Supplementary Material for “Gradual Typing for Extensibility by Rows”
Taro Sekiyama

National Institute of Informatics & SOKENDAI

December 30, 2024

1 Definition

1.1 Statically typed language F”
1.1.1 Syntax
Variables for types and rows X Kinds K :=T|R

Base types ¢ ::=bool|int] ... Constants :=true |false |0] + | ...
Types and rows A, B,C,D,p == X |t|A—=B|VX:K.A|[p||{p)|-|€:4;p
Terms M = z|k|A:AM| M My | AX:K.M|MA|

{3 {¢=M;M}|let{l =x;y} = Myin M|

LM | case M with (¢ z — My;y — M) [T(€: A) M
Values w := k| Az AM |AX:K. M | {}|{{ =wy;w} | w’ w' = Lw [T A)w’
Evaluation contexts F = [||FMy|w F|FA|

{{=F; M} | {{=w1; F}|let{l{ =z;y} = Fin M |

LF | case Fwith ({z — My;y — M) [T(€: A)F
Typing contexts r == 0|T,z:A|T,X:K

Definition 1 (Free type variables and type substitution). The set ftv(A) of free variables for types and rows in A
is defined as usual. Substitution A[B/X] of B for X in A is defined in a capture-avoiding manner.

Definition 2 (Domain of typing contexts). We define dom (T') as follows.

dom () Lo

dom (T, z:A) T dom (T) U {z}

dom (T, X:K) L dom () u {Xx}

Assumption 1. We suppose that each constant k is assigned a first-order type ty(k) of the form i1 — -+ — ty.
Suppose that, for any i, there is a set K, of constants of v. For any constant k, ty(k) = ¢ if and only if k € K,.

The function ¢ gives a denotation to pairs of constants. In particular, for any constants k1 and ka: (1) ((Kk1,k2)

is defined if and only if ty(k1) = ¢t = A and ty(ke) = ¢ for some A; and (2) if ((k1, Kk2) is defined, ((k1,K2) is a

constant and ty(C(k1,ke)) = A where ty(k1) = ¢+ — A.

We use the notation and the assumption above also in Fg, and FZ,.

1.1.2 Semantics

Definition 3 (Record splitting). w >y wy, wy is defined as follows:

{€:w1§w2} D>y W1, W2
{0/ = wi;wa} b wor, {€ =wiswee} (if € # £ and we >y war, we2)

Reduction rules

K1 kKo ~oF C("{lv I{Q) Rs_CoNsT
Az AM)w ~* Mlw/z] Rs_BETA

(AX:K.M)A ~* MI[A/X] Rs_TYBETA
let {{ =z;y} =win Mg ~% My wy/z,we/y] (if w >y wy,wy) RS_RECORD

T A) (W)~ w (if ¢ #) Rs_EMBED

case (¢ w) with ({x — My;y — Me) ~~° M [w/x] Rs_CAseL
case T(0: A) (w)W|th ((x — Mysy — M) ~° My [wt/y Rs_CaAseR1
casew! with (02 — My;y — M) ~° My [w” /y] (if ¢ #) Rs_CAsER2

Evaluation rule | M; —° M,
Ml S M2
ES_RED

F[Ml] —>S F[MQ]
Figure 1: Semantics of F”.

Definition 4 (Semantics). The reduction relation ~~° and the evaluation relation —*° of F¥ are defined by the
rules given in Figure [1]

1.1.3 Type system

Type-and-row equivalence rules |A =B

EoR A=C C=8B D B=A Eo.S
A= e A=B Q- L RARS A=p M
A1 =42 B =B A=A p1 = p2
EqQ.F EqQ_P —— Eq_
Lo B =Ao B TN xR A =vnik 4, Cefow ey EQRECORD
pP1 = P2 p1 = p2 £
———— EqQ_ Eq_ Eq_
(p1) = (p2) Q-VARIANT L:A;p0 =1L A;po Q-Cons L:A0:B;p=0:B;l:A;p Q-SwaP

Figure 2: Type-and-row equivalence of F”.

Definition 5 (Type-and-row equivalence). Type-and-row equivalence = is the smallest relation satisfying the rules
given by Figure[d

Definition 6 (Typing). The well-formedness judgments =° T and T F° A : K, and the typing judgment T +° M : A
of F* are the smallest relations satisfying the rules given by Figure[3,

Well-formedness rules for typing contexts |[F°T

xz & dom (T)
FSD TH AT FT X ¢ dom (D)
=70 WFs_EMPTY S T.oA WFSs_EXTVAR ST XK WEFs_EXTTYVAR
Well-formedness rules for types and rows |I'F° A: K
T X:K el T r=*A:T I'*B:T
Fs_ T _ Fs_B Fs_F
T Xk VESTYVAR e WiS-Base THEASB:T WES-FON
X:KH A:T *p:R F+*p:R
Fs_P - Fs_ ———— WFs.V
T YX K AT WFs_PoLy T T WFS_RECORD T (o) T S_VARIANT
o T T A:T THp:R .
— _ WFs.RE . WFs_
TR S-REMP T ¢:A:p: R 5-LONS
Typing rules [I'F° M : A
F°T z:A el T Iz:AF° M : B
Ts_ —— Ts_ Ts_L
P z: A S-VAR FE K ty(k) s-ConsT FF A:AM:A— B S-LAM
' Mi:A—=B TF° My: A A I X:KF M: A
Ts_ Ts_TL
T M, M, : B S-APP T AXK.M:VXK.A4 > M
r-*M:vVX:K.A T B: K A T
Ts_T ———— Ts_RE
T MB: AB/X] o T {0 e
FE M :A TH My:|[p THE M :[€:A;p] Tya:A y:[p]H° My : B
Ts_RE Ts_RL
T (6= My My} [0: A p) x T let{{=a;y} = Miin My : B o
r*M:A T'F°p:R T M:{(p) THF A:T
Ts_VIN Ts_VLI
THE LM :(L:A;p) ! THEA: A M :{L: A;p) o

PEM:{:A;p) T,o:AF* My :B T,y:(p)F° My : B
I'F° case M with (¢ — My;y — M) : B

Ts_VCASE

r=*M:A4 A=B T B:T
T M B Ts_EQuiv

Figure 3: Typing of F”.

p
1.2 Gradually typed language F;
1.2.1 Syntax
Variables for types and rows X Kinds K :=T]|R

Type-and-row names «

Base types ¢ ::=bool |int] ... Constants k ::=true|false |0 |+] ...
Types and rows A,B,C,D,p == X|a|*x|t|A—=B|VX:K.A|[p]|{p)|-|C:4;p
Terms M = z|k| X AM|M My | AX:K.M|MA|

{} | {gthMg} | Iet{€:x;y}:MlinM2|
O M | case M with ({z — My;y — M) |[1(€: A) M
Typing contexts r == 0|Iz:A|T,X:K

Assumption 2. We assume that operation A @ B that produces a type is available. Assumptions for @ are stated
in the beginnings of subsections of proving properties (Section and Section .

1.2.2 Typing

Definition 7 (Type-and-row equivalence). Type-and-row equivalence = is the smallest relation satisfying the rules
giwen by Figure[3

Consistency rules

T A C_REFL A C_DvyNL Tox C_DyYNR
AlNAQ BlNBz AlNAQ
_F P
Lo B~A, B PN VXK A, ~VXK 4, oW
QPoly (A2) X & ftu(Az) Ay~ Ay QPoly (A1) X & ftu(A1) Ay~ Ay
VX:K. A1 ~ AQ C-PoryL A1 ~VX:K. A2 C-PoryR
~ ~ A~ A ~
_pLpe C_RECORD e C_VARIANT ! 2 P pe C_Cons
[p1] ~ [p2] (p1) ~ (p2) C:Ay;pr ~ L Agspo
/ d ds with ~ Y4 d ds with ~
¢ dom(p) poendswith x pi~pe oo Cf domlp) pendswith x pimpr
2 A;pr~ po p1~L:A;po

Figure 4: Consistency.

Definition 8 (Quasi-universal types). The predicate QPoly (A) is defined by: QPoly (A) if and only if
e A #£VX:K.B forany X, K, and B,
«A#
o A # (:B;p for any £, B, and p, and
e x occurs somewhere in A.

Type A is a quasi-universal type if and only if QPoly (A).

Definition 9 (Labels in row). We define dom (p), the set of the field labels in p, as follows.

dom (-) = 0
dom (x) L
dom (X) o
dom () ECI)
dom (£: A; p) e dom (p) U {¢}

Definition 10 (Row concatenation). Row concatenation p1 © ps is defined as follows:
def
c O p2 = p2
def
(L:A;01)©p2 = £:A4;(p1 ©p2)
Definition 11 (Rows ending with x). Row type p ends with x if and only if p = p’ ® * for some p'.

Definition 12 (Cousistency). Consistency A ~ B is the smallest relation satisfying the rules given by Figure .

Consistent equivalence rules |A~ B

T~ 1 CE_REFL A CE_DyYNL T CE_DYNR
Ay~ Ay By~ By A~ Ay
E_F EP
Ao B ~A, B, CEEW VXK A ~vXK A, CoPow
QPoly (A2) X & ftu(Az) Ay~ Ay QPoly (A1) X & ftu(A1) Ay~ Ay
VX:K. A1 ~ Ag CE-PorvL A1 ~VX:K. Ag CE-PoLyR
= CE_RECORD = CE_VARIANT
[p1] == [p2] (p1) = (p2)
B,py A~B ~ pl Ao A~B p ~
p2 > B, ph PLEP2 o ConsL P1Pe 45 P PL=P2 g CconsR
C:Aspr = po p1=L:B;ps

Figure 5: Consistent equivalence.

Definition 13 (Row splitting). Row splitting p1 >¢ A, p2 is defined as follows.
L:Asp >y Ap
C:Bipr >e A (U :Bipe) (if€# U and p1 >e A, p2)
* Dy Kk, x
Definition 14 (Consistent equivalence). Consistency equivalence A ~ B is the smallest relation satisfying the rules
given by Figure[3
Definition 15 (Type matching). Type matching A>B is the smallest relation satisfying the rules given by Figure @

Definition 16 (Typing). The well-formedness judgments =T and T+ A : K, and the typing judgment T = M : A
of F¢, are the smallest relations satisfying the rules given by Figure m

Type matching rules
* D> x —> %

A— BrA—B
VX:K.AvVX:K. A *> VXK. %
o] > [p] > [x]

{p) > (p) x> ()

Figure 6: Type matching.

Well-formedness rules for typing contexts

FT 2 & dom(T) THA:T

- WFG_EmMPTY FT.2A WFG_EXTVAR
FT X ¢ dom () WFG_EXTTYVA
FT. XK - "
Well-formedness rules for types and rows ''FA: K
U XKel WFG_TYVAR 7|_F WFG_DyYN 7'_F WFG_BASE
'-X:K N I'Ex: K - I'e: T N
'HA: T T'HB:T WFGF X:KEA:T WFe_Po I'kp:R WFe RECO
_Fun _PoLy _— _RECORD
TFASB:T v TFVXK.A:T TFip:T *
I'p:R WFV FT WFGRE 'HFA:T T'kFp:R WFa.C
TF (py:T | OTVARART R MRG-RENT TF(:Aip:R GHONS
Typing rules |[I'HEM: A
FT z:A el Ta Va FT Te.CoNs e:A-M:B TaLa
_ _ _CONST _Lawm
TFaz:A t TFr:iy(n) TFAzAM: 4> B
F"MliAl F'_MQ:AQ A11>A11—)A12 AQ’:All
Ta_Aprp
F"MlMQIAlg
I'X:K-M:A Te.TLa '-M:A TTHFB: K A>VX:K.C Te. TA
_ M _TApP
TFAX:K.M:VX:K.A T MB:C[B/X]

T ke PrMi:A THMy:B Bolp oo
_— _REwmP _REXT
g0 (0= My 0o} < [0 A)

'EM;:A A B,p) T,z:B,y:[p)|+ My : C
1 >[p] pre Bp B,y ']+ M T RLET
FHlet{{=z;y} =M inMy: C
'FM:A TkFp:R _— TFM:B Br{p)y THA:T Ta VT,
_VIN _VLIFT
THEM:(L: A;p) ! DHI: Ay M :{l: A;p)
'-M:A A B,p) T,o:B+-M;:C T,y:{pYFMy:D
>(p) pve B,y T,z 1 y:(p') = My T VCASE

'k case M with (¢ — My;y — M) : C @ D

Figure 7: Typing of F{,.

1.3 Blame calculus F%

1.3.1 Syntax

Blame labels p,q Type-and-row names « Conversion labels ¢ = +a| -«
Types and rows A,B,C,D,p:=X|a|*x|t|A—= B|VX:K.A|p]|{p)]|-|¢:4;p
Ground types G,H s=al e x = x| K] (%)

Ground row types ~ s=al [Likk

Terms e n=z | k| Ade| e | AX:K.e:: Al eA|

{}1{l=e;e} |let{l =x;y} =erines |
le|caseewith ({o — e;;y — ex) [T(€: A) e
e:AéB|e:A£>B|b|amep

Values v s=k | Amde | AX:Ke: A|{} | {{=v;0m}|[lo[T{:A)v]|
v:iG B xlvify] B v:(y) S ()|
viA Zalv:p] Sa]|v:{p) = (a)

Evaluation contexts F w=[]|Ee|nE|EA|{{=FE;e}|{{=u;E}]
let{¢{ =2z;y} = Finey |
CE |case Ewith ({z — e1;y — e2) |10 : A E |
E:AZB|E:AXB

Name stores X =08k =A

Figure 8: Syntax of F{,.

Definition 17 (Comparison between name stores). We write ¥ C X' if and only if, for any o, K, and A, if
a:K:=A¢€X, then K :=A4 € Y.

Definition 18 (Substitution). Type substitution e[A/X] of A for X in e is defined in a capture-avoiding manner
as usual. Value substitution e[v/z] is also defined similarly.

1.3.2 Semantics

Definition 19 (Record splitting). v >y vy, vs is defined as follows:

{t=wvi; 0} >y v1, 10
{0/ = v1; v} by o1, {0/ = vi;v00} (where £ # ¢/ and vy >y 21, t23)

Definition 20 (Field postpending). Field postpending p @ £ : A is defined as follows:

(¢:Bip)@r:A ¥ B (pac:A
@0 A EC T

Definition 21 (Ground row types of rows).

grow(") =

def
grow(a) = «

def
grow(l:A;p) = L:ikx

Definition 22 (Row embedding). Row embedding 1p e is defined as follows:

def

T(C:Asp)e
tpe

(£ 4) (Tpe)
e (ifp # (0 450))

Definition 23 (Field insertion). Function iﬁfu‘b e embeds a term e of type (p®p') into (p® (£: A;-)©p'). Formally,
it is defined as follows:

i(w B 4 ase e with (Ox = lzyy -1 B") (La9)

¢<M> e Aye (ifp# (€:Bp) for any €', B', and o)

Definition 24 (Name in conversion label). We define name(+a) and name(—a) to be «.

Reduction rules €1 ~ €

K1ka ~ ((K1,K2) R_CoNsST
(Ax:d.e)v ~ elv/x] R_BETA
let{¢ =xz;y} ={l{=wv;v}ines ~ e[vi/z,v3/y] R_RECORD
case ({v)with ({z — e1;y = ea) ~ e1f[v/z] R_CASEL
case T{0: A)vwith{(lz — e;;y = e2) ~ exv/y] R_CASER
Vik >k 0 R_IDDYN
viAdZ2x ~ v:A4A26E« R_ToDYN
(if A~ G an #GandA;é*andA#VX:K.B)
vik B A L£2acd 4 R_FROMDYN
(1fANGandA ;é Gand A # xand A # VX:K.B)
v:G 242G ~ v R_GROUND
v:G 2«2 H ~ blameq (if G # H) R_BLAME
vit B w0 R_IDBASE
viaBa ~ v R_IDNAME
v:A - B B Ay By ~ Andsw(z:Ay B A): B 2B, R_WRAP
v:VX:K. A BYX:K. Ay ~ AX:K.(vX:A £ A) Ay R_CONTENT
v:VX:K.A 2 B ~ (vx):A[x/X] 2 B (if QPoly (B)) R_INST
v:ABVYX:K.B ~ AX:K.(v:A 2 B):B (if QPoly(4)) R_GEN
viA=ZEaTAaA — v R_CNAME
Vik 2k o 0 R_CIDDYN
via2a o~ v (if name(®) # «) R_CIDNAME
Vil 2 e R_CIDBASE
v: A — B 2 Ay — By~ AziAgqv(z: Ay 2 Ay): B 2 B, R_CFuUN
ViIVXK. A 2YXK Ay~ AX:K.(vX 1 A = Ag) Ay R_CFORALL

Figure 9: Reduction rules of Fg,.

