } e''_1 \text{ then } e'_2 \text{ else } e'_3 \text{)} \{e_2/x\} \\
\text{(if } e'_1 \text{ then } e'_2 \text{ else } e'_3 \text{)} \{e_1/x\} & \longrightarrow^* & \text{(if } e''_1 \text{ then } e'_2 \text{ else } e'_3 \text{)} \{e_1/x\}.\n\end{array}
$$

Otherwise, if e'_1 { e_2/x } is a value, then there exists some e''_1 such that e'_1 { e_1/x } $\rightarrow^* e''_1$ { e_1/x } and e''_1 { e_1/x } is a value and $e'_1 \{e_2/x\} = e''_1 \{e_2/x\}$. Since e''_1 is a value by Lemma 8, we finish by Lemmas 14 (2) and 21 (1).

Case $e = \langle \{y:T | e'_1\}, e'_2, v \rangle^{\ell}$: Similarly to the case for application term except for use of Lemma 20 (2). If there exists some e'' such that $e'_2 \{e_2/x\} \rightarrow e''$ by (E_RED), then, by the IH, there exists some e''_2 such that $e'_2\{e_1/x\} \longrightarrow^* e''_2\{e_1/x\}$ and $e'' = e''_2\{e_2/x\}$. Moreover, the evaluation $e'_2\{e_1/x\} \longrightarrow^* e''_2\{e_1/x\}$ is derived by applying only (E_{RED}) . Thus, by Lemma 21 (1),

$$
(\langle \{y:T | e'_1\}, e'_2, v \rangle^{\ell}) \{e_2/x\} \longrightarrow (\langle \{y:T | e'_1\}, e''_2, v \rangle^{\ell}) \{e_2/x\} \n(\langle \{y:T | e'_1\}, e'_2, v \rangle^{\ell}) \{e_1/x\} \longrightarrow^* (\langle \{y:T | e'_1\}, e''_2, v \rangle^{\ell}) \{e_1/x\}.
$$

Otherwise, if e'_2 { e_2/x } is a value, then there exists some e''_2 such that e'_2 { e_1/x } $\rightarrow^* e''_2$ { e_1/x } and e''_2 { e_1/x } is a value and $e'_2 \{e_2/x\} = e''_2 \{e_2/x\}$. Since e''_2 is a value by Lemma 8, we finish by Lemmas 20 (2) and 21 (1).

Case $e = \langle (\{y:T \mid e'_1\}, e'_2) \rangle^{\ell}$: Similarly to the case for application term except for use of Lemma 18 (2). If there exists some e'' such that e'_2 { e_2/x } \rightarrow e'' by (E_RED), then, by the IH, there exists some e''_2 such that $e'_2\{e_1/x\} \longrightarrow^* e''_2\{e_1/x\}$ and $e'' = e''_2\{e_2/x\}$. Moreover, the evaluation $e'_2\{e_1/x\} \longrightarrow^* e''_2\{e_1/x\}$ is derived by applying only (E_{RED}) . Thus, by Lemma 21 (1),

$$
\begin{array}{ccc} (\langle \langle \{y:T \, | \, e_1'\}, e_2'\rangle \rangle^{\ell}) \{e_2/x\} & \longrightarrow & (\langle \langle \{y:T \, | \, e_1'\}, e_2''\rangle \rangle^{\ell}) \{e_2/x\} \\ (\langle \langle \{y:T \, | \, e_1'\}, e_2'\rangle \rangle^{\ell}) \{e_1/x\} & \longrightarrow^* & (\langle \langle \{y:T \, | \, e_1'\}, e_2''\rangle \rangle^{\ell}) \{e_1/x\}.\end{array}
$$

Otherwise, if e'_2 { e_2/x } is a value, then there exists some e''_2 such that e'_2 { e_1/x } $\longrightarrow^* e''_2$ { e_1/x } and e''_2 { e_1/x } is a value and $e'_2\{e_2/x\} = e''_2\{e_2/x\}$. Since e''_2 is a value by Lemma 8, we finish by Lemmas 18 (2) and 21 (1). □

Lemma 27. *Suppose that* $e_1 \rightarrow e_2$ *.*

- (1) If $e\{e_1/x\} \longrightarrow^* v_1$, then $e\{e_2/x\} \longrightarrow^* e'\{e_2/x\}$ for some e' such that $v_1 = e'\{e_1/x\}$, and $e'\{e_2/x\}$ is a *value.*
- (2) If $e\{e_2/x\} \longrightarrow^* v_2$, then $e\{e_1/x\} \longrightarrow^* e'\{e_1/x\}$ for some e' such that $v_2 = e'\{e_2/x\}$, and $e'\{e_1/x\}$ is a *value.*

Proof.

1. By mathematical induction on the number of evaluation steps of $e\{e_1/x\}$.

- Case 0: We are given $e\{e_1/x\}$ is a value. Since e_1 is not a value from $e_1 \longrightarrow e_2$, we find that *e* is a value by Lemma 8. By Lemma 7, so is $e\{e_2/x\}$. Thus, we finish when letting $e' = e$.
- Case *i* + 1: We are given $e\{e_1/x\} \rightarrow e'_1 \rightarrow i v_1$. By Lemma 23, there exists some e'' such that $e\{e_2/x\} \rightarrow i v_1$. e'' {*e*₂/*x*} and $e'_1 = e''$ {*e*₁/*x*}. By the IH, there exists some *e*' such that e'' {*e*₂/*x*} \rightarrow * e' {*e*₂/*x*} and $v_1 = e' \{e_1/x\}$, and $e' \{e_2/x\}$ is a value. Thus, we finish.
- 2. By mathematical induction on the number of evaluation steps of $e\{e_2/x\}$.

Case 0: We are given $e\{e_2/x\}$ is a value. By Lemma 24, there exists some e' such that $e\{e_1/x\} \longrightarrow^* e'\{e_1/x\}$ and $e\{e_2/x\} = e'\{e_2/x\}$ and $e'\{e_1/x\}$ is a value.

Case *i* + 1: We are given $e\{e_2/x\} \longrightarrow e'_2 \longrightarrow^i v_2$. By Lemma 26, there exists some e'' such that $e\{e_1/x\} \longrightarrow^*$ $e' = e'' \{e_2/x\}$. By the IH, there exists some *e*' such that $e'' \{e_1/x\} \longrightarrow^* e' \{e_1/x\}$ and $v_2 = e' \{e_2/x\}$, and $e' \{e_1/x\}$ is a value. Thus, we finish.

Lemma 28. *Suppose that* $e_1 \Rightarrow^* e_2$ *.*

- (1) If $e_1 \longrightarrow^* v_1$, then $e_2 \longrightarrow^* v_2$ for some v_2 such that $v_1 \Rightarrow^* v_2$.
- (2) If $e_2 \longrightarrow^* v_2$, then $e_1 \longrightarrow^* v_1$ for some v_1 such that $v_1 \Rightarrow^* v_2$.

Proof. By mathematical induction on the number of steps of $e_1 \Rightarrow^* e_2$.

Case 0: Obvious because $e_1 = e_2$.

Case $i + 1$: We are given $e_1 \Rightarrow e_3 \Rightarrow^i e_2$. We are given some e, e'_1, e'_3 and x such that $e_1 = e\{e'_1/x\}$ and $e_3 = e \{e'_3/x\}$ and $e'_1 \longrightarrow e'_3$. Thus, we finish by Lemma 27 and the IHs and transitivity of \Rightarrow^* .

Lemma 29.

- *(1) If* $c \Rightarrow^* v$ *, then* $v = c$ *.*
- *(2)* If $v \Rightarrow^* c$, then $v = c$.

Proof.

1. By mathematical induction on the number of steps of $c \Rightarrow^* v$.

Case 0: Obvious.

- Case $i+1$: We are given $c \Rightarrow e \Rightarrow^* v$. We are given e' , e_1 , e_2 and x such that $c = e' \{e_1/x\}$ and $e = e' \{e_2/x\}$ and $e_1 \longrightarrow e_2$. Since e_1 is not a value from $e_1 \longrightarrow e_2$, we find that e' is a value by Lemma 8. Thus, $e' = c$ and so $e = c$. By the IH, we finish.
- 2. By mathematical induction on the number of steps of $v \Rightarrow^* c$.

Case 0: Obvious.

Case $i+1$: We are given $v \Rightarrow e \Rightarrow^* c$. We are given e' , e_1 , e_2 and x such that $v = e' \{e_1/x\}$ and $e = e' \{e_2/x\}$ and $e_1 \longrightarrow e_2$. Since e_1 is not a value from $e_1 \longrightarrow e_2$, we find that e' is a value by Lemma 8. Thus, so is $e' \{e_2/x\}$ by Lemma 7. By the IH, $e' \{e_2/x\} = c$. Since e' is a value, $e' = c$ and so $v = c$. \Box

Lemma 30 (Cotermination at true). *Suppose that* $e_1 \Rightarrow^* e_2$.

(1) If e_1 → * true, then e_2 → * true.

(2) If e_2 → * true, then e_1 → * true.

Proof. By Lemmas 28 and 29.

Lemma 31. *Suppose that* $e_1 \equiv e_2$ *.*

- *(1) If* e_1 → * true, then e_2 → * true.
- *(2) If* e_2 → * true, then e_1 → * true.

Proof. Straightforward by induction on $e_1 \equiv e_2$. In particular, if $e_1 \Rightarrow e_2$, then we finish by Lemma 30. \Box

4 Type Soundness

Lemma 32 (Weakening). *Suppose that x is a fresh variable and* $\Gamma_1 \vdash T_1$.

- (1) *If* $\Gamma_1, \Gamma_2 \vdash e : T$, then $\Gamma_1, x : T_1, \Gamma_2 \vdash e : T$.
- *(2) If* $\Gamma_1, \Gamma_2 \vdash T$ *, then* $\Gamma_1, x : T_1, \Gamma_2 \vdash T$ *.*
- *(3)* $If \vdash \Gamma_1, \Gamma_2, \text{ then } \vdash \Gamma_1, \text{ } x \text{: } T_1, \Gamma_2.$

Proof. Straightforward by induction on each derivation.

Lemma 33 (Substitution). *Suppose that* $\Gamma_1 \vdash e' : T'$.

- *(1) If* $\Gamma_1, x : T', \Gamma_2 \vdash e : T$ *, then* $\Gamma_1, \Gamma_2 \{e'/x\} \vdash e \{e'/x\} : T \{e'/x\}$ *.*
- *(2) If* $\Gamma_1, x : T', \Gamma_2 \vdash T$ *, then* $\Gamma_1, \Gamma_2 \{e'/x\} \vdash T \{e'/x\}$ *.*
- *(3) If* ⊢ $\Gamma_1, x : T', \Gamma_2$ *, then* ⊢ $\Gamma_1, \Gamma_2 \{e'/x\}$ *.*

Proof. Straightforward by induction on each derivation. The only interesting cases are for (T_CTR) and (T_MATCH).

Case (T_CTR): We are given $\Gamma_1, x : T', \Gamma_2 \vdash C \langle e_1 \rangle e_2 : \tau \langle e_1 \rangle$ for some *C*, e_1, e_2 and τ . By inversion, we have $TypeSpecOf(C) = y:T_1 \rightarrow T_2 \rightarrow \tau(y)$ and $\Gamma_1, x:T', \Gamma_2 \leftarrow e_1 : T_1$ and $\Gamma_1, x:T', \Gamma_2 \leftarrow e_2 : T_2\{e_1/y\}$ and $\Gamma_1, x : T', \Gamma_2 \vdash \tau \langle e_1 \rangle$. Without loss of generality, we can suppose that *y* is fresh. By the IHs, $\Gamma_1, \Gamma_2 \{e'/x\}$ + $e_1 \{e'/x\}$: $T_1 \{e'/x\}$ and $\Gamma_1, \Gamma_2 \{e'/x\}$ + $e_2 \{e'/x\}$: $T_2 \{e_1/y\} \{e'/x\}$ and $\Gamma_1, \Gamma_2 \{e'/x\} \vdash \tau \{e_1\{e'/x\}\}.$ From well-formedness of the type definition environment, it is found that $T_1 \{e'/x\} = T_1$ and $T_2 \{e_1/y\} \{e'/x\} = T_2 \{e_1 \{e'/x\}/y\}$. Thus, we finish by (T_CTR).

Case (T_MATCH): We are given $\Gamma_1, x : T', \Gamma_2 \vdash \text{match } e_0$ with $\overline{C_i y_i \rightarrow e_i}^i : T$. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash$ e_0 : $\tau \langle e'' \rangle$ and $\Gamma_1, x: T', \Gamma_2 \vdash T$ and C trs $Of(\tau) = \overline{C_i}^i$ and $ArgTypeOf(\tau) = z:T''$ and, for all i, $CtrArgOf(C_i) =$ T_i and $\Gamma_1, x: T', \Gamma_2, y_i: T_i \{e''/z\} \vdash e_i : T$. Without loss of generality, we can suppose that $\overline{y_i}^i$ and z are fresh. By the IHs, Γ_1, Γ_2 { e'/x } + e_0 { e'/x } : $\tau \langle e'' \{e'/x\} \rangle$ and Γ_1, Γ_2 { e'/x } + $T \{e'/x\}$ and Γ_1, Γ_2 { e'/x }, $y_i : T_i$ { e''/z } { e'/x } + $e_i \{e'/x\}$: *T* { e'/x }. From well-formedness of the type definition environment, it is found that $T_i \{e''/z\} \{e'/x\}$ $T_i \{e'' \{e'/x\}/z\}$. Thus, we finish by (T_MATCH).

Lemma 34 (Base Types Equivalence Inversion). *If* $T_1 \equiv T_2$ *, then*

- *(1)* T_1 = Bool *implies* T_2 = Bool, and
- *(2)* T_2 = Bool *implies* T_1 = Bool.

Proof. Straightforward by induction on $T_1 \equiv T_2$. In particular, if $T_1 \Rightarrow T_2$, then there exist some *T*, *x*, *e*₁ and *e*₂ such that $T_1 = T \{e_1/x\}$ and $T_2 = T \{e_2/x\}$. Since $T_1 = \text{Bool}$ or $T_2 = \text{Bool}$, we have $T = \text{Bool}$. Thus $T_1 = T_2 = \text{Bool}$.

Lemma 35 (Dependent Function Types Equivalence Inversion). *If* $T_1 \equiv T_2$ *, then*

- *(1)* $T_1 = x : T_{11} → T_{12}$ *implies*
	- \bullet *T* = *x*∶*T*₂₁ → *T*₂₂*,*
	- $T_{11} \equiv T_{21}$ *, and*
	- $T_{12} \equiv T_{22}$

for some T_{21} *and* T_{22} *, and*

- *(2)* $T_2 = x : T_{21} → T_{22}$ *implies*
	- \bullet *T*₁ = *x*∶*T*₁₁ → *T*₁₂*,*
	- *T*¹¹ ≡ *T*21*, and*

$$
\bullet \ \ T_{12} \ \equiv \ T_{22}
$$

for some T_{11} *and* T_{12} *.*

Proof. Straightforward by induction on $T_1 \equiv T_2$. In particular, if $T_1 \Rightarrow T_2$, then there exist some *T*, *y*, e_1 and *e*₂ such that $T_1 = T\{e_1/y\}$ and $T_2 = T\{e_2/y\}$ and $e_1 \longrightarrow e_2$. Without loss of generality, we can suppose that *x* is fresh for e_1 , e_2 and *y*. Since $T_1 = x: T_{11} \rightarrow T_{12}$ or $T_2 = x: T_{21} \rightarrow T_{22}$, we have $T = x: T_1 \rightarrow T_2$ for some T_1 and T_2 . Thus, $T_1 = x:T_1\{e_1/y\} \rightarrow T_2\{e_1/y\}$ and $T_2 = x:T_1\{e_2/y\} \rightarrow T_2\{e_2/y\}$. We have $T_1\{e_1/y\} \Rightarrow T_1\{e_2/y\}$ and $T_2\{e_1/y\} \Rightarrow T_2\{e_2/y\}$ by definition. $T_2\{e_1/y\} \Rightarrow T_2\{e_2/y\}$ by definition.

Lemma 36 (Dependent Product Types Equivalence Inversion). *If* $T_1 \equiv T_2$ *, then*

- (1) *T*₁ = *x*:*T*₁₁ × *T*₁₂ *implies*
	- $T_2 = x: T_{21} \times T_{22}$
	- $T_{11} \equiv T_{21}$ *, and*
	- $T_{12} \equiv T_{22}$

for some T_{21} *and* T_{22} *, and*

- *(2)* T_2 ≡ $x: T_{21} \times T_{22}$ *implies*
	- *•* $T_1 = x: T_{11} \times T_{12}$ *,*
	- *T*¹¹ ≡ *T*21*, and*
	- $T_{12} \equiv T_{22}$.

for some T_{11} *and* T_{12} *.*

Proof. Similarly to Lemma 35, straightforward by induction on $T_1 \equiv T_2$. In particular, if $T_1 \Rightarrow T_2$, then there exist some *T*, *y*, e_1 and e_2 such that $T_1 = T\{e_1/y\}$ and $T_2 = T\{e_2/y\}$ and $e_1 \longrightarrow e_2$. Without loss of generality, we can suppose that x is fresh for e_1 , e_2 and y. Since $T_1 = x \cdot T_{11} \times T_{12}$ or $T_2 = x \cdot T_{21} \times T_{22}$, we have $T = x \cdot T_1 \times T_2$ for some T_1 and T_2 . Thus, $T_1 = x:T_1\{e_1/y\} \times T_2\{e_1/y\}$ and $T_2 = x:T_1\{e_2/y\} \times T_2\{e_2/y\}$. We have $T_1\{e_1/y\} \Rightarrow T_1\{e_2/y\}$ and $T_2\{e_1/y\} \Rightarrow T_2\{e_2/y\}$ by definition. and $T_2 \{e_1/y\} \Rightarrow T_2 \{e_2/y\}$ by definition.

Lemma 37 (Datatypes Equivalence Inversion). *If* $T_1 \equiv T_2$ *, then*

- *(1)* $T_1 = \tau \langle e_1 \rangle$ *implies* $T_2 = \tau \langle e_2 \rangle$ *and* $e_1 \equiv e_2$ *for some* e_2 *, and*
- *(2)* $T_2 = \tau \langle e_2 \rangle$ *implies* $T_1 = \tau \langle e_1 \rangle$ *and* $e_1 \equiv e_2$ *for some* e_1 *.*

Proof. Similarly to Lemma 35, straightforward by induction on $T_1 \equiv T_2$. In particular, if $T_1 \Rightarrow T_2$, then there exist some T, x, e'₁ and e'₂ such that $T_1 = T\{e'_1/x\}$ and $T_2 = T\{e'_2/x\}$ and $e'_1 \longrightarrow e'_2$. Since $T_1 = \tau(e_1)$ or $T_2 = \tau(e_2)$, we have $T = \tau \langle e \rangle$ for some e. Thus, $T_1 = \tau \langle e \{e'_1/x\} \rangle$ and $T_2 = \tau \langle e \{e'_2/x\} \rangle$. We have $e \{e'_1/x\} \Rightarrow e \{e'_2/x\}$ by definition.

Lemma 38 (Refinement Types Equivalence Inversion). *If* $T_1 \equiv T_2$ *, then*

(1) $T_1 = \{x : T'_1 | e'_1 \}$ *implies* • $T_2 = \{x : T'_2 \mid e'_2\},\}$ • $T'_1 \equiv T'_2$ *, and* • $e'_1 \equiv e'_2$

 $for some T'_2$ and e'_2 , and

(2) $T_2 = \{x : T'_2 | e'_2 \}$ *implies*

- $T_1 = \{x : T'_1 \mid e'_1\},\}$
- $T'_1 \equiv T'_2$ *, and*

$$
\bullet\;\; e'_1\,\equiv\,e'_2
$$

for some T'_1 and e'_1 .

Proof. Similarly to Lemma 35, straightforward by induction on $T_1 \equiv T_2$. In particular, if $T_1 \Rightarrow T_2$, then there exist some T, y, e''_1 and e''_2 such that $T_1 = T\{e''_1/y\}$ and $T_2 = T\{e''_2/y\}$ and $e''_1 \longrightarrow e''_2$. Without loss of generality, we can suppose that x is fresh for e''_1 , e''_2 and y. Since $T_1 = \{x:T'_1 | e'_1\}$ or $T_2 = \{x:T'_2 | e'_2\}$, we have $T = \{x:T' | e'\}$ for some T' and e' . Thus, $T_1 = \{x:T' \{e''_1/y\} | e' \{e''_1/y\} \}$ and $T_2 = \{x:T' \{e''_2/y\} | e' \{e''_2/y\} \$ and $e' \{e''_1/y\} \Rightarrow e' \{e''_2/y\}$ by definition.

Lemma 39 (Type Equivalence Closed Under Unrefine). *If* $T_1 \equiv T_2$ *, then unref*(T_1) \equiv *unref*(T_2)*.*

Proof. By induction on *T*1.

- Case T_1 = Bool, $x:T'_1 \to T'_2$, $x:T'_1 \times T'_2$, or $\tau(e)$: We have unref(T₁) = T₁. Since $T_1 \equiv T_2$, we find that unref(T₂) = T₂ by Lemmas 34 (1), 35 (1), 36 (1) and 37 (1). Thus, we finish.
- Case $T_1 = \{x : T_1' | e_1' \}$: By Lemma 38 (1), there exist some T_2' and e_2' such that $T_2 = \{x : T_2' | e_2' \}$ and $T_1' \equiv T_2'$. By the IH, $\text{unref}(T_1') \equiv \text{unref}(T_2')$. Because $\text{unref}(T_1) = \text{unref}(T_1')$ and $\text{unref}(T_2) = \text{unref}(T_2')$, we finish.

 \Box

Lemma 40 (Lambda Inversion). *If* Γ ⊢ fix $f(x:T_1):T_2 = e : T$ *, then*

- \bullet Γ, f **:**(x **:***T*₁ → *T*₂)*,* x **:***T***₁ ←** *e* **:** *T***₂***,*
- *f* ∉ FV(*T*²)*, and*
- $x: T_1 \rightarrow T_2 \equiv \text{unref}(T)$.

