
Manifest Contracts for Datatypes

(Supplementary Material)

Taro Sekiyama Yuki Nishida Atsushi Igarashi

{t-sekiym,nishida,igarashi}@fos.kuis.kyoto-u.ac.jp

January 29, 2016

1 Definition

In this section, we formalize our calculus.

1.1 Syntax

The syntax including both programs and run-time terms is given as follows.

Types

T ∶∶= Bool ∣ x∶T1 → T2 ∣ x∶T1 ×T2 ∣ {x∶T ∣ e} ∣ τ⟨e⟩

Constants, Values, Terms

c ∶∶= true ∣ false
v ∶∶= c ∣ fix f(x∶T1)∶T2 = e ∣ ⟨T1 ⇐ T2⟩ℓ ∣ (v1, v2) ∣ C⟨e⟩v
e ∶∶= c ∣ x ∣ fix f(x∶T1)∶T2 = e ∣ e1 e2 ∣ (e1, e2) ∣ e.1 ∣ e.2 ∣ C⟨e1⟩e2 ∣ match ewithCi xi → ei

i ∣
if e1 then e2 else e3 ∣ ⟨T1 ⇐ T2⟩ℓ ∣ ⇑ℓ ∣ ⟨{x∶T ∣ e1}, e2, v⟩ℓ ∣ ⟨⟨{x∶T ∣ e1}, e2⟩⟩ℓ

Datatype definitions

ς ∶∶= τ ⟨x∶T ⟩ = Ci ∶ Ti
i ∣ τ ⟨x∶T ⟩ = Ci ∥Di ∶ Ti

i

Σ ∶∶= ∅ ∣ Σ, ς

Evaluation contexts

E ∶∶= [] ∣ E e2 ∣ v1E ∣ (E, e2) ∣ (v1,E) ∣ E.1 ∣ E.2 ∣ C⟨e1⟩E ∣
matchE withCi xi → ei

i ∣ ifE then e2 else e3 ∣
⟨{x∶T ∣ e},E, v⟩ℓ ∣ ⟨⟨{x∶T ∣ e},E⟩⟩ℓ

Typing contexts

Γ ∶∶= ∅ ∣ Γ, x∶T

Table 1 shows metafunctions to look up information on datatype definitions. Their definitions are omitted
since they are straightforward. A type specification, returned by TypSpecOf and written x∶T1 ↣ T2 ↣ τ⟨x⟩, of a
constructor C consists of the datatype τ that C belongs to, the parameter x of τ and the type T1 of x, and the
argument type T2 of C. In other words, τ = TypNameOfΣ(C), x∶T1 = ArgTypeOfΣ(τ) and T2 = CtrArgOfΣ(C).
We omit the type definition environment from these metafunctions for brevity if it is clear from the context.

We use the following familiar notations. We write FV (e) to denote the set of free variables in a term e, and
e{e′/x} capture avoiding substitution of e′ for x in e. We apply similar notations to values and types. We say that
a term/value/type is closed if it has no free variables, and identify α-equivalent ones. In addition, we introduce
several syntactic sugars. A function type T1 → T2 means x∶T1 → T2 where the variable x does not occur free in T2.
We often omit type annotations of fix f(x∶T1)∶T2 = e and write λx∶T.e to denote fix f(x∶T)= e if f does not occur

1

TypDefOfΣ(τ) The definition of τ .
ArgTypeOfΣ(τ) The parameter of τ and its type.
CtrsOfΣ(τ) The set of constructors that belong to τ .
TypSpecOfΣ(C) The type specification of C.
TypNameOfΣ(C) The data type that C belongs to.
CtrArgOfΣ(C) The argument type of C.

Table 1: Lookup functions.

in the term e. A let-expression letx = e1 in e2 denotes (λx∶T.e2) e1 where T is an appropriate type. A datatype τ is
said to be monomorphic when the definition of τ does not refer to a type argument variable, and then we write τ
to denote an application of τ to a term. Given a binary relation R, the relation R∗ denotes the reflexive transitive
closure of R.

We define an auxiliary function unref, which maps a type to its underlying (non-refinement) type.

unref({x∶T ∣ e}) = unref(T)
unref(T) = T (if T is not a refinement type)

1.2 Semantics

The semantics of our calculus consists of two relations over closed terms: reduction (↝) and evaluation (Ð→). The
rules, shown in Figure 1, for these relations rest on a constructor choice function. A constructor choice function δ
is a partial function that maps a term of the form ⟨τ1⟨e1⟩ ⇐ τ2⟨e2⟩⟩ℓC⟨e⟩v to a constructor C1. We fix Γ and δ
through this material and usually omit from relations and judgments.

1.3 Type System

A type system of our calculus consists of three judgments: context well-formedness ⊢ Γ, type well-formedness
Γ ⊢ T , and typing Γ ⊢ e ∶ T . The derivation rules for these judgments are shown in Figure 2. The typing rule
(T Conv) mentions type equivalence relation denoted by ≡, which is defined as follows.

Definition 1 (Type Equivalence).

1. The common subexpression reduction relation ⇛ over types is defined as follows: T1 ⇛ T2 iff there exist some
T , x, e1 and e2 such that T1 = T {e1/x} and T2 = T {e2/x} and e1 Ð→ e2.

2. The type equivalence ≡ is the symmetric transitive closure of ⇛.

Next, we define well-formedness of type definition environments and constructor choice functions.

Definition 2 (Well-Formed Type Definition Environments).

1. Let ς = τ ⟨x∶T ⟩ = Ci ∶ Ti
i ∈{1,...,n}

. A type definition ς is well formed under a type definition environment Σ
if it satisfies the followings: (a) 0 < n. (b) Σ;∅ ⊢ T holds. (c) For any i ∈ {1, ..., n}, Σ, ς;x∶T ⊢ Ti holds.

2. Let ς = τ ⟨x∶T ⟩ = Ci ∥Di ∶ Ti

i ∈{1,...,n}
. A type definition ς is well formed under a type definition environment

Σ if it satisfies the followings: (a) 0 < n. (b) Σ;∅ ⊢ T holds. (c) For any i ∈ {1, ..., n}, Σ, ς;x∶T ⊢ Ti holds. (d)

There exists some datatype τ ′ in Σ such that constructors Di
i ∈{1,...,n}

belong to it. (e) For any i ∈ {1, ..., n},
Ti is compatible with the argument type of Di under Σ, ς, that is, Σ, ς ⊢ Ti ∥ CtrArgOfΣ(Di) holds.

3. A type definition environment Σ is well formed if for any Σ1, ς and Σ2, Σ = Σ1, ς,Σ2 implies that ς is well
formed under Σ1. We write ⊢ Σ to denote that Σ is well formed.

2

e1 ↝ e2 Reduction Rules

(fix f(x∶T1)∶T2 = e) v ↝ e{v/x,fix f(x∶T1)∶T2 = e/f} (R Beta)

(v1, v2).1 ↝ v1 (R Proj1) if true then e1 else e2 ↝ e1 (R IfTrue)

(v1, v2).2 ↝ v2 (R Proj2) if false then e1 else e2 ↝ e2 (R IfFalse)

matchCj ⟨e⟩vwithCi xi → ei
i ↝ ej {v/xj} (where Cj ∈ Ci

i
) (R Match)

⟨Bool⇐ Bool⟩ℓ v ↝ v (R Base)

⟨x∶T11 → T12 ⇐ x∶T21 → T22⟩ℓ v ↝ (λx∶T11.let y = ⟨T21 ⇐ T11⟩ℓ x in ⟨T12 ⇐ T22 {y/x}⟩ℓ (v y))
(where y is fresh) (R Fun)

⟨x∶T11 ×T12 ⇐ x∶T21 ×T22⟩ℓ (v1, v2) ↝ letx = ⟨T11 ⇐ T21⟩ℓ v1 in (x, ⟨T12 ⇐ T22 {v1/x}⟩ℓ v2) (R Prod)
⟨T1 ⇐ {x∶T2 ∣ e}⟩ℓ v ↝ ⟨T1 ⇐ T2⟩ℓ v (R Forget)

⟨{x∶T1 ∣ e}⇐ T2⟩ℓ v ↝ ⟨⟨{x∶T1 ∣ e}, ⟨T1 ⇐ T2⟩ℓ v⟩⟩ℓ (R PreCheck)
(where T2 is not a refinement type)

⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩ℓC2⟨e⟩v ↝ C1⟨e1⟩(⟨T ′1 {e1/x1}⇐ T ′2 {e2/x2}⟩ℓ v) (R Datatype)
(where τ1 ≠ τ2 or τ1 is not monomorphic, and δ(⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩ℓC2⟨e⟩v) = C1 and

ArgTypeOf (τi) = xi ∶Ti and CtrArgOf (Ci) = T ′i for i ∈ {1,2})
⟨τ ⇐ τ⟩ℓ v ↝ v (R DatatypeMono)

⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩ℓ v ↝ ⇑ℓ (R DatatypeFail)
(where τ1 ≠ τ2 or τ1 is not monomorphic, and δ(⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩ℓ v) is undefined)

⟨⟨{x∶T ∣ e}, v⟩⟩ℓ ↝ ⟨{x∶T ∣ e}, e{v/x}, v⟩ℓ (R Check)

⟨{x∶T ∣ e}, true, v⟩ℓ ↝ v (R OK) ⟨{x∶T ∣ e}, false, v⟩ℓ ↝ ⇑ℓ (R Fail)

e1 Ð→ e2 Evaluation Rules

e1 ↝ e2

E[e1] Ð→ E[e2]
E Red

E ≠ []
E[⇑ℓ] Ð→ ⇑ℓ

E Blame

Figure 1: Semantics.

Definition 3 (Compatible Constructors). The compatibility relation ∥ over constructors is the least equivalence
relation satisfying the following rule.

TypNameOf (Ci) = τ

TypDefOf (τ) = type τ ⟨y∶T ⟩ = Cj ∥Dj ∶ Tj

j

Ci ∥Di

The function CompatCtrsOf, which maps a datatype τ and a constructor C to the set of compatible constructors of
τ , is defined as follows:

CompatCtrsOf (τ,C) = {D ∣ C ∥D and TypNameOf (D) = τ}.

Definition 4 (Term Equivalence).

1. The common subexpression reduction relation ⇛ over terms is defined as follows: e1 ⇛ e2 iff there exist some
e, x, e′1 and e′2 such that e1 = e{e′1/x} and e2 = e{e′2/x} and e′1 Ð→ e′2.

2. The term equivalence ≡ is the symmetric transitive closure of ⇛.

Definition 5 (Well-Formed Constructor Choice Functions). A constructor choice function δ is well formed iff

1. if C1 = δ(⟨τ1⟨e1⟩⇐ τ2⟨e2⟩⟩ℓC2⟨e⟩v), then
C1 ∈ CompatCtrsOf (τ1,C2); and

2. for any e1, e2 and C, if e1 ≡ e2 and δ(e1) = C, then δ(e2) = C.

Finally, we use notation ⇛i to denote i-times composition of ⇛.

3

⊢ Γ Typing Context Well-Formedness Rules

⊢ ∅
WC Empty

⊢ Γ Γ ⊢ T

⊢ Γ, x∶T
WC ExtendVar

Γ ⊢ T Type Well-Formedness Rules

⊢ Γ

Γ ⊢ Bool
WT Base

Γ ⊢ T1 Γ, x∶T1 ⊢ T2

Γ ⊢ x ∶ T1 → T2
WT Fun

Γ ⊢ T1 Γ, x∶T1 ⊢ T2

Γ ⊢ x∶T1 ×T2
WT Prod

Γ ⊢ T Γ, x∶T ⊢ e ∶ Bool
Γ ⊢ {x∶T ∣ e}

WT Refine
ArgTypeOf (τ) = x∶T Γ ⊢ e ∶ T

Γ ⊢ τ⟨e⟩
WT Datatype

Γ ⊢ e ∶ T Typing Rules

⊢ Γ c ∈ {true, false}
Γ ⊢ c ∶ Bool

T Const
⊢ Γ x∶T ∈ Γ
Γ ⊢ x ∶ T

T Var
⊢ Γ ∅ ⊢ T

Γ ⊢ ⇑ℓ ∶ T
T Blame

Γ, f ∶(x∶T1 → T2), x∶T1 ⊢ e ∶ T2 f ∉ FV (T2)
Γ ⊢ fix f(x∶T1)∶T2 = e ∶ x∶T1 → T2

T Abs
Γ ⊢ T1 Γ ⊢ T2 T1 ∥ T2

Γ ⊢ ⟨T1 ⇐ T2⟩ℓ ∶ T2 → T1

T Cast

Γ ⊢ e1 ∶ x∶T1 → T2 Γ ⊢ e2 ∶ T1

Γ ⊢ e1 e2 ∶ T2 {e2/x}
T App

Γ, x∶T1 ⊢ T2 Γ ⊢ e1 ∶ T1 Γ ⊢ e2 ∶ T2 {e1/x}
Γ ⊢ (e1, e2) ∶ x∶T1 ×T2

T Pair

Γ ⊢ e ∶ x∶T1 ×T2

Γ ⊢ e.1 ∶ T1
T Proj1

Γ ⊢ e ∶ x∶T1 ×T2

Γ ⊢ e.2 ∶ T2 {e.1/x}
T Proj2

Γ ⊢ e1 ∶ Bool Γ ⊢ e2 ∶ T Γ ⊢ e3 ∶ T
Γ ⊢ if e1 then e2 else e3 ∶ T

T If

TypSpecOf (C) = x∶T1 ↣ T2 ↣ τ⟨x⟩
Γ ⊢ e1 ∶ T1 Γ ⊢ e2 ∶ T2 {e1/x} Γ ⊢ τ⟨e1⟩

Γ ⊢ C⟨e1⟩e2 ∶ τ⟨e1⟩
T Ctr

Γ ⊢ e0 ∶ τ⟨e⟩ Γ ⊢ T CtrsOf (τ) = Ci
i ∈{1,...,n}

ArgTypeOf (τ) = y∶T ′
for all i , CtrArgOf (Ci) = Ti for all i , Γ, xi ∶Ti {e/y} ⊢ ei ∶ T

Γ ⊢ match e0withCi xi → ei
i ∈{1,...,n} ∶ T

T Match

⊢ Γ ∅ ⊢ {x∶T ∣ e1} ∅ ⊢ v ∶ T
∅ ⊢ e2 ∶ Bool e1 {v/x} Ð→∗ e2

Γ ⊢ ⟨{x∶T ∣ e1}, e2, v⟩ℓ ∶ {x∶T ∣ e1}
T ACheck

⊢ Γ ∅ ⊢ {x∶T ∣ e1} ∅ ⊢ e2 ∶ T
Γ ⊢ ⟨⟨{x∶T ∣ e1}, e2⟩⟩ℓ ∶ {x∶T ∣ e1}

T WCheck

⊢ Γ ∅ ⊢ e ∶ T1 T1 ≡ T2 ∅ ⊢ T2

Γ ⊢ e ∶ T2
T Conv

⊢ Γ ∅ ⊢ v ∶ {x∶T ∣ e}
Γ ⊢ v ∶ T

T Forget

⊢ Γ ∅ ⊢ {x∶T ∣ e} ∅ ⊢ v ∶ T
e{v/x} Ð→∗ true

Γ ⊢ v ∶ {x∶T ∣ e}
T Exact

T1 ∥ T2 Type Compatibility

T1 ∥ T2

{x∶T1 ∣ e1} ∥ T2
(C RefineL)

TypDefOf (τ1) = (type τ1 ⟨x∶T ⟩ = Ci ∥Di ∶ Ti

i
)

for all i , TypNameOf (Di) = τ2
τ1⟨e1⟩ ∥ τ2⟨e2⟩

(C Datatype)

Figure 2: Type system.

2 Properties of Type/Term Equivalence

Lemma 1 (Type and Term Equivalences are Equivalences).

(1) The relation ≡ over types is a equivalence relation:

4

� T ≡ T for any T .

� If T1 ≡ T2 and T2 ≡ T3, then T1 ≡ T3.

� If T1 ≡ T2, then T2 ≡ T1.

(2) The relation ≡ over terms is a equivalence relation:

� e ≡ e for any e.

� If e1 ≡ e2 and e2 ≡ e3, then e1 ≡ e3.

� If e1 ≡ e2, then e2 ≡ e1.

Proof. Since ≡ is the transitive and symmetric closure of ⇛, transitivity and symmetry hold obviously.
We show reflexivity of ≡ over types. Let T be a type, and x be a variable such that x ∉ FV (T). Suppose that

e1 Ð→ e2 for some e1 and e2 (e.g., e1 = λx∶Bool.x and e2 = true). Then, we have T {e1/x} ⇛ T {e2/x}. Since
T {e1/x} = T {e2/x} = T , we finish.

Reflexivity of ≡ over terms can be shown similarly. Let e be a term, and x be a variable such that x ∉ FV (e).
Suppose that e1 Ð→ e2 for some e1 and e2 (e.g., e1 = λx∶Bool.x and e2 = true). Then, we have e{e1/x} ⇛ e{e2/x}.
Since e{e1/x} = e{e2/x} = e, we finish.

Lemma 2. If e1 Ð→ e2, then e1 ⇛ e2.

Proof. Obvious because x{e1/x} ⇛ x{e2/x}.

Lemma 3.

(1) If e1 ⇛ e2, then T {e1/x} ⇛ T {e2/x}.

(2) If e1 ⇛∗ e2, then T {e1/x} ⇛∗ T {e2/x}.

(3) If e1 ≡ e2, then T {e1/x} ≡ T {e2/x}.

Proof.

1. Since e1 ⇛ e2, there exist e, y, e′1 and e′2 such that e1 = e{e′1/y} and e2 = e{e′2/y} and e′1 Ð→ e′2. Suppose
that z is a fresh variable. Here, we have

� T {e1/x} = T {e{e′1/y}/x} = T {e{z/y}{e′1/z}/x} = T {e{z/y}/x}{e′1/z},
� T {e{z/y}/x}{e′1/z} ⇛ T {e{z/y}/x}{e′2/z}, and
� T {e{z/y}/x}{e′2/z} = T {e{z/y}{e′2/z}/x} = T {e{e′2/y}/x} = T {e2/x}.

Thus, T {e1/x} ⇛ T {e2/x}.

2. By mathematical induction on the number of steps of e1 ⇛∗ e2.

Case 0: Obvious because e1 = e2.

Case i + 1: We are given e1 ⇛ e3 ⇛i e2 for some e3. By the IH and the first case, we finish.

3. By induction on e1 ≡ e2.

Case e1 ⇛ e2: By the first case.

Case transitivity and symmetry: By the IH(s).

Lemma 4.

(1) If T1 ⇛ T2, then T1 {e/x} ⇛ T2 {e/x}

(2) If T1 ⇛∗ T2, then T1 {e/x} ⇛∗ T2 {e/x}

(3) If T1 ≡ T2, then T1 {e/x} ≡ T2 {e/x}.

Proof.

5

1. By definition, there exist T , y, e1 and e2 such that T1 = T {e1/y} and T2 = T {e2/y} and e1 Ð→ e2. Suppose
that z is a fresh variable. Since the evaluation relation is defined over closed terms, it is found that e1 and e2
are closed. Here, we have

� T1 {e/x} = T {e1/y}{e/x} = T {z/y}{e1/z}{e/x} = T {z/y}{e/x}{e1/z},
� T {z/y}{e/x}{e1/z} ⇛ T {z/y}{e/x}{e2/z}, and
� T {z/y}{e/x}{e2/z} = T {z/y}{e2/z}{e/x} = T {e2/y}{e/x} = T2 {e/x}.

Thus, T1 {e/x} ⇛ T2 {e/x}.

2. By mathematical induction on the number of steps of T1 ⇛∗ T2.

Case 0: Obvious because T1 = T2.

Case i + 1: We are given T1 ⇛ T3 ⇛i T2 for some T3. By the IH and the first case, we finish.

3. By induction on T1 ≡ T2.

Case T1 ⇛ T2: By the first case.

Case transitivity and symmetry: Obvious by the IH(s).

Lemma 5.

(1) If e1 ⇛ e2, then e{e1/x} ⇛ e{e2/x}.

(2) If e1 ⇛∗ e2, then e{e1/x} ⇛∗ e{e2/x}.

(3) If e1 ≡ e2, then e{e1/x} ≡ e{e2/x}

Proof.

1. Since e1 ⇛ e2, there exists some e′, y, e′1 and e′2 such that e1 = e′ {e′1/y} and e2 = e′ {e′2/y} and e′1 Ð→ e′2.
Suppose that z is a fresh variable. Here, we have

� e{e1/x} = e{e′ {e′1/y}/x} = e{e′ {z/y}{e′1/z}/x} = e{e′ {z/y}/x}{e′1/z},
� e{e′ {z/y}/x}{e′1/z} ⇛ e{e′ {z/y}/x}{e′2/z}, and
� e{e′ {z/y}/x}{e′2/z} = e{e′ {z/y}{e′2/z}/x} = e{e′ {e′2/y}/x} = e{e2/x}.

Thus, e{e1/x} ⇛ e{e2/x}.

2. By mathematical induction on the number of steps of e1 ⇛∗ e2.

Case 0: Obvious because e1 = e2.

Case i + 1: We are given e1 ⇛ e3 ⇛i e2 for some e3. By the IH and the first case, we finish.

3. By induction on e1 ≡ e2.

Case e1 ⇛ e2: By the first case.

Case transitivity and symmetry: By the IH(s).

6

3 Cotermination

Lemma 6 (Determinism). If e Ð→ e1 and e Ð→ e2, then e1 = e2.

Proof. Straightforward.

Lemma 7 (Value Construction Closed Substitution). For any v, x, and e, v {e/x} is a value.

Proof. By structural induction on v.

Case v = c, fix f(x∶T)= e or ⟨T1 ⇐ T2⟩ℓ: Obvious.

Case v = (v1, v2) or C⟨e′⟩v′: By the IHs.

Lemma 8. If e1 is not a value and e2 {e1/x} is, then e2 is a value.

Proof. By structural induction on e2.

Case e2 = y: If x = y, then e2 {e1/x} = e1, which leads to a contradiction from the assumptions that e1 is not
a value and e2 {e1/x} is. Otherwise, if x ≠ y, then there is a contradiction because e2 {e1/x} is a value but
e2 {e1/x} = y is not.

Case e2 = v: By Lemma 7.

Case e2 = e′1 e
′
2, e.i , match e′0withCi yi → e′i

i
, if e′1 then e

′
2 else e

′
3, ⇑ℓ, ⟨{y∶T ∣ e′1}, e′2, v′⟩ℓ, or ⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ: Contra-

dictory.

Case e = (e1, e2) or C⟨e1⟩v2: By the IH(s).

Lemma 9. Let e1 and e2 are closed terms such that e1 ≡ e2. If (v1 v2) {e1/x} Ð→ e, then (v1 v2) {e2/x} Ð→
e′ {e2/x} for some e′ such that e = e′ {e1/x}.

Proof. By Lemma 7, v1 {e1/x}, v1 {e2/x}, v2 {e1/x} and v2 {e2/x} are values. We proceed by case analysis on
v1. Note that v1 takes the form of either lambda abstraction or cast since (v1 v2) {e1/x} takes a step and that if
(v1 v2) {e1/x} is closed, then so is (v1 v2) {e2/x}. In the following, let i ∈ {1,2}.

Case v1 = fix f(y∶T)= e′: Without loss of generality, we can suppose that y and f are fresh. By (E Red)/(R Beta),

((fix f(y∶T)= e′) v2) {ei/x} Ð→ e′ {ei/x}{v2 {ei/x}/y, v1 {ei/x}/f}.

Because e′ {ei/x}{v2 {ei/x}/y, v1 {ei/x}/f} = e′ {v2/y, v1/f}{ei/x}, we finish.

Case v1 = ⟨Bool⇐ Bool⟩ℓ: Obvious because (⟨Bool⇐ Bool⟩ℓ v2) {ei/x} Ð→ v2 {ei/x} by (E Red)/(R Base).

Case v1 = ⟨y∶T11 → T12 ⇐ y∶T21 → T22⟩ℓ: Without loss of generality, we can suppose that y is fresh. By
(E Red)/(R Fun),

(⟨y∶T11 → T12 ⇐ y∶T21 → T22⟩ℓ v2) {ei/x}Ð→
λy∶T11 {ei/x}.(λz∶T21 {ei/x}.⟨T12 {ei/x}⇐ T22 {ei/x}{z/y}⟩ℓ (v2 {ei/x} z)) (⟨T21 {ei/x}⇐ T11 {ei/x}⟩ℓ y)
= (λy∶T11.(λz∶T21.⟨T12 ⇐ T22 {z/y}⟩ℓ (v2 z)) (⟨T21 ⇐ T11⟩ℓ y)) {ei/x}

for some fresh variable z. Thus, we finish.

Case v1 = ⟨y∶T11 ×T12 ⇐ y∶T21 ×T22⟩ℓ: Without loss of generality, we can suppose that y is fresh. It is found that
v2 = (v′1, v′2) for some v′1 and v′2 because (1) (⟨y∶T11 ×T12 ⇐ y∶T21 ×T22⟩ℓ v2) {e1/x} takes a step, (2) the only
rule applicable to the application term is (E Red)/(R Prod), and (3) v2 is a value (thus not a variable). By
(E Red)/(R Prod),

(⟨y∶T11 ×T12 ⇐ y∶T21 ×T22⟩ℓ (v′1, v′2)) {ei/x}Ð→
(λy∶T11 {ei/x}.(y, ⟨T12 {ei/x}⇐ T22 {ei/x}{v′1 {ei/x}/y}⟩ℓ v′2 {ei/x})) (⟨T11 {ei/x}⇐ T21 {ei/x}⟩ℓ v′1 {ei/x})
= ((λy∶T11.(y, ⟨T12 ⇐ T22 {v′1/y}⟩ℓ v′2)) (⟨T11 ⇐ T21⟩ℓ v′1)) {ei/x}.