Definition 25. Relations — and ~ are the smallest relations satisfying the rules in Figures[9, and[13

Definition 26 (Multi-step evaluation). Binary relation —* over terms is the reflexive and transitive closure of
—.

1.4 Typing
Definition 27. Judgments X T, 3;TF A: K, and ;T F e : A are the smallest relations satisfying the rules in

Figures[I]] and [15]

Cast and conversion reduction rules for records €1 ~ e

v:[] 2] ~ v R_REwmP
vila] 2a] ~ v R_RIDNAME
vilp] B %]~ v:fp] B [grow(p)] B[+ (if p # grow(p)) R-RTODYN

vily] B 2~ vy 2 (fy~p) R_-RFROMDYN

‘] 2[4 2 [p] ~ blameq (if v % p) R_RBLAME
vilo] B Bipa] = {l=(n:A S B[] 2 (o))

g g (if v >y vl,pvg andpp1 e A, ph) R-RREV
vilp] 20 Bipa] ~ vilp] 2 [pr @L:B] 2 [0:B;py

’ ’ ’ ’ (if ¢ & dom (p1) gnd p1 F %) R-RCoN
vilp] =] Bl ~ v R_-CRNAME

vil] 2] ~ v R_CREMP

vl A py ‘i)f:B,z ~
| S /Tel{fza:;y}zvin{ﬁzm:A:q>>B;y:[p1]g[pg]} R_CRExT

Vil 2] e v R_CRIDDYN

v o 2 [a] ~ v (if name(P) # «) R_CRIDNAME

Figure 10: Cast and conversion reduction rules for record types.

1.5 Translation
Definition 28. Relation '+ M : A < e is the smallest relation satisfying the rules in Figure[16

10

Cast and conversion reduction rules for variants
vila) B () ~ v R_VIDNAME
i) B e v () B (grow(p)) B (k) (if p # grow(s)) R_VToDyN
v () B2 () vy S (p) (ify~p) R_VFrROMDYN
vi(y) B (%) = (p) ~ blameq (if v % p) R_VBLAME
(Cv): (£: A;pr) 2 (p2) ~ Tpa(L(v:A S B))
. R_VREVI
(if po = po1 © (¢: B;") @ poz and € & dom (p1)) R
21 . R
(P Ay) : (€: A;p1) = (p2) ~ ?g;B)(U : <Pl> = (p21 © p22)) R_VREVLIFT
(if po = p21 ®@ (£: B;+) ® po2 and £ & dom (pa21))
(L) : (0:A;p1) B (pa) ~ Tpa(lv:{l:A;%) B (%)
(if £ ¢ dom (p2) and pa # %) R-VConIny
(1(0: A v): (0: A;py) B (o) ~ R_VCoNLIFT
(Liaay (v (or) 2 (p2)) i (p2 @ L: A) £ (pa) (if ¢ & dom (ps) and py # %)
vilp) =) B ~ v R_CVNAME
v:{l:A;pr) 2 (¢:B;pa) ~» casevwith(fz — €(x: A 2 B);y =1(¢: B)(y: (p1) 2 (p2))) R_CVAR
Vi) 2) e R_CVIDDYN
v {a) 2 () ~ v (if name(P) # «) R_CVIDNAME
Figure 11: Cast and conversion reduction rules for variant types.
Evaluation rules ‘21 | e1 — 3o | 62‘
~s E
o e E_RED il E_BLAME

Y| Elen]] — X | Eled]

Y | E[blame p] — X | blame p

Y| E[(AX:K.e:: A)B] — 3, a:K := B | Ele|a/X] : Ala/ X] Lo A[B/X]] E_TYBETA

Figure 12: Evaluation rules of F{,.

11

Convertible rules SHFA<®RB

SF <% % Cv.DyN ST X<t X Cv_TYVAR
name(®) # « Y(a) = A Y(a)=A
SFa<®a Cv_TYNAME ST <A CV_REVEAL ST A< a Cv_CONCEAL
S A4 <® 4,

ZFA2<6A1 ZF81<¢.BQ
Cv_PoLy

Cv_BASE
YHFA — B <¢A2—>Bg

CV_-FUN o VXK. A; <® VXK. A,

YEo<®,
Sk p1 <% po

CV_RECORD CV_VARIANT
Yk (p1) <% (p2)

Sk p1 <% po

EF 1] < [po]
YA <® 4y BFp <%y

Cv_RE
v MP Z"f:Al;p1-<q>€2A2;p2

Cv_CoNs

SE-<2.

Figure 13: Type convertibility.

Well-formedness rules for typing contexts |XFT

SET z & dom(T) S;THA:T
WF_EXTVAR

sEg VE-EmeTy SET 24

ST X & dom (D)
SET, XK

Well-formedness rules for types and rows |X;I'FA: K

WF_EXTTYVAR

YT

SEFT XK el ST awK:=Aeyx
STFX K WEF_TyVAR STra K WEF_TyNAME m WF_DvyN
YFT >$5I'A:T X, T'HB:T YZILLX:KFEA:T

STrE. T VE-Base STFASB:T WEFUN S vk a. T WEPow

X;T'kHp:R ;T kHp:R
N WF_Reco N \WF_Varia
STE[:T HOORD STF(p):T RIANT
ST SiTHA:T S:TFp:R
_~ WFRE P
STF. R WE-REMP STF(:Ap:R WE._Cons

Figure 14: Well-formedness rules of FZ,.

12

Typing rules |¥;T'Fe: A

YET z2z:A el YHT c
T_V. - T_
YI'kz: A AR :TFk:ty(k) ONST
;I xz:Are: B Y»i;I'beg:A—-B YX;T'kFe: A A
T_L T_
SiTFAzde:A— B A SiTFeier: B o
WL X:KFe: A WThHe:VX:K.A S THB:K A
T_TL T_T
STFAXK.e: A:VXK.A AM STk eB: AB/X] o
SHT S;The : A STk ey [p)
———F—— T_REwmP T_REXT
5THA{}: [S:TH{l=e1;e}:[0: A;p]
SiThe :[0:A;p] E;T,2:A y:[p]Fex: B Wl'ke: A XTHp:R
T_RL T_VI
SiTFlet{ =y} = erines: B . SiTFCe: (0:A4;p) ™

YiThe:(p) L;THA:T
S;THEM(E: A)e: (€ A;p)

T_VLIFT

SiThe:(U:A;p) ST x:AFe: B ST, y:p)Fex: B

T_VCas
YTk caseewith({xz — e;;y — e2) : B B
> I'HA:T
ST blamep A L DUAME
S:Tke:Ad S:THFB:T A~B YFD Si0Fe:A S0FB:T SFA<®B
m T_CAsT T T_Conv
>;'+e: A= B:B >;'+e:A=B:B

Figure 15: Typing rules of Fg,.

13

Translation rules T'FM:A<—e

"L wmAel TRANS_VA -r TrANS_CONS
NS_ NS_CONST
lFz: Az a t 'kr:ty(k) =k t

I'2:AFM:B < e

TEMNAM:A4A — B M\p:A.e TRANS_LAM

FFM12A1‘—>61 FFMQZAQ‘—)EQ A1[>A11*>A12 A22A11

m TRANS_APP
'k M1 M2 : A12 — (61 : A1 = A11 — A12) (62 : AQ é All)

IN'XKFM:A—e
THFAX:K.M :VX:K.A—>AX:K.e:: A

TRANS_TLAM

' -M:A—e THB:K AbVX:K.C
T'-MB:C[B/X] < (e: A 2VX:K.C)B

TRANS_TAPP

=
e =1

'EMy:A—e THM:B<—e B[
DH{l=M;M):[(:A;p — {{=-e;e:B 2 [p]}

TRANS_REMP

TRANS_REXT

M :A—e Avlp] pve B,p T,z:B,y:[p|F My : C = ey

7 TRANS_RLET
FHlet{{=ua;y} =MiinMy: C —let{{ =x;y} =(e1: A = [(:B;p'])iney

'rM:A—e I'kp:R 'M:B<—e Bpr{p) TTHA:T
TRANS_VINJ

T _VL
DHOM:((:A;p) = Le T (e A)M {0 Ap) o1 (- A) (e B 2 (o) RANS_VLIFT

FEM:A—e Av{(p) pv¢ B,p T,o:BEM :C—e T y(p)bk My: D <= e
e =e:CBCoD e, =e:DECoD

m TRANS_VCASE
I'Fcase Mwith (¢ — My;y — Ma) : C@® D — case(e: A = (£: B;p'))with {({xz — ef;y — €})

Figure 16: Translation rules.

14

2 Proofs

2.1 Consistency
Lemma 1. Suppose A= B. QPoly (4) if and only if QPoly (B).
Proof. Straightforward by induction on the derivation of A = B. O
Lemma 2. If A= B, then ftv(A) = ftv(B).
Proof. Straightforward by induction on the derivation of A = B. O
Lemma 3. Suppose that p1 = p2. p1 ends with x if and only if so does ps.
Proof. Straightforward by induction on the derivation of A = B. O
Lemma 4. If p1 = pa, then dom (p1) = dom (p2).
Proof. Straightforward by induction on the derivation of p; = pa. O
Lemma 5. Suppose A= B.

1. A = xif and only if B = *.

2. A= Ay = As if and only if B = By — Bs, and A1 = By and As = Bs.
3. A=VX:K.A" ifand only if B = VX:K.B', and A’ = B’.
4. A = [p1] if and only if B = [po], and p1 = po.
5. A = {(p1) if and only if B = {p2), and p1 = pa.
6. A =p1OWU:A)Op12 and £ & dom (p11) if and only if B = po1 © (£: B';-) ® pas and £ & dom (p21), and
A" =B’ and p11 © p12 = pa1 © paso.
Proof. Straightforward by induction on the derivation of A = B. O

Lemma 6. If A~ B, then B~ A.

Proof. Straightforward by induction on the derivation of A ~ B. O
Lemma 7. Ifa~p, thenp = « or p = *.

Proof. Straightforward by case analysis on the derivation of o ~ p. O
Lemma 8. If-~p, thenp = - or p = *.

Proof. Straightforward by case analysis on the derivation of - ~ p. O
Lemma 9. If{: A;p; ~ pa, then py > B,ph and A ~ B and py = ph.

Proof. By induction on £: A; p; ~ ps.

Case (CE_REFL): Obvious since po = £: A;py and £: A;py >y A, p1.

Case (CE_ConsL): Obvious by inversion.

Case (CE_ConsR): We have ps = ' : B; pl, for some ¢/, B, and p}.
If £ = ¢, then, since £: A;p; by A, p1, we have A ~ B and p; =~ p) by inversion. Since ¢’ : B;ph >y B, ph, we
finish.
Otherwise, suppose £ # ¢'. Then, by inversion and definition of type matching,
o U:A;p > AL A;pl,
o p1oe A ph,

15

e A’ ~ B, and
o 0 A~ ph
for some A’ and p}. By the IH, p) >y B’ py and A ~ B’ and p} ~ p} for some B’ and p}. Since ¢ # ¢/, we

have py = ¢': B; phy >y B',0': B; ply. Since A ~ B’, it suffices to show that p; ~ ¢': B; pj. Here, p; by A, p} and
A" ~ B and p} ~ p§ (obtained above). Thus, by (CE_CONSR), p1 ~ ¢': B; p}.

Case (CE_DYNL), (CE_DYNR), (CE_FuN), (CE_Pory), (CE_PoLyL), (CE_POLYR), (CE_RECORD), and (CE_VARIANT):
Contradictory.

O
Lemma 10. If Ay — Ay ~ By — Bs, then Ay ~ By and Ay ~ Bs.
Proof. Straightforward by case analysis on the derivation of 47 — Az ~ By — Bs. O
Lemma 11. IfVX:K.A~VX:K.B, then A~ B.
Proof. Straightforward by case analysis on the derivation of 4 — As ~ By — Bs. O
Lemma 12. [fVX:K.A ~ B and QPoly (B), then X ¢ ftv(B) and A ~ B.
Proof. Straightforward by case analysis on the derivation of VX:K. A ~ B. O
Lemma 13. If [p1] = [p2], then p1 ~ po.
Proof. Straightforward by case analysis on the derivation of [p1] >~ [p2]. O
Lemma 14. If (p1) ~ (p2), then p1 =~ ps.
Proof. Straightforward by case analysis on the derivation of (p1) =~ (p2). O

Lemma 15 (consistent-decomp-aux). uppose that A ~ B. If p1 ~ pa1 ® pag and ¢ ¢ dom (pa1), then there exist
some p11 and p12 such that

® p1 = p11 © P12,
® P11 O (0:A4;) ©pra~pa1 © (L2 B;-) © paz,

¢ p11OL:A;)©p3@pra ~ pa1 @ (L: B;-) © paa for any p3 such that dom (p3) N dom (p21 © p22) = 0 if pa1 © pao
ends with x, and

o (& dom(p11).

Proof. By induction on the derivation of p; ~ p21 ® pae. Since pa; © po2s is defined, there are only two cases on poy
to be considered.

Case po1 = @ Let p13 = - and p12 = p1. Then, it suffices to show the followings.

e p1 = p1. By (EQ_REFL).
o (:A;p1 ~ L:B;pos. Since p1 ~ pa1 © pag = pae and A ~ B, we prove this by (C_CONS).

e Supposing pss ends with *, we have to show (£: A;-) ® p3 @ p1 ~ (£: B;-) ® paa for p3 such that dom (p3) N
dom (paz) = (. Since p1 ~ pa2 and dom (p3) N dom (pa2) = O and pe2 ends with x, we have p3 @ p1 ~ p2o
by (C_ConsL). Since A ~ B, we have that by (C_CoNSs).

o (& dom(-). Trivial.
Case po1 = V' : C; phy: We have:

P21 © paa = ': C;phy © pao (1)
¢ & dom (0" : C;phy) (2)

By case analysis on the rule applied last to derive p; ~ €' : C; phy ® pas.

