
日本ソフトウェア科学会第 35 回大会 (2018 年度) 講演論文集

Profile-guided memory optimization for deep

neural networks

Taro Sekiyama Takashi Imamichi Haruki Imai Rudy Raymond

Recent years have seen deep neural networks (DNNs) becoming wider and deeper to achieve better per-
formance in many AI applications. Such DNNs however require large amount of memory to store weights
and intermediate results (e.g., activations, feature maps, etc.) in propagation. This requirement makes it
difficult to run the DNNs on devices with limited and hard-to-extend memory, degrades the running time
performance, as well as restricts the design of network models. We address this challenge by developing
a novel profile-guided memory optimization to efficiently and quickly allocate memory blocks during the
propagation in DNNs. The optimization utilizes a simple and fast heuristic algorithm based on the two-
dimensional rectangle packing problem. Experimenting with well-known neural network models, we confirm
that our method can reduce the memory consumption, and at some cases it can also accelerate training
thanks to the ability to use larger mini-batch sizes.

1 Introduction

Since its great success in computer vision [19],

deep learning, the machine learning technology

based on deep neural networks (DNNs), has

emerged widely in image processing, machine trans-

lation, speech recognition, and many AI applica-

tions. The effective use of graphical processing

units (GPUs) has made it possible to train sophis-

ticated DNNs on huge datasets [19] [20]. Along with

the progress of research to obtain better accuracy,

DNNs are becoming deeper and/or wider . For ex-

ample, in image recognition, AlexNet [19], the win-

ner of ILSVRC 2012, consists of only nine layers

and has a sequential structure; GoogLeNet [28] in-

∗ プロファイルに基づくニューラルネットワークのための
メモリ最適化
This is an unrefereed paper. Copyrights belong to
the Author(s).
関山 太朗, 国立情報学研究所, National Institute of

Informatics. This work was partially done in IBM
Research – Tokyo.
今道 貴司，今井 晴基，Rudy Raymond, IBM 東京基礎
研究所, IBM Research – Tokyo.

troduces the so-called inception modules, which are

a technique to widen DNNs; ResNet [16] consists of

more than 50 layers; and the more recent network,

Inception-ResNet [27], which extends ResNet with

the inception modules, is even larger than ResNet

and GoogLeNet.

Although expanding neural networks seems to be

a key to obtain better accuracy, it comes with the

high memory cost required to store weight parame-

ters and intermediate results in the propagation for

training and inference. This gives rise to several un-

desirable consequences. First, for training DNNs,

we can only use smaller mini-batches to avoid run-

ning out of memory, which results in the inefficient

use of GPUs that can lead to slow convergence,

especially, in the distributed training that adopts

SGD algorithms for large mini-batches [13] [2]. Sec-

ond, inference in the deployment environment may

require many machines equipped with GPUs hav-

ing a large amount of device memory. Third, the

flexibility of the design of neural networks is con-

strained so that the DNNs can fit in the memory

of the underlying devices. The high memory con-

sumption is more serious in the use of GPUs and

edge devices that have much smaller and less ex-

tendable memory storage than CPUs.†1

We study memory optimization for DNNs. Our

approach is based on the observation that propa-

gation of a network model is computed in the same

way for different inputs and different learnable pa-

rameters; we call such propagation hot.†2 This is

indeed the case in many neural networks includ-

ing convolutional neural networks (CNNs). On the

basis of this observation, we profile the memory us-

age (e.g., when a memory block is requested and

released) in a sample run and then utilize the pro-

file to find an assignment of memory addresses to

requests for memory blocks in the succeeding runs.

To minimize the peak memory usage, we reduce

the memory assignment problem to Dynamic Stor-

age Allocation Problem (DSA), a special case of

a packing problem that is known to be NP-hard.

Solutions to DSA give the amount of the entire

memory and offsets within it for memory blocks

requested by the propagation. After solving DSA,

we allocate the entire memory and return a memory

address for each memory request in the succeeding

runs according to the solution to DSA.

Our contributions to overcome the aforemen-

tioned consequences are summarized as follows.