Proof. By induction on the typing derivation. Only four rules can be applied to the lambda abstraction.

- Case (T_Abs): Since $T = x : T_1 \to T_2$, we have $x : T_1 \to T_2 \equiv \text{unref}(T)$ by Lemma 1 (reflexivity). By inversion, we finish.
- Case (T_CONV): By inversion, we have $\varnothing \vdash$ fix $f(x:T_1):T_2 = e : T'$ and $T' \equiv T$ for some T' . By the IH, we have $f:(x:T_1 \to T_2), x:T_1 \vdash e : T_2$ and $f \notin \text{FV}(T_2)$ and $x:T_1 \to T_2 \equiv \text{unref}(T')$. Because $\text{unref}(T') \equiv \text{unref}(T)$ by Lemma 39, we have $x:\mathcal{T}_1 \to \mathcal{T}_2 \equiv \text{unref}(\mathcal{T})$ by Lemma 1 (transitivity). By Lemma 32, we finish.
- Case (T_FORGET): By inversion, we have $\emptyset \vdash \textbf{fix } f(x:T_1):T_2 = e : \{y:T \mid e'\}$ for some *y* and *e'*. By the IH, $f:(x:T_1 \rightarrow \mathbb{R})$ $(T_2), x:T_1 \vdash e : T_2$ and $f \notin \text{FV}(T_2)$ and $x:T_1 \to T_2 \equiv \text{unref}(\{y:T \mid e'\})$. Since $\text{unref}(T) = \text{unref}(\{y:T \mid e'\})$, we have $x: T_1 \to T_2 \equiv \text{unref}(T)$. By Lemma 32, we finish.
- Case (T_EXACT): We are given $\Gamma \vdash$ fix $f(x:T_1):T_2 = e : \{y:T' | e'\}$ for some *y*, T' and e' . By inversion, we have $\emptyset \vdash$ fix $f(x:T_1):T_2 = e : T'$. By the IH, we have $f:(x:T_1 \rightarrow T_2), x:T_1 \vdash e : T_2$ and $f \notin FV(T_2)$ and $x:T_1 \to T_2$ = unref(T'). Since unref(T') = unref({y:T'|e'}), we have $x:T_1 \to T_2$ = unref({y:T'|e'}). By Lemma 32, we finish.

Lemma 41 (Cast Inversion). *If* $\Gamma \vdash \langle T_1 \Leftarrow T_2 \rangle^{\ell} : T$ *, then*

- \bullet Γ + T_1 ,
- \bullet Γ + T_2 ,
- *T*¹ ∥ *T*2*, and*
- $T_2 \rightarrow T_1 \equiv \text{unref}(T)$.

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the cast.

Case (T_CAST): Since $T = T_2 \rightarrow T_1$, we have $T_2 \rightarrow T_1 \equiv \text{unref}(T)$ by Lemma 1 (reflexivity). By inversion, we finish.

- Case (T_CONV): By inversion, we have $\emptyset \vdash (T_1 \Leftarrow T_2)^{\ell} : T'$ and $T' \equiv T$ for some T' . By the IH, we have $\emptyset \vdash T_1$ and $\emptyset \vdash T_2$ and $T_1 \parallel T_2$ and $T_2 \rightarrow T_1 \equiv \text{unref}(T')$. Because $\text{unref}(T') \equiv \text{unref}(T)$ by Lemma 39, we have *T*₂ → *T*₁ = *unref*(*T*) by Lemma 1 (transitivity). By Lemma 32, we finish.
- Case (T_FORGET): By inversion, we have $\varnothing \vdash \langle T_1 \Leftarrow T_2 \rangle^{\ell}$: $\{y:T \mid e\}$ for some *y* and *e*. By the IH, $\varnothing \vdash T_1$ and $\emptyset \vdash T_2$ and $T_1 \parallel T_2$ and $T_2 \rightarrow T_1 \equiv \text{unref}(\{y:T \mid e\})$. Since $\text{unref}(\{y:T \mid e\}) = \text{unref}(T)$, we have $T_2 \rightarrow T_1 \equiv T_2$ $\text{unref}(T)$. By Lemma 32, we finish.
- Case (T_EXACT): We are given $\Gamma \vdash \langle T_1 \Leftarrow T_2 \rangle^{\ell}$: $\{x:T' \mid e'\}$ for some *x*, *T'* and *e'*. By inversion, we have $\emptyset \vdash \langle T_1 \Leftarrow T_2 \rangle^{\ell} : T'.$ By the IH, we have $\emptyset \vdash T_1$ and $\emptyset \vdash T_2$ and $T_1 \parallel T_2$ and $T_2 \rightarrow T_1 \equiv \text{unref}(T').$ Since $\text{unref}(T') = \text{unref}(\{x:T' | e'\})$, we have $T_2 \to T_1 \equiv \text{unref}(\{x:T' | e'\})$. By Lemma 32, we finish.

Lemma 42 (Pair Inversion). *If* $\Gamma \vdash (v_1, v_2) : T$ *, then*

- $\Gamma \vdash v_1 : T_1$,
- $\Gamma \vdash v_2 : T_2 \{v_1/x\},\$
- $\Gamma, x : T_1 \vdash T_2$ *, and*
- $x: T_1 \times T_2 \equiv \text{unref}(T)$

for some T_1 *,* T_2 *and* x *.*

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the pair.

- Case (T_PAIR): Since $T = x:T_1 \times T_2$, we have $x:T_1 \times T_2 \equiv \text{unref}(T)$ by Lemma 1 (reflexivity). By inversion, we finish.
- Case (T_CONV): By inversion, we have $\varnothing \vdash (v_1, v_2) : T'$ and $T' \equiv T$ for some T' . By the IH, we have $\varnothing \vdash v_1 : T_1$ and $\emptyset \vdash v_2 : T_2 \{v_1/x\}$ and $x:T_1 \vdash T_2$ and $x:T_1 \times T_2 \equiv \text{unref}(T')$. Because $\text{unref}(T') \equiv \text{unref}(T)$ by Lemma 39, we have $x:T_1 \times T_2 \equiv \text{unref}(T)$ by Lemma 1 (transitivity). By Lemma 32, we finish.
- Case (T_FORGET): By inversion, we have $\emptyset \vdash (v_1, v_2) : \{y \colon T \mid e'\}$ for some *y* and e' . By the IH, we have $\emptyset \vdash v_1 : T_1$ and $\emptyset \vdash v_2 : T_2 \{v_1/x\}$ and $x:T_1 \vdash T_2$ and $x:T_1 \times T_2 \equiv \text{unref}(\{y:T | e'\})$. Since $\text{unref}(\{y:T | e'\}) = \text{unref}(T)$, we have $x: T_1 \times T_2 \equiv \text{unref}(T)$. By Lemma 32, we finish.
- Case (T_EXACT): We are given $\Gamma \vdash (v_1, v_2) : \{y:T' | e'\}$ for some *y*, T' and e' . By inversion, we have $\emptyset \vdash (v_1, v_2) :$ *T*^{*I*}. By the IH, we have $\emptyset \vdash v_1 : T_1$ and $\emptyset \vdash v_2 : T_2 \{v_1/x\}$ and $x: T_1 \vdash T_2$ and $x: T_1 \times T_2 \equiv \text{unref}(T')$. Since $\text{unref}(T') = \text{unref}(\{y:T' | e'\})$, we have $x:T_1 \times T_2 \equiv \text{unref}(\{y:T' | e'\})$. By Lemma 32, we finish.

Lemma 43 (Constructor Inversion). *If* $\Gamma \vdash C\langle e \rangle v : T$ *, then*

- $TypSpecOf(C) = x: T_1 \rightarrow T_2 \rightarrow \tau \langle x \rangle$,
- $\Gamma \vdash v : T_2 \{e/x\},\$
- $\Gamma \vdash \tau \langle e \rangle$ *, and*
- $\tau \langle e \rangle \equiv \text{unref}(T)$.

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the constructor application.

Case (T_CTR): Since $T = \tau \langle e \rangle$, we have $\tau \langle e \rangle \equiv \text{unref}(T)$ by Lemma 1 (reflexivity). By inversion, we finish.

- Case (T_CONV): By inversion, we have $\emptyset \vdash C\langle e \rangle v : T'$ and $T' \equiv T$ for some T' . By the IH, we have $TypeCOf(C) = T'$ $x:T_1 \rightarrow T_2 \rightarrow \tau(x)$ and $\emptyset \rightarrow v : T_2\{e/x\}$ and $\emptyset \rightarrow \tau(e)$ and $\tau(e) \equiv$ unref(T'). Because unref(T') \equiv unref(T) by Lemma 39, we have $\tau(e) \equiv \text{unref}(T)$ by Lemma 1 (transitivity). By Lemma 32, we finish.
- Case (T_FORGET): By inversion, we have $\emptyset \vdash C\langle e \rangle v : \{y:T \mid e'\}$ for some *y* and *e'*. By the IH, we have $TypeSpecOf(C) = x:T_1 \rightarrow T_2 \rightarrow \tau(x)$ and $\varnothing \vdash v : T_2\{e/x\}$ and $\varnothing \vdash \tau(e)$ and $\tau(e) \equiv \text{unref}(\{y:T \mid e'\}).$ Since $\text{unref}(\{y:T | e'\}) = \text{unref}(T)$, we have $\tau\{e\} \equiv \text{unref}(T)$. By Lemma 32, we finish.

Case (T_EXACT): We are given $\Gamma \vdash C\langle e \rangle v : \{y:T' \mid e'\}$ for some *y*, *T'* and *e'*. By inversion, we have $\emptyset \vdash C\langle e \rangle v$: *T*^{*I*}. By the IH, we have *TypSpecOf* (*C*) = $x: T_1 \rightarrow T_2 \rightarrow \tau \langle x \rangle$ and $\varnothing \vdash v : T_2 \{e/x\}$ and $\varnothing \vdash \tau \langle e \rangle$ and $\tau(e)$ = unref(T'). Since unref(T') = unref({y:T'|e'}), we have $\tau(e)$ = unref({y:T'|e'}). By Lemma 32, we finish.

Lemma 44 (Canonical Forms). *Suppose that* $\emptyset \vdash v : T$ *.*

- *(1)* If $\text{unref}(T) = \text{Bool}$, then $v = \text{true}$ or false.
- *(2) If unref*(*T*) = $x: T_1 \rightarrow T_2$ *, then*
	- (a) $v = \textbf{fix } f(x:T'_1):T'_2 = e \text{ for some } f, T'_1, T'_2 \text{ and } e, \text{ or }$ *(b)* $v = \langle T'_2 \leftarrow T'_1 \rangle^{\ell}$ *for some* T'_2 *,* T'_1 *and* ℓ *.*
- (3) If unref(T) = $x: T_1 \times T_2$, then $v = (v_1, v_2)$ for some v_1 and v_2 .
- (4) If $\text{unref}(T) = \tau \langle e \rangle$, then $v = C \langle e' \rangle v'$ for some C , e' and v' .
- *Proof.* By induction on the typing derivation.
- Case (T_CONST): We are given $\emptyset \vdash c$: Bool. By inversion, $c \in \{true, false\}$. Since *unref*(Bool) = Bool, we are in the case (1) .
- Case $(T_V\text{VAR})$, $(T_B\text{LAME})$, $(T_A\text{PP})$, $(T_P\text{ROI}i)$ for $i \in \{1, 2\}$, $(T_M\text{ATCH})$, (T_F) , $(T_A\text{CHECK})$, $(T_W\text{CHECK})$; Contradictory: *v* is a value.
- Case (T_Abs): We are given $\emptyset \vdash$ fix $f(x:T_1):T_2 = e : x:T_1 \rightarrow T_2$. Since $\text{unref}(x:T_1 \rightarrow T_2) = x:T_1 \rightarrow T_2$, we are in the case (2).
- Case (T_CAST): We are given $\emptyset \vdash \langle T_2 \leftarrow T_1 \rangle^{\ell} : T_1 \rightarrow T_2$. Since $\text{unref}(T_1 \rightarrow T_2) = T_1 \rightarrow T_2$, we are in the case (2).
- Case (T_PAIR): We are given $\emptyset \vdash (v_1, v_2) : x : T_1 \times T_2$. Since *unref*($x : T_1 \times T_2$) = $x : T_1 \times T_2$, we are in the case (3).
- Case (T_CTR): We are given $\emptyset \vdash C\langle e'\rangle v' : \tau\langle e'\rangle$. Since $\text{unref}(\tau\langle e'\rangle) = \tau\langle e'\rangle$, we are in the case (4).
- Case (T_Conv): By inversion, we have $\emptyset \vdash v : T'$ for some T' such that $T' \equiv T$. By Lemma 39, *unref*(T') \equiv $\text{unref}(T)$. By case analysis on $\text{unref}(T')$:
	- Case *unref*(T') = Bool: By the IH, $v \in \{\text{true}, \text{false}\}.$ By Lemma 34 (1), *unref*(T) = Bool and so we are in the case (1) .
	- Case *unref*(*T'*) = $x:T_1 \rightarrow T_2$: By the IH, *v* is a lambda abstraction or a cast. By Lemma 35 (1), *unref*(*T*) = $x:T'_1 \to T'_2$ for some T'_1 and T'_2 and so we are in the case (2).
	- Case *unref*(*T'*) = *x*:*T*₁ × *T*₂: By the IH, $v = (v_1, v_2)$ for some v_1 and v_2 . By Lemma 36 (1), *unref*(*T*) = *x*:*T*₁' × *T*₂['] for some T_1' and T_2' and so we are in the case (3).
	- Case $\text{unref}(T') = \tau \langle e' \rangle$: By the IH, $v = C \langle e'' \rangle v''$ for some e'' and v'' . By Lemma 37 (1), $\text{unref}(T) = \tau \langle e''' \rangle$ for some $e^{\prime\prime\prime}$ and so we are in the case (4).
- Case (T_FORGET): By inversion, we have $\emptyset \vdash v : \{x:T \mid e\}$ for some *x* and *e*. Since *unref*(*T*) = *unref*({*x*:*T*|*e*}), we finish by the IH.
- Case (T_EXACT): We are given $\emptyset \vdash v : \{x:T' | e\}$ for some *x*, *T'* and *e*. By inversion, we have $\emptyset \vdash v : T'$. Since $\text{unref}(\{x:T' | e\}) = \text{unref}(T'),$ we finish by the IH. \Box
- **Lemma 45** (Progress). *If* $\emptyset \vdash e : T$ *, then*
	- *1.* $e \rightarrow e'$ for some e' ,
	- *2. e is a value, or*
	- $3. e = \frac{\hbar}{\ell}$ *for some* ℓ *.*

Proof. By induction on the typing derivation.

Case (T_CONST), (T_BLAME), (T_ABS), (T_CAST), (T_FORGET), (T_EXACT): The term *e* is a blaming or a value.

- Case (T_VAR): Contradictory: $\varnothing \vdash x : T$ cannot be derived for any *x*.
- Case (T_App): We are given $\emptyset \vdash e_1 e_2 : T_2 \{e_2/x\}$ for some e_1, e_2, T_2 and x. By inversion, we have $\emptyset \vdash e_1 :$ $x: T_1 \to T_2$ and $\emptyset \vdash e_2 : T_1$ for some T_1 .

By the IH, e_1 and e_2 are reducible, values, or blamings. If e_1 is reducible or a blaming, then $e_1 e_2$ steps by one of evaluation rules. If e_1 is a value and e_2 is reducible or a blaming, then $e_1 e_2$ steps by one of evaluation rules. Otherwise, if e_1 and e_2 are values, then there are two cases which we consider on e_1 by Lemma 44.

Case $e_1 = \text{fix } f(x:T_1') = e_{12}$: The term $e_1 e_2$ steps by $(E \text{-} RED)/(R \text{-} BETA)$.

- Case $e_1 = \langle T_1' \Leftarrow T_2' \rangle^{\ell}$. If T_2' is a refinement type, then we finish by $(E \text{-} RED)/(R \text{-} FoR)$. In the following, we suppose that T_2' is not a refinement type. By Lemma 41, we have $T_1' \parallel T_2'$ and $T_2' \rightarrow T_1' \equiv x:T_1 \rightarrow T_2$ We perform case analysis on T_1' .
	- Case T'_1 = Bool: It is found from Bool T'_2 that T'_2 = Bool since T'_2 is not a refinement type. We then finish by $(E_{-}RED)/(R_{-}BASE)$.
	- Case $T'_1 = y:T_{11} \rightarrow T_{12}$: It is found that from $y:T_{11} \rightarrow T_{12} \parallel T'_2$ that $T'_2 = y:T_{21} \rightarrow T_{22}$ for some T_{21} and T_{22} since T'_{2} is not a refinement type. We then finish by $(E_{\text{RED}})/(R_{\text{FUN}})$.
	- Case $T'_1 = y:T_{11} \times T_{12}$: It is found that from $y:T_{11} \times T_{12} \parallel T'_2$ that $T'_2 = y:T_{21} \times T_{22}$ for some T_{21} and T_{22} since T_2' is not a refinement type. By Lemmas 35 and 36 (1), $T_1 = y \cdot T_{11}' \times T_{12}'$ for some T_{11}' and *T*[']₁. Since $\emptyset \vdash e_2 : T_1 = y : T'_{11} \times T'_{12}$ and e_2 is a value, we have $e_2 = (v_1, v_2)$ for some v_1 and v_2 by Lemma 44 (3). We then finish by $(E$ -RED $)/(R$ -PROD $)$.
	- Case $T'_1 = \tau_1 \langle e'_1 \rangle$: It is found that from $\Sigma \vdash \tau_1 \langle e'_1 \rangle \parallel T'_2$ that $T'_2 = \tau_2 \langle e'_2 \rangle$ for some τ_2 and e'_2 since T'_2 is not a refinement type. If $\tau_1 = \tau_2$ and τ_1 is monomorphic, then we apply $(E_{\text{AED}})/(R_{\text{BATATYPE}}$ MONO); if $\tau_1 \neq \tau_2$ or τ_1 is not monomorphic, and $\delta(\langle \tau_1 \langle e_1' \rangle \Leftarrow \tau_2 \langle e_2' \rangle)^{\ell} e_2)$ is defined, then $(E \text{-} RED)/(R \text{-}DATTYPE)$; otherwise, $(E_{\text{RED}})/(R_{\text{DATATYPEFAIL}})$.

Case $T_1' = \{y:T_1'' | e_1''\}$: Since T_2' is not a refinement type, we finish by $(E \text{-} RED)/(R \text{-}PRECHECK)$.

- Case (T_PAIR): We are given $\emptyset \vdash (e_1, e_2) : x:T_1 \times T_2$ for some e_1, e_2, x, T_1 and T_2 . By inversion, we have $\emptyset \vdash e_1 : T_1$ and $\emptyset \vdash e_2 : T_2 \{e_1/x\}$. By the IH, e_1 and e_2 are reducible, values, or blamings. If e_1 is reducible or a blaming, then we finish by one of evaluation rules. If e_1 is a value and e_2 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e_1 and e_2 are values, then so is (e_1, e_2) is.
- Case (T_PROJ1): We are given $\emptyset \vdash e_1 \cdot 1 : T_1$ for some e_1 and T_1 . By inversion, we have $\emptyset \vdash e_1 : x : T_1 \times T_2$ for some x and T_2 . By the IH, e_1 is reducible, a value, or a blaming. If e_1 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e_1 is a value, then $e_1 = (v_1, v_2)$ for some v_1 and v_2 by Lemma 44 (3), and so we finish by $(E_{\text{RED}})/(R_{\text{PROJ1}})$.
- Case (T_PROJ2): Similarly to the case for (T_PROJ1). We are given $\emptyset \vdash e_2.2 : T_2 \{e_2.1/x\}$ for some e_2, T_2 , and *x*. By inversion, we have $\emptyset \vdash e_2 : x : T_1 \times T_2$ for some T_1 . By the IH, e_2 is reducible, a value, or a blaming. If e_2 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e_2 is a value, then $e_2 = (v_1, v_2)$ for some v_1 and v_2 by Lemma 44 (3), and so we finish by (E_RED)/(R_PROJ2).
- Case (T_CTR): We are given $\varnothing \vdash C\langle e_1 \rangle e_2 : \tau\langle e_1 \rangle$. By inversion, we have $\varnothing \vdash e_2 : T'\{e_1/x\}$ for some T' and *x* such that $TypeSpecOf(C) = x:T'' \rightarrow T' \rightarrow \tau\langle x \rangle$. By the IH, e_2 is reducible, a value, or a blaming. If e_2 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e_2 is a value, then so is $C\langle e_1 \rangle e_2$.
- Case (T_MATCH): We are given $\Gamma \vdash \text{match } e_0$ with $\overline{C_i x_i \rightarrow e_i}^{i \in \{1,...,n\}}$: T for some e_0 and $\overline{C_i x_i \rightarrow e_i}^{i \in \{1,...,n\}}$. By inversion, we have $\Gamma \vdash e_0 : \tau \langle e' \rangle$ for some τ and e' . By the IH, e_0 is reducible, a value, or a blaming. If e_0 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e_0 is a value, then, by Lemma 44 (4), we have $e_0 = C\langle e_1' \rangle v_2$ for some *C*, e_1' and v_2 . By Lemmas 43 and 37, *C* is a constructor of *τ*. There therefore exists $j \in \{1, ..., n\}$ such that $C = C_j$ since patterns are exhaustive. By (R_MATCH), we finish.
- Case (T_IF): We are given $\emptyset \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : T \text{ for some } e_1, e_2 \text{ and } e_3$. By inversion, we have $\emptyset \vdash e_1 : \text{Bool}$. By the IH, *e*¹ is reducible, a value, or a blaming. If *e*¹ is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if *e*¹ is a value, then *e*¹ is true or false by Lemma 44 (1). If *e*¹ is true (resp. false), then we finish by $(R_I F \text{TRUE})$ (resp. $(R_I F \text{RUSE})$).
- Case (T_WCHECK): We are given $\emptyset \vdash \langle \langle x:T' | e_1 \rangle, e_2 \rangle \rangle^{\ell}$: $\{x:T' | e_1\}$ for some x, T', e_1, e_2 and ℓ . By inversion, we have $\emptyset \vdash e_2 : T'$. By the IH, e_2 is reducible, a value, or a blaming. If e_2 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e_2 is a value, we finish by $(R_{\text{C}}CHECK)$.
- Case (T_ACHECK): We are given $\emptyset \vdash (\{x:T' | e_1\}, e_2, v)^{\ell} : \{x:T' | e_1\}$ for some x, T', e_1, e_2, v and ℓ . By inversion, we have $\emptyset \vdash e_2$: Bool. By the IH, e_2 is reducible, a value, or a blaming. If e_2 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e_2 is a value, then e_2 is true or false by Lemma 44 (1). If e_2 is true (resp. false), then we finish by (R_OK) (resp. (R_FAIL)).
- Case (T_Conv): By inversion, we have $\emptyset \vdash e : T'$. By the IH, we finish.

