
Manifest Contracts for Datatypes

Taro Sekiyama,
Atsushi Igarashi, and Yuki Nishida

Kyoto University

Data structures

• Data structures are crucial to design algorithms
• Efficient algorithms need fine-grained

specifications on data structures

E.g., binary search

val binary_search :
int -> int array -> int option

An argument array is required to be sorted!

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Specifications for data structures

Two styles in giving specifications for data
structures as types
• “Extrinsic” style

{ x:int list | sorted x }

• “Intrinsic” style
type sorted_list =
| SNil
| SCons of x:int *

{xs:slist|(nil xs) or (x < head xs)}

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Extrinsic style

• Specifications are given to plain structures
– E.g., sorted lists are represented as

{ x:int list | sorted x }
where “sorted x” expresses that x is sorted

• Work so far:
– subset types
– flat contracts
– etc.

Manifest Datatypes for Contracts. Taro Sekiyama et al.

• Specifications are given to data constructors
– E.g., sorted lists are represented as

 type slist =
| SNil
| SCons of x:int *

{ xs:slist | (nil xs) or (x < head xs) }

• Work so far:
– inductive types [Pfenning & Paulin-Mohring 1989]
– GADTs [Cheney & Hinze 2003; Xi et al. 2003]
– etc.

1

Intrinsic style

Manifest Datatypes for Contracts. Taro Sekiyama et al.

• Specifications are given to data constructors
– E.g., sorted lists are represented as

 type slist =
| SNil
| SCons of x:int *

{ xs:slist | (nil xs) or (x < head xs) }

• Work so far:
– inductive types [Pfenning & Paulin-Mohring 1989]
– GADTs [Cheney & Hinze 2003; Xi et al. 2003]
– etc.

1

Intrinsic style

the head is less than
the head of the tail (if any)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Pros Cons
Extrinsic style

{x:int list|sorted x}
easy to write

programs
poor information
on substructures

Intrinsic style
type slist = …

rich information
on substructures

difficult to write
programs

Pros and cons of two styles as contracts

Our work: transformations to take the
best of both worlds

Pros Cons
Extrinsic style

{x:int list|sorted x}
easy to write

programs
poor information
on substructures

Intrinsic style
type slist = …

rich information
on substructures

difficult to write
programs

Pros and cons of two stylesE.g., tail parts of sorted lists are merely lists (no specs)

Checking specs dynamically can worsen asymptotic
time complexity

Our work: transformations to take the
best of both worlds

let tail
(y : { x:int list | sorted x }) :
{ x:int list | sorted x } =
match y with
| [] -> []
| z::zs -> zs

Extrinsic style can worsen time complexity

Manifest Datatypes for Contracts. Taro Sekiyama et al.

let tail
(y : { x:int list | sorted x }) :
{ x:int list | sorted x } =
match y with
| [] -> []
| z::zs -> zs

Extrinsic style can worsen time complexity

returns the tail of an argument list (if any)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

let tail
(y : { x:int list | sorted x }) :
{ x:int list | sorted x } =
match y with
| [] -> []
| z::zs -> zs

Extrinsic style can worsen time complexity

returns the tail of an argument list (if any)

When sorted is checked dynamically, the asymptotic
time complexity turns out to be O(length x)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

let tail (y : slist) : slist = match y with
| SNil -> SNil
| SCons (z, zs) -> zs

Intrinsic style can preserve time complexity

type slist =
 | SNil of unit
| SCons of x:int *
{ xs: slist | (nil xs) or (x < head xs) }

Manifest Datatypes for Contracts. Taro Sekiyama et al.

let tail (y : slist) : slist = match y with
| SNil -> SNil
| SCons (z, zs) -> zs

Intrinsic style can preserve time complexity

type slist =
 | SNil of unit
| SCons of x:int *
{ xs: slist | (nil xs) or (x < head xs) }

The type of zs is slist,
so the asymptotic time

complexity is O(1)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Pros Cons
Extrinsic style

