Supplementary Material for "Gradual Typing for Extensibility by Rows"

Taro Sekiyama

National Institute of Informatics & SOKENDAI

December 30, 2024

1 Definition

1.1 Statically typed language F^{ρ}

1.1.1 Syntax

Kinds $K ::= \mathsf{T} | \mathsf{R}$ Variables for types and rows X **Constants** $\kappa ::= true | false | 0 | + | ...$ **Base types** $\iota ::= bool | int | ...$ **Types and rows** A, B, C, D, ρ ::= $X \mid \iota \mid A \rightarrow B \mid \forall X: K. A \mid [\rho] \mid \langle \rho \rangle \mid \cdot \mid \ell : A; \rho$ $M ::= x \mid \kappa \mid \lambda x : A \cdot M \mid M_1 \cdot M_2 \mid \Lambda X : K \cdot M \mid M \cdot A \mid$ Terms $\{\} \mid \{\ell = M_1; M_2\} \mid \text{let} \{\ell = x; y\} = M_1 \text{ in } M_2 \mid$ $\ell M \mid \mathsf{case} M \mathsf{ with } \langle \ell x \to M_1; y \to M_2 \rangle \mid \uparrow \langle \ell : A \rangle M$ Values $w ::= \kappa \mid \lambda x: A.M \mid \Lambda X: K.M \mid \{\} \mid \{\ell = w_1; w_2\} \mid w^{\ell} \qquad w^{\ell} ::= \ell w \mid \uparrow \langle \ell : A \rangle w^{\ell}$ $F ::= [] | F M_2 | w_1 F | F A |$ **Evaluation contexts** $\{\ell = F; M_2\} \mid \{\ell = w_1; F\} \mid \mathsf{let} \{\ell = x; y\} = F \mathsf{in} M_2 \mid \{\ell = x; y$ $\ell F \mid \mathsf{case} F \mathsf{ with } \langle \ell x \to M_1; y \to M_2 \rangle \mid \uparrow \langle \ell : A \rangle F$ $\Gamma ::= \emptyset \mid \Gamma, x:A \mid \Gamma, X:K$ Typing contexts

Definition 1 (Free type variables and type substitution). The set ftv(A) of free variables for types and rows in A is defined as usual. Substitution A[B/X] of B for X in A is defined in a capture-avoiding manner.

Definition 2 (Domain of typing contexts). We define dom (Γ) as follows.

 $\begin{array}{ll} dom\left(\emptyset\right) & \stackrel{\text{def}}{=} & \emptyset \\ dom\left(\Gamma, x : A\right) & \stackrel{\text{def}}{=} & dom\left(\Gamma\right) \cup \{x\} \\ dom\left(\Gamma, x : K\right) & \stackrel{\text{def}}{=} & dom\left(\Gamma\right) \cup \{X\} \end{array}$

Assumption 1. We suppose that each constant κ is assigned a first-order type $ty(\kappa)$ of the form $\iota_1 \to \cdots \to \iota_n$. Suppose that, for any ι , there is a set \mathbb{K}_{ι} of constants of ι . For any constant κ , $ty(\kappa) = \iota$ if and only if $\kappa \in \mathbb{K}_{\iota}$. The function ζ gives a denotation to pairs of constants. In particular, for any constants κ_1 and κ_2 : (1) $\zeta(\kappa_1, \kappa_2)$ is defined if and only if $ty(\kappa_1) = \iota \to A$ and $ty(\kappa_2) = \iota$ for some A; and (2) if $\zeta(\kappa_1, \kappa_2)$ is defined, $\zeta(\kappa_1, \kappa_2)$ is a constant and $ty(\zeta(\kappa_1, \kappa_2)) = A$ where $ty(\kappa_1) = \iota \to A$.

We use the notation and the assumption above also in F_{G}^{ρ} and F_{C}^{ρ} .

1.1.2 Semantics

Definition 3 (Record splitting). $w \triangleright_{\ell} w_1, w_2$ is defined as follows:

$$\{ \ell = w_1; w_2 \} \triangleright_{\ell} w_1, w_2 \{ \ell' = w_1; w_2 \} \triangleright_{\ell} w_{21}, \{ \ell' = w_1; w_{22} \} \quad (if \ \ell \neq \ell' \ and \ w_2 \triangleright_{\ell} w_{21}, w_{22})$$

Reduction rules $M_1 \rightsquigarrow^s M_2$

Evaluation rule $M_1 \longrightarrow^s M_2$

$$\frac{M_1 \rightsquigarrow^s M_2}{F[M_1] \longrightarrow^s F[M_2]} \quad \text{Es_Red}$$

Figure 1: Semantics of F^{ρ} .

Definition 4 (Semantics). The reduction relation \rightsquigarrow^s and the evaluation relation \longrightarrow^s of F^{ρ} are defined by the rules given in Figure 1.

1.1.3 Type system

Figure 2: Type-and-row equivalence of F^{ρ} .

Definition 5 (Type-and-row equivalence). Type-and-row equivalence \equiv is the smallest relation satisfying the rules given by Figure 2.

Definition 6 (Typing). The well-formedness judgments $\vdash^{s} \Gamma$ and $\Gamma \vdash^{s} A : K$, and the typing judgment $\Gamma \vdash^{s} M : A$ of F^{ρ} are the smallest relations satisfying the rules given by Figure 3.

Well-formedness rules for typing contexts $[\vdash^s \Gamma]$

$$\frac{x \notin dom\left(\Gamma\right)}{\vdash^{s} \emptyset} \quad \text{WFs_EMPTY} \quad \frac{\vdash^{s} \Gamma \quad \Gamma \vdash^{s} A : \mathsf{T}}{\vdash^{s} \Gamma, x : A} \quad \text{WFs_ExtVar} \quad \frac{\vdash^{s} \Gamma \quad X \notin dom\left(\Gamma\right)}{\vdash^{s} \Gamma, X : K} \quad \text{WFs_ExtTyVar}$$

Well-formedness rules for types and rows $\Gamma \vdash^{s} A : K$

$$\frac{\vdash^{s} \Gamma \quad X:K \in \Gamma}{\Gamma \vdash^{s} X:K} \quad WFs_TYVAR \qquad \frac{\vdash^{s} \Gamma}{\Gamma \vdash^{s} \iota:T} \quad WFs_BASE \qquad \frac{\Gamma \vdash^{s} A:T \quad \Gamma \vdash^{s} B:T}{\Gamma \vdash^{s} A \to B:T} \quad WFs_FUN \\
\frac{\Gamma, X:K \vdash^{s} A:T}{\Gamma \vdash^{s} \forall X:K.A:T} \quad WFs_POLY \qquad \frac{\Gamma \vdash^{s} \rho:R}{\Gamma \vdash^{s} [\rho]:T} \quad WFs_RECORD \qquad \frac{\Gamma \vdash^{s} \rho:R}{\Gamma \vdash^{s} \langle \rho \rangle:T} \quad WFs_VARIANT \\
\frac{\vdash^{s} \Gamma}{\Gamma \vdash^{s} \cdot:R} \quad WFs_REMP \qquad \frac{\Gamma \vdash^{s} A:T \quad \Gamma \vdash^{s} \rho:R}{\Gamma \vdash^{s} \ell:A;\rho:R} \quad WFs_CONS$$

Typing rules $\Gamma \vdash^{s} M : A$

$$\frac{\vdash^{s} \Gamma \quad x:A \in \Gamma}{\Gamma \vdash^{s} x:A} \quad \text{Ts_VAR} \qquad \frac{\vdash^{s} \Gamma}{\Gamma \vdash^{s} \kappa: ty(\kappa)} \quad \text{Ts_CONST} \qquad \frac{\Gamma, x:A \vdash^{s} M:B}{\Gamma \vdash^{s} \lambda x:A.M:A \to B} \quad \text{Ts_LAM}$$

$$\frac{\Gamma \vdash^{s} M_{1}:A \to B \quad \Gamma \vdash^{s} M_{2}:A}{\Gamma \vdash^{s} M_{1}M_{2}:B} \quad \text{Ts_APP} \qquad \frac{\Gamma, X:K \vdash^{s} M:A}{\Gamma \vdash^{s} \Lambda X:K.M:\forall X:K.A} \quad \text{Ts_TLAM}$$

$$\frac{\Gamma \vdash^{s} M:\forall X:K.A \quad \Gamma \vdash^{s} B:K}{\Gamma \vdash^{s} M B:A[B/X]} \quad \text{Ts_TAPP} \qquad \frac{\vdash^{s} \Gamma}{\Gamma \vdash^{s} \{\}:[\cdot]} \quad \text{Ts_REMP}$$

$$\frac{\Gamma \vdash^{s} M_{1}:A \quad \Gamma \vdash^{s} M_{2}:[\rho]}{\Gamma \vdash^{s} \{\ell = M_{1}; M_{2}\}:[\ell:A;\rho]} \quad \text{Ts_REXT} \qquad \frac{\Gamma \vdash^{s} M_{1}:[\ell:A;\rho] \quad \Gamma, x:A, y:[\rho] \vdash^{s} M_{2}:B}{\Gamma \vdash^{s} \ell M:\langle \ell:A;\rho \rangle} \quad \text{Ts_RLET}$$

$$\frac{\Gamma \vdash^{s} M:A \quad \Gamma \vdash^{s} \rho:R}{\Gamma \vdash^{s} \ell M:\langle \ell:A;\rho \rangle} \quad \text{Ts_VINJ} \qquad \frac{\Gamma \vdash^{s} M:\langle \rho \rangle \quad \Gamma \vdash^{s} A:T}{\Gamma \vdash^{s} \langle \ell:A \rangle M:\langle \ell:A;\rho \rangle} \quad \text{Ts_VLIFT}$$

$$\frac{\Gamma \vdash^{s} M:\langle \ell:A;\rho \rangle \quad \Gamma, x:A \vdash^{s} M_{1}:B \quad \Gamma, y:\langle \rho \rangle \vdash^{s} M_{2}:B}{\Gamma \vdash^{s} case M \text{ with } \langle \ell x \to M_{1}; y \to M_{2} \rangle:B} \quad \text{Ts_VCASE}$$

$$\frac{\Gamma \vdash^{s} M:A \quad A \equiv B \quad \Gamma \vdash^{s} B:T}{\Gamma \vdash^{s} M:B} \quad \text{Ts_EQUIV}$$

Figure 3: Typing of F^{ρ} .

1.2 Gradually typed language F_{G}^{ρ}

1.2.1 Syntax

Assumption 2. We assume that operation $A \oplus B$ that produces a type is available. Assumptions for \oplus are stated in the beginnings of subsections of proving properties (Section 2.3 and Section 2.4).

1.2.2 Typing

Definition 7 (Type-and-row equivalence). Type-and-row equivalence \equiv is the smallest relation satisfying the rules given by Figure 2.

Figure 4: Consistency.

Definition 8 (Quasi-universal types). The predicate $\mathbf{QPoly}(A)$ is defined by: $\mathbf{QPoly}(A)$ if and only if

- $A \neq \forall X: K. B$ for any X, K, and B,
- $A \neq \cdot$,
- $A \neq \ell : B; \rho \text{ for any } \ell, B, and \rho, and$
- \star occurs somewhere in A.

Type A is a quasi-universal type if and only if $\mathbf{QPoly}(A)$.

Definition 9 (Labels in row). We define dom (ρ) , the set of the field labels in ρ , as follows.

$$\begin{array}{lll} dom\left(\cdot\right) & \stackrel{\mathrm{def}}{=} & \emptyset \\ dom\left(\star\right) & \stackrel{\mathrm{def}}{=} & \emptyset \\ dom\left(X\right) & \stackrel{\mathrm{def}}{=} & \emptyset \\ dom\left(\alpha\right) & \stackrel{\mathrm{def}}{=} & \emptyset \\ dom\left(\ell:A;\rho\right) & \stackrel{\mathrm{def}}{=} & dom\left(\rho\right) \cup \left\{\ell\right\} \end{array}$$

Definition 10 (Row concatenation). *Row concatenation* $\rho_1 \odot \rho_2$ *is defined as follows:*

$$\begin{array}{ccc} \cdot \odot \rho_2 & \stackrel{\text{def}}{=} & \rho_2 \\ (\ell : A; \rho_1) \odot \rho_2 & \stackrel{\text{def}}{=} & \ell : A; (\rho_1 \odot \rho_2) \end{array}$$

Definition 11 (Rows ending with \star). Row type ρ ends with \star if and only if $\rho = \rho' \odot \star$ for some ρ' .

Definition 12 (Consistency). Consistency $A \sim B$ is the smallest relation satisfying the rules given by Figure 4.

Consistent equivalence rules
$$A \simeq B$$

 $\overline{A \simeq A}$ CE_REFL $\overline{\times \simeq A}$ CE_DYNL $\overline{A \simeq \star}$ CE_DYNR
 $\frac{A_1 \simeq A_2}{A_1 \to B_1 \simeq A_2 \to B_2}$ CE_FUN $\frac{A_1 \simeq A_2}{\forall X:K. A_1 \simeq \forall X:K. A_2}$ CE_POLY
 $\overline{QPoly(A_2)} \xrightarrow{X \notin ftv(A_2)} A_1 \simeq A_2$ CE_POLYL $\overline{QPoly(A_1)} \xrightarrow{X \notin ftv(A_1)} A_1 \simeq A_2$ CE_POLYR
 $\frac{\rho_1 \simeq \rho_2}{[\rho_1] \simeq [\rho_2]}$ CE_RECORD $\frac{\rho_1 \simeq \rho_2}{\langle \rho_1 \rangle \simeq \langle \rho_2 \rangle}$ CE_VARIANT
 $\frac{\rho_2 \triangleright_\ell B, \rho'_2 \quad A \simeq B \quad \rho_1 \simeq \rho'_2}{\ell: A; \rho_1 \simeq \rho_2}$ CE_CONSL $\frac{\rho_1 \triangleright_\ell A, \rho'_1 \quad A \simeq B \quad \rho'_1 \simeq \rho_2}{\rho_1 \simeq \ell: B; \rho_2}$ CE_CONSR

Figure 5: Consistent equivalence.

Definition 13 (Row splitting). Row splitting $\rho_1 \triangleright_{\ell} A, \rho_2$ is defined as follows.

$$\begin{array}{ll} \ell : A; \rho & \triangleright_{\ell} & A, \rho \\ \ell' : B; \rho_1 & \triangleright_{\ell} & A, (\ell' : B; \rho_2) & (if \ \ell \neq \ell' \ and \ \rho_1 \triangleright_{\ell} & A, \rho_2) \\ \star & \triangleright_{\ell} & \star, \star \end{array}$$

Definition 14 (Consistent equivalence). Consistency equivalence $A \simeq B$ is the smallest relation satisfying the rules given by Figure 5.

Definition 15 (Type matching). Type matching $A \triangleright B$ is the smallest relation satisfying the rules given by Figure 6.

Definition 16 (Typing). The well-formedness judgments $\vdash \Gamma$ and $\Gamma \vdash A : K$, and the typing judgment $\Gamma \vdash M : A$ of F_G^{ρ} are the smallest relations satisfying the rules given by Figure 7.

Well-formedness rules for typing contexts $\Box \vdash \Gamma$

$$\begin{array}{cccc} & \mbox{WFg_EMPTY} & & \frac{ \vdash \Gamma & x \not\in dom\left(\Gamma\right) & \Gamma \vdash A : \mathsf{T} \\ & & \vdash \Gamma, x : A \end{array} & \mbox{WFg_ExtVar} \\ & \\ & \frac{ \vdash \Gamma & X \not\in dom\left(\Gamma\right) } { \vdash \Gamma, X : K } & \mbox{WFg_ExtTyVar} \end{array}$$

Well-formedness rules for types and rows $\Gamma \vdash A: K$

$$\begin{array}{c} \frac{\vdash \Gamma \quad X:K \in \Gamma}{\Gamma \vdash X:K} \quad \mathrm{WFG.TyVAR} \qquad \frac{\vdash \Gamma}{\Gamma \vdash x:K} \quad \mathrm{WFG.DyN} \qquad \frac{\vdash \Gamma}{\Gamma \vdash i:T} \quad \mathrm{WFG.Base} \\ \frac{\vdash \Gamma \quad X:K \in \Gamma}{\Gamma \vdash A \rightarrow B:T} \quad \mathrm{WFG.Fun} \qquad \frac{\Gamma, X:K \vdash A:T}{\Gamma \vdash \forall X:K.A:T} \quad \mathrm{WFG.Poly} \qquad \frac{\Gamma \vdash \rho:R}{\Gamma \vdash \rho:R} \quad \mathrm{WFG.Record} \\ \frac{\Gamma \vdash \rho:R}{\Gamma \vdash \rho):T} \quad \mathrm{WFG.VARIANT} \qquad \frac{\vdash \Gamma}{\Gamma \vdash \cdot:R} \quad \mathrm{WFG.REMP} \qquad \frac{\Gamma \vdash A:T \quad \Gamma \vdash \rho:R}{\Gamma \vdash i:A;\rho:R} \quad \mathrm{WFG.Cons} \\ \mathbf{Typing rules} \quad \frac{\Gamma \vdash M:A}{\Gamma \vdash X:A} \qquad \frac{\vdash \Gamma}{\Gamma \vdash x:A} \quad \mathrm{TG.VAR} \qquad \frac{\vdash \Gamma}{\Gamma \vdash \kappa:ty(\kappa)} \quad \mathrm{TG.Const} \qquad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash \lambda x:A.M:A \rightarrow B} \quad \mathrm{TG.LAM} \\ \frac{\Gamma \vdash M_1:A_1 \quad \Gamma \vdash M_2:A_2 \quad A_1 \rightarrow A_{12} \quad A_2 \simeq A_{11}}{\Gamma \vdash M_1 M_2:A_{12}} \quad \mathrm{TG.APP} \\ \frac{\Gamma \vdash M_1:A_1 \quad \Gamma \vdash M_2:A_2 \quad A_1 \rightarrow A_{12} \quad A_2 \simeq A_{11}}{\Gamma \vdash M_1 M_2:A_{12}} \quad \mathrm{TG.APP} \\ \frac{\vdash \Gamma}{\Gamma \vdash \{\}:[]} \quad \mathrm{TG.REMP} \qquad \frac{\Gamma \vdash M:A \quad \Gamma \vdash B:K \quad A \triangleright \forall X:K.C}{\Gamma \vdash M:B:C[B/X]} \quad \mathrm{TG.RExT} \\ \frac{\Gamma \vdash M_1:A \quad \Delta \vdash \rho]}{\Gamma \vdash \{\ell = x;y\} = M_1 \text{ in } M_2:C} \quad \mathrm{TG.RExT} \\ \frac{\Gamma \vdash M:A \quad \Gamma \vdash \rho:R}{\Gamma \vdash M:(\ell = x;q)} \quad \mathrm{TG.VLiFT} \\ \frac{\Gamma \vdash M:A \quad \Delta \vdash \rho:R}{\Gamma \vdash M:(\ell :A;\rho)} \quad \mathrm{TG.VLiFT} \\ \frac{\Gamma \vdash M:A \quad \Delta \vdash \rho)}{\Gamma \vdash \cos M \quad With (\ell x \rightarrow M_1; y \rightarrow M_2):C \oplus D} \quad \mathrm{TG.VCASE} \end{array}$$

Figure 7: Typing of $\mathbf{F}^{\rho}_{\mathbf{G}}.$

1.3 Blame calculus $\mathbf{F}_{\mathbf{C}}^{\rho}$

1.3.1 Syntax

Blame labels p, q Type-a	nd-row names α Conversion labels $\Phi ::= +\alpha \mid -\alpha$
Types and rows A, B, C, D, ρ	$::= X \mid \alpha \mid \star \mid \iota \mid A \to B \mid \forall X : K. \ A \mid [\rho] \mid \langle \rho \rangle \mid \cdot \mid \ell : A; \rho$
Ground types G, H	$::= \alpha \mid \iota \mid \star \to \star \mid [\star] \mid \langle \star \rangle$
Ground row types γ	$::= \alpha \mid \cdot \mid \ell : \star; \star$
Terms e	$::= x \mid \kappa \mid \lambda x : A . e \mid e_1 e_2 \mid \Lambda X : K . e ::: A \mid e \mid A \mid$
	$\{\} \mid \{\ell = e_1; e_2\} \mid let \{\ell = x; y\} = e_1 in e_2 \mid$
	$\ell \ e \ \mid case \ e \ with \ \langle \ell \ x ightarrow e_1; y ightarrow e_2 angle \ \mid \uparrow \langle \ell : A angle \ e \ \mid$
	$e:A \stackrel{p}{\Rightarrow} B \mid e:A \stackrel{\Phi}{\Rightarrow} B \mid blame p$
Values v	$::= \kappa \mid \lambda x : A.e \mid \Lambda X : K.e :: A \mid \{\} \mid \{\ell = v_1; v_2\} \mid \ell v \mid \uparrow \langle \ell : A \rangle v \mid$
	$v: G \xrightarrow{p} \star \mid v: [\gamma] \xrightarrow{p} [\star] \mid v: \langle \gamma \rangle \xrightarrow{p} \langle \star \rangle \mid$
	$v: A \stackrel{-\alpha}{\Rightarrow} \alpha \mid v: [\rho] \stackrel{-\alpha}{\Rightarrow} [\alpha] \mid v: \langle \rho \rangle \stackrel{-\alpha}{\Rightarrow} \langle \alpha \rangle$
Evaluation contexts E	$::= [] E e_2 v_1 E E A \{\ell = E; e_2\} \{\ell = v_1; E\} $
	$let\left\{\ell=x;y\right\}=E in e_2 \mid$
	$\ell \: E \mid$ case E with $\langle \ell \: x ightarrow e_1; \: y ightarrow e_2 angle \mid \uparrow \langle \ell : A angle \: E \mid$
	$E:A \stackrel{p}{\Rightarrow} B \mid E:A \stackrel{\Phi}{\Rightarrow} B$
Name stores Σ	$::= \emptyset \mid \Sigma, \alpha: K := A$

Figure 8: Syntax of $F_{\rm C}^{\rho}$.

Definition 17 (Comparison between name stores). We write $\Sigma \subseteq \Sigma'$ if and only if, for any α , K, and A, if $\alpha:K := A \in \Sigma$, then $\alpha:K := A \in \Sigma'$.

Definition 18 (Substitution). Type substitution e[A/X] of A for X in e is defined in a capture-avoiding manner as usual. Value substitution e[v/x] is also defined similarly.

1.3.2 Semantics

Definition 19 (Record splitting). $v \triangleright_{\ell} v_1, v_2$ is defined as follows:

$$\begin{aligned} \{\ell = v_1; v_2\} \triangleright_{\ell} v_1, v_2 \\ \{\ell' = v_1; v_2\} \triangleright_{\ell} v_{21}, \{\ell' = v_1; v_{22}\} \quad (where \ \ell \neq \ \ell' \ and \ v_2 \triangleright_{\ell} v_{21}, v_{22}) \end{aligned}$$

Definition 20 (Field postpending). *Field postpending* $\rho @ \ell : A$ *is defined as follows:*

$$\begin{pmatrix} \ell':B;\rho \end{pmatrix} @ \ell:A \stackrel{\text{def}}{=} \ell':B; (\rho @ \ell:A) \\ \star @ \ell:A \stackrel{\text{def}}{=} \ell:A; \star$$

Definition 21 (Ground row types of rows).

$$\begin{array}{lll} grow(\cdot) & \stackrel{\text{def}}{=} & \cdot \\ grow(\alpha) & \stackrel{\text{def}}{=} & \alpha \\ grow(\ell:A;\rho) & \stackrel{\text{def}}{=} & \ell:\star;\star \end{array}$$

Definition 22 (Row embedding). *Row embedding* $\uparrow \rho e$ *is defined as follows:*

$$\uparrow (\ell : A; \rho) e \stackrel{\text{def}}{=} \uparrow \langle \ell : A \rangle (\uparrow \rho e) \uparrow \rho e \stackrel{\text{def}}{=} e (if \rho \neq (\ell : A; \rho'))$$

Definition 23 (Field insertion). Function $\downarrow_{\langle \ell:A \rangle}^{\rho} e$ embeds a term e of type $\langle \rho \odot \rho' \rangle$ into $\langle \rho \odot (\ell:A; \cdot) \odot \rho' \rangle$. Formally, it is defined as follows:

$$\begin{array}{ll} \downarrow_{\langle \ell:A\rangle}^{(\ell':B';\rho)} e & \stackrel{\mathrm{def}}{=} & \operatorname{case} e \text{ with } \langle \ell' \, x \to \ell' \, x; \, y \to \uparrow \langle \ell':B' \rangle \, (\downarrow_{\langle \ell:A\rangle}^{\rho} y) \rangle \\ \downarrow_{\langle \ell:A\rangle}^{\rho} e & \stackrel{\mathrm{def}}{=} & \uparrow \langle \ell:A \rangle \, e & (if \, \rho \neq (\ell':B';\rho') \text{ for any } \ell', B', \text{ and } \rho') \end{array}$$

Definition 24 (Name in conversion label). We define $name(+\alpha)$ and $name(-\alpha)$ to be α .

Reduction rules $e_1 \rightsquigarrow e_2$

$$v: \forall X:K. A_1 \stackrel{\Phi}{\to} \forall X:K. A_2 \quad \rightsquigarrow \quad \Lambda X:K. (v \ X: A_1 \stackrel{\Phi}{\to} A_2) :: A_2 \qquad \qquad \text{R_CFORALL}$$

Figure 9: Reduction rules of F_C^{ρ} .

Definition 25. Relations \longrightarrow and \rightsquigarrow are the smallest relations satisfying the rules in Figures 9, 10, 11, and 12. **Definition 26** (Multi-step evaluation). Binary relation \longrightarrow^* over terms is the reflexive and transitive closure of \longrightarrow .

1.4 Typing

Definition 27. Judgments $\Sigma \vdash \Gamma$, $\Sigma; \Gamma \vdash A : K$, and $\Sigma; \Gamma \vdash e : A$ are the smallest relations satisfying the rules in Figures 14 and 15.

Cast and conversion reduction rules for records $e_1 \rightsquigarrow e_2$

$v : [\cdot] \xrightarrow{\mathbb{P}} [\cdot] \rightarrow v$ $v : [\alpha] \xrightarrow{\mathbb{P}} [\alpha] \rightarrow v$ $v : [\rho] \xrightarrow{\mathbb{P}} [\star] \rightarrow v : [\rho] \xrightarrow{\mathbb{P}} [grow(\rho)] \xrightarrow{\mathbb{P}} [\star] (\text{if } \rho \neq grow(\rho))$ $v : [\gamma] \xrightarrow{\mathbb{P}} [\star] \xrightarrow{q} [\rho] \rightarrow v : [\gamma] \xrightarrow{\mathbb{Q}} [\rho] (\text{if } \gamma \simeq \rho)$	R_REMP R_RIDNAME R_RTODYN R_RFROMDYN
$v : [\gamma] \Rightarrow [\star] \Rightarrow [\rho] \rightsquigarrow \text{ blame } q (\text{II } \gamma \not\cong \rho)$ $v : [\rho_1] \stackrel{p}{\Rightarrow} [\ell : B; \rho_2] \rightsquigarrow \{\ell = (v_1 : A \stackrel{p}{\Rightarrow} B); v_2 : [\rho'_1] \stackrel{p}{\Rightarrow} [\rho_2]\}$ $(\text{if } v \triangleright v v \text{ and } a \models b \land A a')$	R_RBLAME R_RREV
$v: [\rho_1] \stackrel{p}{\Rightarrow} [\ell:B;\rho_2] \rightsquigarrow v: [\rho_1] \stackrel{p}{\Rightarrow} [\rho_1 @ \ell:B] \stackrel{p}{\Rightarrow} [\ell:B;\rho_2] $ (if $\ell \notin dom(\rho_1)$ and $\rho_1 \neq \star$)	R_RCon
$\begin{array}{cccc} v:[\rho] \stackrel{-\alpha}{\Rightarrow} [\alpha] \stackrel{+\alpha}{\Rightarrow} [\rho] & \rightsquigarrow & v \\ & v:[\cdot] \stackrel{\Phi}{\Rightarrow} [\cdot] & \rightsquigarrow & v \end{array}$	R_CRNAME R_CREMP
$v: [\ell:A; \rho_1] \stackrel{\Phi}{\Rightarrow} [\ell:B; \rho_2] \stackrel{\sim}{\rightarrow} \\ let \left\{ \ell = x; y \right\} = v in \left\{ \ell = x: A \stackrel{\Phi}{\Rightarrow} B; y: [\rho_1] \stackrel{\Phi}{\Rightarrow} [\rho_2] \right\}$	R_CREXT
$v : [\star] \stackrel{\Phi}{\Rightarrow} [\star] \rightsquigarrow v$ $v : [\alpha] \stackrel{\Phi}{\Rightarrow} [\alpha] \rightsquigarrow v (\text{if } name(\Phi) \neq \alpha)$	R_CRIDDyn R_CRIDName

Figure 10: Cast and conversion reduction rules for record types.