 \Box

- **Lemma 46** (Context and Type Well-Formedness)**.**
	- *1. If* $\Gamma \vdash e : T$ *, then* ⊢ Γ *and* $\Gamma \vdash T$ *.*
	- *2. If* $\Gamma \vdash T$ *, then* $\vdash \Gamma$ *.*

Proof. By induction on the derivation of each judgment.

- 1. By case analysis on the typing derivation.
	- Case (T_CONST): We are given $\Gamma \vdash c : T$ for some *c*. By inversion, we have $\vdash \Gamma$ and $T =$ Bool. By (WT_BASE), Γ ⊢ Bool.
	- Case (T_VAR): We are given $\Gamma \vdash x : T$ for some *x*. By inversion, we have $\vdash \Gamma$ and $x : T \in \Gamma$. Let Γ_1 and Γ_2 be typing contexts such that $\Gamma_1, x: T, \Gamma_2 = \Gamma$. By inversion of $\vdash \Gamma$, we have $\Gamma_1 \vdash T$. Since for any $y: T' \in \Gamma_2$, $\Gamma_1, x: T, \Gamma_2' \vdash T'$ where $\Gamma_2 = \Gamma_2', y: T', \Gamma_2''$ for some $\Gamma_2'',$ we have $\Gamma_1, x: T, \Gamma_2 \vdash T$ by Lemma 32.
	- Case (T_BLAME): We are given $\Gamma \vdash \hat{\mathcal{U}}$: T for some ℓ . By inversion, we have $\vdash \Gamma$ and $\varnothing \vdash T$. By Lemma 32, $\Gamma \vdash T$.
	- Case (T_Abs): We are given $\Gamma \vdash$ fix $f(x:T_1):T_2 = e_2 : x:T_1 \rightarrow T_2$ for some f, x, T_1, T_2 and e_2 . By inversion, we have Γ , $f:(x:T_1 \rightarrow T_2)$, $x:T_1 \vdash e_2 : T_2$. By the IH, we have $\vdash \Gamma$, $f:(x:T_1 \rightarrow T_2)$, $x:T_1$. By inversion of it, $⊩$ Γ and Γ ⊢ *x* ∶ *T*₁ → *T*₂.
	- Case (T_CAST): We are given $\Gamma \vdash \langle T_1 \Leftarrow T_2 \rangle^{\ell}$: $x:T_2 \rightarrow T_1$ for some T_1, T_2, ℓ and x . Without loss of generality, we can suppose that *x* is fresh. By inversion, we have $\Gamma \vdash T_1$ and $\Gamma \vdash T_2$. By the IH, we have $\vdash \Gamma$. By Lemma 32, $\Gamma, x : T_2 \vdash T_1$. By (WT_FUN), we have $\Gamma \vdash x : T_2 \rightarrow T_1$.
	- Case (T_App): We are given $\Gamma \vdash e_1 e_2 : T_2 \{e_2/x\}$ for some T_2, e_2 and x. By inversion, we have $\Gamma \vdash e_1 :$ $x:T_1 \to T_2$ and $\Gamma \vdash e_2 : T_1$. By the IH, we have $\vdash \Gamma$ and $\Gamma \vdash x : T_1 \to T_2$. By inversion of the latter, we have Γ , x **:** T_1 ⊢ T_2 . By Lemma 33, we have Γ ⊢ T_2 { e_2/x }.
	- Case (T_PAIR): We are given $\Gamma \vdash (e_1, e_2) : x : T_1 \times T_2$ for some e_1, e_2, x, T_1 and T_2 . By inversion, we have ^Γ*, x*∶*T*¹ [⊢] *^T*2. By the IH, [⊢] ^Γ*, x*∶*T*1. By inversion of it, we have [⊢] Γ. Since Γ*, x*∶*T*¹ [⊢] *^T*2, we finish by $(WT$ _{-Prod}).
	- Case (T_PROJ1): We are given $\Gamma \vdash e'.1 : T$ for some $e'.$ By inversion, we have $\Gamma \vdash e' : x : T \times T'$ for some *x* and *T'*. By the IH, we have $\vdash \Gamma$ and $\Gamma \vdash x$ **:** $T \times T'$. By inversion of the latter, we have $\Gamma \vdash T$.
	- Case (T_PROJ2): we are given $\Gamma \vdash e'.2 : T_2 \{e'.1/x\}$ for some e', T_2 and *x*. By inversion, we have $\Gamma \vdash e'$: $x: T_1 \times T_2$ for some T_1 . By the IH, $\vdash \Gamma$ and $\Gamma \vdash x: T_1 \times T_2$. By inversion of the latter, we have $\Gamma, x: T_1 \vdash T_2$. Since $\Gamma \vdash e' : x : T_1 \times T_2$, we have $\Gamma \vdash e' \cdot 1 : T_1$ by (T_PROJ1). By Lemma 33, we have $\Gamma \vdash T_2 \{e' \cdot 1/x\}$.
	- Case (T_CTR): We are given $\Gamma \vdash C\langle e_1 \rangle e_2 : \tau\langle e_1 \rangle$ for some *C*, e_1 , e_2 and τ . By inversion, we have $\Gamma \vdash \tau\langle e_1 \rangle$. By the IH, we have $\vdash \Gamma$.
- Case (T_MATCH): We are given $\Gamma \vdash$ match e_0 with $\overline{C_i x_i \rightarrow e_i}^i$: T for some e_0 and $\overline{C_i x_i \rightarrow e_i}^i$. By inversion, we have $\Gamma \vdash T$. By the IH, we have $\vdash \Gamma$.
- Case (T_IF): We are given $\Gamma \vdash$ if e_1 then e_2 else $e_3 : T$ for some e_1, e_2 and e_3 . By inversion, we have $\Gamma \vdash e_2 : T$. By the IH, we have $\vdash \Gamma$ and $\Gamma \vdash T$.
- Case (T_WCHECK): We are given $\Gamma \vdash \langle \langle \{x:T_1 \, | \, e_1\}, e_2 \rangle \rangle^{\ell} : \{x:T_1 \, | \, e_1\}$ for some *x*, T_1 , e_1 , e_2 and ℓ . By inversion, we have $\vdash \Gamma$ and $\varnothing \vdash \{x:\overline{T}_1 \mid e_1\}$. By Lemma 32, we have $\Gamma \vdash \{x:\overline{T}_1 \mid e_1\}$.
- Case (T_ACHECK): We are given $\Gamma \vdash \langle \{x:T_1 | e_1\}, e_2, v \rangle^{\ell} : \{x:T_1 | e_1\}$ for some *x*, T_1 , e_1 , e_2 , *v* and ℓ . By inversion, we have ⊢ Γ and \varnothing ⊢ {*x*∶*T*₁ | *e*₁}. By Lemma 32, we have Γ ⊢ {*x*∶*T*₁ | *e*₁}.
- Case (T_CONV): By inversion, we have $\vdash \Gamma$ and $\varnothing \vdash T$. By Lemma 32, we have $\Gamma \vdash T$.
- Case (T_FORGET): We are given $\Gamma \vdash v : T$ for some *v*. By inversion, we have ⊢ Γ and $\varnothing \vdash v : \{x : T \mid e'\}$ for some *x* and *e'*. By the IH, $\emptyset \vdash \{x:T \mid e'\}$. By inversion of it, we have $\emptyset \vdash T$. By Lemma 32, $\Gamma \vdash T$.
- Case (T_EXACT): We are given $\Gamma \vdash v : \{x:T' | e'\}$ for some *v*, *x*, *T'* and *e'*. By inversion, we have $\vdash \Gamma$ and $\emptyset \vdash \{x:T' \mid e'\}$. By Lemma 32, we finish.
- 2. By case analysis on the well-formedness derivation.
	- Case (WT_BASE): We are given $\Gamma \vdash$ Bool for some Bool. By inversion, we have $\vdash \Gamma$.
	- Case (WT_FUN): We are given $\Gamma \vdash x : T_1 \rightarrow T_2$ for some x, T_1 and T_2 . By inversion, we have $\Gamma \vdash T_1$. By the IH, \vdash Γ.
	- Case (WT_REFINE): We are given $\Gamma \vdash \{x:T' \mid e'\}$ for some *x*, *T'* and *e'*. By inversion, we have $\Gamma \vdash T'$. By the IH, \vdash Γ.
	- Case (WT_PROD): We are given $\Gamma \vdash x : T_1 \times T_2$ for some x, T_1 and T_2 . By inversion, we have $\Gamma \vdash T_1$. By the IH, ⊢ Γ.
	- Case (WT_DATATYPE): We are given $\Gamma \vdash \tau \langle e \rangle$ for some τ and e . By inversion and the IH, we finish. □

Lemma 47. *If* $T_1 \parallel \{x : T_2 \mid e_2\}$ *, then* $T_1 \parallel T_2$ *.*

- *Proof.* By induction on $T_1 \parallel \{x : T_2 \mid e_2\}$. There are only two cases where $T_1 \parallel \{x : T_2 \mid e_2\}$ can be derived.
- Case $\{x:T'_1 | e'_1\} \parallel \{x:T_2 | e_2\}$: By inversion, we have $T'_1 \parallel T_2$. By (C_REFINEL), $\{x:T'_1 | e'_1\} \parallel T_2$.
- Case (C_REFINEL): We are given $\{y:T_1' | e_1'\} \parallel \{x:T_2 | e_2\}$. By inversion, we have $T_1' \parallel \{x:T_2 | e_2\}$. By the IH, we have $T_1' \parallel T_2$. By (C_REFINEL), we finish.
- **Lemma 48.** *If* $T_1 \parallel T_2$ *, then* $T_1 \parallel T_2$ { e/x } *for any e and x.*
- *Proof.* Straightforward by induction on $T_1 \parallel T_2$.

Lemma 49 (Preservation). *Suppose that* $\emptyset \vdash e : T$.

- *(1) If* $e \sim e'$, *then* $\emptyset \vdash e' : T$.
- *(2) If* $e \rightarrow e'$, *then* $\emptyset \vdash e' : T$ *.*

Proof.

- 1. By induction on the typing derivation.
	- Case (T_{\rm_CONST}) , (T_{\rm_VAR}) , (T_{\rm_BLAME}) , (T_{\rm_ABS}) , (T_{\rm_CAST}) , (T_{\rm_PAR}) , (T_{\rm_CTR}) , (T_{\rm_FORGET}) or (T_{\rm_EXACT}) : Trivial because *e* does not step in the reduction relation.
- Case (T_App): We are given $\emptyset \vdash e_1 e_2 : T_2 \{e_2/x\}$ for some e_1, e_2, T_2 and x. Without loss of generality, we can suppose that *x* is fresh. By inversion, we have $\emptyset \vdash e_1 : x : T_1 \rightarrow T_2$ and $\emptyset \vdash e_2 : T_1$ for some T_1 . By case analysis on the reduction rule applied.

- Case (R_BETA): We are given $(\textbf{fix } f(x:T_1):T_2' = e_{12}) v_2 \rightsquigarrow e_{12} \{v_2/x, \textbf{fix } f(x:T_1') = e_{12}/f\}$ for some *f*, T_1', T_2', e_{12} and v_2 . Without loss of generality, we can suppose that *f* is fresh. By Lemma 40, we have $f:(x:T'_1 \rightarrow T'_2), x:T'_1 \vdash e_{12} : T'_2$ and $f \notin \text{FV}(T'_2)$ and $x:T'_1 \rightarrow T'_2 \equiv x:T_1 \rightarrow T_2$ for some T'_2 . Note that *x* (resp. *f*) does not occur in T_1' (resp. T_1' and T_2'). By Lemma 46 and inversion, we have $\emptyset \vdash x:T'_1 \rightarrow T'_2$, and thus $\emptyset \vdash T'_1$. Because $\emptyset \vdash e_1 : x:T'_1 \rightarrow T'_2$ by Lemma 1 (symmetry) and (T_CONV), we have $x:T_1' \vdash e_{12} \{e_1/f\} : T_2'$ by Lemma 33. Since $T_1 \equiv T_1'$ by Lemma 35, we have $Ø ⊢ v_2 : T'_1$ by (T_CONV). By Lemma 33, $Ø ⊢ e_{12} \{e_1/f, v_2/x\} : T'_2 \{v_2/x\}$ (note that e_1 is closed). Since $T_2 = T'_2$ by Lemma 35, we have $T_2 \{v_2/x\} = T'_2 \{v_2/x\}$ by Lemma 4 (3). Because $\emptyset \vdash T_2 \{v_2/x\}$ by Lemma 46, we have $\emptyset \vdash e_{12} \{e_1/f, v_2/x\} : T_2 \{v_2/x\}$ by Lemma 1 (symmetry) and (T_CONV).
- Case (R Base): We are given $\langle \text{Bool} \rangle^{\ell} v_2 \rightsquigarrow v_2$ for ℓ and v_2 . By Lemmas 41, 35 and 34, we have *T*₁ = *T*₂ = Bool. Since *T*₂ { e_2/x } = Bool and so $\emptyset \vdash v_2$: Bool, we finish.

Case (R_FUN) : We are given

$$
\langle y:T_{11} \to T_{12} \Leftarrow y:T_{21} \to T_{22}\rangle^{\ell} v_2 \rightsquigarrow \lambda y:T_{11}.(\lambda z:T_{21}. \langle T_{12} \Leftarrow T_{22} \{z/y\}\rangle^{\ell} (v_2 z)) (\langle T_{21} \Leftarrow T_{11}\rangle^{\ell} y)
$$

for some *y*, T_{11} , T_{12} , T_{21} , T_{22} , ℓ , v_2 and z such that z is fresh. By Lemma 41, we have $\varnothing \vdash y:T_{11} \rightarrow T_{12}$, $\emptyset \vdash y:T_{21} \to T_{22}, y:T_{11} \to T_{12} \parallel y:T_{21} \to T_{22} \text{ and } x:(y:T_{21} \to T_{22}) \to (y:T_{11} \to T_{12}) \equiv x:T_1 \to T_2.$ Note that *x* does not occur in $y: T_{11} \to T_{12}$. By inversion of derivations, $\emptyset \vdash T_{11}, \emptyset \vdash T_{21}, y: T_{11} \vdash T_{12}$, *y*∶*T*₂₁ ⊢ *T*₂₂, *T*₁₁ ∥ *T*₂₁, and *T*₁₂ ∥ *T*₂₂.

Since $T_{21} \parallel T_{11}$ by symmetry of the compatibility relation, we have $\emptyset \vdash \langle T_{21} \Leftarrow T_{11} \rangle^{\ell} : T_{11} \rightarrow T_{21}$ by (T_CAST). Since $\emptyset \vdash T_{11}$, we have $y:T_{11} \vdash \langle T_{21} \Leftarrow T_{11} \rangle^{\ell}$: $T_{11} \rightarrow T_{21}$ by Lemma 32. Since $y:T_{11} \vdash y : T_{11}$ by (T_VAR), we have $y:T_{11} \vdash (T_{21} \Leftarrow T_{11})^{\ell} y : T_{21}$ by (T_App).

By Lemma 35, *y*∶*T*₂₁ → *T*₂₂ ≡ *T*₁ and *y*∶*T*₁₁ → *T*₁₂ ≡ *T*₂, and thus, by Lemma 35 (1), *T*₁ = *y*∶*T*₂¹ → *T*₂₂ and $T_2 = y:T'_{11} \rightarrow T'_{12}$ for some T'_{21} , T'_{22} , T'_{11} and T'_{12} . Since $\emptyset \vdash v_2 : y:T'_{21} \rightarrow T'_{22}$ and $\emptyset \vdash y:T_{21} \rightarrow T_{22}$, we have $\emptyset \vdash v_2 : y:T_{21} \rightarrow T_{22}$ by Lemma 1 (symmetry) and (T_CONV). We have $z:T_{21} \vdash v_2 : y:T_{21} \rightarrow T_{22}$ *T*₂₂ by Lemma 32, and thus $z:T_{21} ⊢ v_2 z : T_{22} \{z/y\}$ by (T_VAR) and (T_APP).

Since $y: T_{21} \vdash T_{22}$, we have $z:T_{21}, y:T_{21} \vdash T_{22}$ and thus $y:T_{11}, z:T_{21} \vdash T_{22} \{z/y\}$ by Lemmas 33 and 32. Since $y: T_{11}$, $z: T_{21}$ ⊢ T_{12} by Lemma 32, and $T_{12} \parallel T_{22} \{z/y\}$ by Lemma 48, we have $y: T_{11}$, $z: T_{21}$ ⊢ $\langle T_{12} \leftarrow T_{22} \{z/y\} \rangle^{\ell} : T_{22} \{z/y\} \rightarrow T_{12}$ by (T_CAST).

By Lemma 32 and (T_APP) , $y:T_{11}, z:T_{21} \vdash (T_{12} \Leftarrow T_{22} \{z/y\})^{\ell} (v_2 z)$: T_{12} . By Lemma 32 and $(T_A \text{ and } y: T_{11} \text{ } \vdash \lambda z: T_{21} \langle T_{12} \leftarrow T_{22} \{z/y\} \rangle \ell(v_2 z): T_{21} \rightarrow T_{12}.$ (Note that *z* does not occur *T*₁₂.) Since *y*∶*T*₁₁ ⊢ $\langle T_{21} \rangle \leftarrow T_{11} \rangle \leftarrow g$: *T*₂₁, by (T_App) we have *y*∶*T*₁₁ ⊢ $(\lambda z:T_{21} \cdot \langle T_{12} \rangle \leftarrow T_{11} \cdot \langle T_{12} \rangle \leftarrow T_{11} \cdot \langle T_{12} \rangle \leftarrow T_{12} \cdot \langle T_{12} \rangle \leftarrow T_{11} \cdot \langle T_{12} \rangle \leftarrow T_{12} \cdot \langle T_{12} \$ $T_{22} \{z/y\} \ (v_2 \, z) \ (T_{21} \Leftarrow T_{11}) \ (y) : T_{12}$. By Lemma 32 and (T_Abs), $\varnothing \vdash \lambda y \cdot T_{11} \cdot (\lambda z \cdot T_{21} \cdot (T_{12} \Leftarrow T_{11}) \cdot (T_{11} \cdot (T_{12} \Leftarrow T_{11}) \cdot (T_{12} \in T_{11}) \})$ $T_{22} \{z/y\}$ ^{ℓ} (*v*₂ *z*)) ($\langle T_{21} \leftarrow T_{11} \rangle$ ^{ℓ}*y*) : (*y*:*T*₁₁ → *T*₁₂).

Since $y: T_{11} \to T_{12} \equiv T_2$, we have $(y:T_{11} \to T_{12}) \{v_2/x\} \equiv T_2 \{v_2/x\}$ by Lemma 4 (3). Since $(y:T_{11} \to T_2) \equiv T_2 \{v_2/x\} \equiv T_2 \{v_2/x\}$ *T*₁₂) {*v*₂/*x*} = *y*∶*T*₁₁ → *T*₁₂ and ∅ ⊢ *T*₂ {*v*₂/*x*} by Lemma 46, we finish by (T_CONV).

Case $(R$ -Prod): Similarly to the case for $(R$ -Fun). We are given

$$
\langle y:T_{11} \times T_{12} \leftarrow y:T_{21} \times T_{22} \rangle^{\ell} (v_1, v_2) \rightsquigarrow (\lambda y:T_{11}.(y, \langle T_{12} \leftarrow T_{22} \{v_1/y\})^{\ell} v_2)) (\langle T_{11} \leftarrow T_{21} \rangle^{\ell} v_1)
$$

for some *y*, T_{11} , T_{12} , T_{21} , T_{22} , ℓ , v_1 and v_2 . Without loss of generality, we can suppose that *y* is fresh. By Lemma 41, we have $\emptyset \vdash y:\overline{T}_{11} \times \overline{T}_{12}$ and $\emptyset \vdash y:\overline{T}_{21} \times \overline{T}_{22}$ and $y:\overline{T}_{11} \times \overline{T}_{12}$ | $y:\overline{T}_{21} \times \overline{T}_{22}$ and $x:(y:T_{21} \times T_{22}) \rightarrow y:T_{11} \times T_{12} \equiv x:T_1 \rightarrow T_2$. Note that *x* does not occur in $y:T_{11} \times T_{12}$. By inversion of derivations, $\emptyset \vdash T_{11}$ and $\emptyset \vdash T_{21}$ and $y:T_{11} \vdash T_{12}$ and $y:T_{21} \vdash T_{22}$ and $T_{11} \parallel T_{21}$ and $T_{12} \parallel T_{22}$.