{ x:int list | sorted x }
easy to write

programs
poor information
on substructures

Intrinsic style
type slist = …

rich information
on substructures

difficult to write
programs

Pros and cons of two stylesE.g., tail parts of sorted lists are merely lists (no specs)

Checking specs dynamically can worsen asymptotic
time complexity

Pros Cons
Extrinsic style

{ x:int list | sorted x }
easy to write

programs
poor information
on substructures

Intrinsic style
type slist = …

rich information
on substructures

difficult to write
programs

Pros and cons of two styles

1. Refining constructors is unfamiliar for programmers
2. Library problem, e.g., all list-functions cannot be applied to slist

E.g., tail parts of sorted lists are merely lists (no specs)

Checking specs dynamically can worsen asymptotic
time complexity

Manifest Datatypes for Contracts. Taro Sekiyama et al.

head (SCons (1, SNil))
int list -> int slist✕

Our ideas for better use of intrinsic style

1. Static translation from a type in extrinsic style
to one in intrinsic style
{x:int list|sorted x} type slist = …

2. Dynamic conversion between data structures in
both styles
head (<int list <= slist>l SCons (1, SNil))

Manifest Datatypes for Contracts. Taro Sekiyama et al.

1. Programmers can obtain dynamically efficient
datatypes easily, using type translation (the 1st idea)

{x:int list|sorted x} type slist = …

How do the ideas encourage use of intrinsic style?

Manifest Datatypes for Contracts. Taro Sekiyama et al.

1. Programmers can obtain dynamically efficient
datatypes easily, using type translation (the 1st idea)

{x:int list|sorted x} type slist = …

2. They write programs using the generated datatypes

How do the ideas encourage use of intrinsic style?

Manifest Datatypes for Contracts. Taro Sekiyama et al.

let tail (y : slist) : slist = …

1. Programmers can obtain dynamically efficient
datatypes easily, using type translation (the 1st idea)

{x:int list|sorted x} type slist = …

2. They write programs using the generated datatypes

3. If needed, they can reuse functions for original data
structures, using dynamic conversion (the 2nd idea)

How do the ideas encourage use of intrinsic style?

Manifest Datatypes for Contracts. Taro Sekiyama et al.

let tail (y : slist) : slist = …

head (<int list <= slist>l (SCons (1, SNil)))

This Work

• We give a lambda-calculus based on manifest
contracts and formalize the ideas in the calculus
– Manifest contracts [Flanagan 2006; Greenberg et al. 2010] are a

framework which can combine static and dynamic
specification checkings

• We implement the dynamic conversion
mechanism on OCaml, using the extensible
preprocessor (Camlp4)
– Available at http://goo.gl/VMhAv2

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Contents

1. Manifest Contracts with Datatypes
1. Refinement types
2. Manifest Datatypes

2. Dynamic Type Conversion

3. Syntactic Type Translation

Manifest Datatypes for Contracts. Taro Sekiyama et al.

<int list <= slist>l

{x:int list|sorted x} type slist = …

• Specifications of program components
– impossible to represent as simple types

• Dynamically enforced
– written in an executable form, i.e., as programs

Software contracts

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Manifest contracts [Flanagan 2006; Greenberg et al. 2010]

• Contracts are made “manifest” as part of types

Refinement types (a.k.a. subset types)

{x:T|e}
denotes the set of values of type T satisfying the
Boolean expression e

• Contracts are checked statically or dynamically
– This work concerns only dynamic checking

E.g., {x:int|0 < x} means positive integers

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Manifest datatypes

• Data constructors are given contracts
– This notion itself is not new

type slist =
 | SNil of unit
| SCons of x:int *

{xs:slist|(nil xs) or (x < head xs)}

Sorted Lists (Manifest Datatype ver.)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Manifest datatypes

• Data constructors are given contracts
– This notion itself is not new

type slist =
 | SNil of unit
| SCons of x:int *

{xs:slist|(nil xs) or (x < head xs)}

Sorted Lists (Manifest Datatype ver.)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Contents

1. Manifest Contracts with Datatypes
1. Refinement types
2. Manifest Datatypes

2. Dynamic Type Conversion

3. Syntactic Type Translation

Manifest Datatypes for Contracts. Taro Sekiyama et al.