7

Case v1 = ⟨T1 ⇐ {y∶T2 ∣ e}⟩ℓ: By (E Red)/(R Forget),

(⟨T1 ⇐ {y∶T2 ∣ e}⟩ℓ v2) {ei/x} Ð→ ⟨T1 {ei/x}⇐ T2 {ei/x}⟩ℓ v2 {ei/x} = (⟨T1 ⇐ T2⟩ℓ v2) {ei/x}.

Case v1 = ⟨{y∶T1 ∣ e}⇐ T2⟩ℓ where T2 is not a refinement type: By (E Red)/(R PreCheck),

(⟨{y∶T1 ∣ e}⇐ T2⟩ℓ v2) {ei/x} Ð→ ⟨⟨{y∶T1 ∣ e}{ei/x}, ⟨T1 {ei/x}⇐ T2 {ei/x}⟩ℓ v2 {ei/x}⟩⟩ℓ
= ⟨⟨{y∶T1 ∣ e}, ⟨T1 ⇐ T2⟩ℓ v2⟩⟩ℓ {ei/x}.

Case v1 = ⟨τ1⟨e′′1 ⟩⇐ τ2⟨e′′2 ⟩⟩ℓ: There are three reduction rules by which (v1 v2) {e1/x} takes a step.

Case (E Red)/(R Datatype): We find that v2 = C2⟨e′′⟩v′′ for some C2, e
′′ and v′′ since v2 is a value (thus

not a variable). We are given

(⟨τ1⟨e′′1 ⟩⇐ τ2⟨e′′2 ⟩⟩ℓC2⟨e′′⟩v′′) {e1/x}Ð→
C1⟨e′′1 {e1/x}⟩(⟨T ′1 {e′′1 {e1/x}/y1}⇐ T ′2 {e′′2 {e1/x}/y2}⟩ℓ v′′ {e1/x})
= (C1⟨e′′1 ⟩(⟨T ′1 {e′′1/y1}⇐ T ′2 {e′′2 /y2}⟩ℓ v′′)) {e1/x}

where δ((⟨τ1⟨e′′1 ⟩⇐ τ2⟨e′′2 ⟩⟩ℓC2⟨e′′⟩v′′) {e1/x}) = C1 and, for j ∈ {1,2}, ArgTypeOf (τj) = yj ∶Tj and
CtrArgOf (Cj) = T ′j . Note that only y1 and y2 can occur free in T ′1 and T ′2, respectively, because of well-
formedness of the type definition environment. Since e1 ≡ e2, we have (v1 v2) {e1/x} ≡ (v1 v2) {e2/x}
by Lemma 5 (3). From well-formedness of the constructor choice function, we have δ((v1 v2) {e2/x}) =
δ((v1 v2) {e1/x}) = C1. Thus, by (E Red)/(R Datatype),

(⟨τ1⟨e′′1 ⟩⇐ τ2⟨e′′2 ⟩⟩ℓC2⟨e′′⟩v′′) {e2/x}Ð→
C1⟨e′′1 {e2/x}⟩(⟨T ′1 {e′′1 {e2/x}/y1}⇐ T ′2 {e′′2 {e2/x}/y2}⟩ℓ v′′ {e2/x})
= (C1⟨e′′1 ⟩(⟨T ′1 {e′′1/y1}⇐ T ′2 {e′′2 /y2}⟩ℓ v′′)) {e2/x}.

Case (E Red)/(R DatatypeMono): By (E Red)/(R DatatypeMono), (⟨τ1 ⇐ τ2⟩ℓ v2) {ei/x} Ð→ v2 {ei/x}.
Case (E Red)/(R DatatypeFail): We are given (⟨τ1⟨e′′1 ⟩ ⇐ τ2⟨e′′2 ⟩⟩ℓ v2) {e1/x} Ð→ ⇑ℓ and δ((⟨τ1⟨e′′1 ⟩ ⇐

τ2⟨e′′2 ⟩⟩ℓ v2) {e1/x}) is undefined. Since e1 ≡ e2, we have (v1 v2) {e1/x} ≡ (v1 v2) {e2/x} by Lemma 5 (3).
If δ((v1 v2) {e2/x}) is defined, then so is δ((v1 v2) {e1/x}) from well-formedness of the constructor choice
function but it contradicts. Thus, δ((v1 v2) {e2/x}) is also undefined and so, by (E Red)/(R DatatypeFail),
(⟨τ1⟨e′′1 ⟩⇐ τ2⟨e′′2 ⟩⟩ℓ v2) {e2/x} Ð→ ⇑ℓ.

Lemma 10. Let e1 and e2 be terms such that e1 Ð→ e2.

(1) If (v1 v2) {e1/x} Ð→ e, then (v1 v2) {e2/x} Ð→ e′ {e2/x} for some e′ such that e = e′ {e1/x}.

(2) If (v1 v2) {e2/x} Ð→ e, then (v1 v2) {e1/x} Ð→ e′ {e1/x} for some e′ such that e = e′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed. Thus, we finish by Lemma 9.

Lemma 11. Let e1 and e2 are closed terms, and i ∈ {1,2}. If (v.i) {e1/x} Ð→ e, then (v.i) {e2/x} Ð→ e′ {e2/x}
for some e′ such that e = e′ {e1/x}.

Proof. By Lemma 7, v {e1/x} and v {e2/x} are values. We find that v takes the form of pair since (v.i) {e1/x} takes
a step. Note that if (v.i) {e1/x} is closed, then so is (v.i) {e2/x}.

We are given v = (v1, v2) for some v1 and v2. By (E Red)/(R Proji), for j ∈ {1,2},

((v1, v2).i) {ej /x} Ð→ vi {ej /x}.

Thus, we finish.

Lemma 12. Let e1 and e2 be terms such that e1 Ð→ e2, and i ∈ {1,2}.

(1) If (v.i) {e1/x} Ð→ e, then (v.i) {e2/x} Ð→ e′ {e2/x} for some e′ such that e = e′ {e1/x}.

8

(2) If (v.i) {e2/x} Ð→ e, then (v.i) {e1/x} Ð→ e′ {e1/x} for some e′ such that e = e′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed. Thus, we finish by Lemma 11.

Lemma 13. Let e1 and e2 are closed terms. If (if v then e′1 else e′2) {e1/x} Ð→ e, then (if v then e′1 else e′2) {e2/x} Ð→
e′ {e2/x} for some e′ such that e = e′ {e1/x}.

Proof. By Lemma 7, v {e1/x} and v {e2/x} are values. Note that v takes the form of Boolean value since (if v then e′1 else e′2) {e1/x}
takes a step and that if (if v then e′1 else e′2) {e1/x} is closed, then so is (if v then e′1 else e′2) {e2/x}. By case analysis
on v. In the following, let i ∈ {1,2}.

Case v = true: By (E Red)/(R IfTrue),

(if true then e′1 else e′2) {ei/x} Ð→ e′1 {ei/x}.

Case v = false: By (E Red)/(R IfFalse),

(if false then e′1 else e′2) {ei/x} Ð→ e′2 {ei/x}.

Lemma 14. Let e1 and e2 be terms such that e1 Ð→ e2.

(1) If (if v then e′1 else e′2) {e1/x} Ð→ e, then (if v then e′1 else e′2) {e2/x} Ð→ e′ {e2/x} for some e′ such that e =
e′ {e1/x}.

(2) If (if v then e′1 else e′2) {e2/x} Ð→ e, then (if v then e′1 else e′2) {e1/x} Ð→ e′ {e1/x} for some e′ such that e =
e′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed. Thus, we finish by Lemma 13.

Lemma 15. Let e1 and e2 are closed terms. If (match vwithCi yi → e′i
i
) {e1/x} Ð→ e, then (match vwithCi yi → e′i

i
) {e2/x} Ð→

e′ {e2/x} for some e′ such that e = e′ {e1/x}.

Proof. Without loss of generality, we can suppose that each yi is fresh. By Lemma 7, v {e1/x} and v {e2/x} are

values. We find that v takes the form of constructor application since (match vwithCi yi → e′i
i
) {e1/x} takes a step.

Note that if (match vwithCi yi → e′i
i
) {e1/x} is closed, then so is (match vwithCi yi → e′i

i
) {e2/x}.

We are given v = Cj ⟨e′⟩v′ for some Cj ∈ Ci
i
, e′ and v′. By (E Red)/(R Match), for k ∈ {1,2},

(matchCj ⟨e′⟩v′withCi yi → e′i
i
) {ek /x} Ð→ e′j {ek/x}{v′ {ek /x}/yj}

= e′j {v′/yj}{ek/x}.

Thus, we finish.

Lemma 16. Let e1 and e2 be terms such that e1 Ð→ e2.

(1) If (match vwithCi yi → e′i
i
) {e1/x} Ð→ e, then (match vwithCi yi → e′i

i
) {e2/x} Ð→ e′ {e2/x} for some e′

such that e = e′ {e1/x}.

(2) If (match vwithCi yi → e′i
i
) {e2/x} Ð→ e, then (match vwithCi yi → e′i

i
) {e1/x} Ð→ e′ {e1/x} for some e′

such that e = e′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed. Thus, we finish by Lemma 15.

Lemma 17. Let e1 and e2 are closed terms. If ⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {e1/x} Ð→ e, then
⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {e2/x} Ð→ e′ {e2/x} for some e′ such that e = e′ {e1/x}.

9

Proof. Without loss of generality, we can suppose that y is fresh. By Lemma 7, v {e1/x} and v {e2/x} are
values. Note that if ⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {e1/x} is closed, then so is ⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {e2/x}. Letting i ∈ {1,2}, by
(E Red)/(R Check),

⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {ei/x} Ð→ ⟨{y∶T ∣ e′1}{ei/x}, e′1 {ei/x}{v {ei/x}/y}, v {ei/x}⟩ℓ
= ⟨{y∶T ∣ e′1}, e′1 {v/y}, v⟩ℓ {ei/x}.

Thus, we finish.

Lemma 18. Let e1 and e2 be terms such that e1 Ð→ e2.

(1) If ⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {e1/x} Ð→ e, then ⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {e2/x} Ð→ e′ {e2/x} for some e′ such that e = e′ {e1/x}.

(2) If ⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {e2/x} Ð→ e, then ⟨⟨{y∶T ∣ e′1}, v⟩⟩ℓ {e1/x} Ð→ e′ {e1/x} for some e′ such that e = e′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed. Thus, we finish by Lemma 17.

Lemma 19. Let e1 and e2 are closed terms. If ⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e1/x} Ð→ e, then
⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e2/x} Ð→ e′ {e2/x} for some e′ such that e = e′ {e1/x}.

Proof. By Lemma 7, v1 {e1/x} and v1 {e2/x} are values. Note that v1 takes the form of Boolean value since
⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e1/x} takes a step and that if ⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e1/x} is closed, then so is ⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e2/x}.
By case analysis on v1. In the following, let i ∈ {1,2}.

Case v1 = true: By (E Red)/(R OK), ⟨{y∶T ∣ e′1}, true, v2⟩ℓ {ei/x} Ð→ v2 {ei/x}.

Case v2 = false: By (E Red)/(R Fail), ⟨{y∶T ∣ e′1}, false, v2⟩ℓ {ei/x} Ð→ ⇑ℓ.

Lemma 20. Let e1 and e2 be terms such that e1 Ð→ e2.

(1) If ⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e1/x} Ð→ e, then ⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e2/x} Ð→ e′ {e2/x} for some e′ such that e =
e′ {e1/x}.

(2) If ⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e2/x} Ð→ e, then ⟨{y∶T ∣ e′1}, v1, v2⟩ℓ {e1/x} Ð→ e′ {e1/x} for some e′ such that e =
e′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed. Thus, we finish by Lemma 19.

Lemma 21.

(1) If e1 Ð→n e2 is derived by (E Red), then E[e1] Ð→n E[e2] is derived by applying only (E Red).

(2) If e Ð→∗ ⇑ℓ, then E[e] Ð→∗ ⇑ℓ.

Proof.

1. By induction on the number of evaluation steps of e1 Ð→n e2.

Case 0: Obvious.

Case i + 1: We are given e1 Ð→ e3 Ð→i e2 for some e3. Since e1 Ð→ e3 is derived by (E Red), there exist
some E′, e′1 and e′3 such that e′1 ↝ e′3. Since E[E′[e′1]] Ð→ E[E′[e′3]] by (E Red), we finish by the IH.

2. By induction on the number of evaluation steps of e1 Ð→∗ ⇑ℓ.

Case 0: Since e = ⇑ℓ, we finish by (E Blame) if E ≠ [].
Case n + 1: We are given e Ð→ e′ Ð→n ⇑ℓ for some e′. If the evaluation rule applied to e is (E Red), then

e = E′[e1] and e′ = E′[e2] for some E′, e1 and e2 such that e1 ↝ e2. Since E[E′[e1]] Ð→ E[E′[e2]]
by (E Red), we finish by the IH. Otherwise, if the evaluation rule applied to e is (E Blame), then
e = E′[⇑ℓ] for some E′, and e′ = ⇑ℓ. By (E Blame), E[E′[⇑ℓ]] Ð→ ⇑ℓ.

10

Lemma 22. Suppose that e1 Ð→ e2. If e{e1/x} = E1[⇑ℓ], then there exists some E2 such that e{e2/x} = E2[⇑ℓ].

Proof. By structural induction on e

Case e = x: It is found that e1 = e{e1/x} = E1[⇑ℓ]. Since E1[⇑ℓ] Ð→ ⇑ℓ by (E Blame), e2 = ⇑ℓ.

Case e = v: Contradictory.

Case e = ⇑ℓ′: If ℓ′ = ℓ, then obvious. Otherwise, if ℓ′ ≠ ℓ, then contradictory since e{e1/x} = E1[⇑ℓ].

Case e = e′1 e
′
2: Since e{e1/x} = E1[⇑ℓ], there are two cases we have to consider.

Case E1 = E′1 e
′
2 {e1/x}: Since e′1 {e1/x} = E′1[⇑ℓ], there exists some E′2 such that e′1 {e2/x} = E′2[⇑ℓ], by the

IH. Since E′2 e
′
2 {e2/x} is an evaluation context and e{e2/x} = E′2[⇑ℓ] e′2 {e2/x}, we finish.

Case E1 = e′1 {e1/x}E′1 where e′1 {e1/x} is a value: Since e′2 {e1/x} = E′1[⇑ℓ], there exists some E′2 such that
e′2 {e2/x} = E′2[⇑ℓ], by the IH. Since e′1 {e1/x} is a value and e1 is not a value from e1 Ð→ e2, it is
found by Lemmas 8 and 7 that e′1 {e2/x} is a value. Thus, since e′1 {e2/x}E′2 is an evaluation context
and e{e2/x} = e′1 {e2/x}E′2[⇑ℓ], we finish.

Case e = (e′1, e′2) which is a not value: Since e{e1/x} = E1[⇑ℓ], there are two cases we have to consider.

Case E1 = (E′1, e′2 {e1/x}): Since e′1 {e1/x} = E′1[⇑ℓ], there exists some E′2 such that e′1 {e2/x} = E′2[⇑ℓ], by
the IH. Since (E′2, e′2 {e2/x}) is an evaluation context and e{e2/x} = (E′2[⇑ℓ], e′2 {e2/x}), we finish.

Case E1 = (e′1 {e1/x},E′1) where e′1 {e1/x} is a value: Since e′2 {e1/x} = E′1[⇑ℓ], there exists some E′2 such that
e′2 {e2/x} = E′2[⇑ℓ], by the IH. Since e′1 {e1/x} is a value, it is found by Lemmas 8 and 7 that e′1 {e2/x} is
a value. Thus, since (e′1 {e2/x},E′2) is an evaluation context and e{e2/x} = e′1 {e2/x}E′2[⇑ℓ], we finish.

Case e = e′.i (i ∈ {1,2}): Since e{e1/x} = E1[⇑ℓ], there exists some E′1 such that e′ {e1/x} = E′1[⇑ℓ]. By the IH,
there exists some E′2 such that e′ {e2/x} = E′2[⇑ℓ]. Since e{e2/x} = E′2[⇑ℓ].i , we finish.

Case e = C⟨e′1⟩e′2 which is a not value: Since e{e1/x} = E1[⇑ℓ], there exists some E′1 such that e′2 {e1/x} = E′1[⇑ℓ].
By the IH, there exists some E′2 such that e′2 {e2/x} = E′2[⇑ℓ]. Since C⟨e′1 {e2/x}⟩E′2 is an evaluation context
and e{e2/x} = C⟨e′1 {e2/x}⟩E′2[⇑ℓ], we finish.

Case e = match e′0withCi yi → e′i
i
: Since e{e1/x} = E1[⇑ℓ], there exists some E′1 such that e′0 {e1/x} = E′1[⇑ℓ]. By

the IH, there exists some E′2 such that e′0 {e2/x} = E′2[⇑ℓ]. Since matchE′2withCi yi → e′i
i
is an evaluation

context and e{e2/x} = matchE′2[⇑ℓ]withCi yi → e′i
i
, we finish.

Case e = if e′1 then e
′
2 else e

′
3: Since e{e1/x} = E1[⇑ℓ], there exists some E′1 such that e′1 {e1/x} = E′1[⇑ℓ]. By the

IH, there exists some E′2 such that e′1 {e2/x} = E′2[⇑ℓ]. Since ifE′2 then e′2 {e2/x} else e′3 {e2/x} is an evaluation
context and e{e2/x} = ifE′2[⇑ℓ] then e′2 {e2/x} else e′3 {e2/x}, we finish.

Case e = ⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ: Since e{e1/x} = E1[⇑ℓ], there exists some E′1 such that e′2 {e1/x} = E′1[⇑ℓ]. By the
IH, there exists some E′2 such that e′2 {e2/x} = E′2[⇑ℓ]. Since ⟨⟨{y∶T ∣ e′1}{e2/x},E′2⟩⟩ℓ is an evaluation context
and e{e2/x} = ⟨⟨{y∶T ∣ e′1}{e2/x},E′2[⇑ℓ]⟩⟩ℓ, we finish.

Case e = ⟨{y∶T ∣ e′1}, e′2, v′⟩ℓ: Since e{e1/x} = E1[⇑ℓ], there exists some E′1 such that e′2 {e1/x} = E′1[⇑ℓ]. By the
IH, there exists some E′2 such that e′2 {e2/x} = E′2[⇑ℓ]. Since ⟨{y∶T ∣ e′1}{e2/x},E′2, v′ {e2/x}⟩ℓ is an evaluation
context by Lemma 7 and e{e2/x} = ⟨{y∶T ∣ e′1}{e2/x},E′2[⇑ℓ], v′ {e2/x}⟩ℓ, we finish.

Lemma 23 (Cotermination: Reduction on the Left). Let e1 and e2 be terms such that e1 Ð→ e2. If e{e1/x} Ð→ e′,
then e{e2/x} Ð→∗ e′′ {e2/x} for some e′′ such that e′ = e′′ {e1/x}. Moreover, if e{e1/x} Ð→ e′ is derived by
(E Red), then the evaluation e{e2/x} Ð→∗ e′′ {e2/x} is derived by applying only (E Red).

11

Proof. By structural induction on e. If e{e1/x} Ð→ e′ is derived by (E Blame), then there exist some E1 and ℓ
such that e{e1/x} = E1[⇑ℓ] and e′ = ⇑ℓ. By Lemma 22, there exists some E2 such that e{e2/x} = E2[⇑ℓ]. Thus,
by (E Blame), e{e2/x} Ð→ ⇑ℓ.

In what follows, we suppose that e{e1/x} Ð→ e′ is derived by (E Red). We proceed by case analysis on e.
Note that e1 is not a value from e1 Ð→ e2.

Case e = y: If x = y, then we have e{e1/x} = e1 and e{e2/x} = e2. We finish by letting e′′ = e2 because
e{e1/x} = e1 Ð→ e2 and e2 {e1/x} = e2 {e2/x} = e2. Note that e2 is closed since the evaluation relation is
defined over closed terms.

Otherwise, if x ≠ y, then there is a contradiction because the assumption says that e{e1/x} = y takes a step.

Case e = ⇑ℓ: Contradictory.

Case e = v: Contradictory by Lemma 7 since e{e1/x} takes a step.

Case e = e′1 e
′
2: Since e{e1/x} takes a step, there are three cases we have to consider.

Case e′1 {e1/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′1 such that e′1 {e2/x} Ð→∗ e′′1 {e2/x} and
e′′ = e′′1 {e1/x}. Moreover, the evaluation e′1 {e2/x} Ð→∗ e′′1 {e2/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1), (e′1 e′2) {e1/x} Ð→ (e′′1 e′2) {e1/x} and (e′1 e′2) {e2/x} Ð→∗ (e′′1 e′2) {e2/x}.

Case e′1 {e1/x} is a value and e′2 {e1/x} Ð→ e′′ by (E Red): By Lemmas 8 and 7, e′1 {e2/x} is a value. By
the IH, there exists some e′′2 such that e′2 {e2/x} Ð→∗ e′′2 {e2/x} and e′′ = e′′2 {e1/x}. Moreover, the
evaluation e′2 {e2/x} Ð→∗ e′′2 {e2/x} is derived by applying only (E Red). Thus, by Lemma 21 (1),
(e′1 e′2) {e1/x} Ð→ (e′1 e′′2) {e1/x} and (e′1 e′2) {e2/x} Ð→∗ (e′1 e′′2) {e2/x}.

Case e′1 {e1/x} and e′2 {e1/x} are values: Since e′1 and e′2 are values by Lemma 8, we finish by Lemma 10 (1).

Case e = (e′1, e′2): Similarly to the case for application term. Since e{e1/x} takes a step, there are two cases we
have to consider.

Case e′1 {e1/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′1 such that e′1 {e2/x} Ð→∗ e′′1 {e2/x} and
e′′ = e′′1 {e1/x}. Moreover, the evaluation e′1 {e2/x} Ð→∗ e′′1 {e2/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1), (e′1, e′2) {e1/x} Ð→ (e′′1 , e′2) {e1/x} and (e′1, e′2) {e2/x} Ð→∗ (e′′1 , e′2) {e2/x}.

Case e′1 {e1/x} is a value and e′2 {e1/x} Ð→ e′′ by (E Red): By Lemmas 8 and 7, e′1 {e2/x} is a value. By
the IH, there exists some e′′2 such that e′2 {e2/x} Ð→∗ e′′2 {e2/x} and e′′ = e′′2 {e1/x}. Moreover, the
evaluation e′2 {e2/x} Ð→∗ e′′2 {e2/x} is derived by applying only (E Red). Thus, by Lemma 21 (1),
(e′1, e′2) {e1/x} Ð→ (e′1, e′′2) {e1/x} and (e′1, e′2) {e2/x} Ð→∗ (e′1, e′′2) {e2/x}.

Case e = e′.i for i ∈ {1,2}: Similarly to the case for application term except for use of Lemma 12 (1). Since
e{e1/x} takes a step, there are two cases we have to consider.

Case e′ {e1/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′′ such that e′ {e2/x} Ð→∗ e′′′ {e2/x} and
e′′ = e′′′ {e1/x}. Moreover, the evaluation e′ {e2/x} Ð→∗ e′′′ {e2/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1), (e′.i) {e1/x} Ð→ (e′′′.i) {e1/x} and (e′.i) {e2/x} Ð→∗ (e′′′.i) {e2/x}.

Case e′ {e1/x} is a value: Since e′ is a value by Lemma 8, we finish by Lemma 12 (1).

Case e = C⟨e′1⟩e′2: Similarly to the case for application term. Since e{e1/x} takes a step, it is found that
e′2 {e1/x} Ð→ e′′ by (E Red) for some e′′. By the IH, there exists some e′′2 such that e′2 {e2/x} Ð→∗
e′′2 {e2/x} and e′′ = e′′2 {e1/x}. Moreover, the evaluation e′2 {e2/x} Ð→∗ e′′2 {e2/x} is derived by applying
only (E Red). Thus, by Lemma 21 (1), (C⟨e′1⟩e′2) {e1/x} Ð→ (C⟨e′1⟩e′′2) {e1/x} and (C⟨e′1⟩e′2) {e2/x} Ð→∗
(C⟨e′1⟩e′′2) {e2/x}.

Case e = match e′0withCi yi → e′i
i
: Similarly to the case for application term except for use of Lemma 16 (1). Since

e{e1/x} takes a step, there are two cases we have to consider.

12

Case e′0 {e1/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′0 such that e′0 {e2/x} Ð→∗ e′′0 {e2/x} and
e′′ = e′′0 {e1/x}. Moreover, the evaluation e′0 {e2/x} Ð→∗ e′′0 {e2/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1),

(match e′0withCi yi → e′i
i
) {e1/x} Ð→ (match e′′0 withCi yi → e′i

i
) {e1/x}

(match e′0withCi yi → e′i
i
) {e2/x} Ð→∗ (match e′′0 withCi yi → e′i

i
) {e2/x}.

Case e′0 {e1/x} is a value: Since e′0 is a value by Lemma 8, we finish by Lemma 16 (1).

Case e = if e′1 then e
′
2 else e

′
3: Similarly to the case for application term except for use of Lemma 14 (1). Since

e{e1/x} takes a step, there are two cases we have to consider.

Case e′1 {e1/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′1 such that e′1 {e2/x} Ð→∗ e′′1 {e2/x} and
e′′ = e′′1 {e1/x}. Moreover, the evaluation e′1 {e2/x} Ð→∗ e′′1 {e2/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1),

(if e′1 then e′2 else e′3) {e1/x} Ð→ (if e′′1 then e′2 else e′3) {e1/x}
(if e′1 then e′2 else e′3) {e2/x} Ð→∗ (if e′′1 then e′2 else e′3) {e2/x}.

Case e′1 {e1/x} is a value: Since e′1 is a value by Lemma 8, we finish by Lemma 14 (1).

Case e = ⟨{y∶T ∣ e′1}, e′2, v⟩ℓ: Similarly to the case for application term except for use of Lemma 20 (1). Since
e{e1/x} takes a step, there are two cases we have to consider.

Case e′2 {e1/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′2 such that e′2 {e2/x} Ð→∗ e′′2 {e2/x} and
e′′ = e′′2 {e1/x}. Moreover, the evaluation e′2 {e2/x} Ð→∗ e′′2 {e2/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1),

(⟨{y∶T ∣ e′1}, e′2, v⟩ℓ) {e1/x} Ð→ (⟨{y∶T ∣ e′1}, e′′2 , v⟩ℓ) {e1/x}
(⟨{y∶T ∣ e′1}, e′2, v⟩ℓ) {e2/x} Ð→∗ (⟨{y∶T ∣ e′1}, e′′2 , v⟩ℓ) {e2/x}.