By Lemma 42, we have $\emptyset \vdash v_1 : T'_{21}$ and $\emptyset \vdash v_2 : T'_{22} \{v_1/y\}$ and $y: T'_{21} \vdash T'_{22}$ and $y: T'_{21} \times T'_{22} =$ *unref*(*T*₁) for some T'_{21} and T'_{22} . Since $y:T_{21} \times T_{22} = T_1$ by Lemma 35, we have $y:T_{21} \times T_{22} = T_2$ $y: T'_{21} \times T'_{22}$, and thus $T_{21} = T'_{21}$ and $T_{22} = T'_{22}$ by Lemma 36. Since $\emptyset \vdash T_{21}$, we have $\emptyset \vdash v_1 : T_{21}$ by Lemma 1 (symmetry) and (T_CONV). Therefore, we have $\varnothing \vdash \langle T_{11} \Leftarrow T_{21} \rangle^{\ell} v_1 : T_{11}$ by (T_CAST) and (T App).

Since $y: T_{21} \vdash T_{22}$ and $\emptyset \vdash v_1 : T_{21}$, we have $y: T_{11} \vdash T_{22} \{v_1/y\}$ by Lemmas 33 and 32. By Lemma 48, $T_{12} || T_{22} \{v_1/y\}$. By (T_CAST), we have $y: T_{11} \vdash \langle T_{12} \Leftarrow T_{22} \{v_1/y\} \rangle^{\ell} : T_{22} \{v_1/y\} \rightarrow T_{12}$. Since $T_{22} = T'_{22}$, we have $T_{22} \{v_1/y\} = T'_{22} \{v_1/y\}$ by Lemma 4 (3). Since $\emptyset \vdash T_{22} \{v_1/y\}$ by Lemma 33, we have $\emptyset \vdash v_2 : T_{22} \{v_1/y\}$ by Lemma 1 (symmetry) and (T_CONV). By Lemma 32 and (T_APP), $y:T_{11} \vdash \langle T_{12} \Leftarrow T_{22} \{\nu_1/\nu\} \ell \nu_2 : T_{12}.$

Let *z* be a fresh variable. Since $z:\overline{T_{11}}, y:\overline{T_{11}} \vdash \langle T_{12} \Leftarrow T_{22} \{v_1/y\} \rangle^{\ell} v_2 : T_{12}$ by Lemma 32, we have $z:T_{11} \vdash (\langle T_{12} \leftarrow T_{22} \{v_1/y\})^{\ell} v_2) \{z/y\} : T_{12} \{z/y\}$ by Lemma 33. Since $z:T_{11} \vdash z : T_{11}$ by (T_VAR),

and $z:\mathcal{T}_{11}, y:\mathcal{T}_{11} \vdash \mathcal{T}_{12}$ by Lemmas 32 and 33, we have $z:\mathcal{T}_{11} \vdash (z, (\langle T_{12} \leftarrow T_{22} \{v_1/y\})^{\ell} v_2) \{z/y\})$: $y:T_{11} \times T_{12}$ by Lemma 32 and (T_PAIR). By Lemmas 32 and 33, $y:T_{11} \vdash (z, ((T_{12} \Leftarrow T_{22} \{v_1/y\})^{\ell} v_2) \{z/y\}) \{y/z\} : (y:T_{11} \times T_{12}) \{y/z\},$ that is,

 $y: T_{11} \vdash (y, (\langle T_{12} \leftarrow T_{22} \{v_1/y\})^{\ell} v_2)) : (y: T_{11} \times T_{12}).$

By Lemma 32 and (T_Abs), ∅ ⊢ λy :*T*₁₁.(*y*, (*T*₁₂ ← *T*₂₂{*v*₁/*y*})^{*ℓ*}*v*₂) : *T*₁₁ → *y*:*T*₁₁ × *T*₁₂. By $(T_APP), \varnothing \vdash (\lambda y \cdot T_{11} \cdot (y, (T_{12} \Leftarrow T_{22} \{v_1/y\}) \ell v_2)) ((T_{11} \Leftarrow T_{21}) \ell v_1) : y \cdot T_{11} \times T_{12}.$

Since $y: T_{11} \times T_{12} \equiv T_2$ by Lemma 36, we have $(y: T_{11} \times T_{12}) \{v_2/x\} \equiv T_2 \{v_2/x\}$ by Lemma 4 (3). Since $(y:T_{11} \times T_{12})$ { v_2/x } = $y:T_{11} \times T_{12}$ and \varnothing ⊢ T_2 { v_2/x } by Lemma 46, we finish by (T_CONV).

- Case (R_FORGET): We are given $\langle T_1' \leftarrow \{y:T_2' | e_2'\}\rangle^{\ell} v_2 \rightarrow \langle T_1' \leftarrow T_2'\rangle^{\ell} v_2$ for some T_1', y, T_2', e_2' and v_2 . Without loss of generality, we can suppose that *y* is fresh. By Lemma 41, we have $\emptyset \vdash T'_1$ and $\emptyset \vdash \{y:T_2' \mid e_2'\}$ and $T_1' \parallel \{y:T_2' \mid e_2'\}$ and $x:\{y:T_2' \mid e_2'\} \to T_1' \equiv x:T_1 \to T_2$. Note that x does not occur in *T*[']_{*l*}. By inversion and Lemma 47, $\varnothing \vdash T_2'$ and $T_1' \parallel T_2'$.
	- By (T_CAST) , we have $\emptyset \vdash \langle T_1' \Leftarrow T_2' \rangle^{\ell} : T_2' \rightarrow T_1'$. Since $\{y:T_2' | e_2'\} \equiv T_1$ by Lemma 35, we have $\varnothing \vdash v_2 : \{y:T'_2 \mid e'_2\}$ by Lemma 1 (symmetry) and (T_CONV). By (T_FORGET), $\varnothing \vdash v_2 : T'_2$. Thus, $Ø$ ⊢ $\langle T_1' \leftarrow T_2' \hat{y}^{\ell} v_2 : T_1'$. Since $T_1' \equiv T_2$ by Lemma 35, $T_1' \{v_2/x\} \equiv T_2 \{v_2/x\}$ by Lemma 4 (3). Since $T_1' \{v_2/x\} = T_1'$, we have $\emptyset \vdash \langle T_1' \Leftarrow T_2'\rangle^{\ell} v_2 : T_2 \{v_2/x\}$ by Lemma 46 and (T_CONV).
- Case (R_PRECHECK): We are given $\langle \{y:T'_1 | e'_1\} \leftarrow T'_2 \rangle^{\ell} v_2 \rightarrow \langle \langle \{y:T'_1 | e'_1\}, \langle T'_1 \leftarrow T'_2 \rangle^{\ell} v_2 \rangle \rangle^{\ell}$ for some y, T'_1 , e'_{1} , T'_{2} , ℓ and v_{2} . Without loss of generality, we can suppose that *y* is fresh. By Lemma 41, we have \varnothing + $\{y:T'_1|e'_1\}$ and \varnothing + T'_2 and $\{y:T'_1|e'_1\} \parallel T'_2$ and $x:T'_2 \rightarrow \{y:T'_1|e'_1\} \equiv x:T_1 \rightarrow T_2$. Note that x does not occur in $\{y:T'_1 | e'_1\}$. By inversion and Lemma 47, $\varnothing \vdash T'_1$ and $T'_1 \| T'_2$.

By (T_CAST), we have $\varnothing \vdash \langle T_1' \Leftarrow T_2' \rangle^{\ell}$: $T_2' \rightarrow T_1'$. Since $T_2' \equiv T_1$ by Lemma 35, we have \varnothing + v_2 : T'_2 by (T_CONV). Thus, by (T_APP), \varnothing + $\langle T'_1 \leftarrow T'_2 \rangle^{\ell} v_2 : T'_1$. By (T_WCHECK), \varnothing + $\langle \langle yT_1' | e_1' \rangle, \langle T_1' | e_1' \rangle \langle T_2' | e_2' \rangle \rangle^{\ell}$: $\langle yT_1' | e_1' \rangle$. Since $\langle yT_1' | e_1' \rangle = T_2$ by Lemma 35, we have $\{y:T_1'|\hat{e}'_1\}$ $\{v_2/x\} = T_2\{v_2/x\}$. Since $\{y:T_1'|\hat{e}'_1\}$ $\{v_2/x\} = \{y:T_1'|\hat{e}'_1\}$, we have $\emptyset \vdash \langle \langle \{y:T_1'|\hat{e}'_1\}, \langle T_1' \in \mathcal{F}_1 \rangle \rangle$ T_2' ^{ℓ} v_2 ^{ℓ} : T_2 {*v*₂ $/x$ } by Lemma 46 and (T_CONV).

Case (R_DATATYPE): We are given

$$
\langle \tau_1 \langle e_1' \rangle \Leftarrow \tau_2 \langle e_2' \rangle \rangle^{\ell} C_2 \langle e' \rangle v \rightsquigarrow C_1 \langle e_1' \rangle (\langle T_1'' \{e_1' / y_1\} \Leftarrow T_2'' \{e_2' / y_2\} \rangle^{\ell} v)
$$

for some τ_1 , e'_1 , τ_2 , e'_2 , ℓ , C_2 , e' , v , C_1 , T''_1 , y_1 , T''_2 , and y_2 such that $\tau_1 \neq \tau_2$ or τ_1 is not monomorphic, and $C_1 = \delta(\langle \tau_1 \langle e'_1 \rangle \Leftarrow \tau_2 \langle e'_2 \rangle)^{\ell} C_2 \langle e' \rangle v)$ and, for $i \in \{1, 2\}$, $ArgTypeOf(\tau_i) = y_i:T'_i$ and $CtrArgOf(C_i) = T''_i$.

Since the constructor choice function δ is well-formed, we find that $C_1 \in \mathit{CompactCtrsOf}(\tau_1, C_2)$, that is, $C_1 \in CtrsOf(\tau_1)$ and $T''_1 \parallel T''_2$ from well-formedness of the type definition environment. Also, y_1 : T'_1 + T''_1 and y_2 : T'_2 + T''_2 from well-formedness of the type definition environment.

By Lemma 48, $T_1'' \{e'_1/y_1\} \parallel T_2'' \{e'_2/y_2\}$. By Lemma 41, we have $\emptyset \vdash \tau_1 \{e'_1\}$ and $\emptyset \vdash \tau_2 \{e'_2\}$ and $x:\tau_2(e'_2) \to \tau_1(e'_1) \equiv x:\overline{T}_1 \to T_2$. Note that *x* does not occur in $\tau_1(e'_1)$. By inversion of derivations, and Lemma 33, we have $\emptyset \vdash T''_1 \{e'_1/y_1\}$ and $\emptyset \vdash T''_2 \{e'_2/y_2\}$. Thus by (T_CAST), $\emptyset \vdash \{T''_1 \{e'_1/y_1\} \Leftarrow T''_2 \{e'_2/y_2\}$. $T_2'' \{e'_2/y_2\} \}^{\ell}$: $T_2'' \{e'_2/y_2\} \rightarrow T_1'' \{e'_1/y_1\}.$

By Lemma 43, $\emptyset \vdash v : T''_2 \{e'/y_2\}$ and $\tau_2 \{e'\} \equiv \text{unref}(T_1)$. Since $\tau_2 \{e'_2\} \equiv \text{unref}(T_1)$ by Lemmas 35 and 39, we have $\tau_2\langle e' \rangle \equiv \tau_2\langle e'_2 \rangle$ by Lemma 35 and Lemma 1 (transitivity). Thus, $e' \equiv e'_2$ by Lemma 37. Since $T_2'''\{e'/y_2\} \equiv T_2'''\{e'_2/y_2\}$ by Lemma 3 (3), we have $\emptyset \vdash v : T_2'''\{e'_2/y_2\}$ by $(T_{\text{1}}\text{Conv})$. By $(T_{\text{1}}\text{APP})$, we have $\emptyset \vdash \langle T''_1 \{e'_1/y_1\} \Leftarrow T''_2 \{e'_2/y_2\} \}^{\ell} v : T''_1 \{e'_1/y_1\}$. By inversion of $\emptyset \vdash \tau_1\langle e'_1 \rangle$, we have $\emptyset \vdash e'_1 : T'_1$. Thus, by (T_CTR) , $\emptyset \vdash C_1\langle e'_1 \rangle (\langle T''_1 \{e'_1 \} y_1 \} \Leftarrow T''_2 \{e'_2 \} y_2 \}^{\ell} v)$: *τ*¹⟨*e* ′ 1 ⟩.

By Lemma 35, we have $\tau_1\langle e'_1 \rangle \equiv T_2$. Since $\tau_1\langle e'_1 \rangle \{C_2\langle e'\rangle v/x\} = \tau_1\langle e'_1 \rangle$, we have $\tau_1\langle e_1 \rangle \equiv T_2 \{C_2\langle e'\rangle v/x\}$ by Lemma 4 (3). By Lemma 46 and $(T_{\text{-}}Conv)$, we finish.

- Case (R_DATATYPEMONO): We are given $\langle \tau \Leftarrow \tau \rangle^{\ell} v_2 \rightsquigarrow v_2$ for some τ , ℓ and v_2 . By Lemma 41, $x:\tau \to \tau \equiv x:\tau_1 \to \tau_2$. Note that *x* does not occur in τ . By Lemma 35, $\tau \equiv T_1$ and $\tau \equiv T_2$, and so *T*₁ ≡ *T*₂ by Lemma 1. Since *T*₁ {*v*₂/*x*} = *T*₁ by Lemma 46, *T*₁ ≡ *T*₂ {*v*₂/*x*} by Lemma 4 (3). Since $\varnothing \vdash v_2 : T_1$, we have $\varnothing \vdash v_2 : T_2 \{v_2/x\}$ by Lemma 46 and (T_CONV).
- Case (R_DATATYPEFAIL): We are given $\langle \tau_1 \langle e_1' \rangle \Leftarrow \tau_2 \langle e_2' \rangle \rangle^{\ell} v_2 \rightsquigarrow \Uparrow \ell$ for some τ_1 , e_1' , τ_2 , e_2' , ℓ and v_2 . By Lemma 46 and $(T_{\text{-}}BLAME)$, we finish.
- Case (T_PROJ1): We are given $\emptyset \vdash e_1 \cdot 1 : T$ for some e_1 . By inversion, we have $\emptyset \vdash e_1 : x : T \times T_2$ for some x and *^T*2. The term steps only by (^R Proj1): (*v*1*, v*²)*.*¹ ↝ *^v*¹ for some *^v*¹ and *^v*² such that *^e*¹ ⁼ (*v*1*, v*²). By Lemma 42, we have $\emptyset \vdash v_1 : T'_1$ and $x:T'_1 \times T'_2 \equiv x:T \times T_2$ for some T'_1 and T'_2 . By Lemma 36, we have $T'_1 \equiv T$. Since $\emptyset \vdash T$ by Lemma 46, we have $\emptyset \vdash v_1 : T$ by (T_CONV).
- Case (T_PROJ2): We are given $\emptyset \vdash e_2.2 : T_2 \{e_2.1/x\}$ for some e_2, T_2 and x. By inversion, we have $\emptyset \vdash e_2$: $x:T_1 \times T_2$ for some T_1 . The term steps only by (R_PROJ2): (v_1, v_2) . 2 *v*₂ for some v_1 and v_2 such that $e_2 = (v_1, v_2).$

By Lemma 42, we have $\emptyset \vdash v_2 : T'_2 \{v_1/x\}$ and $x:T'_1 \times T'_2 = x:T_1 \times T_2$ for some T'_1 and T'_2 . Since (v_1, v_2) .1 $\longrightarrow v_1$ by $(E \text{-} \text{RED})/(R \text{-} \text{Proj1}),$ we have $T_2^{\prime} \{(v_1, v_2)$.1/*x*} = $T_2^{\prime} \{v_1/x\}$ by Lemmas 2 and 3 (3). Since $T'_2 \equiv T_2$ by Lemma 36, we have T'_2 {(v_1, v_2).1/*x*} $\equiv T_2$ {(v_1, v_2).1/*x*} by Lemma 4 (3), and thus $T'_2 \{v_1/x\} = T_2 \{(v_1, v_2), 1/x\}$ by Lemma 1 (symmetry and transitivity). Since $\emptyset \vdash T_2 \{(v_1, v_2), 1/x\}$ by Lemma 46, we have $\emptyset \vdash v_2 : T_2 \{(v_1, v_2) . 1/x\}$ by (T_CONV).

Case (T_MATCH): We are given $\emptyset \vdash \mathsf{match}\,e_0$ with $\overline{C_i x_i \rightarrow e_i}^{i \in \{1,...,n\}}$: T for some e_0 and $\overline{C_i x_i \rightarrow e_i}^{i \in \{1,...,n\}}$. By inversion, we have $\emptyset \vdash e_0 : \tau(e'')$ and $\emptyset \vdash T$ and $CtrsOf(\tau) = \overline{C_i}^{i \in \{1,\ldots,n\}}$ and $ArgTypeOf(\tau) = \overline{C_i}^{i \in \{1,\ldots,n\}}$ $y:T'$ and, for $i \in \{1,...,n\}$, $CtrArgOf(C_i) = T_i$ and $x_i:T_i\{e''/y\} \vdash e_i : T$. The term steps only by $(R_MATCH):$

$$
\text{match } C_j \langle e'''\rangle v' \text{ with } \overline{C_i x_i \rightarrow e_i}^{i \in \{1, \dots, n\}} \rightsquigarrow e_j \{v'/x_j\}
$$

for some $j \in \{1, ..., n\}$, e''' , v' such that $e_0 = C_j \langle e''' \rangle v'$.

By Lemma 43, we have $\emptyset \vdash v' : T_j \{e'''/y\}$ and $\tau \{e'''\} \equiv \tau \{e''\}$. Since $e''' \equiv e''$ by Lemma 37, we have $T_j \{e'''/y\} = T_j \{e''/y\}$ by Lemma 3 (3). Since $x_j \{T_j \{e''/y\} \} \vdash e_j \{T_j \}$, we have $\emptyset \vdash T_j \{e''/y\}$ by Lemma 46 and inversion. Thus we have $\emptyset \vdash v' : T_j \{e^{i\prime}/y\}$ by (T_CONV). Since x_j does not occur in *T*, we have $\emptyset \vdash e_j \{v'/x_j\} : T$ by Lemma 33.

- Case (T_IF): We are given $\emptyset \vdash$ if e_1 then e_2 else $e_3 : T$ for some e_1, e_2 and e_3 . By inversion, we have $\emptyset \vdash e_2 : T$ and $\varnothing \vdash e_3 : T$. Only two reduction rules can be applied to the term: (R_IFTRUE) and (R_IFFALSE). The case of (R_IFTRUE) follows from $\emptyset \vdash e_2 : T$, and (R_IFFALSE) from $\emptyset \vdash e_3 : T$.
- Case (T_WCHECK): We are given $\emptyset \vdash \langle \langle x:T_1 | e_1 \rangle, e_2 \rangle \rangle^{\ell} : \{x:T_1 | e_1\}$ for some x, T_1, e_1, e_2 and ℓ . By inversion, we have $\emptyset \vdash \{x:\overline{T}_1 \mid e_1\}$ and $\emptyset \vdash e_2 : T_1$. The term steps only by $(R_CHECK): \langle \langle \{x:\overline{T}_1 \mid e_1\}, v_2 \rangle \rangle^{\ell} \rightarrow$ $\langle \{x:T_1 | e_1\}, e_1 \{v_2/x\}, v_2 \rangle^{\ell}$ for some v_2 such that $e_2 = v_2$. From $\emptyset \vdash \{x:T_1 \mid e_1\}$, we find that $x:T_1 \vdash e_1$: Bool. By Lemma 33, $\emptyset \vdash e_1 \{v_2/x\}$: Bool. Because $e_1 \{v_2/x\} \longrightarrow^* e_1 \{v_2/x\}$, we finish.
- Case (T_ACHECK): We are given $\varnothing \vdash \langle \{x:T_1 \mid e_1\}, e_2, v \rangle^{\ell} : \{x:T_1 \mid e_1\}$ for some *x*, T_1 , e_1 , e_2 and *v*. By inversion, we have $\varnothing \vdash \{x:T_1 | e_1\}$ and $\varnothing \vdash v : T_1$ and $e_1 \{v/x\} \rightarrow^* e_2$. Only two reduction rules can be applied to the term: (R_OK) and (R_FAIL). The case of (R_OK) follows from (T_EXACT), and $(R$ _{FAIL}) from $(T$ _{-BLAME}).
- Case (T_CONV): By inversion, we have $\emptyset \vdash e : T'$ and $T' \equiv T$ and $\emptyset \vdash T$ for some T' . If *e* steps to *e'*, then we have $\emptyset \vdash e' : T'$ by the IH. By (T_CONV), we finish.
- 2. By induction on the typing derivation. If $e \rightarrow \mathcal{U}$ by (E_BLAME), then we finish by Lemma 46 and (T Blame). In the following, we suppose that *e* steps by (E Red).
	- Case (T_CONST), (T_VAR), (T_BLAME), (T_ABS), (T_CAST), (T_FORGET) or (T_EXACT): Trivial because *e* does not step in the evaluation relation.
	- Case (T_App): We are given $\emptyset \vdash e_1 e_2 : T_2 \{e_2/x\}$ for some e_1, e_2, T_2 and x. By inversion, we have \emptyset ⊢ e_1 : $x: T_1 \rightarrow T_2$ and \emptyset ⊢ $e_2 : T_1$ for some T_1 . If e_1 is not a value, then $e_1 \longrightarrow e'_1$ for some e'_1 (noting e_1 is not a blaming; if so, (E_BLAME) is applied to $e_1 e_2$, but it is contradictory). By the IH, $\emptyset \vdash e'_1 : x : T_1 \to T_2$ and thus $\emptyset \vdash e'_1 e_2 : T_2 \{e_2/x\}$ by $(T_APP).$

If e_1 is a value but e_2 is not, then $e_2 \longrightarrow e'_2$ for some e'_2 . By the IH, $\varnothing \vdash e'_2 : T_1$ and thus $\varnothing \vdash$ $e_1 e_2'$: $T_2 \{e_2' / x\}$ by (T_APP). Because $T_2 \{e_2' / x\} = T_2 \{e_2 / x\}$ by Lemmas 2, 3 (3) and 1, we have \varnothing + $e_1 e_2'$: $T_2 \{e_2/x\}$ by Lemma 46 and (T_CONV).