Translation 1.5

Definition 28. Relation $\Gamma \vdash M : A \hookrightarrow e$ is the smallest relation satisfying the rules in Figure 16.

Cast and conversion reduction rules for variants \boxed{e}

 $e_1 \rightsquigarrow e_2$

$$\begin{array}{cccc} v: \langle \ell:A; \rho_1 \rangle \stackrel{\Phi}{\Rightarrow} \langle \ell:B; \rho_2 \rangle & \rightsquigarrow & \mathsf{case} \, v \, \mathsf{with} \, \langle \ell \, x \to \ell \, (x:A \stackrel{\Phi}{\Rightarrow} B); \, y \to \uparrow \langle \ell:B \rangle \, (y:\langle \rho_1 \rangle \stackrel{\Phi}{\Rightarrow} \langle \rho_2 \rangle) \rangle & \mathrm{R_-CVAR} \\ & v: \langle \star \rangle \stackrel{\Phi}{\Rightarrow} \langle \star \rangle & \rightsquigarrow & v \\ & v: \langle \alpha \rangle \stackrel{\Phi}{\Rightarrow} \langle \alpha \rangle & \rightsquigarrow & v \quad (\mathrm{if} \, name(\Phi) \neq \alpha) \end{array} & & \mathrm{R_-CVIDDyn} \\ \end{array}$$

Figure 11: Cast and conversion reduction rules for variant types.

Evaluation rules
$$\Sigma_1 \mid e_1 \longrightarrow \Sigma_2 \mid e_2$$
 $e_1 \rightsquigarrow e_2$ E_{-RED} $\Sigma \mid E[e_1] \longrightarrow \Sigma \mid E[e_2]$ E_{-RED} $\Sigma \mid E[blame p] \longrightarrow \Sigma \mid blame p$ E_{-BLAME}

$$\Sigma \mid E[(\Lambda X : K . e :: A) B] \longrightarrow \Sigma, \alpha : K := B \mid E[e[\alpha/X] : A[\alpha/X] \xrightarrow{+\alpha} A[B/X]] \quad E_{-}TYBETA$$

Figure 12: Evaluation rules of $F_{\rm C}^{\rho}.$

$$\begin{array}{c|c} \text{Convertible rules} & \underline{\Sigma} \vdash A \prec^{\Phi} B \end{array} \\ \hline & \overline{\Sigma} \vdash \star \prec^{\Phi} \star} \quad \text{Cv_Dyn} & \overline{\Sigma} \vdash X \prec^{\Phi} X \quad \text{Cv_TyVar} \\ \hline & \overline{\Sigma} \vdash \star \prec^{\Phi} \star} \quad \text{Cv_TyName} & \underline{\Sigma}(\alpha) = A \\ \hline & \underline{\Sigma} \vdash \alpha \prec^{\Phi} \alpha} \quad \text{Cv_TyName} & \underline{\Sigma}(\alpha) = A \\ \hline & \overline{\Sigma} \vdash \alpha \prec^{\Phi} \alpha} \quad \text{Cv_TyName} & \underline{\Sigma}(\alpha) = A \\ \hline & \overline{\Sigma} \vdash \alpha \prec^{\Phi} \alpha} \quad \text{Cv_Base} & \frac{\underline{\Sigma} \vdash A_2 \prec^{\overline{\Phi}} A_1 \quad \underline{\Sigma} \vdash B_1 \prec^{\Phi} B_2}{\underline{\Sigma} \vdash A_1 \to B_1 \prec^{\Phi} A_2 \to B_2} \quad \text{Cv_Fun} & \underline{\Sigma} \vdash A_1 \prec^{\Phi} A_2 \\ \hline & \underline{\Sigma} \vdash \rho_1 \prec^{\Phi} \rho_2 \\ \hline & \underline{\Sigma} \vdash \rho_1 \dashv^{\Phi} \rho_2 \\ \hline & \underline{\Sigma} \vdash \rho_1 \dashv^{\Phi} \rho_2 \\ \hline & \underline{\Sigma} \vdash \langle \rho_1 \rangle \prec^{\Phi} \langle \rho_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \rho_1 \rangle \prec^{\Phi} \langle \rho_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \rho_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \rho_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \rho_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \rho_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \prec^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftrightarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftarrow^{\Phi} \langle \sigma_2 \rangle \\ \hline & \underline{\Sigma} \vdash \langle \sigma_1 \rangle \leftarrow^$$

Well-formedness rules for typing contexts $\Sigma \vdash \Gamma$

Г

$$\frac{\Sigma \vdash \Gamma \quad x \notin dom(\Gamma) \quad \Sigma; \Gamma \vdash A: \mathsf{T}}{\Sigma \vdash \Gamma, x:A} \quad \mathsf{WF}_\mathsf{EXTVAR}$$

$$\frac{\Sigma \vdash \Gamma \quad X \notin dom\left(\Gamma\right)}{\Sigma \vdash \Gamma, X:K} \quad WF_EXTTYVAR$$

Well-formedness rules for types and rows $\Sigma; \Gamma \vdash A : K$

$$\begin{array}{c} \underline{\Sigma \vdash \Gamma} & X:K \in \Gamma \\ \hline \Sigma; \Gamma \vdash X:K & WF_TYVAR & \underline{\Sigma \vdash \Gamma} & \alpha:K := A \in \Sigma \\ \hline \Sigma; \Gamma \vdash X:K & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash X:K & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash X:K & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma \vdash \Gamma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma}; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma} \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma}; \Gamma \vdash Z \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma}; \Gamma \vdash Z \\ \hline \Sigma; \Gamma \vdash Z & WF_TYVAR & \underline{\Sigma}; \Gamma \vdash Z \\ \hline \Sigma; \Gamma \vdash Z \\ \downarrow \Sigma; \Sigma \vdash Z \\ \hline \Sigma; \Gamma \vdash Z \\ \downarrow \Sigma; \Sigma \vdash Z \\ \hline \Sigma; \Gamma \vdash Z \\ \downarrow \Sigma; \Sigma \vdash Z \\ \hline \Sigma; \Gamma \vdash Z \\ \downarrow \Sigma; \Sigma \vdash Z \\ \downarrow \Sigma; \Sigma \vdash Z \\ \downarrow \Sigma; \Sigma \vdash Z \\$$

Г

Figure 15: Typing rules of $\mathcal{F}^{\rho}_{\mathcal{C}}.$

$$\begin{split} \label{eq:Translation rules} & \boxed{\Gamma \vdash M: A \hookrightarrow e} \\ & \frac{\vdash \Gamma \ x: A \in \Gamma}{\Gamma \vdash x: A \hookrightarrow x} \quad \text{Trans_Var} \qquad \frac{\vdash \Gamma}{\Gamma \vdash \kappa: ty(\kappa) \hookrightarrow \kappa} \quad \text{Trans_Const} \\ & \frac{\Gamma, x: A \vdash M: B \hookrightarrow e}{\Gamma \vdash \kappa: ty(\kappa) \hookrightarrow \kappa} \quad \text{Trans_Const} \\ & \frac{\Gamma, x: A \vdash M: B \hookrightarrow e}{\Gamma \vdash \kappa: tx(\kappa) : A \to B \hookrightarrow \lambda x: A.e} \quad \text{Trans_Lam} \\ & \frac{\Gamma \vdash M_1: A_1 \hookrightarrow e_1 \quad \Gamma \vdash M_2: A_2 \hookrightarrow e_2 \quad A_1 \triangleright A_{11} \to A_{12} \quad A_2 \simeq A_{11}}{\Gamma \vdash M_1 M_2: A_{12} \hookrightarrow (e_1: A_1 \stackrel{B}{\to} A_{11} \to A_{12}) (e_2: A_2 \stackrel{Q}{\to} A_{11})} \quad \text{Trans_APP} \\ & \frac{\Gamma \vdash M_1 M_2: A_{12} \hookrightarrow (e_1: A_1 \stackrel{B}{\to} A_{11} \to A_{12}) (e_2: A_2 \stackrel{Q}{\to} A_{11})}{\Gamma \vdash \Lambda X: K. M : \forall X: K. A \hookrightarrow \Lambda X: K. e: : A} \quad \text{Trans_TLam} \\ & \frac{\Gamma \vdash M: A \hookrightarrow e \quad \Gamma \vdash B: K \quad A \triangleright \forall X: K. C)}{\Gamma \vdash M B: C[B/X] \hookrightarrow (e: A \stackrel{B}{\to} \forall X: K. C)B} \quad \text{Trans_TAPP} \\ & \frac{\vdash \Gamma}{\Gamma \vdash \{\} : [] \hookrightarrow \{\}} \quad \text{Trans_REMP} \\ & \frac{\Gamma \vdash M_1: A \hookrightarrow e_1 \quad \Gamma \vdash M_2: B \hookrightarrow e_2 \quad B \triangleright [\rho]}{\Gamma \vdash \{I : A; \rho] \hookrightarrow \{I = a_1; e_2: B \stackrel{B}{\to} [\rho]\}} \quad \text{Trans_RExt} \\ & \frac{\Gamma \vdash M_1: A \hookrightarrow e_1 \quad A \vdash \rho[\quad \rho \lor B, \rho' \quad \Gamma, x: B, y: [\rho'] \vdash M_2: C \hookrightarrow e_2}{\Gamma \vdash e_1 \{I = x; y\} = M_1 \text{ in } M_2: C \hookrightarrow e_1 \in \{I \in x; y\} = (e_1: A \stackrel{B}{\to} [E: B; \rho']) \text{ in } e_2} \quad \text{Trans_RLET} \\ & \frac{\Gamma \vdash M: A \hookrightarrow e \quad \Gamma \vdash \rho: R}{\Gamma \vdash \{I: A; A) \hookrightarrow e} \quad \text{Trans_VINJ} \quad \frac{\Gamma \vdash M: B \to e \quad B \triangleright \langle \rho \land \Gamma \vdash A: T}{\Gamma \vdash (I: A) M: \langle (I: A; \rho) \to \ell e} \quad \text{Trans_VLIFT} \\ & \frac{\Gamma \vdash M: A \hookrightarrow e \quad A \triangleright \langle \rho \rangle \quad \rho \triangleright B, \rho' \quad \Gamma, x: B \vdash M_1: C \hookrightarrow e_1 \quad \Gamma, y: (\rho') \vdash M_2: D \to e_2 \\ & e_1: C \stackrel{B}{\to} C \oplus D \quad e_2: D \stackrel{Q}{\to} C \oplus D \\ & \Gamma \vdash ease (W \text{ with} (\ell x \to M_1; y \to M_2): C \oplus D \hookrightarrow case (e: A \stackrel{B}{\to} (E: B; \rho')) \text{ with} (\ell x \to e_1'; y \to e_2') \quad \text{Trans_VCase} \\ \end{array}$$

Figure 16: Translation rules.

2 Proofs

Consistency 2.1**Lemma 1.** Suppose $A \equiv B$. **QPoly** (A) if and only if **QPoly** (B). *Proof.* Straightforward by induction on the derivation of $A \equiv B$. **Lemma 2.** If $A \equiv B$, then ftv(A) = ftv(B). *Proof.* Straightforward by induction on the derivation of $A \equiv B$. **Lemma 3.** Suppose that $\rho_1 \equiv \rho_2$. ρ_1 ends with \star if and only if so does ρ_2 . *Proof.* Straightforward by induction on the derivation of $A \equiv B$. **Lemma 4.** If $\rho_1 \equiv \rho_2$, then dom $(\rho_1) = dom (\rho_2)$. *Proof.* Straightforward by induction on the derivation of $\rho_1 \equiv \rho_2$. **Lemma 5.** Suppose $A \equiv B$. 1. $A = \star$ if and only if $B = \star$. 2. $A = A_1 \rightarrow A_2$ if and only if $B = B_1 \rightarrow B_2$, and $A_1 \equiv B_1$ and $A_2 \equiv B_2$. 3. $A = \forall X: K. A'$ if and only if $B = \forall X: K. B'$, and $A' \equiv B'$. 4. $A = [\rho_1]$ if and only if $B = [\rho_2]$, and $\rho_1 \equiv \rho_2$. 5. $A = \langle \rho_1 \rangle$ if and only if $B = \langle \rho_2 \rangle$, and $\rho_1 \equiv \rho_2$. 6. $A = \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12}$ and $\ell \notin dom(\rho_{11})$ if and only if $B = \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22}$ and $\ell \notin dom(\rho_{21})$, and $A' \equiv B' \text{ and } \rho_{11} \odot \rho_{12} \equiv \rho_{21} \odot \rho_{22}.$ *Proof.* Straightforward by induction on the derivation of $A \equiv B$. **Lemma 6.** If $A \simeq B$, then $B \simeq A$. *Proof.* Straightforward by induction on the derivation of $A \simeq B$. **Lemma 7.** If $\alpha \simeq \rho$, then $\rho = \alpha$ or $\rho = \star$. *Proof.* Straightforward by case analysis on the derivation of $\alpha \simeq \rho$. **Lemma 8.** If $\cdot \simeq \rho$, then $\rho = \cdot$ or $\rho = \star$. *Proof.* Straightforward by case analysis on the derivation of $\cdot \simeq \rho$. **Lemma 9.** If $\ell : A; \rho_1 \simeq \rho_2$, then $\rho_2 \triangleright_{\ell} B, \rho'_2$ and $A \simeq B$ and $\rho_1 \simeq \rho'_2$. *Proof.* By induction on $\ell : A; \rho_1 \simeq \rho_2$. Case (CE_REFL): Obvious since $\rho_2 = \ell : A; \rho_1 \text{ and } \ell : A; \rho_1 \triangleright_{\ell} A, \rho_1$.

Case (CE_CONSL): Obvious by inversion.

Case (CE_CONSR): We have $\rho_2 = \ell' : B; \rho'_2$ for some ℓ', B , and ρ'_2 .

If $\ell = \ell'$, then, since $\ell : A; \rho_1 \triangleright_{\ell'} A, \rho_1$, we have $A \simeq B$ and $\rho_1 \simeq \rho'_2$ by inversion. Since $\ell' : B; \rho'_2 \triangleright_{\ell} B, \rho'_2$, we finish.

Otherwise, suppose $\ell \neq \ell'$. Then, by inversion and definition of type matching,

- $\ell: A; \rho_1 \triangleright_{\ell'} A', \ell: A; \rho'_1,$
- $\rho_1 \triangleright_{\ell'} A', \rho'_1,$

- $A' \simeq B$, and
- $\ell: A; \rho'_1 \simeq \rho'_2$

for some A' and ρ'_1 . By the IH, $\rho'_2 \succ_{\ell} B', \rho''_2$ and $A \simeq B'$ and $\rho'_1 \simeq \rho''_2$ for some B' and ρ''_2 . Since $\ell \neq \ell'$, we have $\rho_2 = \ell' : B; \rho'_2 \succ_{\ell} B', \ell' : B; \rho''_2$. Since $A \simeq B'$, it suffices to show that $\rho_1 \simeq \ell' : B; \rho''_2$. Here, $\rho_1 \succ_{\ell'} A', \rho'_1$ and $A' \simeq B$ and $\rho'_1 \simeq \rho''_2$ (obtained above). Thus, by (CE_CONSR), $\rho_1 \simeq \ell' : B; \rho''_2$.

Case (CE_DYNL), (CE_DYNR), (CE_FUN), (CE_POLY), (CE_POLYL), (CE_POLYR), (CE_RECORD), and (CE_VARIANT): Contradictory.

Lemma 10. If $A_1 \rightarrow A_2 \simeq B_1 \rightarrow B_2$, then $A_1 \simeq B_1$ and $A_2 \simeq B_2$.

Proof. Straightforward by case analysis on the derivation of $A_1 \to A_2 \simeq B_1 \to B_2$.

Lemma 11. If $\forall X:K. A \simeq \forall X:K. B$, then $A \simeq B$.

Proof. Straightforward by case analysis on the derivation of
$$A_1 \rightarrow A_2 \simeq B_1 \rightarrow B_2$$
.

Lemma 12. If $\forall X: K. A \simeq B$ and **QPoly** (B), then $X \notin ftv(B)$ and $A \simeq B$.

Proof. Straightforward by case analysis on the derivation of $\forall X: K. A \simeq B$.

Lemma 13. If $[\rho_1] \simeq [\rho_2]$, then $\rho_1 \simeq \rho_2$.

Proof. Straightforward by case analysis on the derivation of $[\rho_1] \simeq [\rho_2]$.

Lemma 14. If $\langle \rho_1 \rangle \simeq \langle \rho_2 \rangle$, then $\rho_1 \simeq \rho_2$.

Proof. Straightforward by case analysis on the derivation of $\langle \rho_1 \rangle \simeq \langle \rho_2 \rangle$.

Lemma 15 (consistent-decomp-aux). uppose that $A \sim B$. If $\rho_1 \sim \rho_{21} \odot \rho_{22}$ and $\ell \notin dom(\rho_{21})$, then there exist some ρ_{11} and ρ_{12} such that

- $\rho_1 \equiv \rho_{11} \odot \rho_{12}$,
- $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \sim \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22},$
- $\rho_{11} \odot (\ell: A; \cdot) \odot \rho_3 \odot \rho_{12} \sim \rho_{21} \odot (\ell: B; \cdot) \odot \rho_{22}$ for any ρ_3 such that $dom(\rho_3) \cap dom(\rho_{21} \odot \rho_{22}) = \emptyset$ if $\rho_{21} \odot \rho_{22}$ ends with \star , and
- $\ell \notin dom(\rho_{11})$.

Proof. By induction on the derivation of $\rho_1 \sim \rho_{21} \odot \rho_{22}$. Since $\rho_{21} \odot \rho_{22}$ is defined, there are only two cases on ρ_{21} to be considered.

Case $\rho_{21} = \cdot$: Let $\rho_{11} = \cdot$ and $\rho_{12} = \rho_1$. Then, it suffices to show the followings.

- $\rho_1 \equiv \rho_1$. By (Eq_REFL).
- $\ell: A; \rho_1 \sim \ell: B; \rho_{22}$. Since $\rho_1 \sim \rho_{21} \odot \rho_{22} = \rho_{22}$ and $A \sim B$, we prove this by (C_CONS).
- Supposing ρ_{22} ends with \star , we have to show $(\ell : A; \cdot) \odot \rho_3 \odot \rho_1 \sim (\ell : B; \cdot) \odot \rho_{22}$ for ρ_3 such that $dom(\rho_3) \cap dom(\rho_{22}) = \emptyset$. Since $\rho_1 \sim \rho_{22}$ and $dom(\rho_3) \cap dom(\rho_{22}) = \emptyset$ and ρ_{22} ends with \star , we have $\rho_3 \odot \rho_1 \sim \rho_{22}$ by (C_CONSL). Since $A \sim B$, we have that by (C_CONS).
- $\ell \notin dom(\cdot)$. Trivial.

Case $\rho_{21} = \ell' : C; \rho'_{21}$: We have:

 $\rho_{21} \odot \rho_{22} = \ell' : C; \rho'_{21} \odot \rho_{22} \tag{1}$

$$\ell \notin dom\left(\ell':C;\rho_{21}'\right) \tag{2}$$

By case analysis on the rule applied last to derive $\rho_1 \sim \ell' : C; \rho'_{21} \odot \rho_{22}$.

Case (C_REFL): We have $\rho_1 = \ell' : C; \rho'_{21} \odot \rho_{22}$. Let $\rho_{11} = \ell' : C; \rho'_{21}$ and $\rho_{12} = \rho_{22}$. Then, it suffices to show the followings.

- $\rho_1 \equiv (\ell' : C; \rho'_{21}) \odot \rho_{22}$. By (Eq.Refl.).
- $\ell': C; \rho'_{21} \odot (\ell:A; \cdot) \odot \rho_{22} \sim \ell': C; \rho'_{21} \odot (\ell:B; \cdot) \odot \rho_{22}$. By (C_REFL) and (C_CONS).
- Supposing $(\ell': C; \rho'_{21}) \odot \rho_{22}$ ends with \star , we have to show

 $\ell':C;\rho_{21}'\odot(\ell:A;\cdot)\odot\rho_{3}\odot\rho_{22}\sim\ell':C;\rho_{21}'\odot(\ell:B;\cdot)\odot\rho_{22}$

for any ρ_3 such that $dom(\rho_3) \cap dom(\ell': C; \rho'_{21} \odot \rho_{22}) = \emptyset$. By (C_REFL), (C_CONSL), and (C_CONS).

• $\ell \notin dom(\ell': C; \rho'_{21})$. By (2).

Case (C_DYNL): We have $\rho_1 = \star$. Let $\rho_{11} = \star$ and $\rho_{12} = \star$. Then, it suffices to show the followings.

- $\star \equiv \star$. By (EQ_REFL).
- $\ell: A; \star \sim \ell': C; \rho'_{21} \odot (\ell: B; \cdot) \odot \rho_{22}$. By (C_CONSR) and (C_CONS) with (2).
- Supposing $(\ell': C; \rho'_{21}) \odot \rho_{22}$ ends with \star , we have to show

$$(\ell:A;\cdot) \odot \rho_3 \odot \star \sim \ell': C; \rho'_{21} \odot (\ell:B;\cdot) \odot \rho_{22}$$

for any ρ_3 such that $dom(\rho_3) \cap dom(\ell': C; \rho'_{21} \odot \rho_{22}) = \emptyset$. By (C_CONSR), (C_CONSL), and (C_CONS). • $\ell \notin dom(\cdot)$. Trivial.

Case (C_CONS): We have $\rho_1 = \ell' : D; \rho'_1$ and, by inversion, $D \sim C$ and $\rho'_1 \sim \rho'_{21} \odot \rho_{22}$ for some D and ρ'_1 . By the IH, there exist some ρ'_{11} and ρ_{12} such that

(a) $\rho'_1 \equiv \rho'_{11} \odot \rho_{12}$,

- (b) $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \sim \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22},$
- (c) $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_3 \odot \rho_{12} \sim \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$ for any ρ_3 such that $dom(\rho_3) \cap dom(\rho'_{21} \odot \rho_{22}) = \emptyset$ if $\rho'_{21} \odot \rho_{22}$ ends with \star for some ρ_2 , and
- (d) $\ell \notin dom(\rho'_{11})$

for some ρ'_{11} and ρ_{12} .

Let $\rho_{11} = \ell' : D; \rho'_{11}$. Then, it suffices to show the followings.

- $\rho_1 = \ell' : D; \rho'_1 \equiv \ell' : D; \rho'_{11} \odot \rho_{12}$. By (a) and (Eq_CONS).
- $\ell': D; \rho'_{11} \odot (\ell:A; \cdot) \odot \rho_{12} \sim \ell': C; \rho'_{21} \odot (\ell:B; \cdot) \odot \rho_{22}$. By (b) and (C_CONS) with $D \sim C$.
- Supposing $(\ell': C; \rho'_{21}) \odot \rho_{22}$ ends with \star for some ρ_2 , we have to show

 $\ell': D; \rho'_{11} \odot (\ell: A; \cdot) \odot \rho_3 \odot \rho_{12} \sim \ell': C; \rho'_{21} \odot (\ell: B; \cdot) \odot \rho_{22}$

for any ρ_3 such that $dom(\rho_3) \cap dom(\ell': C; \rho'_{21} \odot \rho_{22}) = \emptyset$. By (c) and (C_CONS) with $D \sim C$.

• $\ell \notin dom(\ell': D; \rho'_{11})$. By (d) and (2).

Case (C_CONSL): We have $\rho_1 = \ell'' : D; \rho'_1$ and, by inversion,

- $\ell'' \notin dom(\ell': C; \rho'_{21} \odot \rho_{22}),$
- $\ell': C; \rho'_{21} \odot \rho_{22}$ ends with \star , and
- $\rho'_1 \sim \ell' : C; \rho'_{21} \odot \rho_{22}$

for some ℓ'' , D, ρ'_1 , and ρ_2 .

By the IH, there exist some ρ'_{11} and ρ'_{12} such that

(a) $\rho'_1 \equiv \rho'_{11} \odot \rho'_{12}$,

- (b) $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho'_{12} \sim \ell' : C; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$, and
- (c) $\rho'_{11} \odot (\ell:A; \cdot) \odot \rho_3 \odot \rho'_{12} \sim \ell': C; \rho'_{21} \odot (\ell:B; \cdot) \odot \rho_{22}$ for any ρ_3 such that $dom(\rho_3) \cap dom(\ell':C; \rho'_{21} \odot \rho_{22}) = \emptyset$ if $\ell': C; \rho'_{21} \odot \rho_{22}$ ends with \star for some ρ'_2 , and
- (d) $\ell \notin dom(\rho'_{11})$.

Suppose that $\ell'' = \ell$. By (d), $\ell'' \notin dom(\rho'_{11})$. Let $\rho_{11} = \rho'_{11}$ and $\rho_{12} = \ell'' : D; \rho'_{12}$. Then, it suffices to show the followings.

• $\ell'': D; \rho'_1 \equiv \rho'_{11} \odot \ell'': D; \rho'_{12}$. By (a) and (Eq_CONS), we have

$$\ell'': D; \rho'_1 \equiv \ell'': D; \cdot \odot \rho'_{11} \odot \rho'_{12}.$$

Since $\ell'' \not\in dom(\rho'_{11})$, we have

$$\ell^{\prime\prime}:D;\rho_1^\prime\equiv\rho_{11}^\prime\odot\ell^{\prime\prime}:D;\rho_{12}^\prime.$$

• $\rho'_{11} \odot (\ell : A; \cdot) \odot \ell'' : D; \rho'_{12} \sim \ell' : C; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$. Since $\ell'' \notin dom (\ell' : C; \rho'_{21} \odot \rho_{22})$ and ρ_{22} ends with \star , we have $\rho'_{11} \odot (\ell : A; \cdot) \odot (\ell'' : D; \cdot) \odot \rho'_{12} \sim \ell' : C; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$

by (c).

• Supposing $(\ell': C; \rho'_{21}) \odot \rho_{22}$ ends with \star , we have to show

$$\rho_{11}' \odot (\ell : A; \cdot) \odot \rho_3 \odot \ell'' : D; \rho_{12}' \sim \ell' : C; \rho_{21}' \odot (\ell : B; \cdot) \odot \rho_{22}$$

for any ρ_3 such that $dom(\rho_3) \cap dom(\ell': C; \rho'_{21} \odot \rho_{22}) = \emptyset$. Since $\ell'' \notin dom(\ell': C; \rho'_{21} \odot \rho_{22})$, we have

$$\rho_{11}' \odot (\ell : A; \cdot) \odot \rho_3 \odot (\ell'' : D; \cdot) \odot \rho_{12}' \sim \ell' : C; \rho_{21}' \odot (\ell : B; \cdot) \odot \rho_{22}.$$

by (c).