Case e′2 {e1/x} is a value: Since e′2 is a value by Lemma 8, we finish by Lemma 20 (1).

Case e = ⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ: Similarly to the case for application term except for use of Lemma 18 (1). Since e{e1/x}
takes a step, there are two cases we have to consider.

Case e′2 {e1/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′2 such that e′2 {e2/x} Ð→∗ e′′2 {e2/x} and
e′′ = e′′2 {e1/x}. Moreover, the evaluation e′2 {e2/x} Ð→∗ e′′2 {e2/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1),

(⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ) {e1/x} Ð→ (⟨⟨{y∶T ∣ e′1}, e′′2 ⟩⟩ℓ) {e1/x}
(⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ) {e2/x} Ð→∗ (⟨⟨{y∶T ∣ e′1}, e′′2 ⟩⟩ℓ) {e2/x}.

Case e′2 {e1/x} is a value: Since e′2 is a value by Lemma 8, we finish by Lemma 18 (1).

Lemma 24. If e1 Ð→ e2, and e{e2/x} is a value, then there exists some e′ such that

� e{e1/x} Ð→∗ e′ {e1/x},

� e′ {e1/x} is a value, and

� e{e2/x} = e′ {e2/x}.

Proof. By structural induction on e.

Case e = y: If x = y, then e{e2/x} = e2 is a value. Thus, we finish by letting e′ = e2 because e2 {e1/x} =
e2 {e2/x} = e2. Note that e2 is closed since the evaluation relation is defined over closed terms. Otherwise, if
x ≠ y, then contradiction because e{e2/x} is a value but e{e2/x} = y is not.

13

Case e = v: Obvious by letting e′ = v because v {e1/x} is a value by Lemma 7.

Case e = ⇑ℓ, e′1 e′2, e′.i for i ∈ {1,2}, match e′0withCi yi → e′i
i
, if e′1 then e

′
2 else e

′
3, ⟨{y∶T ∣ e′1}, e′2, v⟩ℓ or ⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ:

Contradictory: e{e2/x} is a value.

Case e = (e′1, e′2): Let i ∈ {1,2}. By the assumption, e′i {e2/x} is a value. By the IH, there exists some e′′i such
that e′i {e1/x} Ð→∗ e′′i {e1/x} and e′′i {e1/x} is a value and e′i {e2/x} = e′′i {e2/x}. Thus, (e′1, e′2) {e1/x} Ð→∗
(e′′1 , e′′2) {e1/x} and (e′′1 , e′′2) {e1/x} is a value and e{e2/x} = (e′′1 , e′′2) {e2/x}.

Case e = C⟨e′1⟩e′2: By the assumption, e′2 {e2/x} is a value. By the IH, there exists some e′′2 such that e′2 {e1/x} Ð→∗
e′′2 {e1/x} and e′′2 {e1/x} is a value and e′2 {e2/x} = e′′2 {e2/x}. Thus, (C⟨e′1⟩e′2) {e1/x} Ð→∗ (C⟨e′1⟩e′′2) {e1/x}
and (C⟨e′1⟩e′′2) {e1/x} is a value and (C⟨e′1⟩e′2) {e2/x} = (C⟨e′1⟩e′′2) {e2/x}.

Lemma 25. If e1 Ð→ e2 and e{e2/x} = E2[⇑ℓ], then e{e1/x} Ð→∗ ⇑ℓ.

Proof. By structural induction on e.

Case e = x: Obvious since e1 Ð→ e2 = e{e2/x} = E2[⇑ℓ] Ð→ ⇑ℓ.

Case e = ⇑ℓ: Obvious.

Case e = y where y ≠ x, ⇑ℓ′ where ℓ ≠ ℓ′, and v: Contradictory (by Lemma 8 in the case that e = v) since
e{e2/x} = E2[⇑ℓ].

Case e = e′1 e
′
2: Since e{e2/x} = E2[⇑ℓ], there are two cases we have to consider.

Case E2 = E′2 e
′
2 {e2/x}: Since e′1 {e2/x} = E′2[⇑ℓ], we have e′1 {e1/x} Ð→∗ ⇑ℓ by the IH. Thus, we finish by

Lemma 21 (2).

Case E2 = e′1 {e2/x}E′2 where e′1 {e2/x} is a value: By Lemma 24, there exists some e′′1 such that e′1 {e1/x} Ð→∗
e′′1 {e1/x} and e′′1 {e1/x} is a value and e′1 {e2/x} = e′′1 {e2/x}. Since e′2 {e2/x} = E′2[⇑ℓ], we have
e′2 {e1/x} Ð→∗ ⇑ℓ by the IH. Thus, (e′1 e′2) {e1/x} Ð→∗ (e′′1 e′2) {e1/x} Ð→∗ ⇑ℓ by Lemmas 21 (1) and
(2).

Case e = (e′1, e′2): Since e{e2/x} = E2[⇑ℓ], there are two cases we have to consider.

Case E2 = (E′2, e′2 {e2/x}): Since e′1 {e2/x} = E′2[⇑ℓ], we have e′1 {e1/x} Ð→∗ ⇑ℓ by the IH. Thus, we finish
by Lemma 21 (2).

Case E2 = (e′1 {e2/x},E′2) where e′1 {e2/x} is a value: By Lemma 24, there exists some e′′1 such that e′1 {e1/x} Ð→∗
e′′1 {e1/x} and e′′1 {e1/x} is a value and e′1 {e2/x} = e′′1 {e2/x}. Since e′2 {e2/x} = E′2[⇑ℓ], we have
e′2 {e1/x} Ð→∗ ⇑ℓ by the IH. Thus, (e′1, e′2) {e1/x} Ð→∗ (e′′1 , e′2) {e1/x} Ð→∗ ⇑ℓ by Lemmas 21 (1)
and (2).

Case e = e′.i for i ∈ {1,2}: Since e{e2/x} = E2[⇑ℓ], there exists some E′2 such that E2 = E′2.i . Since e′ {e2/x} =
E′2[⇑ℓ], we have e′ {e1/x} Ð→∗ ⇑ℓ by the IH. By Lemma 21 (2), we finish.

Case e = C⟨e′1⟩e′2: Since e{e2/x} = E2[⇑ℓ], there exists some E′2 such that E2 = C⟨e′1 {e2/x}⟩E′2. Since e′2 {e2/x} =
E′2[⇑ℓ], we have e′2 {e1/x} Ð→∗ ⇑ℓ by the IH. By Lemma 21 (2), we finish.

Case e = match e′0withCi yi → e′i
i
: Since e{e2/x} = E2[⇑ℓ], there exists some E′2 such that E2 = matchE′2withCi yi → e′i

i
.

Since e′0 {e2/x} = E′2[⇑ℓ], we have e′0 {e1/x} Ð→∗ ⇑ℓ by the IH. By Lemma 21 (2), we finish.

Case e = if e′1 then e
′
2 else e

′
3: Since e{e2/x} = E2[⇑ℓ], there exists some E′2 such that E2 = ifE′2 then e

′
2 {e2/x} else e′3 {e2/x}.

Since e′1 {e2/x} = E′2[⇑ℓ], we have e′1 {e1/x} Ð→∗ ⇑ℓ by the IH. By Lemma 21 (2), we finish.

Case e = ⟨{y∶T ∣ e′1}, e′2, v⟩ℓ
′
: Since e{e2/x} = E2[⇑ℓ], there exists some E′2 such that E2 = ⟨{y∶T ∣ e′1}{e2/x},E′2, v {e2/x}⟩ℓ

′
.

Since e′2 {e2/x} = E′2[⇑ℓ], we have e′2 {e1/x} Ð→∗ ⇑ℓ by the IH. By Lemma 21 (2), we finish.

Case e = ⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ
′
: Since e{e2/x} = E2[⇑ℓ], there exists some E′2 such that E2 = ⟨⟨{y∶T ∣ e′1}{e2/x},E′2⟩⟩ℓ

′
.

Since e′2 {e2/x} = E′2[⇑ℓ], we have e′2 {e1/x} Ð→∗ ⇑ℓ by the IH. By Lemma 21 (2), we finish.

14

Lemma 26 (Cotermination: Reduction on the Right). Suppose that e1 Ð→ e2. If e{e2/x} Ð→ e′, then e{e1/x} Ð→∗
e′′ {e1/x} for some e′′ such that e′ = e′′ {e2/x}. Moreover, if e{e2/x} Ð→ e′ is derived by (E Red), then the eval-
uation e{e1/x} Ð→∗ e′′ {e1/x} is derived by applying only (E Red).

Proof. By structural induction on e. If e{e2/x} Ð→ e′ is derived by (E Blame), then there exist some E2 and ℓ
such that e{e2/x} = E2[⇑ℓ] and e′ = ⇑ℓ. By Lemma 25, e{e1/x} Ð→∗ ⇑ℓ. We finish by letting e′′ = ⇑ℓ.

In what follows, we suppose that e{e2/x} is derived by (E Red). We proceed by case analysis on e.

Case e = y: If x = y, then we have e{e1/x} = e1 and e{e2/x} = e2. Thus, we finish by letting e′1 = e′2 because
e′2 {e1/x} = e′2 {e2/x} = e′2. Note that the evaluation relation is defined over closed terms. Otherwise, if
x ≠ y, then contradiction because e{e2/x} = y takes a step.

Case e = ⇑ℓ: Contradictory.

Case e = v: Contradictory by Lemma 7 since e{e2/x} Ð→ e′2.

Case e = e′1 e
′
2: Since e{e2/x} takes a step, there are three cases we have to consider.

Case e′1 {e2/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′1 such that e′1 {e1/x} Ð→∗ e′′1 {e1/x} and
e′′ = e′′1 {e2/x}. Moreover, the evaluation e′1 {e1/x} Ð→∗ e′′1 {e1/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1), (e′1 e′2) {e2/x} Ð→ (e′′1 e′2) {e2/x} and (e′1 e′2) {e1/x} Ð→∗ (e′′1 e′2) {e1/x}.

Case e′1 {e2/x} is a value and e′2 {e2/x} Ð→ e′′ by (E Red): By Lemma 24, there exists some e′′1 such that
e′1 {e1/x} Ð→∗ e′′1 {e1/x} and e′′1 {e1/x} is a value and e′1 {e2/x} = e′′1 {e2/x}. By the IH, there exists
some e′′2 such that e′2 {e1/x} Ð→∗ e′′2 {e1/x} and e′′ = e′′2 {e2/x}. Moreover, the evaluation e′2 {e1/x} Ð→∗
e′′2 {e1/x} is derived by applying only (E Red). Thus, by Lemma 21 (1), (e′1 e′2) {e2/x} Ð→ (e′′1 e′′2) {e2/x}
and (e′1 e′2) {e1/x} Ð→∗ (e′′1 e′′2) {e1/x}.

Case e′1 {e2/x} and e′2 {e2/x} are values: Let i ∈ {1,2}. By Lemma 24, there exist some e′′i such that
e′i {e1/x} Ð→∗ e′′i {e1/x} and e′′i {e1/x} is a value and e′i {e2/x} = e′′i {e2/x}. Since e′′1 and e′′2 are
values by Lemma 8, we finish by Lemmas 10 (2) and 21 (1).

Case e = (e′1, e′2): Similarly to the case for application term. Since e{e2/x} takes a step, there are two cases we
have to consider.

Case e′1 {e2/x} Ð→ e′′ by (E Red): By the IH, there exists some e′′1 such that e′1 {e1/x} Ð→∗ e′′1 {e1/x} and
e′′ = e′′1 {e2/x}. Moreover, the evaluation e′1 {e1/x} Ð→∗ e′′1 {e1/x} is derived by applying only (E Red).
Thus, by Lemma 21 (1), (e′1, e′2) {e2/x} Ð→ (e′′1 , e′2) {e2/x} and (e′1, e′2) {e1/x} Ð→∗ (e′′1 , e′2) {e1/x}.

Case e′1 {e2/x} is a value and e′2 {e2/x} Ð→ e′′ by (E Red): By Lemma 24, there exists some e′′1 such that
e′1 {e1/x} Ð→∗ e′′1 {e1/x} and e′′1 {e1/x} is a value and e′1 {e2/x} = e′′1 {e2/x}. By the IH, there exists
some e′′2 such that e′2 {e1/x} Ð→∗ e′′2 {e1/x} and e′′ = e′′2 {e2/x}. Moreover, the evaluation e′2 {e1/x} Ð→∗
e′′2 {e1/x} is derived by applying only (E Red). Thus, by Lemma 21 (1), (e′1, e′2) {e2/x} Ð→ (e′′1 , e′′2) {e2/x}
and (e′1, e′2) {e1/x} Ð→∗ (e′′1 , e′′2) {e1/x}.

Case e = e′.i for i ∈ {1,2}: Similarly to the case for application term except for use of Lemma 12 (2). If there
exists some e′′ such that e′ {e2/x} Ð→ e′′ by (E Red), then, by the IH, there exists some e′′′ such that
e′ {e1/x} Ð→∗ e′′′ {e1/x} and e′′ = e′′′ {e2/x}. Moreover, the evaluation e′ {e1/x} Ð→∗ e′′′ {e1/x} is derived
by applying only (E Red). Thus, by Lemma 21 (1), (e′.i) {e2/x} Ð→ (e′′′.i) {e2/x} and (e′.i) {e1/x} Ð→∗
(e′′′.i) {e1/x}. Otherwise, if e′ {e2/x} is a value, then there exists some e′′ such that e′ {e1/x} Ð→∗ e′′ {e1/x}
and e′′ {e1/x} is a value and e′ {e2/x} = e′′ {e2/x}. Since e′′ is a value by Lemma 8, we finish by Lemmas 12 (2)
and 21 (1).

Case e = C⟨e′1⟩e′2: Similarly to the case for application term. Since e{e2/x} takes a step, there exists some
e′′ such that e′2 {e2/x} Ð→ e′′ by (E Red). By the IH, there exists some e′′2 such that e′2 {e1/x} Ð→∗
e′′2 {e1/x} and e′′ = e′′2 {e2/x}. Moreover, the evaluation e′2 {e1/x} Ð→∗ e′′2 {e1/x} is derived by applying
only (E Red). Thus, by Lemma 21 (1), (C⟨e′1⟩e′2) {e2/x} Ð→ (C⟨e′1⟩e′′2) {e2/x} and (C⟨e′1⟩e′2) {e1/x} Ð→∗
(C⟨e′1⟩e′′2) {e1/x}.

15

Case e = match e′0withCi yi → e′i
i
: Similarly to the case for application term except for use of Lemma 16 (2). If

there exists some e′′ such that e′0 {e2/x} Ð→ e′′ by (E Red), then, by the IH, there exists some e′′0 such that
e′0 {e1/x} Ð→∗ e′′0 {e1/x} and e′′ = e′′0 {e2/x}. Moreover, the evaluation e′0 {e1/x} Ð→∗ e′′0 {e1/x} is derived
by applying only (E Red). Thus, by Lemma 21 (1),

(match e′0withCi yi → e′i
i
) {e2/x} Ð→ (match e′′0 withCi yi → e′i

i
) {e2/x}

(match e′0withCi yi → e′i
i
) {e1/x} Ð→∗ (match e′′0 withCi yi → e′i

i
) {e1/x}.

Otherwise, if e′0 {e2/x} is a value, then there exists some e′′0 such that e′0 {e1/x} Ð→∗ e′′0 {e1/x} and e′′0 {e1/x}
is a value and e′0 {e2/x} = e′′0 {e2/x}. Since e′′0 is a value by Lemma 8, we finish by Lemmas 16 (2) and 21 (1).

Case e = if e′1 then e
′
2 else e

′
3: Similarly to the case for application term except for use of Lemma 14 (2). If there

exists some e′′ such that e′1 {e2/x} Ð→ e′′ by (E Red), then, by the IH, there exists some e′′1 such that
e′1 {e1/x} Ð→∗ e′′1 {e1/x} and e′′ = e′′1 {e2/x}. Moreover, the evaluation e′1 {e1/x} Ð→∗ e′′1 {e1/x} is derived
by applying only (E Red). Thus, by Lemma 21 (1),

(if e′1 then e′2 else e′3) {e2/x} Ð→ (if e′′1 then e′2 else e′3) {e2/x}
(if e′1 then e′2 else e′3) {e1/x} Ð→∗ (if e′′1 then e′2 else e′3) {e1/x}.

Otherwise, if e′1 {e2/x} is a value, then there exists some e′′1 such that e′1 {e1/x} Ð→∗ e′′1 {e1/x} and e′′1 {e1/x}
is a value and e′1 {e2/x} = e′′1 {e2/x}. Since e′′1 is a value by Lemma 8, we finish by Lemmas 14 (2) and 21 (1).

Case e = ⟨{y∶T ∣ e′1}, e′2, v⟩ℓ: Similarly to the case for application term except for use of Lemma 20 (2). If there
exists some e′′ such that e′2 {e2/x} Ð→ e′′ by (E Red), then, by the IH, there exists some e′′2 such that
e′2 {e1/x} Ð→∗ e′′2 {e1/x} and e′′ = e′′2 {e2/x}. Moreover, the evaluation e′2 {e1/x} Ð→∗ e′′2 {e1/x} is derived
by applying only (E Red). Thus, by Lemma 21 (1),

(⟨{y∶T ∣ e′1}, e′2, v⟩ℓ) {e2/x} Ð→ (⟨{y∶T ∣ e′1}, e′′2 , v⟩ℓ) {e2/x}
(⟨{y∶T ∣ e′1}, e′2, v⟩ℓ) {e1/x} Ð→∗ (⟨{y∶T ∣ e′1}, e′′2 , v⟩ℓ) {e1/x}.

Otherwise, if e′2 {e2/x} is a value, then there exists some e′′2 such that e′2 {e1/x} Ð→∗ e′′2 {e1/x} and e′′2 {e1/x}
is a value and e′2 {e2/x} = e′′2 {e2/x}. Since e′′2 is a value by Lemma 8, we finish by Lemmas 20 (2) and 21 (1).

Case e = ⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ: Similarly to the case for application term except for use of Lemma 18 (2). If there
exists some e′′ such that e′2 {e2/x} Ð→ e′′ by (E Red), then, by the IH, there exists some e′′2 such that
e′2 {e1/x} Ð→∗ e′′2 {e1/x} and e′′ = e′′2 {e2/x}. Moreover, the evaluation e′2 {e1/x} Ð→∗ e′′2 {e1/x} is derived
by applying only (E Red). Thus, by Lemma 21 (1),

(⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ) {e2/x} Ð→ (⟨⟨{y∶T ∣ e′1}, e′′2 ⟩⟩ℓ) {e2/x}
(⟨⟨{y∶T ∣ e′1}, e′2⟩⟩ℓ) {e1/x} Ð→∗ (⟨⟨{y∶T ∣ e′1}, e′′2 ⟩⟩ℓ) {e1/x}.

Otherwise, if e′2 {e2/x} is a value, then there exists some e′′2 such that e′2 {e1/x} Ð→∗ e′′2 {e1/x} and e′′2 {e1/x}
is a value and e′2 {e2/x} = e′′2 {e2/x}. Since e′′2 is a value by Lemma 8, we finish by Lemmas 18 (2) and 21 (1).

Lemma 27. Suppose that e1 Ð→ e2.

(1) If e{e1/x} Ð→∗ v1, then e{e2/x} Ð→∗ e′ {e2/x} for some e′ such that v1 = e′ {e1/x}, and e′ {e2/x} is a
value.

(2) If e{e2/x} Ð→∗ v2, then e{e1/x} Ð→∗ e′ {e1/x} for some e′ such that v2 = e′ {e2/x}, and e′ {e1/x} is a
value.

Proof.

1. By mathematical induction on the number of evaluation steps of e{e1/x}.

16

Case 0: We are given e{e1/x} is a value. Since e1 is not a value from e1 Ð→ e2, we find that e is a value by
Lemma 8. By Lemma 7, so is e{e2/x}. Thus, we finish when letting e′ = e.

Case i +1: We are given e{e1/x} Ð→ e′1 Ð→i v1. By Lemma 23, there exists some e′′ such that e{e2/x} Ð→∗
e′′ {e2/x} and e′1 = e′′ {e1/x}. By the IH, there exists some e′ such that e′′ {e2/x} Ð→∗ e′ {e2/x} and
v1 = e′ {e1/x}, and e′ {e2/x} is a value. Thus, we finish.

2. By mathematical induction on the number of evaluation steps of e{e2/x}.

Case 0: We are given e{e2/x} is a value. By Lemma 24, there exists some e′ such that e{e1/x} Ð→∗ e′ {e1/x}
and e{e2/x} = e′ {e2/x} and e′ {e1/x} is a value.

Case i +1: We are given e{e2/x} Ð→ e′2 Ð→i v2. By Lemma 26, there exists some e′′ such that e{e1/x} Ð→∗
e′′ {e1/x} and e′2 = e′′ {e2/x}. By the IH, there exists some e′ such that e′′ {e1/x} Ð→∗ e′ {e1/x} and
v2 = e′ {e2/x}, and e′ {e1/x} is a value. Thus, we finish.

Lemma 28. Suppose that e1 ⇛∗ e2.

(1) If e1 Ð→∗ v1, then e2 Ð→∗ v2 for some v2 such that v1 ⇛∗ v2.

(2) If e2 Ð→∗ v2, then e1 Ð→∗ v1 for some v1 such that v1 ⇛∗ v2.

Proof. By mathematical induction on the number of steps of e1 ⇛∗ e2.

Case 0: Obvious because e1 = e2.

Case i + 1: We are given e1 ⇛ e3 ⇛i e2. We are given some e, e′1, e′3 and x such that e1 = e{e′1/x} and
e3 = e{e′3/x} and e′1 Ð→ e′3. Thus, we finish by Lemma 27 and the IHs and transitivity of ⇛∗.

Lemma 29.

(1) If c ⇛∗ v, then v = c.

(2) If v ⇛∗ c, then v = c.

Proof.

1. By mathematical induction on the number of steps of c ⇛∗ v.

Case 0: Obvious.

Case i + 1: We are given c ⇛ e ⇛∗ v. We are given e′, e1, e2 and x such that c = e′ {e1/x} and e = e′ {e2/x}
and e1 Ð→ e2. Since e1 is not a value from e1 Ð→ e2, we find that e′ is a value by Lemma 8. Thus,
e′ = c and so e = c. By the IH, we finish.

2. By mathematical induction on the number of steps of v ⇛∗ c.

Case 0: Obvious.

Case i + 1: We are given v ⇛ e ⇛∗ c. We are given e′, e1, e2 and x such that v = e′ {e1/x} and e = e′ {e2/x}
and e1 Ð→ e2. Since e1 is not a value from e1 Ð→ e2, we find that e′ is a value by Lemma 8. Thus, so
is e′ {e2/x} by Lemma 7. By the IH, e′ {e2/x} = c. Since e′ is a value, e′ = c and so v = c.

Lemma 30 (Cotermination at true). Suppose that e1 ⇛∗ e2.

(1) If e1 Ð→∗ true, then e2 Ð→∗ true.

(2) If e2 Ð→∗ true, then e1 Ð→∗ true.

Proof. By Lemmas 28 and 29.

Lemma 31. Suppose that e1 ≡ e2.

(1) If e1 Ð→∗ true, then e2 Ð→∗ true.

(2) If e2 Ð→∗ true, then e1 Ð→∗ true.

Proof. Straightforward by induction on e1 ≡ e2. In particular, if e1 ⇛ e2, then we finish by Lemma 30.

17

4 Type Soundness

Lemma 32 (Weakening). Suppose that x is a fresh variable and Γ1 ⊢ T1.

(1) If Γ1,Γ2 ⊢ e ∶ T , then Γ1, x∶T1,Γ2 ⊢ e ∶ T .

(2) If Γ1,Γ2 ⊢ T , then Γ1, x∶T1,Γ2 ⊢ T .

(3) If ⊢ Γ1,Γ2, then ⊢ Γ1, x∶T1,Γ2.

Proof. Straightforward by induction on each derivation.

Lemma 33 (Substitution). Suppose that Γ1 ⊢ e′ ∶ T ′.

(1) If Γ1, x∶T ′,Γ2 ⊢ e ∶ T , then Γ1,Γ2 {e′/x} ⊢ e{e′/x} ∶ T {e′/x}.

(2) If Γ1, x∶T ′,Γ2 ⊢ T , then Γ1,Γ2 {e′/x} ⊢ T {e′/x}.

(3) If ⊢ Γ1, x∶T ′,Γ2, then ⊢ Γ1,Γ2 {e′/x}.

Proof. Straightforward by induction on each derivation. The only interesting cases are for (T Ctr) and (T Match).

Case (T Ctr): We are given Γ1, x∶T ′,Γ2 ⊢ C⟨e1⟩e2 ∶ τ⟨e1⟩ for some C, e1, e2 and τ . By inversion, we have
TypSpecOf (C) = y∶T1 ↣ T2 ↣ τ⟨y⟩ and Γ1, x∶T ′,Γ2 ⊢ e1 ∶ T1 and Γ1, x∶T ′,Γ2 ⊢ e2 ∶ T2 {e1/y} and
Γ1, x∶T ′,Γ2 ⊢ τ⟨e1⟩. Without loss of generality, we can suppose that y is fresh.

By the IHs, Γ1,Γ2 {e′/x} ⊢ e1 {e′/x} ∶ T1 {e′/x} and Γ1,Γ2 {e′/x} ⊢ e2 {e′/x} ∶ T2 {e1/y}{e′/x} and
Γ1,Γ2 {e′/x} ⊢ τ⟨e1 {e′/x}⟩. From well-formedness of the type definition environment, it is found that
T1 {e′/x} = T1 and T2 {e1/y}{e′/x} = T2 {e1 {e′/x}/y}. Thus, we finish by (T Ctr).