• We propose a novel profile-guided memory

optimization technique for DNNs. Our ap-

proach optimizes memory usage in a hot part

of a propagation and never incurs performance

overhead once the memory usage is optimized,

while preserving the computation of the DNNs.

Using the profiling result, we reduce the mem-

†1 Augmenting devices may mitigate the problem
but it introduces another issue about the com-
munication between devices.

†2 This term originates from just-in-time compila-
tion, where repeatedly executed code blocks to be
optimized are called hot.

ory allocation problem to DSA and solve it

by a heuristic based on the two-dimensional

rectangle packing. We empirically show that

the heuristic works well from the perspectives

of both computation time and solution qual-

ity. Even when the whole propagation is not

hot, there are cases where some part of the

propagation is hot. We develop workarounds

to optimize the memory usage of propagation

that involves non-hot computation so that our

method can be also used in a recurrent neural

network (RNN) with long short-term memory

(LSTM) units [17].

• We implement the memory optimization

on two common deep learning frameworks:

Chainer [29] and PyTorch [22]. We conduct

experiments showing the effectiveness on train-

ing and inference using four CNNs (AlexNet,

ResNet-50, and Inception-ResNet) and one

RNN (seq2seq [26]). We find that our method

can reduce the memory consumption during

training and inference, and, at some cases, it

can also accelerate propagation.

The rest of this paper is organized as follows.

We describe related work in Section 2 and intro-

duce our approach in Section 3. Section 4 gives

an implementation of our idea and explains how to

apply it to DNNs involving non-hot propagation.

Section 5 shows experimental results, and Section 6

concludes this paper.

2 Related work

Our proposed method deals with memory man-

agement for DNNs by leveraging a heuristics based

on packing algorithms. The main characteristic of

memory management for deep learning applications

is the need to allocate many large and small mem-

ory blocks, and for RNNs to deal with variable-

length data. A popular technique used in high-

performance computing to pre-allocate and hold a

few huge memory blocks for reuse in the entire run

is thus not suitable. A better way of memory man-

agement for deep learning applications is dynamic

memory allocation (DMA) (see [31] for a survey).

Common deep learning frameworks adopt either or

a combination of two major DMA algorithms: the

sequential fit, adopted by Theano [4], and the segre-

gated fit, adopted by Chainer, TensorFlow [1], and

MXNet [7]; PyTorch is between them. However

DMA algorithms have a drawback that is solved

by our approach. Namely, they can cause fragmen-

tation, which happens when a memory block is split

into blocks of smaller sizes than sizes requested by

an application program. On the other hand, our

method can find contiguous allocation of memory

blocks so that the peak memory usage is minimized

thanks to its static memory allocation.

Memory reduction for DNNs. There have

been extensive literatures on memory reduction for

DNNs, such as, memory reuse by analysis of com-

putational graphs [7], memory reduction by recom-

putation of intermediate outputs from hidden lay-

ers in backpropagation [8] [21], a new backprop-

agation algorithm that reuses as many memory

blocks allocated in forward propagation as possi-

ble for backpropagation [25], compression [15] [14]

and quantization [12] of DNNs. However, to our

best knowledge, our approach appears to be com-

plementary with the previous work as our method

addresses allocation of memory blocks and is agnos-

tic of how they are used. Some of the advantages

of our method are as follows. First, unlike [7] that

can only optimize the usage of memory for interme-

diate outputs, our approach can also optimize the

usage of temporary memory to speed up convolu-

tion. Second, it does not incur running time over-

head, unlike recomputation-based methods [8] [21].

Third, it is applicable to both training and infer-

ence, whereas the backpropagation developed by

[25] is only for training. Fourth, it does not change

the computation involved by a DNN model, unlike

compression and quantization [15] [14] [12], and does

not need time-consuming retraining, unlike com-

pression [15].

Offloading device memory not used immediately

to a slower storage and prefetch it as necessary, is

another way to run large models on a device with

limited memory [23] [21], but it can cause perfor-

mance degradation due to CPU-GPU communica-

tion for data transfer. Although Unified Memory

in NVIDIA CUDA allows more fine-grained offload-

ing, but it incurs significant and difficult-to-control

overhead [21]. Wang et al. [30] integrate computa-

tional graph analysis, out-of-core technology, and

recomputation into one system (which has pros and

cons of those methods inherently), but their tech-

nique seem to focus on CNNs, and not clear how

to apply it to other NNs. In contract, our method

is simpler and can be applied to RNNs.