Otherwise, if e_1 and e_2 are values, then we finish by the case (1) .

- Case (T_PAIR): We are given $\emptyset \vdash (e_1, e_2) : x : T_1 \times T_2$ for some e_1, e_2, x, T_1 and T_2 . By inversion, we have \emptyset ⊢ e_1 : T_1 and \emptyset ⊢ e_2 : T_2 { e_1/x } and $x:T_1$ ⊢ T_2 . If e_1 is not a value, then $e_1 \rightarrow e'_1$ for some e'_1 . By the IH, $\varnothing \vdash e'_1$: T_1 and thus $\varnothing \vdash T_2$ { e'_1/x } by Lemma 33. Because $T_2\{e_1/x\} \equiv T_2\{e_1'/x\}$ by Lemmas 2 and 3 (3), we have $\varnothing \vdash e_2 : T_2\{e_1'/x\}$ by $(T_{\text{-}}\text{Conv})$. Thus, by $(T_{\text{-}}\text{PAIR})$, $\varnothing \vdash (e'_1, e_2) : x : T_1 \times T_2$. If e_1 is a value but e_2 is not, then $e_2 \longrightarrow e'_2$ for some e'_2 . By the IH, $\emptyset \vdash e'_2 : T_2 \{e_1/x\}$ and thus $\varnothing \vdash (e_1, e'_2) : x : T_1 \times T_2.$ Otherwise, if e_1 and e_2 are values, then so is (e_1, e_2) .
- Case (T_PROJ1): We are given $\emptyset \vdash e_1 \cdot 1 : T$ for some e_1 . By inversion, we have $\emptyset \vdash e_1 : x : T \times T_2$ for some *x* and *T*₂. If *e*₁ is not a value, then *e*₁ \rightarrow *e*₁ for some *e*₁[']. By the IH, ∅ ⊢ *e*₁ : *x*:*T* × *T*₂ and thus $\varnothing \vdash e'_1.1 : T$ by (T_PROJ1). Otherwise, if e_1 is a value, we finish by the case (1).
- Case (T_PROJ2): We are given $\emptyset \vdash e_2.2 : T_2 \{e_2.1/x\}$ for some e_2, T_2 and x. By inversion, we have $\emptyset \vdash e_2$: $x:T_1 \times T_2$ for some T_1 . If e_2 is not a value, then $e_2 \longrightarrow e'_2$ for some e'_2 . By the IH, $\varnothing \vdash e'_2 : x:T \times T_2$ and thus $\varnothing \vdash e'_2 \cdot 2 : T_2 \{e'_2 \cdot 1/x\}$ by (T_PROJ2). Because $T_2 \{e'_2 \cdot 1/x\} \equiv T_2 \{e_2 \cdot 1/x\}$ by Lemmas 2, 3 (3) and 1, we have $\emptyset \vdash e'_2 \cdot 2 : T_2 \{e_2 \cdot 1/x\}$ by Lemma 46 and (T_CONV). Otherwise, if e_2 is a value, we finish by the case (1).
- Case (T_IF): We are given $\emptyset \vdash$ if e_1 then e_2 else $e_3 : T$ for some e_1, e_2 and e_3 . By inversion, we have $\emptyset \vdash$ e_1 : Bool and \varnothing ⊢ e_2 : *T* and \varnothing ⊢ e_3 : *T*. If e_1 is not a value, $e_1 \longrightarrow e'_1$ for some e'_1 . By the IH, $\emptyset \vdash e'_1$: Bool and thus $\emptyset \vdash$ if e'_1 then e_2 else e_3 : *T* by (T_IF). Otherwise, if e_1 is a value, then we finish by the case (1) .
- Case (T_CTR): We are given $\emptyset \vdash C\langle e_1 \rangle e_2 : \tau\langle e_1 \rangle$ for some *C*, e_1 , e_2 and τ . By inversion, we have *TypSpecOf*(*C*) = $x: T_1 \rightarrow T_2 \rightarrow \tau \langle x \rangle$ and \varnothing ⊢ $e_1 : T_1$ and \varnothing ⊢ $e_2 : T_2 \{e_1/x\}$ and \varnothing ⊢ $\tau \langle e_1 \rangle$. If e_2 is not a value, then $e_2 \longrightarrow e'_2$ for some e'_2 . By the IH, $\varnothing \vdash e'_2 : T_2 \{e_1/x\}$ and thus $\varnothing \vdash C\langle e_1 \rangle e'_2 : \tau\langle e_1 \rangle$ by (T_CTR). Otherwise, if e_2 is a value, then so is $C\langle e_1 \rangle e_2$.
- Case (T_MATCH): We are given $\emptyset \vdash \text{match } e_0$ with $\overline{C_i x_i \rightarrow e_i}^i : T$. By inversion, we have $\emptyset \vdash e_0 : \tau \langle e'' \rangle$ and $\varnothing \vdash T$ and C trs $\text{Of}(\tau) = \overline{C_i}^i$ and $\text{ArgTypeOf}(\tau) = y:T'$ and, for all *i*, C tr $\text{ArgOf}(C_i) = T_i$ and $x_i \cdot T_i \{e''/y\} \vdash e_i : T$. If e_0 is not a value, then $e_0 \longrightarrow e'_0$ for some e'_0 . By the IH, $\emptyset \vdash e'_0 : \tau \{e''\}$ and thus \emptyset ⊢ match e'_0 with $\overline{C_i x_i \rightarrow e_i}^i$: T by (T_MATCH). Otherwise, if e_0 is a value, then we finish by the case (1) .
- Case (T_WCHECK): We are given $\emptyset \vdash \langle \langle x:T_1 | e_1 \rangle, e_2 \rangle \rangle^{\ell} : \{x:T_1 | e_1\}$ for some x, T_1, e_1, e_2 and ℓ . By inversion, we have $\emptyset \vdash \{x:T_1 \mid e_1\}$ and $\emptyset \vdash e_2 : T_1$. If e_2 is not a value, then $e_2 \rightarrow e'_2$ for some e'_2 . By the IH, $\emptyset \vdash e'_2 : T_1$ and thus $\emptyset \vdash \langle (\{x:T_1 \mid e_1\}, e'_2) \rangle^\ell : \{x:T_1 \mid e_1\}$ by (T_WCHECK). Otherwise, if e_2 is a value, then we finish by the case (1).
- Case (T_ACHECK): We are given $\varnothing \vdash \langle \{x:T_1 | e_1\}, e_2, y \rangle \ell : \{x:T_1 | e_1\}$ for some *x*, T_1 , e_1 , e_2 , *v* and ℓ . By inversion, we have $\varnothing \vdash \{x:\overline{T}_1 \mid e_1\}$ and $\varnothing \vdash v : T_1$ and $\varnothing \vdash e_2$: Bool and $e_1 \{v/x\} \longrightarrow^* e_2$. If e_2 is not a value, then $e_2 \rightarrow e'_2$ for some e'_2 . By the IH, $\varnothing \vdash e'_2$: Bool. Because $e_1 \{v/x\} \rightarrow^* e'_2$, we have $\emptyset \vdash \langle \{x:T_1 | e_1\}, e'_2, v \rangle^{\ell} : \{x:T_1 | e_1\}.$ Otherwise, if e_2 is a value, then we finish by the case (1).
- Case (T_CONV): By inversion, we have $\emptyset \vdash e : T'$ and $T' \equiv T$ and $\emptyset \vdash T$ for some T' . Since $e \longrightarrow e'$, we have $\emptyset \vdash e' : T'$ by the IH. By (T_CONV), $\emptyset \vdash e' : T$.

Definition 6. *We define a function* refines *from types to sets of pairs of a bound variable and a term, as follows.*

$$
refines(\{x:T \mid e\}) = \{(x,e)\} \cup refines(T)
$$

refines(T) = \emptyset (If T is not a refinement type.)

In addition, we write $\vdash v : \text{refines}(T)$ *if (1) v is a closed value, and (2) for any* $(x, e) \in \text{refines}(T), e\{v/x\} \rightarrow^*$ true*.*

Lemma 50.

- *(1) If* T_1 \Rightarrow T_2 *, then* ⊢ *v* ∶ *refines* (T_1) *iff* ⊢ *v* ∶ *refines* (T_2) *.*
- *(2) If* T_1 ≡ T_2 *, then* ⊢ *v* ∶ *refines* (T_1) *iff* ⊢ *v* ∶ *refines* (T_2) *.*

Proof.

1. From $T_1 \Rightarrow T_2$, there exist some T, x, e'_1 and e'_2 such that $T_1 = T\{e'_1/x\}$ and $T_2 = T\{e'_2/x\}$ and $e'_1 \longrightarrow e'_2$. By induction on *T*.

Case $T = \text{Bool}$, $y: T_1' \to T_2'$, $y: T_1' \times T_2'$, or $\tau(e)$: Obvious because *refines* (T_1) and *refines* (T_2) are empty.

- Case $T = \{y:T' | e'\}$: Without loss of generality, we suppose that *y* is a fresh variable. Since $T' \{e'_1/x\} \Rightarrow$ $T' \{e'_2/x\}$, it suffices to show that $e' \{e'_1/x\} \{v/y\} \longrightarrow^*$ true iff $e' \{e'_2/x\} \{v/y\} \longrightarrow^*$ true by the IH. For $i \in \{1,2\}$, since *v* and e'_i are closed values (recall that the evaluation relation is defined over closed terms), we have $e' \{e'_i/x\} \{v/y\} = e' \{v/y\} \{e'_i/x\}$. Since $e' \{v/y\} \{e'_1/x\} \Rightarrow e' \{v/y\} \{e'_2/x\}$, we finish by Lemma 30.
- 2. By induction on $T_1 \equiv T_2$.

Case $T_1 \Rightarrow T_2$: By the case (1).

Case transitivity and symmetry: By the IH(s).

 \Box

Lemma 51. *If* $\emptyset \vdash v : T$ *, then* $\vdash v : \text{refines}(T)$ *.*

- *Proof.* By induction on $\emptyset \vdash v : T$.
- Case (T_CONST), (T_ABS), (T_CAST), (T_PAIR) or (T_CTR): Obvious because $refines(T) = \{\}.$
- Case (T_VAR), (T_BLAME), (T_APP), (T_PROJ1), (T_PROJ2), (T_MATCH), (T_IF), (T_WCHECK) or (T_ACHECK): Contradictory.
- Case (T_Conv): By inversion, we have $\emptyset \vdash v : T'$ for some T' such that $T' \equiv T$. By the IH and Lemma 50 (2), we finish.
- Case (T_FORGET): By inversion, we have $\emptyset \vdash v : \{x:T \mid e\}$ for some x and e. By the IH, we finish.
- Case (T_EXACT): We are given $\varnothing \vdash v : \{x:T' | e'\}$ for some *x*, *T'* and *e'*. By inversion, we have $\varnothing \vdash v : T'$ and $e' \{v/x\} \longrightarrow^*$ true. Since $refines(\{x:T' | e'\}) = refines(T') \cup \{(x,e')\}$, we finish by the IH. П

Theorem 1 (Type Soundness). *If* $\emptyset \vdash e : T$ *, then*

- *1.* $e \rightarrow^* v$ *for some v such that* $\emptyset \vdash v : T$ *and* ⊢ *v* : *refines*(*T*)*;*
- *2. e* → $*$ ↑ *l for some ℓ; or*
- *3. there is an infinite sequence of evaluation* $e \rightarrow e_1 \rightarrow \cdots$.

Proof. Suppose that $e \rightarrow^* e'$ for some e' such that e' cannot reduce. We show the theorem by mathematical induction on the number of evaluation steps of *e*.

- 1. 0: We know that *e* cannot reduce. Since $\emptyset \vdash e : T$, we find that *e* is a value or a blaming by Lemma 45. Moreover, if *e* is a value, then $\vdash e : \text{refines}(T)$ by Lemma 51.
- 2. $i + 1$: We are given $e \longrightarrow e'' \longrightarrow^i e'$ for some e'' . By Lemma 49 (2), $\varnothing \vdash e'' : T$ and thus we finish by the IH. \Box

Trans

input: fix $f(y:T, x:int list)$ = match *x* with $\lceil \cdot \rceil \rightarrow e_1 \mid z_1 : z_2 \rightarrow e_2$ **returns:** 1 **let** *τ* be a fresh type name **in** 2 **let** ${T_i}_i =$ $\left\{ z_1 : \text{int} \times \{z_2 : T_0 \mid e_0\} \middle| \begin{array}{l} (e_{\text{opt}}, e) \in GenContracts(e_2), \\ (T_0, e_0) = Aux(\tau, e_{\text{opt}}, e) \end{array} \right\}$ $(T_0, e_0) = Aux(\tau, e_{opt}, e)$ in 3 **let** *D* and $\overline{D_i}^i$ be fresh constructor names, and *z* be a fresh variable **in**

4 type
$$
\tau \langle y: T \rangle = D \parallel [] : \{z:\text{unit} \mid e_1\} \mid \overline{D_i \parallel ::) : T_i^i}
$$

where

```
Aux(\tau,e_{\textbf{opt}},e) =
     let e' = e \{ \text{fix } f(y:T, x:\text{int list}) = ... / f \} in
    match eopt with
     | \textit{Somee}'' \rightarrow (\tau \langle e'' \rangle, \text{let } z_2 = \langle \text{int list} \Leftarrow \tau \langle e'' \rangle \rangle^{\ell} z_2 \text{ in } e')\mid None \rightarrow (int list, e')
```
Figure 3: Translation.

5 Translation

We assume two things through this section. First, type definition environments include int list. Second, we make type definition environment as well as constructor choice function explicit sometimes; we write (Σ, δ) ; $\Gamma \vdash e : T$, $\langle \Sigma, \delta \rangle$; $\Gamma \vdash T$, and $\langle \Sigma, \delta \rangle \vdash \Gamma$ to expose both in typing judgments and $\delta \vdash e_1 \longrightarrow e_2$ and $\delta \vdash e_1 \longrightarrow^* e_2$ to expose constructor choice functions in evaluation. We still assume that type definition environments and constructor choice functions are well formed.

5.1 Definition

We define a class of predicate functions which can be given to the translation.

Definition 7. *A recursive predicate function* $F = \text{fix } f(y:T, x)$; int list) = match *x* with $[] \rightarrow e_1 \mid z_1 : z_2 \rightarrow e_2$ *is translatable under* Σ *if*

- \bullet (∑, ∅); \emptyset ⊢ *F* : *T* → int list → Bool,
- (Σ, ∅); *y*:*T* ⊢ *e*₁ ∶ Bool, and
- \bullet (∑, ∅); f **:***T* → int list → Bool, y :*T*, z_1 :int, z_2 :int list ⊢ e_2 ∶ Bool.

We omit Σ *if it is clear from the context or not important.*

The empty constructor choice function means that *F* does not contain run-time terms. We refer to metasymbols $(f, y, x, e_1, \text{ etc.})$ included by definition of *F* as ones with subscript *F*. For example, *y* in *F* is written as y^F when we want to emphasize that it is from *F*.

The translation algorithm *Trans* is shown in Figure 3, where uses the auxiliary function *GenContracts* defined in Figure 4.

5.2 Static Correctness

We first show that the new datatype generated from a translatable function by the translation algorithm is well formed.

Lemma 52 (Type Definition Weakening)**.** *Let ς be a type definition.*

(1) If $\langle \Sigma, \delta \rangle$; $\Gamma \vdash e : T$ *, then* $\langle \Sigma, \varsigma, \delta \rangle$; $\Gamma \vdash e : T$ *.*

GenContracts (true) = {(None, true)}
\nGenContracts (if
$$
f e_1 z_2
$$
 then e_2 else e_3)
\n
$$
= {(Somee_1, e_2)} \cup {(e_{opt}, if f e_1 z_2
$$
 then false else $e'_3) | (e_{opt}, e'_3) \in GenContracts(e_3)}$
\n
$$
= {(e_{opt}, if e_1 t_{en} e'_2
$$
 else false) | $(e_{opt}, e'_2) \in GenContracts(e_2)$ }\cup { (e_{opt}, if e_1 t_{en} false else e'_3) | (e_{opt}, e'_3) \in GenContracts(e_2)} }\cup { (e_{opt}, if e_1 t_{en} false else e'_3) | (e_{opt}, e'_3) \in GenContracts(e_3)}
\n
$$
= {(e_{opt}, if e_1 t_{en} felse else e'_3) | (e_{opt}, e'_2) \in GenContracts(e_2)}
$$

\n
$$
= {e_{opt}, e'_1 \in \{1, ..., n\}} {e_{opt}, e'_1 \in \{1, ..., n\}} {e_{opt}, e'_1 \in \{1, ..., n\}} {e_{opt}, e'_2 \in GenContracts(e_1) \land \forall i \neq j \cdot e'_i = false}
$$

\n
$$
= {(None, e)}
$$

\n
$$
= {(None, e
$$

Figure 4: Generation of base contracts and argument terms to a manifest datatype.

- *(2) If* $\langle \Sigma, δ \rangle$; Γ ← *T, then* $\langle \Sigma, \varsigma, δ \rangle$; Γ ← *T.*
- *(3) If* ⟨Σ*, δ*⟩ ⊢ Γ*, then* ⟨Σ*, ς, δ*⟩ ⊢ Γ*.*

Proof. Straightforward by induction on each derivation.

Definition 8 (Free Variables in Typing Contexts)**.** *We write* FV(Γ) *to denote the set of free variables in a typing context* Γ*. Formally, it is defined as follows:*

$$
\begin{array}{lcl} \mathsf{FV}\,(\varnothing) & = & \varnothing \\ \mathsf{FV}\,(\Gamma,x:T) & = & \mathsf{FV}\,(\Gamma) \cup \mathsf{(FV}\,(T)\backslash \mathsf{dom}\,(\Gamma)) \end{array}
$$

where dom $(Γ)$ *means the set of binding variables in* $Γ$ *.*

Lemma 53 (Strengthening)**.**

- *(1) If* $\Gamma_1, x : T', \Gamma_2 \vdash e : T \text{ and } x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e), \text{ then } \Gamma_1, \Gamma_2 \vdash e : T.$
- *(2) If* $\Gamma_1, x : T', \Gamma_2 \vdash T$ *and* $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(T)$ *, then* $\Gamma_1, \Gamma_2 \vdash T$ *.*
- *(3) If* ⊢ $\Gamma_1, x : T', \Gamma_2$ *and* $x \notin$ **FV**(Γ_2)*, then* ⊢ Γ_1, Γ_2 *.*

Proof. By induction on each derivation. The interesting cases are for (T_AAB) , (T_APP) and (T_MATCH) .

- 1. By case analysis on the rule applied last.
	- Case (T_CONST): We are given $\Gamma_1, x : T', \Gamma_2 \vdash c$: Bool. By inversion, we have $\vdash \Gamma_1, x : T', \Gamma_2$. By the IH, $\vdash \Gamma_1, \Gamma_2$ and thus $\Gamma_1, \Gamma_2 \vdash c :$ Bool by (T_CONST).
	- Case (T_VAR) : We are given $\Gamma_1, x: T', \Gamma_2 \vdash y : T$. By inversion, we have $\vdash \Gamma_1, x: T', \Gamma_2$ and $y: T \in \Gamma_1, x: T', \Gamma_2$. By the IH, $\vdash \Gamma_1, \Gamma_2$. We find that $x \neq y$ from $x \notin \text{FV}(y)$. Thus, $\Gamma_1, \Gamma_2 \vdash y : T$ by (T_VAR).
	- Case (T_BLAME): We are given $\Gamma_1, x : T', \Gamma_2 \vdash \mathcal{N} \ell : T$. By inversion, we have $\vdash \Gamma_1, x : T', \Gamma_2$ and $\varnothing \vdash T$. By the IH, $\vdash \Gamma_1, \Gamma_2$ and thus $\Gamma_1, \Gamma_2 \vdash \Uparrow \ell : T$ by (T_BLAME).
	- Case (T_ABS): We are given $\Gamma_1, x : T', \Gamma_2 \vdash \text{fix } f(y : T_1) : T_2 = e_2 : y : T_1 \rightarrow T_2$. Without loss of generality, we can suppose that *f* and *y* are fresh for *x*. By inversion, we have $\Gamma_1, x : T', \Gamma_2, f : (y : T_1 \to T_2), y : T_1 \vdash e_2 : T_2$. Since $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(\text{fix } f(y:T_1):T_2 = e_2)$, we find that $x \notin \text{FV}(\Gamma_2, f:(y:T_1 \rightarrow T_2), y:T_1) \cup \text{FV}(e_2)$. Note that, thanks to type annotation T_2 in the lambda abstraction, we can find $x \notin FV(T_2)$. Thus, by the IH, $\Gamma_1, \Gamma_2, f: (y:T_1 \to T_2), y:T_1 \vdash e_2 : T_2$. By (T_ABS), we finish.
	- Case $(T_C AST)$: We are given $\Gamma_1, x : T', \Gamma_2 \vdash (T_1 \Leftarrow T_2)^{\ell} : T_2 \rightarrow T_1$. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash T_1$ and $\Gamma_1, x : T', \Gamma_2 \vdash T_2$ and $T_1 \parallel T_2$. Since $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(\langle T_1 \Leftarrow T_2)^{\ell}$, we find that $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(\langle T_1 \in T_2 \rangle)$ $FV(T_1) \cup FV(T_2)$. Thus, by the IHs, $\Gamma_1, \Gamma_2 \vdash T_1$ and $\Gamma_1, \Gamma_2 \vdash T_2$. By (T_CAST), we finish.