Case (T Match): We are given Γ1, x∶T ′,Γ2 ⊢ match e0withCi yi → ei
i ∶ T . By inversion, we have Γ1, x∶T ′,Γ2 ⊢

e0 ∶ τ⟨e′′⟩ and Γ1, x∶T ′,Γ2 ⊢ T and CtrsOf (τ) = Ci
i
and ArgTypeOf (τ) = z∶T ′′ and, for all i , CtrArgOf (Ci) =

Ti and Γ1, x∶T ′,Γ2, yi ∶Ti {e′′/z} ⊢ ei ∶ T . Without loss of generality, we can suppose that yi
i and z are fresh.

By the IHs, Γ1,Γ2 {e′/x} ⊢ e0 {e′/x} ∶ τ⟨e′′ {e′/x}⟩ and Γ1,Γ2 {e′/x} ⊢ T {e′/x} and Γ1,Γ2 {e′/x}, yi ∶Ti {e′′/z}{e′/x} ⊢
ei {e′/x} ∶ T {e′/x}. From well-formedness of the type definition environment, it is found that Ti {e′′/z}{e′/x} =
Ti {e′′ {e′/x}/z}. Thus, we finish by (T Match).

Lemma 34 (Base Types Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = Bool implies T2 = Bool, and

(2) T2 = Bool implies T1 = Bool.

Proof. Straightforward by induction on T1 ≡ T2. In particular, if T1 ⇛ T2, then there exist some T , x, e1 and e2 such
that T1 = T {e1/x} and T2 = T {e2/x}. Since T1 = Bool or T2 = Bool, we have T = Bool. Thus T1 = T2 = Bool.

Lemma 35 (Dependent Function Types Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = x∶T11 → T12 implies

� T = x∶T21 → T22,

� T11 ≡ T21, and

� T12 ≡ T22

for some T21 and T22, and

(2) T2 = x∶T21 → T22 implies

� T1 = x∶T11 → T12,

� T11 ≡ T21, and

18

� T12 ≡ T22

for some T11 and T12.

Proof. Straightforward by induction on T1 ≡ T2. In particular, if T1 ⇛ T2, then there exist some T , y, e1 and
e2 such that T1 = T {e1/y} and T2 = T {e2/y} and e1 Ð→ e2. Without loss of generality, we can suppose that x
is fresh for e1, e2 and y. Since T1 = x∶T11 → T12 or T2 = x∶T21 → T22, we have T = x∶T1 → T2 for some T1 and
T2. Thus, T1 = x∶T1 {e1/y} → T2 {e1/y} and T2 = x∶T1 {e2/y} → T2 {e2/y}. We have T1 {e1/y} ⇛ T1 {e2/y} and
T2 {e1/y} ⇛ T2 {e2/y} by definition.

Lemma 36 (Dependent Product Types Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = x∶T11 ×T12 implies

� T2 = x∶T21 ×T22,

� T11 ≡ T21, and

� T12 ≡ T22

for some T21 and T22, and

(2) T2 ≡ x∶T21 ×T22 implies

� T1 = x∶T11 ×T12,

� T11 ≡ T21, and

� T12 ≡ T22.

for some T11 and T12.

Proof. Similarly to Lemma 35, straightforward by induction on T1 ≡ T2. In particular, if T1 ⇛ T2, then there exist
some T , y, e1 and e2 such that T1 = T {e1/y} and T2 = T {e2/y} and e1 Ð→ e2. Without loss of generality, we can
suppose that x is fresh for e1, e2 and y. Since T1 = x∶T11 ×T12 or T2 = x∶T21 ×T22, we have T = x∶T1 ×T2 for some
T1 and T2. Thus, T1 = x∶T1 {e1/y}×T2 {e1/y} and T2 = x∶T1 {e2/y}×T2 {e2/y}. We have T1 {e1/y} ⇛ T1 {e2/y}
and T2 {e1/y} ⇛ T2 {e2/y} by definition.

Lemma 37 (Datatypes Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = τ⟨e1⟩ implies T2 = τ⟨e2⟩ and e1 ≡ e2 for some e2, and

(2) T2 = τ⟨e2⟩ implies T1 = τ⟨e1⟩ and e1 ≡ e2 for some e1.

Proof. Similarly to Lemma 35, straightforward by induction on T1 ≡ T2. In particular, if T1 ⇛ T2, then there exist
some T , x, e′1 and e′2 such that T1 = T {e′1/x} and T2 = T {e′2/x} and e′1 Ð→ e′2. Since T1 = τ⟨e1⟩ or T2 = τ⟨e2⟩,
we have T = τ⟨e⟩ for some e. Thus, T1 = τ⟨e{e′1/x}⟩ and T2 = τ⟨e{e′2/x}⟩. We have e{e′1/x} ⇛ e{e′2/x} by
definition.

Lemma 38 (Refinement Types Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = {x∶T ′1 ∣ e′1} implies

� T2 = {x∶T ′2 ∣ e′2},
� T ′1 ≡ T ′2, and

� e′1 ≡ e′2

for some T ′2 and e′2, and

(2) T2 = {x∶T ′2 ∣ e′2} implies

� T1 = {x∶T ′1 ∣ e′1},
� T ′1 ≡ T ′2, and

19

� e′1 ≡ e′2

for some T ′1 and e′1.

Proof. Similarly to Lemma 35, straightforward by induction on T1 ≡ T2. In particular, if T1 ⇛ T2, then there exist
some T , y, e′′1 and e′′2 such that T1 = T {e′′1 /y} and T2 = T {e′′2 /y} and e′′1 Ð→ e′′2 . Without loss of generality, we can
suppose that x is fresh for e′′1 , e

′′
2 and y. Since T1 = {x∶T ′1 ∣ e′1} or T2 = {x∶T ′2 ∣ e′2}, we have T = {x∶T ′ ∣ e′} for some

T ′ and e′. Thus, T1 = {x∶T ′ {e′′1/y} ∣ e′ {e′′1/y}} and T2 = {x∶T ′ {e′′2 /y} ∣ e′ {e′′2 /y}}. We have T ′ {e′′1 /y} ⇛ T ′ {e′′2 /y}
and e′ {e′′1/y} ⇛ e′ {e′′2 /y} by definition.

Lemma 39 (Type Equivalence Closed Under Unrefine). If T1 ≡ T2, then unref(T1) ≡ unref(T2).

Proof. By induction on T1.

Case T1 = Bool, x∶T ′1 → T ′2, x∶T ′1 ×T ′2, or τ⟨e⟩: We have unref(T1) = T1. Since T1 ≡ T2, we find that unref(T2) = T2

by Lemmas 34 (1), 35 (1), 36 (1) and 37 (1). Thus, we finish.

Case T1 = {x∶T ′1 ∣ e′1}: By Lemma 38 (1), there exist some T ′2 and e′2 such that T2 = {x∶T ′2 ∣ e′2} and T ′1 ≡ T ′2. By
the IH, unref(T ′1) ≡ unref(T ′2). Because unref(T1) = unref(T ′1) and unref(T2) = unref(T ′2), we finish.

Lemma 40 (Lambda Inversion). If Γ ⊢ fix f(x∶T1)∶T2 = e ∶ T , then

� Γ, f ∶(x∶T1 → T2), x∶T1 ⊢ e ∶ T2,

� f ∉ FV (T2), and

� x∶T1 → T2 ≡ unref(T).

Proof. By induction on the typing derivation. Only four rules can be applied to the lambda abstraction.

Case (T Abs): Since T = x∶T1 → T2, we have x∶T1 → T2 ≡ unref(T) by Lemma 1 (reflexivity). By inversion, we
finish.

Case (T Conv): By inversion, we have ∅ ⊢ fix f(x∶T1)∶T2 = e ∶ T ′ and T ′ ≡ T for some T ′. By the IH, we have
f ∶(x∶T1 → T2), x∶T1 ⊢ e ∶ T2 and f ∉ FV (T2) and x∶T1 → T2 ≡ unref(T ′). Because unref(T ′) ≡ unref(T) by
Lemma 39, we have x∶T1 → T2 ≡ unref(T) by Lemma 1 (transitivity). By Lemma 32, we finish.

Case (T Forget): By inversion, we have ∅ ⊢ fix f(x∶T1)∶T2 = e ∶ {y∶T ∣ e′} for some y and e′. By the IH, f ∶(x∶T1 →
T2), x∶T1 ⊢ e ∶ T2 and f ∉ FV (T2) and x∶T1 → T2 ≡ unref({y∶T ∣ e′}). Since unref(T) = unref({y∶T ∣ e′}), we
have x∶T1 → T2 ≡ unref(T). By Lemma 32, we finish.

Case (T Exact): We are given Γ ⊢ fix f(x∶T1)∶T2 = e ∶ {y∶T ′ ∣ e′} for some y, T ′ and e′. By inversion, we
have ∅ ⊢ fix f(x∶T1)∶T2 = e ∶ T ′. By the IH, we have f ∶(x∶T1 → T2), x∶T1 ⊢ e ∶ T2 and f ∉ FV (T2) and
x∶T1 → T2 ≡ unref(T ′). Since unref(T ′) = unref({y∶T ′ ∣ e′}), we have x∶T1 → T2 ≡ unref({y∶T ′ ∣ e′}). By
Lemma 32, we finish.

Lemma 41 (Cast Inversion). If Γ ⊢ ⟨T1 ⇐ T2⟩ℓ ∶ T , then

� Γ ⊢ T1,

� Γ ⊢ T2,

� T1 ∥ T2, and

� T2 → T1 ≡ unref(T).

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the cast.

Case (T Cast): Since T = T2 → T1, we have T2 → T1 ≡ unref(T) by Lemma 1 (reflexivity). By inversion, we
finish.

20

Case (T Conv): By inversion, we have ∅ ⊢ ⟨T1 ⇐ T2⟩ℓ ∶ T ′ and T ′ ≡ T for some T ′. By the IH, we have ∅ ⊢ T1

and ∅ ⊢ T2 and T1 ∥ T2 and T2 → T1 ≡ unref(T ′). Because unref(T ′) ≡ unref(T) by Lemma 39, we have
T2 → T1 ≡ unref(T) by Lemma 1 (transitivity). By Lemma 32, we finish.

Case (T Forget): By inversion, we have ∅ ⊢ ⟨T1 ⇐ T2⟩ℓ ∶ {y∶T ∣ e} for some y and e. By the IH, ∅ ⊢ T1 and
∅ ⊢ T2 and T1 ∥ T2 and T2 → T1 ≡ unref({y∶T ∣ e}). Since unref({y∶T ∣ e}) = unref(T), we have T2 → T1 ≡
unref(T). By Lemma 32, we finish.

Case (T Exact): We are given Γ ⊢ ⟨T1 ⇐ T2⟩ℓ ∶ {x∶T ′ ∣ e′} for some x, T ′ and e′. By inversion, we have
∅ ⊢ ⟨T1 ⇐ T2⟩ℓ ∶ T ′. By the IH, we have ∅ ⊢ T1 and ∅ ⊢ T2 and T1 ∥ T2 and T2 → T1 ≡ unref(T ′). Since
unref(T ′) = unref({x∶T ′ ∣ e′}), we have T2 → T1 ≡ unref({x∶T ′ ∣ e′}). By Lemma 32, we finish.

Lemma 42 (Pair Inversion). If Γ ⊢ (v1, v2) ∶ T , then

� Γ ⊢ v1 ∶ T1,

� Γ ⊢ v2 ∶ T2 {v1/x},

� Γ, x∶T1 ⊢ T2, and

� x∶T1 ×T2 ≡ unref(T)

for some T1, T2 and x.

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the pair.

Case (T Pair): Since T = x∶T1 ×T2, we have x∶T1 ×T2 ≡ unref(T) by Lemma 1 (reflexivity). By inversion, we
finish.

Case (T Conv): By inversion, we have ∅ ⊢ (v1, v2) ∶ T ′ and T ′ ≡ T for some T ′. By the IH, we have ∅ ⊢ v1 ∶ T1

and ∅ ⊢ v2 ∶ T2 {v1/x} and x∶T1 ⊢ T2 and x∶T1 ×T2 ≡ unref(T ′). Because unref(T ′) ≡ unref(T) by Lemma 39,
we have x∶T1 ×T2 ≡ unref(T) by Lemma 1 (transitivity). By Lemma 32, we finish.

Case (T Forget): By inversion, we have ∅ ⊢ (v1, v2) ∶ {y∶T ∣ e′} for some y and e′. By the IH, we have ∅ ⊢ v1 ∶ T1

and ∅ ⊢ v2 ∶ T2 {v1/x} and x∶T1 ⊢ T2 and x∶T1 ×T2 ≡ unref({y∶T ∣ e′}). Since unref({y∶T ∣ e′}) = unref(T),
we have x∶T1 ×T2 ≡ unref(T). By Lemma 32, we finish.

Case (T Exact): We are given Γ ⊢ (v1, v2) ∶ {y∶T ′ ∣ e′} for some y, T ′ and e′. By inversion, we have ∅ ⊢ (v1, v2) ∶
T ′. By the IH, we have ∅ ⊢ v1 ∶ T1 and ∅ ⊢ v2 ∶ T2 {v1/x} and x∶T1 ⊢ T2 and x∶T1 ×T2 ≡ unref(T ′). Since
unref(T ′) = unref({y∶T ′ ∣ e′}), we have x∶T1 ×T2 ≡ unref({y∶T ′ ∣ e′}). By Lemma 32, we finish.

Lemma 43 (Constructor Inversion). If Γ ⊢ C⟨e⟩v ∶ T , then

� TypSpecOf (C) = x∶T1 ↣ T2 ↣ τ⟨x⟩,

� Γ ⊢ v ∶ T2 {e/x},

� Γ ⊢ τ⟨e⟩, and

� τ⟨e⟩ ≡ unref(T).

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only four rules can be applied to the
constructor application.

Case (T Ctr): Since T = τ⟨e⟩, we have τ⟨e⟩ ≡ unref(T) by Lemma 1 (reflexivity). By inversion, we finish.

Case (T Conv): By inversion, we have ∅ ⊢ C⟨e⟩v ∶ T ′ and T ′ ≡ T for some T ′. By the IH, we have TypSpecOf (C) =
x∶T1 ↣ T2 ↣ τ⟨x⟩ and ∅ ⊢ v ∶ T2 {e/x} and ∅ ⊢ τ⟨e⟩ and τ⟨e⟩ ≡ unref(T ′). Because unref(T ′) ≡ unref(T)
by Lemma 39, we have τ⟨e⟩ ≡ unref(T) by Lemma 1 (transitivity). By Lemma 32, we finish.

Case (T Forget): By inversion, we have ∅ ⊢ C⟨e⟩v ∶ {y∶T ∣ e′} for some y and e′. By the IH, we have
TypSpecOf (C) = x∶T1 ↣ T2 ↣ τ⟨x⟩ and ∅ ⊢ v ∶ T2 {e/x} and ∅ ⊢ τ⟨e⟩ and τ⟨e⟩ ≡ unref({y∶T ∣ e′}).
Since unref({y∶T ∣ e′}) = unref(T), we have τ⟨e⟩ ≡ unref(T). By Lemma 32, we finish.

21

Case (T Exact): We are given Γ ⊢ C⟨e⟩v ∶ {y∶T ′ ∣ e′} for some y, T ′ and e′. By inversion, we have ∅ ⊢ C⟨e⟩v ∶
T ′. By the IH, we have TypSpecOf (C) = x∶T1 ↣ T2 ↣ τ⟨x⟩ and ∅ ⊢ v ∶ T2 {e/x} and ∅ ⊢ τ⟨e⟩ and
τ⟨e⟩ ≡ unref(T ′). Since unref(T ′) = unref({y∶T ′ ∣ e′}), we have τ⟨e⟩ ≡ unref({y∶T ′ ∣ e′}). By Lemma 32, we
finish.

Lemma 44 (Canonical Forms). Suppose that ∅ ⊢ v ∶ T .

(1) If unref(T) = Bool, then v = true or false.

(2) If unref(T) = x∶T1 → T2, then

(a) v = fix f(x∶T ′1)∶T ′2 = e for some f , T ′1, T
′
2 and e, or

(b) v = ⟨T ′2 ⇐ T ′1⟩ℓ for some T ′2, T
′
1 and ℓ.

(3) If unref(T) = x∶T1 ×T2, then v = (v1, v2) for some v1 and v2.

(4) If unref(T) = τ⟨e⟩, then v = C⟨e′⟩v′ for some C, e′ and v′.

Proof. By induction on the typing derivation.

Case (T Const): We are given ∅ ⊢ c ∶ Bool. By inversion, c ∈ {true, false}. Since unref(Bool) = Bool, we are in
the case (1).

Case (T Var), (T Blame), (T App), (T Proji) for i ∈ {1,2}, (T Match), (T If), (T ACheck), (T WCheck):
Contradictory: v is a value.

Case (T Abs): We are given ∅ ⊢ fix f(x∶T1)∶T2 = e ∶ x∶T1 → T2. Since unref(x∶T1 → T2) = x∶T1 → T2, we are in
the case (2).

Case (T Cast): We are given ∅ ⊢ ⟨T2 ⇐ T1⟩ℓ ∶ T1 → T2. Since unref(T1 → T2) = T1 → T2, we are in the case (2).

Case (T Pair): We are given ∅ ⊢ (v1, v2) ∶ x∶T1 ×T2. Since unref(x∶T1 ×T2) = x∶T1 ×T2, we are in the case (3).

Case (T Ctr): We are given ∅ ⊢ C⟨e′⟩v′ ∶ τ⟨e′⟩. Since unref(τ⟨e′⟩) = τ⟨e′⟩, we are in the case (4).

Case (T Conv): By inversion, we have ∅ ⊢ v ∶ T ′ for some T ′ such that T ′ ≡ T . By Lemma 39, unref(T ′) ≡
unref(T). By case analysis on unref(T ′):

Case unref(T ′) = Bool: By the IH, v ∈ {true, false}. By Lemma 34 (1), unref(T) = Bool and so we are in the
case (1).

Case unref(T ′) = x∶T1 → T2: By the IH, v is a lambda abstraction or a cast. By Lemma 35 (1), unref(T) =
x∶T ′1 → T ′2 for some T ′1 and T ′2 and so we are in the case (2).

Case unref(T ′) = x∶T1 ×T2: By the IH, v = (v1, v2) for some v1 and v2. By Lemma 36 (1), unref(T) = x∶T ′1 ×T ′2
for some T ′1 and T ′2 and so we are in the case (3).

Case unref(T ′) = τ⟨e′⟩: By the IH, v = C⟨e′′⟩v′′ for some e′′ and v′′. By Lemma 37 (1), unref(T) = τ⟨e′′′⟩ for
some e′′′ and so we are in the case (4).

Case (T Forget): By inversion, we have ∅ ⊢ v ∶ {x∶T ∣ e} for some x and e. Since unref(T) = unref({x∶T ∣ e}), we
finish by the IH.

Case (T Exact): We are given ∅ ⊢ v ∶ {x∶T ′ ∣ e} for some x, T ′ and e. By inversion, we have ∅ ⊢ v ∶ T ′. Since
unref({x∶T ′ ∣ e}) = unref(T ′), we finish by the IH.

Lemma 45 (Progress). If ∅ ⊢ e ∶ T , then

1. e Ð→ e′ for some e′,

2. e is a value, or

3. e = ⇑ℓ for some ℓ.

22

Proof. By induction on the typing derivation.

Case (T Const), (T Blame), (T Abs), (T Cast), (T Forget), (T Exact): The term e is a blaming or a value.

Case (T Var): Contradictory: ∅ ⊢ x ∶ T cannot be derived for any x.

Case (T App): We are given ∅ ⊢ e1 e2 ∶ T2 {e2/x} for some e1, e2, T2 and x. By inversion, we have ∅ ⊢ e1 ∶
x∶T1 → T2 and ∅ ⊢ e2 ∶ T1 for some T1.

By the IH, e1 and e2 are reducible, values, or blamings. If e1 is reducible or a blaming, then e1 e2 steps by
one of evaluation rules. If e1 is a value and e2 is reducible or a blaming, then e1 e2 steps by one of evaluation
rules. Otherwise, if e1 and e2 are values, then there are two cases which we consider on e1 by Lemma 44.

Case e1 = fix f(x∶T ′1)= e12: The term e1 e2 steps by (E Red)/(R Beta).

Case e1 = ⟨T ′1 ⇐ T ′2⟩ℓ: If T ′2 is a refinement type, then we finish by (E Red)/(R Forget). In the following,
we suppose that T ′2 is not a refinement type. By Lemma 41, we have T ′1 ∥ T ′2 and T ′2 → T ′1 ≡ x∶T1 → T2

We perform case analysis on T ′1.

Case T ′1 = Bool: It is found from Bool ∥ T ′2 that T ′2 = Bool since T ′2 is not a refinement type. We then
finish by (E Red)/(R Base).

Case T ′1 = y∶T11 → T12: It is found that from y∶T11 → T12 ∥ T ′2 that T ′2 = y∶T21 → T22 for some T21 and T22

since T ′2 is not a refinement type. We then finish by (E Red)/(R Fun).

Case T ′1 = y∶T11 ×T12: It is found that from y∶T11 ×T12 ∥ T ′2 that T ′2 = y∶T21 ×T22 for some T21 and T22

since T ′2 is not a refinement type. By Lemmas 35 and 36 (1), T1 = y∶T ′11 ×T ′12 for some T ′11 and
T ′12. Since ∅ ⊢ e2 ∶ T1 = y∶T ′11 ×T ′12 and e2 is a value, we have e2 = (v1, v2) for some v1 and v2 by
Lemma 44 (3). We then finish by (E Red)/(R Prod).

Case T ′1 = τ1⟨e′1⟩: It is found that from Σ ⊢ τ1⟨e′1⟩ ∥ T ′2 that T ′2 = τ2⟨e′2⟩ for some τ2 and e′2 since T
′
2 is not a

refinement type. If τ1 = τ2 and τ1 is monomorphic, then we apply (E Red)/(R DatatypeMono); if
τ1 ≠ τ2 or τ1 is not monomorphic, and δ(⟨τ1⟨e′1⟩⇐ τ2⟨e′2⟩⟩ℓ e2) is defined, then (E Red)/(R Datatype);
otherwise, (E Red)/(R DatatypeFail).

Case T ′1 = {y∶T ′′1 ∣ e′′1}: Since T ′2 is not a refinement type, we finish by (E Red)/(R PreCheck).

Case (T Pair): We are given ∅ ⊢ (e1, e2) ∶ x∶T1 ×T2 for some e1, e2, x, T1 and T2. By inversion, we have
∅ ⊢ e1 ∶ T1 and ∅ ⊢ e2 ∶ T2 {e1/x}. By the IH, e1 and e2 are reducible, values, or blamings. If e1 is reducible
or a blaming, then we finish by one of evaluation rules. If e1 is a value and e2 is reducible or a blaming, then
we finish by one of evaluation rules. Otherwise, if e1 and e2 are values, then so is (e1, e2) is.

Case (T Proj1): We are given ∅ ⊢ e1.1 ∶ T1 for some e1 and T1. By inversion, we have ∅ ⊢ e1 ∶ x∶T1 ×T2 for
some x and T2. By the IH, e1 is reducible, a value, or a blaming. If e1 is reducible or a blaming, then we finish
by one of evaluation rules. Otherwise, if e1 is a value, then e1 = (v1, v2) for some v1 and v2 by Lemma 44 (3),
and so we finish by (E Red)/(R Proj1).

Case (T Proj2): Similarly to the case for (T Proj1). We are given ∅ ⊢ e2.2 ∶ T2 {e2.1/x} for some e2, T2, and
x. By inversion, we have ∅ ⊢ e2 ∶ x∶T1 ×T2 for some T1. By the IH, e2 is reducible, a value, or a blaming.
If e2 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e2 is a value, then
e2 = (v1, v2) for some v1 and v2 by Lemma 44 (3), and so we finish by (E Red)/(R Proj2).

Case (T Ctr): We are given ∅ ⊢ C⟨e1⟩e2 ∶ τ⟨e1⟩. By inversion, we have ∅ ⊢ e2 ∶ T ′ {e1/x} for some T ′ and
x such that TypSpecOf (C) = x∶T ′′ ↣ T ′ ↣ τ⟨x⟩. By the IH, e2 is reducible, a value, or a blaming. If e2
is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e2 is a value, then so is
C⟨e1⟩e2.

Case (T Match): We are given Γ ⊢ match e0withCi xi → ei
i ∈{1,...,n} ∶ T for some e0 and Ci xi → ei

i ∈{1,...,n}
. By

inversion, we have Γ ⊢ e0 ∶ τ⟨e′⟩ for some τ and e′. By the IH, e0 is reducible, a value, or a blaming. If
e0 is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if e0 is a value, then, by
Lemma 44 (4), we have e0 = C⟨e′1⟩v2 for some C, e′1 and v2. By Lemmas 43 and 37, C is a constructor of
τ . There therefore exists j ∈ {1, ..., n} such that C = Cj since patterns are exhaustive. By (R Match), we
finish.

23

Case (T If): We are given ∅ ⊢ if e1 then e2 else e3 ∶ T for some e1, e2 and e3. By inversion, we have ∅ ⊢ e1 ∶ Bool.
By the IH, e1 is reducible, a value, or a blaming. If e1 is reducible or a blaming, then we finish by one of
evaluation rules. Otherwise, if e1 is a value, then e1 is true or false by Lemma 44 (1). If e1 is true (resp. false),
then we finish by (R IfTrue) (resp. (R IfFalse)).

Case (T WCheck): We are given ∅ ⊢ ⟨⟨{x∶T ′ ∣ e1}, e2⟩⟩ℓ ∶ {x∶T ′ ∣ e1} for some x, T ′, e1, e2 and ℓ. By inversion, we
have ∅ ⊢ e2 ∶ T ′. By the IH, e2 is reducible, a value, or a blaming. If e2 is reducible or a blaming, then we
finish by one of evaluation rules. Otherwise, if e2 is a value, we finish by (R Check).