Packing problem as memory allocation.

Our method uses a heuristic of memory allocation

developed to solve the Dynamic Storage Allocation

problem (DSA), a typical NP-hard problem [10].

DSA is a special case of a two dimensional strip

packing problem (2SP). The 2SP asks for a set of

rectangular items to be placed in a container with

a fixed width and for the variable height to be min-

imized. A memory block corresponds to a rectan-

gular item with its allocation time as width and

its memory size as height. The DSA deals with a

special case where the allocation times of all mem-

ory blocks are fixed. Namely, all rectangular items

must be placed at predetermined intervals and the

choice of allocations are made by choosing the order

of stacking the items. DSA has been studied mainly

from the theoretical point of view. Gergov [11] pro-

posed a 3-approximation algorithm for DSA whose

running time is O(n logn) where n is the number

of items. The algorithm is still considered as one of

the state-of-the-art and has become the main foun-

dation for many theoretical analysis of DSA, such

as, [5]. Unfortunately, such theoretical algorithms

are often not practical due to high computational

cost. Our proposed method is based on a heuris-

tic for 2SP of Burk et al. [6] known as the best-

fit algorithm. It works well for large-size instances

even compared to metaheuristics-based algorithms,

and thus good for practical purposes. Quite sur-

prisingly, comparing to [11] our method often ob-

tains better solutions (see Section 5 for details).

With regards to 2SP, Arahori et al. [3] proposed

a branch-and-bound-based exact algorithm, which

works well for small and medium-sized instances.

Gálvez et al. [9] proposed a pseudo-polynomial-

time approximate algorithms, whose approxima-

tion ratio is 4/3 + ϵ.

3 Profile-guided memory allocation

We profile the memory usage (e.g., when a mem-

ory block is requested and released) in a sample

run and then utilize the profile to find an assign-

ment of memory addresses to requests for memory

blocks in the succeeding runs by solving DSA. One

may raise a concern that a sample run for a profile

can be memory-inefficient and needs more memory

than the physical capacity. We can obtain the pro-

file even in such a case by utilizing an out-of-core

technique [23] [21] or Unified Memory in NVIDIA

CUDA, which enables us to run the model requiring

memory over the capacity with additional perfor-

mance overhead, and then perform the succeeding

runs without the overhead by disabling those tech-

niques.

From a profile of memory usage during hot prop-

agation, we gather the information of the mem-

ory blocks requested. Such information allows us

to better determine where to allocate the memory

blocks in the physical memory. Formally, we list

the parameters as follows.

• n ∈ Z: number of memory blocks.

• B = {1, . . . , n}: a set of IDs of memory blocks.

• W ∈ N: the available maximum memory size.

• wi ∈ N (i ∈ B): size of memory block i.

• yi ∈ N (i ∈ B): time when i is requested.

• yi ∈ N (i ∈ B): time when i is released.

We assume that these parameters do not change

during the entire run (training and inference) of

a neural network. This assumption is satisfied if

the propagation involved by the neural network is

hot. Many commonly used models satisfy this con-

dition. We give workarounds for network models

where only a part of the propagation is hot in Sec-

tion 4. 3. A memory block i is allocated during a

time period [yj , yj); we call the time period lifetime

of memory block i.

We next introduce the following decision vari-

ables of DSA.

• u ∈ Z: the peak memory usage.

• xi ∈ Z (i ∈ B): memory offset (or, starting

address) of memory block i within the entire

allocated memory.

We call the interval of memory address [xi, xi+wi)

of memory block i address space of memory block

i.

The objective of DSA is to assign memory offsets

to memory blocks so that no two memory blocks

occupy the same address space at any given time

and the peak memory usage is minimized.