16

Case (C_REFL): We have p; = ' : C; phy ® paa. Let p13 = £/ : C;phy and p1a = paa. Then, it suffices to show
the followings.
e p1 = (0':C;ph) ® paa. By (EQ_REFL).
o U':Ciphy ®(U:A;-) O paa~ Ll :Ciphy ©(£: B;+) ® paz. By (C_REFL) and (C_CONS).
e Supposing (¢ : C'; p51) © pee ends with *, we have to show

0 Ciphy @ (02 A;) © p3s ® pag ~ 0 Cpy @ (€2 B;+) © pas

for any p3 such that dom (p3) N dom (€' : C; phy © p22) = 0. By (C_REFL), (C_CoNsL), and (C_CoNS).
o (& dom (U': C;phy). By (@).
Case (C_DYNL): We have p; = *. Let p;; = - and p1a = *. Then, it suffices to show the followings.
o x = By (EQ_REFL).
o i A;x~ 0 Ciphy © (€2 B;+) ® paa. By (C_CoNsR) and (C_Cons) with (2).
e Supposing (¢ : C;phy) ® pas ends with x, we have to show

(0:A4;)©p3 Ok~ L2 Ciphy ©(L:B;-) O paz

for any p3 such that dom (p3) N dom (£': C; phy ® p22) = 0. By (C_ConsR), (C_ConsL), and (C_CoNs).
o /& dom (). Trivial.
Case (C_CoNs): We have p; = ¢ : D;p} and, by inversion, D ~ C and p} ~ phy ® pas for some D and pj. By
the TH, there exist some p/; and pio such that
(a) pi =Pl © pr2,
(b) Pl © (€1 A;) © pr2 ~ phy © (€2 B;+) © pag,
(€) Pli® (L:4;-) © p3s ® pra ~ phy © (£: B;+) @ pao for any ps such that dom (ps) N dom (phy © pa2) = 0 if
Phy © pa2 ends with x for some ps, and
(d) £ & dom (pi;)
for some p}; and pi2.
Let p11 = ¢ : D; p};. Then, it suffices to show the followings.
e py =0":D;pl =10 :D;pl; ©pia. By (a) and (EQ_CONS).
o V' :DiplyO(U:A;:)Opra~l:Ciphy ®(L:B;)® paa. By (b) and (C_CoNs) with D ~ C.
e Supposing (¢’ : C; phy) ® pae ends with x for some pq, we have to show

0 :D;phy © (LA) ©p3s © pra ~ L2 Ciphyy © (€2 B;-) @ paz

for any p3 such that dom (p3) N dom (€' : C;phy ® p22) = 0. By (¢) and (C_Cons) with D ~ C.
e (& dom ({': D;piy). By (d) and (2).
Case (C_ConsL): We have p; = ¢": D; p} and, by inversion,
o " & dom ({': C;phy ® paz),
o !': C;py © pao ends with *, and
o Py~ L' Cipy O paz
for some ¢, D, p/, and ps.
By the TH, there exist some p}; and p}, such that
(a) p1 = ph1 © pha,
(b) P11 © (L:A;:) © phg ~ 2 Cipyy © (L2 B;+) © paa, and
(c) pliOW:A;) Op3Opiy ~ U':C; phy ©(L: B;-)® pag for any p3 such that dom (p3) N dom (£': C; phyy ©paz) = 0
if £/ : C; phy @ paz ends with * for some pf, and
(d) € & dom (phy).
Suppose that ¢ = £. By (d), ¢’ & dom (p);). Let p11 = pl; and p12 = £": D; pl5. Then, it suffices to show
the followings.

17

o !":D;py =piy ©0:D;ply. By (a) and (EQ-CONS), we have
(" D;py =0":D;-®pl ©ply-
Since ¢ ¢ dom (p};), we have
0" D;py = piy © L7 Dsphy.

e Py OU:A;) Ol :D;ply ~ U :Ciphy ©(£: B;) ® pag. Since £ & dom (¢ : C; phy @ paa) and pas ends
with x, we have
P ©(C: A;) © (07 D5) © phy ~ 2 Cp5y © (L2 Bs2) © pao

by (c).
e Supposing (¢ : C;phy) ® pas ends with x, we have to show

P © (L A;) ©ps © L7 Dipig ~ ' Csply © (£ B;+) © pao
for any p3 such that dom (p3) N dom (¢ : C; py; © paz) = 0. Since £ ¢ dom (¢': C; phy © pa2), we have
P11 © (L A;5) ©ps © (0" D;-) © ply ~ ' Csphy © (L2 Bs+) © paa.

by (c).
o (& dom(pyy). By (d).
Otherwise, suppose that ¢ # £. Let p11 = ¢”:D; p}; and p12 = ply. Then, it suffices to show the followings.
o !":D;py =10":D;pj; ®ply. By (a) and (EQ-CONS).
o I":D;pli ©(U:A;) O ply ~ 0 Ciphyy ©(L:B;-) ® paa. Since £ & dom (¢': C;phy © paz) and £ # £, we
have ¢” & dom (¢ : C;phy ® (£: B;+) ® pa2). Since paa ends with x, we finish by (b) and (C_CoNsL).
e Supposing (¢ : C; p51) © pag ends with %, we have to show

0" Dsply © (L2 A;0) © p3 @ iy ~ 012 Cipyy © (£: B3+) © pao
for any p3 such that dom (p3) N dom (£ : C;phy @ paz) = 0. By (c), we have
P11 © (L2 A;) © ps © pip ~ U2 Cipyy © (L2 By) © pao.

Since £ & dom (£ : C;phy @ paz) and £ # £, we have £ & dom (¢': C;p41 © (£: B;+) ® pa2). Since paa
ends with *, we finish by (C_ConNsL).
o 0 & dom ({":D;ply). By (d) and ¢ # £.
Case (C_ConsR): By inversion, we have
o O ¢ dom(p),
e p1 ends with x, and
® p1~ Py © pas.
By the IH, there exist some p;; and pp2 such that
(a) p1 = p11 © piz2,
(b) p11®© (L1 A;) © pra ~ pyy © (L2 B;+) © paz,
(¢) pr1®©(L:A;-) © p3 © pra ~ phy © (€: B;+) © pag for any ps such that dom (p3) N dom (ph; © pa2) = 0 if
P51 © pa2 ends with x for some po, and
(d) € & dom (p11).
First, we show
g dom (p11 ® (£: A;-) © p12). (3)
Since £ & dom (po1) from the assumption and po; = ¢':C;phy, £ # €. Since £ & dom (p1) and p1 = p11©p12,
we have ¢/ & dom (p11 © (£: A;-) © p12).
It suffices to show the followings.

® p1 = p11 © p12. By (a).

18

¢ P11 OU:A;)Op1a~t:Ciphy ®(L: B;)® pag. Since py ends with x and p; = p11 © p12, p12 ends with
*. Thus, we have
p11® (L2 A;-) @ pra ~ 012 Cipy © (£: B+) © paa

by (b), (3), and (C_ConsR).
e Supposing (¢ : C; phy) © paa ends with x for some po, we have to show

P11O (LA)©p3 @ pra~ L Cipyy © (L2 B;-) © pao
for any ps such that dom (p3) N dom (¢ : C;phy ® paz) = 0. By (c), we have
P11 O (L:A;) © p3 @ pra ~ phy © (£: B;-) © paa.
By , 0 & dom(p11 @ (€: A;-) © p3 ® p12). Since p12 ends with x, we have
p11© (L A;) ©ps ©pra~ L' Ciphy ©(L:B;+) ® pas

by (C_CoNsR).

Case (C_DYNR), (C_Fun), (C_PoLy), (C_PoLYL), (C_PoLYR), (C_RECORD), and (C_VARIANT): Note that the
contradiction in the case of (C_POLYL) is proven by the definition of QPoly.

O
Lemma 16. If A~ B, then A= C and C ~ B for some C.
Proof. By induction on the derivation of A ~ B.
Case (CE_REFL): Obvious because = and ~ are reflexive.
Case (CE_DYNL): By x = * (EQ_REFL) and x ~ B (C_DvyNL).
Case (CE_DYNR): By A = A (EQ_REFL) and A ~ x (C_DYNR).
Case (CE_FUN): We have A; — As ~ By — By and, by inversion, A; ~ B; and Ay ~ B,. By the IHs,

o A = (,
o () ~ By,
e Ay = (5, and
o (5~ By

for some C; and Cs. By (EQ_FUN), A1 — A = C; — Cy. By (C_FuN), ¢} — C5 ~ By — Bs.

Case (CE_PoLy): We have VX:K. A’ ~ VX:K. B’ and, by inversion, A’ ~ B’. By the IH, A’ = C' and C' ~ B’
for some C'. By (EQ_PoLY), VX:K. A = VX:K. C'. By (C_PoLy), VX:K.C' ~VX:K.B'.

Case (CE_PoLYL): We have VX:K. A’ ~ B and, by inversion, QPoly (B) and X ¢ ftv(B) and A’ ~ B. By the
IH, A’ = C and C ~ B for some C. By (EQ_Pory), VX:K. A’ =VX:K.C. By (C_PoLyL), VX:K.C ~ B.

Case (CE_POLYR): We have A ~ VX:K. B’ and, by inversion, QPoly (4) and X ¢ ftv(A) and A ~ B’. By the
IH, A= C and C ~ B’ for some C. Since A = C, we can find QPoly (C) by Lemma and QPoly (A), and
X ¢ fto(C) by Lemmalf2land X ¢ ftv(A). Thus, by (C_POLYR), C ~ VX:K. B’

Case (CE_RECORD): By the IH, (EQ_RECORD), and (C_RECORD).

Case (CE_VARIANT): By the IH, (EQ_VARIANT), and (C_VARIANT).

Case (CE_CoNsL): We have ¢: A’; p; ~ B and, by inversion, B by B’,ps and A’ ~ B’ and p; ~ py. By the IHs,
o A =C(",
o O'~ P,

19

e p; =p, and

& P~ P2
for some C' and p.
If ¢ € dom (B), then B = pao1 ® (¢: B’;-) ® paa for some po; and peos such that po = pa1 @ paz and £ & dom (pa1).
Since p ~ p21 ® p22 and C’ ~ B’, there exist some p1; and p12 such that

® p=pi1©piz,

¢ p11 O (L:C5) O pra ~ pa1 © (£: B';-) © paa, and

o (& dom(p11).

Here, we have

02 A5y
L:C%p since A’ = €' and p; = p
C:C'5p11 © piz since p = p11 © p12

p11 ©(L:C';) @ p1a since £ & dom (p11)
p21© (£:B'5-) © paz
B.

I

Otherwise, if £ ¢ dom (B), it is found from B >y B’, py that B = ps and B ends with x. Since p ~ py, we have
p~ B. By (C_ConsL), ¢: A’; p ~ B. Here, we have

C:Aspp=0:Ap~ B.

Case (CE_CoNSR): We have A ~ ¢ : B’; ps and, by inversion, A >, A’, p; and A’ ~ B’ and p; ~ py. By the IHs,
o A= (",
e C'~ DB,
e p; =p, and
® P~ P2
for some C' and po.

If ¢ € dom (A), then A = p11©(£: A’;-) © p12 for some p1; and p13 such that p; = p11 ©p12 and £ & dom (p11).

Here, we have

A

p11OL: A O pro

p11 ©L:C';-®pa since A' = ¢’
£:C;p11 © p1o since £ ¢ dom (p11)

P 1 T 1 1

:C5py

L:C"5p since p; = p

£:B';5ps by (C_Cons) since C’ ~ B’ and p ~ py
= B.

O

Lemma 17. Ifp11 © (£: A;:) © p1a = pa1 © (0 : B;+) ® paa and £ & dom (p11) U dom (p21), then A ~ B and
P11 © p12 = P21 © pag.

Proof. By induction on the derivation of p11 ® (€: A;) ® p12 >~ p21 ® (£: B;+) © paa.
Case (CE_REFL): Obvious by (CE_REFL).
Case (CE_CoNsL): By case analysis on p11.

Case p11 = : We have A ~ B and p12 =~ p21 ® p22 by inversion, and therefore we finish.
Case p11 # -+ We have p;; = ¢/ : A';p);. Since £ & dom (p11), it is found that £ # ¢'.

20

Case ¢/ € dom (p21): There exist some pay1, pa12, and B’ such that
® po1 = po11 © (U1 B';-) © paia,
¢ ¢ dom (pa11),
e A~ B’ and
PO W:A;) ©pr2 > p211 ©p212© (L2 B;-) © paz
by inversion. By the TH, A ~ B and p}; ® p12 =~ p211 ® p212 @ paa. By (CE_CoNsL),

p11 @ pra =0 A p1 ©pra > pai1 © (02 B'5) © par2 © paz = pa1 © paa.

Case ¢/ ¢ dom (p21) and ¢ € dom (pa2): There exist some paay, pasa, and B’ such that
® P2 = pa21 © (! : B';-) ® pasa,
o ' & dom (pao1),
e A~ B’ and
P11 O:A;-)®p12 >~ pa1 © (L:B;-) © paz1 © pazz
by inversion. By the TH, A ~ B and p{; ® p12 > p21 ©® pag1 @ pazz. By (CE_CoNsL),
p11 ©pra =1 Al P/11 © p12 2 p21 © P21 © (5' : BY;) © p22 = pa1 © paa.

Case ! ¢ dom (pa1 ® p22): It is found that
® po1 ® poy ends with x and
® 011 ©(L:A;) ©pr2=pa ©(L:B;) ® paz
by inversion. By the TH, A ~ B and p}; ® p12 =~ pa1 © p22. By (CE_CONSL), ¢/ : A’; pi; ® p12 = p21 © pas.

Case (CE_CoNSR): Similar to the case for (CE_CONSL).

Case (CE_DYNL), (CE_DYNR), (CE_FUuN), (CE_PoLy), (CE_PoLyL), (CE_PoLYR), (CE_RECORD), and (CE_VARIANT):
Contradictory.

O

Lemma 18. If A ~ B and p11 © p12 = p21 © pae and £ & dom (p11) U dom (p21), then p11 © (£: A4;-) © p1a =~
p21 © (£: B;+) © paga.

Proof. By induction on the sum of the sizes of p11 ® p12 and ps; © pae. Since p11 ® pi2 is defined, there are only
two cases on p1; to be considered.

Case p11 = - By (CE_ConsL).
Case p11 = £ : A';ply: If po1 = -, then p1; ® p21 = p2e. By (CE_CoNSR),
p11© (£:A;-) ©pra = L:B;pr = p21 © (L2 B;-) © paa,

and so we finish.
In what follows, we suppose pa; # -. By case analysis on the rule applied last to derive ¢': A’; pl; ©®p12 = pa1 @ pas.
Case (CE_REFL): Since pa; # -, we can suppose that po; = ¢ : A’;phy. Thus, pj; © pa1 = phy © p2z, and

P11 © pa1 = phy © pae by (CE_REFL). By the TH, pi; © (€: A;-) © p12 =~ phy @ (£: B;-) ® paa. By (CE_REFL)
and (CE_ConsL),

p11© (L A;) O pra =L Alpl © (L A;) ©pra = £ Alsph © (02 B;+) © pa2 = po1 © (£: B;+) © paa.

Case (CE_DYNR): We have pa1 ® p22 = *. By (CE_CoONSR).
Case (CE_CoNSsL): By inversion, pa; @ pag b B’, ps and A’ ~ B’ and p); ® p12 =~ pa for some B’, and ps.
Case ¢/ € dom (ps21): There exist some pa17 and pa12 such that
® p21 = po11 © (' B';) © panz,
® P2 = pa211 © p212 © pa2, and

21

o V' & dom (pa11)-

Since pl; ® p12 = p2, we have pj; © p1a =~ pa11 © pa12 © pag. By the TH, pi; © (£: A;+) ©® p12 =~ pa11 © pai2 ©
(¢: B;-) ® paa. By (CE_CoNsL),

A0 O A;) ©pra > po1n @ (02 B'5-) © pa12 © (02 B;+) © paa.
Thus,
p11O (LA) Op1o =LAl ph O (C: Ay) O p12 = pa11 @ (0 B';) ©pa12 ® (02 By) @ paa = p21 @ (€2 B;+) ® pas.
Case ¢/ & dom (p21) and ¢ € dom (pa2): There exist some pao; and pags such that
® oo = pao1 © ({1 B';-) © paaa,
® p2 = p21 O p221 © page, and
o ! ¢ dom (,0221).

Since pj; ® p12 =~ p2, we have pi; © p12 =~ pa1 © paz1 © paga. By the IH, pl; @ (£: A4;+) @ p1a ~ po1 © (£
B;+) © paz1 © pazz. By (CE_ConsL),

A0 O A;) ©pra 2 por © (02 B;+) @ pao1 @ (€ B's+) @ pasga.
Thus,
P11 (LA) Op1a =LAl phi O (L Ay) O p1a = po1 © (0 B3) © paot O (U1 B) © paga = pa1 @ (€2 B3 +) ® pos.

Case ¢/ & dom (p21) and ¢ & dom (pa2): Tt is found that
® P21 © pao ends with x and
® Py = p21 © Pos.

Since pl; ® p12 = p2, we have pi; ® p12 = pa1 © pao. By the TH, pl; ® (€: A;+) ©® p12 =~ p21 @ (£: B;+) © pas.
By (CE_ConNsL), we finish.

Case (CE_CoONSR): Similar to the case for (CE_CoNsL).

Case (CE_DYNL), (CE_FuN), (CE_Povry), (CE_PoLYL), (CE_PoLYR), (CE_RECORD), and (CE_VARIANT):
Contradictory. Note that the contradiction in the case of (C_POLYR) is proven by the definition of QPoly.