<int list <= slist>l

{x:int list|sorted x} type slist = …

<{x:int|0 < x} <= int>l 4 4

<{x:int|0 < x} <= int>l 0 l

Type conversion in manifest contracts

<T1 <= T2>l

checks that a value of T2 works as T1

E.g., conversion for base types

4 is positive, but 0 is not;
so exception l is raised

[Flanagan 2006]

checks that given
integers are positive

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Type conversion in manifest contracts

<T1 <= T2>l

checks that a value of T2 works as T1

E.g., conversion for dependent pair types

<x:int*{y:int| x < y} <= int*int>l (4,6)

 (4,<{y:int|4 < y} <= int>l 6)
(4,6)

[Flanagan 2006]

checks that the first integer is less than the second
Manifest Datatypes for Contracts. Taro Sekiyama et al.

Type conversion to sorted lists

< slist <= int list >l

checks that integer lists are sorted

≈

Manifest Datatypes for Contracts. Taro Sekiyama et al.

< slist <= int list >l (1 :: [])

type slist =
| SNil of unit
| SCons of x:int *

{ xs:slist | (nil xs) or (x < head xs) }

1. replaces each constructor of a given list to
corresponding one of slist

2. checks the contract in the type of the constructor

Type conversion to sorted lists

< slist <= int list >l

< slist <= int list >l (1 :: [])

≈

Manifest Datatypes for Contracts. Taro Sekiyama et al.

type slist =
| SNil of unit
| SCons of x:int *

{ xs:slist | (nil xs) or (x < head xs) }

type slist =
| SNil of unit
| SCons of x:int *

{ xs:slist | (nil xs) or (x < head xs) }

1. replaces each constructor of a given list to
corresponding one of slist

2. checks the contract in the type of the constructor

Type conversion to sorted lists

< slist <= int list >l

< slist <= int list >l (1 :: [])

≈

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons

type slist =
| SNil of unit
| SCons of x:int *

{ xs:slist | (nil xs) or (x < head xs) }

1. replaces each constructor of a given list to
corresponding one of slist

2. checks the contract in the type of the constructor

Type conversion to sorted lists

< slist <= int list >l

< slist <= int list >l (1 :: [])

≈

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T <= int*int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }
Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }
Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
(<slist ⇐ int list>l []))

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

Split into two:
(1) conversion from integer lists to slist
(2) conversion to check the contract

<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
(<slist ⇐ int list>l []))

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

Split into two:
(1) conversion from integer lists to slist
(2) conversion to check the contract

<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l

(1)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
(<slist ⇐ int list>l []))

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

Split into two:
(1) conversion from integer lists to slist
(2) conversion to check the contract

<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l

(1)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

(2)

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
(<slist ⇐ int list>l []))

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
(<slist ⇐ int list>l []))

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
(<slist ⇐ int list>l []))

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

SCons (1, <{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l SNil)

<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
(<slist ⇐ int list>l []))

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

SCons (1, <{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l SNil)

<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

“nil xs” means xs = SNil

Type conversion to sorted lists

<slist ⇐ int list>l (1 :: [])

type slist =
 | SNil of unit

| SCons of x:int * { xs:slist | (nil xs) or (x < head xs) }

SCons (1,
(<slist ⇐ int list>l []))

SCons (1,
<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ int list>l [])

SCons (1, <{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l SNil)

<{ xs:slist | (nil xs) or (1 < head xs) } ⇐ slist>l

Manifest Datatypes for Contracts. Taro Sekiyama et al.