Because the number of memory blocks can be

more than 1000, we need polynomial time algo-

rithms to DSA and quadratic time or better is

preferable in particular. In this paper, we study two

methods: a mixed integer programming model by

CPLEX and a new heuristic called best-fit heuris-

tic to DSA. We design the new heuristic to DSA

on the basis of the best-fit heuristic to 2SP [6] be-

cause it is known to be simple, fast, and effective

to especially large 2SP instances and it is not com-

plicated to adjust it for DSA. The best-fit heuristic

to DSA repeats two operations until all memory

blocks are placed: (1) choosing an offset and (2)

searching for a memory block that can be placed

at the chosen offset without colliding with mem-

ory blocks placed already. The computational time

complexity of the heuristic is quadratic in the num-

ber of memory blocks. Note that we do not utilize

approximate algorithms to 2SP such as [9] because

DSA and 2SP are different and we cannot apply

them to DSA directly. We also do not take advan-

tage of exact algorithm to 2SP such as [3] [18] be-

cause they can cope with several tens items at most

and there can be much more items in the memory

allocation in DNN.
4 Implementation

We incorporate the best-fit heuristic in PyTorch

and Chainer to optimize the GPU memory usage.

This section describes the details including how to

apply our approach to any network models.

4. 1 Memory profiling

Since PyTorch and Chainer allocate memory

blocks at run time, we profile GPU memory usage

by monitoring memory allocation and free opera-

tions in a sample run. To obtain memory request

time yi and release time yi, we use a global integer

variable y, which represents the current time and

is increased after each allocation and free. We also

have a global integer variable λ that denotes the ID

of the next requested memory block.

Given a sample input, we initialize the global

variables with one and run the model with the in-

put. When receiving a request with memory size s,

we extend B (the set of memory block IDs) with λ,

set s and y to wλ and yλ, respectively, and finally

increase λ and y. When memory block i is released,

y is set to yi and then increased.

4. 2 Memory allocation

After obtaining the parameters from the sample

run, we calculate the peak memory usage u and

memory offsets xi for memory blocks i by solv-

ing DSA and then allocate GPU memory of size

u; we write p for the address of the memory. In the

rest of the running of the model, we return mem-

ory address p + xi for a request of memory block

i. We identify memory blocks by maintaining the

global variable λ, which is initialized with one be-

fore starting each forward propagation. When a

memory block is requested, we return address p+xλ

and increase λ. This is sound since the propagation

should be computed in the same way as in the sam-

ple run, where λ is always increased after each al-

location. As we explain in Section 3, we implement

two methods to DSA and compare the performance.

4. 3 Generalization for non-hot propaga-

tion

The memory allocation in Section 4. 2 is unsound

for models which, for different inputs, (1) perform

non-hot propagation (that is, it is computed dif-

ferently) and (2) request memory of different sizes.

This section gives workarounds to avoid them.

A workaround for the first issue is very simple:

we do not optimize the usage of memory requested

in the non-hot part of the propagation. To this end,

we provide two operations, interrupt and resume,

which interrupt and resume the monitoring of mem-

ory operations, respectively. When entering a non-

hot part, we call interrupt; and, when leaving that

part, we call resume. Since our method optimizes

only the profiled part of memory usage, the memory

requested between calls to interrupt and resume

is out of the scope of the optimization.

The second issue is resolved by reoptimization. In

this approach, we continue the monitoring of mem-

ory operations after optimizing the memory usage

and, when detecting a request for larger memory

than expected, we reoptimize the memory alloca-

tion by using the new observed parameters—note

that we do not need reoptimization for requests of

0

1

2

3

orig opt orig opt orig opt

32 64 128

AlexNet

0

5

10

15

orig opt orig opt orig opt

32 64 128

ResNet-50

0

10

20

30

orig opt orig opt orig opt

32 64 128

Inception-ResNetGB GB GB

(a) Training in Chainer

0

1

2

3

orig opt orig opt orig opt

32 64 128

AlexNetGB

0

5
10
15
20

orig opt orig opt orig opt

32 64 128

ResNet-50GB

0
10
20
30
40

orig opt orig opt orig opt

32 64 128

Inception-ResNetGB

(b) Training in PyTorch

0
50
100
150
200
250
300

orig opt

AlexNetMB

0

50

100

150

orig opt

ResNet-50MB

0
0.5
1.0
1.5
2.0
2.5

orig opt

Inception-
ResNetGB

(c) Inference in Chainer.