O
Lemma 19. If p1 ~ pa1 © po2 and p1 ends with x and £ & dom (p1), then p1 ~ pa1 © (£: A;-) ® pag for any A.

Proof. By induction on the sizes of p; and pa;. If po; = -, then we finish by (CE_CoNSR).
In what follows, since pa1 ® pag is defined, we can suppose that pa; = ¢ : B; phy for some ¢/, B, and ph,. By
case analysis on the rule applied last to derive p; ~ p21 ® pao.

Case (CE_REFL): We have p; = {': B; p} for some p} such that p| = ph; ©®pas. Since p} ~ phy ®p22 by (CE_REFL),
we have p' ~ ph; ©® (£: A;-) ® paz by the IH. By (CE_ConsL), we finish.

Case (CE_DYNL): By (CE_DyNL).

Case (CE_CoNSL): We have p; = ¢”: C;p| and, by inversion, pa; ® paa e B, ph and C ~ B’ and p) ~ p} for
some ¢", B', C, p}, and p. Note that £ #£ £ since £ & dom (p1).
Case £ € dom (p21): There exist some po11 and po1o such that
® po1 = p211 ®© (0" : B'5-) © paia,

o ph = pa11 © p212 © pag, and
° 6” ¢ dom (,0211)-

Since p] ~ ph, we have p] ~ po11 © pa12 @ po2. By the TH, p] =~ po11 ® pa12 @ (£: A;-) @ pag. Since
(p21 @ (£: A;+) ® paz) Do B pa11 © pa12 © (£: A;+) © pag, we finish by (CE_ConNsL).

Case 0" ¢ dom (p21) and £ € dom (p22): There exist some pag; and page such that

22

® P22 = p221 © ({": B';-) © paaa,
o ph = pa1 © paz1 © page, and
o ! & dom (pas1).
Since p) =~ ph, we have p| =~ po; © pag1 ® page. By the TH, pi =~ poy © (€: A;-) © paza1 © page. Since
(p21 ® (ﬂ D A;) O] p22) D>grr B/,pgl ® (ﬁ D A;) © p221 © p222, We finish by (CE,CONSL).
Case 0" & dom (pa1) and £ & dom (p22): We have B’ = x and pl, = p21 ® p22 and pa; © paz ends with x. Since
P = ph, we have p} =~ pa1 @ paa. By the TH, p} >~ po; ® (£: A;-) ® pas. By (CE_CoNSL), we finish.

Case (CE_CoNsR): Since pa1 = ¢ : B; phy, by inversion p; by C,p} and C ~ B and p} ~ ph; © pag for some C
and p}. By the IH, pj >~ ph; ® (£: A;-) ® paa. By (CE_CONSR), we finish.

Case (CE_DYNR), (CE_FuN), (CE_PoLy), (CE_PorLYL), (CE_PoLYR), (CE_RECORD), and (CE_VARIANT): Contradictory.
Note that the contradiction in the case of (C_POLYL) is proven by the definition of QPoly.

O
Lemma 20. IfA=C and C=DB and A~ C and C ~ B, then A ~ B.
Proof. By induction on A ~ C.
Case (CE_REFL): Obvious.
Case (CE_DYNL): By (CE_DYNL).
Case (CE_DYNR): We have C' = . By Lemmalf| (1)), A = . Thus, we finish by (CE_DYNL).

Case (CE_FUN): We have A = A7 — Ay and C = C; — (5 and, by inversion, A; ~ C; and Ay ~ Cy for some
Ay, Ag, C1, and Cy. Since A = C, we have A1 = (] and A; = (5 by Lemma . Again, by Lemma
(2), since C = B, there exist some B; and B such that B = By — By and C; = By and Cy = B,. Since
C ~ B, we have C; ~ By and Cy ~ By by Lemma Thus, by the THs, Ay ~ B; and As ~ Bs. By (CE_FUN),
A1—>A2231—>BQ.

Case (CE_PoLY): We have A = VX:K. A’ and C = VX:K. (' and, by inversion, A’ ~ C’ for some X, K, A’, and
C’'. Since A = C, we have A’ = C' by Lemma . Again, by Lemma , since C' = B, there exist some
B’ such that B = VX:K.B’ and C' = B’. Since C ~ B, we have C' ~ B’ by Lemma Thus, by the IH,
A’ ~ B'. By (CE_PoLy), VX:K. A' ~VX:K.B'.

Case (CE_PoLYL): We have A = VX:K. A’ and, by inversion, QPoly (C) and X ¢ ftv(C), for some X, K, and
A’. QPoly (C) is contradictory with the fact that ¢ = VX:K. C’ for some C’, which is implied by Lemma [j
with A= C and A = VX:K. A"

Case (CE_POLYR): We have C = VX:K. C’ and, by inversion, QPoly (4) and X ¢ ftv(A), for some X, K, and
C’. QPoly (A) is contradictory with the fact that A = VX:K. A’ for some A’, which is implied by Lemma
with A= C and C = VX:K.(C'.

Case (CE_RECORD): We have A = [p1] and C' = [p3] and, by inversion, p; ~ p3 for some p; and p3. Since 4 = C,
we have p; = p3 by Lemma . Again, by Lemma (4), since C' = B, there exists some py such that B = [ps]
and p3 = po. Since C ~ B, we have p3 ~ ps by Lemma By the IH, p; ~ p3. By (CE_RECORD), [p1] =~ [p2].

Case (CE_VARIANT): We have A = (p;) and C = (p3) and, by inversion, p; ~ p3 for some p; and p3. Since
A = C, we have p; = ps by Lemma . Again, by Lemma , since C' = B, there exists some py such that
B = {p2) and p3 = ps. Since C ~ B, we have p3 ~ ps by Lemma By the IH, p; ~ p2. By (CE_VARIANT),
(p1) = (p2).

Case (CE_ConsL): We have A = ¢: A’; p; and, by inversion, C by C’, p3 and A’ ~ C’ and p; ~ ps for some ¢, A,
C', p1, and p3. Since A = C, there exist p3; and pse such that

) C = p31®(£ZC,;')®p327
o« A =C(,

23

® p1 = p31 O p32, and
o (& dom(ps1)
by Lemma @ Again, by Lemma @, since C = B, there exists some B’, po1, and pas such that
e B = py1®:B';)® paa,
e C'=D,
® p31 © P32 = p21 © pa2, and
o (& dom(pa).

Since p31 © (0: C';-)Ops2 = C ~ B =po1 ®(:B';-)®pag and £ &€ dom (p31) U dom (pa1), we have €' ~ B’ and
P31 ® p3z = pa1 © pae by Lemma[17] Since C >y C’, ps, we have p3 = p31 ® ps2, S0 p1 =~ p31 © ps2. By the IHs,
A" ~ B" and P1 = P21 @pgg. Since (p21®(€:B’;)@pgg) >y B/7p21 @pQQ, we have EIA/;,Ol ~ pz1®(€:B'; ')@,022 =B
by (CE_CoNSL).

(CE_ConsR): We have C' = £: C’; p3 and, by inversion, A >y A’,p; and A’ ~ C’ and p; ~ p3 for some ¢, A’,
C’, p1, and p3. Since A = C, there exist p11 and p12 such that

e A= pnuo(:A)Opia,
o A = Cl7

e p11 © p12 = p3, and

o/ ¢ dom (p11)

by Lemma @ Again, by Lemma @, since C = B, there exists some B’, pa1, and pao such that

® B =py®{:B";)O paa,
e O'=D1,

® p3 = p21 © pa2, and

o (& dom (pa1).

Since £: C';p3 = C ~ B = p21 ® (£: B';-) ® pag and £ ¢ dom (pa1), we have C' ~ B’ and p3 =~ pa; © paa2 by
Lemma Since A >y A’, p1, we have p1 = p11 © p12, S0 p11 © p12 = p3. By the IHs, A’ ~ B’ and p11 © p12 =~
p21 © paa. Since £ & dom (p11) U dom (p21) and A" ~ B’, we have p1; © (£: A’;-) © p12 =~ pa1 © (£: B';+) © pao.

O
Lemma 21. If A= B, then A ~ B.
Proof. By induction on the derivation of A = B.
Case (EQ_REFL): By (CE_REFL).

Case (EQ_TRANS): By inversion, A = C' and C' = B for some C. By the IHs, A ~ C and C ~ B. We have A ~ B
by Lemma

Case (EQ_Sym): By inversion, B = A. By the IH, B ~ A. By Lemmalf] 4 ~ B.
Case (EQ_FuN): By the IHs.
Case (EQ_PoLy): By the IH.

Case (EQ_VARIANT): By the ITH.

(
(
(
Case (EQ_RECORD): By the IH.
(
Case (EQ_CoNs): By the IH, (CE_REFL), and (CE_CONS).
(

Case (EQ_SwaP): By (CE_REFL) and (CE_CoONsL).

24

Lemma 22. IfA=C and C ~ B, then A~ B.

Proof. By induction on C' ~ B.

Case (C_REFL): By Lemma

Case (C_DYNL): We have C' = x. By Lemma [5| (), A = . Thus, we finish by (CE_DYNL).
Case (C_DYNR): We have B = x. By (CE_DYNR).

Case (C_FuN): We have C = C} — Cy and B = By — By and, by inversion, C; ~ By and Cy ~ By for some Cf,
Cy, By, and Bs. Since A = () — (5, there exist some A7 and Aj such that A = A; — As and A; = €} and
Ay = Gy, by Lemma . By the IHs, Ay ~ B; and A3 ~ By. By (CE_FUN), A} — Ay ~ By — Bs.

Case (C_PoLy): We have ¢ = VX:K.(C' and B = VX:K. B’ and, by inversion, C' ~ B’ for some X, K, C’, and
B’. Since A =VX:K. (', there exists some A’ such that A = VX:K. A’ and A’ = C’, by Lemmal/[j| (3). By the
IH, A’ ~ B’. By (CE_PoLy), we finish.

Case (C_PorLyL): We have C' = VX:K.C’ and, by inversion, QPoly (B) and X ¢ ftv(B) and C' ~ B. Since
A = VX:K. (', there exists some A’ such that A = VX:K. A" and A’ = C’, by Lemma . By the IH,
A’ ~ B. By (CE_PoLyL), we finish.

Case (C_PoLYR): We have B = VX:K. B’ and, by inversion, QPoly (C) and X ¢ ftv(C) and C ~ B’. By the
IH, A~ B’. Since A= C and QPoly (C) and X ¢ ftv(C), we have QPoly (A) and X ¢ ftv(A) by Lemmas]
and 2] Thus, by (CE_POLYR), we have A ~ VX:K.B'.

Case (C_RECORD): We have C = [ps3] and B = [po] and, by inversion, p3 ~ ps for some ps and ps. Since
A = C, there exists some p; such that A = [p1] and p; = p3, by Lemma[5| {#). By the IH, py ~ py. Thus, by
(CE_RECORD), we have [p1] ~ [pa].

Case (C_VARIANT): We have C = (p3) and B = {ps) and, by inversion, p3 ~ ps for some p3 and ps. Since
A = C, there exists some p; such that A = (p;) and p; = ps, by Lemma . By the IH, p; ~ ps. Thus, by
(CE_VARIANT), we have {p1) =~ (p2).

Case (C_Cons): We have C = ¢: C’;p3 and B = £: B’; ps and, by inversion, C' ~ B’ and p3 ~ py for some ¢, C’,
B’, p3, and psy. Since A = C, there exist some A’, p11, p12 such that

e A=pnoU:A5) O pie,
e A =C(,

® p11 © p12 = p3, and

o / Q dom (Pll)

by Lemma @ By the IHs, A’ ~ B’ and p11 ® p12 ~ pa. We have A >y A’ p11 @ p12. Thus, by (CE_CoNSR),
A~{:B;ps.

Case (C_ConsL): We have C' = ¢: C’; p3 and, by inversion, £ ¢ dom (B) and B ends with x and p3 ~ B for some
£, C', and ps. Since A = C, there exist some A’, p11, p12 such that

e A=pnOU:A5)0pie,
e A =C,

® p11 © p12 = p3, and

o (& dom(p11)

by Lemma @ By the IH, p11 ® p12 ~ B. By Lemmas@and p11© (£:A5) ®pra ~ B.

25

Case (C_ConsR): we have B = £: B’; p and, by inversion, £ ¢ dom (C) and C ends with x and C' ~ p, for some
¢, B', and py. By the ITH, A ~ p,. Since A = C and £ ¢ dom (C) and C ends with *, we have £ € dom (A) and
A ends with x by Lemmas [2f and [3] Thus, by (CE_CoNsR), we have A ~ ¢: B’; p.

O
Lemma 23. IfA~ B and B= C, then A~ C.
Proof. By induction on the derivation of A ~ B.
Case (CE_REFL): By Lemma
Case (CE_DYNL): By (CE_DyYNL).
Case (CE_.DYNR): We have B = «. Since B = C, we have C' = % by Lemma [j| (I). By (CE_DYNR).

Case (CE_FUN): We have A = 41 — Ay and B = B; — B, and, by inversion, A; ~ B; and Ay ~ B; for some
Ay, As, By, and Bs. Since B = (|, there exist some C; and C5 such that C = C; — C5 and B; = €] and
By = (5 by Lemma . By the IHs, A; ~ C) and Ay ~ Cy. Thus, A; — As ~ C) — Cy by (CE_FuN).

Case (CE_PoLY): We have A = VX:K. A" and B = VX:K. B’ and, by inversion, A’ ~ B’ for some X, K, A’, and
B’. Since B = C, there exist some C’ such that C = VX:K.(C’ and B’ = ¢’ by Lemma [j] (3). By the IH,
A’ ~ O, Thus, YX:K. A ~V¥X:K. ' by (CE_PoLy).

Case (CE_PoLYL): We have A = VX:K. A’ and, by inversion, QPoly (B) and X ¢ ftv(B) and A’ ~ B for some
X, K, and A’. By the IH, A’ ~ C. Since B = C and QPoly (B) and X ¢ ftv(B), we have QPoly (C) and
X ¢ fto(C) by Lemmas [l and 2] Thus, VX:K. A’ ~ C by (CE_PoLyL).

Case (CE_POLYR): We have B = VX:K. B’ and, by inversion, QPoly (4) and X ¢ ftv(A) and A ~ B’ for some
X, K, and B’. By Lemmalj (3)), since B = C, there exists some C’ such that C = VX:K.C’ and B’ = C'. By
the IH, A ~ ¢". By (CE_POLYR), A ~ VX:K. C'.

Case (CE_RECORD): We have A = [p;] and B = [p»] and, by inversion, p; ~ p, for some p; and p,. By Lemmal[j]
(@), since B = C, there exists some p3 such that C' = [p3] and py = p3. By the IH, p; ~ p3. By (CE_RECORD),
[p1] ~ [ps].

Case (CE_VARIANT): We have A = (p;) and B = (p,) and, by inversion, p; > p, for some p; and ps. By Lemmalp]
(), since B = C, there exists some p3 such that C' = (ps) and ps = ps. By the IH, p; =~ p5. By (CE_VARIANT),
(1) ~ (p3).

Case (CE_CoNSL): We have A = £: A’; p; and, by inversion, B by B’, p; and A’ ~ B’ and p; ~ py for some ¢, A’
Bl? P1, and pP2-

If ¢ € dom (B), then there exist some po; and pos such that
® B = py1®(L:B';) O pa,
® po = p21 © pa2, and
o 0 ¢ dom (pnr).

Since B = C, there exist some C’, p31, and p3o such that
o C =p310(:C";)0O psa,
e B=C(',
e (& dom(ps1), and
® 021 ® p22 = p31 © P32

by Lemma (@ Since p1 >~ p2 and ps = pa1 ® p2g = p31 O ps2, we have p1 >~ p31 @ pse by the TH. Besides, A’ ~ B’
and B’ = €', we have A’ ~ C’ by the TH. Since C >; C’, p31 © ps2, we have £: A’; p; =~ C by (CE_CoNsL).