SCons (<T ⇐ int * int list>l (1, []))

SCons (1, SNil)

Nontrivial example: list_containing0

type list_containing0 =
| C1 of int * list_containing0
| C2 of { x:int | x = 0 } * int list

lists containing 0≈

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Nontrivial example: list_containing0

• No constructors corresponding to []

type list_containing0 =
| C1 of int * list_containing0
| C2 of { x:int | x = 0 } * int list

lists containing 0≈

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Nontrivial example: list_containing0

• No constructors corresponding to []
• Two constructors corresponding to (::)

type list_containing0 =
| C1 of int * list_containing0
| C2 of { x:int | x = 0 } * int list

lists containing 0≈

Either C1 or C2 has to be chosen dynamically
• Formal semantics: an oracle choice function
• Implementation: trial-and-error (backtracking)

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Formalization

• We formalize a manifest calculus with manifest
datatypes, following the syntactic approach [Belo
et al. 2011]
– The calculus supports dynamic conversion between

manifest datatypes

• We prove type soundness via progress and
subject reduction
– Exceptions are legitimate results

• We fix a few technical flaws in the previous work

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Contents

1. Manifest Contracts with Datatypes
1. Refinement types
2. Manifest Datatypes

2. Dynamic Type Conversion

3. Syntactic Type Translation

Manifest Datatypes for Contracts. Taro Sekiyama et al.

<int list ⇐ slist>l

{ x:int list | sorted x } type slist = …

Syntactic type translation

Refinement Type Manifest Datatype

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Syntactic type translation

Refinement Type Manifest Datatype

{ x:int list | contains0 x }

Returns whether x contains 0

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Running example

An implementation of contains0 is:

let contains0 y = match y with
 | [] -> false

| x::xs -> if x = 0 then true else contains0 xs

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Ideas of translation

1. To collect guard conditions on execution paths
reaching true from branches for [] and (::)

let contains0 y = match y with
 | [] -> false

| x::xs -> if x = 0 then true else contains0 xs
Manifest Datatypes for Contracts. Taro Sekiyama et al.

Ideas of translation

1. To collect guard conditions on execution paths
reaching true from branches for [] and (::)

let contains0 y = match y with
 | [] -> false

| x::xs -> if x = 0 then true else contains0 xs

There are no execution paths
reaching true from the branch for []

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Ideas of translation

1. To collect guard conditions on execution paths
reaching true from branches for [] and (::)

let contains0 y = match y with
 | [] -> false

| x::xs -> if x = 0 then true else contains0 xs

There are no execution paths
reaching true from the branch for []

There are two execution paths for (::):
(1) x = 0 (2) x <> 0 & contains0 xs

Manifest Datatypes for Contracts. Taro Sekiyama et al.

let contains0 y = match y with
 | [] -> false

| x::xs -> if x = 0 then true else contains0 xs

Ideas of translation

2. The new datatype has one constructor for each
execution path; the contract of it is conjunction
of the guard conditions for the path

Manifest Datatypes for Contracts. Taro Sekiyama et al.

let contains0 y = match y with
 | [] -> false

| x::xs -> if x = 0 then true else contains0 xs

Ideas of translation

2. The new datatype has one constructor for each
execution path; the contract of it is conjunction
of the guard conditions for the path

The new datatype has two constructors:
(1) C1 : { x:int | x = 0 } * int list
(2) C2 : { x:int | x <> 0 } * { xs:int list | contains0 xs }

The guard conditions for (::)
(1) x = 0 (2) x <> 0 & contains0 xs

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Ideas of translation

3. The recursive call becomes type-level recursion

The argument type of C2 transforms from
{ x:int | x <> 0 } * { xs:int list | contains0 xs }

to
{ x:int | x <> 0 } * list_containing0

let contains0 y = match y with
 | [] -> false

| x::xs -> if x = 0 then true else contains0 xs
Manifest Datatypes for Contracts. Taro Sekiyama et al.

Resulting datatype
let contains0 y = match y with

 | [] -> false
| x::xs -> if x = 0 then true

else contains0 xs

type list_containing0’ =
 | C1 of { x:int | x = 0 } * int list

| C2 of { x:int | x <> 0 } * list_containing0’

{ x:int list | contains0 x }

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Formalization

• We formalize translation for only integer lists
– Generalization would be possible but cumbersome

• We prove its correctness: the generated datatype
is equivalent to the original refinement type
– Dynamic conversion between a refinement type and

the new datatype always succeeds in both directions

Manifest Datatypes for Contracts. Taro Sekiyama et al.