• $\ell \notin dom(\rho'_{11})$. By (d).

Otherwise, suppose that $\ell'' \neq \ell$. Let $\rho_{11} = \ell'': D; \rho'_{11}$ and $\rho_{12} = \rho'_{12}$. Then, it suffices to show the followings.

- $\ell'': D; \rho'_1 \equiv \ell'': D; \rho'_{11} \odot \rho'_{12}$. By (a) and (Eq_Cons).
- $\ell'': D; \rho'_{11} \odot (\ell:A; \cdot) \odot \rho'_{12} \sim \ell': C; \rho'_{21} \odot (\ell:B; \cdot) \odot \rho_{22}$. Since $\ell'' \notin dom (\ell':C; \rho'_{21} \odot \rho_{22})$ and $\ell'' \neq \ell$, we have $\ell'' \notin dom (\ell':C; \rho'_{21} \odot (\ell:B; \cdot) \odot \rho_{22})$. Since ρ_{22} ends with \star , we finish by (b) and (C_CONSL).
- Supposing $(\ell': C; \rho'_{21}) \odot \rho_{22}$ ends with \star , we have to show

$$\ell'': D; \rho'_{11} \odot (\ell:A; \cdot) \odot \rho_3 \odot \rho'_{12} \sim \ell': C; \rho'_{21} \odot (\ell:B; \cdot) \odot \rho_{22}$$

for any ρ_3 such that $dom(\rho_3) \cap dom(\ell': C; \rho'_{21} \odot \rho_{22}) = \emptyset$. By (c), we have

 $\rho_{11}' \odot (\ell : A; \cdot) \odot \rho_3 \odot \rho_{12}' \sim \ell' : C; \rho_{21}' \odot (\ell : B; \cdot) \odot \rho_{22}.$

Since $\ell'' \notin dom(\ell': C; \rho'_{21} \odot \rho_{22})$ and $\ell'' \neq \ell$, we have $\ell'' \notin dom(\ell': C; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22})$. Since ρ_{22} ends with \star , we finish by (C_CONSL).

• $\ell \notin dom(\ell'': D; \rho'_{11})$. By (d) and $\ell'' \neq \ell$.

Case (C_CONSR): By inversion, we have

- $\ell' \notin dom(\rho_1),$
- ρ_1 ends with \star , and
- $\rho_1 \sim \rho'_{21} \odot \rho_{22}$.

By the IH, there exist some ρ_{11} and ρ_{12} such that

- (a) $\rho_1 \equiv \rho_{11} \odot \rho_{12}$,
- (b) $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \sim \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$,
- (c) $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_3 \odot \rho_{12} \sim \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$ for any ρ_3 such that $dom(\rho_3) \cap dom(\rho'_{21} \odot \rho_{22}) = \emptyset$ if $\rho'_{21} \odot \rho_{22}$ ends with \star for some ρ_2 , and
- (d) $\ell \notin dom(\rho_{11})$.

First, we show

$$\ell' \notin dom \,(\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12}). \tag{3}$$

Since $\ell \notin dom(\rho_{21})$ from the assumption and $\rho_{21} = \ell': C; \rho'_{21}, \ell \neq \ell'$. Since $\ell' \notin dom(\rho_1)$ and $\rho_1 \equiv \rho_{11} \odot \rho_{12}$, we have $\ell' \notin dom(\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12})$.

It suffices to show the followings.

• $\rho_1 \equiv \rho_{11} \odot \rho_{12}$. By (a).

• $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \sim \ell' : C; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$. Since ρ_1 ends with \star and $\rho_1 \equiv \rho_{11} \odot \rho_{12}, \rho_{12}$ ends with \star . Thus, we have

$$\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \sim \ell' : C; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$$

by (b), (3), and (C₋ConsR).

• Supposing $(\ell': C; \rho'_{21}) \odot \rho_{22}$ ends with \star for some ρ_2 , we have to show

 $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_3 \odot \rho_{12} \sim \ell' : C; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$

for any ρ_3 such that $dom(\rho_3) \cap dom(\ell': C; \rho'_{21} \odot \rho_{22}) = \emptyset$. By (c), we have

 $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_3 \odot \rho_{12} \sim \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}.$

By (3), $\ell' \notin dom (\rho_{11} \odot (\ell : A; \cdot) \odot \rho_3 \odot \rho_{12})$. Since ρ_{12} ends with \star , we have

 $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_3 \odot \rho_{12} \sim \ell' : C; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$

by (C_CONSR) .

Case (C_DYNR), (C_FUN), (C_POLY), (C_POLYL), (C_POLYR), (C_RECORD), and (C_VARIANT): Note that the contradiction in the case of (C_POLYL) is proven by the definition of **QPoly**.

Lemma 16. If $A \simeq B$, then $A \equiv C$ and $C \sim B$ for some C.

Proof. By induction on the derivation of $A \simeq B$.

Case (CE_REFL): Obvious because \equiv and \sim are reflexive.

Case (CE_DYNL): By $\star \equiv \star$ (EQ_REFL) and $\star \sim B$ (C_DYNL).

Case (CE_DYNR): By $A \equiv A$ (EQ_REFL) and $A \sim \star$ (C_DYNR).

Case (CE_FUN): We have $A_1 \to A_2 \simeq B_1 \to B_2$ and, by inversion, $A_1 \simeq B_1$ and $A_2 \simeq B_2$. By the IHs,

- $A_1 \equiv C_1$,
- $C_1 \sim B_1$,
- $A_2 \equiv C_2$, and
- $C_2 \sim B_2$

for some C_1 and C_2 . By (Eq_Fun), $A_1 \rightarrow A_2 \equiv C_1 \rightarrow C_2$. By (C_Fun), $C_1 \rightarrow C_2 \sim B_1 \rightarrow B_2$.

- Case (CE_POLY): We have $\forall X:K.A' \simeq \forall X:K.B'$ and, by inversion, $A' \simeq B'$. By the IH, $A' \equiv C'$ and $C' \sim B'$ for some C'. By (Eq_POLY), $\forall X:K.A' \equiv \forall X:K.C'$. By (C_POLY), $\forall X:K.C' \sim \forall X:K.B'$.
- Case (CE_POLYL): We have $\forall X:K.A' \simeq B$ and, by inversion, **QPoly** (B) and $X \notin ftv(B)$ and $A' \simeq B$. By the IH, $A' \equiv C$ and $C \sim B$ for some C. By (EQ_POLY), $\forall X:K.A' \equiv \forall X:K.C$. By (C_POLYL), $\forall X:K.C \sim B$.
- Case (CE_POLYR): We have $A \simeq \forall X:K$. B' and, by inversion, **QPoly** (A) and $X \notin ftv(A)$ and $A \simeq B'$. By the IH, $A \equiv C$ and $C \sim B'$ for some C. Since $A \equiv C$, we can find **QPoly** (C) by Lemma 1 and **QPoly** (A), and $X \notin ftv(C)$ by Lemma 2 and $X \notin ftv(A)$. Thus, by (C_POLYR), $C \sim \forall X:K$. B'.
- Case (CE_RECORD): By the IH, (EQ_RECORD), and (C_RECORD).
- Case (CE_VARIANT): By the IH, (EQ_VARIANT), and (C_VARIANT).

Case (CE_CONSL): We have $\ell: A'; \rho_1 \simeq B$ and, by inversion, $B \triangleright_{\ell} B', \rho_2$ and $A' \simeq B'$ and $\rho_1 \simeq \rho_2$. By the IHs,

- $A' \equiv C'$,
- $C' \sim B'$,

- $\rho_1 \equiv \rho$, and
- $\rho \sim \rho_2$

for some C' and ρ .

If $\ell \in dom(B)$, then $B = \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22}$ for some ρ_{21} and ρ_{22} such that $\rho_2 = \rho_{21} \odot \rho_{22}$ and $\ell \notin dom(\rho_{21})$. Since $\rho \sim \rho_{21} \odot \rho_{22}$ and $C' \sim B'$, there exist some ρ_{11} and ρ_{12} such that

- $\rho \equiv \rho_{11} \odot \rho_{12}$,
- $\rho_{11} \odot (\ell : C'; \cdot) \odot \rho_{12} \sim \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22}$, and
- $\ell \notin dom(\rho_{11})$.

Here, we have

 $\begin{array}{l} \ell: A'; \rho_1 \\ \equiv & \ell: C'; \rho \\ \equiv & \ell: C'; \rho_1 \\ \equiv & \rho_{11} \odot \rho_{12} \\ \equiv & \rho_{11} \odot (\ell: C'; \cdot) \odot \rho_{12} \\ \approx & \rho_{21} \odot (\ell: B'; \cdot) \odot \rho_{22} \\ = & B. \end{array}$ since $A' \equiv C'$ and $\rho_1 \equiv \rho$ since $\rho \equiv \rho_{11} \odot \rho_{12}$ since $\ell \notin dom(\rho_{11})$

Otherwise, if $\ell \notin dom(B)$, it is found from $B \triangleright_{\ell} B', \rho_2$ that $B = \rho_2$ and B ends with \star . Since $\rho \sim \rho_2$, we have $\rho \sim B$. By (C_CONSL), $\ell : A'; \rho \sim B$. Here, we have

$$\ell: A'; \rho_1 \equiv \ell: A'; \rho \sim B.$$

Case (CE_CONSR): We have $A \simeq \ell : B'; \rho_2$ and, by inversion, $A \triangleright_{\ell} A', \rho_1$ and $A' \simeq B'$ and $\rho_1 \simeq \rho_2$. By the IHs,

- $A' \equiv C'$,
- $C' \sim B'$,
- $\rho_1 \equiv \rho$, and
- $\rho \sim \rho_2$

for some C' and ρ_2 .

If $\ell \in dom(A)$, then $A = \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12}$ for some ρ_{11} and ρ_{12} such that $\rho_1 = \rho_{11} \odot \rho_{12}$ and $\ell \notin dom(\rho_{11})$. Here, we have

A $= \rho_{11} \odot \ell : A'; \odot \odot \rho_{12}$ $\equiv \rho_{11} \odot \ell : C'; \odot \circ \rho_{12} \quad \text{since } A' \equiv C'$ $\equiv \ell : C'; \rho_{11} \odot \rho_{12} \quad \text{since } \ell \notin dom(\rho_{11})$ $= \ell : C'; \rho_{1}$ $\equiv \ell : C'; \rho \quad \text{since } \rho_{1} \equiv \rho$ $\sim \ell : B'; \rho_{2} \quad \text{by (C_-CONS) since } C' \sim B' \text{ and } \rho \sim \rho_{2}$ = B.

Lemma 17. If $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$ and $\ell \notin dom(\rho_{11}) \cup dom(\rho_{21})$, then $A \simeq B$ and $\rho_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{22}$.

Proof. By induction on the derivation of $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$.

Case (CE_REFL): Obvious by (CE_REFL).

Case (CE_CONSL): By case analysis on ρ_{11} .

Case $\rho_{11} = :$ We have $A \simeq B$ and $\rho_{12} \simeq \rho_{21} \odot \rho_{22}$ by inversion, and therefore we finish.

Case $\rho_{11} \neq \cdot$: We have $\rho_{11} = \ell' : A'; \rho'_{11}$. Since $\ell \notin dom(\rho_{11})$, it is found that $\ell \neq \ell'$.

Case $\ell' \in dom(\rho_{21})$: There exist some ρ_{211}, ρ_{212} , and B' such that

• $\rho_{21} = \rho_{211} \odot (\ell' : B'; \cdot) \odot \rho_{212},$

• $\ell' \notin dom(\rho_{211}),$

- $A' \simeq B'$, and
- $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{211} \odot \rho_{212} \odot (\ell : B; \cdot) \odot \rho_{22}$

by inversion. By the IH, $A \simeq B$ and $\rho'_{11} \odot \rho_{12} \simeq \rho_{211} \odot \rho_{212} \odot \rho_{22}$. By (CE_CONSL),

$$\rho_{11} \odot \rho_{12} = \ell' : A'; \rho'_{11} \odot \rho_{12} \simeq \rho_{211} \odot (\ell' : B'; \cdot) \odot \rho_{212} \odot \rho_{22} = \rho_{21} \odot \rho_{22}.$$

Case $\ell' \notin dom(\rho_{21})$ and $\ell' \in dom(\rho_{22})$: There exist some ρ_{221}, ρ_{222} , and B' such that

- $\rho_{22} = \rho_{221} \odot (\ell' : B'; \cdot) \odot \rho_{222},$
- $\ell' \notin dom(\rho_{221}),$
- $A' \simeq B'$, and
- $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{221} \odot \rho_{222}$

by inversion. By the IH, $A \simeq B$ and $\rho'_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{221} \odot \rho_{222}$. By (CE_CONSL),

$$\rho_{11} \odot \rho_{12} = \ell' : A'; \rho'_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{221} \odot (\ell' : B'; \cdot) \odot \rho_{22} = \rho_{21} \odot \rho_{22}.$$

Case $\ell' \notin dom (\rho_{21} \odot \rho_{22})$: It is found that

- $\rho_{21} \odot \rho_{22}$ ends with \star and
- $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$
- by inversion. By the IH, $A \simeq B$ and $\rho'_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{22}$. By (CE_CONSL), $\ell' : A'; \rho'_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{22}$.

Case (CE_CONSR): Similar to the case for (CE_CONSL).

Case (CE_DYNL), (CE_DYNR), (CE_FUN), (CE_POLY), (CE_POLYL), (CE_POLYR), (CE_RECORD), and (CE_VARIANT): Contradictory.

Lemma 18. If $A \simeq B$ and $\rho_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{22}$ and $\ell \notin dom(\rho_{11}) \cup dom(\rho_{21})$, then $\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$.

Proof. By induction on the sum of the sizes of $\rho_{11} \odot \rho_{12}$ and $\rho_{21} \odot \rho_{22}$. Since $\rho_{11} \odot \rho_{12}$ is defined, there are only two cases on ρ_{11} to be considered.

Case $\rho_{11} = \cdot$: By (CE_CONSL).

Case $\rho_{11} = \ell' : A'; \rho'_{11}$: If $\rho_{21} = \cdot$, then $\rho_{11} \odot \rho_{21} = \rho_{22}$. By (CE_CONSR),

$$\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \ell : B; \rho_{22} = \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22},$$

and so we finish.

In what follows, we suppose $\rho_{21} \neq \cdots$ By case analysis on the rule applied last to derive $\ell': A'; \rho'_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{22}$.

Case (CE_REFL): Since $\rho_{21} \neq \cdot$, we can suppose that $\rho_{21} = \ell' : A'; \rho'_{21}$. Thus, $\rho'_{11} \odot \rho_{21} = \rho'_{21} \odot \rho_{22}$, and $\rho'_{11} \odot \rho_{21} \simeq \rho'_{21} \odot \rho_{22}$ by (CE_REFL). By the IH, $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$. By (CE_REFL) and (CE_CONSL),

$$\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} = \ell' : A'; \rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \ell : A'; \rho'_{21} \odot (\ell : B; \cdot) \odot \rho_{22} = \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$$

Case (CE_DYNR): We have $\rho_{21} \odot \rho_{22} = \star$. By (CE_CONSR).

Case (CE_CONSL): By inversion, $\rho_{21} \odot \rho_{22} \triangleright_{\ell'} B'$, ρ_2 and $A' \simeq B'$ and $\rho'_{11} \odot \rho_{12} \simeq \rho_2$ for some B', and ρ_2 .

Case $\ell' \in dom(\rho_{21})$: There exist some ρ_{211} and ρ_{212} such that

- $\rho_{21} = \rho_{211} \odot (\ell' : B'; \cdot) \odot \rho_{212},$
- $\rho_2 = \rho_{211} \odot \rho_{212} \odot \rho_{22}$, and

• $\ell' \notin dom(\rho_{211}).$

Since $\rho'_{11} \odot \rho_{12} \simeq \rho_2$, we have $\rho'_{11} \odot \rho_{12} \simeq \rho_{211} \odot \rho_{212} \odot \rho_{22}$. By the IH, $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{211} \odot \rho_{212} \odot (\ell : B; \cdot) \odot \rho_{22}$. By (CE_CONSL),

$$\ell': A'; \rho'_{11} \odot (\ell:A; \cdot) \odot \rho_{12} \simeq \rho_{211} \odot (\ell':B'; \cdot) \odot \rho_{212} \odot (\ell:B; \cdot) \odot \rho_{222}$$

Thus,

$$\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} = \ell' : A'; \\ \rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{211} \odot (\ell' : B'; \cdot) \odot \rho_{212} \odot (\ell : B; \cdot) \odot \rho_{22} = \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22}.$$

Case $\ell' \notin dom(\rho_{21})$ and $\ell' \in dom(\rho_{22})$: There exist some ρ_{221} and ρ_{222} such that

- $\rho_{22} = \rho_{221} \odot (\ell' : B'; \cdot) \odot \rho_{222},$
- $\rho_2 = \rho_{21} \odot \rho_{221} \odot \rho_{222}$, and
- $\ell' \notin dom(\rho_{221}).$

Since $\rho'_{11} \odot \rho_{12} \simeq \rho_2$, we have $\rho'_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{221} \odot \rho_{222}$. By the IH, $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{221} \odot \rho_{222}$. By (CE_CONSL),

$$\ell': A'; \rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{221} \odot (\ell' : B'; \cdot) \odot \rho_{222}.$$

Thus,

$$\rho_{11} \odot (\ell : A; \cdot) \odot \rho_{12} = \ell' : A'; \\ \rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{221} \odot (\ell' : B'; \cdot) \odot \rho_{222} = \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{222}$$

Case $\ell' \notin dom(\rho_{21})$ and $\ell' \notin dom(\rho_{22})$: It is found that

- $\rho_{21} \odot \rho_{22}$ ends with \star and
- $\rho_2 = \rho_{21} \odot \rho_{22}$.

Since $\rho'_{11} \odot \rho_{12} \simeq \rho_2$, we have $\rho'_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{22}$. By the IH, $\rho'_{11} \odot (\ell : A; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell : B; \cdot) \odot \rho_{22}$. By (CE_CONSL), we finish.

Case (CE_CONSR): Similar to the case for (CE_CONSL).

Case (CE_DYNL), (CE_FUN), (CE_POLY), (CE_POLYL), (CE_POLYR), (CE_RECORD), and (CE_VARIANT): Contradictory. Note that the contradiction in the case of (C_POLYR) is proven by the definition of **QPoly**.

Lemma 19. If $\rho_1 \simeq \rho_{21} \odot \rho_{22}$ and ρ_1 ends with \star and $\ell \notin dom(\rho_1)$, then $\rho_1 \simeq \rho_{21} \odot (\ell : A; \cdot) \odot \rho_{22}$ for any A.

Proof. By induction on the sizes of ρ_1 and ρ_{21} . If $\rho_{21} = \cdot$, then we finish by (CE_CONSR).

In what follows, since $\rho_{21} \odot \rho_{22}$ is defined, we can suppose that $\rho_{21} = \ell' : B; \rho'_{21}$ for some ℓ', B , and ρ'_{21} . By case analysis on the rule applied last to derive $\rho_1 \simeq \rho_{21} \odot \rho_{22}$.

Case (CE_REFL): We have $\rho_1 = \ell': B; \rho'_1$ for some ρ'_1 such that $\rho'_1 = \rho'_{21} \odot \rho_{22}$. Since $\rho'_1 \simeq \rho'_{21} \odot \rho_{22}$ by (CE_REFL), we have $\rho' \simeq \rho'_{21} \odot (\ell: A; \cdot) \odot \rho_{22}$ by the IH. By (CE_CONSL), we finish.

Case (CE_DYNL): By (CE_DYNL).

Case (CE_CONSL): We have $\rho_1 = \ell'' : C; \rho'_1$ and, by inversion, $\rho_{21} \odot \rho_{22} \triangleright_{\ell''} B', \rho'_2$ and $C \simeq B'$ and $\rho'_1 \simeq \rho'_2$ for some ℓ'', B', C, ρ'_1 , and ρ'_2 . Note that $\ell \neq \ell''$ since $\ell \notin dom(\rho_1)$.

Case $\ell'' \in dom(\rho_{21})$: There exist some ρ_{211} and ρ_{212} such that

- $\rho_{21} = \rho_{211} \odot (\ell'': B'; \cdot) \odot \rho_{212},$
- $\rho'_2 = \rho_{211} \odot \rho_{212} \odot \rho_{22}$, and
- $\ell'' \not\in dom(\rho_{211}).$

Since $\rho'_1 \simeq \rho'_2$, we have $\rho'_1 \simeq \rho_{211} \odot \rho_{212} \odot \rho_{22}$. By the IH, $\rho'_1 \simeq \rho_{211} \odot \rho_{212} \odot (\ell : A; \cdot) \odot \rho_{22}$. Since $(\rho_{21} \odot (\ell : A; \cdot) \odot \rho_{22}) \triangleright_{\ell''} B', \rho_{211} \odot \rho_{212} \odot (\ell : A; \cdot) \odot \rho_{22}$, we finish by (CE_CONSL).

Case $\ell'' \notin dom(\rho_{21})$ and $\ell'' \in dom(\rho_{22})$: There exist some ρ_{221} and ρ_{222} such that

- $\rho_{22} = \rho_{221} \odot (\ell'' : B'; \cdot) \odot \rho_{222},$
- $\rho'_2 = \rho_{21} \odot \rho_{221} \odot \rho_{222}$, and
- $\ell'' \notin dom(\rho_{221}).$

Since $\rho'_1 \simeq \rho'_2$, we have $\rho'_1 \simeq \rho_{21} \odot \rho_{221} \odot \rho_{222}$. By the IH, $\rho'_1 \simeq \rho_{21} \odot (\ell : A; \cdot) \odot \rho_{221} \odot \rho_{222}$. Since $(\rho_{21} \odot (\ell : A; \cdot) \odot \rho_{22}) \triangleright_{\ell''} B', \rho_{21} \odot (\ell : A; \cdot) \odot \rho_{221} \odot \rho_{222}$, we finish by (CE_CONSL).

- Case $\ell'' \notin dom(\rho_{21})$ and $\ell'' \notin dom(\rho_{22})$: We have $B' = \star$ and $\rho'_2 = \rho_{21} \odot \rho_{22}$ and $\rho_{21} \odot \rho_{22}$ ends with \star . Since $\rho'_1 \simeq \rho'_2$, we have $\rho'_1 \simeq \rho_{21} \odot \rho_{22}$. By the IH, $\rho'_1 \simeq \rho_{21} \odot (\ell : A; \cdot) \odot \rho_{22}$. By (CE_CONSL), we finish.
- Case (CE_CONSR): Since $\rho_{21} = \ell' : B; \rho'_{21}$, by inversion $\rho_1 \triangleright_{\ell'} C, \rho'_1$ and $C \simeq B$ and $\rho'_1 \simeq \rho'_{21} \odot \rho_{22}$ for some C and ρ'_1 . By the IH, $\rho'_1 \simeq \rho'_{21} \odot (\ell : A; \cdot) \odot \rho_{22}$. By (CE_CONSR), we finish.
- Case (CE_DYNR), (CE_FUN), (CE_POLY), (CE_POLYL), (CE_POLYR), (CE_RECORD), and (CE_VARIANT): Contradictory. Note that the contradiction in the case of (C_POLYL) is proven by the definition of **QPoly**.

Lemma 20. If $A \equiv C$ and $C \equiv B$ and $A \simeq C$ and $C \simeq B$, then $A \simeq B$.

Proof. By induction on $A \simeq C$.

Case (CE_REFL): Obvious.

Case (CE_DYNL): By (CE_DYNL).

Case (CE_DYNR): We have $C = \star$. By Lemma 5 (1), $A = \star$. Thus, we finish by (CE_DYNL).

- Case (CE_FUN): We have $A = A_1 \rightarrow A_2$ and $C = C_1 \rightarrow C_2$ and, by inversion, $A_1 \simeq C_1$ and $A_2 \simeq C_2$ for some A_1, A_2, C_1 , and C_2 . Since $A \equiv C$, we have $A_1 \equiv C_1$ and $A_2 \equiv C_2$ by Lemma 5 (2). Again, by Lemma 5 (2), since $C \equiv B$, there exist some B_1 and B_2 such that $B = B_1 \rightarrow B_2$ and $C_1 \equiv B_1$ and $C_2 \equiv B_2$. Since $C \simeq B$, we have $C_1 \simeq B_1$ and $C_2 \simeq B_2$ by Lemma 10. Thus, by the IHs, $A_1 \simeq B_1$ and $A_2 \simeq B_2$. By (CE_FUN), $A_1 \rightarrow A_2 \simeq B_1 \rightarrow B_2$.
- Case (CE_POLY): We have $A = \forall X:K$. A' and $C = \forall X:K$. C' and, by inversion, $A' \simeq C'$ for some X, K, A', and C'. Since $A \equiv C$, we have $A' \equiv C'$ by Lemma 5 (3). Again, by Lemma 5 (3), since $C \equiv B$, there exist some B' such that $B = \forall X:K$. B' and $C' \equiv B'$. Since $C \simeq B$, we have $C' \simeq B'$ by Lemma 11. Thus, by the IH, $A' \simeq B'$. By (CE_POLY), $\forall X:K$. $A' \simeq \forall X:K$. B'.
- Case (CE_POLYL): We have $A = \forall X:K. A'$ and, by inversion, **QPoly** (C) and $X \notin ftv(C)$, for some X, K, and A'. **QPoly** (C) is contradictory with the fact that $C = \forall X:K. C'$ for some C', which is implied by Lemma 5 (3) with $A \equiv C$ and $A = \forall X:K. A'$.
- Case (CE_POLYR): We have $C = \forall X:K$. C' and, by inversion, **QPoly** (A) and $X \notin ftv(A)$, for some X, K, and C'. **QPoly** (A) is contradictory with the fact that $A = \forall X:K$. A' for some A', which is implied by Lemma 5 (3) with $A \equiv C$ and $C = \forall X:K$. C'.
- Case (CE_RECORD): We have $A = [\rho_1]$ and $C = [\rho_3]$ and, by inversion, $\rho_1 \simeq \rho_3$ for some ρ_1 and ρ_3 . Since $A \equiv C$, we have $\rho_1 \equiv \rho_3$ by Lemma 5 (4). Again, by Lemma 5 (4), since $C \equiv B$, there exists some ρ_2 such that $B = [\rho_2]$ and $\rho_3 \equiv \rho_2$. Since $C \simeq B$, we have $\rho_3 \simeq \rho_2$ by Lemma 13. By the IH, $\rho_1 \simeq \rho_2$. By (CE_RECORD), $[\rho_1] \simeq [\rho_2]$.
- Case (CE_VARIANT): We have $A = \langle \rho_1 \rangle$ and $C = \langle \rho_3 \rangle$ and, by inversion, $\rho_1 \simeq \rho_3$ for some ρ_1 and ρ_3 . Since $A \equiv C$, we have $\rho_1 \equiv \rho_3$ by Lemma 5 (5). Again, by Lemma 5 (5), since $C \equiv B$, there exists some ρ_2 such that $B = \langle \rho_2 \rangle$ and $\rho_3 \equiv \rho_2$. Since $C \simeq B$, we have $\rho_3 \simeq \rho_2$ by Lemma 14. By the IH, $\rho_1 \simeq \rho_2$. By (CE_VARIANT), $\langle \rho_1 \rangle \simeq \langle \rho_2 \rangle$.
- Case (CE_CONSL): We have $A = \ell : A'; \rho_1$ and, by inversion, $C \triangleright_{\ell} C', \rho_3$ and $A' \simeq C'$ and $\rho_1 \simeq \rho_3$ for some ℓ, A', C', ρ_1 , and ρ_3 . Since $A \equiv C$, there exist ρ_{31} and ρ_{32} such that
 - $C = \rho_{31} \odot (\ell : C'; \cdot) \odot \rho_{32},$
 - $A' \equiv C'$,

- $\rho_1 \equiv \rho_{31} \odot \rho_{32}$, and
- $\ell \notin dom(\rho_{31})$

by Lemma 5 (6). Again, by Lemma 5 (6), since $C \equiv B$, there exists some B', ρ_{21} , and ρ_{22} such that

- $B = \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22},$
- $C' \equiv B'$,
- $\rho_{31} \odot \rho_{32} \equiv \rho_{21} \odot \rho_{22}$, and
- $\ell \notin dom(\rho_{21})$.