Otherwise, if £ ¢ dom (B), then B’ = x and po = B and B ends with x. Since p; ~ p2 and py = B = C, we
have p; ~ C by the IH. Since B = C, we can find C >y x, C' by Lemmas 4| and [3| Since A’ ~ x by (CE_DYNR)
and p; ~ C, we have {: A’; p; ~ C by (CE_CONSL).

26

Case (CE_CoNSR): We have B = {£: B’; p; and, by inversion, A by A’, p; and A’ ~ B’ and p; ~ py for some ¢, A’,
B’ p1, and py. Since B = C, there exist some C’, p31, and psz2 such that

e C =p310¢:C;5)0O psa,
e B'=(",

o (& dom(ps1), and

® p2 = p31 O P32

by Lemma @

If £ € dom (A), then there exist some p1; and p12 such that

[} A = p11®(£ZA/;')®p12,
® p1 = p11 © p12, and
o ¢ & dom(p11).

Since p1 ~ p2 and p = p31 © ps2, we have p; =~ p3; © p3z by the IH. Besides, A" ~ B" and B’ = C’, we have
A" ~ C' by the TH. By Lemma [I§]

A=p1OU: A5)Opa~p31 ©(L:C'5-) ©pze = C.
Otherwise, if £ & dom (A), then A’ = x and p; = A and A ends with x. Since A = p; =~ ps and py = p31 © p32,
we have A ~ p31 ® p32 by the TH. By Lemma A~ps10U:C5) @ pse = C.
0
Theorem 1. A~ B if and only if A= A" and A’ ~ B’ and B’ = B for some A’ and B’'.

Proof. First, we show the left-to-right direction. Suppose A ~ B. By Lemma there exists some A’ such that
A= A"and A’ ~ B. Since [B == B] by (EQ_REFL), we finish

Next, we show the right-to-left. Suppose that A = A’ and A’ ~ B’ and B’ = B. By Lemma 2] A ~ B’. By
Lemma 23] A ~ B. O

2.2 Type Soundness
Lemma 24 (Weakening). Suppose that 3 +T'1,Ts. Let T's be a typing context such that dom (I's) N dom (T's) = 0.

1. IfSFTy,Ts, then S F Ty, T9, 5.

2. IfSiTy,TsF A: K, then X:T1,To, T3 - A: K.

3. IfS:Ty,Tsb e: A, then X:Tq,To, T3 F e : A.
Proof. Straightforward by mutual induction on the derivations. O
Lemma 25 (Weakening type names). Suppose that ¥ C ¥/,

1. IfSFB<®C, then Y F B <% C.

2. If SFT, then ¥ FT.

3. IfS;THB:K, thenY;T+B: K.

4. If S;T'Fe: B, thenY;T'F e : B.
Proof. Straightforward by mutual induction on the derivations. O
Lemma 26. If QPoly (A), then QPoly (A[B/X]).

Proof. First, we show A[B/X] is not a polymorphic type by case analysis on A.

27

Case A = %, Y (where X # Y), a,t, A — B, [p], {p), -, and £: C; p: Obvious.
Case A = X: Since QPoly (A), A must contain the dynamic type; thus, contradictory.
Case A = VY:K. C: Contradictory with QPoly (4).

Thus, it suffices to show that A[B/X] contains the dynamic type, which is obvious since A contains the dynamic
type (from QPoly (A4)) and type substitution preserves that property. O

Lemma 27. If py by A, pa, then p1[B/X] b A[B/X], p2[B/X].
Proof. By induction on p;.

Case p1 = ' : C;py: It/ = ¢, then A = C and py = p}, and, therefore, the statement holds obviously.

Otherwise, if ¢/ # ¢, then we have p} >y A, ph and po = ¢ : C;py. By the IH, pi[B/X] >, A[B/X], ph[B/X].
Thus, ¢/ : C[B/X]; pi[B/X] e A[B/X],¢': C[B/X]; ph|B/X], which is what we have to prove.

Case p; = x: Obvious.

Lemma 28 (Type substitution preserves consistency). If A ~ B, then A[C/X]|~ B[C/X].
Proof. By induction on the derivation of A ~ B. We mention only the interesting cases below.

Case (CE_PoLYL): We have VY:K. A’ ~ B and, by inversion, QPoly (B) and Y ¢ ftv(B) and A" ~ B. Without
loss of generality, we can suppose that Y ¢ ftv(C). Thus, Y & ftv(B[C/X]). By the IH, A'[C/X] ~ B[C/X].
By Lemma 26 QPoly (B[C/X]). Thus, by (CE_PoLYL), VY:K. A'[C/X] ~ B[C/X]

Case (CE_POLYR): Similar to the case for (CE_POLYL).

Case (CE_ConsL): We have £: A’; p; ~ B and, by inversion, B >, B’,p; and A’ ~ B’ and p; ~ py. By the
IHs, A'[C/X] ~ B'[C/X] and p1[C/X] ~ p2[C/X]. By Lemma 27, B[C/X] >, B'[C/X],p2[C/X]. Thus, by
(CE_ConsL), £: A'|C/X]; p1[C/X] = B[C/X].

Case (CE_ConsR): Similar to the case for (CE_CoONsL).

Lemma 29 (Type substitution). Suppose that ¥;T1 F A: K.
1 If STy, X:K, s, then © Ty, Ty [A/X].
2. If STy, X:K,To F B : K', then ©;T1, T2 [A/X] - B[A/X] : K'.
3. If STy, X:K,Ta & e: B, then ©;T1, T [A/X] F e[A/X] : B[A/X].

Proof. Straightforward by mutual induction on the derivations. Only the interesting case is (WF_TYVAR). Suppose
we have X;T'1, X:K, s + Y : K'. By inversion, ¥ + I'y, X:K,T'y and Y:K’' € T'y, X:K,T'5. By the IH, ¥ F
I',T[A/X]. It X # Y, then Y:K' € T'1,T2[4/X] and, therefore, by (WF_TYVAR), ;11,2 [A/X]F YV : K'.
Otherwise, if X = Y, then we have to show X;T'1, o [A/X]F A : K. Since ;1 F A: K and ¥ +T'1,T9 [A/X],
we have 3;Ty, T2 [A/X] + A : K by Lemma 24] (2).

Note that the case for (T_CAST) uses Lemma [28 and that the case for (T_CoNV) depends on the fact that e
and B are closed. O

Lemma 30 (Type substitution on convertibility). Suppose that o does not occur in A.
1. ¥,a:K := B+ Ala/X] <t A[B/X].
2. ¥,:K := B+ A[B/X] <% Ala/ X].

Proof. Let ¥ = X, a:K := B. By induction on A.

28

Case A = X: We have Ala/X] = a and A[B/X] = B.
First, we have to show ¥’ = a <™ B, which is shwon by (CV_REVEAL).

Next, we have to show ¥/ + B <~% «, which is shown by (Cv_CONCEAL).
Case A = Y where X # Y: By (Cv_TYVAR).
Case A = a: Contradictory with the assumption that « does not occur in A.
Case 4 = o' where o # o/: By (Cv_TYNAME).
Case A = x: By (Cv_DyN).
Case A = 1: By (CV_BASE).
Case A = A; — As: By the IHs, we have

o X' Aifa/X] <t Ay[B/X],
o X'+ AsJa/X] <1 A9[B/X],
o ¥+ A[B/X] <% Ai1[a/X], and
o X'+ Ay[B/X] <7% As|a/X].

By (CV_FuN), ¥ F Aj[a/X] — As[a/X] <+ Ay[B/X] — As[B/X] and ¥/ - A,[B/X] — As[B/X] <~
Aila/X] = Asfa/X].

Case A = VX":K.A": By the IH and (Cv_PoLy).
Case A = [p]: By the IH and (CV_RECORD).
Case A

(p): By the TH and (CV_VARIANT).
Case A = -: By (CVv_REMP).
Case A = £: A’; p: By the IHs and (Cv_CONS).

O
Lemma 31.
1. If ¥ FTq,2:A, T, then X FT1,T5.
2. If ¥;Ty,2:A,To F B: K, then ;T\, T2 B : K.
Proof. Straightforward by mutual induction on the derivations. O

Lemma 32 (Value substitution). If3;TyFwv: A and £;T,2:A,Ts b e : B, then 3;T,T's F e[v/z] : B.

Proof. By mutual induction on the derivations. The only interesting case is (T_VAR).

Suppose that 3;T1,2:4,Ts F y : B. By inversion, ¥ - I'y,z:A,T's and y:B € T'y,z2:4,T3. By Lemma
YFTy,Ty Ifz # y, then y:B € I'1,T'3. Thus, by (T_VAR), £;T1,T'2 - y : B. Since y[v/z] = y, we finish.
Otherwise, if = y, then we have to show that ¥;T'1,I's F v : A (note that y[v/z] = v and that A = B since
y:B € I'y,2:A,T3). Since ;1 Fv: A and ¥ FTI'1, Ty, we have 3;T,To - v : A by Lemma .

The cases for (T_-ConsT), (T-TAPP), (T_REmP), (T_VINJ), (T_VLIFT), (T_CAsT), and (T_-CoNV) also use
Lemma, 311 O

Lemma 33 (Canonical forms). Suppose that 2;0 + v : A.
1. If A = «, then v = K for some k.

2. If A = B — C, then v = Az:B.e for some x and e, or v = k for some k such that ty(k) = B — C.

3. If A =VX:K.B, thenv = AX:K.e :: B for some e.

29

4. If A =[], thenv = {}.
5. If A =1[0:B;pl], thenv = {{ = v;v2} for some vy and vs.
6. If A = {{:B;p), thenv = £v' orv =1{{: B)v' for some v'.

7. If A = %, thenv = v : G 2 % for some v/, G, and p.
8 If A = [«], thenv = v : [y] 2 [+] for some v, v, and p.
9. If A = (%), then v = v : () 2 (%) for some v', ~, and p.
10. If A = a, thenv = v' : B = « for some v' and B.
11. If A = [a], then v = v : [p] = [a] for some v" and p.
12. If A = (@), then v = v' : (p) = () for some v’ and p.
Proof. By case analysis on the typing rule applied to derive ;0 F v : A.
Case (T_VAR), (T_AppP), (T_TApP), (T_RLET), (T_-VCASE), and (T_BLAME): Contradictory.
Case (T_ConsT), (T_-LaM), (T_-TLaM), (T_REMP), (T_REXT), (T_VINJ), (T_-VLIFT): Obvious.

Case (T_CAsST): We have ;0 - e : B £ A : A for some e, B, and p. By inversion, ;0 - A : T. We do case
analysis on the rule applied last to derive ;0 - A : T.
Case (WF_TYVAR), (WF_REwMP), and (WF_CoNs): Contradictory.

Case (WF_TYNAME), (WF_BASE), (WF_FuN), and (WF_PorLy): Contradictory because there are no values
of the form e : B & A in these cases.

Case (WF_DvN), (WF_RECORD), and (WF_VARIANT): Obvious because of the definition of values.

Case (T-ConvV): We have ;0 F e : B 2 A A for some e, B, and ®. By inversion, X;0 - A : T. We do case
analysis on the rule applied last to derive ;0 A : T.
Case (WF_TYVAR), (WF_REMP), and (WF_CoNs): Contradictory.
Case (WF_DvN), (WF_Baske), (WF_Fun), and (WF_PoLy): Contradictory because there are no values of the

o, .
form e : B = A in these cases.

Case (WF_TYNAME), (WF_RECORD), and (WF_VARIANT): Obvious because of the definition of values.

O
Lemma 34. IfY;0F v: (-), contradictory.
Proof. Straightforward by case analysis on the rule applied last to derive ;0 F v : (-). O
Lemma 35 (Value inversion: constants). IfX;0F k: A, then A = ty(k).
Proof. Straightforward by case analysis on the derivation of X;0 & : A. O
Lemma 36 (Value inversion: constants). If 3;0+ Az:A.e: A’ — B, then A = A’ and 3;x:A+ e : B.
Proof. Straightforward by case analysis on the derivation of X; 0 - Az:A.e : A’ — B. O

Lemma 37 (Value inversion: constants). If Z;0 - AX:K.e :: A: VX" :K'. A, then X = X' and K = K' and
A=A and 5; X:KFe: A.

Proof. Straightforward by case analysis on the derivation of X;0 - AX:K.e :: A:VX":K'. A" O

30

Lemma 38 (Value inversion: record extensions). If ¥;0 F {€ = vi; v} : [p], there exist some A and p’ such that
p=1:Ap]) and T;0F vy : A and ;0 F vy 2 [p'].

Proof. Straightforward by case analysis on the derivation of 3;0 - {£ = v; v} : [p]. O
Lemma 39 (Value inversion: variant injections). If X0+ fv: (£: A;p), then Z;0F v : A.

Proof. Straightforward by case analysis on the derivation of X;0 F £v : (£: A;p). O
Lemma 40 (Value inversion: variant lifts). If X;0 E1(¢: A) v : (£: B;p), then 3;0F v : {p) and A = B.

Proof. Straightforward by case analysis on the derivation of ;0 H1(€: A) v : (€: A; p). O
Lemma 41 (Value inversion: casts). IfX;0F v: A L B:B, then ;0 v: A and A~ B.

Proof. Straightforward by case analysis on the derivation of Z:0+ v: A £ B : B. O
Lemma 42 (Value inversion: conversions). IfS;0Fv: A = a:a, then %;0 v : A and S(a) = A.

Proof. Straightforward by case analysis on the derivation of ;0 v: 4 = a: o O

Lemma 43 (Value inversion: conversions with records). If ;0 F v : [p] = [o] : «, then Z;0 F v : [p] and
() = p.

Proof. Straightforward by case analysis on the derivation of ;0 F v : [p] = [o] : c. O

Lemma 44 (Value inversion: conversions with variants). If 3;0 F v : (p) = (@) : «, then ;0 F v : (p) and
Y(a) = p.

Proof. Straightforward by case analysis on the derivation of ¥;0 F v : (p) = (a) : a. O
Lemma 45. IfYX|e— X' | ¢ ore = blamep, then ¥ | E[e] — X' | ¢” for some e”.

Proof. If e = blame p, then we finish by (E_BLAME). If ¥ | e — X' | ¢/, we can prove the statement straightfor-
wardly by case analysis on the evaluation rule applied to derive X | e — X/ | ¢’. O

Lemma 46 (Unique ground type). If2:0F A: T and A # % and A is not an universal type, then there exists an
unique ground type G such that A ~ G.

Proof. By case analysis on A.
Case A = X: Contradictory with X;0 - A: T
Case A

a: Only ground type « is consistent with a.
Case A = x: Contradictory with A # .
Case A = ¢: Only ground type ¢ is consistent with ¢.

Case A

B — C: Only ground type x — x is consistent with B — C.
Case A = VX:K. B: Contradictory.

Case A = [p]: Ounly ground type [x] is consistent with [p].

Case A = (p): Only ground type (%) is consistent with (p).

Case A = -: Contradictory with ;0 A4 : T.

Case A = £: B; p: Contradictory with 3;0F A : T.

31

Lemma 47. If3;0F p: R and p # *, then grow(p) is defined and grow(p) is a ground row type.

Proof. Straightforward by case analysis on the derivation of ;0 p: R.
Lemma 48. If grow(p) is defined, then p ~ grow(p).
Proof. Obvious by definition of grow.
Lemma 49. If grow(p) is defined and ;T F p: K, then ;T F grow(p) : K.
Proof. Obvious by definition of grow.
Lemma 50.
1. If 5T+ A: K, then X FT.
2. If¥;Tke: A, then XFT and ;T A T.
Proof. Straightforward by induction on the typing derivations with Lemmas [24] and [29]
Lemma 51 (Progress). If ;0 F e: A, then one of the followings holds:
e ¢ is a value;
e ¢ = blamep for some £; or
o X|e— 3 |¢€ for someX and €.
Proof. By induction on the derivation of ;0 e : A.
Case (T_VAR): Contradictory.
Case (T_ConsT), (T_-LaM), (T_-TLaM), (T_-REMP), and (T_BLAME): Obvious.