0

200

400

600

800

orig opt

AlexNetMB

0

1

2

3

orig opt

ResNet-50GB

0
1
2
3
4
5

orig opt

Inception-
ResNetGB

(d) Inference in PyTorch.

図 1: Memory optimization for CNNs in Chainer

and PyTorch. Doted red bars show the amounts of

memory retained in the entire propagation (thus,

they are not optimized by our approach) and solid

blue bars show the amounts of memory released

until the end of each propagation (thus, they are

optimized).

0

4

8

12

16

orig opt orig opt orig opt orig opt

32 64 128 256

GB

(a) Training.

0

1

2

3

orig opt

GB

(b) Inference.

図 2: Memory optimization for seq2seq in Chainer.

smaller memory. This workaround may incur an

additional performance cost, but it is very low as

shown in Section 5. 3.
5 Experiments

5. 1 Configurations

We compare the GPU device memory consump-

tion (Figure 1) in Chainer (version 3 RC 1.0) and

PyTorch (0.4.0), which is a baseline and denoted

by orig in figures for shorthand, and their opti-

mized version by our approach, denoted by opt, on

CPLEX Best-fit

AlexNet 10169344 10169344

GoogLeNet 12202496 12202496

表 1: The required memory sizes calculated by

CPLEX and the best-fit heuristic for inference; for

configurations not shown here, CPLEX could not

finish within 1 hour time limit.

0

5

10

I 32 64 128 I 32 64 128 I 32 64 128

AlexNet ResNet-50 Inception-ResNet

sec

(a) CNNs in Chainer.

0

5

10

I 32 64 128 I 32 64 128 I 32 64 128

AlexNet ResNet-50 Inception-ResNet

sec

(b) CNNs in PyTorch.

0

10

20

I 32 64 128 256

sec

(c) Seq2Seq in
Chainer.

図 3: The running times of the best-fit heuristic. “I”

on the x-axes means that the corresponding num-

bers are the times for the inference and 32, 64, 128,

and 256 denote mini-batch sizes in the training.

three CNNs (AlexNet, ResNet-50, and Inception-

ResNet). We furthermore incorporate the both

workarounds in Section 4. 3, which make it possi-

ble to apply our approach to a variety of DNNs,

into Chainer and confirm that the workarounds

work well in a RNN (seq2seq); Figure 2 shows com-

parison of the memory consumption of seq2seq in

Chainer and its optimized version.

Training of the CNNs is performed with 32, 64,

and 128 mini-batch sizes, and that of seq2seq is

with 32, 64, 128, and 256 ones. Inference per-

forms only forward propagation for one input data.

We use ImageNet [24] and the English-French cor-

pus from WMT15†3 as datasets for the CNNs and

seq2seq, respectively. We use the first 1000 train-

ing mini-batches for the warm-up and next 2000

mini-batches for the evaluation. We turn on Unified

Memory of NVIDIA CUDA, which allows us to run

models requiring more memory than the physical

capacity, in the experiments for memory consump-

tion but turn it off in the measurement of running

times since it may incur performance overhead.

We also evaluate the best-fit heuristic imple-

mented in Python in two experiments. We first

compare the solutions by the heuristic with the

optimal solutions found by CPLEX version 12.8

within one hour. We also compare the computa-

tion time of the heuristic for different configurations

(Figure 3).

All experiments are run on an IBM POWER8

machine with two 4GHz 10-core POWER8 proces-

sors, 512 GB RAM, and NVIDIA Tesla P100 GPUs

equipped with 16 GB device memory. Options ex-

cept mini-batch sizes follow the scripts provided by

Chainer and PyTorch scripts.