Since $\rho_{31} \odot (\ell : C'; \cdot) \odot \rho_{32} = C \simeq B = \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22}$ and $\ell \notin dom(\rho_{31}) \cup dom(\rho_{21})$, we have $C' \simeq B'$ and $\rho_{31} \odot \rho_{32} \simeq \rho_{21} \odot \rho_{22}$ by Lemma 17. Since $C \triangleright_{\ell} C', \rho_3$, we have $\rho_3 = \rho_{31} \odot \rho_{32}$, so $\rho_1 \simeq \rho_{31} \odot \rho_{32}$. By the IHs, $A' \simeq B'$ and $\rho_1 \simeq \rho_{21} \odot \rho_{22}$. Since $(\rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22}) \triangleright_{\ell} B', \rho_{21} \odot \rho_{22}$, we have $\ell : A'; \rho_1 \simeq \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22} = B$ by (CE_CONSL).

(CE_CONSR): We have $C = \ell : C'; \rho_3$ and, by inversion, $A \triangleright_{\ell} A', \rho_1$ and $A' \simeq C'$ and $\rho_1 \simeq \rho_3$ for some ℓ, A', C', ρ_1 , and ρ_3 . Since $A \equiv C$, there exist ρ_{11} and ρ_{12} such that

- $A = \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12},$
- $A' \equiv C'$,
- $\rho_{11} \odot \rho_{12} \equiv \rho_3$, and
- $\ell \notin dom(\rho_{11})$

by Lemma 5 (6). Again, by Lemma 5 (6), since $C \equiv B$, there exists some B', ρ_{21} , and ρ_{22} such that

- $B = \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22},$
- $C' \equiv B'$,
- $\rho_3 \equiv \rho_{21} \odot \rho_{22}$, and
- $\ell \notin dom(\rho_{21})$.

Since $\ell: C'; \rho_3 = C \simeq B = \rho_{21} \odot (\ell: B'; \cdot) \odot \rho_{22}$ and $\ell \notin dom(\rho_{21})$, we have $C' \simeq B'$ and $\rho_3 \simeq \rho_{21} \odot \rho_{22}$ by Lemma 17. Since $A \triangleright_{\ell} A', \rho_1$, we have $\rho_1 = \rho_{11} \odot \rho_{12}$, so $\rho_{11} \odot \rho_{12} \simeq \rho_3$. By the IHs, $A' \simeq B'$ and $\rho_{11} \odot \rho_{12} \simeq \rho_{21} \odot \rho_{22}$. Since $\ell \notin dom(\rho_{11}) \cup dom(\rho_{21})$ and $A' \simeq B'$, we have $\rho_{11} \odot (\ell: A'; \cdot) \odot \rho_{12} \simeq \rho_{21} \odot (\ell: B'; \cdot) \odot \rho_{22}$.

Lemma 21. If $A \equiv B$, then $A \simeq B$.

Proof. By induction on the derivation of $A \equiv B$.

- Case (EQ_REFL): By (CE_REFL).
- Case (Eq_TRANS): By inversion, $A \equiv C$ and $C \equiv B$ for some C. By the IHs, $A \simeq C$ and $C \simeq B$. We have $A \simeq B$ by Lemma 20.

Case (Eq_SYM): By inversion, $B \equiv A$. By the IH, $B \simeq A$. By Lemma 6, $A \simeq B$.

Case (EQ_FUN): By the IHs.

Case (EQ_POLY): By the IH.

Case (EQ_RECORD): By the IH.

Case (EQ_VARIANT): By the IH.

Case (EQ_CONS): By the IH, (CE_REFL), and (CE_CONS).

Case (EQ_SWAP): By (CE_REFL) and (CE_CONSL).

Lemma 22. If $A \equiv C$ and $C \sim B$, then $A \simeq B$.

Proof. By induction on $C \sim B$.

Case (C_REFL): By Lemma 21.

Case (C_DYNL): We have $C = \star$. By Lemma 5 (1), $A = \star$. Thus, we finish by (CE_DYNL).

Case (C_DYNR): We have $B = \star$. By (CE_DYNR).

- Case (C_FUN): We have $C = C_1 \rightarrow C_2$ and $B = B_1 \rightarrow B_2$ and, by inversion, $C_1 \sim B_1$ and $C_2 \sim B_2$ for some C_1 , C_2 , B_1 , and B_2 . Since $A \equiv C_1 \rightarrow C_2$, there exist some A_{11} and A_{12} such that $A = A_1 \rightarrow A_2$ and $A_1 \equiv C_1$ and $A_2 \equiv C_2$, by Lemma 5 (2). By the IHs, $A_1 \simeq B_1$ and $A_2 \simeq B_2$. By (CE_FUN), $A_1 \rightarrow A_2 \simeq B_1 \rightarrow B_2$.
- Case (C_POLY): We have $C = \forall X:K. C'$ and $B = \forall X:K. B'$ and, by inversion, $C' \sim B'$ for some X, K, C', and B'. Since $A \equiv \forall X:K. C'$, there exists some A' such that $A = \forall X:K. A'$ and $A' \equiv C'$, by Lemma 5 (3). By the IH, $A' \simeq B'$. By (CE_POLY), we finish.
- Case (C_POLYL): We have $C = \forall X:K. C'$ and, by inversion, **QPoly** (B) and $X \notin ftv(B)$ and $C' \sim B$. Since $A = \forall X:K. C'$, there exists some A' such that $A = \forall X:K. A'$ and $A' \equiv C'$, by Lemma 5 (3). By the IH, $A' \simeq B$. By (CE_POLYL), we finish.
- Case (C_POLYR): We have $B = \forall X:K. B'$ and, by inversion, **QPoly** (C) and $X \notin ftv(C)$ and $C \sim B'$. By the IH, $A \simeq B'$. Since $A \equiv C$ and **QPoly** (C) and $X \notin ftv(C)$, we have **QPoly** (A) and $X \notin ftv(A)$ by Lemmas 1 and 2. Thus, by (CE_POLYR), we have $A \simeq \forall X:K. B'$.
- Case (C_RECORD): We have $C = [\rho_3]$ and $B = [\rho_2]$ and, by inversion, $\rho_3 \sim \rho_2$ for some ρ_3 and ρ_2 . Since $A \equiv C$, there exists some ρ_1 such that $A = [\rho_1]$ and $\rho_1 \equiv \rho_3$, by Lemma 5 (4). By the IH, $\rho_1 \simeq \rho_2$. Thus, by (CE_RECORD), we have $[\rho_1] \simeq [\rho_2]$.
- Case (C_VARIANT): We have $C = \langle \rho_3 \rangle$ and $B = \langle \rho_2 \rangle$ and, by inversion, $\rho_3 \sim \rho_2$ for some ρ_3 and ρ_2 . Since $A \equiv C$, there exists some ρ_1 such that $A = \langle \rho_1 \rangle$ and $\rho_1 \equiv \rho_3$, by Lemma 5 (5). By the IH, $\rho_1 \simeq \rho_2$. Thus, by (CE_VARIANT), we have $\langle \rho_1 \rangle \simeq \langle \rho_2 \rangle$.
- Case (C_CONS): We have $C = \ell : C'; \rho_3$ and $B = \ell : B'; \rho_2$ and, by inversion, $C' \sim B'$ and $\rho_3 \sim \rho_2$ for some ℓ, C', B', ρ_3 , and ρ_2 . Since $A \equiv C$, there exist some A', ρ_{11}, ρ_{12} such that
 - $A = \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12},$
 - $A' \equiv C'$,
 - $\rho_{11} \odot \rho_{12} \equiv \rho_3$, and
 - $\ell \notin dom(\rho_{11})$

by Lemma 5 (6). By the IHs, $A' \simeq B'$ and $\rho_{11} \odot \rho_{12} \simeq \rho_2$. We have $A \triangleright_{\ell} A', \rho_{11} \odot \rho_{12}$. Thus, by (CE_CONSR), $A \simeq \ell : B'; \rho_2$.

Case (C_CONSL): We have $C = \ell : C'; \rho_3$ and, by inversion, $\ell \notin dom(B)$ and B ends with \star and $\rho_3 \sim B$ for some ℓ, C' , and ρ_3 . Since $A \equiv C$, there exist some A', ρ_{11}, ρ_{12} such that

- $A = \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12},$
- $A' \equiv C'$,
- $\rho_{11} \odot \rho_{12} \equiv \rho_3$, and
- $\ell \notin dom(\rho_{11})$

by Lemma 5 (6). By the IH, $\rho_{11} \odot \rho_{12} \simeq B$. By Lemmas 6 and 19, $\rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12} \simeq B$.

Case (C_CONSR): we have $B = \ell : B'; \rho_2$ and, by inversion, $\ell \notin dom(C)$ and C ends with \star and $C \sim \rho_2$ for some ℓ, B' , and ρ_2 . By the IH, $A \simeq \rho_2$. Since $A \equiv C$ and $\ell \notin dom(C)$ and C ends with \star , we have $\ell \notin dom(A)$ and A ends with \star by Lemmas 2 and 3. Thus, by (CE_CONSR), we have $A \simeq \ell : B'; \rho_2$.

Lemma 23. If $A \simeq B$ and $B \equiv C$, then $A \simeq C$.

- *Proof.* By induction on the derivation of $A \simeq B$.
- Case (CE_REFL): By Lemma 21.
- Case (CE_DYNL): By (CE_DYNL).
- Case (CE_DYNR): We have $B = \star$. Since $B \equiv C$, we have $C = \star$ by Lemma 5 (1). By (CE_DYNR).
- Case (CE_FUN): We have $A = A_1 \rightarrow A_2$ and $B = B_1 \rightarrow B_2$ and, by inversion, $A_1 \simeq B_1$ and $A_2 \simeq B_2$ for some A_1, A_2, B_1 , and B_2 . Since $B \equiv C$, there exist some C_1 and C_2 such that $C = C_1 \rightarrow C_2$ and $B_1 \equiv C_1$ and $B_2 \equiv C_2$ by Lemma 5 (2). By the IHs, $A_1 \simeq C_1$ and $A_2 \simeq C_2$. Thus, $A_1 \rightarrow A_2 \simeq C_1 \rightarrow C_2$ by (CE_FUN).
- Case (CE_POLY): We have $A = \forall X:K.A'$ and $B = \forall X:K.B'$ and, by inversion, $A' \simeq B'$ for some X, K, A', and B'. Since $B \equiv C$, there exist some C' such that $C = \forall X:K.C'$ and $B' \equiv C'$ by Lemma 5 (3). By the IH, $A' \simeq C'$. Thus, $\forall X:K.A' \simeq \forall X:K.C'$ by (CE_POLY).
- Case (CE_POLYL): We have $A = \forall X:K.A'$ and, by inversion, **QPoly** (B) and $X \notin ftv(B)$ and $A' \simeq B$ for some X, K, and A'. By the IH, $A' \simeq C$. Since $B \equiv C$ and **QPoly** (B) and $X \notin ftv(B)$, we have **QPoly** (C) and $X \notin ftv(C)$ by Lemmas 1 and 2. Thus, $\forall X:K.A' \simeq C$ by (CE_POLYL).
- Case (CE_POLYR): We have $B = \forall X:K.B'$ and, by inversion, **QPoly** (A) and $X \notin ftv(A)$ and $A \simeq B'$ for some X, K, and B'. By Lemma 5 (3), since $B \equiv C$, there exists some C' such that $C = \forall X:K.C'$ and $B' \equiv C'$. By the IH, $A \simeq C'$. By (CE_POLYR), $A \simeq \forall X:K.C'$.
- Case (CE_RECORD): We have $A = [\rho_1]$ and $B = [\rho_2]$ and, by inversion, $\rho_1 \simeq \rho_2$ for some ρ_1 and ρ_2 . By Lemma 5 (4), since $B \equiv C$, there exists some ρ_3 such that $C = [\rho_3]$ and $\rho_2 \equiv \rho_3$. By the IH, $\rho_1 \simeq \rho_3$. By (CE_RECORD), $[\rho_1] \simeq [\rho_3]$.
- Case (CE_VARIANT): We have $A = \langle \rho_1 \rangle$ and $B = \langle \rho_2 \rangle$ and, by inversion, $\rho_1 \simeq \rho_2$ for some ρ_1 and ρ_2 . By Lemma 5 (5), since $B \equiv C$, there exists some ρ_3 such that $C = \langle \rho_3 \rangle$ and $\rho_2 \equiv \rho_3$. By the IH, $\rho_1 \simeq \rho_3$. By (CE_VARIANT), $\langle \rho_1 \rangle \simeq \langle \rho_3 \rangle$.
- Case (CE_CONSL): We have $A = \ell : A'; \rho_1$ and, by inversion, $B \triangleright_{\ell} B', \rho_2$ and $A' \simeq B'$ and $\rho_1 \simeq \rho_2$ for some ℓ, A', B', ρ_1 , and ρ_2 .

If $\ell \in dom(B)$, then there exist some ρ_{21} and ρ_{22} such that

- $B = \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22},$
- $\rho_2 = \rho_{21} \odot \rho_{22}$, and
- $\ell \notin dom(\rho_{21}).$

Since $B \equiv C$, there exist some C', ρ_{31} , and ρ_{32} such that

- $C = \rho_{31} \odot (\ell : C'; \cdot) \odot \rho_{32},$
- $B' \equiv C'$,
- $\ell \notin dom(\rho_{31})$, and
- $\rho_{21} \odot \rho_{22} \equiv \rho_{31} \odot \rho_{32}$

by Lemma 5 (6). Since $\rho_1 \simeq \rho_2$ and $\rho_2 = \rho_{21} \odot \rho_{22} \equiv \rho_{31} \odot \rho_{32}$, we have $\rho_1 \simeq \rho_{31} \odot \rho_{32}$ by the IH. Besides, $A' \simeq B'$ and $B' \equiv C'$, we have $A' \simeq C'$ by the IH. Since $C \triangleright_{\ell} C', \rho_{31} \odot \rho_{32}$, we have $\ell : A'; \rho_1 \simeq C$ by (CE_CONSL). Otherwise, if $\ell \notin dom(B)$, then $B' = \star$ and $\rho_2 = B$ and B ends with \star . Since $\rho_1 \simeq \rho_2$ and $\rho_2 = B \equiv C$, we have $\rho_1 \simeq C$ by the IH. Since $B \equiv C$, we can find $C \triangleright_{\ell} \star, C$ by Lemmas 4 and 3. Since $A' \simeq \star$ by (CE_DYNR) and $\rho_1 \simeq C$, we have $\ell : A'; \rho_1 \simeq C$ by (CE_CONSL). Case (CE_CONSR): We have $B = \ell : B'; \rho_2$ and, by inversion, $A \triangleright_{\ell} A', \rho_1$ and $A' \simeq B'$ and $\rho_1 \simeq \rho_2$ for some ℓ, A', B', ρ_1 , and ρ_2 . Since $B \equiv C$, there exist some C', ρ_{31} , and ρ_{32} such that

- $C = \rho_{31} \odot (\ell : C'; \cdot) \odot \rho_{32},$
- $B' \equiv C'$,
- $\ell \notin dom(\rho_{31})$, and
- $\rho_2 \equiv \rho_{31} \odot \rho_{32}$

by Lemma 5 (6).

If $\ell \in dom(A)$, then there exist some ρ_{11} and ρ_{12} such that

- $A = \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12},$
- $\rho_1 = \rho_{11} \odot \rho_{12}$, and
- $\ell \notin dom(\rho_{11})$.

Since $\rho_1 \simeq \rho_2$ and $\rho_2 \equiv \rho_{31} \odot \rho_{32}$, we have $\rho_1 \simeq \rho_{31} \odot \rho_{32}$ by the IH. Besides, $A' \simeq B'$ and $B' \equiv C'$, we have $A' \simeq C'$ by the IH. By Lemma 18,

$$A = \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12} \simeq \rho_{31} \odot (\ell : C'; \cdot) \odot \rho_{32} = C.$$

Otherwise, if $\ell \notin dom(A)$, then $A' = \star$ and $\rho_1 = A$ and A ends with \star . Since $A = \rho_1 \simeq \rho_2$ and $\rho_2 \equiv \rho_{31} \odot \rho_{32}$, we have $A \simeq \rho_{31} \odot \rho_{32}$ by the IH. By Lemma 19, $A \simeq \rho_{31} \odot (\ell : C'; \cdot) \odot \rho_{32} = C$.

Theorem 1. $A \simeq B$ if and only if $A \equiv A'$ and $A' \sim B'$ and $B' \equiv B$ for some A' and B'.

Proof. First, we show the left-to-right direction. Suppose $A \simeq B$. By Lemma 16, there exists some A' such that $A \equiv A'$ and $A' \sim B$. Since [B == B] by (Eq_REFL), we finish

Next, we show the right-to-left. Suppose that $A \equiv A'$ and $A' \sim B'$ and $B' \equiv B$. By Lemma 22, $A \simeq B'$. By Lemma 23, $A \simeq B$.

2.2 Type Soundness

Lemma 24 (Weakening). Suppose that $\Sigma \vdash \Gamma_1, \Gamma_2$. Let Γ_3 be a typing context such that $dom(\Gamma_2) \cap dom(\Gamma_3) = \emptyset$.

- 1. If $\Sigma \vdash \Gamma_1, \Gamma_3$, then $\Sigma \vdash \Gamma_1, \Gamma_2, \Gamma_3$.
- 2. If $\Sigma; \Gamma_1, \Gamma_3 \vdash A : K$, then $\Sigma; \Gamma_1, \Gamma_2, \Gamma_3 \vdash A : K$.
- 3. If $\Sigma; \Gamma_1, \Gamma_3 \vdash e : A$, then $\Sigma; \Gamma_1, \Gamma_2, \Gamma_3 \vdash e : A$.

Proof. Straightforward by mutual induction on the derivations.

Lemma 25 (Weakening type names). Suppose that $\Sigma \subseteq \Sigma'$.

- 1. If $\Sigma \vdash B \prec^{\Phi} C$, then $\Sigma' \vdash B \prec^{\Phi} C$.
- 2. If $\Sigma \vdash \Gamma$, then $\Sigma' \vdash \Gamma$.
- 3. If $\Sigma; \Gamma \vdash B : K$, then $\Sigma'; \Gamma \vdash B : K$.
- 4. If $\Sigma; \Gamma \vdash e : B$, then $\Sigma'; \Gamma \vdash e : B$.

Proof. Straightforward by mutual induction on the derivations.

Lemma 26. If **QPoly** (A), then **QPoly** (A[B/X]).

Proof. First, we show A[B/X] is not a polymorphic type by case analysis on A.

Case $A = \star$, Y (where $X \neq Y$), $\alpha, \iota, A' \rightarrow B'$, $[\rho], \langle \rho \rangle, \cdot$, and $\ell : C; \rho$: Obvious.

Case A = X: Since **QPoly** (A), A must contain the dynamic type; thus, contradictory.

Case $A = \forall Y: K. C$: Contradictory with **QPoly** (A).

Thus, it suffices to show that A[B/X] contains the dynamic type, which is obvious since A contains the dynamic type (from **QPoly** (A)) and type substitution preserves that property.

Lemma 27. If $\rho_1 \triangleright_{\ell} A, \rho_2$, then $\rho_1[B/X] \triangleright_{\ell} A[B/X], \rho_2[B/X]$.

Proof. By induction on ρ_1 .

Case $\rho_1 = \ell' : C; \rho'_1$: If $\ell' = \ell$, then A = C and $\rho_2 = \rho'_1$, and, therefore, the statement holds obviously.

Otherwise, if $\ell' \neq \ell$, then we have $\rho'_1 \triangleright_{\ell} A, \rho'_2$ and $\rho_2 = \ell' : C; \rho'_2$. By the IH, $\rho'_1[B/X] \triangleright_{\ell} A[B/X], \rho'_2[B/X]$. Thus, $\ell' : C[B/X]; \rho'_1[B/X] \triangleright_{\ell} A[B/X], \ell' : C[B/X]; \rho'_2[B/X]$, which is what we have to prove.

Case $\rho_1 = \star$: Obvious.

Lemma 28 (Type substitution preserves consistency). If $A \simeq B$, then $A[C/X] \simeq B[C/X]$.

Proof. By induction on the derivation of $A \simeq B$. We mention only the interesting cases below.

Case (CE_POLYL): We have $\forall Y:K. A' \simeq B$ and, by inversion, **QPoly** (B) and $Y \notin ftv(B)$ and $A' \simeq B$. Without loss of generality, we can suppose that $Y \notin ftv(C)$. Thus, $Y \notin ftv(B[C/X])$. By the IH, $A'[C/X] \simeq B[C/X]$. By Lemma 26, **QPoly** (B[C/X]). Thus, by (CE_POLYL), $\forall Y:K. A'[C/X] \simeq B[C/X]$

Case (CE_POLYR): Similar to the case for (CE_POLYL).

Case (CE_CONSL): We have $\ell : A'; \rho_1 \simeq B$ and, by inversion, $B \triangleright_{\ell} B', \rho_2$ and $A' \simeq B'$ and $\rho_1 \simeq \rho_2$. By the IHs, $A'[C/X] \simeq B'[C/X]$ and $\rho_1[C/X] \simeq \rho_2[C/X]$. By Lemma 27, $B[C/X] \triangleright_{\ell} B'[C/X], \rho_2[C/X]$. Thus, by (CE_CONSL), $\ell : A'[C/X]; \rho_1[C/X] \simeq B[C/X]$.

Case (CE_CONSR): Similar to the case for (CE_CONSL).

Lemma 29 (Type substitution). Suppose that $\Sigma; \Gamma_1 \vdash A : K$.

- 1. If $\Sigma \vdash \Gamma_1, X:K, \Gamma_2$, then $\Sigma \vdash \Gamma_1, \Gamma_2[A/X]$.
- 2. If $\Sigma; \Gamma_1, X: K, \Gamma_2 \vdash B: K'$, then $\Sigma; \Gamma_1, \Gamma_2[A/X] \vdash B[A/X]: K'$.
- 3. If Σ ; Γ_1 , X: K, $\Gamma_2 \vdash e : B$, then Σ ; Γ_1 , $\Gamma_2[A/X] \vdash e[A/X] : B[A/X]$.

Proof. Straightforward by mutual induction on the derivations. Only the interesting case is (WF_TYVAR). Suppose we have $\Sigma; \Gamma_1, X:K, \Gamma_2 \vdash Y : K'$. By inversion, $\Sigma \vdash \Gamma_1, X:K, \Gamma_2$ and $Y:K' \in \Gamma_1, X:K, \Gamma_2$. By the IH, $\Sigma \vdash \Gamma_1, \Gamma_2[A/X]$. If $X \neq Y$, then $Y:K' \in \Gamma_1, \Gamma_2[A/X]$ and, therefore, by (WF_TYVAR), $\Sigma; \Gamma_1, \Gamma_2[A/X] \vdash Y : K'$. Otherwise, if X = Y, then we have to show $\Sigma; \Gamma_1, \Gamma_2[A/X] \vdash A : K$. Since $\Sigma; \Gamma_1 \vdash A : K$ and $\Sigma \vdash \Gamma_1, \Gamma_2[A/X]$, we have $\Sigma; \Gamma_1, \Gamma_2[A/X] \vdash A : K$ by Lemma 24 (2).

Note that the case for (T_CAST) uses Lemma 28 and that the case for (T_CONV) depends on the fact that e and B are closed.

Lemma 30 (Type substitution on convertibility). Suppose that α does not occur in A.

1. $\Sigma, \alpha: K := B \vdash A[\alpha/X] \prec^{+\alpha} A[B/X].$

2.
$$\Sigma, \alpha: K := B \vdash A[B/X] \prec^{-\alpha} A[\alpha/X].$$

Proof. Let $\Sigma' = \Sigma, \alpha: K := B$. By induction on A.

Case A = X: We have $A[\alpha/X] = \alpha$ and A[B/X] = B.

First, we have to show $\Sigma' \vdash \alpha \prec^{+\alpha} B$, which is shown by (CV_REVEAL).

Next, we have to show $\Sigma' \vdash B \prec^{-\alpha} \alpha$, which is shown by (CV_CONCEAL).

Case A = Y where $X \neq Y$: By (CV_TYVAR).

Case $A = \alpha$: Contradictory with the assumption that α does not occur in A.

Case $A = \alpha'$ where $\alpha \neq \alpha'$: By (CV_TYNAME).

Case $A = \star$: By (CV_DYN).

Case $A = \iota$: By (CV_BASE).

Case $A = A_1 \rightarrow A_2$: By the IHs, we have

- $\Sigma' \vdash A_1[\alpha/X] \prec^{+\alpha} A_1[B/X],$
- $\Sigma' \vdash A_2[\alpha/X] \prec^{+\alpha} A_2[B/X],$
- $\Sigma' \vdash A_1[B/X] \prec^{-\alpha} A_1[\alpha/X]$, and
- $\Sigma' \vdash A_2[B/X] \prec^{-\alpha} A_2[\alpha/X].$

By (CV_FUN), $\Sigma' \vdash A_1[\alpha/X] \to A_2[\alpha/X] \prec^{+\alpha} A_1[B/X] \to A_2[B/X]$ and $\Sigma' \vdash A_1[B/X] \to A_2[B/X] \prec^{-\alpha} A_1[\alpha/X] \to A_2[\alpha/X].$

Case $A = \forall X': K. A'$: By the IH and (CV_POLY).

Case $A = [\rho]$: By the IH and (CV_RECORD).

Case $A = \langle \rho \rangle$: By the IH and (CV_VARIANT).

Case A = : By (CV_REMP).

Case $A = \ell : A'; \rho$: By the IHs and (CV_CONS).

Lemma 31.

- 1. If $\Sigma \vdash \Gamma_1, x:A, \Gamma_2$, then $\Sigma \vdash \Gamma_1, \Gamma_2$.
- 2. If $\Sigma; \Gamma_1, x: A, \Gamma_2 \vdash B : K$, then $\Sigma; \Gamma_1, \Gamma_2 \vdash B : K$.

Proof. Straightforward by mutual induction on the derivations.

Lemma 32 (Value substitution). If Σ ; $\Gamma_1 \vdash v : A$ and Σ ; $\Gamma_1, x: A, \Gamma_2 \vdash e : B$, then Σ ; $\Gamma_1, \Gamma_2 \vdash e[v/x] : B$.

Proof. By mutual induction on the derivations. The only interesting case is (T_VAR).

Suppose that $\Sigma; \Gamma_1, x:A, \Gamma_2 \vdash y : B$. By inversion, $\Sigma \vdash \Gamma_1, x:A, \Gamma_2$ and $y:B \in \Gamma_1, x:A, \Gamma_2$. By Lemma 31, $\Sigma \vdash \Gamma_1, \Gamma_2$. If $x \neq y$, then $y:B \in \Gamma_1, \Gamma_2$. Thus, by $(T_{-}VAR), \Sigma; \Gamma_1, \Gamma_2 \vdash y : B$. Since y[v/x] = y, we finish. Otherwise, if x = y, then we have to show that $\Sigma; \Gamma_1, \Gamma_2 \vdash v : A$ (note that y[v/x] = v and that A = B since $y:B \in \Gamma_1, x:A, \Gamma_2$). Since $\Sigma; \Gamma_1 \vdash v : A$ and $\Sigma \vdash \Gamma_1, \Gamma_2$, we have $\Sigma; \Gamma_1, \Gamma_2 \vdash v : A$ by Lemma 24 (3).

