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ABSTRACT the overhead in general is observed to reduce significarithythe

Deep learning is both compute- and data-intense, and receak- use of a faster communication link between the CPU and GPU
throughs have largely been fueled by the fp32 compute capaici (NVLink and next-Gen NVLink). Our experimental results sho
modern GPUs. This has made GPUs the prevalent tool formgaini  that our large model support in Caffe and Chainer performy ve
deep neural networks, but GPUs have only small amounts dfjcos Well, and can train 2 to 6 times larger ImageNet models.
3D-stacked HBM DRAM as their local memory. Working out of a  ACM Reference Format:

small memory imposes a limit on the maximum learning capacit Minsik Cho, Tung D. Le, Ulrich A. Finkler, Haruiki Imai, Yasti Negishi,

a neural network can have (i.e., the number of learnablenpara  Taro Sekiyama, Saritha Vinod, Vladimir Zolotov, Kiyokunatachiya, David
ters) and the maximum size and number of samples a network canS. Kung, and Hillery C. Hunter. 2018. Large Model Supportbeep Learn-
consume at a given time. The field of deep learning is evolinng ~ Ing in Caffe and Chainer. IRroceedings of ACM Conference (SysML'18).
many new directions, and research teams are exploring kesh v ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/xxx

large neural networks and attempting to apply deep learaingal

datasets, including high-resolution images. Those eiqpjoboth 1 INTRODUCTION

the boundaries of neural networks and use of real datas##y to  Deep learning has become the de-facto technique for ansisioge

generally will find that their deep learning software wonipport number of cognitive applications, including vision, sgeeand lan-
what they wish to train, and if it does, they find performacé¢o guage translation [1, 6, 7]. Its success is driven by thelaiity
intolerably slow. In this paper, we present the idea of largelel of an enormous volume of data and advances in deep neural net-
support, and its implementation in two popular deep leayfiame- works, which in turn make deep learning one of the most compu-
works, Caffe and Chainer. The key idea is to use GPU memory astationally demanding Al applications [1, 3, 8]. Hardwareeler-

an application-level cache w.r.t. the host memory so thatgelnet- ators like GPUs and their accompanying software stacks piee
work (e.g., many parameters or many layers) can be trainéu wi vided a significant amount of speed-up [10]. However, GPWs laa
real-world samples (e.g., HD-images). Although our largeded much smaller memory space (12-16GB) due to the expense of HBM

support scheme may degrade the performance of trainingalue t DRAM, chip pinout required to drive high memory bandwidthda
the communication overhead between the system CPUs and,GPUsyirability of the silicon interposers which carry the DRAM. con-
trast, CPUs use a far more scalable type of DRAM memory (DDR3
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g;'\(;'lLéliv Febf“?fy'ﬁ;()lfzy:sa”fotfdv C’\’/T' UhS.A rolled into a large number of layers. Therefore, a complexrae
o O oL e network which would be perfectly trained on CPUs may never be
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Figurel: CaffeLMSon 4 V100 GPUs
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capability of a system (both the CPU memory and the GPU mem-

ory) together, in order to enable deep learning to contioyaush
boundaires, motivates our large model support (LMS).

The key idea in LMS is to treat GPU memory as an application-
level cache w.r.t the host main memory. Basically, all datice on
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Figure2: Chainer LMSon 4 V100 GPUs

observation is made when we compare Chainer-LMS runs on both
platforms as in Fig. 2.

We also observed that LMS can improve the training perfooaan
by maximizing GPU utilization. For Resnet-152 on Caffe, nexi-
mum batch size without LMS was 32 and the corresponding tiirou
put was 91.2 images/sec. With LMS, we were able to increase th

host memory and are copied to GPU memory only when needed.patch size to 48 and improved the throughput to 121.2 images/
After the GPU memory is used, depending on whether it has beenjp, gpjte of the CPU-GPU communication overhead.

modified or has future usage, it can be either copied back td CP
memory or simply discarded. To efficiently utilize GPU memor
our LMS implementation keeps a large memory pool so that dif-

ferent memory pieces from CPU memory can share the same GPU

memory chunk. Therefore, at any moment, the GPU only holts da
necessary to process one operation, for example, the foprapa-
gation of one operation in a neural network. If the memoryneg
ment from any operation is larger than the GPU memory, then ev
LMS will fail as well. In theory, LMS should be able to handle a
deep neural network of an arbitrary capacity, as long aheltiata
from the largest operation can fit into the GPU memory. A samil
idea has been proposed for Tensorflow in [4], but we discusS LM
implementation in Caffe and Chainer and share our results.

2 EXPERIMENTAL RESULTS

We have successfully implemented LMS functionality in @dff]
and Chainer [9] as part of the PowerAl deep learning softwizse
tribution. We have open sourced our implementations, aeyl ahe
available at the following github, [12] for Caffe, [11] forh@iner,
respectively. To demonstrate LMS functionality, we ob¢aiithe re-
sults of running 1000 iterations of an enlarged GooglLeNedleho
(mini-batch size=5) on an enlarged ImageNet Dataset (Geapos
2240x2240) on two platforms:

e POWER9 AC922 system with next-Gen NVLink, CPU at
2.25 GHz with 1024 GB memory, 4x V100-SXM2 GPUs
on Red Hat Enterprise Linux 7.4 for Power Little Endian
(POWER9) with CUDA 9.1/ CUDNN 7

e Intel Xeon E5-2640 v4 at 2.4 GHz with 1024 GB memory,
4x V100-PCle GPUs on Ubuntu 16.04. with CUDA .9.0/
CUDNN 7

The key difference between two platforms is the next-Gen ML

which connects CPUs and GPUs with 150GB/s bandwidth, while a

PCle connection provides 16GB/s.

Fig. 1 shows the elapsed runtime for Caffe with LMS for the
first 1000 iterations. We observed that Caffe-LMS on P9 rinosi.
3.8x faster than on Xeon E5-2640 due to the NVLink 2.0. Theesam
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