Finally, we make a few remarks. The first is

on the GPU memory management system of our

baseline. The original Chainer uses DMA for mem-

ory reuse, as described in Section 2, and reduces

the memory consumption somewhat compared with

naive, network-wise memory allocation, which al-

ways allocates a memory block from the physical

device memory for each request. For example, we

observed that, in the training of AlexNet with 32

mini-batch size, the network-wise memory alloca-

tion consumes 1.50 GB device memory whereas the

DMA does only 1.21 GB memory. In this section,

we show that our approach achieves reduction of

more memory than the DMA method. The sec-

ond remark is on convolution algorithms. There

are many algorithms for computing convolution.

†3 http://www.statmt.org/wmt15/

The most memory-efficient algorithm needs mem-

ory only for inputs and outputs, but we can cal-

culate the convolution much faster by allocating

additional temporary memory, called workspace.

Although the optimized version could be acceler-

ated by allocating larger workspace than the origi-

nal Chainer, the experiments use workspace of the

same size (8 MB by default) in both versions for

comparing only the effect of the memory optimiza-

tion.

5. 2 CNNs

5. 2. 1 Training

The total memory consumption during the train-

ing of CNNs is shown in Figure 1a for Chainer and

Figure 1b for PyTorch. In figures throughout this

paper, the amount of memory retained in the en-

tire training (e.g., memory for learnable parame-

ters and gradients) is indicated by doted red bars

and the amount of memory released until the end of

each propagation is indicated by solid blue bars; our

method optimizes usage of only the latter. These

figures show that our optimization works well in

all models and is the most effective for Inception-

ResNet in Chainer (Figure 1a). Specifically, in 64

mini-batch size, the memory consumption in the

optimized version fits within the physical memory

capacity (16 GB), whereas the required memory in

the original Chainer exceeds the capacity consid-

erably. Interestingly, this ability to use a larger

mini-batch size enables us to utilize GPUs more

fully and improve the running time performance of

training in some cases. Actually, we confirmed that

the number of images processed per second by the

optimized version with 64 mini-batch size is 3.95

times as large as that by the original Chainer with

32 mini-batch size.

5. 2. 2 Inference

The memory consumption in inference is shown

in Figure 1c (Chainer) and Figure 1d (PyTorch).

Since the inference does not need to retain mem-

ory for intermediate results, most memory blocks

can be reused even in the memory management of

Chainer. Nevertheless, we successfully reduce the

total memory amounts in ResNet-50 by 10.0%, re-

spectively. The amount of reduced memory is much

more significant in PyTorch; 95% of the memory us-

age in the original is reduced by our optimization.

We wonder if this is because PyTorch might retain

intermediate results after they become unnecessary,

but we need further investigation.

5. 2. 3 Heuristic

CPLEX could obtain the optimal solutions only

in two configurations (inference using AlexNet and

GoogLeNet), and the objective function values by

the heuristic and CPLEX match (10169344 and

12202496, respectively). Our heuristic thus works

very well at least in small instances. The execution

times of the heuristic are shown in Figures 3a and

3b, which indicate that the heuristic works quickly

enough for practical use.

5. 3 Seq2Seq

5. 3. 1 Training and inference

Figure 2a shows the memory consumption im-

mediately after processing 10 mini-batches in the

training of seq2seq and demonstrates that our ap-

proach significantly reduces the memory consump-

tion. In the original Chainer, since the training of

seq2seq requires differently sized memory for differ-

ent inputs, memory blocks allocated in a training

loop may not be used in the succeeding loops, and

the whole of such unused blocks finally reaches the

device memory capacity. In contrast, we recompute

how to allocate memory when necessary, which al-

lows us to keep the memory consumption as low

as possible. As for the inference, the amount of

consumed memory reduces by 14.6% (Figure 2b).

5. 3. 2 Heuristic

As shown in Figure 3c, the heuristic algorithm

takes much longer in the inference, whereas it ter-

minates quickly for the training formulas. This is

due to the Chainer script that we use for the eval-

uation: the script always generates 100 words for

inference, whereas it cuts sentences used for the

training into up to 50 words. Thus, the inference

requests many more memory blocks than the train-

ing, and the heuristic takes long in the inference.