Case (T ACheck): We are given ∅ ⊢ ⟨{x∶T ′ ∣ e1}, e2, v⟩ℓ ∶ {x∶T ′ ∣ e1} for some x, T ′, e1, e2, v and ℓ. By inversion,
we have ∅ ⊢ e2 ∶ Bool. By the IH, e2 is reducible, a value, or a blaming. If e2 is reducible or a blaming, then
we finish by one of evaluation rules. Otherwise, if e2 is a value, then e2 is true or false by Lemma 44 (1). If
e2 is true (resp. false), then we finish by (R OK) (resp. (R Fail)).

Case (T Conv): By inversion, we have ∅ ⊢ e ∶ T ′. By the IH, we finish.

Lemma 46 (Context and Type Well-Formedness).

1. If Γ ⊢ e ∶ T , then ⊢ Γ and Γ ⊢ T .

2. If Γ ⊢ T , then ⊢ Γ.

Proof. By induction on the derivation of each judgment.

1. By case analysis on the typing derivation.

Case (T Const): We are given Γ ⊢ c ∶ T for some c. By inversion, we have ⊢ Γ and T = Bool. By
(WT Base), Γ ⊢ Bool.

Case (T Var): We are given Γ ⊢ x ∶ T for some x. By inversion, we have ⊢ Γ and x∶T ∈ Γ. Let Γ1 and Γ2 be
typing contexts such that Γ1, x∶T,Γ2 = Γ. By inversion of ⊢ Γ, we have Γ1 ⊢ T . Since for any y∶T ′ ∈ Γ2,
Γ1, x∶T,Γ′2 ⊢ T ′ where Γ2 = Γ′2, y∶T ′,Γ′′2 for some Γ′′2 , we have Γ1, x∶T,Γ2 ⊢ T by Lemma 32.

Case (T Blame): We are given Γ ⊢ ⇑ℓ ∶ T for some ℓ. By inversion, we have ⊢ Γ and ∅ ⊢ T . By Lemma 32,
Γ ⊢ T .

Case (T Abs): We are given Γ ⊢ fix f(x∶T1)∶T2 = e2 ∶ x∶T1 → T2 for some f , x, T1, T2 and e2. By inversion,
we have Γ, f ∶(x∶T1 → T2), x∶T1 ⊢ e2 ∶ T2. By the IH, we have ⊢ Γ, f ∶(x∶T1 → T2), x∶T1. By inversion of it,
⊢ Γ and Γ ⊢ x ∶ T1 → T2.

Case (T Cast): We are given Γ ⊢ ⟨T1 ⇐ T2⟩ℓ ∶ x∶T2 → T1 for some T1, T2, ℓ and x. Without loss of generality,
we can suppose that x is fresh. By inversion, we have Γ ⊢ T1 and Γ ⊢ T2. By the IH, we have ⊢ Γ. By
Lemma 32, Γ, x∶T2 ⊢ T1. By (WT Fun), we have Γ ⊢ x ∶ T2 → T1.

Case (T App): We are given Γ ⊢ e1 e2 ∶ T2 {e2/x} for some T2, e2 and x. By inversion, we have Γ ⊢ e1 ∶
x∶T1 → T2 and Γ ⊢ e2 ∶ T1. By the IH, we have ⊢ Γ and Γ ⊢ x ∶ T1 → T2. By inversion of the latter, we
have Γ, x∶T1 ⊢ T2. By Lemma 33, we have Γ ⊢ T2 {e2/x}.

Case (T Pair): We are given Γ ⊢ (e1, e2) ∶ x∶T1 ×T2 for some e1, e2, x, T1 and T2. By inversion, we have
Γ, x∶T1 ⊢ T2. By the IH, ⊢ Γ, x∶T1. By inversion of it, we have ⊢ Γ. Since Γ, x∶T1 ⊢ T2, we finish by
(WT Prod).

Case (T Proj1): We are given Γ ⊢ e′.1 ∶ T for some e′. By inversion, we have Γ ⊢ e′ ∶ x∶T ×T ′ for some x
and T ′. By the IH, we have ⊢ Γ and Γ ⊢ x∶T ×T ′. By inversion of the latter, we have Γ ⊢ T .

Case (T Proj2): we are given Γ ⊢ e′.2 ∶ T2 {e′.1/x} for some e′, T2 and x. By inversion, we have Γ ⊢ e′ ∶
x∶T1 ×T2 for some T1. By the IH, ⊢ Γ and Γ ⊢ x∶T1 ×T2. By inversion of the latter, we have Γ, x∶T1 ⊢ T2.
Since Γ ⊢ e′ ∶ x∶T1 ×T2, we have Γ ⊢ e′.1 ∶ T1 by (T Proj1). By Lemma 33, we have Γ ⊢ T2 {e′.1/x}.

Case (T Ctr): We are given Γ ⊢ C⟨e1⟩e2 ∶ τ⟨e1⟩ for some C, e1, e2 and τ . By inversion, we have Γ ⊢ τ⟨e1⟩.
By the IH, we have ⊢ Γ.

24

Case (T Match): We are given Γ ⊢ match e0withCi xi → ei
i ∶ T for some e0 and Ci xi → ei

i
. By inversion,

we have Γ ⊢ T . By the IH, we have ⊢ Γ.

Case (T If): We are given Γ ⊢ if e1 then e2 else e3 ∶ T for some e1, e2 and e3. By inversion, we have Γ ⊢ e2 ∶ T .
By the IH, we have ⊢ Γ and Γ ⊢ T .

Case (T WCheck): We are given Γ ⊢ ⟨⟨{x∶T1 ∣ e1}, e2⟩⟩ℓ ∶ {x∶T1 ∣ e1} for some x, T1, e1, e2 and ℓ. By inversion,
we have ⊢ Γ and ∅ ⊢ {x∶T1 ∣ e1}. By Lemma 32, we have Γ ⊢ {x∶T1 ∣ e1}.

Case (T ACheck): We are given Γ ⊢ ⟨{x∶T1 ∣ e1}, e2, v⟩ℓ ∶ {x∶T1 ∣ e1} for some x, T1, e1, e2, v and ℓ. By
inversion, we have ⊢ Γ and ∅ ⊢ {x∶T1 ∣ e1}. By Lemma 32, we have Γ ⊢ {x∶T1 ∣ e1}.

Case (T Conv): By inversion, we have ⊢ Γ and ∅ ⊢ T . By Lemma 32, we have Γ ⊢ T .

Case (T Forget): We are given Γ ⊢ v ∶ T for some v. By inversion, we have ⊢ Γ and ∅ ⊢ v ∶ {x∶T ∣ e′} for
some x and e′. By the IH, ∅ ⊢ {x∶T ∣ e′}. By inversion of it, we have ∅ ⊢ T . By Lemma 32, Γ ⊢ T .

Case (T Exact): We are given Γ ⊢ v ∶ {x∶T ′ ∣ e′} for some v, x, T ′ and e′. By inversion, we have ⊢ Γ and
∅ ⊢ {x∶T ′ ∣ e′}. By Lemma 32, we finish.

2. By case analysis on the well-formedness derivation.

Case (WT Base): We are given Γ ⊢ Bool for some Bool. By inversion, we have ⊢ Γ.

Case (WT Fun): We are given Γ ⊢ x ∶ T1 → T2 for some x, T1 and T2. By inversion, we have Γ ⊢ T1. By
the IH, ⊢ Γ.

Case (WT Refine): We are given Γ ⊢ {x∶T ′ ∣ e′} for some x, T ′ and e′. By inversion, we have Γ ⊢ T ′. By
the IH, ⊢ Γ.

Case (WT Prod): We are given Γ ⊢ x∶T1 ×T2 for some x, T1 and T2. By inversion, we have Γ ⊢ T1. By the
IH, ⊢ Γ.

Case (WT Datatype): We are given Γ ⊢ τ⟨e⟩ for some τ and e. By inversion and the IH, we finish.

Lemma 47. If T1 ∥ {x∶T2 ∣ e2}, then T1 ∥ T2.

Proof. By induction on T1 ∥ {x∶T2 ∣ e2}. There are only two cases where T1 ∥ {x∶T2 ∣ e2} can be derived.

Case {x∶T ′1 ∣ e′1} ∥ {x∶T2 ∣ e2}: By inversion, we have T ′1 ∥ T2. By (C RefineL), {x∶T ′1 ∣ e′1} ∥ T2.

Case (C RefineL): We are given {y∶T ′1 ∣ e′1} ∥ {x∶T2 ∣ e2}. By inversion, we have T ′1 ∥ {x∶T2 ∣ e2}. By the IH, we
have T ′1 ∥ T2. By (C RefineL), we finish.

Lemma 48. If T1 ∥ T2, then T1 ∥ T2 {e/x} for any e and x.

Proof. Straightforward by induction on T1 ∥ T2.

Lemma 49 (Preservation). Suppose that ∅ ⊢ e ∶ T .

(1) If e ↝ e′, then ∅ ⊢ e′ ∶ T .

(2) If e Ð→ e′, then ∅ ⊢ e′ ∶ T .

Proof.

1. By induction on the typing derivation.

Case (T Const), (T Var), (T Blame), (T Abs), (T Cast), (T Pair), (T Ctr), (T Forget) or (T Exact):
Trivial because e does not step in the reduction relation.

Case (T App): We are given ∅ ⊢ e1 e2 ∶ T2 {e2/x} for some e1, e2, T2 and x. Without loss of generality, we
can suppose that x is fresh. By inversion, we have ∅ ⊢ e1 ∶ x∶T1 → T2 and ∅ ⊢ e2 ∶ T1 for some T1. By
case analysis on the reduction rule applied.

25

Case (R Beta): We are given (fix f(x∶T ′1)∶T ′2 = e12) v2 ↝ e12 {v2/x,fix f(x∶T ′1)= e12/f} for some f ,
T ′1, T

′
2, e12 and v2. Without loss of generality, we can suppose that f is fresh. By Lemma 40, we

have f ∶(x∶T ′1 → T ′2), x∶T ′1 ⊢ e12 ∶ T ′2 and f ∉ FV (T ′2) and x∶T ′1 → T ′2 ≡ x∶T1 → T2 for some T ′2.
Note that x (resp. f) does not occur in T ′1 (resp. T ′1 and T ′2). By Lemma 46 and inversion, we
have ∅ ⊢ x∶T ′1 → T ′2, and thus ∅ ⊢ T ′1. Because ∅ ⊢ e1 ∶ x∶T ′1 → T ′2 by Lemma 1 (symmetry) and
(T Conv), we have x∶T ′1 ⊢ e12 {e1/f} ∶ T ′2 by Lemma 33. Since T1 ≡ T ′1 by Lemma 35, we have
∅ ⊢ v2 ∶ T ′1 by (T Conv). By Lemma 33, ∅ ⊢ e12 {e1/f, v2/x} ∶ T ′2 {v2/x} (note that e1 is closed).
Since T2 ≡ T ′2 by Lemma 35, we have T2 {v2/x} ≡ T ′2 {v2/x} by Lemma 4 (3). Because ∅ ⊢ T2 {v2/x}
by Lemma 46, we have ∅ ⊢ e12 {e1/f, v2/x} ∶ T2 {v2/x} by Lemma 1 (symmetry) and (T Conv).

Case (R Base): We are given ⟨Bool⇐ Bool⟩ℓ v2 ↝ v2 for ℓ and v2. By Lemmas 41, 35 and 34, we have
T1 = T2 = Bool. Since T2 {e2/x} = Bool and so ∅ ⊢ v2 ∶ Bool, we finish.

Case (R Fun): We are given

⟨y∶T11 → T12 ⇐ y∶T21 → T22⟩ℓ v2 ↝ λy∶T11.(λz∶T21.⟨T12 ⇐ T22 {z/y}⟩ℓ (v2 z)) (⟨T21 ⇐ T11⟩ℓ y)

for some y, T11, T12, T21, T22, ℓ, v2 and z such that z is fresh. By Lemma 41, we have ∅ ⊢ y∶T11 → T12,
∅ ⊢ y∶T21 → T22, y∶T11 → T12 ∥ y∶T21 → T22 and x∶(y∶T21 → T22) → (y∶T11 → T12) ≡ x∶T1 → T2. Note
that x does not occur in y∶T11 → T12. By inversion of derivations, ∅ ⊢ T11, ∅ ⊢ T21, y∶T11 ⊢ T12,
y∶T21 ⊢ T22, T11 ∥ T21, and T12 ∥ T22.
Since T21 ∥ T11 by symmetry of the compatibility relation, we have ∅ ⊢ ⟨T21 ⇐ T11⟩ℓ ∶ T11 → T21

by (T Cast). Since ∅ ⊢ T11, we have y∶T11 ⊢ ⟨T21 ⇐ T11⟩ℓ ∶ T11 → T21 by Lemma 32. Since
y∶T11 ⊢ y ∶ T11 by (T Var), we have y∶T11 ⊢ ⟨T21 ⇐ T11⟩ℓ y ∶ T21 by (T App).
By Lemma 35, y∶T21 → T22 ≡ T1 and y∶T11 → T12 ≡ T2, and thus, by Lemma 35 (1), T1 = y∶T ′21 → T ′22
and T2 = y∶T ′11 → T ′12 for some T ′21, T

′
22, T

′
11 and T ′12. Since ∅ ⊢ v2 ∶ y∶T ′21 → T ′22 and ∅ ⊢ y∶T21 → T22,

we have ∅ ⊢ v2 ∶ y∶T21 → T22 by Lemma 1 (symmetry) and (T Conv). We have z∶T21 ⊢ v2 ∶ y∶T21 →
T22 by Lemma 32, and thus z∶T21 ⊢ v2 z ∶ T22 {z/y} by (T Var) and (T App).
Since y∶T21 ⊢ T22, we have z∶T21, y∶T21 ⊢ T22 and thus y∶T11, z∶T21 ⊢ T22 {z/y} by Lemmas 33 and
32. Since y∶T11, z∶T21 ⊢ T12 by Lemma 32, and T12 ∥ T22 {z/y} by Lemma 48, we have y∶T11, z∶T21 ⊢
⟨T12 ⇐ T22 {z/y}⟩ℓ ∶ T22 {z/y}→ T12 by (T Cast).
By Lemma 32 and (T App), y∶T11, z∶T21 ⊢ ⟨T12 ⇐ T22 {z/y}⟩ℓ (v2 z) ∶ T12. By Lemma 32 and
(T Abs), we have y∶T11 ⊢ λz∶T21.⟨T12 ⇐ T22 {z/y}⟩ℓ (v2 z) ∶ T21 → T12. (Note that z does not
occur T12.) Since y∶T11 ⊢ ⟨T21 ⇐ T11⟩ℓ y ∶ T21, by (T App) we have y∶T11 ⊢ (λz∶T21.⟨T12 ⇐
T22 {z/y}⟩ℓ (v2 z)) (⟨T21 ⇐ T11⟩ℓ y) ∶ T12. By Lemma 32 and (T Abs), ∅ ⊢ λy∶T11.(λz∶T21.⟨T12 ⇐
T22 {z/y}⟩ℓ (v2 z)) (⟨T21 ⇐ T11⟩ℓ y) ∶ (y∶T11 → T12).
Since y∶T11 → T12 ≡ T2, we have (y∶T11 → T12) {v2/x} ≡ T2 {v2/x} by Lemma 4 (3). Since (y∶T11 →
T12) {v2/x} = y∶T11 → T12 and ∅ ⊢ T2 {v2/x} by Lemma 46, we finish by (T Conv).

Case (R Prod): Similarly to the case for (R Fun). We are given

⟨y∶T11 ×T12 ⇐ y∶T21 ×T22⟩ℓ (v1, v2) ↝ (λy∶T11.(y, ⟨T12 ⇐ T22 {v1/y}⟩ℓ v2)) (⟨T11 ⇐ T21⟩ℓ v1)

for some y, T11, T12, T21, T22, ℓ, v1 and v2. Without loss of generality, we can suppose that y is
fresh. By Lemma 41, we have ∅ ⊢ y∶T11 ×T12 and ∅ ⊢ y∶T21 ×T22 and y∶T11 ×T12 ∥ y∶T21 ×T22 and
x∶(y∶T21 ×T22)→ y∶T11 ×T12 ≡ x∶T1 → T2. Note that x does not occur in y∶T11 ×T12. By inversion of
derivations, ∅ ⊢ T11 and ∅ ⊢ T21 and y∶T11 ⊢ T12 and y∶T21 ⊢ T22 and T11 ∥ T21 and T12 ∥ T22.
By Lemma 42, we have ∅ ⊢ v1 ∶ T ′21 and ∅ ⊢ v2 ∶ T ′22 {v1/y} and y∶T ′21 ⊢ T ′22 and y∶T ′21 ×T ′22 ≡
unref(T1) for some T ′21 and T ′22. Since y∶T21 ×T22 ≡ T1 by Lemma 35, we have y∶T21 ×T22 ≡
y∶T ′21 ×T ′22, and thus T21 ≡ T ′21 and T22 ≡ T ′22 by Lemma 36. Since ∅ ⊢ T21, we have ∅ ⊢ v1 ∶ T21 by
Lemma 1 (symmetry) and (T Conv). Therefore, we have ∅ ⊢ ⟨T11 ⇐ T21⟩ℓ v1 ∶ T11 by (T Cast)
and (T App).
Since y∶T21 ⊢ T22 and ∅ ⊢ v1 ∶ T21, we have y∶T11 ⊢ T22 {v1/y} by Lemmas 33 and 32. By
Lemma 48, T12 ∥ T22 {v1/y}. By (T Cast), we have y∶T11 ⊢ ⟨T12 ⇐ T22 {v1/y}⟩ℓ ∶ T22 {v1/y}→ T12.
Since T22 ≡ T ′22, we have T22 {v1/y} ≡ T ′22 {v1/y} by Lemma 4 (3). Since ∅ ⊢ T22 {v1/y} by
Lemma 33, we have ∅ ⊢ v2 ∶ T22 {v1/y} by Lemma 1 (symmetry) and (T Conv). By Lemma 32
and (T App), y∶T11 ⊢ ⟨T12 ⇐ T22 {v1/y}⟩ℓ v2 ∶ T12.
Let z be a fresh variable. Since z∶T11, y∶T11 ⊢ ⟨T12 ⇐ T22 {v1/y}⟩ℓ v2 ∶ T12 by Lemma 32, we have
z∶T11 ⊢ (⟨T12 ⇐ T22 {v1/y}⟩ℓ v2) {z/y} ∶ T12 {z/y} by Lemma 33. Since z∶T11 ⊢ z ∶ T11 by (T Var),

26

and z∶T11, y∶T11 ⊢ T12 by Lemmas 32 and 33, we have z∶T11 ⊢ (z, (⟨T12 ⇐ T22 {v1/y}⟩ℓ v2) {z/y}) ∶
y∶T11 ×T12 by Lemma 32 and (T Pair). By Lemmas 32 and 33,
y∶T11 ⊢ (z, (⟨T12 ⇐ T22 {v1/y}⟩ℓ v2) {z/y}) {y/z} ∶ (y∶T11 ×T12) {y/z}, that is,

y∶T11 ⊢ (y, (⟨T12 ⇐ T22 {v1/y}⟩ℓ v2)) ∶ (y∶T11 ×T12).

By Lemma 32 and (T Abs), ∅ ⊢ λy∶T11.(y, ⟨T12 ⇐ T22 {v1/y}⟩ℓ v2) ∶ T11 → y∶T11 ×T12. By
(T App), ∅ ⊢ (λy∶T11.(y, ⟨T12 ⇐ T22 {v1/y}⟩ℓ v2)) (⟨T11 ⇐ T21⟩ℓ v1) ∶ y∶T11 ×T12.
Since y∶T11 ×T12 ≡ T2 by Lemma 36, we have (y∶T11 ×T12) {v2/x} ≡ T2 {v2/x} by Lemma 4 (3).
Since (y∶T11 ×T12) {v2/x} = y∶T11 ×T12 and ∅ ⊢ T2 {v2/x} by Lemma 46, we finish by (T Conv).

Case (R Forget): We are given ⟨T ′1 ⇐ {y∶T ′2 ∣ e′2}⟩ℓ v2 ↝ ⟨T ′1 ⇐ T ′2⟩ℓ v2 for some T ′1, y, T
′
2, e

′
2 and v2.

Without loss of generality, we can suppose that y is fresh. By Lemma 41, we have ∅ ⊢ T ′1 and
∅ ⊢ {y∶T ′2 ∣ e′2} and T ′1 ∥ {y∶T ′2 ∣ e′2} and x∶{y∶T ′2 ∣ e′2} → T ′1 ≡ x∶T1 → T2. Note that x does not occur
in T ′1. By inversion and Lemma 47, ∅ ⊢ T ′2 and T ′1 ∥ T ′2.
By (T Cast), we have ∅ ⊢ ⟨T ′1 ⇐ T ′2⟩ℓ ∶ T ′2 → T ′1. Since {y∶T ′2 ∣ e′2} ≡ T1 by Lemma 35, we have
∅ ⊢ v2 ∶ {y∶T ′2 ∣ e′2} by Lemma 1 (symmetry) and (T Conv). By (T Forget), ∅ ⊢ v2 ∶ T ′2. Thus,
∅ ⊢ ⟨T ′1 ⇐ T ′2⟩ℓ v2 ∶ T ′1. Since T ′1 ≡ T2 by Lemma 35, T ′1 {v2/x} ≡ T2 {v2/x} by Lemma 4 (3). Since
T ′1 {v2/x} = T ′1, we have ∅ ⊢ ⟨T ′1 ⇐ T ′2⟩ℓ v2 ∶ T2 {v2/x} by Lemma 46 and (T Conv).

Case (R PreCheck): We are given ⟨{y∶T ′1 ∣ e′1}⇐ T ′2⟩ℓ v2 ↝ ⟨⟨{y∶T ′1 ∣ e′1}, ⟨T ′1 ⇐ T ′2⟩ℓ v2⟩⟩ℓ for some y, T ′1,
e′1, T

′
2, ℓ and v2. Without loss of generality, we can suppose that y is fresh. By Lemma 41, we have

∅ ⊢ {y∶T ′1 ∣ e′1} and ∅ ⊢ T ′2 and {y∶T ′1 ∣ e′1} ∥ T ′2 and x∶T ′2 → {y∶T ′1 ∣ e′1} ≡ x∶T1 → T2. Note that x does
not occur in {y∶T ′1 ∣ e′1}. By inversion and Lemma 47, ∅ ⊢ T ′1 and T ′1 ∥ T ′2.
By (T Cast), we have ∅ ⊢ ⟨T ′1 ⇐ T ′2⟩ℓ ∶ T ′2 → T ′1. Since T ′2 ≡ T1 by Lemma 35, we have
∅ ⊢ v2 ∶ T ′2 by (T Conv). Thus, by (T App), ∅ ⊢ ⟨T ′1 ⇐ T ′2⟩ℓ v2 ∶ T ′1. By (T WCheck),
∅ ⊢ ⟨⟨{y∶T ′1 ∣ e′1}, ⟨T ′1 ⇐ T ′2⟩ℓ v2⟩⟩ℓ ∶ {y∶T ′1 ∣ e′1}. Since {y∶T ′1 ∣ e′1} ≡ T2 by Lemma 35, we have
{y∶T ′1 ∣ e′1}{v2/x} ≡ T2 {v2/x}. Since {y∶T ′1 ∣ e′1}{v2/x} = {y∶T ′1 ∣ e′1}, we have ∅ ⊢ ⟨⟨{y∶T ′1 ∣ e′1}, ⟨T ′1 ⇐
T ′2⟩ℓ v2⟩⟩ℓ ∶ T2 {v2/x} by Lemma 46 and (T Conv).

Case (R Datatype): We are given

⟨τ1⟨e′1⟩⇐ τ2⟨e′2⟩⟩ℓC2⟨e′⟩v ↝ C1⟨e′1⟩(⟨T ′′1 {e′1/y1}⇐ T ′′2 {e′2/y2}⟩ℓ v)

for some τ1, e
′
1, τ2, e

′
2, ℓ, C2, e

′, v, C1, T
′′
1 , y1, T

′′
2 , and y2 such that τ1 ≠ τ2 or τ1 is not monomor-

phic, and C1 = δ(⟨τ1⟨e′1⟩ ⇐ τ2⟨e′2⟩⟩ℓC2⟨e′⟩v) and, for i ∈ {1,2}, ArgTypeOf (τi) = yi ∶T ′i and
CtrArgOf (Ci) = T ′′i .
Since the constructor choice function δ is well-formed, we find that C1 ∈ CompatCtrsOf (τ1,C2), that
is, C1 ∈ CtrsOf (τ1) and T ′′1 ∥ T ′′2 from well-formedness of the type definition environment. Also,
y1∶T ′1 ⊢ T ′′1 and y2∶T ′2 ⊢ T ′′2 from well-formedness of the type definition environment.
By Lemma 48, T ′′1 {e′1/y1} ∥ T ′′2 {e′2/y2}. By Lemma 41, we have ∅ ⊢ τ1⟨e′1⟩ and ∅ ⊢ τ2⟨e′2⟩ and
x∶τ2⟨e′2⟩→ τ1⟨e′1⟩ ≡ x∶T1 → T2. Note that x does not occur in τ1⟨e′1⟩. By inversion of derivations, and
Lemma 33, we have ∅ ⊢ T ′′1 {e′1/y1} and ∅ ⊢ T ′′2 {e′2/y2}. Thus by (T Cast), ∅ ⊢ ⟨T ′′1 {e′1/y1} ⇐
T ′′2 {e′2/y2}⟩ℓ ∶ T ′′2 {e′2/y2}→ T ′′1 {e′1/y1}.
By Lemma 43, ∅ ⊢ v ∶ T ′′2 {e′/y2} and τ2⟨e′⟩ ≡ unref(T1). Since τ2⟨e′2⟩ ≡ unref(T1) by Lemmas 35
and 39, we have τ2⟨e′⟩ ≡ τ2⟨e′2⟩ by Lemma 35 and Lemma 1 (transitivity). Thus, e′ ≡ e′2 by
Lemma 37. Since T ′′2 {e′/y2} ≡ T ′′2 {e′2/y2} by Lemma 3 (3), we have ∅ ⊢ v ∶ T ′′2 {e′2/y2} by
(T Conv). By (T App), we have ∅ ⊢ ⟨T ′′1 {e′1/y1}⇐ T ′′2 {e′2/y2}⟩ℓ v ∶ T ′′1 {e′1/y1}. By inversion of
∅ ⊢ τ1⟨e′1⟩, we have ∅ ⊢ e′1 ∶ T ′1. Thus, by (T Ctr), ∅ ⊢ C1⟨e′1⟩(⟨T ′′1 {e′1/y1} ⇐ T ′′2 {e′2/y2}⟩ℓ v) ∶
τ1⟨e′1⟩.
By Lemma 35, we have τ1⟨e′1⟩ ≡ T2. Since τ1⟨e′1⟩ {C2⟨e′⟩v/x} = τ1⟨e′1⟩, we have τ1⟨e1⟩ ≡ T2 {C2⟨e′⟩v/x}
by Lemma 4 (3). By Lemma 46 and (T Conv), we finish.