The cases for (T_CONST), (T_TAPP), (T_REMP), (T_VINJ), (T_VLIFT), (T_CAST), and (T_CONV) also use Lemma 31. $\hfill \Box$

Lemma 33 (Canonical forms). Suppose that $\Sigma; \emptyset \vdash v : A$.

- 1. If $A = \iota$, then $v = \kappa$ for some κ .
- 2. If $A = B \to C$, then $v = \lambda x$: B.e for some x and e, or $v = \kappa$ for some κ such that $ty(\kappa) = B \to C$.
- 3. If $A = \forall X: K. B$, then $v = \Lambda X: K. e :: B$ for some e.

- 4. If $A = [\cdot]$, then $v = \{\}$.
- 5. If $A = [\ell : B; \rho]$, then $v = \{\ell = v_1; v_2\}$ for some v_1 and v_2 .
- 6. If $A = \langle \ell : B; \rho \rangle$, then $v = \ell v'$ or $v = \uparrow \langle \ell : B \rangle v'$ for some v'.
- 7. If $A = \star$, then $v = v' : G \stackrel{p}{\Rightarrow} \star$ for some v', G, and p.
- 8. If $A = [\star]$, then $v = v' : [\gamma] \stackrel{p}{\Rightarrow} [\star]$ for some v', γ , and p.
- 9. If $A = \langle \star \rangle$, then $v = v' : \langle \gamma \rangle \stackrel{p}{\Rightarrow} \langle \star \rangle$ for some v', γ , and p.
- 10. If $A = \alpha$, then $v = v' : B \stackrel{-\alpha}{\Rightarrow} \alpha$ for some v' and B.
- 11. If $A = [\alpha]$, then $v = v' : [\rho] \stackrel{-\alpha}{\Rightarrow} [\alpha]$ for some v' and ρ .
- 12. If $A = \langle \alpha \rangle$, then $v = v' : \langle \rho \rangle \stackrel{-\alpha}{\Rightarrow} \langle \alpha \rangle$ for some v' and ρ .
- *Proof.* By case analysis on the typing rule applied to derive $\Sigma; \emptyset \vdash v : A$.
- Case (T_VAR), (T_APP), (T_TAPP), (T_RLET), (T_VCASE), and (T_BLAME): Contradictory.
- Case (T_CONST), (T_LAM), (T_TLAM), (T_REMP), (T_REXT), (T_VINJ), (T_VLIFT): Obvious.
- Case (T_CAST): We have $\Sigma; \emptyset \vdash e : B \stackrel{p}{\Rightarrow} A : A$ for some e, B, and p. By inversion, $\Sigma; \emptyset \vdash A : \mathsf{T}$. We do case analysis on the rule applied last to derive $\Sigma; \emptyset \vdash A : \mathsf{T}$.
 - Case (WF_TYVAR), (WF_REMP), and (WF_CONS): Contradictory.
 - Case (WF_TYNAME), (WF_BASE), (WF_FUN), and (WF_POLY): Contradictory because there are no values of the form $e: B \xrightarrow{p} A$ in these cases.
 - Case (WF_DYN), (WF_RECORD), and (WF_VARIANT): Obvious because of the definition of values.
- Case (T_CONV): We have $\Sigma; \emptyset \vdash e : B \stackrel{\Phi}{\Rightarrow} A : A$ for some e, B, and Φ . By inversion, $\Sigma; \emptyset \vdash A : \mathsf{T}$. We do case analysis on the rule applied last to derive $\Sigma; \emptyset \vdash A : \mathsf{T}$.
 - Case (WF_TYVAR), (WF_REMP), and (WF_CONS): Contradictory.
 - Case (WF_DYN), (WF_BASE), (WF_FUN), and (WF_POLY): Contradictory because there are no values of the form $e: B \stackrel{\Phi}{\Rightarrow} A$ in these cases.

Case (WF_TYNAME), (WF_RECORD), and (WF_VARIANT): Obvious because of the definition of values.

Lemma 34. If $\Sigma; \emptyset \vdash v : \langle \cdot \rangle$, contradictory.

<i>Proof.</i> Straightforward by case analysis on the rule applied last to derive $\Sigma; \emptyset \vdash v : \langle \cdot \rangle$.	
--	--

Lemma 35 (Value inversion: constants). If $\Sigma; \emptyset \vdash \kappa : A$, then $A = ty(\kappa)$.

Proof. Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash \kappa : A$.

Lemma 36 (Value inversion: constants). If $\Sigma; \emptyset \vdash \lambda x : A \cdot e : A' \to B$, then A = A' and $\Sigma; x : A \vdash e : B$.

Proof. Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash \lambda x : A \cdot e : A' \to B$.

Lemma 37 (Value inversion: constants). If $\Sigma; \emptyset \vdash \Lambda X: K.e :: A : \forall X': K'. A'$, then X = X' and K = K' and A = A' and $\Sigma; X: K \vdash e : A$.

Proof. Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash \Lambda X: K.e :: A : \forall X': K'. A'.$

Lemma 38 (Value inversion: record extensions). If $\Sigma; \emptyset \vdash \{\ell = v_1; v_2\} : [\rho]$, there exist some A and ρ' such that $\rho = [\ell : A; \rho']$ and $\Sigma; \emptyset \vdash v_1 : A$ and $\Sigma; \emptyset \vdash v_2 : [\rho']$.

<i>Proof.</i> Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash \{\ell = v_1; v_2\} : [\rho].$	
Lemma 39 (Value inversion: variant injections). If Σ ; $\emptyset \vdash \ell v : \langle \ell : A; \rho \rangle$, then Σ ; $\emptyset \vdash v : A$.	
<i>Proof.</i> Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash \ell v : \langle \ell : A; \rho \rangle$.	

Lemma 40 (Value inversion: variant lifts). If $\Sigma; \emptyset \vdash \uparrow \langle \ell : A \rangle v : \langle \ell : B; \rho \rangle$, then $\Sigma; \emptyset \vdash v : \langle \rho \rangle$ and A = B.

Proof. Straightforward by case analysis on the derivation of Σ ; $\emptyset \vdash \uparrow \langle \ell : A \rangle v : \langle \ell : A; \rho \rangle$.

Lemma 41 (Value inversion: casts). If $\Sigma; \emptyset \vdash v : A \stackrel{p}{\Rightarrow} B : B$, then $\Sigma; \emptyset \vdash v : A$ and $A \simeq B$.

Proof. Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash v : A \stackrel{p}{\Rightarrow} B : B$.

Lemma 42 (Value inversion: conversions). If $\Sigma; \emptyset \vdash v : A \xrightarrow{-\alpha} \alpha : \alpha$, then $\Sigma; \emptyset \vdash v : A$ and $\Sigma(\alpha) = A$.

Proof. Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash v : A \stackrel{-\alpha}{\Rightarrow} \alpha : \alpha$.

Lemma 43 (Value inversion: conversions with records). If $\Sigma; \emptyset \vdash v : [\rho] \stackrel{-\alpha}{\Rightarrow} [\alpha] : \alpha$, then $\Sigma; \emptyset \vdash v : [\rho]$ and $\Sigma(\alpha) = \rho$.

Proof. Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash v : [\rho] \stackrel{-\alpha}{\Rightarrow} [\alpha] : \alpha$.

Lemma 44 (Value inversion: conversions with variants). If $\Sigma; \emptyset \vdash v : \langle \rho \rangle \xrightarrow{-\alpha} \langle \alpha \rangle : \alpha$, then $\Sigma; \emptyset \vdash v : \langle \rho \rangle$ and $\Sigma(\alpha) = \rho$.

Proof. Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash v : \langle \rho \rangle \stackrel{-\alpha}{\Rightarrow} \langle \alpha \rangle : \alpha$.

Lemma 45. If $\Sigma \mid e \longrightarrow \Sigma' \mid e' \text{ or } e = \text{ blame } p, \text{ then } \Sigma \mid E[e] \longrightarrow \Sigma' \mid e'' \text{ for some } e''.$

Proof. If e = blame p, then we finish by (E_BLAME). If $\Sigma \mid e \longrightarrow \Sigma' \mid e'$, we can prove the statement straightforwardly by case analysis on the evaluation rule applied to derive $\Sigma \mid e \longrightarrow \Sigma' \mid e'$.

Lemma 46 (Unique ground type). If $\Sigma; \emptyset \vdash A : \mathsf{T}$ and $A \neq \star$ and A is not an universal type, then there exists an unique ground type G such that $A \simeq G$.

Proof. By case analysis on A.

Case A = X: Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$

Case $A = \alpha$: Only ground type α is consistent with α .

Case $A = \star$: Contradictory with $A \neq \star$.

Case $A = \iota$: Only ground type ι is consistent with ι .

Case $A = B \rightarrow C$: Only ground type $\star \rightarrow \star$ is consistent with $B \rightarrow C$.

Case $A = \forall X: K. B$: Contradictory.

Case $A = [\rho]$: Only ground type [*] is consistent with $[\rho]$.

Case $A = \langle \rho \rangle$: Only ground type $\langle \star \rangle$ is consistent with $\langle \rho \rangle$.

Case A = : Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.

Case $A = \ell : B; \rho$: Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.

Lemma 47. If $\Sigma; \emptyset \vdash \rho : \mathbb{R}$ and $\rho \neq \star$, then $grow(\rho)$ is defined and $grow(\rho)$ is a ground row type.	
<i>Proof.</i> Straightforward by case analysis on the derivation of $\Sigma; \emptyset \vdash \rho : R$.	
Lemma 48. If $grow(\rho)$ is defined, then $\rho \simeq grow(\rho)$.	
<i>Proof.</i> Obvious by definition of <i>grow</i> .	
Lemma 49. If $grow(\rho)$ is defined and $\Sigma; \Gamma \vdash \rho : K$, then $\Sigma; \Gamma \vdash grow(\rho) : K$.	
<i>Proof.</i> Obvious by definition of <i>grow</i> .	
Lemma 50.	
1. If Σ ; $\Gamma \vdash A : K$, then $\Sigma \vdash \Gamma$.	
2. If $\Sigma; \Gamma \vdash e : A$, then $\Sigma \vdash \Gamma$ and $\Sigma; \Gamma \vdash A : T$.	

Proof. Straightforward by induction on the typing derivations with Lemmas 24 and 29.

Lemma 51 (Progress). If $\Sigma; \emptyset \vdash e : A$, then one of the followings holds:

- e is a value;
- $e = blame p for some \ell; or$
- $\Sigma \mid e \longrightarrow \Sigma' \mid e' \text{ for some } \Sigma' \text{ and } e'.$

Proof. By induction on the derivation of $\Sigma; \emptyset \vdash e : A$.

Case (T_VAR): Contradictory.

Case (T_CONST), (T_LAM), (T_TLAM), (T_REMP), and (T_BLAME): Obvious.

Case (T_APP): We have $\Sigma; \emptyset \vdash e_1 e_2 : A$ and, by inversion, $\Sigma; \emptyset \vdash e_1 : B \to A$ and $\Sigma; \emptyset \vdash e_2 : B$. If $e_1 = \mathsf{blame} p$ for some p, or $\Sigma \mid e_1 \longrightarrow \Sigma' \mid e'_1$ for some Σ' and e'_1 , then we finish by Lemma 45.

In what follows, we can suppose that $e_1 = v_1$ for some v_1 by the IH. If $e_2 = \mathsf{blame } p$ for some p, or $\Sigma \mid e_2 \longrightarrow \Sigma' \mid e'_2$ for some Σ' and e'_2 , then we finish by Lemma 45.

In what follows, we can suppose that $e_2 = v_2$ for some v_2 by the IH. We have $\Sigma; \emptyset \vdash v_1 : B \to A$. Thus, by Lemma 33, there are two cases on v_1 to be considered.

Case $v_1 = \lambda x: B.e'_1$ for some x and e'_1 : By $(R_BETA)/(E_RED)$.

- Case $v_1 = \kappa_1$ and $ty(\kappa_1) = B \to A$ for some κ_1 : By the assumption on constants, $B = \iota$ for some ι . Since $\Sigma; \emptyset \vdash v_2 : \iota$, we have $v_2 = \kappa_2$ for some κ_2 . By the assumption on constants, $\zeta(\kappa_1, \kappa_2)$ is defined. Thus, we finish by $(E_{-}CONST)/(R_{-}RED)$.
- Case (T_TAPP): We have $\Sigma; \emptyset \vdash e_1 B : C[B/X]$ and, by inversion, $\Sigma; \emptyset \vdash e_1 : \forall X:K. C$ and $\Sigma; \emptyset \vdash B : K$. If $e_1 = \text{blame } p$ for some [p], or $\Sigma \mid e_1 \longrightarrow \Sigma' \mid e'_1$ for some Σ' and e'_1 , then we finish by Lemma 45.

In what follows, we can suppose that $e_1 = v_1$ for some v_1 by the IH. We have $\Sigma; \emptyset \vdash v_1 : \forall X: K. C.$ Thus, by Lemma 33, $v_1 = \Lambda X: K. e'_1 :: C$ for some e'_1 . By (E_TYBETA), we finish.

Case (T_REXT): We have $\Sigma; \emptyset \vdash \{\ell = e_1; e_2\} : [\ell : B; \rho]$ and, by inversion, $\Sigma; \emptyset \vdash e_1 : B$ and $\Sigma; \emptyset \vdash e_2 : [\rho]$. If $e_1 =$ blame p for some p, or $\Sigma \mid e_1 \longrightarrow \Sigma' \mid e'_1$ for some Σ' and e'_1 , then we finish by Lemma 45.

In what follows, we can suppose that $e_1 = v_1$ for some v_1 by the IH. If $e_2 = \mathsf{blame } p$ for some p, or $\Sigma \mid e_2 \longrightarrow \Sigma' \mid e'_2$ for some Σ' and e'_2 , then we finish by Lemma 45.

In what follows, we can suppose that $e_2 = v_2$ for some v_2 by the IH. Then, we finish because $e = \{\ell = v_1; v_2\}$ is a value.

- Case (T_RLET): We have $\Sigma; \emptyset \vdash \text{let} \{\ell = x; y\} = e_1 \text{ in } e_2 : A \text{ and, by inversion, } \Sigma; \emptyset \vdash e_1 : [\ell:B; \rho] \text{ and } \Sigma; x:B, y:[\rho] \vdash e_2 : A. If <math>e_1 = \text{blame } p$ for some p, or $\Sigma \mid e_1 \longrightarrow \Sigma' \mid e'_1$ for some Σ' and e'_1 , then we finish by Lemma 45. In what follows, we can suppose that $e_1 = v_1$ for some v_1 by the IH. Since $\Sigma; \emptyset \vdash v_1 : [\ell:B; \rho]$, we have $v_1 = \{\ell = v'_1; v'_2\}$ for some v'_1 and v'_2 by Lemma 33. Thus, we finish by (R_RECORD)/(E_RED).
- Case (T_VINJ): We have $\Sigma; \emptyset \vdash \ell e' : \langle \ell : B; \rho \rangle$ and, by inversion, $\Sigma; \emptyset \vdash e' : B$ and $\Sigma; \emptyset \vdash \rho : \mathsf{R}$. If $e' = \mathsf{blame} p$ for some p, or $\Sigma \mid e' \longrightarrow \Sigma' \mid e''$ for some Σ' and e'', then we finish by Lemma 45.

In what follows, we can suppose that e' = v for some v by the IH. Then, we finish because $e = \ell v$ is a value.

- Case (T_VLIFT): We have $\Sigma; \emptyset \vdash \uparrow \langle \ell : B \rangle e' : \langle \ell : B; \rho \rangle$ and, by inversion, $\Sigma; \emptyset \vdash e' : \langle \rho \rangle$ and $\Sigma; \emptyset \vdash B : \mathsf{T}$. If $e' = \mathsf{blame} \ p$ for some p, or $\Sigma \mid e' \longrightarrow \Sigma' \mid e''$ for some Σ' and e'', then we finish by Lemma 45.
 - In what follows, we can suppose that e' = v for some v by the IH. Then, we finish because $e = \uparrow \langle \ell : B \rangle v$ is a value.
- Case (T_VCASE): We have $\Sigma; \emptyset \vdash \mathsf{case} \ e' \ \mathsf{with} \ \langle \ell x \to e_1; y \to e_2 \rangle : A \ \mathsf{and}$, by inversion, $\Sigma; \emptyset \vdash e' : \langle \ell : B; \rho \rangle$. If $e' = \mathsf{blame} \ p$ for some p, or $\Sigma \mid e' \longrightarrow \Sigma' \mid e''$ for some $\Sigma' \ \mathsf{and} \ e''$, then we finish by Lemma 45.

In what follows, we can suppose that e' = v for some v by the IH. We have $\Sigma; \emptyset \vdash v : \langle \ell : B; \rho \rangle$. Thus, by Lemma 33, there are two cases on v to be considered.

Case $v = \ell v'$ for some v': By (R_CASEL)(E_RED).

Case $v = \uparrow \langle \ell : B \rangle v'$ for some v': By (R_CASER)(E_RED).

Case (T_CAST): We have $\Sigma; \emptyset \vdash e' : B \stackrel{p}{\Rightarrow} A : A$ and, by inversion, $\Sigma; \emptyset \vdash e' : B$ and $B \simeq A$ and $\Sigma; \emptyset \vdash A : \mathsf{T}$. If $e' = \mathsf{blame} \ q$ for some q, or $\Sigma \mid e' \longrightarrow \Sigma' \mid e''$ for some Σ' and e'', then we finish by Lemma 45.

In what follows, we can suppose that e' = v for some v by the IH. By case analysis on $B \simeq A$.

Case (CE_REFL): We have B = A. By case analysis on A.

Case A = X: Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.

- Case $A = \alpha$: By (R_IDNAME)/(E_RED).
- Case $A = \star$: By (R_IDDYN)/(E_RED).
- Case $A = \iota$: By (R_IDBASE)/(E_RED).
- Case $A = A_1 \rightarrow A_2$: By (R_WRAP)/(E_RED).
- Case $A = \forall X: K. A'$: By (R_CONTENT)/(E_RED).

Case $A = [\rho]$: By case analysis on ρ . Note that $\Sigma; \emptyset \vdash \rho : \mathsf{R}$ since $\Sigma; \emptyset \vdash [\rho] : \mathsf{T}$.

- Case $\rho = X, \iota, A' \to B', \forall X: K. A', [\rho'], \text{ and } \langle \rho' \rangle$: Contradictory with $\Sigma; \emptyset \vdash \rho : \mathsf{R}$.
- Case $\rho = \alpha$: By (E_RIDNAME)/(E_RED).
- Case $\rho = \star$: By Lemma 33, $v = v' : [\gamma'] \stackrel{q}{\Rightarrow} [\star]$ for some v', γ' , and q. We have $[\gamma'] \simeq [\star]$ by (CE_DYNR)/(CE_RECORD). Thus, we finish by (R_RFROMDYN)/(E_RED).
- Case $\rho = \cdot$: By (R_REMP)/(E_RED).
- Case $\rho = \ell : C; \rho'$: By Lemma 33, $v = \{\ell = v_1; v_2\}$ for some v_1 and v_2 . Thus, $v \triangleright_{\ell} v_1, v_2$. Since $\ell : C; \rho' \triangleright_{\ell} C, \rho'$, we finish by $(\mathbb{R}_{-}\mathbb{R}EV)/(\mathbb{E}_{-}\mathbb{R}ED)$.
- Case $A = \langle \rho \rangle$: By case analysis on ρ . Note that $\Sigma; \emptyset \vdash \rho : \mathsf{R}$ since $\Sigma; \emptyset \vdash \langle \rho \rangle : \mathsf{T}$.

Case $\rho = X, \iota, A' \to B', \forall X: K. A', [\rho'], \text{ and } \langle \rho' \rangle$: Contradictory with $\Sigma; \emptyset \vdash \rho : \mathsf{R}$.

Case $\rho = \alpha$: By (E_VIDNAME)/(E_RED).

- Case $\rho = \star$: By Lemma 33, $v = v' : \langle \gamma' \rangle \stackrel{q}{\Rightarrow} \langle \star \rangle$ for some v', γ' , and q. We have $\langle \gamma' \rangle \simeq \langle \star \rangle$ by (CE_DYNR)/(CE_VARIANT). Thus, we finish by (R_VFROMDYN)/(E_RED).
- Case $\rho = \cdot$: By Lemma 34.

Case $\rho = \ell : C; \rho'$: By Lemma 33, there are two cases to be considered.

If $v = \ell v'$ for some v', then we finish by $(R_VREVINJ)/(E_RED)$.

Otherwise, if $v = \uparrow \langle \ell : C \rangle v'$ for some v', then we finish by (R_VREVLIFT)(E_RED).

Case $A = \cdot$ and $\ell : B; \rho$: Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.

Case (CE_DYNL): We have $B = \star$. By Lemma 33, $v = v' : G \stackrel{q}{\Rightarrow} \star$ for some v', G, and q. By case analysis on A.

- Case A = H: By (R_GROUND)/(E_RED) or (R_BLAME)/(E_RED).
- Case A = X: Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.
- Case $A = \star$: By (R_IDDYN)/(E_RED).
- Case $A = A_1 \rightarrow A_2$ $(A_1 \rightarrow A_2 \neq \star \rightarrow \star)$: Since $A_1 \rightarrow A_2 \simeq \star \rightarrow \star$, we finish by $(R_FROMDYN)/(E_RED)$.
- Case $A = \forall X: K. A':$ By (R_GEN)/(E_RED).
- Case $A = [\rho] \ (\rho \neq \star)$: Since $[\rho] \simeq [\star]$, we finish by $(R_FROMDYN)/(E_RED)$.
- Case $A = \langle \rho \rangle$ ($\rho \neq \star$): Since $\langle \rho \rangle \simeq \langle \star \rangle$, we finish by (R_FROMDYN)/(E_RED).
- Case A = : Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.
- Case $A = \ell : C; \rho$: Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.
- Case (CE_DYNR): We have $A = \star$.
 - If $B = \star$, then we finish by $(R_{DDYN})/(E_{RED})$.
 - If $B = \forall X: K. B'$, then we finish by $(R_{INST})/(E_{RED})$.

Otherwise, by Lemma 46, there exists some G such that $B \simeq G$. If B = G, then $e = v : G \stackrel{p}{\Rightarrow} \star$ is a value. Otherwise, we finish by $(R_TODYN)/(E_RED)$.

- Case (CE_FUN): By $(R_WRAP)/(E_RED)$.
- Case (CE_POLY): By $(R_CONTENT)/(E_RED)$.
- Case (CE_POLYL): By $(R_{INST})/(E_{RED})$.
- Case (CE_POLYR): By $(R_GEN)/(E_RED)$.
- Case (CE_RECORD): We have $A = [\rho_1]$ and $B = [\rho_2]$ and $\rho_2 \simeq \rho_1$ for some ρ_1 and ρ_2 . Since $\Sigma; \emptyset \vdash [\rho_1] : \mathsf{T}$, we have $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$. By Lemma 50, $\Sigma; \emptyset \vdash [\rho_2] : \mathsf{T}$, so $\Sigma; \emptyset \vdash \rho_2 : \mathsf{R}$.
 - If $\rho_2 = \star$, then we finish by Lemma 33, and (R_RFROMDYN)/(E_RED) or (R_RBLAME)/(E_RED).

In what follows, we suppose $\rho_2 \neq \star$. By case analysis on ρ_1 .

Case $\rho_1 = \star$: Since $\rho_2 \neq \star$ and $\Sigma; \emptyset \vdash \rho_2 : \mathsf{R}, grow(\rho_2)$ is defined and is a ground row type by Lemma 47. If $grow(\rho_2) = \rho_2$, then $v : [\rho_2] \stackrel{p}{\Rightarrow} [\star]$ is a value.

Otherwise, if $grow(\rho_2) \neq \rho_2$, we finish by $(R_RTODYN)/(E_RED)$.

Case $\rho_1 = \alpha$: Since $\rho_2 \simeq \alpha$ and $\rho_2 \neq \star$, we have $\rho_2 = \alpha$ by Lemmas 6 and 7. We finish by (R_RIDNAME)/(E_RED). Case $\rho_1 = \cdot$: Since $\rho_2 \simeq \cdot$ and $\rho_2 \neq \star$, we have $\rho_2 = \cdot$ by Lemmas 6 and 8. We finish by (R_REMP)/(E_RED).

Case $\rho_1 = \ell : C_1; \rho'_1$: By Lemmas 6 and 9, $\rho_2 \triangleright_{\ell} C_2, \rho'_2$ and $C_2 \simeq C_1$ and $\rho'_2 \simeq \rho'_1$ for some C_2 and ρ'_2 .

If $\ell \in dom(\rho_2)$, then there exist some ρ_{21} and ρ_{22} such that

- $\rho_2 = \rho_{21} \odot (\ell : C_2; \cdot) \odot \rho_{22},$
- $\rho'_2 = \rho_{21} \odot \rho_{22}$, and
- $\ell \notin dom(\rho_{21}).$

Since $\Sigma; \emptyset \vdash v : [\rho_2]$, there exist some v_1 and v_2 such that $v \triangleright_{\ell} v_1, v_2$ by Lemmas 33 and 38. Thus, we finish by $(R_RREV)/(E_RED)$.

If $\ell \notin dom(\rho_2)$, then we finish by $(R_RCON)/(E_RED)$.

Case $\rho_1 = X, \iota, C \to D, \forall X: K. C, [\rho'], \text{ and } \langle \rho' \rangle$: Contradictory with $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$.

Case (CE_VARIANT): We have $A = \langle \rho_1 \rangle$ and $B = \langle \rho_2 \rangle$ and $\rho_2 \simeq \rho_1$ for some ρ_1 and ρ_2 . Since $\Sigma; \emptyset \vdash \langle \rho_1 \rangle : \mathsf{T}$, we have $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$. By Lemma 50, $\Sigma; \emptyset \vdash \langle \rho_2 \rangle : \mathsf{T}$, so $\Sigma; \emptyset \vdash \rho_2 : \mathsf{R}$. By case analysis on ρ_2 .

Case $\rho_2 = \star$: We finish by Lemma 33, and (R_VFROMDYN)/(E_RED) or (R_VBLAME)(E_RED).

Case $\rho_2 = \alpha$: Since $\rho_2 \simeq \rho_1$, we have $\rho_1 = \alpha$ or $\rho_1 = \star$ by Lemma 7.

If $\rho_1 = \star$, then $v : [\alpha] \stackrel{p}{\Rightarrow} [\star]$ is a value.

Otherwise, if $\rho_1 = \alpha$, then we finish by (R_VIDNAME)/(E_RED).

Case $\rho_2 = \cdot$: Contradictory by Lemma 34.