Fortunately, this should not be problematic in prac-

tice, because we can solve DSA with idle CPUs af-

ter responding to an inference request. We note

that the running time performance of the heuristic

can be improved by using faster languages, such as

C and C++. CPLEX could not obtain the optimal

solutions within the 1-hour time limit.
6 Conclusion

We propose a profile-guided memory optimiza-

tion for DNNs. We develop a simple heuristic algo-

rithm to DSA to obtain efficient and fast memory

allocation, and incorporate the heuristic in Chainer

and PyTorch. Differ from the online memory man-

agement inherently used in deep learning frame-

works which allocates memory blocks on-the-fly

during the computation, our method tries to find

an optimal allocation by solving by offline opti-

mization. Compared to existing methods, we ex-

perimentally confirmed that our method reduces

the memory consumption and accelerates propaga-

tion in both training and inference using CNNs and

seq2seq (RNNs).

There are several directions to extend our work.

First, combining offline and memory allocation as

well as other techniques in Wang et al. [30] may lead

to further optimized allocation. Second, we also ob-

serve through experimental results that are omitted

due to page limitation, that although our heuristic

is based on the the best-fit (BF) algorithm for the

2SP of Burk et al. [6], its solutions are mostly better

than those found by the incremental 2-allocation

construction (IAC). A further research to have a

theoretical analysis of the performance of BF algo-

rithm for the Dynamic Memory Allocation (DMA)

is an interesting direction.

参 考 文 献

[1] Abadi, M., Barham, P., Chen, J., Chen, Z.,
Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J.,
Monga, R., Moore, S., Murray, D. G., Steiner, B.,
Tucker, P. A., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X.: TensorFlow: A System
for Large-Scale Machine Learning, Proc. of OSDI,
2016, pp. 265–283.

[2] Akiba, T., Suzuki, S., and Fukuda, K.: Ex-
tremely Large Minibatch SGD: Training ResNet-50
on ImageNet in 15 Minutes, CoRR, Vol. abs/1711.04-
325(2017).

[3] Arahori, Y., Imamichi, T., and Nagamochi, H.:
An exact strip packing algorithm based on canonical
forms, Computers & Operations Research, Vol. 39,
No. 12(2012), pp. 2991–3011.

[4] Bastien, F., Lamblin, P., Pascanu, R., Bergstra,
J., Goodfellow, I. J., Bergeron, A., Bouchard,
N., Warde-Farley, D., and Bengio, Y.: Theano:
new features and speed improvements, CoRR,
Vol. abs/1211.5590(2012).

[5] Buchsbaum, A. L., Karloff, H., Kenyon, C.,
Reingold, N., and Thorup, M.: OPT Versus LOAD
in Dynamic Storage Allocation, SIAM J. Comput.,
Vol. 33, No. 3(2004), pp. 632–646.

[6] Burke, E. K., Kendall, G., and Whitwell, G.: A
New Placement Heuristic for the Orthogonal Stock-
Cutting Problem, Operations Research, Vol. 52,
No. 4(2004), pp. 655–671.

[7] Chen, T., Li, M., Li, Y., Lin, M., Wang, N.,
Wang, M., Xiao, T., Xu, B., Zhang, C., and Zhang,
Z.: MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed
Systems, CoRR, Vol. abs/1512.01274(2015).

[8] Chen, T., Xu, B., Zhang, C., and Guestrin, C.:
Training Deep Nets with Sublinear Memory Cost,
CoRR, Vol. abs/1604.06174(2016).

[9] Gálvez, W., Grandoni, F., Ingala, S., and Khan,
A.: Improved Pseudo-Polynomial-Time Approxi-
mation for Strip Packing, CoRR, Vol. abs/1801.075-
41(2018).

[10] Garey, M. R. and Johnson, D. S.: Computers
and Intractability : A Guide to the Theory of NP-
Completeness, Series of Books in the Mathematical
Sciences, W. H. Freeman, 1979.

[11] Gergov, J.: Algorithms for compile-time mem-
ory optimization, Proceedings of the tenth annual
ACM-SIAM symposium on Discrete algorithms

(SODA 99), SIAM, 1999, pp. 907–908.
[12] Gong, Y., Liu, L., Yang, M., and Bour-

dev, L. D.: Compressing Deep Convolutional
Networks using Vector Quantization, CoRR,
Vol. abs/1412.6115(2014).