Case (T_APP): We have ©;0 F e ey : A and, by inversion, 3;0F e : B — A and 3;0F ey : B. If ¢4 = blame p for

some p, or X | e; — X' | e} for some ¥/ and ef, then we finish by Lemma

In what follows, we can suppose that e; = v; for some v; by the TH. If e; = blame p for some p, or ¥ | e —

¥’ | €} for some ¥’ and e}, then we finish by Lemma [45]

In what follows, we can suppose that e = vy for some v by the ITH. We have ¥;0 - v; : B — A. Thus, by

Lemma there are two cases on v; to be considered.

Case v; = Az:B.ej for some z and ef: By (R-BETA)/(E_RED).

Case v; = k1 and ty(k1) = B — A for some k1: By the assumption on constants, B = ¢ for some ¢.

Since

;0 F vy i1, we have vy = ko for some ky. By the assumption on constants, ((k1, ko) is defined. Thus, we

finish by (E_ConsT)/(R-RED).

Case (T-TApPP): We have ;0 - ¢ B : C[B/X] and, by inversion, ;0 + e; : VX:K.C and ;0 + B : K. If

e; = blamep for some [p], or X | e, — X' | 1 for some ¥’ and ef, then we finish by Lemma

In what follows, we can suppose that e; = wv; for some v; by the IH. We have X;0 + v; : VX:K. C. Thus, by

Lemma[33] vy = AX:K.e] :: C for some ef. By (E_TYBETA), we finish.

Case (T_REXT): We have ;0 F {£ = eg;ex} : [¢: B;p] and, by inversion, ;0 - e; : B and ;0 F e :

e; = blamep for some p, or X | e, — ¥/ | ¢ for some ¥’ and ej, then we finish by Lemma

o). If

In what follows, we can suppose that e; = v; for some v; by the IH. If e = blamep for some p, or ¥ | eg —

' | €} for some ¥’ and e}, then we finish by Lemma [45]

In what follows, we can suppose that e; = vy for some vy by the IH. Then, we finish because e = {£ = v; v5}

is a value.

32

Case (T-RLET): We have ;0 - let{¢ = z;y} = ey in ez : A and, by inversion, ;0 - ey : [(: B; p] and Z; 2: B, y:[p] -
ey : A. If e = blame p for some p, or ¥ | e; — X' | ¢] for some ¥’ and ef, then we finish by Lemma [45]

In what follows, we can suppose that e; = v for some v; by the IH. Since 3;0 F v : [¢: B;p], we have
vy = {€ =v{;vj} for some v{ and vj by Lemma[33] Thus, we finish by (R_RECORD)/(E_RED).

Case (T_VINJ): We have ;0 £¢’ : (£: B; p) and, by inversion, ;0 ¢’ : B and ;0 F p: R. If ¢/ = blamep for
some p, or X | ¢/ — X' | ¢” for some ¥’ and e”, then we finish by Lemma

In what follows, we can suppose that ¢/ = v for some v by the IH. Then, we finish because e = £ v is a value.

Case (T_VLIFT): We have X;0 H1 (¢: B) e’ : (£: B;p) and, by inversion, 3;0 F ¢ : (p) and ;0 - B : T. If
e/ = blame p for some p, or X | ¢/ — ¥’ | ¢” for some ¥’ and €”, then we finish by Lemma [45]
In what follows, we can suppose that ¢/ = v for some v by the TH. Then, we finish because e =1(£: B)v is a
value.

Case (T_VCASE): We have ;0 I casee’with ({x — ej;;y — e2) : A and, by inversion, ;0 = € : (¢: B;p). If
e’ = blame p for some p, or & | ¢/ — ' | ¢’ for some ¥’ and €”, then we finish by Lemma [45]

In what follows, we can suppose that ¢/ = v for some v by the IH. We have ;0 F v : (¢: B;p). Thus, by
Lemma there are two cases on v to be considered.

Case v = (v’ for some v": By (R_CASEL)(E_RED).
Case v =1(¢: B) v’ for some v": By (R_-CASER)(E_RED).

Case (T-CAsT): We have ;0 - ¢’ : B £ A : 4 and, by inversion, ;0 - ¢’ : Band B~ A and ;0 A : T. If
e/ = blame g for some ¢, or ¥ | ¢/ — ¥’ | ¢” for some ¥’ and e, then we finish by Lemma [45]

In what follows, we can suppose that ¢/ = v for some v by the IH. By case analysis on B ~ A.

Case (CE_REFL): We have B = A. By case analysis on A.
Case A = X: Contradictory with ;0 A : T.
Case A = a: By (R.IDNAME)/(E_RED).
Case A = x: By (R_.IDDYN)/(E_RED).
Case A = 1: By (R-IDBASE)/(E_RED).
Case A = A; — As: By (R-WRraAP)/(E_RED).
Case A = VX:K.A": By (R_.CoNTENT)/(E_RED).
Case A = [p]: By case analysis on p. Note that Z;0 F p : R since ;0 + [p] : T.
Case p = X, 1, A’ = B',VX:K. A, [¢], and (p’): Contradictory with ;0 - p: R.
Case p = a: By (E_.RIDNAME)/(E_RED).
Case p = *: By Lemma E v = v : [y/] & [« for some v’, 7/, and ¢q. We have [y/] ~ [«] by
(CE_DYNR)/(CE_RECORD). Thus, we finish by (R_-RFrROMDYN)/(E_RED).
Case p = -+ By (R_-REMP)/(E_RED).
Case p = £: C;p': By Lemma v = {€ = vy; v} for some vy and ve. Thus, v >y vy, v9. Since £: C;p' >y
C,p', we finish by (R-REV)/(E_RED).
Case A = {p): By case analysis on p. Note that 3;0 F p: R since ;0 F (p) : T.
Casep = X, 1, A’ — B',VX:K. A', [¢'], and (p’): Contradictory with ;0 p: R.
Case p = a: By (E_VIDNAME)/(E_RED).
Case p = *: By Lemma E v = v : (y) 2 (%) for some v, 4/, and ¢. We have (v/) ~ (x) by
(CE_DYNR)/(CE_VARIANT). Thus, we finish by (R_-VFrROMDYN)/(E_RED).
Case p = -: By Lemma|[34]
Case p = (: C;p': By Lemma[33] there are two cases to be considered.

If v = £v' for some v, then we finish by (R_-VREVINJ)/(E_RED).
Otherwise, if v =1(¢: C) v’ for some v’, then we finish by (R_-VREVLIFT)(E_RED).

Case A = - and £ : B; p: Contradictory with Z;0 - A : T.

33

Case (CE_DYNL): We have B = . By Lemma v=1v:G 2 «for some v/, G, and ¢. By case analysis on
A.
Case A = H: By (R-GrRouUND)/(E_RED) or (R-BLAME)/(E_RED).
Case A = X: Contradictory with X;0 - A : T.
Case A = x: By (R_.IDDYN)/(E_RED).
Case A = A; — As (A1 — Ay # x — *): Since A1 — Az ~ * — %, we finish by (R_FROMDYN)/(E_RED).
Case A = VX:K.A": By (R_.GEN)/(E_RED).
Case A = [p] (p # *): Since [p] = [#], we finish by (R-FROMDYN)/(E_RED).
Case A = (p) (p # *): Since (p) ~ (x), we finish by (R_.FROMDYN)/(E_RED).
Case A = -: Contradictory with ;0 A : T.
Case A = £: C;p: Contradictory with ;0 A4 : T.
Case (CE_DYNR): We have 4 = *.
If B = %, then we finish by (R_IDDYN)/(E_RED).
If B = VX:K.B’, then we finish by (R_INST)/(E_RED).
Otherwise, by Lemma there exists some G such that B~ G. If B = G, then e = v: G £ x is a value.
Otherwise, we finish by (R-ToDYN)/(E_RED).
Case (CE_FuN): By (R-WRAP)/(E_RED).
Case (CE_PoLy): By (R-CoNTENT)/(E_RED).
Case (CE_PoLyL): By (R_INsT)/(E_RED).
Case (CE_PoLYR): By (R_-GEN)/(E_RED).
Case (CE_RECORD): We have A = [p1] and B = [p2] and pa ~ p; for some p; and po. Since X;0F [p1] : T, we
have X;0 - p; : R. By Lemma[50] 350 F [po] : T, s0 ;0 + po : R.
If po = *, then we finish by Lemma [33] and (R_RFrROMDYN)/(E_RED) or (R_RBLAME)/(E_RED).
In what follows, we suppose po # x. By case analysis on p;.

Case p1 = = Since po # x and Z;0 F ps : R, grow(ps) is defined and is a ground row type by Lemma
If grow(py) = pa, then v : [ps] 2 [4] is a value.
Otherwise, if grow(p2) # p2, we finish by (R-RToDyN)/(E_RED).
Case p1 = a: Since po ~ aand pa # *, we have po = a by Lemmas@and We finish by (R_RIDNAME)/(E_RED).
Case p; = -: Since po ~ - and py # *, we have ps = - by Lemmas@and We finish by (R_REmP)/(E_RED).
Case p1 = £: Cy;p): By Lemmas@and@ pa2 o Oy, ph and Cy ~ Cy and pf ~ p) for some Cy and p}.
If £ € dom (p2), then there exist some pa; and pas such that
o po = pa1 © (£: Ca;-) © pag,
® py = p21 © p22, and
o (& dom(pa1).
Since ;0 F v : [ps], there exist some v; and ve such that v >y vy, v2 by Lemmas and Thus, we finish
by (R-.RREV)/(E_RED).
If ¢ ¢ dom (p2), then we finish by (R_-RCoN)/(E_RED).

Case py = X, 1, C = D,VX:K.C, [p], and (p’): Contradictory with 3;0 + p; : R.
Case (CE_VARIANT): We have A = (p1) and B = (p2) and ps ~ p; for some p; and py. Since Z;0 F (p1) : T,
we have ;0 p1 : R. By Lemma 50} ;0 (p2) : T, s0 ;0 F pa : R.
By case analysis on ps.
Case po = *: We finish by Lemma [33] and (R_-VFROMDYN)/(E_RED) or (R_VBLAME)(E_RED).
Case po = a: Since ps ~ p1, we have p; = a or p; = x by Lemmal [7]
If pi = *, then v : [a] & [4] is a value.
Otherwise, if p; = «, then we finish by (R_-VIDNAME)/(E_RED).
Case po = - Contradictory by Lemma [34]

34

Case py = £: Co;ph: If € € dom (py), then we finish by Lemma[33] and (R-VREVINJ)/(E_RED) or (R-VREVLIFT)/(E_RE!
Otherwise, suppose £ € dom (p1). Since ;0 F po : R and py # *, it is found that grow(ps) is defined. If

p1 = * and grow(py) = po, then v : [ps] = [4] is a value. If p; = * and grow(py) # po, then we finish by
(R_-VToDYN)/(E_RED).
Otherwise, suppose p; # *. Then, we finish by Lemmal[33] and (R_VCoNINJ)/(E_RED) or (R_VCoNLIFT)/(E_RED).
Case po = X, 1, C — D, VX:K.C, [¢/], and (p’): Contradictory with 3; 0+ ps : R.
Case (CE_ConsL): We have B = £: Cy; ps for some £, Oy, and ps. Since ¥;0 + ¢’ : B, we have ;0 - B : T by
Lemma However, there is a contradiction that X;0 - £: Ca; p3 : T does not hold.

Case (CE_CoNsSR): We have A = ¢:Cy; py for some ¢, Cy, and p;. However, it is contradictory with 3;0 - A : T.

Case (T_CoNV): We have 3;0F ¢’ : B 24:4 and, by inversion, X;0 F ¢’ : Band X F B <® Aand 3;0 - A: T.
If ¢/ = blame ¢ for some ¢, or & | ¢/ — ¥’ | ¢” for some X’ and e, then we finish by Lemma [15]

In what follows, we can suppose that ¢/ = v for some v by the IH. By case analysis on ¥ F B <% A.

Case (Cv_DYN): By (R_-CIDDYN)/(E_RED).

Case (Cv_TYVAR): Contradictory with ;0 A : T.

Case (Cv_TYNAME): By (R_.CIDNAME)/(E_RED).

Case (CV_REVEAL): We have B = «a and ® = +a and X(a) = A for some a. By Lemma v = :
C = a for some C. Since ¥;0 F v : B, we have ¥(a) = C by Lemma so A = C. We finish by
(R-CNaME)/(E_RED).

Case (Cv_CONCEAL): v : B 2 Ais a value.

Case (Cv_BasE): By (R_CIDBASE)/(E_RED).

Case (Cv_FuN): By (R_.CFuN)/(E_RED).

Case (Cv_Pory): By (R_.CForALL)/(E_RED).

Case (CV_RECORD): We have B = [pg] and A = [p1] and ¥ I py <?® p; for some p; and py. Since S50 A : T,
we have 3; 0 I p; : R. By case analysis on ¥ I py <% py.

Case (Cv_DYN): By (R-CRIDDYN)/(E_RED).

Case (Cv_TYNAME): By (R_.CRIDNAME)/(E_RED).

Case (CV_REVEAL): We have ps = a and ® = +a and X(a) = p; for some . By Lemma|33) v = v’ :
[¢'] = [a] for some v’ and p’. By Lemma@ Y(a) = p/, 80 p) = p. We finish by (R_.CRNAME)/(E_RED).

Case (CV_CONCEAL): v : B 2 A is a value.

Case (Cv_REMP): By (R_CREwmP)/(E_RED).

Case (Cv_Cons): By (R-CRExT)/(E_RED).

Case (Cv_TYVAR), (Cv_Basg), (Cv_FuN), (Cv_PoLy), (Cv_RECORD), and (Cv_VARIANT): Contradictory
with 3;0 F p1 : R.

Case (CV_VARIANT): We have B = (pg) and A = (p;) and = I py <% p; for some p; and py. Since Z;0F A : T,
we have ;0 I p; : R. By case analysis on ¥ F py <% p;.

Case (Cv_DYN): By (R-.CVIDDYN)/(E_RED).

Case (Cv_TYNAME): By (R_.CVIDNAME)/(E_RED).

Case (Cv REVEAL): We have p = o and ® = +a and (o) = p; for some . By Lemma 33} v = o' :
(p) = (a) for some v’ and p’. By Lcmma Y(a) = p/ysop’ = p1. We finish by (R_.CVNaME)/(E_RED).

Case (CVv_CONCEAL): v : B 2 A s a value.

Case (CV_.REMP): We have ;0 b v : [-], which is contradictory by Lemma [34]

Case (Cv_Cons): By (R-CVAR)/(E_RED).

Case (CVv_TYVAR), (Cv_Basg), (Cv_FuN), (Cv_PoLy), (Cv_RECORD), and (CV_VARIANT): Contradictory
with ;0 F pp : R.

35

Case (Cv_REMP) and (Cv_Cons): Contradictory with Z; 0 F A4 : T.

O
Lemma 52. If3;TFA:T and A~ G, then ;T G : T.
Proof. By case analysis on G.
Case G = 1, x = x, [x], and (x): Obvious.
Case G = a: Since A~ o, we have A = a or A = x by Lemmas [f] and [7] In either case, 3;TF A : T.
O

Lemma 53. If 30+ v: [p] and v >y v, ve, then there exist some py1, pa, and A such that p = p1 © (£: A;+) © pa
and £ & dom (p1) and Z;0+ vy : A and 3;0 F vy : [p1 © pa).

Proof. By induction on the derivation of v >y vy, vo.

Case {£ = vi;va} >y v1,v0: We have v = {£ = wv;v}. Since 3;0 = v : [p], there exist A and p’ such that
p=1L:A;p)and Z;0F vy : A and Z;0 - vy : [pf].

Case {£/ = v]; v} g v1,{€' = v{; v)} where £ # ¢ and v} >; vy, vy: We have v = {€/ = v{;0vi} and v = {¢' =
v1; 04}, Since ;0 F v : [p], there exist some B and p’ such that Z;0 F o] : B and X;0 F o) : [p'] and p = £: B;p'.
Since ;0 F o4 : [p'] and v) >y vy, vy, there exist some p}, ph, and A such that

o0 =pO:A4;0)©py,
o (& dom(p}),

e ;v : A and

o S0k v [p) © ph]

by the TH. Since ;0 F vy : B and ;0 F o) : [p] © ph], we have ;0 F {& = of;05} - [: B;(p} © ph)] by
(T_REXT).