- Case $\rho_2 = \ell : C_2; \rho'_2$: If $\ell \in dom(\rho_1)$, then we finish by Lemma 33, and (R_VREVINJ)/(E_RED) or (R_VREVLIFT)/(E_RED) Otherwise, suppose $\ell \notin dom(\rho_1)$. Since $\Sigma; \emptyset \vdash \rho_2 : \mathbb{R}$ and $\rho_2 \neq \star$, it is found that $grow(\rho_2)$ is defined. If $\rho_1 = \star$ and $grow(\rho_2) = \rho_2$, then $v : [\rho_2] \stackrel{p}{\Rightarrow} [\star]$ is a value. If $\rho_1 = \star$ and $grow(\rho_2) \neq \rho_2$, then we finish by (R_VToDyN)/(E_RED).
- Otherwise, suppose $\rho_1 \neq \star$. Then, we finish by Lemma 33, and (R_VCONINJ)/(E_RED) or (R_VCONLIFT)/(E_RED). Case $\rho_2 = X$, ι , $C \to D$, $\forall X: K. C$, $[\rho']$, and $\langle \rho' \rangle$: Contradictory with $\Sigma; \emptyset \vdash \rho_2 : \mathsf{R}$.
- Case (CE_CONSL): We have $B = \ell : C_2; \rho_2$ for some ℓ , C_2 , and ρ_2 . Since $\Sigma; \emptyset \vdash e' : B$, we have $\Sigma; \emptyset \vdash B : \mathsf{T}$ by Lemma 50. However, there is a contradiction that $\Sigma; \emptyset \vdash \ell : C_2; \rho_2 : \mathsf{T}$ does not hold.

Case (CE_CONSR): We have $A = \ell: C_1; \rho_1$ for some ℓ, C_1 , and ρ_1 . However, it is contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.

Case (T_CONV): We have $\Sigma; \emptyset \vdash e' : B \stackrel{\Phi}{\Rightarrow} A : A$ and, by inversion, $\Sigma; \emptyset \vdash e' : B$ and $\Sigma \vdash B \prec^{\Phi} A$ and $\Sigma; \emptyset \vdash A : \mathsf{T}$. If $e' = \mathsf{blame} q$ for some q, or $\Sigma \mid e' \longrightarrow \Sigma' \mid e''$ for some Σ' and e'', then we finish by Lemma 45.

In what follows, we can suppose that e' = v for some v by the IH. By case analysis on $\Sigma \vdash B \prec^{\Phi} A$.

- Case (Cv_Dyn): By (R_CIDDyn)/(E_RED).
- Case (CV_TYVAR): Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.
- Case (CV_TYNAME): By (R_CIDNAME)/(E_RED).
- Case (CV_REVEAL): We have $B = \alpha$ and $\Phi = +\alpha$ and $\Sigma(\alpha) = A$ for some α . By Lemma 33, v = v': $C \stackrel{\neg \alpha}{\Rightarrow} \alpha$ for some C. Since $\Sigma; \emptyset \vdash v : B$, we have $\Sigma(\alpha) = C$ by Lemma 42, so A = C. We finish by (R_CNAME)/(E_RED).
- Case (CV_CONCEAL): $v: B \stackrel{\Phi}{\Rightarrow} A$ is a value.
- Case (Cv_BASE): By ($R_CIDBASE$)/(E_RED).
- Case (Cv_Fun): By (R_CFun)/(E_Red).
- Case (Cv_Poly): By ($R_CForall$)/(E_Red).
- Case (CV_RECORD): We have $B = [\rho_2]$ and $A = [\rho_1]$ and $\Sigma \vdash \rho_2 \prec^{\Phi} \rho_1$ for some ρ_1 and ρ_2 . Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, we have $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$. By case analysis on $\Sigma \vdash \rho_2 \prec^{\Phi} \rho_1$.
 - Case (Cv_Dyn): By ($R_CRIDDyn$)/(E_RED).
 - Case (Cv_TyNAME): By ($R_CRIDNAME$)/(E_RED).
 - Case (CV_REVEAL): We have $\rho_2 = \alpha$ and $\Phi = +\alpha$ and $\Sigma(\alpha) = \rho_1$ for some α . By Lemma 33, v = v': $[\rho'] \stackrel{-\alpha}{\Rightarrow} [\alpha]$ for some v' and ρ' . By Lemma 43, $\Sigma(\alpha) = \rho'$, so $\rho' = \rho$. We finish by (R_CRNAME)/(E_RED).
 - Case (CV_CONCEAL): $v: B \stackrel{\Phi}{\Rightarrow} A$ is a value.
 - Case (Cv_REMP): By (R_CREMP)/(E_RED).
 - Case (Cv_CONS): By (R_CREXT)/(E_RED).
 - Case (Cv_TyVAR), (Cv_BASE), (Cv_FUN), (Cv_POLY), (Cv_RECORD), and (Cv_VARIANT): Contradictory with $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$.
- Case (CV_VARIANT): We have $B = \langle \rho_2 \rangle$ and $A = \langle \rho_1 \rangle$ and $\Sigma \vdash \rho_2 \prec^{\Phi} \rho_1$ for some ρ_1 and ρ_2 . Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, we have $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$. By case analysis on $\Sigma \vdash \rho_2 \prec^{\Phi} \rho_1$.
 - Case (Cv_Dyn): By ($R_CVIDDyn$)/(E_ReD).
 - Case (CV_TYNAME): By (R_CVIDNAME)/(E_RED).
 - Case (CV_REVEAL): We have $\rho_2 = \alpha$ and $\Phi = +\alpha$ and $\Sigma(\alpha) = \rho_1$ for some α . By Lemma 33, v = v': $\langle \rho' \rangle \stackrel{=}{\Rightarrow} \langle \alpha \rangle$ for some v' and ρ' . By Lemma 44, $\Sigma(\alpha) = \rho'$, so $\rho' = \rho_1$. We finish by (R_CVNAME)/(E_RED).
 - Case (CV_CONCEAL): $v: B \stackrel{\Phi}{\Rightarrow} A$ is a value.
 - Case (CV_REMP): We have $\Sigma; \emptyset \vdash v : [\cdot]$, which is contradictory by Lemma 34.
 - Case (Cv_CONS): By (R_CVAR)/(E_RED).
 - Case (Cv_TyVAR), (Cv_BASE), (Cv_Fun), (Cv_POLY), (Cv_RECORD), and (Cv_VARIANT): Contradictory with $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$.

Case (CV_REMP) and (CV_CONS): Contradictory with $\Sigma; \emptyset \vdash A : \mathsf{T}$.

Lemma 52. If Σ ; $\Gamma \vdash A$: T and $A \simeq G$, then Σ ; $\Gamma \vdash G$: T .

Proof. By case analysis on G.

Case $G = \iota, \star \to \star, [\star], \text{ and } \langle \star \rangle$: Obvious.

Case $G = \alpha$: Since $A \simeq \alpha$, we have $A = \alpha$ or $A = \star$ by Lemmas 6 and 7. In either case, $\Sigma; \Gamma \vdash A : \mathsf{T}$.

Lemma 53. If $\Sigma; \emptyset \vdash v : [\rho]$ and $v \triangleright_{\ell} v_1, v_2$, then there exist some ρ_1, ρ_2 , and A such that $\rho = \rho_1 \odot (\ell : A; \cdot) \odot \rho_2$ and $\ell \notin dom(\rho_1)$ and $\Sigma; \emptyset \vdash v_1 : A$ and $\Sigma; \emptyset \vdash v_2 : [\rho_1 \odot \rho_2]$.

Proof. By induction on the derivation of $v \triangleright_{\ell} v_1, v_2$.

Case $\{\ell = v_1; v_2\} \triangleright_{\ell} v_1, v_2$: We have $v = \{\ell = v_1; v_2\}$. Since $\Sigma; \emptyset \vdash v : [\rho]$, there exist A and ρ' such that $\rho = \ell : A; [\rho']$ and $\Sigma; \emptyset \vdash v_1 : A$ and $\Sigma; \emptyset \vdash v_2 : [\rho']$.

- Case $\{\ell' = v'_1; v'_2\} \triangleright_{\ell} v_1, \{\ell' = v'_1; v''_2\}$ where $\ell \neq \ell'$ and $v'_2 \triangleright_{\ell} v_1, v''_2$: We have $v = \{\ell' = v'_1; v'_2\}$ and $v_2 = \{\ell' = v'_1; v''_2\}$. Since $\Sigma; \emptyset \vdash v : [\rho]$, there exist some B and ρ' such that $\Sigma; \emptyset \vdash v'_1 : B$ and $\Sigma; \emptyset \vdash v'_2 : [\rho']$ and $\rho = \ell : B; \rho'$. Since $\Sigma; \emptyset \vdash v'_2 : [\rho']$ and $v'_2 \triangleright_{\ell} v_1, v''_2$, there exist some ρ'_1, ρ'_2 , and A such that
 - $\rho' = \rho'_1 \odot (\ell : A; \cdot) \odot \rho'_2$,
 - $\ell \notin dom(\rho_1'),$
 - $\Sigma; \emptyset \vdash v_1 : A$, and
 - $\Sigma; \emptyset \vdash v_2'' : [\rho_1' \odot \rho_2']$

by the IH. Since $\Sigma; \emptyset \vdash v'_1 : B$ and $\Sigma; \emptyset \vdash v''_2 : [\rho'_1 \odot \rho'_2]$, we have $\Sigma; \emptyset \vdash \{\ell' = v'_1; v''_2\} : [\ell' : B; (\rho'_1 \odot \rho'_2)]$ by (T_REXT).

Lemma 54. If Σ ; $\Gamma \vdash e : \langle \rho \rangle$ and Σ ; $\Gamma \vdash \rho' : \mathsf{R}$ and $\rho' \odot \rho$ is defined, then Σ ; $\Gamma \vdash \uparrow \rho' e : \langle \rho' \odot \rho \rangle$.

Proof. By induction on ρ' .

Case $\rho' = \cdot$: Trivial since $\uparrow \cdot e = e$.

Case $\rho' = \ell : A; \rho''$: We have $\uparrow \rho' e = \uparrow \langle \ell : A \rangle (\uparrow \rho'' e)$. Since $\Sigma; \Gamma \vdash \rho' : \mathsf{R}$, we have $\Sigma; \Gamma \vdash A : \mathsf{T}$ and $\Sigma; \Gamma \vdash \rho'' : \mathsf{R}$. By the IH, $\Sigma; \Gamma \vdash \uparrow \rho'' e : \langle \rho'' \odot \rho \rangle$. By $(\mathsf{T}_{\mathsf{V}}\mathsf{V}_{\mathsf{IFT}}), \Sigma; \Gamma \vdash \uparrow \langle \ell : A \rangle (\uparrow \rho'' e) : \langle \ell : A; \rho'' \odot \rho \rangle$.

Case otherwise: Contradictory with $\rho' \odot \rho$ is defined.

Lemma 55. If $\Sigma; \Gamma \vdash e : \langle \rho_1 \odot \rho_2 \rangle$ and $\Sigma; \Gamma \vdash A : \mathsf{T}$, then $\Sigma; \Gamma \vdash \downarrow^{\rho_1}_{\langle \ell : A \rangle} e : \langle \rho_1 \odot (\ell : A; \cdot) \odot \rho_2 \rangle$.

Proof. By induction on ρ_1 .

Case
$$\rho_1 = \ell' : B; \rho'_1$$
: We have $\downarrow_{\langle \ell : A \rangle}^{\rho_1} e = \mathsf{case} \, e \, \mathsf{with} \, \langle \ell' \, x \to \ell' \, x; \, y \to \uparrow \langle \ell' : B \rangle \, (\downarrow_{\langle \ell : A \rangle}^{\rho'_1} y) \rangle$. It suffices to show that

$$\Sigma; \Gamma \vdash \mathsf{case} \ e \ \mathsf{with} \ \langle \ell' \ x \to \ell' \ x; \ y \to \uparrow \langle \ell' : B \rangle \ (\downarrow_{\langle \ell: A \rangle}^{\rho_1'} y) \rangle : \langle \ell' : B; \rho_1' \odot (\ell : A; \cdot) \odot \rho_2 \rangle$$

Since $\Sigma; \Gamma, y: \langle \rho'_1 \odot \rho_2 \rangle \vdash A : \mathsf{T}$ by Lemmas 50 and 24, we have

$$\Sigma; \Gamma, y: \langle \rho'_1 \odot \rho_2 \rangle \vdash \downarrow_{\langle \ell: A \rangle}^{\rho'_1} y: \langle \rho'_1 \odot (\ell:A; \cdot) \odot \rho_2 \rangle$$

by the IH. Thus, by (T_VLIFT),

$$\Sigma; \Gamma, y: \langle \rho'_1 \odot \rho_2 \rangle \vdash \uparrow \langle \ell' : B \rangle \left(\downarrow_{\langle \ell: A \rangle}^{\rho'_1} y \right) : \langle \ell' : B; \rho'_1 \odot \left(\ell : A; \cdot \right) \odot \rho_2 \rangle$$

(note that $\Sigma; \Gamma, y: \langle \rho'_1 \odot \rho_2 \rangle \vdash B : \mathsf{T}$ by Lemmas 50 and 24). Since $\Sigma; \Gamma, x: B \vdash \ell' x : \langle \ell' : B; \rho'_1 \odot (\ell : A; \cdot) \odot \rho_2 \rangle$ by (T_VINJ) (note that $\Sigma; \Gamma, x: B \vdash \rho'_1 \odot (\ell : A; \cdot) \odot \rho_2 : \mathsf{R}$ by Lemma 24), and $\Sigma; \Gamma \vdash e : \langle \ell' : B; \rho'_1 \odot \rho_2 \rangle$, we have

$$\Sigma; \Gamma \vdash \mathsf{case} \ e \ \mathsf{with} \ \langle \ell' \ x \to \ell' \ x; y \to \uparrow \langle \ell' : B \rangle \ (\downarrow_{\langle \ell : A \rangle}^{\rho_1'} y) \rangle : \langle \ell' : B; \rho_1' \odot (\ell : A; \cdot) \odot \rho_2 \rangle$$

by (T_VCASE) .

Case $\rho_1 = :$ We have $\downarrow_{\langle \ell:A \rangle}^{\rho_1} e = \uparrow \langle \ell:A \rangle e$. It suffices to show that $\Sigma; \Gamma \vdash \uparrow \langle \ell:A \rangle e : \langle \ell:A; \rho_2 \rangle$, which is shown by (T_VLIFT).

Case otherwise: Contradictory with the fact that $\rho_1 \odot \rho_2$ is defined.

Lemma 56 (Convertibility inversion: function types). If $\Sigma \vdash A_1 \to B_1 \prec^{\Phi} A_2 \to B_2$, then $\Sigma \vdash A_2 \prec^{\overline{\Phi}} A_1$ and $\Sigma \vdash B_1 \prec^{\Phi} B_2$.

Proof. Straightforward by case analysis on $\Sigma \vdash A_1 \to B_1 \prec^{\Phi} A_2 \to B_2$.

Lemma 57 (Convertibility inversion: universal types). If $\Sigma \vdash \forall X:K. A \prec^{\Phi} \forall X:K. B$, then $\Sigma \vdash A \prec^{\Phi} B$.

Proof. Straightforward by case analysis on $\Sigma \vdash \forall X: K. A \prec^{\Phi} \forall X: K. B$.

Lemma 58 (Convertibility inversion: record types). If $\Sigma \vdash [\rho_1] \prec^{\Phi} [\rho_2]$, then $\Sigma \vdash \rho_1 \prec^{\Phi} \rho_2$.

Proof. Straightforward by case analysis on $\Sigma \vdash [\rho_1] \prec^{\Phi} [\rho_2]$.

Lemma 59 (Convertibility inversion: variant types). If $\Sigma \vdash \langle \rho_1 \rangle \prec^{\Phi} \langle \rho_2 \rangle$, then $\Sigma \vdash \rho_1 \prec^{\Phi} \rho_2$.

Proof. Straightforward by case analysis on $\Sigma \vdash \langle \rho_1 \rangle \prec^{\Phi} \langle \rho_2 \rangle$.

Lemma 60 (Convertibility inversion: row cons). If $\Sigma \vdash \ell : A; \rho_1 \prec^{\Phi} \ell : B; \rho_2$, then $\Sigma \vdash A \prec^{\Phi} B$ and $\Sigma \vdash \rho_1 \prec^{\Phi} \rho_2$.

Proof. Straightforward by case analysis on $\Sigma \vdash \ell : A; \rho_1 \prec^{\Phi} \ell : B; \rho_2$.

Lemma 61 (Subject reduction on reduction). If $\Sigma; \emptyset \vdash e : A$ and $e \rightsquigarrow e'$, then $\Sigma; \emptyset \vdash e' : A$.

Proof. By case analysis on the derivation of $\Sigma; \emptyset \vdash e : A$.

- Case (T_VAR), (T_CONST), (T_LAM), (T_TLAM), (T_REMP), (T_BLAME): Contradictory; there are no reduction rules to apply.
- Case (T_TAPP), (T_REXT), (T_VINJ), (T_VLIFT): Contradictory; there are no applicable reduction rules.
- Case (T_APP): We have $e = e_1 e_2$ and, by inversion, $\Sigma; \emptyset \vdash e_1 : B \to A$ and $\Sigma; \emptyset \vdash e_2 : B$ for some e_1, e_2 , and B. By case analysis on the reduction rules applicable to $e_1 e_2$.
 - Case (R_CONS): We have $e_1 = \kappa_1$ and $e_2 = \kappa_2$ and $e' = \zeta(\kappa_1, \kappa_2)$ for some κ_1 and κ_2 . By Lemma 35, $ty(\kappa_1) = B \to A$. By the assumptions about constants, $ty(\zeta(\kappa_1, \kappa_2)) = A$. Thus, $\Sigma; \emptyset \vdash \zeta(\kappa_1, \kappa_2) : A$ by (T_CONST).
 - Case (R_BETA): By Lemma 33, $e_1 = \lambda x : B \cdot e'_1$ and $e_2 = v_2$ and $e' = e'_1[v_2/x]$ for some x, e'_1 , and v_2 . By Lemma 36, $\Sigma; x: B \vdash e'_1 : A$. Since $\Sigma; \emptyset \vdash v_2 : B$, we have $\Sigma; \emptyset \vdash e'_1[v_2/x] : A$ by Lemma 32.
- Case (T_RLET): We have $e = \text{let} \{\ell = x; y\} = e_1 \text{ in } e_2$ and, by inversion, $\Sigma; \emptyset \vdash e_1 : [\ell : B; \rho]$ and $\Sigma; x:B, y:[\rho] \vdash e_2 : A$. The reduction rules applicable to e is only (R_RECORD). We can suppose that $e_1 = \{\ell = v_1; v_2\}$ and $e' = e_2[v_1/x, v_2/y]$. By Lemma 38, $\Sigma; \emptyset \vdash v_1 : B$ and $\Sigma; \emptyset \vdash v_2 : [\rho]$. Since $\Sigma; x:B, y:[\rho] \vdash e_2 : A$, we have $\Sigma; \emptyset \vdash e_2[v_1/x, v_2/y] : A$ by Lemma 32.

- Case (T_VCASE): We have $e = \operatorname{case} e_0$ with $\langle \ell x \to e_1; y \to e_2 \rangle$ and, by inversion, $\Sigma; \emptyset \vdash e_0 : \langle \ell : B; \rho \rangle$ and $\Sigma; x: B \vdash e_1 : A$ and $\Sigma; y: \langle \rho \rangle \vdash e_2 : A$ for some $e_0, e_1, e_2, \ell, x, y, B$, and ρ . By case analysis on the reduction rules applicable to e.
 - Case (R_CASEL): We can suppose that $e_0 = \ell v$ and $e' = e_1[v/x]$ for some v. By Lemma 39, $\Sigma; \emptyset \vdash v : B$. Since $\Sigma; x: B \vdash e_1 : A$, we have $\Sigma; \emptyset \vdash e_1[v/x] : A$ by Lemma 32.
 - Case (R_CASER): We can suppose that $e_0 = \uparrow \langle \ell : C \rangle v$ and $e' = e_2[v/y]$ for some C and v. By Lemma 40, $\Sigma; \emptyset \vdash v : \langle \rho \rangle$. Since $\Sigma; y: \langle \rho \rangle \vdash e_2 : A$, we have $\Sigma; \emptyset \vdash e_2[v/y] : A$ by Lemma 32.
- Case (T_CAST): We have $e = e_0 : B \xrightarrow{p} A$ and, by inversion, $\Sigma; \emptyset \vdash e_0 : B$ and $B \simeq A$ and $\Sigma; \emptyset \vdash A : T$ for some e_0, B , and p. Besides, we have $\Sigma; \emptyset \vdash B : T$ by Lemma 50. By case analysis on the reduction rules applicable to e.
 - Case (R_IDDYN), (R_IDBASE), (R_IDNAME), (R_REMP), (R_RIDNAME), and (R_VIDNAME): We have B = A and $e_0 = v$ and e' = v for some v. Since $\Sigma; \emptyset \vdash e_0 : B$, we have $\Sigma; \emptyset \vdash v : A$, which is what we have to show.
 - Case (R_BLAME), (R_RBLAME), (R_VBLAME): Obvious by (T_BLAME) since e' = blame q for some q.
 - Case (R_TODYN): We have $e_0 = v$ and $A = \star$ and $e' = v : B \stackrel{p}{\Rightarrow} G \stackrel{p}{\Rightarrow} \star$ for some v and G such that $B \simeq G$. Since $\Sigma; \emptyset \vdash v : B$ and $B \simeq G$, we have $\Sigma; \emptyset \vdash G : \mathsf{T}$ by Lemma 52. Thus, $\Sigma; \emptyset \vdash v : B \stackrel{p}{\Rightarrow} G \stackrel{p}{\Rightarrow} \star : \star$ by (T_CAST).
 - Case (R_FROMDYN): We have $e_0 = v$ and $B = \star$ and $e' = v : \star \stackrel{p}{\Rightarrow} G \stackrel{p}{\Rightarrow} A$ for some v and G such that $A \simeq G$. Since $\Sigma; \emptyset \vdash A : \mathsf{T}$ and $A \simeq G$, we have $\Sigma; \emptyset \vdash G : \mathsf{T}$ by Lemma 52. Since $\Sigma; \emptyset \vdash v : \star$, we have $\Sigma; \emptyset \vdash v : \star \stackrel{p}{\Rightarrow} G \stackrel{p}{\Rightarrow} A : A$ by (T_CAST) (note that $G \simeq A$ by Lemma 6).
 - Case (R_GROUND): We have $e_0 = v : G \xrightarrow{p} \star$ and $B = \star$ and A = G and e' = v for some v and G. Since $\Sigma; \emptyset \vdash e_0 : B$, i.e., $\Sigma; \emptyset \vdash v : G \xrightarrow{p} \star : \star$, we have $\Sigma; \emptyset \vdash v : G$ by Lemma 41. Thus, we have $\Sigma; \emptyset \vdash e' : A$.
 - Case (R_WRAP): We have $e_0 = v$ and $B = B_1 \rightarrow B_2$ and $A = A_1 \rightarrow A_2$ and $e' = \lambda x: A_1.v (x : A_1 \xrightarrow{\overline{P}} B_1) : B_2 \xrightarrow{p} A_2$. Since $B_1 \rightarrow B_2 \simeq A_1 \rightarrow A_2$, we have $A_1 \simeq B_1$ and $B_2 \simeq A_2$ by Lemmas 10 and 6. Besides, we have $\Sigma; \emptyset \vdash A_1 : \mathsf{T}, \Sigma; \emptyset \vdash A_2 : \mathsf{T}, \Sigma; \emptyset \vdash B_1 : \mathsf{T}, \text{ and } \Sigma; \emptyset \vdash B_2 : \mathsf{T}$ since $\Sigma; \emptyset \vdash A_1 \rightarrow A_2 : \mathsf{T}$ and $\Sigma; \emptyset \vdash B_1 : \mathsf{T}$, and $\Sigma; \emptyset \vdash B_2 : \mathsf{T}$ since $\Sigma; \emptyset \vdash A_1 \rightarrow A_2 : \mathsf{T}$ and $\Sigma; \emptyset \vdash B_1 : \mathsf{T}$. Thus, since $\Sigma; x: A_1 \vdash v : B_1 \rightarrow B_2$ by Lemma 24, we have $\Sigma; \emptyset \vdash \lambda x: A_1.v (x : A_1 \xrightarrow{\overline{P}} B_1) : B_2 \xrightarrow{p} A_2 : A_1 \rightarrow A_2$.
 - Case (R_CONTENT): We have $e_0 = v$ and $B = \forall X:K.B'$ and $A = \forall X:K.A'$ and $e' = \Lambda X:K.(v X : B' \Rightarrow A') :: A'$ for some v, X, K, A', and B'. Since $\forall X:K.B' \simeq \forall X:K.A'$, we have $B' \simeq A'$ by Lemma 11. Since $\Sigma; \emptyset \vdash \forall X:K.A' : \mathsf{T}$, we have $\Sigma; X:K \vdash A' : \mathsf{T}$. Thus, since $\Sigma; X:K \vdash v : \forall X:K.B'$ by Lemma 24, we have $\Sigma; \emptyset \vdash \Lambda X:K.(v X : B' \xrightarrow{\mathbb{P}} A') :: A' : \forall X:K.A'$.
 - Case (R_INST): We have $e_0 = v$ and $B = \forall X:K. B'$ and $e' = (v \star) : B'[\star/X] \stackrel{p}{\Rightarrow} A$ for some v, X, K, and B'. Besides, **QPoly** (A). Since $\Sigma; \emptyset \vdash v : \forall X:K. B'$, we have

$$\Sigma; \emptyset \vdash v \star : B'[\star/X].$$

Since **QPoly** (A) and $B \simeq A$, i.e., $\forall X:K. B' \simeq A$, we have $B' \simeq A$ and [[Xnotinftv(A)]]. Thus, by Lemma 28, $B'[\star/X] \simeq A$. By (T_CAST),

$$\Sigma; \emptyset \vdash (v \star) : B'[\star/X] \stackrel{p}{\Rightarrow} A : A.$$

Case (R_GEN): We have $e_0 = v$ and $A = \forall X:K. A'$ and $e' = \Lambda X:K.(v:B \stackrel{p}{\Rightarrow} A') :: A'$ for some v, X, K, and A'. Besides, **QPoly** (B).

Since $\Sigma; \emptyset \vdash v : B$, we have

$$\Sigma; X: K \vdash v : B$$

by Lemma 24.

Since **QPoly** (B) and $B \simeq A$, i.e., $B \simeq \forall X:K.A'$, we have $B \simeq A'$ and [[Xnotinftv(B)]] by Lemmas 6 and 12. Furthermore, $\Sigma; \emptyset \vdash \forall X:K.A' : \mathsf{T}$, we have $\Sigma; X:K \vdash A' : \mathsf{T}$. Thus, we have $\Sigma; \emptyset \vdash \Lambda X:K.(v : B \stackrel{p}{\Rightarrow} A') :: A' : \forall X:K.A'$.

- Case (R_RTODYN): We have $e_0 = v$ and $A = [\star]$ and $B = [\rho]$ and $e' = v : [\rho] \stackrel{\mathbb{P}}{\to} [grow(\rho)] \stackrel{\mathbb{P}}{\to} [\star]$ for some v and ρ such that $\rho \neq grow(\rho)$. By Lemma 48, $\rho \simeq grow(\rho)$, and therefore $[\rho] \simeq [grow(\rho)]$ by (CE_RECORD). Since $\Sigma; \emptyset \vdash v : [\rho]$ and $\Sigma; \emptyset \vdash [grow(\rho)] : T$ by Lemma 49, we have $\Sigma; \emptyset \vdash v : [\rho] \stackrel{\mathbb{P}}{\to} [grow(\rho)] \stackrel{\mathbb{P}}{\to} [\star] : [\star]$.
- Case (R_RFROMDYN): We have $e_0 = v : [\gamma] \stackrel{q}{\Rightarrow} [\star]$ and $B = [\star]$ and $A = [\rho_1]$ and $e' = v : [\gamma] \stackrel{q}{\Rightarrow} [\rho_1]$ for some v, γ, ρ_1 , and q such that $\gamma \simeq \rho_1$. Since $\gamma \simeq \rho_1$, we have $[\gamma] \simeq [\rho_1]$ by (CE_RECORD). Since $\Sigma; \emptyset \vdash e_0 : B$, i.e., $\Sigma; \emptyset \vdash v : [\gamma] \stackrel{q}{\Rightarrow} [\star] : [\star]$, we have $\Sigma; \emptyset \vdash v : [\gamma]$ by Lemma 41. Thus, we have $\Sigma; \emptyset \vdash v : [\gamma] \stackrel{q}{\Rightarrow} [\rho_1] : [\rho_1]$ by (T_CAST).