[13] Goyal, P., Dollár, P., Girshick, R. B., No-
ordhuis, P., Wesolowski, L., Kyrola, A., Tulloch,
A., Jia, Y., and He, K.: Accurate, Large Mini-
batch SGD: Training ImageNet in 1 Hour, CoRR,
Vol. abs/1706.02677(2017).

[14] Han, S., Mao, H., and Dally, W. J.: Deep Com-
pression: Compressing Deep Neural Network with
Pruning, Trained Quantization and Huffman Cod-
ing, Proc. of ICLR, 2016.

[15] Han, S., Pool, J., Tran, J., and Dally, W. J.:
Learning both Weights and Connections for Ef-
ficient Neural Network, Proc. of NIPS, 2015,
pp. 1135–1143.

[16] He, K., Zhang, X., Ren, S., and Sun, J.: Deep
Residual Learning for Image Recognition, Proc. of
CVPR, 2016, pp. 770–778.

[17] Hochreiter, S. and Schmidhuber, J.: Long
Short-Term Memory, Neural Computation, Vol. 9,
No. 8(1997), pp. 1735–1780.

[18] Huang, E. and Korf, R. E.: Optimal Rect-
angle Packing: An Absolute Placement Ap-
proach, Journal of Artificial Intelligence Research,
Vol. 46(2013), pp. 47–87.

[19] Krizhevsky, A., Sutskever, I., and Hinton, G. E.:
ImageNet Classification with Deep Convolutional
Neural Networks, Proc. of NIPS, 2012, pp. 1106–
1114.

[20] LeCun, Y., Bengio, Y., and Hinton, G. E.: Deep
learning, Nature, Vol. 521, No. 7553(2015), pp. 436–
444.

[21] Meng, C., Sun, M., Yang, J., Qiu, M., and Gu,
Y.: Training Deeper Models by GPU Memory Op-
timization on TensorFlow, Proc. of ML Systems
Workshop in NIPS, 2017.

[22] PyTorch: URL: https://github.com/pytorch/
pytorch. Accessed on 14 May 2018.

[23] Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar,
A., and Keckler, S. W.: vDNN: Virtualized deep
neural networks for scalable, memory-efficient neu-
ral network design, Proc. of MICRO, 2016, pp. 1–
13.

[24] Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei,
L.: ImageNet Large Scale Visual Recognition Chal-
lenge, International Journal of Computer Vision,
Vol. 115, No. 3(2015), pp. 211–252.

[25] Shirahata, K., Tomita, Y., and Ike, A.: Memory
reduction method for deep neural network training,
Proc. of MLSP, 2016, pp. 1–6.

[26] Sutskever, I., Vinyals, O., and Le, Q. V.: Se-
quence to Sequence Learning with Neural Networks,
Proc. of NIPS, 2014, pp. 3104–3112.

[27] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi,
A. A.: Inception-v4, Inception-ResNet and the Im-
pact of Residual Connections on Learning, Proc. of
AAAI, 2017, pp. 4278–4284.

[28] Szegedy, C., Liu, W., Jia, Y., Sermanet, P.,
Reed, S. E., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A.: Going deeper with convo-
lutions, Proc. of CVPR, 2015, pp. 1–9.

[29] Tokui, S., Oono, K., Hido, S., and Clayton, J.:
Chainer: A Next-Generation Open Source Frame-
work for Deep Learning, Proc. of Workshop on Ma-

chine Learning Systems in NIPS, 2015.
[30] Wang, L., Ye, J., Zhao, Y., Wu, W., Li,

A., Song, S. L., Xu, Z., and Kraska, T.: Su-
perNeurons: Dynamic GPU Memory Manage-
ment for Training Deep Neural Networks, CoRR,
Vol. abs/1801.04380(2018).

[31] Wilson, P. R., Johnstone, M. S., Neely, M., and
Boles, D.: Dynamic Storage Allocation: A Survey
and Critical Review, Proc. of IWMM, 1995, pp. 1–
116.