O
Lemma 54. If3;TFe:{p) and 5;TF p' : R and p’ © p is defined, then L;T F1p' e : (p' © p).
Proof. By induction on p'.
Case p’ = -: Trivial since t-e = e.

Case p/ = £: A;p"”: We have Tp e =1(€: A) (1p" e). Since ;T F p' : R, we have ;T A: T and ;T F p” : R.
By the IH, ;T Ftp" e : (p"” ® p). By (T_-VLIFT), 5; T E1 (€ : A) (1p" e) : (€: A;p" © p).

Case otherwise: Contradictory with p’ ® p is defined.

Lemma 55. If¥;I'e: (p1 ©p2) and X;T'= A: T, then X;T I—i@{me {p1© (L A;0) @ pa).
Proof. By induction on p;.

Case p1 = {': B; p}: We have ifé:Me = caseewith (¢’ z — ¢/ z;y =1 (' : B)(?;}:A>y)>. It suffices to show that
YT+ caseewith (' o — ' x5y =1 ({' : B) (U&iA)y» (0 By pl @ (0: A;-) © pa)
Since X; ', y:(p] ® p2) F A : T by Lemmas and we have

ST, y:(py © p2) FLigay Yt (PL O (0 A5) @ pa)

36

by the TH. Thus, by (T_VLIFT),

ST,y © p2) F1(C 2 B) (L5 40y) < (€2 B py © (02 A;) © pa)

(note that 3;T', y:(p} ® p2) F B : T by Lemmas [50and 24). Since S; T, z:B €'z : (¢': B; p} ® (£: 4;+) © pa) by
(T_VINJ) (note that 3;T,z:B + py © (£: A;-) ® p2 : R by Lemma[24)), and 3;T e : (¢ : B; p} © p2), we have

YT caseewith (' o — ¢ x5y =1 (¢ : B)(’&imy» (0 B;pl @ (£ A;4) © p2)

by (T_VCASE).

Case p; = -: We have i?z}:A)e =71(¢: A)e. It suffices to show that 3; T F1 (¢ : A) e : (¢ : A; p2), which is shown by
(T_VLIFT).

Case otherwise: Contradictory with the fact that p; © po is defined.
O

Lemma 56 (Convertibility inversion: function types). If X+ A; — By <® Ay — B, then ¥ F Ay <® Ay and
X+ B -<(I’ Bs.

Proof. Straightforward by case analysis on ¥ - 4; — B; <% 4y — Bs. O
Lemma 57 (Convertibility inversion: universal types). If X FVX:K.A <® VX:K.B, then X+ A <* B.

Proof. Straightforward by case analysis on ¥ - VX:K. A <®* VX:K. B. O
Lemma 58 (Convertibility inversion: record types). If ¥+ [p1] <® [p2], then ¥+ p1 <% pa.

Proof. Straightforward by case analysis on ¥ F [p1] <® [pa]. O
Lemma 59 (Convertibility inversion: variant types). If X+ (p1) <% (p2), then X+ p1 <% ps.

Proof. Straightforward by case analysis on ¥ F (p1) <% {pa). O
Lemma 60 (Convertibility inversion: row cons). If S+ £: A;py <® £:B;pa, then X = A <* B and X+ p; <% ps.
Proof. Straightforward by case analysis on X - £: A;p; <% £: B; ps. O
Lemma 61 (Subject reduction on reduction). If¥;0F e: A and e ~ ¢, then Z;0 F ¢’ : A.

Proof. By case analysis on the derivation of ;0 F e : A.

Case (T_VAR), (T_ConsT), (T_-LAM), (T_-TLAM), (T_-REMP), (T_-BLAME): Contradictory; there are no reduction
rules to apply.

Case (T_TAPpP), (T_REXT), (T_VINJ), (T_VLIFT): Contradictory; there are no applicable reduction rules.

Case (T-APpP): We have e = e eg and, by inversion, ;0 e : B — A and %;0 F ey : B for some e, ez, and B.
By case analysis on the reduction rules applicable to e; es.

Case (R_CoNs): We have e = k1 and e = ko and €' = ((k1,k2) for some x; and kp. By Lemma
ty(k1) = B — A. By the assumptions about constants, ty({(r1,k2)) = A. Thus, ;0 F ((k1,k2) : A by
(T_CoNSsT).

Case (R-BETA): By Lemma e1 = Az:B.ej and ex = vy and e’ = ef[va/z] for some z, ef, and v. By
Lemma [36] 3;2:B €] : A. Since X;0 - vy : B, we have 3;0 + €{[v2/z] : A by Lemma [32]

Case (T_RLET): We have e = let{{ = z;y} = e;in ey and, by inversion, 3;0 - e : [£: B;p] and X;2:B, y:[p]
es : A. The reduction rules applicable to e is only (R_RECORD). We can suppose that e = {£ = vy;v2} and
e/ = e[n/z,m»/y]. By Lemma X0k v : Band ;0 F we ¢ [p]. Since X;x:B,y:[p] b ea : A, we have
S 0F esfvi/x,va/y] s A by Lemm

37

Case (T-VCASE): We have e = caseeywith({z — ej;y — eg) and, by inversion, ;0 F ey : (¢: B;p) and
S;2:BE e Aand B y:{p) - eg : A for some ey, €1, e2, ¢, z, y, B, and p. By case analysis on the reduction
rules applicable to e.

Case (R_CASEL): We can suppose that eg = ¢v and ¢/ = e;[v/z] for some v. By Lemma 39 ;0 - v : B.
Since X;z:B - e; : A, we have 3;0 - e [v/z] : A by Lemma [32]

Case (R_CASER): We can suppose that eg =1 (£: C)v and ¢/ = e3[v/y] for some C and v. By Lemma [i0]
30+ v (p). Since ;y:(p) k- ez : A, we have 3;0 + ex[v/y] : A by Lemma [32]

Case (T_CAST): We have ¢ = ¢y : B & A and, by inversion, ¥;0 - ey : B and B~ A and ;0 F A : T for some
eo, B, and p. Besides, we have ¥;() - B : T by Lemma [50] By case analysis on the reduction rules applicable to
e.

Case (R_IDDYN), (R_IDBASE), (R_.IDNAME), (R_REmP), (R_RIDNAME), and (R_-VIDNAME): We have B =
Aand ¢g = v and ¢’ = v for some v. Since X;0 F ¢y : B, we have X;0 F v : A, which is what we have to
show.

Case (R_-BLAME), (R_.RBLAME), (R_VBLAME): Obvious by (T_BLAME) since e’ = blame ¢ for some q.

Case (R_TODYN): We have ¢g = v and A = xand ¢/ = v: B & G 2 « for some v and G such that B ~ G.
Since ;0 F v : B and B ~ G, we have X;0 - G:TbyLemma Thus, ;0 v : B 2 G £ «: x by
(T_CasT).

Case (R_FROMDYN): We have ¢p = v and B = xand ¢/ = v : x = G & A for some v and G such that
A~ G. Since S50 - A: Tand A ~ G, we have 3;00 - G : T by Lemma [52] Since ;0 - v : , we have
ik v:x 2 G £ A Aby (T_CasT) (note that G ~ A by Lemma@.

Case (R_.GROUND): We have ¢g = v: G & xand B = xand A = G and ¢ = v for some v and G. Since
Y0k ep: B, ie, S0k v: G 2 %% we have Z:0+ v : G by Lemma Thus, we have X;0 F ¢’ : A.

Case (R-WRAP): We have ¢g = vand B = By —» Byand A = A} — As and ' = \z:Ady.0(z: Ay 2 By):
By 2 A,. Since By — By ~ A; — As, we have A1 ~ By and By ~ A5 by Lemmasand@ Besides, we have
S0 A T, S0 A : T, X0 By :T,and ;0 By : T since ;0 A1 — Ay : Tand ;0 By — By : T.
Thus, since 3;z: A1 F v : By — By by Lemma we have ;0 = Az:Ay.v (z : A4 £ By): By L Ay: A] — As.

Case (R_CONTENT): We have ¢g = v and B = VX:K.B and A = VX:K. A and ¢/ = AX:K.(vX : B &
A") v A" for some v, X, K, A’, and B’. Since VX:K.B' ~VX:K. A’ we have B’ ~ A’ by Lemma Since
0 VXK. A" : T, we have 3; X:K A’ : T. Thus, since 3; X:K F v : VX:K. B’ by Lemma we have
Si0FAX:K.(vX:B 2 A): A VXK. AL

Case (R_INST): We have ¢y = v and B = VX:K.B' and ¢/ = (v*): B'[x/X] £ A for some v, X, K, and B’.
Besides, QPoly (A).

Since ;0 - v : VX:K. B’, we have
Y0 v B'[x/X].

Since QPoly (A) and B ~ 4, i.e., VX:K. B’ ~ A, we have B’ ~ A and [[Xnotinftv(A)]]. Thus, by Lemma 28]
B'[x/X] ~ A. By (T_CasT),
L0k (vk): B'[x/X] & A: A

P

Case (R_-GEN): We have ¢g = vand A = VX:K. A" and ¢/ = AX:K.(v: B = A’):: A’ for some v, X, K, and
A’. Besides, QPoly (B).
Since ;0 - v : B, we have

;. X:K+F-wv:B

by Lemma [24]
Since QPoly (B) and B ~ 4, i.e., B ~ VX:K. A’, we have B ~ A’ and [[Xnotinftv(B)]] by Lemmas [and
Furthermore, ;0 - VX:K. A’ : T, we have ¥; X:K A’ : T. Thus, we have ¥;0 - AX:K.(v: B & A
A VXK. A

38

Case (R_RTODYN): We have ¢g = v and A = [«] and B = [p] and ¢/ = v : [p] = [grow(p)] 2 [4] for some v
and p such that p # grow(p). By Lemma p =~ grow(p), and therefore [p] >~ [grow(p)] by (CE_RECORD).
Since ¥;0 - v : [p] and 2;0 F [grow(p)] : T by Lemma [49] we have X:0 - v : [p] 2 [grow(p)] 2 [+] : [4].

Case (R_RFROMDYN): We have ¢g = v: [y] = [«] and B = [x] and 4 = [p;] and ¢/ = v : [y] = [p1] for some
v, 7, p1, and ¢ such that v ~ p;. Since v =~ p;, we have [y] ~ [p1] by (CE_RECORD). Since X;0 F ¢y : B, i.e.,
S0 v [y] 2 [4]: [#], we have ;0 F v : [] by Lemma Thus, we have ;0 F v : [y] = [p1] : [p1] by
(T_CasT).

Case (R_-RREV): We have

® ¢ = U,

o A=1[l:A;p],

e B = [ps], and

o ={l=(v:B = Av: o] &[]}
for some v, ¢, A’, B’, p1, p2, and ph such that v by vy, v and py by B, ph. Since 3;0 - v : B B = [ps] and
v Dy vy, U2, there exist some po1, pao, and B’ such that

® p2 = pnO(:B'5) O paa,

® Py = P21 © pa2,

¢ & dom (p21),

;0 v : B, and

S0 F w2t [pa1 © paal.

Since B ~ A, i.e., [pa1 ® (€1 B';-) ® pas] == [€: A’; p1], we have B’ ~ A’ and pa1 ® pa2 ~ p1 by Lemmas [6]
and [0} Since 30+ A: T, ie., ;0 [¢: A;p1] : T, we have 3;0 - A’ : T. Thus,

Si0bv B 2 A A

by (T_CAsT).

Since pa1 © p22 =~ p1, ie., ph = p1, we have [ph
Py = p21 @ pa2) and ;0 + [p1] : T (from ;0 +

| = [p1] by (CE_RECORD). Since ;0 = v : [p5] (note that
A:T), we have

S50k gz [ph] S [pa] : [p1]

by (T_CAsT).
Thus, by (T_REXT),
Si0F{l=(v:B 2 A0 [ph] 2 (]} :[0: A1)

Case (R-RCON): We have

® ¢ = v,
o A =[l:A5p,
e B = [ps], and

e =v:lp] Blpp@l: A B [0:A;p)
for some v, £, A’, p1, pa such that £ € dom (p2) and py # *.
Since B ~ A, there exist some B’ and p), such that

e p2 >y B',ph,

e B~ A’ and

* Py pr
by Lemmas [6l and [9] Since ¢ & dom (p2) and py >y B', ph, it is found that py ends with « and B’ = *
and py) = py. Thus, by Lemma [I9 po ~ ps @ £: A’. Since ;0 F py : Rand ;0 = A : T, we have
Y0 [p2@¢: A’] : R. Thus,

S0k v:[pa] D[pa@l:A:[py@L: A

39

by (T_CAsT).

Since ph ~ p; and A’ ~ A’ (CE_REFL) and ¢ & dom (p}) (since £ ¢ dom (p2) and pa = pb), we have
ph@l: A ~1¢:A;pp by (CE_CoNsR). Thus,

S0k v:pe] Bpa@l: AT B0 Ap] [0 A5]
by (T_CAsT).

Case (R_-VTODYN): We have ¢y = v and 4 = (x) and B = (p) and ¢/ = v : (p) = (grow(p)) 2 (%) for some
vand p p # grow(p).

By Lemma p =~ grow(p), and therefore (p) ~ (grow(p)) by (CE_VARIANT). Since %;0 F v : {p) and
30 F (grow(p)) : T by Lemma we have X: 0 F v : (p) 2 (grow(p)) 2 (%) : ().

Case (R_VFROMDYN): We have ¢g = v : (y) = (x) and B = (x) and A = (p;) and & = v : (y) = (p;) for
some v, 7, p1, and g such that v ~ p;. Since v ~ p;, we have () ~ (p1) by (CE_VARIANT). Since 3;0 F ¢ : B,
e, X0k v:(y) 2 (&) : (%), we have B;0 - v : (7) by Lemma Thus, we have ;0 F v : [y] = [p1] : [p1]
by (T-CAST).

Case (R-VREVINJ): We have ¢g = (v and A = (p11 © ({: A';-) © p12) and B = (£: B';ps) and ¢ =1
p11 (¢ (v: B’ £ A")) for some £, v, pa, p11, A’, and B’ such that £ & dom (p11).

Since 350t £v : (€: B'; ps), we have ;0 + v : B’ by Lemma [39 Since (¢: B'; p2) =~ (p11 @ (£: A';-) ® p12),
we have B’ ~ A’ by Lemmas [[4 and [9] Since 30 & (p11 @ (€: A’;-) ® p12) : T, we have ;0 = A’ : T and
S0k p12: R

Si0FL(v:B 2 A (0: A pro)
by (T_CAsT) and (T_VINJ).
Since ;0 (p11 © (€: A’;+) ® p12) : T, we have X;0 - p1; : R. Thus, by Lemma

S0 tp (L(v: B B A (p11© (0: A p12)).

Case (R-VREVLIFT): Wehaveey =1(¢: C)vand B = (¢:C;ps)and A = (p1) and ¢/ = L?ﬁ@(v Sp2) 2 (p11 © p12))
for some ¢, C, v, p1, p2, p11, and p12 sch such that p; = p11 @ (£: C;-) ®@ p12 and £ & dom (p11).
Since ;0 + e : B, ice., S50 F1(0: C) v : (€: C;pa), we have 30+ v : (ps) by Lemma[40] Since B ~ A, i.e.,
(£:C;pa) =~ (p1), and p1 = p11©(L:C;-)Oprz and £ & dom (p11), we have py = p11 ©p12 by Lemmas[14]and o}
Thus, (CE_VARIANT), {p2) =~ {p11 ®p12). Since Z;0F A : T, ie., ;0 (p1) : T, we have X;0 F (p11©p12) : T.
Thus, by (T_CAsT),
S0 v (pa) 2 (p11 ® p12) : (p11 © pra).
Since ;0 B : T, ie., ;0 (£: C;ps) : T, we have ;0 C : T. Thus, by Lemma

S0 F L ey (v (p2) 2 (o1 @ p1a)) : (1 @ (€: C54) © pua),

which is what we have to show.