Case (R DatatypeMono): We are given ⟨τ ⇐ τ⟩ℓ v2 ↝ v2 for some τ , ℓ and v2. By Lemma 41,
x∶τ → τ ≡ x∶T1 → T2. Note that x does not occur in τ . By Lemma 35, τ ≡ T1 and τ ≡ T2, and so
T1 ≡ T2 by Lemma 1. Since T1 {v2/x} = T1 by Lemma 46, T1 ≡ T2 {v2/x} by Lemma 4 (3). Since
∅ ⊢ v2 ∶ T1, we have ∅ ⊢ v2 ∶ T2 {v2/x} by Lemma 46 and (T Conv).

Case (R DatatypeFail): We are given ⟨τ1⟨e′1⟩⇐ τ2⟨e′2⟩⟩ℓ v2 ↝ ⇑ℓ for some τ1, e
′
1, τ2, e

′
2, ℓ and v2. By

Lemma 46 and (T Blame), we finish.

27

Case (T Proj1): We are given ∅ ⊢ e1.1 ∶ T for some e1. By inversion, we have ∅ ⊢ e1 ∶ x∶T ×T2 for some x
and T2. The term steps only by (R Proj1): (v1, v2).1 ↝ v1 for some v1 and v2 such that e1 = (v1, v2).
By Lemma 42, we have ∅ ⊢ v1 ∶ T ′1 and x∶T ′1 ×T ′2 ≡ x∶T ×T2 for some T ′1 and T ′2. By Lemma 36, we
have T ′1 ≡ T . Since ∅ ⊢ T by Lemma 46, we have ∅ ⊢ v1 ∶ T by (T Conv).

Case (T Proj2): We are given ∅ ⊢ e2.2 ∶ T2 {e2.1/x} for some e2, T2 and x. By inversion, we have ∅ ⊢ e2 ∶
x∶T1 ×T2 for some T1. The term steps only by (R Proj2): (v1, v2).2 ↝ v2 for some v1 and v2 such that
e2 = (v1, v2).
By Lemma 42, we have ∅ ⊢ v2 ∶ T ′2 {v1/x} and x∶T ′1 ×T ′2 ≡ x∶T1 ×T2 for some T ′1 and T ′2. Since
(v1, v2).1 Ð→ v1 by (E Red)/(R Proj1), we have T ′2 {(v1, v2).1/x} ≡ T ′2 {v1/x} by Lemmas 2 and
3 (3). Since T ′2 ≡ T2 by Lemma 36, we have T ′2 {(v1, v2).1/x} ≡ T2 {(v1, v2).1/x} by Lemma 4 (3), and
thus T ′2 {v1/x} ≡ T2 {(v1, v2).1/x} by Lemma 1 (symmetry and transitivity). Since ∅ ⊢ T2 {(v1, v2).1/x}
by Lemma 46, we have ∅ ⊢ v2 ∶ T2 {(v1, v2).1/x} by (T Conv).

Case (T Match): We are given ∅ ⊢ match e0withCi xi → ei
i ∈{1,...,n} ∶ T for some e0 and Ci xi → ei

i ∈{1,...,n}
.

By inversion, we have ∅ ⊢ e0 ∶ τ⟨e′′⟩ and ∅ ⊢ T and CtrsOf (τ) = Ci
i ∈{1,...,n}

and ArgTypeOf (τ) =
y∶T ′ and, for i ∈ {1, ..., n}, CtrArgOf (Ci) = Ti and xi ∶Ti {e′′/y} ⊢ ei ∶ T . The term steps only by
(R Match):

matchCj ⟨e′′′⟩v′withCi xi → ei
i ∈{1,...,n} ↝ ej {v′/xj}

for some j ∈ {1, ..., n}, e′′′, v′ such that e0 = Cj ⟨e′′′⟩v′.
By Lemma 43, we have ∅ ⊢ v′ ∶ Tj {e′′′/y} and τ⟨e′′′⟩ ≡ τ⟨e′′⟩. Since e′′′ ≡ e′′ by Lemma 37, we
have Tj {e′′′/y} ≡ Tj {e′′/y} by Lemma 3 (3). Since xj ∶Tj {e′′/y} ⊢ ej ∶ T , we have ∅ ⊢ Tj {e′′/y} by
Lemma 46 and inversion. Thus we have ∅ ⊢ v′ ∶ Tj {e′′/y} by (T Conv). Since xj does not occur in T ,
we have ∅ ⊢ ej {v′/xj} ∶ T by Lemma 33.

Case (T If): We are given ∅ ⊢ if e1 then e2 else e3 ∶ T for some e1, e2 and e3. By inversion, we have ∅ ⊢ e2 ∶ T
and ∅ ⊢ e3 ∶ T . Only two reduction rules can be applied to the term: (R IfTrue) and (R IfFalse).
The case of (R IfTrue) follows from ∅ ⊢ e2 ∶ T , and (R IfFalse) from ∅ ⊢ e3 ∶ T .

Case (T WCheck): We are given ∅ ⊢ ⟨⟨{x∶T1 ∣ e1}, e2⟩⟩ℓ ∶ {x∶T1 ∣ e1} for some x, T1, e1, e2 and ℓ. By inversion,
we have ∅ ⊢ {x∶T1 ∣ e1} and ∅ ⊢ e2 ∶ T1. The term steps only by (R Check): ⟨⟨{x∶T1 ∣ e1}, v2⟩⟩ℓ ↝
⟨{x∶T1 ∣ e1}, e1 {v2/x}, v2⟩ℓ for some v2 such that e2 = v2.

From ∅ ⊢ {x∶T1 ∣ e1}, we find that x∶T1 ⊢ e1 ∶ Bool. By Lemma 33, ∅ ⊢ e1 {v2/x} ∶ Bool. Because
e1 {v2/x} Ð→∗ e1 {v2/x}, we finish.

Case (T ACheck): We are given ∅ ⊢ ⟨{x∶T1 ∣ e1}, e2, v⟩ℓ ∶ {x∶T1 ∣ e1} for some x, T1, e1, e2 and v. By
inversion, we have ∅ ⊢ {x∶T1 ∣ e1} and ∅ ⊢ v ∶ T1 and e1 {v/x} Ð→∗ e2. Only two reduction rules can
be applied to the term: (R OK) and (R Fail). The case of (R OK) follows from (T Exact), and
(R Fail) from (T Blame).

Case (T Conv): By inversion, we have ∅ ⊢ e ∶ T ′ and T ′ ≡ T and ∅ ⊢ T for some T ′. If e steps to e′, then
we have ∅ ⊢ e′ ∶ T ′ by the IH. By (T Conv), we finish.

2. By induction on the typing derivation. If e Ð→ ⇑ℓ by (E Blame), then we finish by Lemma 46 and
(T Blame). In the following, we suppose that e steps by (E Red).

Case (T Const), (T Var), (T Blame), (T Abs), (T Cast), (T Forget) or (T Exact): Trivial because
e does not step in the evaluation relation.

Case (T App): We are given ∅ ⊢ e1 e2 ∶ T2 {e2/x} for some e1, e2, T2 and x. By inversion, we have
∅ ⊢ e1 ∶ x∶T1 → T2 and ∅ ⊢ e2 ∶ T1 for some T1.

If e1 is not a value, then e1 Ð→ e′1 for some e′1 (noting e1 is not a blaming; if so, (E Blame) is applied
to e1 e2, but it is contradictory). By the IH, ∅ ⊢ e′1 ∶ x∶T1 → T2 and thus ∅ ⊢ e′1 e2 ∶ T2 {e2/x} by
(T App).

If e1 is a value but e2 is not, then e2 Ð→ e′2 for some e′2. By the IH, ∅ ⊢ e′2 ∶ T1 and thus ∅ ⊢
e1 e

′
2 ∶ T2 {e′2/x} by (T App). Because T2 {e′2/x} ≡ T2 {e2/x} by Lemmas 2, 3 (3) and 1, we have

∅ ⊢ e1 e
′
2 ∶ T2 {e2/x} by Lemma 46 and (T Conv).

Otherwise, if e1 and e2 are values, then we finish by the case (1).

28

Case (T Pair): We are given ∅ ⊢ (e1, e2) ∶ x∶T1 ×T2 for some e1, e2, x, T1 and T2. By inversion, we have
∅ ⊢ e1 ∶ T1 and ∅ ⊢ e2 ∶ T2 {e1/x} and x∶T1 ⊢ T2.

If e1 is not a value, then e1 Ð→ e′1 for some e′1. By the IH, ∅ ⊢ e′1 ∶ T1 and thus ∅ ⊢ T2 {e′1/x} by
Lemma 33. Because T2 {e1/x} ≡ T2 {e′1/x} by Lemmas 2 and 3 (3), we have ∅ ⊢ e2 ∶ T2 {e′1/x} by
(T Conv). Thus, by (T Pair), ∅ ⊢ (e′1, e2) ∶ x∶T1 ×T2.

If e1 is a value but e2 is not, then e2 Ð→ e′2 for some e′2. By the IH, ∅ ⊢ e′2 ∶ T2 {e1/x} and thus
∅ ⊢ (e1, e′2) ∶ x∶T1 ×T2.

Otherwise, if e1 and e2 are values, then so is (e1, e2).
Case (T Proj1): We are given ∅ ⊢ e1.1 ∶ T for some e1. By inversion, we have ∅ ⊢ e1 ∶ x∶T ×T2 for some

x and T2. If e1 is not a value, then e1 Ð→ e′1 for some e′1. By the IH, ∅ ⊢ e′1 ∶ x∶T ×T2 and thus
∅ ⊢ e′1.1 ∶ T by (T Proj1). Otherwise, if e1 is a value, we finish by the case (1).

Case (T Proj2): We are given ∅ ⊢ e2.2 ∶ T2 {e2.1/x} for some e2, T2 and x. By inversion, we have ∅ ⊢ e2 ∶
x∶T1 ×T2 for some T1. If e2 is not a value, then e2 Ð→ e′2 for some e′2. By the IH, ∅ ⊢ e′2 ∶ x∶T ×T2 and
thus ∅ ⊢ e′2.2 ∶ T2 {e′2.1/x} by (T Proj2). Because T2 {e′2.1/x} ≡ T2 {e2.1/x} by Lemmas 2, 3 (3) and
1, we have ∅ ⊢ e′2.2 ∶ T2 {e2.1/x} by Lemma 46 and (T Conv). Otherwise, if e2 is a value, we finish by
the case (1).

Case (T If): We are given ∅ ⊢ if e1 then e2 else e3 ∶ T for some e1, e2 and e3. By inversion, we have ∅ ⊢
e1 ∶ Bool and ∅ ⊢ e2 ∶ T and ∅ ⊢ e3 ∶ T . If e1 is not a value, e1 Ð→ e′1 for some e′1. By the IH,
∅ ⊢ e′1 ∶ Bool and thus ∅ ⊢ if e′1 then e2 else e3 ∶ T by (T If). Otherwise, if e1 is a value, then we finish
by the case (1).

Case (T Ctr): We are given ∅ ⊢ C⟨e1⟩e2 ∶ τ⟨e1⟩ for some C, e1, e2 and τ . By inversion, we have
TypSpecOf (C) = x∶T1 ↣ T2 ↣ τ⟨x⟩ and ∅ ⊢ e1 ∶ T1 and ∅ ⊢ e2 ∶ T2 {e1/x} and ∅ ⊢ τ⟨e1⟩. If e2
is not a value, then e2 Ð→ e′2 for some e′2. By the IH, ∅ ⊢ e′2 ∶ T2 {e1/x} and thus ∅ ⊢ C⟨e1⟩e′2 ∶ τ⟨e1⟩
by (T Ctr). Otherwise, if e2 is a value, then so is C⟨e1⟩e2.

Case (T Match): We are given ∅ ⊢ match e0withCi xi → ei
i ∶ T . By inversion, we have ∅ ⊢ e0 ∶ τ⟨e′′⟩

and ∅ ⊢ T and CtrsOf (τ) = Ci
i
and ArgTypeOf (τ) = y∶T ′ and, for all i , CtrArgOf (Ci) = Ti and

xi ∶Ti {e′′/y} ⊢ ei ∶ T . If e0 is not a value, then e0 Ð→ e′0 for some e′0. By the IH, ∅ ⊢ e′0 ∶ τ⟨e′′⟩ and
thus ∅ ⊢ match e′0withCi xi → ei

i ∶ T by (T Match). Otherwise, if e0 is a value, then we finish by the
case (1).

Case (T WCheck): We are given ∅ ⊢ ⟨⟨{x∶T1 ∣ e1}, e2⟩⟩ℓ ∶ {x∶T1 ∣ e1} for some x, T1, e1, e2 and ℓ. By inversion,
we have ∅ ⊢ {x∶T1 ∣ e1} and ∅ ⊢ e2 ∶ T1. If e2 is not a value, then e2 Ð→ e′2 for some e′2. By the IH,
∅ ⊢ e′2 ∶ T1 and thus ∅ ⊢ ⟨⟨{x∶T1 ∣ e1}, e′2⟩⟩ℓ ∶ {x∶T1 ∣ e1} by (T WCheck). Otherwise, if e2 is a value,
then we finish by the case (1).

Case (T ACheck): We are given ∅ ⊢ ⟨{x∶T1 ∣ e1}, e2, v⟩ℓ ∶ {x∶T1 ∣ e1} for some x, T1, e1, e2, v and ℓ. By
inversion, we have ∅ ⊢ {x∶T1 ∣ e1} and ∅ ⊢ v ∶ T1 and ∅ ⊢ e2 ∶ Bool and e1 {v/x} Ð→∗ e2. If e2 is
not a value, then e2 Ð→ e′2 for some e′2. By the IH, ∅ ⊢ e′2 ∶ Bool. Because e1 {v/x} Ð→∗ e′2, we have
∅ ⊢ ⟨{x∶T1 ∣ e1}, e′2, v⟩ℓ ∶ {x∶T1 ∣ e1}. Otherwise, if e2 is a value, then we finish by the case (1).

Case (T Conv): By inversion, we have ∅ ⊢ e ∶ T ′ and T ′ ≡ T and ∅ ⊢ T for some T ′. Since e Ð→ e′, we
have ∅ ⊢ e′ ∶ T ′ by the IH. By (T Conv), ∅ ⊢ e′ ∶ T .

Definition 6. We define a function refines from types to sets of pairs of a bound variable and a term, as follows.

refines ({x∶T ∣ e}) = {(x, e)} ∪ refines (T)
refines (T) = ∅ (If T is not a refinement type.)

In addition, we write ⊢ v ∶ refines (T) if (1) v is a closed value, and (2) for any (x, e) ∈ refines (T), e{v/x} Ð→∗
true.

Lemma 50.

(1) If T1 ⇛ T2, then ⊢ v ∶ refines (T1) iff ⊢ v ∶ refines (T2).

(2) If T1 ≡ T2, then ⊢ v ∶ refines (T1) iff ⊢ v ∶ refines (T2).

29

Proof.

1. From T1 ⇛ T2, there exist some T , x, e′1 and e′2 such that T1 = T {e′1/x} and T2 = T {e′2/x} and e′1 Ð→ e′2.
By induction on T .

Case T = Bool, y∶T ′1 → T ′2, y∶T ′1 ×T ′2, or τ⟨e⟩: Obvious because refines (T1) and refines (T2) are empty.

Case T = {y∶T ′ ∣ e′}: Without loss of generality, we suppose that y is a fresh variable. Since T ′ {e′1/x} ⇛
T ′ {e′2/x}, it suffices to show that e′ {e′1/x}{v/y} Ð→∗ true iff e′ {e′2/x}{v/y} Ð→∗ true by the IH. For
i ∈ {1,2}, since v and e′i are closed values (recall that the evaluation relation is defined over closed
terms), we have e′ {e′i/x}{v/y} = e′ {v/y}{e′i/x}. Since e′ {v/y}{e′1/x} ⇛ e′ {v/y}{e′2/x}, we finish by
Lemma 30.

2. By induction on T1 ≡ T2.

Case T1 ⇛ T2: By the case (1).

Case transitivity and symmetry: By the IH(s).

Lemma 51. If ∅ ⊢ v ∶ T , then ⊢ v ∶ refines (T).

Proof. By induction on ∅ ⊢ v ∶ T .

Case (T Const), (T Abs), (T Cast), (T Pair) or (T Ctr): Obvious because refines (T) = {}.

Case (T Var), (T Blame), (T App), (T Proj1), (T Proj2), (T Match), (T If), (T WCheck) or (T ACheck):
Contradictory.

Case (T Conv): By inversion, we have ∅ ⊢ v ∶ T ′ for some T ′ such that T ′ ≡ T . By the IH and Lemma 50 (2),
we finish.

Case (T Forget): By inversion, we have ∅ ⊢ v ∶ {x∶T ∣ e} for some x and e. By the IH, we finish.

Case (T Exact): We are given ∅ ⊢ v ∶ {x∶T ′ ∣ e′} for some x, T ′ and e′. By inversion, we have ∅ ⊢ v ∶ T ′ and
e′ {v/x} Ð→∗ true. Since refines ({x∶T ′ ∣ e′}) = refines (T ′) ∪ {(x, e′)}, we finish by the IH.

Theorem 1 (Type Soundness). If ∅ ⊢ e ∶ T , then

1. e Ð→∗ v for some v such that ∅ ⊢ v ∶ T and ⊢ v ∶ refines (T);

2. e Ð→∗ ⇑ℓ for some ℓ; or

3. there is an infinite sequence of evaluation e Ð→ e1 Ð→ ⋯.

Proof. Suppose that e Ð→∗ e′ for some e′ such that e′ cannot reduce. We show the theorem by mathematical
induction on the number of evaluation steps of e.

1. 0: We know that e cannot reduce. Since ∅ ⊢ e ∶ T , we find that e is a value or a blaming by Lemma 45.
Moreover, if e is a value, then ⊢ e ∶ refines (T) by Lemma 51.

2. i + 1: We are given e Ð→ e′′ Ð→i e′ for some e′′. By Lemma 49 (2), ∅ ⊢ e′′ ∶ T and thus we finish by the
IH.

30

Trans
input:
fix f(y∶T,x∶int list)= matchxwith []→ e1 ∣ z1 ∶∶ z2 → e2
returns:

1 let τ be a fresh type name in
2 let {Ti}i =

{z1∶int×{z2∶T0 ∣ e0}
(eopt, e) ∈ GenContracts (e2),
(T0, e0) = Aux(τ, eopt, e)

} in

3 let D and Di
i
be fresh constructor names, and

z be a fresh variable in

4 type τ ⟨y∶T ⟩ =D ∥ [] ∶ {z∶unit ∣ e1} ∣Di ∥ (∶∶) ∶ Ti

i

where
Aux(τ, eopt, e) =
let e′ = e{fix f(y∶T,x∶int list)= .../f} in
match eopt with
∣ Some e′′ → (τ⟨e′′⟩, let z2 = ⟨int list⇐ τ⟨e′′⟩⟩ℓ z2 in e′)
∣ None→ (int list, e′)

Figure 3: Translation.

5 Translation

We assume two things through this section. First, type definition environments include int list. Second, we make
type definition environment as well as constructor choice function explicit sometimes; we write ⟨Σ, δ⟩; Γ ⊢ e ∶ T ,
⟨Σ, δ⟩; Γ ⊢ T , and ⟨Σ, δ⟩ ⊢ Γ to expose both in typing judgments and δ ⊢ e1 Ð→ e2 and δ ⊢ e1 Ð→∗ e2 to expose
constructor choice functions in evaluation. We still assume that type definition environments and constructor choice
functions are well formed.

5.1 Definition

We define a class of predicate functions which can be given to the translation.

Definition 7. A recursive predicate function F = fix f(y∶T,x∶int list)= matchxwith [] → e1 ∣ z1 ∶∶ z2 → e2 is
translatable under Σ if

� (Σ,∅);∅ ⊢ F ∶ T → int list→ Bool,

� (Σ,∅); y∶T ⊢ e1 ∶ Bool, and

� (Σ,∅); f ∶T → int list→ Bool, y∶T, z1∶int, z2∶int list ⊢ e2 ∶ Bool.

We omit Σ if it is clear from the context or not important.

The empty constructor choice function means that F does not contain run-time terms. We refer to metasymbols
(f , y, x, e1, etc.) included by definition of F as ones with subscript F . For example, y in F is written as yF when
we want to emphasize that it is from F .

The translation algorithm Trans is shown in Figure 3, where uses the auxiliary function GenContracts defined
in Figure 4.

5.2 Static Correctness

We first show that the new datatype generated from a translatable function by the translation algorithm is well
formed.

Lemma 52 (Type Definition Weakening). Let ς be a type definition.

(1) If ⟨Σ, δ⟩; Γ ⊢ e ∶ T , then ⟨Σ, ς, δ⟩; Γ ⊢ e ∶ T .

31

GenContracts (true) = {(None, true)} GenContracts (false) = ∅
GenContracts (if f e1 z2 then e2 else e3) = {(Some e1, e2)} ∪

{(eopt, if f e1 z2 then false else e′3) ∣ (eopt, e′3) ∈ GenContracts (e3)}
(if FV (e1) ⊆ {y, z1})

GenContracts (if e1 then e2 else e3) = {(eopt, if e1 then e′2 else false) ∣ (eopt, e′2) ∈ GenContracts (e2)} ∪
{(eopt, if e1 then false else e′3) ∣ (eopt, e′3) ∈ GenContracts (e3)}

(if a term of the form f e z2 occurs in e2 or e3)

GenContracts (match e0withCi xi → ei
i ∈{1,...,n}) = ⋃j ∈{1,...,n}{(eopt,match e0withCi xi → e′i

i ∈{1,...,n}
) ∣

(eopt, e′j) ∈ GenContracts (ej) ∧ ∀i ≠ j . e′i = false}
(if a term of the form f e z2 occurs in some ei)

GenContracts (e) = {(None, e)} (otherwise)

Figure 4: Generation of base contracts and argument terms to a manifest datatype.

(2) If ⟨Σ, δ⟩; Γ ⊢ T , then ⟨Σ, ς, δ⟩; Γ ⊢ T .

(3) If ⟨Σ, δ⟩ ⊢ Γ, then ⟨Σ, ς, δ⟩ ⊢ Γ.

Proof. Straightforward by induction on each derivation.

Definition 8 (Free Variables in Typing Contexts). We write FV (Γ) to denote the set of free variables in a typing
context Γ. Formally, it is defined as follows:

FV (∅) = ∅
FV (Γ, x∶T) = FV (Γ) ∪ (FV (T)/dom (Γ))

where dom (Γ) means the set of binding variables in Γ.

Lemma 53 (Strengthening).

(1) If Γ1, x∶T ′,Γ2 ⊢ e ∶ T and x ∉ FV (Γ2) ∪ FV (e), then Γ1,Γ2 ⊢ e ∶ T .

(2) If Γ1, x∶T ′,Γ2 ⊢ T and x ∉ FV (Γ2) ∪ FV (T), then Γ1,Γ2 ⊢ T .

(3) If ⊢ Γ1, x∶T ′,Γ2 and x ∉ FV (Γ2), then ⊢ Γ1,Γ2.

Proof. By induction on each derivation. The interesting cases are for (T Abs), (T App) and (T Match).

1. By case analysis on the rule applied last.

Case (T Const): We are given Γ1, x∶T ′,Γ2 ⊢ c ∶ Bool. By inversion, we have ⊢ Γ1, x∶T ′,Γ2. By the IH,
⊢ Γ1,Γ2 and thus Γ1,Γ2 ⊢ c ∶ Bool by (T Const).

Case (T Var): We are given Γ1, x∶T ′,Γ2 ⊢ y ∶ T . By inversion, we have ⊢ Γ1, x∶T ′,Γ2 and y∶T ∈ Γ1, x∶T ′,Γ2.
By the IH, ⊢ Γ1,Γ2. We find that x ≠ y from x ∉ FV (y). Thus, Γ1,Γ2 ⊢ y ∶ T by (T Var).

Case (T Blame): We are given Γ1, x∶T ′,Γ2 ⊢ ⇑ℓ ∶ T . By inversion, we have ⊢ Γ1, x∶T ′,Γ2 and ∅ ⊢ T . By
the IH, ⊢ Γ1,Γ2 and thus Γ1,Γ2 ⊢ ⇑ℓ ∶ T by (T Blame).

Case (T Abs): We are given Γ1, x∶T ′,Γ2 ⊢ fix f(y∶T1)∶T2 = e2 ∶ y∶T1 → T2. Without loss of generality, we can
suppose that f and y are fresh for x. By inversion, we have Γ1, x∶T ′,Γ2, f ∶(y∶T1 → T2), y∶T1 ⊢ e2 ∶ T2.
Since x ∉ FV (Γ2) ∪ FV (fix f(y∶T1)∶T2 = e2), we find that x ∉ FV (Γ2, f ∶(y∶T1 → T2), y∶T1) ∪ FV (e2).
Note that, thanks to type annotation T2 in the lambda abstraction, we can find x ∉ FV (T2). Thus, by
the IH, Γ1,Γ2, f ∶(y∶T1 → T2), y∶T1 ⊢ e2 ∶ T2. By (T Abs), we finish.