Case (R_{RREV}): We have

- $e_0 = v$,
- $A = [\ell : A'; \rho_1],$
- $B = [\rho_2]$, and
- $e' = \{\ell = (v_1 : B' \stackrel{p}{\Rightarrow} A'); v_2 : [\rho'_2] \stackrel{p}{\Rightarrow} [\rho_1]\}$

for some $v, \ell, A', B', \rho_1, \rho_2$, and ρ'_2 such that $v \triangleright_{\ell} v_1, v_2$ and $\rho_2 \triangleright_{\ell} B', \rho'_2$. Since $\Sigma; \emptyset \vdash v : B B = [\rho_2]$ and $v \triangleright_{\ell} v_1, v_2$, there exist some ρ_{21}, ρ_{22} , and B' such that

- $\rho_2 = \rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22},$
- $\rho'_2 = \rho_{21} \odot \rho_{22},$
- $\ell \notin dom(\rho_{21})$,
- $\Sigma; \emptyset \vdash v_1 : B'$, and
- $\Sigma; \emptyset \vdash v_2 : [\rho_{21} \odot \rho_{22}].$

Since $B \simeq A$, i.e., $[\rho_{21} \odot (\ell : B'; \cdot) \odot \rho_{22}] \simeq [\ell : A'; \rho_1]$, we have $B' \simeq A'$ and $\rho_{21} \odot \rho_{22} \simeq \rho_1$ by Lemmas 6, 13, and 9. Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, i.e., $\Sigma; \emptyset \vdash [\ell : A'; \rho_1] : \mathsf{T}$, we have $\Sigma; \emptyset \vdash A' : \mathsf{T}$. Thus,

$$\Sigma; \emptyset \vdash v_1 : B' \stackrel{p}{\Rightarrow} A' : A'$$

by (T_CAST) .

Since $\rho_{21} \odot \rho_{22} \simeq \rho_1$, i.e., $\rho'_2 \simeq \rho_1$, we have $[\rho'_2] \simeq [\rho_1]$ by (CE_RECORD). Since $\Sigma; \emptyset \vdash v_2 : [\rho'_2]$ (note that $\rho'_2 = \rho_{21} \odot \rho_{22}$) and $\Sigma; \emptyset \vdash [\rho_1] : \mathsf{T}$ (from $\Sigma; \emptyset \vdash A : \mathsf{T}$), we have

$$\Sigma; \emptyset \vdash v_2 : [\rho'_2] \stackrel{p}{\Rightarrow} [\rho_1] : [\rho_1]$$

by (T_CAST). Thus, by (T_REXT),

$$\Sigma; \emptyset \vdash \{\ell = (v_1 : B' \xrightarrow{p} A'); v_2 : [\rho'_2] \xrightarrow{p} [\rho_1]\} : [\ell : A'; \rho_1].$$

Case (R_RCON): We have

- $e_0 = v$,
- $A = [\ell : A'; \rho_1],$
- $B = [\rho_2]$, and

•
$$e' = v : [\rho_2] \stackrel{\underline{p}}{\Rightarrow} [\rho_2 @ \ell : A'] \stackrel{\underline{p}}{\Rightarrow} [\ell : A'; \rho_1]$$

for some $v, \ell, A', \rho_1, \rho_2$ such that $\ell \notin dom(\rho_2)$ and $\rho_2 \neq \star$. Since $B \simeq A$, there exist some B' and ρ'_2 such that

- $\rho_2 \triangleright_\ell B', \rho'_2,$
- $B' \simeq A'$, and
- $\rho'_2 \simeq \rho_1$

by Lemmas 13, 6, and 9. Since $\ell \notin dom(\rho_2)$ and $\rho_2 \triangleright_{\ell} B', \rho'_2$, it is found that ρ_2 ends with \star and $B' = \star$ and $\rho'_2 = \rho_2$. Thus, by Lemma 19, $\rho_2 \simeq \rho_2 @ \ell : A'$. Since $\Sigma; \emptyset \vdash \rho_2 : \mathbb{R}$ and $\Sigma; \emptyset \vdash A : \mathbb{T}$, we have $\Sigma; \emptyset \vdash [\rho_2 @ \ell : A'] : \mathbb{R}$. Thus,

$$\Sigma; \emptyset \vdash v : [\rho_2] \stackrel{p}{\Rightarrow} [\rho_2 @ \ell : A'] : [\rho_2 @ \ell : A']$$

by (T_CAST) .

Since $\rho'_2 \simeq \rho_1$ and $A' \simeq A'$ (CE_REFL) and $\ell \notin dom(\rho'_2)$ (since $\ell \notin dom(\rho_2)$ and $\rho_2 = \rho'_2$), we have $\rho'_2 @ \ell : A' \simeq \ell : A'; \rho_1$ by (CE_CONSR). Thus,

$$\Sigma; \emptyset \vdash v : [\rho_2] \stackrel{p}{\Rightarrow} [\rho_2 @ \ell : A'] \stackrel{p}{\Rightarrow} [\ell : A'; \rho_1] : [\ell : A'; \rho_1]$$

by (T_CAST) .

Case (R_VTODYN): We have $e_0 = v$ and $A = \langle \star \rangle$ and $B = \langle \rho \rangle$ and $e' = v : \langle \rho \rangle \stackrel{p}{\Rightarrow} \langle grow(\rho) \rangle \stackrel{p}{\Rightarrow} \langle \star \rangle$ for some v and $\rho \rho \neq grow(\rho)$.

By Lemma 48, $\rho \simeq grow(\rho)$, and therefore $\langle \rho \rangle \simeq \langle grow(\rho) \rangle$ by (CE_VARIANT). Since $\Sigma; \emptyset \vdash v : \langle \rho \rangle$ and $\Sigma; \emptyset \vdash \langle grow(\rho) \rangle : \mathsf{T}$ by Lemma 49, we have $\Sigma; \emptyset \vdash v : \langle \rho \rangle \xrightarrow{p} \langle grow(\rho) \rangle \xrightarrow{p} \langle \star \rangle : \langle \star \rangle$.

- Case (R_VFROMDYN): We have $e_0 = v : \langle \gamma \rangle \stackrel{q}{\Rightarrow} \langle \star \rangle$ and $B = \langle \star \rangle$ and $A = \langle \rho_1 \rangle$ and $e' = v : \langle \gamma \rangle \stackrel{q}{\Rightarrow} \langle \rho_1 \rangle$ for some v, γ, ρ_1 , and q such that $\gamma \simeq \rho_1$. Since $\gamma \simeq \rho_1$, we have $\langle \gamma \rangle \simeq \langle \rho_1 \rangle$ by (CE_VARIANT). Since $\Sigma; \emptyset \vdash e_0 : B$, i.e., $\Sigma; \emptyset \vdash v : \langle \gamma \rangle \stackrel{q}{\Rightarrow} \langle \star \rangle : \langle \star \rangle$, we have $\Sigma; \emptyset \vdash v : \langle \gamma \rangle$ by Lemma 41. Thus, we have $\Sigma; \emptyset \vdash v : [\gamma] \stackrel{q}{\Rightarrow} [\rho_1] : [\rho_1]$ by (T_CAST).
- Case (R_VREVINJ): We have $e_0 = \ell v$ and $A = \langle \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12} \rangle$ and $B = \langle \ell : B'; \rho_2 \rangle$ and $e' = \uparrow \rho_{11} (\ell (v : B' \xrightarrow{\mathbb{P}} A'))$ for some $\ell, v, \rho_2, \rho_{11}, A'$, and B' such that $\ell \notin dom(\rho_{11})$. Since $\Sigma; \emptyset \vdash \ell v : \langle \ell : B'; \rho_2 \rangle$, we have $\Sigma; \emptyset \vdash v : B'$ by Lemma 39. Since $\langle \ell : B'; \rho_2 \rangle \simeq \langle \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12} \rangle$, we have $B' \simeq A'$ by Lemmas 14 and 9. Since $\Sigma; \emptyset \vdash \langle \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12} \rangle : \mathsf{T}$, we have $\Sigma; \emptyset \vdash A' : \mathsf{T}$ and $\Sigma; \emptyset \vdash \rho_{12} : \mathsf{R}$.

$$\Sigma; \emptyset \vdash \ell \left(v : B' \stackrel{p}{\Rightarrow} A' \right) : \langle \ell : A'; \rho_{12} \rangle$$

by (T_CAST) and (T_VINJ) .

Since $\Sigma; \emptyset \vdash \langle \rho_{11} \odot (\ell : A'; \cdot) \odot \rho_{12} \rangle : \mathsf{T}$, we have $\Sigma; \emptyset \vdash \rho_{11} : \mathsf{R}$. Thus, by Lemma 54,

$$\Sigma; \emptyset \vdash \uparrow \rho_{11} \left(\ell \left(v : B' \stackrel{p}{\Rightarrow} A' \right) \right) : \langle \rho_{11} \odot \left(\ell : A'; \rho_{12} \right) \rangle.$$

Case (R_VREVLIFT): We have $e_0 = \uparrow \langle \ell : C \rangle v$ and $B = \langle \ell : C; \rho_2 \rangle$ and $A = \langle \rho_1 \rangle$ and $e' = \downarrow_{\langle \ell : C \rangle}^{\rho_{11}} (v : \langle \rho_2 \rangle \stackrel{p}{\Rightarrow} \langle \rho_{11} \odot \rho_{12} \rangle)$ for some ℓ , C, v, ρ_1 , ρ_2 , ρ_{11} , and ρ_{12} sch such that $\rho_1 = \rho_{11} \odot (\ell : C; \cdot) \odot \rho_{12}$ and $\ell \notin dom(\rho_{11})$. Since $\Sigma; \emptyset \vdash e_0 : B$, i.e., $\Sigma; \emptyset \vdash \uparrow \langle \ell : C \rangle v : \langle \ell : C; \rho_2 \rangle$, we have $\Sigma; \emptyset \vdash v : \langle \rho_2 \rangle$ by Lemma 40. Since $B \simeq A$, i.e., $\langle \ell : C; \rho_2 \rangle \simeq \langle \rho_1 \rangle$, and $\rho_1 = \rho_{11} \odot (\ell : C; \cdot) \odot \rho_{12}$ and $\ell \notin dom(\rho_{11})$, we have $\rho_2 \simeq \rho_{11} \odot \rho_{12}$ by Lemmas 14 and 9.

Thus, (CE_VARIANT), $\langle \rho_2 \rangle \simeq \langle \rho_{11} \odot \rho_{12} \rangle$. Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, i.e., $\Sigma; \emptyset \vdash \langle \rho_1 \rangle : \mathsf{T}$, we have $\Sigma; \emptyset \vdash \langle \rho_{11} \odot \rho_{12} \rangle : \mathsf{T}$. Thus, by (T_CAST),

$$\Sigma; \emptyset \vdash v : \langle \rho_2 \rangle \stackrel{P}{\Rightarrow} \langle \rho_{11} \odot \rho_{12} \rangle : \langle \rho_{11} \odot \rho_{12} \rangle$$

Since $\Sigma; \emptyset \vdash B : \mathsf{T}$, i.e., $\Sigma; \emptyset \vdash \langle \ell : C; \rho_2 \rangle : \mathsf{T}$, we have $\Sigma; \emptyset \vdash C : \mathsf{T}$. Thus, by Lemma 55,

 $\Sigma; \emptyset \vdash \downarrow^{\rho_{11}}_{\langle \ell : C \rangle}(v : \langle \rho_2 \rangle \xrightarrow{p} \langle \rho_{11} \odot \rho_{12} \rangle) : \langle \rho_{11} \odot (\ell : C; \cdot) \odot \rho_{12} \rangle,$

which is what we have to show.

Case (R_VCONINJ): We have $e_0 = \ell v$ and $B = \langle \ell : B'; \rho_2 \rangle$ and $A = \langle \rho_1 \rangle$ and $e' = \uparrow \rho_1 (\ell v : \langle \ell : B'; \star \rangle \stackrel{p}{\Rightarrow} \langle \star \rangle)$ for some ℓ, v, B', ρ_1 , and ρ_2 such that $\ell \notin dom(\rho_1)$ and $\rho_1 \neq \star$.

Since $B \simeq A$, i.e., $\langle \ell : B'; \rho_2 \rangle \simeq \langle \rho_1 \rangle$. By Lemma 14, $\ell : B'; \rho_2 \simeq \rho_1$. By 9, $\rho_1 \triangleright_{\ell} A', \rho'_1$ for some A' and ρ'_1 . Since $\ell \notin dom(\rho_1), \rho_1$ ends with \star , that is, there exists some ρ''_1 such that $\rho''_1 \odot \star = \rho_1$. Since $\uparrow \rho_1 e'' = \uparrow \rho''_1 e''$ for any e'', it suffices to show that

$$\Sigma; \emptyset \vdash \uparrow \rho_1'' \left(\ell \, v : \langle \ell : B'; \star \rangle \stackrel{p}{\Rightarrow} \langle \star \rangle \right) : \langle \rho_1'' \odot \star \rangle.$$

Since $\Sigma; \emptyset \vdash e_0 : B$, i.e., $\Sigma; \emptyset \vdash \ell v : \langle \ell : B'; \rho_2 \rangle$, we have $\Sigma; \emptyset \vdash v : B'$ by Lemma 39. Thus, by (T_VINJ), $\Sigma; \emptyset \vdash \ell v : \langle \ell : B'; \star \rangle$. We have $\langle \ell : B'; \star \rangle \simeq \langle \star \rangle$ by (CE_REFL), (CE_CONSL), and (CE_VARIANT). Since $\Sigma; \emptyset \vdash \langle \star \rangle : \mathsf{R}$, we have

$$\Sigma; \emptyset \vdash \ell v : \langle \ell : B'; \star \rangle \stackrel{p}{\Rightarrow} \langle \star \rangle : \langle \star \rangle$$

by (T_CAST). Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, i.e., $\Sigma; \emptyset \vdash [\rho_1] : \mathsf{T}$, we have $\Sigma; \emptyset \vdash \rho_1'' : \mathsf{R}$. Thus, by Lemma 54,

$$\Sigma; \emptyset \vdash \uparrow \rho_1'' \left(\ell \, v : \langle \ell : B'; \star \rangle \stackrel{p}{\Rightarrow} \langle \star \rangle \right) : \langle \rho_1'' \odot \star \rangle.$$

Case (R_VCONLIFT): We have $e_0 = \uparrow \langle \ell : B' \rangle v$ and $B = \langle \ell : B'; \rho_2 \rangle$ and $A = \langle \rho_1 \rangle$ and $e' = (\downarrow_{\langle \ell : B' \rangle}^{\rho_1} (v : \langle \rho_2 \rangle \stackrel{p}{\Rightarrow} \langle \rho_1 \rangle)) : \langle \rho_1 @ \ell : B' \rangle \stackrel{p}{\Rightarrow} \langle \rho_1 \rangle$ for some ℓ, v, B', ρ_1 , and ρ_2 such that $\ell \notin dom(\rho_1)$ and $\rho_1 \neq \star$.

Since [NS; gemp| -e0 : B], i.e., $\Sigma; \emptyset \vdash \langle \ell : B' \rangle v : \langle \ell : B'; \rho_2 \rangle$, we have $\Sigma; \emptyset \vdash v : \langle \rho_2 \rangle$ by Lemma 40. Since $B \simeq A$, i.e., $\langle \ell : B'; \rho_2 \rangle \simeq \langle \rho_1 \rangle$, there exist some A' and ρ'_1 such that

- $\rho_1 \triangleright_\ell A', \rho_1',$
- $B' \simeq A'$, and
- $\rho_2 \simeq \rho_1'$
- by Lemmas 14 and 9. Since [lnotindom(r1)], it is found that
 - ρ_1 ends with \star , i.e., $\rho_1 = \rho_1'' \odot \star$ for some ρ_1'' ,
 - $A' = \star$, and
 - $\rho_1' = \rho_1.$

Thus, $\rho_2 \simeq \rho_1$, and therefore $\langle \rho_2 \rangle \simeq \langle \rho_1 \rangle$ by (CE_VARIANT). Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, i.e., $\Sigma; \emptyset \vdash \langle \rho_1 \rangle : \mathsf{T}$, we have

$$\Sigma; \emptyset \vdash v : \langle \rho_2 \rangle \stackrel{p}{\Rightarrow} \langle \rho_1 \rangle : \langle \rho_1 \rangle$$

by (T_CAST). Since $\downarrow_{\langle \ell:B' \rangle}^{\rho_1} e'' = \downarrow_{\langle \ell:B' \rangle}^{\rho''_1} e''$ for any e'', and $\Sigma; \Gamma \vdash B' : T$ from $\Sigma; \emptyset \vdash B : T$, i.e., $\Sigma; \emptyset \vdash \langle \ell:B'; \rho_2 \rangle : T$, we have

$$\Sigma; \emptyset \vdash \downarrow_{\langle \ell : B' \rangle}^{\rho_1} (v : \langle \rho_2 \rangle \xrightarrow{p} \langle \rho_1 \rangle) : \langle \rho_1'' \odot (\ell : B'; \cdot) \odot \star \rangle.$$

Since $\rho_1'' \odot (\ell : B'; \cdot) \odot \star = \rho_1 @ \ell : B'$, we have

$$\Sigma; \emptyset \vdash \downarrow_{\langle \ell : B' \rangle}^{\rho_1} (v : \langle \rho_2 \rangle \xrightarrow{p} \langle \rho_1 \rangle) : \langle \rho_1 @ \ell : B' \rangle.$$

Since $\rho_1 \simeq \rho_1$ by (CE_REFL), and ρ_1 ends with \star and $\ell \notin dom(\rho_1)$, we have $\rho_1'' \odot (\ell : B'; \cdot) \odot \star \simeq \rho_1$, i.e., $\rho_1 @ \ell : B' \simeq \rho_1$ by Lemma 19. Thus, $\langle \rho_1 @ \ell : B' \rangle \simeq \langle \rho_1 \rangle$ by (CE_VARIANT). Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, i.e., $\Sigma; \emptyset \vdash \langle \rho_1 \rangle : \mathsf{T}$, we have

$$\Sigma; \emptyset \vdash (\downarrow_{\langle \ell:B' \rangle}^{\rho_1}(v:\langle \rho_2 \rangle \xrightarrow{p} \langle \rho_1 \rangle)) : \langle \rho_1 @ \ell:B' \rangle \xrightarrow{p} \langle \rho_1 \rangle : \langle \rho_1 \rangle$$

by (T_CAST), which is what we have to show.

- Case (T_CONV): We have $e = e_0 : B \stackrel{\Phi}{\Rightarrow} A$ and, by inversion, $\Sigma; \emptyset \vdash e_0 : B$ and $\Sigma; \emptyset \vdash A : \mathsf{T}$ and $\Sigma \vdash B \prec^{\Phi} A$ for some e_0, B , and Φ . Besides, we have $\Sigma; \emptyset \vdash B : \mathsf{T}$ by Lemma 50. By case analysis on the reduction rules applicable to e.
 - Case (R_CNAME), (R_CRNAME), and (R_CVNAME): We have $e_0 = v : A \stackrel{\neg \alpha}{\Rightarrow} B$ and $\Phi = +\alpha$ and e' = v for some v and α . Since $\Sigma; \emptyset \vdash e_0 : B$, i.e., $\Sigma; \emptyset \vdash v : A \stackrel{\neg \alpha}{\Rightarrow} B : B$, we have $\Sigma; \emptyset \vdash v : A$ by Lemma 42, 43, or 44. This is what we have to show.
 - Case (R_CIDDYN), (R_CIDNAME), (R_CIDBASE), (R_CREMP), (R_CRIDDYN), (R_CRIDNAME), (R_CVIDDYN), (
 - Case (R_CFUN): We have $e_0 = v$ and $B = B_1 \to B_2$ and $A = A_1 \to A_2$ and $e' = \lambda x: A_1.v (x : A_1 \stackrel{\overline{\Phi}}{\Rightarrow} B_1) : B_2 \stackrel{\Phi}{\Rightarrow} A_2$ for some v, A_1, A_2, B_1, B_2 , and x. Since $\Sigma \vdash B \prec^{\Phi} A$, i.e., $\Sigma \vdash B_1 \to B_2 \prec^{\Phi} A_1 \to A_2$, we have $\Sigma \vdash A_1 \prec^{\overline{\Phi}} B_1$ and $\Sigma \vdash B_2 \prec^{\Phi} A_2$ by Lemma 56. Since $\Sigma; \emptyset \vdash A_1 \to A_2$: T and $\Sigma; \emptyset \vdash B_1 \to B_2 : \mathsf{T}$, we have $\Sigma; \emptyset \vdash A_1 : \mathsf{T}$ and $\Sigma; \emptyset \vdash A_2 : \mathsf{T}$ and $\Sigma; \emptyset \vdash B_2 : \mathsf{T}$. Thus, we have $\Sigma; x: A_1 \vdash x : A_1 \stackrel{\overline{\Phi}}{\Rightarrow} B_1 : B_1$ by (T_CONV). Since $\Sigma; x: A_1 \vdash v : B_1 \to B_2$ by Lemma 24, we have

$$\Sigma; x: A_1 \vdash v (x: A_1 \stackrel{\overline{\Phi}}{\Rightarrow} B_1) : B_2 \stackrel{\Phi}{\Rightarrow} A_2: A_2$$

by (T_APP) and (T_CONV) . Thus,

$$\Sigma; \emptyset \vdash \lambda x: A_1. v \left(x: A_1 \stackrel{\Phi}{\Rightarrow} B_1 \right) : B_2 \stackrel{\Phi}{\Rightarrow} A_2: A_1 \to A_2$$

by (T_LAM) .

Case (R_CFORALL): We have $e_0 = v$ and $B = \forall X:K.B'$ and $A = \forall X:K.A'$ and $e' = \Lambda X:K.(v x : B' \stackrel{\Phi}{\Rightarrow} A') :: A'$ for some v, X, K, A', B', and x. Since $\Sigma \vdash B \prec^{\Phi} A$, i.e., $\Sigma \vdash \forall X:K.B' \prec^{\Phi} \forall X:K.A'$, we have $\Sigma \vdash B' \prec^{\Phi} A'$ by Lemma 57. Since $\Sigma; \emptyset \vdash \forall X:K.A' : \mathsf{T}$ and $\Sigma; \emptyset \vdash \forall X:K.B' : \mathsf{T}$, we have $\Sigma; X:K \vdash A' : \mathsf{T}$ and $\Sigma; X:K \vdash B' : \mathsf{T}$. Since $\Sigma; X:K \vdash v : \forall X:K.B'$ by Lemma 24, we have

$$\Sigma; X: K \vdash v x : B' \stackrel{\Phi}{\Rightarrow} A' : A'$$

by (T_VAR), (T_APP), and (T_CONV). Thus,

$$\Sigma; \emptyset \vdash \Lambda X: K. (v \ x : B' \stackrel{\Phi}{\Rightarrow} A') :: A' : \forall X: K. A'$$

by (T_TLAM).

Case (R_CREXT): We have $e_0 = v$ and $B = [\ell : B'; \rho_2]$ and $A = [\ell : A'; \rho_1]$ and $e' = \operatorname{let} \{\ell = x; y\} = v \operatorname{in} \{\ell = x : B' \xrightarrow{\Phi} A'; y : [\rho_2] \xrightarrow{\Phi} [\rho_1]\}$ for some $v, \ell, A', B', \rho_1, \rho_2, x$, and y. Since $\Sigma \vdash B \prec^{\Phi} A$, i.e., $\Sigma \vdash [\ell : B'; \rho_2] \prec^{\Phi} [\ell : A'; \rho_1]$, we have $\Sigma \vdash B' \prec^{\Phi} A'$ and $\Sigma \vdash \rho_2 \prec^{\Phi} \rho_1$ by Lemmas 58 and 60, and $\Sigma \vdash [\rho_2] \prec^{\Phi} [\rho_1]$ by (CV_RECORD). Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, i.e., $\Sigma; \emptyset \vdash [\ell : A'; \rho_1] : \mathsf{T}$, we have $\Sigma; \emptyset \vdash A' : \mathsf{T}$ and $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$, and therefore $\Sigma; \emptyset \vdash [\rho_1] : \mathsf{T}$. Thus,

$$\Sigma; x: B', y: [\rho_2] \vdash \{\ell = x : B' \stackrel{\Phi}{\Rightarrow} A'; y: [\rho_2] \stackrel{\Phi}{\Rightarrow} [\rho_1]\} : [\ell: A'; \rho_1]$$

by (T_CONV) and (T_REXT). Since $\Sigma; \emptyset \vdash e_0 : B$, i.e., $\Sigma; \emptyset \vdash v : [\ell : B'; \rho_2]$, we have

$$\Sigma; \emptyset \vdash \mathsf{let} \left\{ \ell = x; y \right\} = v \mathsf{in} \left\{ \ell = x : B' \stackrel{\Phi}{\Rightarrow} A'; y : [\rho_2] \stackrel{\Phi}{\Rightarrow} [\rho_1] \right\} : [\ell : A'; \rho_1],$$

which is what we have to prove.

Case (R_CVAR): We have $e_0 = v$ and $B = \langle \ell : B'; \rho_2 \rangle$ and $A = \langle \ell : A'; \rho_1 \rangle$ and $e' = \operatorname{case} v$ with $\langle \ell x \to \ell (x : B' \stackrel{\Phi}{\Rightarrow} A'); y \to \uparrow \langle \ell : A' \rangle (y : \langle \rho_2 \rangle \stackrel{\Phi}{\Rightarrow} \langle \rho_1 \rangle) \rangle$ for some $v, \ell, A', B', \rho_1, [r2], x$, and y. Since $\Sigma \vdash B \prec^{\Phi} A$, i.e., $\Sigma \vdash \langle \ell : B'; \rho_2 \rangle \prec^{\Phi} \langle \ell : A'; \rho_1 \rangle$, we have $\Sigma \vdash B' \prec^{\Phi} A'$ and $\Sigma \vdash \rho_2 \prec^{\Phi} \rho_1$ by Lemmas 59 and 60, and $\Sigma \vdash \langle \rho_2 \rangle \prec^{\Phi} \langle \rho_1 \rangle$ by (CV_VARIANT). Since $\Sigma; \emptyset \vdash A : \mathsf{T}$, i.e., $\Sigma; \emptyset \vdash \langle \ell : A'; \rho_1 \rangle : \mathsf{T}$, we have $\Sigma; \emptyset \vdash A' : \mathsf{T}$ and $\Sigma; \emptyset \vdash \rho_1 : \mathsf{R}$, and therefore $\Sigma; \emptyset \vdash \langle \rho_1 \rangle : \mathsf{T}$. Thus,

$$\Sigma; x: B' \vdash \ell \left(x: B' \stackrel{\Phi}{\Rightarrow} A' \right) : \left\langle \ell : A'; \rho_1 \right\rangle$$

and

$$\Sigma; y: \langle \rho_2 \rangle \vdash \uparrow \langle \ell : A' \rangle \left(y : \langle \rho_2 \rangle \stackrel{\Phi}{\Rightarrow} \langle \rho_1 \rangle \right) : \langle \ell : A'; \rho_1 \rangle$$

by (T_CONV) and (T_VINJ). Since $\Sigma; \emptyset \vdash e_0 : B$, i.e., $\Sigma; \emptyset \vdash v : \langle \ell : B'; \rho_2 \rangle$, we have

$$\Sigma; \emptyset \vdash \mathsf{case} \, v \, \mathsf{with} \, \langle \ell \, x \to \ell \, (x : B' \stackrel{\Phi}{\Rightarrow} A'); y \to \uparrow \langle \ell : A' \rangle \, (y : \langle \rho_2 \rangle \stackrel{\Phi}{\Rightarrow} \langle \rho_1 \rangle) \rangle : \langle \ell : A'; \rho_1 \rangle$$

which is what we have to show.