- Case (T_APP) : We are given $\Gamma_1, x : T', \Gamma_2 \vdash e_1 e_2 : T_2 \{e_2/y\}$. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash e_1 : y : T_1 \rightarrow T'$ T_2 and $\Gamma_1, x : T', \Gamma_2 \vdash e_2 : T_1$. Since $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e_1 e_2)$, we find that $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e_1) \cup \text{FV}(e_2)$. Thus, by the IHs, $\Gamma_1, \Gamma_2 \vdash e_1 : y:\Gamma_1 \to T_2$ and $\Gamma_1, \Gamma_2 \vdash e_2 : T_1$. By (T_App), we finish.
- Case (T_PAIR): We are given $\Gamma_1, x : T', \Gamma_2 \vdash (e_1, e_2) : y : T_1 \times T_2$. Without loss of generality, we can suppose that *y* is fresh for *x*. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash e_1 : T_1$ and $\Gamma_1, x : T', \Gamma_2 \vdash e_2 : T_2 \{e_1/y\}$ and $\Gamma_1, x : T', \Gamma_2, y : T_1 \vdash T_2$. Since $x \notin \text{FV}(\Gamma_2) \cup \text{FV}((e_1, e_2))$, we find that $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e_1) \cup \text{FV}(e_2)$. Thus, by the IHs, $\Gamma_1, \Gamma_2 \vdash e_1 : T_1$ and $\Gamma_1, \Gamma_2 \vdash e_2 : T_2 \{e_1/y\}$. By Lemma 46, $x \notin \text{FV}(T_1) \cup \text{FV}(T_2)$. Thus, by the IH, $\Gamma_1, \Gamma_2, y: T_1 \vdash T_2$. By (T_PAIR), we finish.
- Case (T_PROJ1): We are given $\Gamma_1, x : T', \Gamma_2 \vdash e_1 \cdot 1 : T$. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash e_1 : y : T_1 \times T_2$. Since $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e_1,1)$, we find that $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e_1)$. Thus, by the IH, $\Gamma_1, \Gamma_2 \vdash e_1 : y : T_1 \times T_2$. By $(T$ -Proj1), we finish.
- Case $(T \text{ _PROJ2})$: We are given $\Gamma_1, x : T', \Gamma_2 \vdash e_2 \cdot 2 : T_2 \{e_2 \cdot 1/y\}$. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash e_2 : T'_1 \cdot T'_2 \vdash e_2 \cdot T'_1$ $y:T_1 \times T_2$. Since $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e_2, 2)$, we find that $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e_2)$. Thus, by the IH, $\Gamma_1, \Gamma_2 \vdash$ e_2 : $y: T_1 \times T_2$. By (T_PROJ2), we finish.
- Case (T_CTR) : We are given $[G1, x : T', G2] Ce1e2 : t e1]$. By inversion, we have $TypeSpecOf(C) = y:T_1 \rightarrow CQ$ $T_2 \rightarrow \tau(y)$ and $\Gamma_1, x: T', \Gamma_2 \vdash e_1 : T_1$ and $\Gamma_1, x: T', \Gamma_2 \vdash e_2 : T_2 \{e_1/y\}$ and $\Gamma_1, x: T', \Gamma_2 \vdash \tau(e_1)$. Since $x \notin \textsf{FV}(\Gamma_2) \cup \textsf{FV}(C\langle e_1 \rangle e_2)$, we find that $x \notin \textsf{FV}(\Gamma_2) \cup \textsf{FV}(e_1) \cup \textsf{FV}(e_2)$. Thus, by the IHs, $\Gamma_1, \Gamma_2 \vdash e_1 : T_1$ and $\Gamma_1, \Gamma_2 \vdash T_2 \{e_1/y\}$ and $\Gamma_1, \Gamma_2 \vdash \tau \{e_1\}$. By (T_CTR), we finish.
- Case (T_MATCH): We are given Γ_1 , x : T' , Γ_2 ⊢ match e_0 with $\overline{C_i y_i \rightarrow e_i}^i$: T . We can suppose that each y_i is fresh for x. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash e_0 : \tau \langle e' \rangle$ and $\Gamma_1, x : T', \Gamma_2 \vdash T$ and $C \text{trsOf}(\tau) = \overline{C_i}^i$ and $ArgTypeOf(\tau) = y:T''$ and for any i, $CtrlAGOf(C_i) = T_i$ and $\Gamma_1, x:T', \Gamma_2, y_i:T_i \{e'/y\} \vdash e_i : T$. Since *x* ∉ FV(Γ₂) ∪ FV(match e_0 with $\overline{C_i y_i \rightarrow e_i}^i$), we find that $x \notin FV(\Gamma_2)$ ∪ FV(e_0) ∪ ∪*i*_i FV(e_i). Thus, by the IH, $\Gamma_1, \Gamma_2 \vdash e_0 : \tau \langle e' \rangle$. By Lemma 46 and its inversion, $x \notin \text{FV}(e')$. From well-formedness of the type definition environment, $x \notin \text{FV}(T_i)$. Thus, by the IHs, for any $i, \Gamma_1, \Gamma_2, y_i : T_i \{e'/y\} \vdash e_i : T$. By Lemma 46, $x \notin \text{FV}(T)$ (noting τ has at least one constructor from well-formedness of the type definition environment). By the IH, $\Gamma_1, \Gamma_2 \vdash T$. By (T_MATCH), we finish.
- Case (T_IF): We are given $\Gamma_1, x : T', \Gamma_2 \vdash$ if e_1 then e_2 else e_3 : Bool. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash e_1 :$ Bool and $\Gamma_1, x : T', \Gamma_2 \vdash e_2 : T$ and $\Gamma_1, x : T', \Gamma_2 \vdash e_3 : T$. Since $x \notin \textsf{FV}(\Gamma_2) \cup \textsf{FV}$ (if e_1 then e_2 else e_3), we find that $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(e_1) \cup \text{FV}(e_2) \cup \text{FV}(e_3)$. By the IHs, $\Gamma_1, \Gamma_2 \vdash e_1$: Bool and $\Gamma_1, \Gamma_2 \vdash e_2$: *T* and $\Gamma_1, \Gamma_2 \vdash e_3 : T$. By (T_{-IF}), we finish.
- Case (T_ACHECK): We are given $\Gamma_1, x : T', \Gamma_2 \vdash (\{y : T_1 \mid e_1\}, e_2, v)^{\ell} : \{y : T_1 \mid e_1\}.$ By inversion, we have \vdash $\Gamma_1, x : T', \Gamma_2 \text{ and } \varnothing \vdash \{y : T_1 \mid e_1\} \text{ and } \varnothing \vdash v : T_1 \text{ and } \varnothing \vdash e_2 \text{ : } \text{Bool} \text{ and } e_1 \{v/y\} \longrightarrow^* e_2. \text{ By the IH},$ $\vdash \Gamma_1, \Gamma_2$. By (T_ACHECK), we finish.
- Case (T_WCHECK): We are given $\Gamma_1, x : T', \Gamma_2 \vdash \langle \langle \{y : T_1 | e_1\}, e_2 \rangle \rangle^{\ell}$: $\{y : T_1 | e_1\}$. By inversion, we have \vdash $\Gamma_1, x : T', \Gamma_2 \text{ and } \varnothing \vdash \{y : T_1 \mid e_1\} \text{ and } \varnothing \vdash e_2 : T_1'. \text{ By the IH}, \vdash \Gamma_1, \Gamma_2. \text{ By (T_ACHECK)}, \text{ we finish.}$
- Case (T_Conv): By inversion, we have $\vdash \Gamma_1, x : T', \Gamma_2$ and $\varnothing \vdash e : T''$ and $T'' \equiv T$ and $\varnothing \vdash T$. By the IH, $\vdash \Gamma_1, \Gamma_2$. By (T_{-CONV}), we finish.
- Case (T Forget): We are given Γ1*, x*∶*T* ′ *,*Γ² [⊢] *^v* [∶] *^T*. By inversion, we have [⊢] ^Γ1*, x*∶*^T* ′ *,*Γ² and [∅] [⊢] *^v* [∶] $\{y:T \mid e'\}$. By the IH, $\vdash \Gamma_1, \Gamma_2$. By (T_FORGET), we finish.
- Case (T_EXACT): We are given $\Gamma_1, x : T', \Gamma_2 \vdash v : \{y : T'' | e''\}$. By inversion, we have $\vdash \Gamma_1, x : T', \Gamma_2$ and $\alpha \in \mathcal{O} \times \mathcal{O} \times$
- 2. By case analysis on the rule applied last.
	- Case (WT_BASE): We are given $\Gamma_1, x : T', \Gamma_2 \vdash$ Bool. By the IH and (WT_BASE), we finish.
	- Case (WT_FUN): We are given $\Gamma_1, x : T', \Gamma_2 \vdash y : T_1 \rightarrow T_2$. Without loss of generality, we can suppose that *y* is fresh for *x*. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash T_1$ and $\Gamma_1, x : T', \Gamma_2, y : T_1 \vdash T_2$. Since $x \notin T'$ $\mathsf{FV}(\Gamma_2) \cup \mathsf{FV}(y:T_1 \to T_2)$, we find that $x \notin \mathsf{FV}(\Gamma_2) \cup \mathsf{FV}(T_1) \cup \mathsf{FV}(T_2)$. By the IHs, $\Gamma_1, \Gamma_2 \vdash T_1$ and $\Gamma_1, \Gamma_2, y: T_1 \vdash T_2$. By (WT_FUN), we finish.
- Case (WT_PROD): We are given $\Gamma_1, x : T', \Gamma_2 \vdash y : T_1 \times T_2$. Without loss of generality, we can suppose that *y* is fresh for *x*. By inversion, we have $\Gamma_1, x : T', \Gamma_2 \vdash T_1$ and $\Gamma_1, x : T', \Gamma_2, y : T_1 \vdash T_2$. Since $x \notin \mathsf{FV}(\Gamma_2) \cup$ $\mathsf{FV}(y:T_1 \times T_2)$, we find that $x \notin \mathsf{FV}(\Gamma_2) \cup \mathsf{FV}(T_1) \cup \mathsf{FV}(T_2)$. By the IHs, $\Gamma_1, \Gamma_2 \vdash T_1$ and $\Gamma_1, \Gamma_2, y:T_1 \vdash T_2$. $By (WT_PROD)$, we finish.
- Case (WT_REFINE): We are given $\Gamma_1, x : T', \Gamma_2 \vdash \{y : T'' | e''\}$. Without loss of generality, we can suppose that *y* is fresh for *x*. By inversion, we have $\Gamma_1, x: T', \Gamma_2 \vdash T''$ and $\Gamma_1, x: T', \Gamma_2, y: T'' \vdash e''$: Bool. Since $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(\{y:T''|e''\}),$ we find that $x \notin \text{FV}(\Gamma_2) \cup \text{FV}(\ell'')$. Thus, by the IHs, $\Gamma_1, \Gamma_2 \vdash T''$ and $\Gamma_1, \Gamma_2, y: T'' \vdash e''$: Bool. By (WT_{-REFINE}), we finish.

Case (WT_DATATYPE): We are given $\Gamma_1, x : T', \Gamma_2 \vdash \tau \langle e' \rangle$. By the IH and (WT_DATATYPE), we finish.

- 3. By case analysis on the rule applied last.
	- Case (WC Empty): Obvious.
	- Case (WC_EXTENDVAR): If $\Gamma_2 = \emptyset$, then, by inversion, we have ⊢ Γ_1 and thus we finish. Otherwise, if $\Gamma_2 = \Gamma_1$ $\Gamma'_2, y:T''$, then, by inversion, $\vdash \Gamma_1, x:T', \Gamma'_2$ and $\Gamma_1, x:T', \Gamma'_2 \vdash y:T''$. By the IHs and (WC_EXTENDVAR), we finish. \Box

Lemma 54 (Application Inversion). *If* $\Gamma \vdash e_1 e_2 : T$ *, then*

- $\Gamma \vdash e_1 : x : T_1 \to T_2$,
- $\Gamma \vdash e_2 : T_1$ *, and*
- \bullet *T*₂ {*e*₂*/x*} ≡ *T*

for some x *,* T_1 *and* T_2 *.*

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only two rules can be applied to the application.

Case (T_App): Since $T = T_2 \{e_2/x\}$, we have $T_2 \{e_2/x\} \equiv T$ by Lemma 1 (reflexivity). By inversion, we finish.

Case (T_CONV): By inversion, we have $\emptyset \vdash e_1 \cdot e_2 : T'$ and $T' \equiv T$ for some T' . By the IH, we have $\emptyset \vdash e_1 : x : T_1 \rightarrow T'$ *T*₂ and \emptyset ⊢ e_2 : *T*₁ and *T*₂ { e_2/x } ≡ *T*^{*'*}. We have *T*₂ { e_2/x } ≡ *T* by Lemma 1 (transitivity). By Lemma 32, we finish.

Lemma 55 (Variable Inversion). *If* $\Gamma \vdash x : T$ *, then* $\vdash \Gamma$ *and* $x : T \in \Gamma$ *.*

Proof. Obvious because only (T_VAR) can drive $\Gamma \vdash x : T$.

Lemma 56. Let F be a translatable function, e be a subterm of e_2^F , $\Gamma_1 = f^F : T^F \to \text{int list} \to \text{Bool}, y^F : T^F, z_1^F : \text{int,}$ *and* Γ_2 *be a typing context.* If $\Gamma_1, \Gamma_2 \vdash e$: Bool *and* $(e_{opt_0}, e_0) \in GenContracts(e), then:$

 \Box

- *for any e'*, *if* $e_{opt_0} = Somee'$, *then* $y^F: T^F, z_1^F$; *int* ⊢ $e' : T^F$; *and*
- $\Gamma_1, \Gamma_2 \vdash e_0$: Bool.

Proof. By structural induction on *e* with case analysis on $\Gamma_1, \Gamma_2 \vdash e :$ Bool.

Case (^T Const): Obvious because *GenContracts* (true) ⁼ {(*None,*true)} and *GenContracts* (false) ⁼ [∅].

- Case (T_{NAR}) , (T_{ABS}) , (T_{CAST}) , (T_{APP}) , (T_{PAR}) , (T_{PROJi}) for $i \in \{1,2\}$, (T_{CTR}) , (T_{FORGET}) , (T_{EXACT}) , $(T_{\text{-}}BLAME)$, $(T_{\text{-}}ACHECK)$, and $(T_{\text{-}}WCHECK)$: Obvious because $GenContracts$ (*e*) = {(*None, e*)}.
- Case (T_IF): We are given $\Gamma_1, \Gamma_2 \vdash$ if e_1 then e_2 else e_3 : Bool. By inversion, we have $\Gamma_1, \Gamma_2 \vdash e_1$: Bool and $\Gamma_1, \Gamma_2 \vdash e_2$: Bool and $\Gamma_1, \Gamma_2 \vdash e_3$: Bool. There are three cases which we have to consider.

Case $e_1 = f^F e'_1 z_2^F$ where $\textsf{FV}(e'_1) \subseteq \{y^F, z_1^F\}$: Then,

 $GenContracts (e) = \{(Somee'_1, e_2)\} \cup \{(e_{\textbf{opt}}, \text{if } f^Fe'_1z_2^F \text{ then false else } e'_3) \mid (e_{\textbf{opt}}, e'_3) \in GenContracts (e_3)\}$

We first show $y^F:T^F, z_1^F$ int $\vdash e'_1 : T^F$. Since $\Gamma_1, \Gamma_2 \vdash f^F e'_1 z_2^F$: Bool, we find that $\Gamma_1, \Gamma_2 \vdash f^F$. $x:T_1 \to T_2$ and $\Gamma_1, \Gamma_2 \to e'_1 : T_1$ for some *x*, T_1 and T_2 , by applying Lemma 54 twice. By Lemma 55, $x:T_1 \to T_2 = T^F \to \text{int} \text{ list} \to \text{Bool} \text{ since } f^F x:T_1 \to T_2 \in \Gamma_1. \text{ Thus, } T_1 = T^F \text{ and so } \Gamma_1, \Gamma_2 \to e'_1 : T^F.$ Since $\mathsf{FV}(e'_1) \subseteq \{y^F, z_1^F\}$, and $f^F \notin \mathsf{FV}(T^F)$ by Lemma 46, we have $y^F: T^F, z_1^F$ int $\vdash e'_1 : T^F$ by Lemma 53 (1). In addition, we have $\Gamma_1, \Gamma_2 \vdash e_2$: Bool from the premise of the typing derivation. Let $(e_{opt}, e'_3) \in GenContracts(e_3)$. It suffices to show that (1) for any e' , if $e_{opt} = Somee'$, then $y^F:T^F, z_1^F$: int $\vdash e': T^F$ and (2) $\Gamma_1, \Gamma_2 \vdash \text{if } f^F e'_1 z_2^F$ then false else e'_3 : Bool. The case (1) is shown by the IH. The case (2) is obvious by (T₋IF) because $\Gamma_1, \Gamma_2 \vdash$ false : Bool by Lemmas 46 and 32 and $\Gamma_1, \Gamma_2 \vdash e'_3$: Bool by the IH.

Case $e_1 \neq f^F e'_1 z_2^F$ for any e'_1 such that $\textsf{FV}(e'_1) \subseteq \{y^F, z_1^F\}$, and a term of the form $f^F e'_1 z_2^F$ for some e'_1 occurs in e_2 or e_3 : Similarly to the above. We have

 $GenContracts(e) = \{(e_{\textbf{opt}}, \text{if } e_1 \text{ then } e'_2 \text{ else false}) \mid (e_{\textbf{opt}}, e'_2) \in GenContracts(e_2)\} \cup$ ${(e_{\textbf{opt}}, \text{if } e_1 \text{ then false else } e'_3) | (e_{\textbf{opt}}, e'_3) \in \text{GenContracts}(e_3)}.$

Since $\Gamma_1, \Gamma_2 \vdash e_2$: Bool and $\Gamma_1, \Gamma_2 \vdash e_3$: Bool, we finish by the IHs.

Case otherwise: Obvious because *GenContracts* (*e*) = {(*None, e*)}.

Case (T_MATCH): Similarly to the case for (T_IF). We are given $\Gamma_1, \Gamma_2 \vdash \text{match } e_0 \text{ with } \overline{C_i x_i \rightarrow e_i}^{i \in \{1, ..., n\}}$: Bool. By inversion, we have $\Gamma_1, \Gamma_2 \vdash e_0 : \tau \langle e' \rangle$ and $ArgTypeOf(\tau) = x':T'$ and, for any $i \in \{1, ..., n\}$, $CtrArgOf(C_i) = T_i$ and $\Gamma_1, \Gamma_2, x_i : T_i \{e'/x'\} \vdash e_i$: Bool for some τ, e', x', T' , and $\overline{T_i}^{i \in \{1,...,n\}}$.

If some e_i contains a term of the form $f^F e'_1 z_2^F$ for some e'_1 , then we have

 $GenContracts(e) = \bigcup_{j \in \{1,\ldots,n\}} \{ (e_{\textbf{opt}}, \textbf{match} \, e_0 \, \textbf{with} \, \overline{C_i \, x_i \rightarrow e_i''}, \, i \in \{1,\ldots,n\} \}$ (e_{opt}, e''_j) ∈ $GenContracts(e_j) \land \forall i \neq j$. e''_i = false}.

We finish by the IHs with the fact that, for any i , $\Gamma_1, \Gamma_2, x_i : T_i \{e'/x'\}$ ⊢ false ∶ Bool by Lemmas 46 and 32, and so $\Gamma_1, \Gamma_2, x_i : T_i \{e'/x'\} \vdash e''_i : \text{Bool}.$

Otherwise, obvious because $GenContracts(e) = \{(None, e)\}.$

Case (T_CONV): By inversion, we have $\emptyset \vdash e : T$ and $T \equiv$ Bool. If $e =$ false, then obvious because $GenContracts$ (false) = \emptyset . Otherwise, since f^F (and z_2^F) does not occur in *e*, we have $GenContracts(e) = \{(None, e)\}$ (even if $e =$ true) and so we finish.

Lemma 57 (Translation Generates Well-Formed Datatype)**.** *Let* Σ *be a well-formed type definition environment* and *F* be a translatable function under Σ . Then, Trans (F) is well formed under Σ , that is, so is Σ , Trans (F) .

Proof. By definition, $Trans(F)$ = type $\tau \langle y^F : T^F \rangle = D \parallel [] : \{z:\text{unit} | e_1^F \} | \overline{D_i \parallel (::) : T_i}^i$ where z is fresh. It suffices to show that the type definition satisfies five conditions from definition of well-formedness of type definition under type definition environment.