Case (T Cast): We are given Γ1, x∶T ′,Γ2 ⊢ ⟨T1 ⇐ T2⟩ℓ ∶ T2 → T1. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ T1

and Γ1, x∶T ′,Γ2 ⊢ T2 and T1 ∥ T2. Since x ∉ FV (Γ2) ∪ FV (⟨T1 ⇐ T2⟩ℓ), we find that x ∉ FV (Γ2) ∪
FV (T1) ∪ FV (T2). Thus, by the IHs, Γ1,Γ2 ⊢ T1 and Γ1,Γ2 ⊢ T2. By (T Cast), we finish.

32

Case (T App): We are given Γ1, x∶T ′,Γ2 ⊢ e1 e2 ∶ T2 {e2/y}. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ e1 ∶ y∶T1 →
T2 and Γ1, x∶T ′,Γ2 ⊢ e2 ∶ T1. Since x ∉ FV (Γ2)∪FV (e1 e2), we find that x ∉ FV (Γ2)∪FV (e1)∪FV (e2).
Thus, by the IHs, Γ1,Γ2 ⊢ e1 ∶ y∶T1 → T2 and Γ1,Γ2 ⊢ e2 ∶ T1. By (T App), we finish.

Case (T Pair): We are given Γ1, x∶T ′,Γ2 ⊢ (e1, e2) ∶ y∶T1 ×T2. Without loss of generality, we can suppose
that y is fresh for x. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ e1 ∶ T1 and Γ1, x∶T ′,Γ2 ⊢ e2 ∶ T2 {e1/y} and
Γ1, x∶T ′,Γ2, y∶T1 ⊢ T2. Since x ∉ FV (Γ2) ∪ FV ((e1, e2)), we find that x ∉ FV (Γ2) ∪ FV (e1) ∪ FV (e2).
Thus, by the IHs, Γ1,Γ2 ⊢ e1 ∶ T1 and Γ1,Γ2 ⊢ e2 ∶ T2 {e1/y}. By Lemma 46, x ∉ FV (T1) ∪ FV (T2).
Thus, by the IH, Γ1,Γ2, y∶T1 ⊢ T2. By (T Pair), we finish.

Case (T Proj1): We are given Γ1, x∶T ′,Γ2 ⊢ e1.1 ∶ T . By inversion, we have Γ1, x∶T ′,Γ2 ⊢ e1 ∶ y∶T1 ×T2.
Since x ∉ FV (Γ2)∪FV (e1.1), we find that x ∉ FV (Γ2)∪FV (e1). Thus, by the IH, Γ1,Γ2 ⊢ e1 ∶ y∶T1 ×T2.
By (T Proj1), we finish.

Case (T Proj2): We are given Γ1, x∶T ′,Γ2 ⊢ e2.2 ∶ T2 {e2.1/y}. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ e2 ∶
y∶T1 ×T2. Since x ∉ FV (Γ2) ∪ FV (e2.2), we find that x ∉ FV (Γ2) ∪ FV (e2). Thus, by the IH, Γ1,Γ2 ⊢
e2 ∶ y∶T1 ×T2. By (T Proj2), we finish.

Case (T Ctr): We are given [G1, x ∶ T ′,G2∣ − Ce1e2 ∶ te1]. By inversion, we have TypSpecOf (C) = y∶T1 ↣
T2 ↣ τ⟨y⟩ and Γ1, x∶T ′,Γ2 ⊢ e1 ∶ T1 and Γ1, x∶T ′,Γ2 ⊢ e2 ∶ T2 {e1/y} and Γ1, x∶T ′,Γ2 ⊢ τ⟨e1⟩. Since
x ∉ FV (Γ2)∪FV (C⟨e1⟩e2), we find that x ∉ FV (Γ2)∪FV (e1)∪FV (e2). Thus, by the IHs, Γ1,Γ2 ⊢ e1 ∶ T1

and Γ1,Γ2 ⊢ T2 {e1/y} and Γ1,Γ2 ⊢ τ⟨e1⟩. By (T Ctr), we finish.

Case (T Match): We are given Γ1, x∶T ′,Γ2 ⊢ match e0withCi yi → ei
i ∶ T . We can suppose that each yi is

fresh for x. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ e0 ∶ τ⟨e′⟩ and Γ1, x∶T ′,Γ2 ⊢ T and CtrsOf (τ) = Ci
i
and

ArgTypeOf (τ) = y∶T ′′ and for any i , CtrArgOf (Ci) = Ti and Γ1, x∶T ′,Γ2, yi ∶Ti {e′/y} ⊢ ei ∶ T . Since

x ∉ FV (Γ2) ∪ FV (match e0withCi yi → ei
i), we find that x ∉ FV (Γ2) ∪ FV (e0) ∪ ⋃i FV (ei). Thus, by

the IH, Γ1,Γ2 ⊢ e0 ∶ τ⟨e′⟩. By Lemma 46 and its inversion, x ∉ FV (e′). From well-formedness of the
type definition environment, x ∉ FV (Ti). Thus, by the IHs, for any i , Γ1,Γ2, yi ∶Ti {e′/y} ⊢ ei ∶ T . By
Lemma 46, x ∉ FV (T) (noting τ has at least one constructor from well-formedness of the type definition
environment). By the IH, Γ1,Γ2 ⊢ T . By (T Match), we finish.

Case (T If): We are given Γ1, x∶T ′,Γ2 ⊢ if e1 then e2 else e3 ∶ Bool. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ e1 ∶
Bool and Γ1, x∶T ′,Γ2 ⊢ e2 ∶ T and Γ1, x∶T ′,Γ2 ⊢ e3 ∶ T . Since x ∉ FV (Γ2) ∪ FV (if e1 then e2 else e3), we
find that x ∉ FV (Γ2) ∪ FV (e1) ∪ FV (e2) ∪ FV (e3). By the IHs, Γ1,Γ2 ⊢ e1 ∶ Bool and Γ1,Γ2 ⊢ e2 ∶ T
and Γ1,Γ2 ⊢ e3 ∶ T . By (T If), we finish.

Case (T ACheck): We are given Γ1, x∶T ′,Γ2 ⊢ ⟨{y∶T1 ∣ e1}, e2, v⟩ℓ ∶ {y∶T1 ∣ e1}. By inversion, we have ⊢
Γ1, x∶T ′,Γ2 and ∅ ⊢ {y∶T1 ∣ e1} and ∅ ⊢ v ∶ T1 and ∅ ⊢ e2 ∶ Bool and e1 {v/y} Ð→∗ e2. By the IH,
⊢ Γ1,Γ2. By (T ACheck), we finish.

Case (T WCheck): We are given Γ1, x∶T ′,Γ2 ⊢ ⟨⟨{y∶T1 ∣ e1}, e2⟩⟩ℓ ∶ {y∶T1 ∣ e1}. By inversion, we have ⊢
Γ1, x∶T ′,Γ2 and ∅ ⊢ {y∶T1 ∣ e1} and ∅ ⊢ e2 ∶ T1. By the IH, ⊢ Γ1,Γ2. By (T ACheck), we finish.

Case (T Conv): By inversion, we have ⊢ Γ1, x∶T ′,Γ2 and ∅ ⊢ e ∶ T ′′ and T ′′ ≡ T and ∅ ⊢ T . By the IH,
⊢ Γ1,Γ2. By (T Conv), we finish.

Case (T Forget): We are given Γ1, x∶T ′,Γ2 ⊢ v ∶ T . By inversion, we have ⊢ Γ1, x∶T ′,Γ2 and ∅ ⊢ v ∶
{y∶T ∣ e′}. By the IH, ⊢ Γ1,Γ2. By (T Forget), we finish.

Case (T Exact): We are given Γ1, x∶T ′,Γ2 ⊢ v ∶ {y∶T ′′ ∣ e′′}. By inversion, we have ⊢ Γ1, x∶T ′,Γ2 and
∅ ⊢ v ∶ T ′′ and ∅ ⊢ {y∶T ′′ ∣ e′′} and e′′ {v/y} Ð→∗ true. By the IH, ⊢ Γ1,Γ2. By (T Exact), we finish.

2. By case analysis on the rule applied last.

Case (WT Base): We are given Γ1, x∶T ′,Γ2 ⊢ Bool. By the IH and (WT Base), we finish.

Case (WT Fun): We are given Γ1, x∶T ′,Γ2 ⊢ y ∶ T1 → T2. Without loss of generality, we can suppose
that y is fresh for x. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ T1 and Γ1, x∶T ′,Γ2, y∶T1 ⊢ T2. Since x ∉
FV (Γ2) ∪ FV (y∶T1 → T2), we find that x ∉ FV (Γ2) ∪ FV (T1) ∪ FV (T2). By the IHs, Γ1,Γ2 ⊢ T1 and
Γ1,Γ2, y∶T1 ⊢ T2. By (WT Fun), we finish.

33

Case (WT Prod): We are given Γ1, x∶T ′,Γ2 ⊢ y∶T1 ×T2. Without loss of generality, we can suppose that y
is fresh for x. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ T1 and Γ1, x∶T ′,Γ2, y∶T1 ⊢ T2. Since x ∉ FV (Γ2) ∪
FV (y∶T1 ×T2), we find that x ∉ FV (Γ2)∪FV (T1)∪FV (T2). By the IHs, Γ1,Γ2 ⊢ T1 and Γ1,Γ2, y∶T1 ⊢ T2.
By (WT Prod), we finish.

Case (WT Refine): We are given Γ1, x∶T ′,Γ2 ⊢ {y∶T ′′ ∣ e′′}. Without loss of generality, we can suppose
that y is fresh for x. By inversion, we have Γ1, x∶T ′,Γ2 ⊢ T ′′ and Γ1, x∶T ′,Γ2, y∶T ′′ ⊢ e′′ ∶ Bool. Since
x ∉ FV (Γ2)∪FV ({y∶T ′′ ∣ e′′}), we find that x ∉ FV (Γ2)∪FV (T ′′)∪FV (e′′). Thus, by the IHs, Γ1,Γ2 ⊢ T ′′

and Γ1,Γ2, y∶T ′′ ⊢ e′′ ∶ Bool. By (WT Refine), we finish.

Case (WT Datatype): We are given Γ1, x∶T ′,Γ2 ⊢ τ⟨e′⟩. By the IH and (WT Datatype), we finish.

3. By case analysis on the rule applied last.

Case (WC Empty): Obvious.

Case (WC ExtendVar): If Γ2 = ∅, then, by inversion, we have ⊢ Γ1 and thus we finish. Otherwise, if Γ2 =
Γ′2, y∶T ′′, then, by inversion, ⊢ Γ1, x∶T ′,Γ′2 and Γ1, x∶T ′,Γ′2 ⊢ y ∶ T ′′. By the IHs and (WC ExtendVar),
we finish.

Lemma 54 (Application Inversion). If Γ ⊢ e1 e2 ∶ T , then

� Γ ⊢ e1 ∶ x∶T1 → T2,

� Γ ⊢ e2 ∶ T1, and

� T2 {e2/x} ≡ T

for some x, T1 and T2.

Proof. Similarly to Lemma 40, by induction on the typing derivation. Only two rules can be applied to the
application.

Case (T App): Since T = T2 {e2/x}, we have T2 {e2/x} ≡ T by Lemma 1 (reflexivity). By inversion, we finish.

Case (T Conv): By inversion, we have ∅ ⊢ e1 e2 ∶ T ′ and T ′ ≡ T for some T ′. By the IH, we have ∅ ⊢ e1 ∶ x∶T1 →
T2 and ∅ ⊢ e2 ∶ T1 and T2 {e2/x} ≡ T ′. We have T2 {e2/x} ≡ T by Lemma 1 (transitivity). By Lemma 32,
we finish.

Lemma 55 (Variable Inversion). If Γ ⊢ x ∶ T , then ⊢ Γ and x∶T ∈ Γ.

Proof. Obvious because only (T Var) can drive Γ ⊢ x ∶ T .

Lemma 56. Let F be a translatable function, e be a subterm of e2
F , Γ1 = fF ∶TF → int list→ Bool, yF ∶TF , z1

F ∶int,
and Γ2 be a typing context. If Γ1,Γ2 ⊢ e ∶ Bool and (eopt0, e0) ∈ GenContracts (e), then:

� for any e′, if eopt0 = Some e′, then yF ∶TF , z1
F ∶int ⊢ e′ ∶ TF ; and

� Γ1,Γ2 ⊢ e0 ∶ Bool.

Proof. By structural induction on e with case analysis on Γ1,Γ2 ⊢ e ∶ Bool.

Case (T Const): Obvious because GenContracts (true) = {(None, true)} and GenContracts (false) = ∅.

Case (T Var), (T Abs), (T Cast), (T App), (T Pair), (T Proji) for i ∈ {1,2}, (T Ctr), (T Forget),
(T Exact), (T Blame), (T ACheck), and (T WCheck): Obvious becauseGenContracts (e) = {(None, e)}.

Case (T If): We are given Γ1,Γ2 ⊢ if e1 then e2 else e3 ∶ Bool. By inversion, we have Γ1,Γ2 ⊢ e1 ∶ Bool and
Γ1,Γ2 ⊢ e2 ∶ Bool and Γ1,Γ2 ⊢ e3 ∶ Bool. There are three cases which we have to consider.

34

Case e1 = fF e′1 z2
F
where FV (e′1) ⊆ {yF , z1F }: Then,

GenContracts (e) = {(Some e′1, e2)}∪{(eopt, if fF e′1 z2
F
then false else e′3) ∣ (eopt, e′3) ∈ GenContracts (e3)}

We first show yF ∶TF , z1
F ∶int ⊢ e′1 ∶ TF . Since Γ1,Γ2 ⊢ fF e′1 z2

F ∶ Bool, we find that Γ1,Γ2 ⊢ fF ∶
x∶T1 → T2 and Γ1,Γ2 ⊢ e′1 ∶ T1 for some x, T1 and T2, by applying Lemma 54 twice. By Lemma 55,
x∶T1 → T2 = TF → int list → Bool since fF ∶x∶T1 → T2 ∈ Γ1. Thus, T1 = TF and so Γ1,Γ2 ⊢ e′1 ∶ TF .
Since FV (e′1) ⊆ {yF , z1F }, and fF ∉ FV (TF) by Lemma 46, we have yF ∶TF , z1

F ∶int ⊢ e′1 ∶ TF by
Lemma 53 (1). In addition, we have Γ1,Γ2 ⊢ e2 ∶ Bool from the premise of the typing derivation.

Let (eopt, e′3) ∈ GenContracts (e3). It suffices to show that (1) for any e′, if eopt = Some e′, then

yF ∶TF , z1
F ∶int ⊢ e′ ∶ TF and (2) Γ1,Γ2 ⊢ if fF e′1 z2

F
then false else e′3 ∶ Bool. The case (1) is shown

by the IH. The case (2) is obvious by (T If) because Γ1,Γ2 ⊢ false ∶ Bool by Lemmas 46 and 32 and
Γ1,Γ2 ⊢ e′3 ∶ Bool by the IH.

Case e1 ≠ fF e′1 z2
F

for any e′1 such that FV (e′1) ⊆ {yF , z1F }, and a term of the form fF e′1 z2
F

for some e′1
occurs in e2 or e3: Similarly to the above. We have

GenContracts (e) = {(eopt, if e1 then e′2 else false) ∣ (eopt, e′2) ∈ GenContracts (e2)} ∪
{(eopt, if e1 then false else e′3) ∣ (eopt, e′3) ∈ GenContracts (e3)}.

Since Γ1,Γ2 ⊢ e2 ∶ Bool and Γ1,Γ2 ⊢ e3 ∶ Bool, we finish by the IHs.

Case otherwise: Obvious because GenContracts (e) = {(None, e)}.

Case (T Match): Similarly to the case for (T If). We are given Γ1,Γ2 ⊢ match e0withCi xi → ei
i ∈{1,...,n} ∶

Bool. By inversion, we have Γ1,Γ2 ⊢ e0 ∶ τ⟨e′⟩ and ArgTypeOf (τ) = x′∶T ′ and, for any i ∈ {1, ..., n},
CtrArgOf (Ci) = Ti and Γ1,Γ2, xi ∶Ti {e′/x′} ⊢ ei ∶ Bool for some τ , e′, x′, T ′, and Ti

i ∈{1,...,n}
.

If some ei contains a term of the form fF e′1 z2
F
for some e′1, then we have

GenContracts (e) = ⋃j ∈{1,...,n}{(eopt,match e0withCi xi → e′′i
i ∈{1,...,n}

) ∣
(eopt, e′′j) ∈ GenContracts (ej) ∧ ∀i ≠ j . e′′i = false}.

We finish by the IHs with the fact that, for any i , Γ1,Γ2, xi ∶Ti {e′/x′} ⊢ false ∶ Bool by Lemmas 46 and 32,
and so Γ1,Γ2, xi ∶Ti {e′/x′} ⊢ e′′i ∶ Bool.
Otherwise, obvious because GenContracts (e) = {(None, e)}.

Case (T Conv): By inversion, we have ∅ ⊢ e ∶ T and T ≡ Bool. If e = false, then obvious becauseGenContracts (false) =
∅. Otherwise, since fF (and z2

F) does not occur in e, we have GenContracts (e) = {(None, e)} (even if
e = true) and so we finish.

Lemma 57 (Translation Generates Well-Formed Datatype). Let Σ be a well-formed type definition environment
and F be a translatable function under Σ. Then, Trans (F) is well formed under Σ, that is, so is Σ,Trans (F).

Proof. By definition, Trans (F) = type τ ⟨yF ∶TF ⟩ = D ∥ [] ∶ {z∶unit ∣ e1F } ∣Di ∥ (∶∶) ∶ Ti

i
where z is fresh. It suffices

to show that the type definition satisfies five conditions from definition of well-formedness of type definition under
type definition environment.

(a) We show that τ has constructors more than zero, which is obvious.

(b) We show that Σ;∅ ⊢ TF . Since F is well typed, we have Σ;∅ ⊢ TF by Lemma 46 and its inversion.

(c) We show that (1) Σ,Trans (F); yF ∶TF ⊢ {z∶unit ∣ e1F } and (2) Σ,Trans (F); yF ∶TF ⊢ Ti for any i .

(1) Since F is translatable under Σ, we have (Σ,∅); yF ∶TF ⊢ e1
F ∶ Bool. By Lemma 52, (Σ,Trans (F),∅); yF ∶TF ⊢

e1
F ∶ Bool. By Lemma 32 and (T Refine), (Σ,Trans (F),∅); yF ∶TF ⊢ {z∶unit ∣ e1F }.

35

(2) By definition ofGenContracts, Ti is defined based onGenContracts (e2F). Let (eopt, e) ∈ GenContracts (e2F)
and Γ = fF ∶TF → int list → Bool, yF ∶TF , z1

F ∶int, z2F ∶int list. Since F is translatable under Σ, we have
(Σ,∅); Γ ⊢ e2

F ∶ Bool. By Lemma 56, (Σ,∅); Γ ⊢ e ∶ Bool. Since (Σ,∅);∅ ⊢ F ∶ TF → int list → Bool,
we have (Σ,∅); yF ∶TF , z1

F ∶int, z2F ∶int list ⊢ e{F /fF } ∶ Bool by Lemma 33. Note that TF is closed by
Lemma 46 and its inversion. By Lemma 52,

(Σ,Trans (F),∅); yF ∶TF , z1
F ∶int, z2F ∶int list ⊢ e{F /fF } ∶ Bool.

By case analysis on eopt, letting Γ′ = yF ∶TF , z1
F ∶int.

Case eopt = Some e′′: By Lemma 32 and (T Abs),

(Σ,Trans (F),∅); Γ′ ⊢ λz2
F ∶int list.e{F /fF } ∶ int list→ Bool.

By Lemmas 56 and 52,
(Σ,Trans (F),∅); Γ′ ⊢ e′′ ∶ TF .

Thus,
(Σ,Trans (F),∅); Γ′ ⊢ τ⟨e′′⟩

by (WT Datatype). By (C Datatype), Σ,Trans (F) ⊢ τ⟨e′′⟩ ∥ int list. Since (Σ,Trans (F),∅); Γ′ ⊢
int list by Lemmas 46 and 32 and (WT Datatype), we find

(Σ,Trans (F),∅); Γ′ ⊢ ⟨int list⇐ τ⟨e′′⟩⟩ℓ ∶ τ⟨e′′⟩→ int list

for any ℓ, by (T Cast). By Lemma 32, (T Var) and (T App), we have

(Σ,Trans (F),∅); Γ′, z2F ∶τ⟨e′′⟩ ⊢ ⟨int list⇐ τ⟨e′′⟩⟩ℓ z2
F
∶ int list.

Letting e0 = (λz2F ∶int list.e{F /fF }) (⟨int list⇐ τ⟨e′′⟩⟩ℓ z2
F), we have

(Σ,Trans (F),∅); Γ′, z2F ∶τ⟨e′′⟩ ⊢ e0 ∶ Bool

by Lemma 32 and (T App). Note that e0 can be written as let z2
F = ⟨int list⇐ τ⟨e′′⟩⟩ℓ z2

F
in e{F /fF }.

Letting T0 = τ⟨e′′⟩, we have

(Σ,Trans (F),∅); Γ′ ⊢ {z2F ∶T0 ∣ e0}.

by (WT Refine). Thus, by (WT Prod),

(Σ,Trans (F),∅); yF ∶TF ⊢ z1
F ∶ int×{z2F ∶T0 ∣ e0}.

Note that Ti = z1
F ∶int×{z2F ∶T0 ∣ e0}.

Case eopt = None: By (WT Refine) and (WT Prod), we have

(Σ,Trans (F),∅); yF ∶TF ⊢ z1
F ∶ int×{z2F ∶int list ∣ e{F /fF }}.

Note that Ti = z1
F ∶int×{z2F ∶int list ∣ e{F /fF }}.

(d) We show that Σ includes int list, which is proven by the assumption.

(e) We show that (1) Σ,Trans (F) ⊢ {z∶unit ∣ e1F } ∥ unit and (2) Σ,Trans (F) ⊢ Ti ∥ int× int list. The case (1)
is obvious by (C RefineL) and reflexivity of the compatibility relation. The case (2) is straightforward
because Ti takes either of the form z1

F ∶int×{z2F ∶int list ∣ e0} or z1F ∶int×{z2F ∶τ⟨e′′⟩ ∣ e0}, and reflexivity of the
compatibility relation and Σ,Trans (F) ⊢ τ⟨e′′⟩ ∥ int list.

36

5.3 Dynamic Correctness

Next, we show correctness of translation in the dynamic aspect: casts between refinement types with a translatable
function F and the datatype generated from F succeed always. In particular, such casts convert “constructors”
but not “structures”. In this section, we assume that type definition environments include the datatype generated
from a translatable function F .

Definition 9. A constructor choice function δ is said to be trivial for τ when, if the type definition of τ takes the

form type τ1 ⟨x∶T ⟩ = Ci ∥Di ∶ Ti

i
and each Di belongs to τ2, then δ(⟨τ2⟨e2⟩⇐ τ1⟨e1⟩⟩ℓCi⟨e3⟩e4) = Di for any e1,

e2, e3, and e4.

We say that a constructor choice function is trivial when it is trivial for Trans (F).

Lemma 58. Let δ be a trivial choice function. Suppose that

Trans (F) = type τ ⟨yF ∶TF ⟩ =D ∥ [] ∶ {z∶unit ∣ e1F } ∣Di ∥ (∶∶) ∶ z1F ∶int×{z2F ∶Ti ∣ ei}
i
.

If ∅ ⊢ ⟨int list⇐ τ⟨e⟩⟩ℓ v ∶ int list under δ, then ⟨int list⇐ τ⟨e⟩⟩ℓ v Ð→∗ v′ under δ for some v′ which is obtained
by replacing data constructor D and Di of which v consists with [] and (∶∶), respectively.

Proof. We proceed by structural induction on v. Since ∅ ⊢ ⟨int list ⇐ τ⟨e⟩⟩ℓ v ∶ int list, we have ∅ ⊢ ⟨int list ⇐
τ⟨e⟩⟩ℓ ∶ x∶T ′1 → T ′2 and ∅ ⊢ v ∶ T ′1 and T ′2 {v/x} ≡ int list for some x, T ′1, and T ′2 by Lemma 54. By Lemma 37,
T ′2 = int list. By Lemmas 41 and 35, we have ∅ ⊢ τ⟨e⟩ and τ⟨e⟩ ≡ T ′1. We perform case analysis on v by
Lemmas 44 (4) and 43.

Case v = D⟨e′⟩v′: Since δ is trivial, δ(⟨int list⇐ τ⟨e⟩⟩ℓD⟨e′⟩v′) = []. Thus, by (R Datatype), (R Forget) and
(R Base) with (E Red),

⟨int list⇐ τ⟨e⟩⟩ℓD⟨e′⟩v′ Ð→∗ [].

Case v = Dj ⟨e′⟩v′: By Lemma 43, ∅ ⊢ v′ ∶ z1F ∶int×{z2F ∶Ti ∣ ei}{e′/yF }. By Lemmas 44 (3) and 42, v′ = (v1, v2)
for some v1 and v2 such that ∅ ⊢ v1 ∶ int and ∅ ⊢ v2 ∶ {z2F ∶Ti ∣ ei}{e′/yF , v1/z1F }. Note that e′ is a closed
term. Since δ is trivial, δ(⟨int list⇐ τ⟨e⟩⟩ℓDj ⟨e′⟩v′) = (∶∶). Thus, by (R Datatype), (R Prod), (R Base)
and (R Forget) with (E Red),

⟨int list⇐ τ⟨e⟩⟩ℓDj ⟨e′⟩v′ Ð→∗ v1 ∶∶ (⟨int list⇐ Ti {e′/yF , v1/z1F }⟩ℓ v2).

From Trans, there are two cases we have to consider. If Ti = int list, then ⟨int list ⇐ τ⟨e⟩⟩ℓDj ⟨e′⟩v′ Ð→∗
v1 ∶∶ v2 by (R DatatypeMono).. Otherwise, if Ti = τ⟨e′′⟩ for some e′′, then we finish by the IH, noting
∅ ⊢ ⟨int list ⇐ Ti {e′/yF , v1/z1F }⟩ℓ v2 ∶ int list, which follows from well-typedness of v2, compatibility of
int list and τ , (T Cast), and (T App).