E.g., dynamic checks with
<list_containing0’ ⇐ { x:int list | contains0 x }>l

<{ x:int list | contains0 x } ⇐ list_containing0’>l

always succeeds!

FAQ about translation
Q. Is the generated datatype dynamically efficient

representation?
A. Yes, it is at least as efficient as the original

refinement type
– Conversion to the new datatype involves the same

computation as checking the contract in the
refinement type

Q. What predicate functions does translation work
well for?

A. Ones written in the fold form (at least)

We discuss these in the paper in more details
Manifest Datatypes for Contracts. Taro Sekiyama et al.

In the paper …

• Manifest datatypes abstracted over value variables
– The translation algorithm supports that form

• Discussion on extension of type translation to other
data structures, e.g., trees

• Formalization and proofs
– Our manifest calculus and syntactic type translation

• A prototype implementation of our calculus
(without type translation)
http://goo.gl/VMhAv2

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Related work (1)

Lazy Contract Checking for Immutable Data
Structures (Findler et al., IFL ‘07)

• The first work (as far as I know) that discussed
pros and cons of extrinsic and intrinsic styles

• They attempted to resolve the inefficiency
problem of extrinsic style by introducing lazy
contract checking

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Related work (2)

Ornamental Algebras, Algebraic Ornaments
(McBride, ‘12)

Refining Inductive Types
(Atkey et al., LMCS ’12)

• They have studied systematic derivation of
inductive datatypes

• They don’t concern dynamic aspects of datatypes

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Future work

Issue: reusing functions with type conversion could
need a significant computation cost

Approaches:
• Lazy Contract Checking for Immutable Data

Structures (Findler et al., IFL ‘07)
• A new calculus where such conversions are

available for free
Manifest Datatypes for Contracts. Taro Sekiyama et al.

head (<int list ⇐ slist>l x)
The asymptotic time
complexity is
O(length x), not O(1)

Conclusion

• We formulate specs in extrinsic and intrinsic styles
as refinement types and manifest datatypes, resp.

• We give two ways to take the best of both worlds
– Dynamic type conversion
– Syntactic type translation

• We propose a manifest calculus with manifest
datatypes to formalize our ideas

Prototype is available at http://goo.gl/VMhAv2

Manifest Datatypes for Contracts. Taro Sekiyama et al.

Questions?
Slowly, please

Thank you!

Manifest Datatypes for Contracts. Taro Sekiyama et al.

	Manifest Contracts for Datatypes
	Data structures
	Specifications for data structures
	Extrinsic style
	Intrinsic style
	Intrinsic style
	Pros and cons of two styles as contracts
	Pros and cons of two styles
	Extrinsic style can worsen time complexity
	Extrinsic style can worsen time complexity
	Extrinsic style can worsen time complexity
	Intrinsic style can preserve time complexity
	Intrinsic style can preserve time complexity
	Pros and cons of two styles
	Pros and cons of two styles
	Our ideas for better use of intrinsic style
	How do the ideas encourage use of intrinsic style?
	How do the ideas encourage use of intrinsic style?
	How do the ideas encourage use of intrinsic style?
	This Work
	Contents
	Software contracts
	Manifest contracts [Flanagan 2006; Greenberg et al. 2010]
	Manifest datatypes
	Manifest datatypes
	Contents
	Type conversion in manifest contracts
	Type conversion in manifest contracts
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Type conversion to sorted lists
	Nontrivial example: list_containing0
	Nontrivial example: list_containing0
	Nontrivial example: list_containing0
	Formalization
	Contents
	Syntactic type translation
	Syntactic type translation
	Running example
	Ideas of translation
	Ideas of translation
	Ideas of translation
	Ideas of translation
	Ideas of translation
	Ideas of translation
	Resulting datatype
	Formalization
	FAQ about translation
	In the paper …
	Related work (1)
	Related work (2)
	Future work
	Conclusion
	Thank you!