- (a) We show that τ has constructors more than zero, which is obvious.
- (b) We show that $\Sigma; \emptyset \vdash T^F$. Since *F* is well typed, we have $\Sigma; \emptyset \vdash T^F$ by Lemma 46 and its inversion.
- (c) We show that (1) Σ , $Trans(F); y^F : T^F \vdash \{z:\text{unit} | e_1^F\}$ and (2) Σ , $Trans(F); y^F : T^F \vdash T_i$ for any *i*.
	- (1) Since F is translatable under Σ , we have $(\Sigma, \varnothing); y^F : T^F \vdash e_1^F :$ Bool. By Lemma 52, $(\Sigma, Trans(F), \varnothing); y^F : T^F \vdash$ e_1^F : Bool. By Lemma 32 and (T_REFINE), $(\Sigma, Trans(F), \emptyset); y^F : T^F \vdash \{z:\text{unit} \mid e_1^F\}.$

(2) By definition of *GenContracts*, T_i is defined based on *GenContracts* (e_2^F). Let $(e_{opt}, e) \in GenContracts(e_2^F)$ and $\Gamma = f^F \cdot T^F \rightarrow \text{int list} \rightarrow \text{Bool}, y^F \cdot T^F, z_1^F \cdot \text{int, } z_2^F \cdot \text{int list. Since } F \text{ is translate under } \Sigma, \text{ we have}$ (Σ*,*∅); Γ [⊢] *^e*² *F* [∶] Bool. By Lemma 56, (Σ*,*∅); Γ [⊢] *^e* [∶] Bool. Since (Σ*,*∅);[∅] [⊢] *^F* [∶] *^T ^F* [→] int list [→] Bool, we have $(\Sigma, \varnothing); y^F : T^F, z_1^F$ int, z_2^F int list $\vdash e\{F/f^F\}$: Bool by Lemma 33. Note that T^F is closed by Lemma 46 and its inversion. By Lemma 52,

$$
(\Sigma, Trans(F), \varnothing); y^F : T^F, z_1^F : \text{int}, z_2^F : \text{int list} \vdash e\{F/f^F\} : \text{Bool}.
$$

By case analysis on e_{opt} , letting $\Gamma' = y^F$: T^F , z_1^F :int. Case e_{opt} = $Somee"$: By Lemma 32 and (T_{-ABS}),

$$
(\Sigma, Trans(F), \emptyset); \Gamma' \vdash \lambda z_2^F \text{:int list. } e\{F/f^F\} \text{ : int list } \to \text{Bool}.
$$

By Lemmas 56 and 52,

$$
(\Sigma, \text{Trans}(F), \varnothing); \Gamma' \vdash e'' : T^F.
$$

Thus,

$$
(\Sigma, \text{Trans}(F), \varnothing); \Gamma' \vdash \tau \langle e'' \rangle
$$

by (WT DATATYPE). By (C DATATYPE), Σ , $Trans(F) \vdash \tau \langle e'' \rangle \parallel$ int list. Since $(\Sigma, Trans(F), \emptyset)$; $\Gamma' \vdash$ int list by Lemmas 46 and 32 and (WT Datatype), we find

 $(\Sigma, Trans(F), \emptyset); \Gamma' \vdash (int list \Leftarrow \tau \langle e'' \rangle)^{\ell} : \tau \langle e'' \rangle \rightarrow int list$

for any ℓ , by (T_{-CAST}). By Lemma 32, (T_{-VAR}) and (T_{-APP}), we have

$$
(\Sigma, Trans(F), \emptyset); \Gamma', z_2^F : \tau \langle e'' \rangle \vdash \langle \text{int list} \Leftarrow \tau \langle e'' \rangle \rangle^{\ell} z_2^F : \text{int list.}
$$

Letting $e_0 = (\lambda z_2^F \cdot \text{int list.} e\{F/f^F\}) (\langle \text{int list} \Leftarrow \tau \langle e'' \rangle)^{\ell} z_2^F)$, we have

$$
(\Sigma, Trans(F), \emptyset); \Gamma', z_2^F: \tau\langle e'' \rangle \vdash e_0 : \text{Bool}
$$

by Lemma 32 and (T_App). Note that e_0 can be written as let $z_2^F = \{\text{int list} \Leftarrow \tau \langle e'' \rangle\}^{\ell} z_2^F$ in $e \{F/f^F\}$. Letting $T_0 = \tau \langle e'' \rangle$, we have

$$
(\Sigma, Trans(F), \varnothing); \Gamma' \vdash \{z_2^F : T_0 \mid e_0\}.
$$

by $(WT_{\text{-}}R$ EFINE). Thus, by $(WT_{\text{-}}P_{\text{ROD}})$,

$$
(\Sigma, Trans(F), \varnothing); y^F : T^F \vdash z_1^F : \mathsf{int} \times \{z_2^F : T_0 \, | \, e_0\}.
$$

Note that $T_i = z_1^F$: $\text{int} \times \{z_2^F : T_0 | e_0\}.$

Case e_{opt} = *None*: By (WT_REFINE) and (WT_PROD), we have

$$
(\Sigma, Trans(F), \varnothing); y^F : T^F \vdash z_1^F : \mathsf{int} \times \{z_2^F : \mathsf{int} \, \mathsf{list} \, \, \in \{F/f^F\} \}.
$$

Note that $T_i = z_1^F$: int $\times \{z_2^F$: int list $|e\{F/f^F\}\}.$

- (d) We show that Σ includes int list, which is proven by the assumption.
- (e) We show that (1) Σ , $Trans(F)$ ⊢ $\{z:\text{unit} | e_1^F\}$ || unit and (2) Σ , $Trans(F)$ ⊢ T_i || int×int list. The case (1) is obvious by (C_REFINEL) and reflexivity of the compatibility relation. The case (2) is straightforward because T_i takes either of the form z_1^F :int $\times \{z_2^F$:int $\left|\frac{1}{2}e_0\right\}$ or z_1^F :int $\times \{z_2^F:\tau\{e''\}\,|e_0\}$, and reflexivity of the compatibility relation and Σ , $Trans(F) \vdash \tau \langle e'' \rangle$ || int list.

5.3 Dynamic Correctness

Next, we show correctness of translation in the dynamic aspect: casts between refinement types with a translatable function F and the datatype generated from F succeed always. In particular, such casts convert "constructors" but not "structures". In this section, we assume that type definition environments include the datatype generated from a translatable function *F*.

Definition 9. *A constructor choice function δ is said to be trivial for* $τ$ *when, if the type definition of* $τ$ *takes the* form type $\tau_1 \langle x : T \rangle = \overline{C_i \parallel D_i : T_i}^i$ and each D_i belongs to τ_2 , then $\delta(\langle \tau_2 \langle e_2 \rangle \Leftarrow \tau_1 \langle e_1 \rangle)^{\ell} C_i \langle e_3 \rangle e_4) = D_i$ for any e_1 , *e*2*, e*3*, and e*4*.*

We say that a constructor choice function is trivial when it is trivial for *Trans* (*F*).

Lemma 58. *Let δ be a trivial choice function. Suppose that*

 $Trans(F) = type \tau \langle y^F : T^F \rangle = D \parallel [] : \{z:\text{unit}\left|e_1\right|^F\} \left| \overline{D_i \parallel(:): z_1^F:\text{int} \times \{z_2^F : T_i \mid e_i\}} \right|^i.$

If \varnothing + (int list $\Leftarrow \tau(e))^{\ell}v$: int list under δ , then (int list $\Leftarrow \tau(e))^{\ell}v \longrightarrow^* v'$ under δ for some v' which is obtained *by replacing data constructor ^D and ^Dⁱ of which ^v consists with* [] *and* (∶∶)*, respectively.*

Proof. We proceed by structural induction on *v*. Since $\varnothing \vdash \langle \text{int list} \rangle \in \tau \langle e \rangle$ ′ *v* ∶ int list, we have $\varnothing \vdash \langle \text{int list} \rangle \in \mathbb{R}$ $\tau(e)$ ^{ℓ}: $x:T'_1 \to T'_2$ and $\varnothing \vdash v$: T'_1 and T'_2 { v/x } \equiv int list for some *x*, T'_1 , and T'_2 by Lemma 54. By Lemma 37, T'_2 = int list. By Lemmas 41 and 35, we have $\emptyset \vdash \tau \langle e \rangle$ and $\tau \langle e \rangle = T'_1$. We perform case analysis on *v* by Lemmas 44 (4) and 43.

Case $v = D\langle e' \rangle v'$: Since δ is trivial, $\delta(\langle \text{int list} \Leftarrow \tau \langle e \rangle)^{\ell} D\langle e' \rangle v') = []$. Thus, by (R_DATATYPE), (R_FORGET) and (R_BASE) with (E_RED) ,

$$
\langle \text{int list} \Leftarrow \tau \langle e \rangle \rangle^{\ell} D \langle e' \rangle v' \longrightarrow^* [].
$$

Case $v = D_j \langle e' \rangle v'$: By Lemma 43, $\varnothing \vdash v' : z_1^F : \text{int} \times \{z_2^F : T_i \mid e_i\} \{e'/y^F\}$. By Lemmas 44 (3) and 42, $v' = (v_1, v_2)$ for some v_1 and v_2 such that $\varnothing \vdash v_1 : \text{int and } \varnothing \vdash v_2 : \{z_2^F : T_i \mid e_i\} \{e'/y^F, v_1/z_1^F\}$. Note that e' is a closed term. Since δ is trivial, δ (\langle int list $\Leftarrow \tau \langle e \rangle$ ℓ $D_j \langle e' \rangle v'$) = (::). Thus, by (R_DATATYPE), (R_PROD), (R_BASE) and (R_FORGET) with (E_RED) ,

$$
\langle \text{int list} \Leftarrow \tau \langle e \rangle \rangle^{\ell} D_j \langle e' \rangle v' \longrightarrow^* v_1 :: (\langle \text{int list} \Leftarrow T_i \{e' / y^F, v_1 / z_1^F\} \rangle^{\ell} v_2).
$$

From *Trans*, there are two cases we have to consider. If $T_i = \text{int list}$, then $\langle \text{int list} \in \tau \langle e \rangle \rangle^{\ell} D_j \langle e' \rangle v' \longrightarrow^*$ v_1 : v_2 by (R_DATATYPEMONO).. Otherwise, if $T_i = \tau \langle e'' \rangle$ for some e'' , then we finish by the IH, noting \emptyset ⊢ $\{\text{int list} \Leftarrow T_i \{e'/y^F, v_1/z_1^F\}\}^v v_2$: int list, which follows from well-typedness of *v*₂, compatibility of int list and τ , (T_{-CAST}), and (T_{-APP}). \Box

Definition 10 (Notation). Let σ be a (simultaneous) substitution. Then, we write $\sigma(e)$ to denote application of σ *to e.*

Lemma 59. Let *F* be a translatable function, v, v₁ and v₂ be closed values, σ be a simultaneous substitution including $\{F/f^F, v/y^F, v_1/z_1^F, v_2/z_2^F\}$, and e be a subterm of e_2^F . If $\sigma(e) \longrightarrow^*$ true, then there is a unique pair $(e_{opt_0}, e_0) \in GenContracts(e) \text{ such that}$

- $\sigma(e_0) \longrightarrow^*$ true *and*
- *for any* e' , e_{opt_0} = *Somee' implies* $F \sigma(e') v_2 \longrightarrow^*$ true.

Proof. By structural induction on *e*.

Case $e = \text{true}$: Obvious since $GenContracts(\text{true}) = \{(None, \text{true})\}.$

Case $e = \text{false}$: Contradictory; $\sigma(e) \longrightarrow^* \text{false}$.

Case $e = \text{if } f^F e' z_2^F$ then e'_2 else e'_3 where $\text{FV}(e') \subseteq \{y^F, z_1^F\}$: By definition of *GenContracts*, we have

 $GenContracts (e) = \{(Somee', e'_2)\} \cup \{(e_{\textbf{opt}_0}, \text{if } f^Fe' z_2 \overset{F}{\text{} } \text{then false else } e''_3) \mid (e_{\textbf{opt}_0}, e''_3) \in GenContracts (e'_3)\}.$

By case analysis on evaluation of $\sigma(f^F e' z_2^F) = F \sigma(e') v_2$. Note that the evaluation result is either true or false.

Case $F \sigma(e') v_2 \longrightarrow^*$ true: We have

$$
\sigma(\text{if } f^F e' z_2^F \text{ then } e'_2 \text{ else } e'_3) \longrightarrow^* \text{ if true then } \sigma(e'_2) \text{ else } \sigma(e'_3) \longrightarrow \sigma(e'_2).
$$

Since $\sigma(e) \longrightarrow^*$ true, we find that $\sigma(e'_2) \longrightarrow^*$ true. Because

$$
\sigma(\text{if } f^F e' z_2^F \text{ then false else } e_3''\text{)} \longrightarrow^* \text{ if true then false else } \sigma(e_3'')
$$

$$
\longrightarrow \text{ false,}
$$

pair $(Somee', e'_2)$ is the unique one satisfying the property above.

Case $F \sigma(e') v_2 \longrightarrow^*$ false: We have

$$
\sigma(\text{if } f^F e' z_2^F \text{ then } e'_2 \text{ else } e'_3) \longrightarrow^* \text{ if false then } \sigma(e'_2) \text{ else } \sigma(e'_3)
$$

$$
\longrightarrow \sigma(e'_3).
$$

Since $\sigma(e) \rightarrow^*$ true, we find that $\sigma(e'_3) \rightarrow^*$ true. By the IH, there is a unique pair $(e_{opt}, e''_3) \in$ $GenContracts (e'_3)$ satisfying the above property. We have $\sigma(\text{if } f^F e' z_2^F \text{ then false else } e''_3) \longrightarrow^*$ true. Since $F \sigma(e') v_2 \longrightarrow^*$ false, pair $(e_{\textbf{opt}}, \text{if } f^F e' z_2^F$ then false else e''_3) is the unique one satisfying the property above.

- Case $e =$ if e'_1 then e'_2 else e'_3 where $e'_1 \neq f^F e' z_2^F$ for any e' such that $\textsf{FV}(e') \subseteq \{y^F, z_1^F\}$. By case analysis on evaluation of $\sigma(e'_1)$. Note that the evaluation result is either true or false.
	- Case $\sigma(e'_1) \rightarrow^*$ true: Since $\sigma(\text{if } e'_1 \text{ then } e'_2 \text{ else } e'_3) \rightarrow^* \sigma(e'_2) \rightarrow^*$ true, there a unique pair $(e_{\text{opt}}, e''_2) \in$ $GenContracts (e'_2)$ satisfying the above property, by the IH. Since σ (if e'_1 then false else e''_3) \longrightarrow^* false for any e''_3 , pair $(e_{\textbf{opt}}, \text{if } e'_1 \text{ then } e''_2 \text{ else false})$ is the unique one satisfying the property above.
	- Case $\sigma(e'_1) \rightarrow^*$ false: Since $\sigma(\text{if } e'_1 \text{ then } e'_2 \text{ else } e'_3) \rightarrow^* \sigma(e'_3) \rightarrow^* \text{ true, there a unique pair } (e_{\text{opt}}, e''_3) \in$ $GenContracts (e'_3)$ satisfying the above property, by the IH. Since σ (if e'_1 then e''_2 else false) \longrightarrow^* false for any e''_2 , pair $(e_{\textbf{opt}}, \text{if } e'_1 \text{ then false else } e''_3)$ is the unique one satisfying the property above.
- Case $e = \text{match } e'_0 \text{ with } \overline{C_i x_i \rightarrow e'_i}^{i \in \{1, ..., n\}}$: Without loss of generality, we can suppose that each x_i is fresh for *σ*. Since *σ*(*e*) → * true, we find that *σ*(*e*^{*(*}) → * *C_j*(*e'*)*v'* for some *j* ∈ {1, ..., *n*}, *e'* and *v'*, and thus $\sigma(e'_j) \{v'/x_j\} \longrightarrow^*$ true. By the IH, there is a unique pair $(e_{\text{opt}}, e''_j) \in GenContracts(e'_j)$ satisfying the above property. Since σ (match e'_0 with $C_j x_j \to$ false $| \overline{C_i x_i \to e_i''}^{i \in \{1,...,n\} \setminus \{j\}}) \longrightarrow^*$ false, pair $(e_{\textbf{opt}}, \text{match } e'_0 \text{ with } C_j x_j \to e_j'$ $e''_j \mid \overline{C_i x_i} \rightarrow \text{false}^{i \in \{1,...,n\} \setminus \{j\}}$ is the unique one satisfying the property above.

Case otherwise: Obvious because $Trans(e) = \{(None, e)\}.$

 \Box

In what follows, we compute constructor choice functions to convert data structures. Before it, we show that extensions of constructor choice functions are conservative with respect to evaluation results.

Lemma 60. Let δ' be an extension of constructor choice function δ . If $\delta \vdash e \longrightarrow^* v$, then $\delta' \vdash e \longrightarrow^* v$.

Proof. From the two facts: (1) δ returns a constructor whenever taking cast applications in the evaluation $e \rightarrow^* v$ and (2) δ' returns the same constructor as δ for cast applications contained by the domain of δ . П **Definition 11** (Notation). We write $\delta_1 \oplus \delta_2$ to denote the disjoint union of constructor choice functions δ_1 and δ_2 .

Theorem 2 (From Refinement Types to Datatypes)**.** *Suppose that*

 $Trans(F) = type \tau \langle y^F : T^F \rangle = D \parallel [] : \{z:\text{unit} | e_1^F \} | \overline{D_i \parallel (::) : z_1^F : \text{int} \times \{z_2^F : T_i | e_i\}}^i.$

Let δ be a trivial constructor choice function such that $\delta(\langle \tau(e') \Leftarrow \text{int list} \rangle^{\ell} v')$ is undefined for any *e*' and sublist v' *of v.*

If $\varnothing \vdash \langle \tau \langle e \rangle \Leftarrow \{x : \text{int} \text{ list} \mid F e x \} \rangle^{\ell} v : \tau \langle e \rangle$ under δ , then there exists an extension δ' of δ such that $\langle \tau \langle e \rangle \Leftarrow$ ${l:}$ $\{l:$ $\{l: k \in I\}$ ^{ℓ} $v \longrightarrow^* v'$ *under* δ' *where* v' *is obtained by replacing some occurrences of data constructors* $\lceil \int$ *and* (::) *of which v consists with D and one of* $\overline{D_i}^i$, *respectively.*

Proof. By Lemma 54, we have $\emptyset \vdash \langle \tau \langle e \rangle \Leftarrow \{x:\text{int list}\,|\, F\,e\,x\}\rangle^{\ell}: x_0:T_{01} \to T_{02} \text{ and } \emptyset \vdash v:T_{01} \text{ and } T_{02}\{v/x_0\} \equiv \tau \langle e \rangle$ for some x_0 , T_{01} and T_{02} . By Lemmas 41 and 35 and (T_CONV), $\varnothing \vdash v : \{x:\text{int list} \mid F \, e \, x\}$ and so $F \, e \, v \longrightarrow^*$ true by Theorem 1 (noting that *e* is a closed term since since $\emptyset \vdash \tau(e)$ by Lemma 46). Thus, $e \rightarrow^* v'$ for some *v'*.

We proceed by case analysis on *v* by Lemmas 44 (4) and 43.

Case $v = []$: Let $\delta' = \delta \cup \{(\tau(e) \in \text{int list})^e[] \mapsto D\}$. Then, by (R_FORGET) and (R_DATATYPE) with (E_RED),

$$
\delta' \vdash \langle \tau \langle e \rangle \Leftarrow \{x:\text{int list}\,|\,F\,e\,x\} \rangle^{\ell} \left[\right] \longrightarrow^* D\langle e \rangle (\langle \{z:\text{unit}\,|\,e_1^F\,\{e/x\} \}\Leftarrow \text{unit}\rangle^{\ell} \left(\right)).
$$

Since $F v' v \longrightarrow^*$ true, we find that $e_1^F \{F/f^F, v'/y^F, v/x^F\} \longrightarrow^*$ true. Since *F* is translatable, we have $y:T \vdash e_1^F :$ Bool and so $e_1^F\{F/f^F, v'/y^F, v/x^F\} = e_1^F\{v'/y^F\}.$ Thus, $e_1^F\{v'/y^F\} \rightarrow^*$ true. Since $e \Rightarrow^* v'$ by Lemma 2, we have e_1^F $\{e/y^F\} \Rightarrow^*$ e_1^F $\{v'/y^F\}$ by Lemma 5 (2). By Lemma 30 (2), e_1^F $\{e/y^F\} \longrightarrow^*$ true. Since $\delta' \vdash e_1^F \{e/y^F\} \longrightarrow^*$ true by Lemma 60, we have

$$
\langle \tau \langle e \rangle \Leftarrow \{x:\text{int list} \,|\, F \, e \, x \} \rangle^{\ell} \, [\,] \longrightarrow^* D \langle e \rangle ().
$$

by $(R \text{-} PRECHECK)$, $(R \text{-} BASE)$, $(R \text{-} CHECK)$, and $(R \text{-} OK)$ with $(E \text{-} RED)$.

Case $v = (v_1 : v_2)$: Since $F v' v \longrightarrow^*$ true, we find that

$$
e_2^F \{F/f^F, v'/y^F, v/x^F, v_1/z_1^F, v_2/z_2^F\} \longrightarrow^*
$$
 true.

Since *F* is translatable, $f^F: T^F \to \text{int}$ list \to Bool, $y^F: T^F, z_1^F: \text{int}, z_2^F: \text{int}$ list $\vdash e_2^F :$ Bool and so

$$
e_2^F\{F/f^F, v'/y^F, v/x^F, v_1/z_1^F, v_2/z_2^F\} = e_2^F\{F/f^F, v'/y^F, v_1/z_1^F, v_2/z_2^F\}.
$$

By Lemma 59, there is a unique pair $(e_{\text{opt}_0}, e_0) \in GenContracts(e_2^F)$ satisfying the property stated in Lemma 59. We perform case analysis on e_{opt_0} .

Case $e_{\text{opt}_0} = Some'_0$: There exists some D_j such that

$$
CtrArgOf(D_j) = z_1^F : \text{int} \times T_j
$$

where $T_j = \{z_2^F : \tau(e_0') \mid \text{let } z_2^F = \text{ (int list } \Leftarrow \tau(e_0')\}^{\ell} z_2^F \text{ in } e_0 \{F/f^F\} \}.$ For any δ' , if $\delta'(\langle \tau(e) \Leftarrow \text{int list}\}^{\ell} (v_1 : v_2)) =$ D_j , then by (R_FORGET), (R_DATATYPE), (R_PROD), and (R_BASE) with (E_RED),

$$
\delta' \vdash \langle \tau \langle e \rangle \Leftarrow \{x:\text{int list}\,|\,F\,e\,x\} \rangle^{\ell}(v_1\,::\,v_2) \longrightarrow^* D_j\langle e \rangle(v_1,\langle \langle T_j, \langle \tau \langle e'_0 \rangle \Leftarrow \text{int list}\rangle^{\ell} v_2) \rangle^{\ell} \{e/y^F, v_1/z_1^F\}).
$$

Let $e''_0 = e'_0 \{e/y^F, v_1/z_1^F\}$. By Lemmas 56 and 33, we have $\emptyset \vdash e''_0 : T^F$ since $\emptyset \vdash v_1 : \text{int by Lemma 43,}$ and $\varnothing \vdash e : T^F$ from inversion of $\varnothing \vdash \tau(e)$. Thus, *x*∶int list $\vdash F e''_0 x$: Bool by Lemma 32, (T_VAR) and (T_APP) , and so $\varnothing \vdash \{x:\text{int} \text{ list} | Fe''_0 x\}$ by $(WT_AREFINE)$.