Lemma 62. If $\Sigma \mid e \longrightarrow \Sigma' \mid e'$, then $\Sigma \subseteq \Sigma'$.

Proof. Obvious by case analysis on the evaluation rule applied to derive $\Sigma \mid e \longrightarrow \Sigma' \mid e'$.

Lemma 63 (Subject reduction). If $\Sigma; \emptyset \vdash e : A \text{ and } \Sigma \mid e \longrightarrow \Sigma' \mid e', \text{ then } \Sigma'; \emptyset \vdash e' : A.$

Proof. By induction on the derivation of $\Sigma; \emptyset \vdash e : A$.

Case (T_VAR), (T_CONST), (T_LAM), (T_TLAM), (T_REMP), (T_BLAME): Contradictory; there are no reduction rules to apply.

Case (T_APP): We have $e = e_1 e_2$ and, by inversion, $\Sigma; \emptyset \vdash e_1 : B \to A$ and $\Sigma; \emptyset \vdash e_2 : B$ for some e_1, e_2 , and B. If $\Sigma \mid e_1 \longrightarrow \Sigma' \mid e'_1$ for some e'_1 , then we have $\Sigma'; \emptyset \vdash e'_1 : B \to A$ by the IH, and therefore $\Sigma'; \emptyset \vdash e'_1 e_2 : A$ by Lemmas 62 and 25, and (T_APP).

If $\Sigma \mid e_2 \longrightarrow \Sigma' \mid e'_2$ for some e'_2 , then we have $\Sigma'; \emptyset \vdash e'_2 : B$ by the IH, and therefore we have $\Sigma'; \emptyset \vdash e_1 e'_2 : A$ by Lemmas 62 and 25, and (T_APP).

In what follows, we suppose that neither e_1 nor e_2 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e.

Case (E_RED): We have $e_1 e_2 = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.

Case E = []: By Lemma 61.

Case $E = E' e_2$: Contradictory with the assumption that $e_1 = E'[e'_1]$ cannot be evaluated under Σ .

Case $E = v_1 E'$: Contradictory with the assumption that $e_2 = E'[e'_1]$ cannot be evaluated under Σ .

Case otherwise: Contradictory with the assumption that $e_1 e_2 = E[e'_1]$.

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that neither e_1 nor $[e_2]$ cannot be evaluated under Σ .

Case (T_TAPP): We have $e = e_1 B$ and, by inversion, $\Sigma; \emptyset \vdash e_1 : \forall X: K. C$ and $\Sigma; \emptyset \vdash B : K$ and A = C[B/X] for some e_1, X, K, B , and C.

If $\Sigma \mid e_1 \longrightarrow \Sigma' \mid e'_1$ for some e'_1 , then we have $\Sigma'; \emptyset \vdash e'_1 : \forall X: K. C$ by the IH, and therefore $\Sigma'; \emptyset \vdash e'_1 B : C[B/X]$ by Lemmas 62 and 25, and (T_TAPP).

In what follows, we suppose that e_1 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e_1 .

Case (E_RED): We have $e_1 B = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.

Case E = []: By Lemma 61.

Case E = E' B: Contradictory with the assumption that $e_1 = E'[e'_1]$ cannot be evaluated under Σ .

Case otherwise: Contradictory with the assumption that $e_1 B = E[e'_1]$.

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): We have $e_1 B = E[(\Lambda X':K'.e'_0 :: C') B']$ and $e' = E[e'_0[\alpha/X'] : C'[\alpha/X'] \stackrel{+\alpha}{\Rightarrow} C'[B'/X]]$ and $\Sigma' = \Sigma, \alpha:K' := B'$ for some E, X', K', e'_0, B', C' , and α . By case analysis on E.

Case E = []: We have $e_1 = \Lambda X: K.e'_0 :: C$ by Lemma 33 (note that X = X' and K = K' and C = C') and B' = B.

It suffices to show that

$$\Sigma, \alpha: K := B; \emptyset \vdash e'_0[\alpha/X] : C[\alpha/X] \xrightarrow{+\alpha} C[B/X] : C[B/X].$$

Since $\Sigma; \emptyset \vdash e_1 : \forall X:K. C$, i.e., $\Sigma; \emptyset \vdash \Lambda X:K.e'_0 :: C : \forall X:K. C$, we have $\Sigma; X:K \vdash e'_0 : C$ by Lemma 37. Thus, $\Sigma, \alpha:K := B; X:K \vdash e'_0 : C$ by Lemma 25. Since $\Sigma, \alpha:K := B; \emptyset \vdash \alpha : K$ by (WF_TYNAME), we have

$$\Sigma, \alpha: K := B; \emptyset \vdash e'_0[\alpha/X] : C[\alpha/X]$$

by Lemma 29.

Since $\Sigma; \emptyset \vdash e_1 : \forall X: K. C$, we have $\Sigma; \emptyset \vdash \forall X: K. C : \mathsf{T}$ by Lemma 50. Thus, since α is a fresh type name for Σ, α does not occur in C. Therefore, we have

$$\Sigma, \alpha: K := B \vdash C[\alpha/X] \prec^{+\alpha} C[B/X]$$

by Lemma 30. Since $\Sigma; \emptyset \vdash e : A$, we have $\Sigma; \emptyset \vdash A : \mathsf{T}$ by Lemma 50, and therefore $\Sigma; \emptyset \vdash C[B/X] : \mathsf{T}$. Thus, by (T_CONV),

$$\Sigma, \alpha: K := B; \emptyset \vdash e'_0[\alpha/X] : C[\alpha/X] \xrightarrow{+\alpha} C[B/X] : C[B/X].$$

Case E = E'B: Contradictory with the assumption that $e_1 = E'[(\Lambda X':K'.e'_0::C')B']$ cannot be evaluated under Σ .

Case otherwise: Contradictory with the assumption that $e_1 B = E[e'_1]$.

Case (T_REXT): We have $e = \{\ell = e_1; e_2\}$ and, by inversion, $\Sigma; \emptyset \vdash e_1 : B$ and $\Sigma; \emptyset \vdash e_2 : [\rho]$ and $A = [\ell : B; \rho]$ for some ℓ , e_1 , e_2 , B, and ρ .

If $\Sigma \mid e_1 \longrightarrow \Sigma' \mid e'_1$ for some e'_1 , then we have $\Sigma'; \emptyset \vdash e'_1 : B$ by the IH, and therefore $\Sigma'; \emptyset \vdash \{\ell = e'_1; e_2\} : [\ell : B; \rho]$ by Lemmas 62 and 25, and (T_REXT).

If $\Sigma \mid e_2 \longrightarrow \Sigma' \mid e'_2$ for some e'_2 , then we have $\Sigma'; \emptyset \vdash e'_2 : [\rho]$ by the IH, and therefore we have $\Sigma'; \emptyset \vdash \{\ell = e_1; e'_2\} : [\ell : B; \rho]$. by Lemmas 62 and 25, and (T_REXT).

In what follows, we suppose that neither e_1 nor e_2 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e.

Case (E_RED): We have $\{\ell = e_1; e_2\} = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.

Case E = []: By Lemma 61.

Case $E = \{\ell = E'; e_2\}$: Contradictory with the assumption that $e_1 = E'[e'_1]$ cannot be evaluated under Σ . Case $E = \{\ell = v_1; E'\}$: Contradictory with the assumption that $e_2 = E'[e'_1]$ cannot be evaluated under Σ . Case otherwise: Contradictory with the assumption that $\{\ell = e_1; e_2\} = E[e'_1]$.

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that neither e_1 nor $[e_2]$ cannot be evaluated under Σ .

Case (T_RLET): We have $e = \text{let} \{\ell = x; y\} = e_1 \text{ in } e_2 \text{ and, by inversion, } \Sigma; \emptyset \vdash e_1 : [\ell : B; \rho] \text{ and } \Sigma; x:B, y:[\rho] \vdash e_2 : A \text{ for some } \ell, x, y, e_1, e_2, B, \text{ and } \rho.$

If $\Sigma \mid e_1 \longrightarrow \Sigma' \mid e'_1$ for some e'_1 , then we have $\Sigma'; \emptyset \vdash e'_1 : [\ell:B; \rho]$ by the IH, and therefore $\Sigma'; \emptyset \vdash \mathsf{let} \{\ell = x; y\} = e'_1 \mathsf{in} e_2 : A$ by Lemmas 62 and 25, and (T_RLET).

In what follows, we suppose that e_1 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e_1 .

- Case (E_RED): We have let $\{\ell = x; y\} = e_1$ in $e_2 = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.
 - Case E = []: By Lemma 61.
 - Case $E = \text{let} \{\ell = x; y\} = E' \text{ in } e_2$: Contradictory with the assumption that $e_1 = E'[e'_1]$ cannot be evaluated under Σ .

Case otherwise: Contradictory with the assumption that let $\{\ell = x; y\} = e_1$ in $e_2 = E[e'_1]$.

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that e_1 cannot be evaluated under Σ .

Case (T_VINJ): We have $e = \ell e_0$ and, by inversion, $\Sigma; \emptyset \vdash e_0 : B$ and $A = \langle \ell : B; \rho \rangle$ for some ℓ, e_0, B , and ρ such that $\Sigma; \emptyset \vdash \rho : \mathbb{R}$.

If $\Sigma \mid e_0 \longrightarrow \Sigma' \mid e'_0$ for some e'_0 , then we have $\Sigma'; \emptyset \vdash e'_0 : B$ by the IH, and therefore $\Sigma'; \emptyset \vdash \ell e'_0 : \langle \ell : B; \rho \rangle$ by Lemmas 62 and 25, and (T_VINJ).

In what follows, we suppose that e_0 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e.

Case (E_RED): We have $\ell e_0 = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.

Case E = []: By Lemma 61.

Case $E = \ell E'$: Contradictory with the assumption that $e_0 = E'[e'_1]$ cannot be evaluated under Σ . Case otherwise: Contradictory with the assumption that $\ell e_0 = E[e'_1]$. Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that e_0 cannot be evaluated under Σ .

Case (T_VLIFT): We have $e = \uparrow \langle \ell : B \rangle e_0$ and, by inversion, $\Sigma; \emptyset \vdash e_0 : \langle \rho \rangle$ and $A = \langle \ell : B; \rho \rangle$ for some ℓ, e_0, B , and ρ such that $\Sigma; \emptyset \vdash B : \mathsf{T}$.

If $\Sigma \mid e_0 \longrightarrow \Sigma' \mid e'_0$ for some e'_0 , then we have $\Sigma'; \emptyset \vdash e'_0 : \langle \rho \rangle$ by the IH, and therefore $\Sigma'; \emptyset \vdash \uparrow \langle \ell : B \rangle e'_0 : \langle \ell : B; \rho \rangle$ by Lemmas 62 and 25, and (T_VLIFT).

In what follows, we suppose that e_0 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e.

Case (E_RED): We have $\uparrow \langle \ell : B \rangle e_0 = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.

Case E = []: By Lemma 61.

Case $E = \uparrow \langle \ell : B \rangle E'$: Contradictory with the assumption that $e_0 = E'[e'_1]$ cannot be evaluated under Σ . Case otherwise: Contradictory with the assumption that $\uparrow \langle \ell : B \rangle e_0 = E[e'_1]$.

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that e_0 cannot be evaluated under Σ .

Case (T_VCASE): We have $e = \operatorname{case} e_0$ with $\langle \ell x \to e_1; y \to e_2 \rangle$ and, by inversion, $\Sigma; \emptyset \vdash e_0 : \langle \ell : B; \rho \rangle$ and $\Sigma; x: B \vdash e_1 : A$ and $\Sigma; y: \langle \rho \rangle \vdash e_2 : A$ for some ℓ , e_0 , e_1 , e_2 , B, ρ , x, and y.

If $\Sigma \mid e_0 \longrightarrow \Sigma' \mid e'_0$ for some e'_0 , then we have $\Sigma'; \emptyset \vdash e'_0 : \langle \ell : B; \rho \rangle$ by the IH, and therefore $\Sigma'; \emptyset \vdash case e'_0$ with $\langle \ell x \rightarrow e_1; y \rightarrow e_2 \rangle : A$ by Lemmas 62 and 25, and (T_VCASE).

In what follows, we suppose that e_0 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e.

Case (E_RED): We have case e_0 with $\langle \ell x \to e_1; y \to e_2 \rangle = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.

Case E = []: By Lemma 61.

Case $E = \operatorname{case} E'$ with $\langle \ell x \to e_1; y \to e_2 \rangle$: Contradictory with the assumption that $e_0 = E'[e'_1]$ cannot be evaluated under Σ .

Case otherwise: Contradictory with the assumption that case e_0 with $\langle \ell x \to x; y \to e_2 \rangle = E[e'_1]$.

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that e_0 cannot be evaluated under Σ .

Case (T_CAST): We have $e = e_0 : B \xrightarrow{p} A$ and, by inversion, $\Sigma; \emptyset \vdash e_0 : B$ and $B \simeq A$ and $\Sigma; \emptyset \vdash A : T$ for some e_0, A, B , and p.

If $\Sigma \mid e_0 \longrightarrow \Sigma' \mid e'_0$ for some e'_0 , then we have $\Sigma'; \emptyset \vdash e'_0 : B$ by the IH, and therefore $\Sigma'; \emptyset \vdash e'_0 : B \xrightarrow{p} A : A$ by Lemmas 62 and 25, and (T_CAST).

In what follows, we suppose that e_0 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e.

Case (E_RED): We have $e_0: B \stackrel{p}{\Rightarrow} A = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.

Case E = []: By Lemma 61.

Case $E = E' : B \xrightarrow{p} A$: Contradictory with the assumption that $e_0 = E'[e'_1]$ cannot be evaluated under Σ . Case otherwise: Contradictory with the assumption that $e_0 : B \xrightarrow{p} A = E[e'_1]$.

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that e_0 cannot be evaluated under Σ .

Case (T_CONV): We have $e = e_0 : B \stackrel{\Phi}{\Rightarrow} A$ and, by inversion, $\Sigma; \emptyset \vdash e_0 : B$ and $\Sigma \vdash B \prec^{\Phi} A$ and $\Sigma; \emptyset \vdash A : \mathsf{T}$ for some e_0, A, B , and Φ .

If $\Sigma \mid e_0 \longrightarrow \Sigma' \mid e'_0$ for some e'_0 , then we have $\Sigma'; \emptyset \vdash e'_0 : B$ by the IH, and therefore $\Sigma'; \emptyset \vdash e'_0 : B \stackrel{\Phi}{\Rightarrow} A : A$ by Lemmas 62 and 25, and (T_CONV).

In what follows, we suppose that e_0 cannot be evaluated under Σ . By case analysis on the reduction rule applied to e.

Case (E_RED): We have $e_0: B \stackrel{\Phi}{\Rightarrow} A = E[e'_1]$ and $e' = E[e'_2]$ for some E, e'_1 , and e'_2 such that $e'_1 \rightsquigarrow e'_2$. Besides, $\Sigma' = \Sigma$. By case analysis on E.

Case E = []: By Lemma 61.

Case $E = E' : B \stackrel{\Phi}{\Rightarrow} A$: Contradictory with the assumption that $e_0 = E'[e'_1]$ cannot be evaluated under Σ . Case otherwise: Contradictory with the assumption that $e_0 : B \stackrel{\Phi}{\Rightarrow} A = E[e'_1]$.

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that e_0 cannot be evaluated under Σ .

Theorem 2 (Type soundness). If $\emptyset; \emptyset \vdash e : A$ and $\emptyset \mid e \longrightarrow^* \Sigma' \mid e'$ and e' cannot be evaluated under Σ' , then either e' is a value or e' = blame p for some p.

Proof. By Lemmas 63 and 51.

2.3 Type-preserving translation

Assumption 3. We assume that $A \simeq A \oplus B$ and $B \simeq A \oplus B$ and that if $\Gamma \vdash A : \mathsf{T}$ and $\Gamma \vdash B : \mathsf{T}$, then $\Gamma \vdash A \oplus B : \mathsf{T}$. Lemma 64.

- 1. If $A \triangleright B$, then $A \simeq B$. Furthermore, if $\Sigma; \Gamma \vdash A : K$, then $\Sigma; \Gamma \vdash B : K$.
- 2. If $A \triangleright [\rho]$ and $\rho \triangleright_{\ell} B, \rho'$, then $A \simeq [\ell : B; \rho']$. Furthermore, if $\Sigma : \Gamma \vdash A : T$, then $\Sigma : \Gamma \vdash [\ell : B; \rho'] : T$.
- 3. If $A \triangleright \langle \rho \rangle$ and $\rho \triangleright_{\ell} B, \rho'$, then $A \simeq \langle \ell : B; \rho' \rangle$. Furthermore, if $\Sigma; \Gamma \vdash A : \mathsf{T}$, then $\Sigma; \Gamma \vdash \langle \ell : B; \rho' \rangle : \mathsf{T}$.

Proof. 1. Obvious by the definition of type matching.

- 2. If A is \star , it is trivial to show. Otherwise, $A = [\rho]$. If $\ell \in dom(\rho)$, then $\rho \equiv \ell : B; \rho'$. Thus, $\rho \simeq \ell : B; \rho'$ by Lemma 21. Thus, by (CE_RECORD), $[\rho] \simeq [\ell : B; \rho']$ Since $\Sigma; \Gamma \vdash \rho : R$, we find that $\Sigma; \Gamma \vdash B : T$ and $\Sigma; \Gamma \vdash \rho' : R$. Thus, $\Sigma; \Gamma \vdash [\ell : B; \rho'] : T$ by (WF_CONS) and (WF_RECORD).
- 3. Similarly to the case for record types.

Lemma 65.

- 1. If $\vdash \Gamma$, then $\emptyset \vdash \Gamma$.
- 2. If $\Gamma \vdash A : K$, then $\emptyset; \Gamma \vdash A : K$.

Proof. Straightforward by mutual induction on the derivations.

Lemma 66. If $\Gamma \vdash M : A \hookrightarrow e$, then $\emptyset; \Gamma \vdash e : A$.

Proof. By induction on the derivation of $\Gamma \vdash M : A \hookrightarrow e$. The proof is straightforward by using the assumption about \oplus stated in this section and Lemmas 64, 65, and 50.

Lemma 67. If $\Gamma \vdash M : A$, then $\Gamma \vdash M : A \hookrightarrow e$ for some e.

Proof. Straightforward by induction on the typing derivation.

Theorem 3. If $\Gamma \vdash M : A$, then there exists some e such that $\Gamma \vdash M : A \hookrightarrow e$ and $\emptyset; \Gamma \vdash e : A$.

Proof. By Lemmas 67 and 66.

2.4 Conservativity over typing

In this section, we write Γ^s , A^s , ρ^s , M^s for typing contexts, types, rows, and terms where \star and any type name do not appear.

Definition 29. We write $\Gamma_1 \equiv \Gamma_2$ if and only if (1) $\Gamma_1 = \emptyset$ and $\Gamma_2 = \emptyset$; (2) $\Gamma_1 = \Gamma'_1$, x:A and $\Gamma_2 = \Gamma'_2$, x:B and $\Gamma'_1 \equiv \Gamma'_2$ and $A \equiv B$; or (3) $\Gamma_1 = \Gamma'_1$, X:K and $\Gamma_2 = \Gamma'_2$, X:K and $\Gamma'_1 \equiv \Gamma'_2$.

Assumption 4. We assume that $A^s \oplus B^s$ is defined if and only if $A^s \equiv B^s$, and if $A^s \equiv B^s$, then $A^s \oplus B^s \equiv A^s$.

Assumption 5. We assume that, if $A_1 \equiv A_2$ and $B_1 \equiv B_2$, then $A_1 \oplus B_1 \equiv A_2 \oplus B_2$.

Lemma 68. Suppose that $\Gamma \equiv \Gamma'$.

- 1. If $\vdash \Gamma$, then $\vdash \Gamma'$.
- 2. If $\Gamma \vdash A : K$, then $\Gamma' \vdash A' : K$ for any A' such that $A \equiv A'$.
- 3. If $\Gamma \vdash M : A$, then $\Gamma' \vdash M : A'$ for some A' such that $A \equiv A'$.

We mention only the interesting cases.

Case (WFG_CONS): We are given $\Gamma \vdash \ell : B; \rho : \mathsf{R}$ and, by inversion, $\Gamma \vdash B : \mathsf{T}$ and $\Gamma \vdash \rho : \mathsf{R}$.

We suppose that some ρ' such that $\ell : B; \rho \equiv \rho'$ is given. Since $\ell : B; \rho \equiv \rho'$, there exists some B'' and ρ'' such that $\rho' \triangleright_{\ell} B'', \rho''$ and $B \equiv B''$ and $\rho \equiv \rho''$. By the IHs, $\Gamma' \vdash B'' : \Gamma$ and $\Gamma' \vdash \rho'' : R$. Thus, $\Gamma' \vdash \ell : B''; \rho'' : R$ by (WFG_CONS). We can show that $\Gamma' \vdash \rho' : R$ by the fact that $\rho' \succ_{\ell} B'', \rho''$.

Case (TG_APP): We are given $\Gamma \vdash M_1 M_2 : A$ and, by inversion, $\Gamma \vdash M_1 : A_1$ and $\Gamma \vdash M_2 : A_2$ and $A_1 \triangleright A_{11} \rightarrow A$ and $A_2 \simeq A_{11}$.

If $A = \star$, it is easy to show.

Otherwise, we can suppose that $A = A_{11} \rightarrow A$. By the IHs with Lemma 5, $\Gamma' \vdash M_1 : A'_{11} \rightarrow A'$ and $\Gamma' \vdash M_2 : A'_2$ for some A', A'_{11} , A'_2 such that $A \equiv A'$, $A_{11} \equiv A'_{11}$, and $A_2 \equiv A'_2$. By Theorem 1, $A'_2 \simeq A'_{11}$. Thus, we finish by (TG_APP).

Case (TG_TAPP): This case uses the fact that $A \equiv B$, then $A[C/X] \equiv B[C/X]$.

Case (TG_VCASE): This cases uses the second assumption about \oplus stated in this section.

Lemma 69. If $A^s \simeq B^s$, then $A^s \equiv B^s$.

Proof. By Lemma 16, there exists some C^s such that $A^s \equiv C^s$ and $C^s \sim B^s$. Then, it is easy to show that $C^s = B^s$ by induction on the derivation of $C^s \sim B^s$.

Lemma 70.

- 1. If $\vdash \Gamma^s$, then $\vdash^s \Gamma^s$.
- 2. If $\Gamma^s \vdash A^s : K$, then $\Gamma^s \vdash^s A^s : K$.
- 3. If $\Gamma^s \vdash M^s : A$, then $\Gamma^s \vdash^s M^s : A$.

xo

Proof. By mutual induction on the derivations.

Below are important facts to show this lemma.

- 1. If $\Gamma^s \vdash^s M^s : A$, then \star and any type name do not appear in A.
- 2. If $A^s \triangleright B^s$, then $A^s = B^s$.
- 3. If $\rho_1^s \triangleright_{\ell} A^s, \rho_2^s$, then $\rho_1^s \equiv \ell : A^s; \rho_2^s$.

The case for (TG_APP) is interesting, so we mention only that case. We are given $\Gamma^s \vdash M_1^s M_2^s : A$ and, by inversion, $\Gamma^s \vdash M_1^s : B$ and $\Gamma^s \vdash M_2^s : C$ and $B \triangleright B_1 \to A$ and $C \simeq B_1$. By the IHs, $\Gamma^s \vdash^s M_1^s : B$ and $\Gamma^s \vdash^s M_2^s : C$. Thus, we can find \star and any type name do not appear in B nor C. Thus, $B = B_1 \rightarrow A$. Since $C \simeq B_1$, we find $C \equiv B_1$ by Lemma 69. Thus, by (Ts_EQUIV), $\Gamma^s \vdash^s M_2^s : B_1$. By (Ts_APP), we have $\Gamma^s \vdash^s M_1^s M_2^s : A$.

The first assumption about \oplus stated in this section is used in the case for (TG_VCASE).

Lemma 71.

- 1. If $\vdash^s \Gamma^s$, then $\vdash \Gamma^s$.
- 2. If $\Gamma^s \vdash^s A^s : K$, then $\Gamma^s \vdash A^s : K$.
- 3. If $\Gamma^s \vdash^s M^s : A^s$, then $\Gamma^s \vdash M^s : B^s$ for some B^s such that $A^s \equiv B^s$.

Proof. By mutual induction on the derivations. We mention only the interesting cases.

Case (TS_APP): We are given $\Gamma^s \vdash^s M_1^s M_2^s : A^s$ and, by inversion, $\Gamma^s \vdash^s M_1^s : B^s \to A^s$ and $\Gamma^s \vdash^s M_2^s : B^s$. By the IHs, $\Gamma^s \vdash M_1^s : B_1^s \to A_1^s$ and $\Gamma^s \vdash M_2^s : B_2^s$ and $B^s \to A^s \equiv B_1^s \to A_1^s$ and $B^s \equiv B_2^s$ for some B_1^s, B_2^s , and A_1^s .

We have $B_1^s \to A_1^s \triangleright B_1^s \to A_1^s$. By Lemma 5 (2), we have $B^s \equiv B_1^s$ and $A^s \equiv A_1^s$. Thus, $B_2^s \equiv B_1^s$. By Lemma 22, $B_2^s \simeq B_1^s$. Thus, by (TG_APP), $\Gamma^s \vdash M_1^s M_2^s : A_1^s$.

Case (Ts_TAPP): Similar to the case of (Ts_APP); we use the fact that, if $A \equiv B$, then $A[C/X] \equiv B[C/X]$.

Case (Ts_RLET): We are give $\Gamma^s \vdash^s \mathsf{let} \{\ell = x; y\} = M_1^s \mathsf{in} M_2^s : A^s \mathsf{and}$, by inversion, $\Gamma^s \vdash^s M_1^s : [\ell : B^s; \rho^s] \mathsf{and}$ $\Gamma^s, x: B^s, y: [\rho^s] \vdash^s M_2^s : A^s.$

By the IHs with Lemma 5, $\Gamma^s \vdash M_1^s : [\ell : B_0^s; \rho_0^s]$ and $\Gamma^s, x : B^s, y : [\rho^s] \vdash M_2^s : A_0^s$ for some ρ_0^s, A_0^s , and B_0^s such that $\rho^s \equiv \rho_0^s$ and $A^s \equiv A_0^s$ and $B^s \equiv B_0^s$.

Since $\Gamma^s, x:B^s, y:[\rho^s] \equiv \Gamma^s, x:B_0^s, y:[\rho_0^s]$, we have $\Gamma^s, x:B_0^s, y:[\rho_0^s] \vdash M_2^s : A_1^s$ for some A_1^s such that $A_0^s \equiv A_1^s$ by Lemma 68. Since $A^s \equiv A_1^s$, we finish by (T_RLET).

Case (Ts_VCASE): Similar to the case of (Ts_RLET). This case also uses the first assumption about \oplus stated in this section.

1. If $\Gamma^s \vdash M^s : A^s$, then $\Gamma^s \vdash^s M^s : A^s$. Theorem 4.

2. If $\Gamma^s \vdash^s M^s : A^s$, then $\Gamma^s \vdash M^s : B^s$ for some B^s such that $A^s \equiv B^s$.

Proof. By Lemmas 70 and 71.