Definition 10 (Notation). Let σ be a (simultaneous) substitution. Then, we write σ(e) to denote application of σ
to e.

Lemma 59. Let F be a translatable function, v, v1 and v2 be closed values, σ be a simultaneous substitution
including {F /fF , v/yF , v1/z1F , v2/z2F }, and e be a subterm of e2

F . If σ(e) Ð→∗ true, then there is a unique pair
(eopt0, e0) ∈ GenContracts (e) such that

� σ(e0) Ð→∗ true and

� for any e′, eopt0 = Some e′ implies F σ(e′) v2 Ð→∗ true.

Proof. By structural induction on e.

Case e = true: Obvious since GenContracts (true) = {(None, true)}.

Case e = false: Contradictory; σ(e) Ð→∗ false.

37

Case e = if fF e′ z2
F
then e′2 else e

′
3 where FV (e′) ⊆ {yF , z1F }: By definition of GenContracts, we have

GenContracts (e) = {(Some e′, e′2)} ∪ {(eopt0, if f
F e′ z2

F
then false else e′′3) ∣ (eopt0, e

′′
3) ∈ GenContracts (e′3)}.

By case analysis on evaluation of σ(fF e′ z2
F) = F σ(e′) v2. Note that the evaluation result is either true or

false.

Case F σ(e′) v2 Ð→∗ true: We have

σ(if fF e′ z2
F
then e′2 else e

′
3) Ð→∗ if true thenσ(e′2) elseσ(e′3)

Ð→ σ(e′2).

Since σ(e) Ð→∗ true, we find that σ(e′2) Ð→∗ true. Because

σ(if fF e′ z2
F
then false else e′′3) Ð→∗ if true then false elseσ(e′′3)

Ð→ false,

pair (Some e′, e′2) is the unique one satisfying the property above.

Case F σ(e′) v2 Ð→∗ false: We have

σ(if fF e′ z2
F
then e′2 else e

′
3) Ð→∗ if false thenσ(e′2) elseσ(e′3)

Ð→ σ(e′3).

Since σ(e) Ð→∗ true, we find that σ(e′3) Ð→∗ true. By the IH, there is a unique pair (eopt, e′′3) ∈
GenContracts (e′3) satisfying the above property. We have σ(if fF e′ z2

F
then false else e′′3) Ð→∗ true.

Since F σ(e′) v2 Ð→∗ false, pair (eopt, if fF e′ z2
F
then false else e′′3) is the unique one satisfying the prop-

erty above.

Case e = if e′1 then e
′
2 else e

′
3 where e′1 ≠ fF e′ z2

F
for any e′ such that FV (e′) ⊆ {yF , z1F }: By case analysis on

evaluation of σ(e′1). Note that the evaluation result is either true or false.

Case σ(e′1) Ð→∗ true: Since σ(if e′1 then e′2 else e′3) Ð→∗ σ(e′2) Ð→∗ true, there a unique pair (eopt, e′′2) ∈
GenContracts (e′2) satisfying the above property, by the IH. Since σ(if e′1 then false else e′′3) Ð→∗ false for
any e′′3 , pair (eopt, if e′1 then e′′2 else false) is the unique one satisfying the property above.

Case σ(e′1) Ð→∗ false: Since σ(if e′1 then e′2 else e′3) Ð→∗ σ(e′3) Ð→∗ true, there a unique pair (eopt, e′′3) ∈
GenContracts (e′3) satisfying the above property, by the IH. Since σ(if e′1 then e′′2 else false) Ð→∗ false for
any e′′2 , pair (eopt, if e′1 then false else e′′3) is the unique one satisfying the property above.

Case e = match e′0withCi xi → e′i
i ∈{1,...,n}

: Without loss of generality, we can suppose that each xi is fresh for
σ. Since σ(e) Ð→∗ true, we find that σ(e′0) Ð→∗ Cj ⟨e′⟩v′ for some j ∈ {1, ..., n}, e′ and v′, and thus
σ(e′j) {v′/xj} Ð→∗ true. By the IH, there is a unique pair (eopt, e′′j) ∈ GenContracts (e′j) satisfying the above

property. Since σ(match e′0withCj xj → false ∣ Ci xi → e′′i
i ∈{1,...,n}/{j}

) Ð→∗ false, pair (eopt,match e′0withCj xj →
e′′j ∣ Ci xi → false

i ∈{1,...,n}/{j}
) is the unique one satisfying the property above.

Case otherwise: Obvious because Trans (e) = {(None, e)}.

In what follows, we compute constructor choice functions to convert data structures. Before it, we show that
extensions of constructor choice functions are conservative with respect to evaluation results.

Lemma 60. Let δ′ be an extension of constructor choice function δ. If δ ⊢ e Ð→∗ v, then δ′ ⊢ e Ð→∗ v.

Proof. From the two facts: (1) δ returns a constructor whenever taking cast applications in the evaluation e Ð→∗ v
and (2) δ′ returns the same constructor as δ for cast applications contained by the domain of δ.

38

Definition 11 (Notation). We write δ1 ⊎ δ2 to denote the disjoint union of constructor choice functions δ1 and δ2.

Theorem 2 (From Refinement Types to Datatypes). Suppose that

Trans (F) = type τ ⟨yF ∶TF ⟩ =D ∥ [] ∶ {z∶unit ∣ e1F } ∣Di ∥ (∶∶) ∶ z1F ∶int×{z2F ∶Ti ∣ ei}
i
.

Let δ be a trivial constructor choice function such that δ(⟨τ⟨e′⟩⇐ int list⟩ℓ v′) is undefined for any e′ and sublist v′

of v.
If ∅ ⊢ ⟨τ⟨e⟩ ⇐ {x∶int list ∣F ex}⟩ℓ v ∶ τ⟨e⟩ under δ, then there exists an extension δ′ of δ such that ⟨τ⟨e⟩ ⇐

{l∶int list ∣F e l}⟩ℓ v Ð→∗ v′ under δ′ where v′ is obtained by replacing some occurrences of data constructors [] and
(∶∶) of which v consists with D and one of Di

i
, respectively.

Proof. By Lemma 54, we have ∅ ⊢ ⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ ∶ x0∶T01 → T02 and ∅ ⊢ v ∶ T01 and T02 {v/x0} ≡ τ⟨e⟩
for some x0, T01 and T02. By Lemmas 41 and 35 and (T Conv), ∅ ⊢ v ∶ {x∶int list ∣F ex} and so F ev Ð→∗ true
by Theorem 1 (noting that e is a closed term since since ∅ ⊢ τ⟨e⟩ by Lemma 46). Thus, e Ð→∗ v′ for some v′.

We proceed by case analysis on v by Lemmas 44 (4) and 43.

Case v = []: Let δ′ = δ ⊎ {⟨τ⟨e⟩⇐ int list⟩ℓ [] ↦ D}. Then, by (R Forget) and (R Datatype) with (E Red),

δ′ ⊢ ⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ [] Ð→∗ D⟨e⟩(⟨{z∶unit ∣ e1F {e/x}}⇐ unit⟩ℓ ()).

Since F v′ v Ð→∗ true, we find that e1
F {F /fF , v′/yF , v/xF } Ð→∗ true. Since F is translatable, we have

y∶T ⊢ e1
F ∶ Bool and so e1

F {F /fF , v′/yF , v/xF } = e1
F {v′/yF }. Thus, e1F {v′/yF } Ð→∗ true. Since e ⇛∗ v′

by Lemma 2, we have e1
F {e/yF } ⇛∗ e1

F {v′/yF } by Lemma 5 (2). By Lemma 30 (2), e1
F {e/yF } Ð→∗ true.

Since δ′ ⊢ e1
F {e/yF } Ð→∗ true by Lemma 60, we have

⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ [] Ð→∗ D⟨e⟩().

by (R PreCheck), (R Base), (R Check), and (R OK) with (E Red).

Case v = (v1 ∶∶ v2): Since F v′ v Ð→∗ true, we find that

e2
F {F /fF , v′/yF , v/xF , v1/z1F , v2/z2F } Ð→∗ true.

Since F is translatable, fF ∶TF → int list→ Bool, yF ∶TF , z1
F ∶int, z2F ∶int list ⊢ e2

F ∶ Bool and so

e2
F {F /fF , v′/yF , v/xF , v1/z1F , v2/z2F } = e2

F {F /fF , v′/yF , v1/z1F , v2/z2F }.

By Lemma 59, there is a unique pair (eopt0, e0) ∈ GenContracts (e2F) satisfying the property stated in
Lemma 59. We perform case analysis on eopt0.

Case eopt0 = Some e′0: There exists some Dj such that

CtrArgOf (Dj) = z1
F ∶int×Tj

where Tj = {z2F ∶τ⟨e′0⟩ ∣ let z2F = ⟨int list⇐ τ⟨e′0⟩⟩ℓ z2
F
in e0 {F /fF }}. For any δ′, if δ′(⟨τ⟨e⟩⇐ int list⟩ℓ (v1 ∶∶ v2)) =

Dj , then by (R Forget), (R Datatype), (R Prod), and (R Base) with (E Red),

δ′ ⊢ ⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ (v1 ∶∶ v2) Ð→∗ Dj ⟨e⟩(v1, ⟨⟨Tj , ⟨τ⟨e′0⟩⇐ int list⟩ℓ v2⟩⟩ℓ {e/yF , v1/z1F }).

Let e′′0 = e′0 {e/yF , v1/z1F }. By Lemmas 56 and 33, we have ∅ ⊢ e′′0 ∶ TF since ∅ ⊢ v1 ∶ int by Lemma 43,
and ∅ ⊢ e ∶ TF from inversion of ∅ ⊢ τ⟨e⟩. Thus, x∶int list ⊢ F e′′0 x ∶ Bool by Lemma 32, (T Var) and
(T App), and so ∅ ⊢ {x∶int list ∣F e′′0 x} by (WT Refine).

Since e Ð→∗ v′, we have F e′′0 v2 ⇛∗ F e′0 {v′/yF , v1/z1F } v2 by Lemmas 2 and 5 (2). Since
F e′0 {v′/yF , v1/z1F } v2 Ð→∗ true by Lemma 59, we have F e′′0 v2 Ð→∗ true by Lemma 30 (2). Thus,
by (T Exact), ∅ ⊢ v2 ∶ {x∶int list ∣F e′′0 x} since ∅ ⊢ v2 ∶ int list by Lemma 43. Since τ⟨e′′0 ⟩ ∥

39

{x∶int list ∣F e′′0 x} by (C Datatype) and (C RefineL) (noting the compatibility relation is a equiv-
alence one), and ∅ ⊢ τ⟨e′′0 ⟩ by (WT Datatype), we have

∅ ⊢ ⟨τ⟨e′′0 ⟩⇐ {x∶int list ∣F e′′0 x}⟩ℓ v2 ∶ τ⟨e′′0 ⟩

by (T Cast) and (T App). By the IH, there exist some δ′′ and v′2 such that

δ′′ ⊢ ⟨τ⟨e′′0 ⟩⇐ {x∶int list ∣F e′′0 x}⟩ℓ v2 Ð→∗ v′2

and δ′′ is an extension of δ, and v′2 is obtained by replacing data constructor [] and (∶∶) of which v2

consists with D and one of Di
i
, respectively. Let δ′′′ = {⟨τ⟨e⟩⇐ int list⟩ℓ (v1 ∶∶ v2) ↦ Dj} ⊎ δ′′. Then,

δ′′′ ⊢ ⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ (v1 ∶∶ v2) Ð→∗ Dj ⟨e⟩(v1, ⟨⟨Tj {e/yF , v1/z1F }, v′2⟩⟩ℓ).

Since ∅ ⊢ v′2 ∶ τ⟨e′′0 ⟩ by Theorem 1, we have ∅ ⊢ ⟨int list ⇐ τ⟨e′′0 ⟩⟩ℓ v′2 ∶ int list by (T Cast) and
(T App). By Lemma 58, we have ⟨int list⇐ τ⟨e′′0 ⟩⟩ℓ v′2 Ð→∗ v2 since δ is trivial. Since e0 {F /fF , v′/yF , v1/z1F , v2/z2F } Ð→∗
true by Lemma 59, we have e0 {F /fF , e/yF , v1/z1F , v2/z2F } Ð→∗ true by Lemmas 2, 5 (2) and 30 (2).
Thus,

(let z2F = ⟨int list⇐ τ⟨e′0⟩⟩ℓ z2
F
in e0 {F /fF }) {e/yF , v1/z1F , v′2/z2F } Ð→∗ true.

Therefore, by (R Check) and (R OK) with (E Red) and Lemma 60,

δ′′′ ⊢ ⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ (v1 ∶∶ v2) Ð→∗ Dj ⟨e⟩(v1, v′2).

Case eopt0 = None: There exists some Dj such that

CtrArgOf (Dj) = z1
F ∶int×Tj

where Tj = {z2F ∶int list ∣ e0 {F /fF }}. Let δ′ = δ ⊎ {⟨τ⟨e⟩⇐ int list⟩ℓ (v1 ∶∶ v2) ↦ Dj}. By (R Forget),
(R Datatype), (R Prod), (R Base) with (E Red),

δ′ ⊢ ⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ (v1 ∶∶ v2) Ð→∗ Dj ⟨e⟩(v1, ⟨⟨Tj , ⟨int list⇐ int list⟩ℓ v2⟩⟩ℓ {e/yF , v1/z1F }).

Since ⟨int list⇐ int list⟩ℓ v2 Ð→∗ v2 by (R DatatypeMono), we have

δ′ ⊢ ⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ (v1 ∶∶ v2) Ð→∗ Dj ⟨e⟩(v1, ⟨Tj , e0 {F /fF , v2/z2F }, v2⟩ℓ {e/yF , v1/z1F })

by (E Red)/(R Check). Since e0 {F /fF , v′/yF , v1/z1F , v2/z2F } Ð→∗ true by Lemma 59, we have
e0 {F /fF , e/yF , v1/z1F , v2/z2F } Ð→∗ true by Lemmas 2, 5 (2) and 30 (2). Thus, by (E Red)/(R OK)
and Lemma 60,,

δ′ ⊢ ⟨τ⟨e⟩⇐ {x∶int list ∣F ex}⟩ℓ (v1 ∶∶ v2) Ð→∗ Dj ⟨e⟩(v1, v2).

Lemma 61. Let F be a translatable function, e be a subterm of e2
F , and σ be a simultaneous substitution including

{F /fF , e′/yF , v1/z1F , v2/z2F }. If (eopt0, e0) ∈ GenContracts (e) and σ(e0) Ð→∗ true and eopt0 = Some e′′ implies
F σ(e′′) v2 Ð→∗ true for any e′′, then σ(e) Ð→∗ true.

Proof. By structural induction on e.

Case e = true: Obvious.

Case false: Contradictory; GenContracts (false) = ∅.

Case e = if fF e′′ z2
F
then e′2 else e

′
3 where FV (e′′) ⊆ {yF , z1F }: There are two cases which we have to consider by

case analysis on e0.

Case e0 = e′2: Since eopt0 = Some e′′, we have F σ(e′′) v2 Ð→∗ true. Thus, σ(if fF e′′ z2
F
then e0 else e

′
3) Ð→∗

σ(e0) Ð→∗ true.

40

Case e0 = if fF e′′ z2
F
then false else e′′3 where (eopt0, e

′′
3) ∈ GenContracts (e′3): Since σ(e0) Ð→∗ true, we

find that F σ(e′′) v2 Ð→∗ false and σ(e′′3) Ð→∗ true. Since (eopt0, e
′′
3) ∈ GenContracts (e′3), we have

σ(e′3) Ð→∗ true by the IH. Thus, σ(if fF e′′ z2
F
then e′2 else e

′
3) Ð→∗ true.

Case e = if e′1 then e
′
2 else e

′
3 where e′1 ≠ fF e′′ z2

F
for any e′′ such that FV (e′′) ⊆ {yF , z1F }: There are two cases

which we have to consider by case analysis on e0.

Case e0 = if e′1 then e
′′
2 else false where (eopt0, e

′′
2) ∈ GenContracts (e′2): Since σ(e0) Ð→∗ true, we find that

σ(e′1) Ð→∗ true and σ(e′′2) Ð→∗ true. Since (eopt0, e
′′
2) ∈ GenContracts (e′2), we have σ(e′2) Ð→∗ true

by the IH. Thus, σ(if e′1 then e′2 else e′3) Ð→∗ true.

Case e0 = if e′1 then false else e
′′
3 where (eopt0, e

′′
3) ∈ GenContracts (e′3): Since σ(e0) Ð→∗ true, we find that

σ(e′1) Ð→∗ false and σ(e′′3) Ð→∗ true. Since (eopt0, e
′′
3) ∈ GenContracts (e′3), we have σ(e′3) Ð→∗ true

by the IH. Thus, σ(if e′1 then e′2 else e′3) Ð→∗ true.

Case e = match e′0withCi xi → e′i
i ∈{1,...,n}

: For some j , we have e0 = match e′0withCj xj → e′′j ∣ Ci xi → false
i ∈{1,...,n}/{j}

where (eopt0, e
′′
j) ∈ GenContracts (e′j). Since σ(e0) Ð→∗ true, we have σ(e′0) Ð→∗ Cj ⟨e′′⟩v′ and σ(e′′j) {v′/xj} Ð→∗

true for some e′′ and v′. By the IH, σ(e′j) {v′/xj} Ð→∗ true. Thus, σ(match e′0withCi xi → e′i
i ∈{1,...,n}

) Ð→∗
true.

Case otherwise: Obvious since GenContracts (e) = {(None, e)}.

Definition 12 (Termination). A closed term e terminates at a value, written as e ↓, if e Ð→∗ v for some v. We
say that argument terms to datatype τ in v terminate at values, written v ↓τ when, for any E, C ∈ CtrsOf (τ), e1
and v2, if v = E[C⟨e1⟩v2], then e1 ↓.

Lemma 62. Let F be a translatable function and δ be a trivial constructor choice function. If v ↓τ and ∅ ⊢
⟨int list⇐ τ⟨e⟩⟩ℓ v ∶ int list, then F e (⟨int list⇐ τ⟨e⟩⟩ℓ v) Ð→∗ true.

Proof. By structural induction on v. Suppose that

Trans (F) = type τ ⟨yF ∶TF ⟩ =D ∥ [] ∶ {z∶unit ∣ e1F } ∣Di ∥ (∶∶) ∶ z1F ∶int×{z2F ∶Ti ∣ ei}
i
.

By Lemmas 54 and 41 and (T Conv), we have ∅ ⊢ v ∶ τ⟨e⟩. By Lemmas 44 (4) and 43, there are two cases which
we have to consider by case analysis on v.

Case v = D⟨e′⟩v′: Since v ↓τ , e′ Ð→∗ v′′ for some v′′. By Lemmas 43 and 37, we have ∅ ⊢ v′ ∶ {z∶unit ∣ e1F {e′/yF }}
and e′ ≡ e. By Theorem 1, we find that e1

F {e′/yF , v′/z} = e1
F {e′/yF } Ð→∗ true. Since ⟨int list ⇐

τ⟨e⟩⟩ℓD⟨e′⟩v′ Ð→∗ [] by Lemma 58, we have

F e (⟨int list⇐ τ⟨e⟩⟩ℓ v) ≡ F e′ (⟨int list⇐ τ⟨e⟩⟩ℓ v) (by Lemmas 1 and 5 (3))
Ð→∗ F v′′ (⟨int list⇐ τ⟨e⟩⟩ℓ v)
Ð→∗ F v′′ []
Ð→∗ e1

F {v′′/yF }
≡ e1

F {e′/yF }. (by Lemmas 2, 5 (3) and 1)

Thus, by Lemma 31 (2),
F e (⟨int list⇐ τ⟨e⟩⟩ℓ v) Ð→∗ true.

Case v = Dj ⟨e′⟩v′: By definition of Trans, there is a unique pair (eopt0, e0) ∈ GenContracts (e2F) such that
CtrArgOf (Dj) is constructed from the pair. By case analysis on eopt0.

Case eopt0 = Some e′0: We have

CtrArgOf (Dj) = z1
F ∶int×{z2F ∶τ⟨e′0⟩ ∣ let z2F = ⟨int list⇐ τ⟨e′0⟩⟩ℓ z2

F
in e0 {F /fF }}.

By Lemmas 43, 44 (3), 42 and 37, we have v′ = (v1, v2) and ∅ ⊢ v1 ∶ int and ∅ ⊢ v2 ∶ {z2F ∶τ⟨e′0⟩ ∣ let z2F =
⟨int list⇐ τ⟨e′0⟩⟩ℓ z2

F
in e0 {F /fF }}{e′/yF , v1/z1F } and e ≡ e′ for some v1 and v2. By Lemma 46, we

41

have ∅ ⊢ e ∶ TF . Since yF ∶TF , z1
F ∶int ⊢ e′0 ∶ TF by Lemma 56, we have ∅ ⊢ e′0 {e/yF , v1/z1F } ∶ TF .

Since ∅ ⊢ τ⟨e′0⟩ {e/yF , v1/z1F } by Lemmas 57 and 33 (2) and (T Forget), we have

∅ ⊢ v2 ∶ τ⟨e′0⟩ {e/yF , v1/z1F }

by Lemma 5 (3), (T Forget), and (T Conv). Thus, we have ∅ ⊢ ⟨int list⇐ τ⟨e′0 {e/yF , v1/z1F }⟩⟩ℓ v2 ∶
int list by (T Forget), (T Cast) and (T App). By Lemma 58, there exists some v′2 such that

⟨int list⇐ τ⟨e′0 {e/yF , v1/z1F }⟩⟩ℓ v2 Ð→∗ v′2.

By the IH, we have

F e′0 {e/yF , v1/z1F } (⟨int list⇐ τ⟨e′0 {e/yF , v1/z1F }⟩⟩ℓ v2) Ð→∗ true.

Thus, there exists some v′0 such that e′0 {e/yF , v1/z1F } Ð→∗ v′0 and F v′0 v
′
2 Ð→∗ true. Since F e′0 {e/yF , v1/z1F } v′2 ⇛∗

F v′0 v
′
2 by Lemmas 2 and 5 (2), we have

F e′0 {e/yF , v1/z1F } v′2 Ð→∗ true

by Lemma 30 (2). By applying Lemma 51 to v2, we have e0 {F /fF , e′/yF , v1/z1F , v′2/z2F } Ð→∗ true.
Thus, by Lemmas 5 (3) and 31, we have

e0 {F /fF , e/yF , v1/z1F , v′2/z2F } Ð→∗ true.

By Lemma 61,
e2

F {F /fF , e/yF , v1/z1F , v′2/z2F } Ð→∗ true.

Since e′ Ð→∗ v′′ for some v′′ from v ↓τ , we have v′′ ≡ e. By Lemmas 5 (3) and 31,

e2
F {F /fF , v′′/yF , v1/z1F , v′2/z2F } Ð→∗ true.

Thus,
F e′ (⟨int list⇐ τ⟨e⟩⟩ℓDj ⟨e′⟩v′)

Ð→∗ F v′′ (⟨int list⇐ τ⟨e⟩⟩ℓDj ⟨e′⟩v′)
Ð→∗ F v′′ (v1 ∶∶ (⟨int list⇐ τ⟨e′0 {e/yF , v1/z1F }⟩⟩ℓ v2))
Ð→∗ F v′′ (v1 ∶∶ v′2)
Ð→∗ e2

F {F /fF , v′′/yF , v1/z1F , v′2/z2F }
Ð→∗ true.

Case eopt0 = None: We have CtrArgOf (Dj) = z1
F ∶int×{z2F ∶int list ∣ e0 {F /fF }}. By Lemmas 43, 44 (3), 42

and 37, we have ∅ ⊢ e′ ∶ TF and v′ = (v1, v2) and ∅ ⊢ v1 ∶ int and ∅ ⊢ v2 ∶ {z2F ∶int list ∣ e0 {F /fF }}{e′/yF , v1/z1F }
for some v1 and v2. By Lemma 51, e0 {F /fF , e′/yF , v1/z1F , v2/z2F } Ð→∗ true. By Lemma 61, we
have e2

F {F /fF , e′/yF , v1/z1F , v2/z2F } Ð→∗ true. Since e′ Ð→∗ v′′ for some v′′ from v ↓τ , we have
e2

F {F /fF , v′′/yF , v1/z1F , v2/z2F } Ð→∗ true by Lemmas 2, 5 (2) and 30 (1). Thus,

F e′ (⟨int list⇐ τ⟨e⟩⟩ℓDj ⟨e′⟩v′) Ð→∗ F v′′ (v1 ∶∶ v2) Ð→∗ true.

Theorem 3 (From Datatypes to Refinement Types). Suppose that

Trans (F) = type τ ⟨yF ∶TF ⟩ =D ∥ [] ∶ {z∶unit ∣ e1F } ∣Di ∥ (∶∶) ∶ z1F ∶int×{z2F ∶Ti ∣ ei}
i
.

Let δ be a trivial constructor choice function.
If v ↓τ and ∅ ⊢ v ∶ τ⟨e⟩, then ⟨{x∶int list ∣F ex} ⇐ τ⟨e⟩⟩ℓ v Ð→∗ v′ for some v′ obtained by replacing data

constructor D and Di in v with [] and (∶∶), respectively.
Proof. Since ∅ ⊢ τ⟨e⟩ Lemma 46 and int list ∥ τ⟨e⟩, we have ∅ ⊢ ⟨int list ⇐ τ⟨e⟩⟩ℓ v ∶ int list by (T Cast) and
(T App). By Lemma 58, ⟨int list⇐ τ⟨e⟩⟩ℓ v Ð→∗ v′ for some v′ which satisfies the property in the statement above.
By Lemma 62, we have F e (⟨int list⇐ τ⟨e⟩⟩ℓ v) Ð→∗ true. Thus, letting v′′ be a value such that e Ð→∗ v′′, we find
that F v′′ v′ Ð→∗ true. By Lemmas 2, 5 (2) and 30 (2), F ev′ Ð→∗ true. Thus, by (R PreCheck) and (R OK)
with (E Red),

⟨{x∶int list ∣F ex}⇐ τ⟨e⟩⟩ℓ v Ð→∗ v′.

42