Since $e \longrightarrow^* v'$, we have $Fe''_0 v_2 \Rightarrow^* F e'_0 \{v'/y^F, v_1/z_1^F\} v_2$ by Lemmas 2 and 5 (2). Since $F e'_0 \{v'/y^F, v_1/z_1^F\} v_2 \longrightarrow^*$ true by Lemma 59, we have $F e''_0 v_2 \longrightarrow^*$ true by Lemma 30 (2). Thus, by (T_EXACT), \varnothing ⊢ *v*₂ : {*x*∶int list|*F* $e''_0 x$ } since \varnothing ⊢ *v*₂ : int list by Lemma 43. Since $\tau(e''_0)$ || {*x*∶int list∣*F e*′′ ⁰ *^x*} by (^C Datatype) and (^C RefineL) (noting the compatibility relation is a equivalence one), and $\varnothing \vdash \tau \langle e_0'' \rangle$ by (WT_DATATYPE), we have

$$
\varnothing \vdash \langle \tau \langle e_0'' \rangle \Leftarrow \{x:\text{int list} \,|\, F \, e_0'' \, x \rangle\}^{\ell} \, v_2 : \tau \langle e_0'' \rangle
$$

by (T_CAST) and (T_APP). By the IH, there exist some δ'' and v'_2 such that

$$
\delta'' \vdash \langle \tau \langle e_0'' \rangle \Leftarrow \{x:\text{int list} \,|\, F \, e_0'' \, x \} \rangle^{\ell} \, v_2 \longrightarrow^* \, v_2'
$$

and δ'' is an extension of δ , and v'_2 is obtained by replacing data constructor [] and (∷) of which v_2 consists with *D* and one of $\overline{D_i}^i$, respectively. Let $\delta''' = \{(\tau \langle e \rangle \Leftarrow \text{int list})^{\ell} (v_1 : v_2) \mapsto D_j \} \uplus \delta''$. Then,

$$
\delta''' \vdash \langle \tau \langle e \rangle \Leftarrow \{x:\text{int list}\,|\, F\,e\,x\} \rangle^{\ell} \left(v_1 \,::\, v_2\right) \longrightarrow^* D_j\langle e \rangle \left(v_1, \langle \langle T_j \{e/y^F, v_1/z_1^F\}, v_2' \rangle \rangle^{\ell}\right).
$$

Since $\emptyset \vdash v_2' : \tau \langle e_0'' \rangle$ by Theorem 1, we have $\emptyset \vdash \langle \text{int list} \Leftarrow \tau \langle e_0'' \rangle \rangle^{\ell} v_2' : \text{int list by (T_CAST) and}$ (T_APP) . By Lemma 58, we have $\left\langle \int_{F}^{F} (e_0''') \right\rangle_{F}^{\ell} \longrightarrow_{F}^{*} v_2$ since δ is trivial. Since $e_0 \left\{ F / f^F, v'/y^F, v_1/z_1^F, v_2/z_2^F \right\}$ true by Lemma 59, we have $e_0 \{ F/f^F, e/y^F, v_1/z_1^F, v_2/z_2^F \} \longrightarrow^*$ true by Lemmas 2, 5 (2) and 30 (2). Thus,

$$
(\text{let } z_2^F = \{ \text{int list} \Leftarrow \tau \langle e'_0 \rangle \}^{\ell} z_2^F \text{ in } e_0 \{ F / f^F \}) \{ e / y^F, v_1 / z_1^F, v_2' / z_2^F \} \longrightarrow^* \text{ true.}
$$

Therefore, by $(R_{\text{-}CHECK})$ and $(R_{\text{-}OK})$ with $(E_{\text{-}RED})$ and Lemma 60,

$$
\delta''' \vdash \langle \tau \langle e \rangle \Leftarrow \{x:\text{int list}\,|\, F\,e\,x\} \rangle^{\ell} \, (v_1 \,::\, v_2) \longrightarrow^* D_j \langle e \rangle (v_1, v_2').
$$

Case e_{opt_0} = *None*: There exists some D_j such that

$$
CtrArgOf(D_j) = z_1^F : \text{int} \times T_j
$$

where $T_j = \{z_2^F : \text{int list } |e_0\{F/f^F\}\}\$. Let $\delta' = \delta \cup \{(\tau \langle e \rangle \Leftarrow \text{int list })^{\ell} (v_1 : v_2) \mapsto D_j\}$. By $(R \text{-FORGET})$, (R Datatype), (R Prod), (R Base) with (E Red),

$$
\delta' \vdash \langle \tau \langle e \rangle \Leftarrow \{x:\text{int list}\,|\,F\,e\,x\} \rangle^{\ell}(v_1\,::\,v_2) \longrightarrow^* D_j\langle e \rangle(v_1,\langle\langle T_j,\langle \text{int list} \Leftarrow \text{int list}\rangle^{\ell}v_2 \rangle \rangle^{\ell} \{e/y^F, v_1/z_1^F\}).
$$

Since $\langle \text{int list} \rightleftharpoons \text{int list} \rangle^{\ell} v_2 \longrightarrow^* v_2$ by $(R$ ₋DATATYPEMONO), we have

$$
\delta' \vdash \langle \tau \langle e \rangle \Leftarrow \{x:\text{int list} \,|\, F \,e \,x\} \rangle^{\ell} \, (v_1 \,::\, v_2) \longrightarrow^* D_j \langle e \rangle (v_1, \langle T_j, e_0 \, \{F / f^F, v_2 / z_2^F\}, v_2 \rangle^{\ell} \, \{e / y^F, v_1 / z_1^F\})
$$

by $(E \text{-} \text{RED}) / (R \text{-} \text{CHECK})$. Since $e_0 \{F/f^F, v'/y^F, v_1/z_1^F, v_2/z_2^F\} \longrightarrow^*$ true by Lemma 59, we have $e_0 \{F/f^F, e/y^F, v_1/z_1^F, v_2/z_2^F\} \longrightarrow^*$ true by Lemmas 2, 5 (2) and 30 (2). Thus, by $(E_{\text{RED}})/(R_{\text{O}}K)$ and Lemma 60,,

$$
\delta' \vdash \langle \tau \langle e \rangle \Leftarrow \{x:\text{int list}\,|\, F\,e\,x\} \rangle^{\ell} \, (v_1 \,::\, v_2) \longrightarrow^* D_j \langle e \rangle (v_1, v_2).
$$

 \Box

Lemma 61. Let F be a translatable function, e be a subterm of e_2^F , and σ be a simultaneous substitution including ${F/f^F, e'/y^F, v_1/z_1^F, v_2/z_2^F}$. If $(e_{\text{opt}_0}, e_0) \in GenContracts(e)$ and $\sigma(e_0) \longrightarrow^*$ true and $e_{\text{opt}_0} = Somee''$ implies $F \sigma(e'') v_2 \longrightarrow^*$ true *for any* e'' *, then* $\sigma(e) \longrightarrow^*$ true*.*

Proof. By structural induction on *e*.

Case *e* = true: Obvious.

Case false: Contradictory; *GenContracts* (false) ⁼ [∅].

- Case $e = \text{if } f^F e'' z_2^F$ then e'_2 else e'_3 where $\text{FV}(e'') \subseteq \{y^F, z_1^F\}$: There are two cases which we have to consider by case analysis on e_0 .
	- Case $e_0 = e'_2$: Since $e_{\textbf{opt}_0}$ = Some e'', we have $F \sigma(e'') v_2 \longrightarrow^*$ true. Thus, $\sigma(\text{if } f^F e'' z_2^F \text{ then } e_0 \text{ else } e'_3) \longrightarrow^*$ $\sigma(e_0) \longrightarrow^*$ true.
- Case $e_0 = \text{if } f^F e'' z_2^F$ then false else e''_3 where $(e_{\textbf{opt}_0}, e''_3) \in GenContracts(e'_3):$ Since $\sigma(e_0) \longrightarrow^*$ true, we find that $F \sigma(e'') v_2 \longrightarrow^*$ false and $\sigma(e''_3) \longrightarrow^*$ true. Since $(e_{\textbf{opt}_0}, e''_3) \in \text{GenContracts}(e'_3)$, we have $\sigma(e'_3) \longrightarrow^*$ true by the IH. Thus, $\sigma(\text{if } f^F e'' z_2^F \text{ then } e'_2 \text{ else } e'_3) \longrightarrow^* \text{ true.}$
- Case $e =$ if e'_1 then e'_2 else e'_3 where $e'_1 \neq f^F e'' z_2^F$ for any e'' such that $\textsf{FV}(e'') \subseteq \{y^F, z_1^F\}$. There are two cases which we have to consider by case analysis on e_0 .
	- Case $e_0 =$ if e'_1 then e''_2 else false where $(e_{\textbf{opt}_0}, e''_2) \in GenContracts(e'_2)$: Since $\sigma(e_0) \longrightarrow^*$ true, we find that $\sigma(e'_1) \longrightarrow^*$ true and $\sigma(e''_2) \longrightarrow^*$ true. Since $(e_{\textbf{opt}_0}, e''_2) \in \text{GenContracts}(e'_2)$, we have $\sigma(e'_2) \longrightarrow^*$ true by the IH. Thus, σ (if e'_1 then e'_2 else e'_3) \longrightarrow^* true.
	- Case $e_0 =$ if e'_1 then false else e''_3 where $(e_{\text{opt}_0}, e''_3) \in GenContracts(e'_3)$: Since $\sigma(e_0) \longrightarrow^*$ true, we find that $\sigma(e'_1) \longrightarrow^*$ false and $\sigma(e''_3) \longrightarrow^*$ true. Since $(e_{\textbf{opt}_0}, e''_3) \in GenContracts(e'_3),$ we have $\sigma(e'_3) \longrightarrow^*$ true by the IH. Thus, σ (if e'_1 then e'_2 else e'_3) \longrightarrow^* true.
- Case $e = \text{match } e'_0$ with $\overline{C_i x_i \rightarrow e'_i}^{i \in \{1,...,n\}}$: For some j, we have $e_0 = \text{match } e'_0$ with $C_j x_j \rightarrow e''_j \mid \overline{C_i x_i \rightarrow \text{false'}}^{i \in \{1,...,n\}\setminus\{j\}}$ where $(e_{\textbf{opt}_0}, e''_j) \in \text{GenContracts}(e'_j)$. Since $\sigma(e_0) \longrightarrow^*$ true, we have $\sigma(e'_0) \longrightarrow^* C_j \langle e'' \rangle v'$ and $\sigma(e''_j) \{v'/x_j\} \longrightarrow^* C_j \langle e'' \rangle v'$ true for some e'' and v' . By the IH, $\sigma(e'_j)$ $\{v'/x_j\} \longrightarrow^*$ true. Thus, $\sigma(\text{match }e'_0 \text{ with } \overline{C_i x_i \rightarrow e'_i}^{i \in \{1,...,n\}}) \longrightarrow^*$ true.

 \Box

Case otherwise: Obvious since $GenContracts(e) = \{(None, e)\}.$

Definition 12 (Termination). A closed term *e* terminates at a value, written as $e \downarrow$, if $e \rightarrow^* v$ for some *v*. We *say that argument terms to datatype* τ *in* υ *terminate at values, written* $\upsilon \downarrow_{\tau}$ *when, for any* $E, C \in C$ *trsOf*(τ)*,* e_1 *and* v_2 *, if* $v = E[C\langle e_1 \rangle v_2]$ *, then* $e_1 \downarrow$ *.*

Lemma 62. Let F be a translatable function and δ be a trivial constructor choice function. If $v \downarrow_{\tau}$ and $\varnothing \vdash$ $\langle \text{int list} \Leftarrow \tau \langle e \rangle \rangle^{\ell} v : \text{int list}, \text{ then } F \, e \, (\langle \text{int list} \Leftarrow \tau \langle e \rangle \rangle^{\ell} v) \longrightarrow^* \text{ true}.$

Proof. By structural induction on *v*. Suppose that

$$
Trans(F) = type \tau \langle y^F : T^F \rangle = D \parallel [] : \{z:\text{unit} \mid e_1^F\} \mid \overline{D_i \parallel ::)} : z_1^F : \text{int} \times \{z_2^F : T_i \mid e_i\}^i.
$$

By Lemmas 54 and 41 and (T_CONV), we have $\emptyset \vdash v : \tau(e)$. By Lemmas 44 (4) and 43, there are two cases which we have to consider by case analysis on *v*.

Case $v = D\langle e' \rangle v'$: Since $v \downarrow_{\tau}$, $e' \longrightarrow^* v''$ for some v'' . By Lemmas 43 and 37, we have $\emptyset \vdash v' : \{z:\text{unit}\,|\,e_1^F\{e'/y^F\}\}\$ and $e' \equiv e$. By Theorem 1, we find that $e_1^F\{e'/y^F, v'/z\} = e_1^F\{e'/y^F\} \longrightarrow^*$ true. Since $\{\text{int list} \Leftarrow$ $\tau \langle e \rangle \rangle^{\ell} D \langle e' \rangle v' \longrightarrow^*$ [] by Lemma 58, we have

$$
Fe(\text{int list} \Leftarrow \tau \langle e \rangle)^{\ell} v) \equiv Fe'(\text{int list} \Leftarrow \tau \langle e \rangle)^{\ell} v) \text{ (by Lemmas 1 and 5 (3))}
$$

\n
$$
\rightarrow^* F v''(\text{int list} \Leftarrow \tau \langle e \rangle)^{\ell} v)
$$

\n
$$
\rightarrow^* F v''[\text{]} \rightarrow^* e_1^F \{v''/y^F\}
$$

\n
$$
= e_1^F \{e'/y^F\}.
$$

\n(by Lemmas 2, 5 (3) and 1)

Thus, by Lemma 31 (2),

$$
F e \left(\left\langle \text{int list} \Leftarrow \tau \langle e \rangle \right\rangle^{\ell} v \right) \longrightarrow^* \text{ true.}
$$

Case $v = D_j(e')v'$. By definition of *Trans*, there is a unique pair $(e_{\textbf{opt}}, e_0) \in GenContracts(e_2^F)$ such that *CtrArgOf*(D_j) is constructed from the pair. By case analysis on e_{opt_0} .

Case $e_{\textbf{opt}_0} = Some'_{0}$: We have

$$
CtrArgOf(D_j) = z_1^F: \text{int} \times \{z_2^F : \tau \langle e'_0 \rangle | \text{let } z_2^F = \langle \text{int list } \Leftarrow \tau \langle e'_0 \rangle \rangle^{\ell} z_2^F \text{ in } e_0 \{F/f^F\} \}.
$$

By Lemmas 43, 44 (3), 42 and 37, we have $v' = (v_1, v_2)$ and $\emptyset \vdash v_1 : \text{int and } \emptyset \vdash v_2 : \{z_2^F : \tau(e'_0) \mid \text{let } z_2^F =$ (int list $\Leftarrow \tau \langle e'_0 \rangle^{\ell} z_2^F$ in $e_0 \{F/f^F\} \{e'/y^F, v_1/z_1^F\}$ and $e \equiv e'$ for some v_1 and v_2 . By Lemma 46, we have $\emptyset \vdash e : T^F$. Since $y^F:T^F, z_1^F$ int $\vdash e'_0 : T^F$ by Lemma 56, we have $\emptyset \vdash e'_0 \{e/y^F, v_1/z_1^F\} : T^F$. Since $\emptyset \vdash \tau \langle e'_0 \rangle \{ e/y^F, v_1/z_1^F \}$ by Lemmas 57 and 33 (2) and (T_FORGET), we have

$$
\varnothing \vdash v_2 : \tau \langle e_0' \rangle \{ e/y^F, v_1/z_1^F \}
$$

by Lemma 5 (3), (T_FORGET), and (T_CONV). Thus, we have $\varnothing \vdash$ (int list $\Leftarrow \tau \langle e'_0 \{e/y^F, v_1/z_1^F\} \rangle \rangle^{\ell} v_2$: int list by (T_FORGET), (T_CAST) and (T_APP). By Lemma 58, there exists some v_2' such that

$$
\langle \text{int list} \Leftarrow \tau \langle e_0' \{ e / y^F, v_1 / z_1^F \} \rangle \rangle^{\ell} v_2 \longrightarrow^* v_2'.
$$

By the IH, we have

$$
F e'_0 \{e/y^F, v_1/z_1^F\} \left(\langle \text{int list} \Leftarrow \tau \langle e'_0 \{e/y^F, v_1/z_1^F\} \rangle \rangle^{\ell} v_2 \right) \longrightarrow^* \text{ true.}
$$

Thus, there exists some v'_0 such that e'_0 $\{e/y^F, v_1/z_1^F\} \longrightarrow^* v'_0$ and $Fv'_0v'_2 \longrightarrow^*$ true. Since $F e'_0$ $\{e/y^F, v_1/z_1^F\} v'_2 \implies^*$ $F v'_0 v'_2$ by Lemmas 2 and 5 (2), we have

$$
F e'_0 \{e/y^F, v_1/z_1^F\} v'_2 \longrightarrow^* \text{true}
$$

by Lemma 30 (2). By applying Lemma 51 to v_2 , we have $e_0 \{F/f^F, e'/y^F, v_1/z_1^F, v'_2/z_2^F\} \longrightarrow^*$ true. Thus, by Lemmas 5 (3) and 31, we have

$$
e_0\{F/f^F, e/y^F, v_1/z_1^F, v_2'/z_2^F\} \longrightarrow^*
$$
 true.

By Lemma 61,

$$
e_2^F \{F/f^F, e/y^F, v_1/z_1^F, v_2'/z_2^F\} \longrightarrow^*
$$
 true.

Since $e' \longrightarrow^* v''$ for some v'' from $v \downarrow_{\tau}$, we have $v'' \equiv e$. By Lemmas 5 (3) and 31,

$$
e_2^F\{F/f^F, v''/y^F, v_1/z_1^F, v_2'/z_2^F\} \longrightarrow^*
$$
 true.

Thus,

$$
F e' (\langle \text{int list} \Leftarrow \tau \langle e \rangle)^{\ell} D_j \langle e' \rangle v')
$$

\n
$$
\rightarrow^* F v'' (\langle \text{int list} \Leftarrow \tau \langle e \rangle)^{\ell} D_j \langle e' \rangle v')
$$

\n
$$
\rightarrow^* F v'' (v_1 :: (\langle \text{int list} \Leftarrow \tau \langle e'_0 \{e/y^F, v_1/z_1^F\} \rangle)^{\ell} v_2))
$$

\n
$$
\rightarrow^* F v'' (v_1 :: v'_2)
$$

\n
$$
\rightarrow^* e_2^F \{F/f^F, v''/y^F, v_1/z_1^F, v'_2/z_2^F\}
$$

\n
$$
\rightarrow^* true.
$$

Case $e_{\text{opt}_0} = \text{None: We have } \text{Ctrl}_0(f(D_j) = z_1^F: \text{int} \times \{z_2^F: \text{int list} | e_0 \{F/f^F\} \}$. By Lemmas 43, 44 (3), 42 and 37, we have $\emptyset \vdash e' : T^F$ and $v' = (v_1, v_2)$ and $\emptyset \vdash v_1 : \text{int}$ and $\emptyset \vdash v_2 : \{z_2^F : \text{int} \text{ list } |e_0| \{F/f^F\}\}\{e'/y^F, v_1/z_1^F\}$ for some v_1 and v_2 . By Lemma 51, $e_0 \{F/f^F, e'/y^F, v_1/z_1^F, v_2/z_2^F\} \longrightarrow^*$ true. By Lemma 61, we have $e_2^F\{F/f^F, e'/y^F, v_1/z_1^F, v_2/z_2^F\} \longrightarrow^*$ true. Since $e' \longrightarrow^* v''$ for some v'' from $v \downarrow_{\tau}$, we have $e_2^F\{F/f^F, v''/y^F, v_1/z_1^F, v_2/z_2^F\} \longrightarrow^*$ true by Lemmas 2, 5 (2) and 30 (1). Thus, $F e'$ ({int list $\Leftarrow \tau \langle e \rangle$)^{ℓ} $D_j \langle e' \rangle v'$) \longrightarrow^* $F v''(v_1 : v_2)$ \longrightarrow^* true.

Theorem 3 (From Datatypes to Refinement Types)**.** *Suppose that*

 $Trans(F) = type \tau \langle y^F : T^F \rangle = D \parallel [] : \{z:\text{unit} | e_1^F \} | \overline{D_i \parallel (::) : z_1^F : \text{int} \times \{z_2^F : T_i | e_i \}}^i.$

Let δ be a trivial constructor choice function.

If $v \downarrow_{\tau}$ and $\varnothing \vdash v : \tau \langle e \rangle$, then $\langle \{x : \text{int} \mid F e x \} \Leftarrow \tau \langle e \rangle \rangle^{\ell} v \longrightarrow^* v'$ for some v' obtained by replacing data *constructor* D *and* D_i *in* v *with* [] *and* ($::$)*, respectively.*

Proof. Since $\emptyset \vdash \tau \langle e \rangle$ Lemma 46 and int list $\Vert \tau \langle e \rangle$, we have $\emptyset \vdash \langle \text{int list} \in \tau \langle e \rangle \rangle^{\ell} v$: int list by (T_CAST) and (T_App). By Lemma 58, $\langle \text{int list} \Leftarrow \tau \langle e \rangle \rangle^{\ell} v \longrightarrow^* v'$ for some *v'* which satisfies the property in the statement above. By Lemma 62, we have $Fe((\text{int list} \Leftarrow \tau \langle e \rangle)^{\ell} v) \rightarrow^*$ true. Thus, letting v'' be a value such that $e \rightarrow^* v''$, we find that $F v'' v' \rightarrow^*$ true. By Lemmas 2, 5 (2) and 30 (2), $F e v' \rightarrow^*$ true. Thus, by (R_PRECHECK) and (R_OK) with $(E_{\text{-RED}})$,

$$
\langle \{x:\text{int list}\,|\, F\,e\,x\} \Leftarrow \tau\langle e\rangle \rangle^{\ell} \,v \longrightarrow^* v'.
$$

 \Box