Case (R_.VCONINJ): We have ey = fvand B = (£: B';ps) and A = (py) and e =1p; (Lv: (€: B';%) £ (%))
for some ¢, v, B’, p1, and ps such that £ € dom (p1) and p; # *.
Since B ~ A, i.e., ((:B’; p3) ~ (p1). By Lemmal[l4] ¢: B; p; ~ p1. By[d] p1 >¢ A’, p} for some A" and pf. Since
£ & dom (p1), p1 ends with «, that is, there exists some p/ such that pf ®@* = py. Since 1p1 ¢’ =1p] e” for
any e”, it suffices to show that

S0P (Cv: (€:B's%) B (%)) : (o] @).

Since ¥;0 F ey : B, ie., X0 F v : (€: B’;ps), we have ;0 - v : B’ by Lemma Thus, by (T_VINI),
;0 Lo {(£: B';%). We have ({: B';x) ~ (x) by (CE_REFL), (CE_ConsL), and (CE_VARIANT). Since
%0 F (x) : R, we have

S0k Lv:(0:B%) 2 () (%)

by (T-CAST). Since 350+ A: T, e, 50+ [p1] : T, we have X;0 + pf : R. Thus, by Lemma [54]

S0P (Lv: (€:B'sx) B (%)) : (o @).

40

Case (R_-VCONLIFT): Wehave ey =1({: B')vand B = (¢:B’;ps)and A = (p1) and e’ = (¢?5:3'>(v Sp2) 2 (1)) :
(pr @ 2:B"Y £ (py) for some ¢, v, B', py, and py such that ¢ & dom (p1) and p; # *.
Since [NS;gemp| — €0 : B], ie., ;0 =1 (¢: B') v : ({: B';p2), we have 3;0 b v : (p2) by Lemma [40] Since
B~ A, ie., (£:B’;ps) ~ (p1), there exist some A’ and p) such that
o p1 g A ph,
e B~ A’ and
® p2pi
by Lemmas [14 and [J] Since [Inotindom(r1)], it is found that
e py ends with *, i.e., p1 = p] ® for some pf,
e A" = x, and
* Py = p1.
Thus, p2 ~ p1, and therefore (p2) ~ (p1) by (CE_VARIANT). Since ¥;0F A : T, i.e.,, 5;0 F (p1) : T, we have

Si0F v (pa) 2 (1) : (1)
by (T_CAsT). Since J,’Zl}:B, iw BY) e for any e”, and ;T B’ : T from ;0 - B : T, ie., ;0 -
(€:B';p2) : T, we have
S0 LGy (0 (p2) B (o1)) : (pf © (£: B's) O%).
Since pf ©® (£: B';-) ©* = p; @ £: B’, we have

S04 5 (02 (p2) 2 (1)) : (o1 @ £: BY),

Since p; ~ p; by (CE_REFL), and p; ends with x and £ € dom (p1), we have p] © (£: B’;-) ©®x ~ py, i.e.,
p1 @ £:B' ~ p; by Lemma [I9) Thus, (p1 @ ¢: B') ~ (p;) by (CE_VARIANT). Since E ODFA: T ie.,
X0k (p1) : T, we have

S0 F (Lpn (v s (p2) 2 (o1)) : (01 @ L:B') 2 (1) = {p1)
by (T_-CAsT), which is what we have to show.

Case (T_ConV): We have e = ¢ : B 2 A and, by inversion, 3:0 F ey : B and ;0 F A: Tand X F B <® 4
for some e, B, and ®. Besides, we have ¥;0 - B : T by Lemma By case analysis on the reduction rules
applicable to e.

Case (R_.CNAME), (R_.CRNAME), and (R_.CVNAME): We have ¢y = v: A = B and ® = +a and ¢/ = v for
some v and . Since ;0 F ey : B, ie., 20 v: A = B: B, we have 3;0 - v : A by Lemma or
This is what we have to show.

Case (R_-CIDDYN), (R- CIDNAME) (R-CIDBASE), (R_.CREwMP), (R_.CRIDDYN), (R_.CRIDNAME), (R_-CVIDDYN), (R_-CV
We have ¢g = v and ¢/ = v and A = B for some v. Since X;0 - ¢y : B, we finish.

Case (R_.CFUN): We have ¢y = v and B = By = By and A = 41 — Ay and ¢/ = Ax:djv(z: 4y 2 By):
By 2 Ag for some v, Ay, Az, By, By, and z. Since ¥ + B <% A, ie, T F By — By <% A; — As, we have
YFA; <® By and X+ By <% A4, by Lemma Since X;0F A1 — Ay : Tand 5;0 F By — By : T, we have

S:0F A :Tand ;0 Ay : Tand ;0 By : Tand ;0 - By : T. Thus, we have ¥;2: 41 F 2 : Ay E By : B
by (T_Conv). Since ¥;z:4; F v : By — By by Lemma we have

SixAr b o(z: Ay gBl):Bg gAQ:AQ
y (T_AppP) and (T_Conv). Thus,

S0 Az Ao (s Ay 2 B By 2 Ay Ay — Ay

by (T_Lam).

41

Case (R-CFORALL): We have ¢g = v and B = VX:K.B and A = VX:K. A" and ¢/ = AX:K.(vz : B’ 2
A’) :: A" for some v, X, K, A’, B', and z. Since X + B <® A ie., ¥ F VX:K.B' <®* VX:K. A, we have
Y F B <® A by Lemma Since ;0 FVX:K. A" : Tand ;0 - VX:K.B' : T, we have 3; X:K F A" : T
and 3; X:K B’ : T. Since 3; X:K v : VX:K. B’ by Lemma [24] we have

S:X:KFoz:B 2 4.4
by (T-VAR), (T_ApPpP), and (T_ConvV). Thus,
S0 AX:K.(ve:B 2 A) A VXK A

by (T_TLam).

Case (R_.CREXT): We have ¢ = v and B = [(: B';ps] and A = [£: A';p1] and ¢ = let{l = z;y} =
vin{¢ =z : B 2 Ay p2] 2 [p1]} for some v, £, A, B', p1, pa, z, and y. Since ¥ - B <? A,
e, X [0:B';ps] < [0: A';p1], we have ¥ - B’ <® A’ and ¥ - py <® p; by Lemmas [58| and and
Y [p2] <% [p1] by (CV_-RECORD). Since ;0 F A : T, ie., X;0F [€: A';p1] : T, we have ;0 = A’ : T and
;0 F p1: R, and therefore X;0 - [p1] : T. Thus,

S 2Byl F{l=x: B 2 Ay o] 2 [} [0 A5 py]
by (T-Conv) and (T_REXT). Since &;0 F ey : B, i.e.,, ;0 v : [£: B’; po], we have
Sihblet{f =y} =vin{l=2:B" 2 Ay:[ps] = [m]}: [t: 4],

which is what we have to prove.

Case (R_.CVAR): We have ¢g = vand B = ({: B’;pg) and A = ({: A';p1) and ¢ = casevwith{({z — ¢(z :
B2 Ay =1 (€ A (y: (p2) 2 {p1))) for some v, £, A', B’, p1, [r2], z, and y. Since ¥ F B <% A,
ie., X F (0:B'5py) < (£: A'sp1), we have ¥ = B’ <® A’ and ¥ F py <% p; by Lemmas |59| and and
Sk {p2) <% {p1) by (CV_VARIANT). Since ;0 F A : T, ie., 30 (£: A;p1) : T, we have ;0 = A’ : T and
30 F p1: R, and therefore ;0 + (p1) : T. Thus,

Si2:B'F4(zx: B 2 AN A pr)

and
S yi(pa) FHE: A (32 (p2) = (p1)) : (€3 A5 pr)
by (T-Conv) and (T_VINJ). Since X;0 - ey : B, ie., ;0 F v : (€: B’; pa3), we have

S0 F casevwith (€z — £(z: B 2 A');y =1 (0: A (y: (p2) = (o)) 2 (L2 A5 1),

which is what we have to show.

Lemma 62. IfX|e— Y| ¢, then ¥ C ¥/

Proof. Obvious by case analysis on the evaluation rule applied to derive X | e — X/ | ¢/. O

Lemma 63 (Subject reduction). IfX;0Fe: AandX|e— X | €, then X;0F ¢ : A.

Proof. By induction on the derivation of ;0 F e : A.

Case (T_VAR), (T_ConsT), (T_-LAaM), (T_-TLAM), (T_-REMP), (T_-BLAME): Contradictory; there are no reduction
rules to apply.

42

Case (T-APP): We have e = e ez and, by inversion, ;0 e; : B— A and X;0 F ey : B for some e, ey, and B.
If X] ey — X' | ef for some e], then we have ¥;0 - ¢f : B — A by the IH, and therefore >';0 F e] e : A by
Lemmas 62| and and (T_App).

If 3| e — X' | €} for some €}, then we have 3'; () - e} : B by the IH, and therefore we have ¥/;(0 I ¢; €} : A by
Lemmas [62| and and (T_App).

In what follows, we suppose that neither e; nor e; cannot be evaluated under ¥. By case analysis on the reduction
rule applied to e.

Case (E_RED): We have e; e = E[ef] and ¢/ = FElej] for some E, e, and e} such that e] ~ e}. Besides,
Y’ = 3. By case analysis on E.
Case E = []: By Lemma[6]]

Case E = E’ey: Contradictory with the assumption that e; = E’[e]] cannot be evaluated under X.

I
1]

Case E = v; E": Contradictory with the assumption that es = E’[e]] cannot be evaluated under X.
Case otherwise: Contradictory with the assumption that e; e2 = E[ef].

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that neither e; nor [e2] cannot be evaluated under X.
Case (T_-TApPP): We have e = ¢; B and, by inversion, 3,0 F e; : VX:K. C and 3;0 + B : K and A = C[B/X] for

some e1, X, K, B, and C.

If 2| e; — X' | e} for some e, then we have X/; () - e] : VX:K. C by the IH, and therefore X'; 0 + e B : C[B/X]

by Lemmas [62] and 25| and (T_TAPP).

In what follows, we suppose that e; cannot be evaluated under ¥. By case analysis on the reduction rule applied
to e.

Case (E_RED): We have e; B = Flef] and ¢/ = Elej] for some E, ef, and e5 such that e] ~» €. Besides,
Y = Y. By case analysis on E.
Case E = []: By Lemmal[61]
Case E = E’ B: Contradictory with the assumption that e; = E’[e]] cannot be evaluated under X.
Case otherwise: Contradictory with the assumption that e; B = E[ef].

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): We have e B = E[(AX":K'.¢) :: C')B'] and ¢’ = FEle}[a/X'] : C'[a/X'] EES C'[B'/X]]
and ¥ = ¥, a:K' := B’ for some E, X', K', ¢}, B’, C’, and a. By case analysis on E.

Case E = []: We have e; = AX:K.¢} : C by Lemma [33] (note that X = X’ and K = K’ and C = (')
and B’ = B.
It suffices to show that

S, :K := B; 0+ ¢)la/X] : Cla/X] £ C[B/X]: C[B/X].

Since 350+ €1 : VX:K. C, ie., ;0 - AX:K.¢) :: C: VX:K.C, we have £; X:K I ¢ : C by Lemma [37]
Thus, ¥, :K := B; X:K ¢} : C by Lemma Since ¥, a:K := B;0 a : K by (WF_TYNAME), we
have

Y, a:K = B;0 + efla/X]: Cla/X]

by Lemma
Since X;0 + €1 : VX:K. C, we have 30 - VX:K. C : T by Lemma [50} Thus, since « is a fresh type name
for 3, o does not occur in C. Therefore, we have

2, a:K := B+ Cla/X] <t C[B/X]

by Lemma [30] Since ;0 + e : A, we have ;0 - A : T by Lemma [50} and therefore ;0 - C[B/X] : T.
Thus, by (T_-Conv),

S, :K := B0+ ¢)ja/X] : Cla/X] £ C[B/X]: C[B/X].

43

Case E = E’ B: Contradictory with the assumption that e; = E'[(AX":K’.¢ :: C') B'] cannot be evaluated
under X.

Case otherwise: Contradictory with the assumption that ey B = E[ef].

Case (T_REXT): We have e = {{ = e1; e2} and, by inversion, ;0 e; : B and Z;0 F ez : [p] and A = [¢: B; p)
for some ¢, e;, e, B, and p.
IfY | e; — X' | e for some €], then we have X;) F e] : B by the IH, and therefore ¥'; 0 - {£ = e]; e2} : [£: B; p)
by Lemmas |62] and and (T_REXT).
IfY | eg — X' | e for some e}, then we have ¥/;00 €} : [p] by the IH, and therefore we have ¥';0 + {{ =
er;eh} [0 B;p]. by Lemmas [62] and and (T_REXT).

In what follows, we suppose that neither e; nor e; cannot be evaluated under X. By case analysis on the reduction
rule applied to e.

Case (E_RED): We have {{ = e1;e2} = Eleq] and ¢/ = E[e}] for some E, ef, and e} such that e] ~ e}. Besides,
¥’ = X. By case analysis on E.
Case E = []: By Lemma[6]]
Case E = {{ = E’; eo}: Contradictory with the assumption that e; = E’[e1] cannot be evaluated under X.
Case E = {£ = v1; E'}: Contradictory with the assumption that e; = E’[e1] cannot be evaluated under X.
Case otherwise: Contradictory with the assumption that {¢ = e;; e} = E[e]].

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that neither e; nor [e2] cannot be evaluated under X.
Case (T_RLET): We have e = let{¢ = z;y} = e1in ez and, by inversion, ;0 F e : [€: B; p] and ¥; 2:B, y:[p] b ez :

A for some ¢, z, y, e1, ez, B, and p.

IfY | e; — X' | e for some e}, then we have X'; 0 - e] : [¢: B; p] by the TH, and therefore ¥/; 0 F let {¢ = z; y} =
ejiney : A by Lemmas |62 and [25] and (T_RLET).

In what follows, we suppose that e; cannot be evaluated under . By case analysis on the reduction rule applied
to e.

Case (E_RED): We have let{¢ = z;y} = e1ines = E[ej] and ¢ = E[e}] for some FE, e}, and e} such that
e] ~ eb. Besides, ¥ = X. By case analysis on E.

Case E = []: By Lemma [61]
Case F = let{{ = z;y} = E'in ey: Contradictory with the assumption that e; = E’[e]] cannot be evaluated
under X.

Case otherwise: Contradictory with the assumption that let {¢ = z;y} = e;inez = Eleq].
Case (E_BLAME): By (T_BLAME).
Case (E_TYBETA): Contradictory with the assumption that e; cannot be evaluated under X.
Case (T_VINJ): We have e = £ ¢y and, by inversion, X;0 F ¢y : B and A = {£: B; p) for some ¢, ¢y, B, and p such
that X;0F p: R.

If ¥ | eg — X' | ¢ for some ¢, then we have 3';0 I~ ¢/ : B by the TH, and therefore X';0 - £ ¢} : (¢: B;p) by
Lemmas [62] and [25] and (T_VIny).

In what follows, we suppose that ey cannot be evaluated under . By case analysis on the reduction rule applied
to e.

Case (E_RED): We have feg = Flej] and ¢ = E[e)] for some E, e, and e} such that e] ~ e}. Besides,
¥’ = X. By case analysis on E.
Case E = []: By Lemma[61]
Case E = (E’: Contradictory with the assumption that ¢y = E’[e]] cannot be evaluated under X.
Case otherwise: Contradictory with the assumption that £ ey = E[e]].

44

Case (E_.BLAME): By (T_BLAME).
Case (E_TYBETA): Contradictory with the assumption that ey cannot be evaluated under X.

Case (T_VLIFT): We have e =1({: B) ey and, by inversion, X;0 I ey : (p) and A = {£: B;p) for some ¢, ¢y, B,
and p such that ;0 B : T.

IfY | g — X' | €} for some e, then we have X'; 0 & ¢ : (p) by the IH, and therefore X'; 0 =1 (€ : B) ¢} : {(£: B; p)
by Lemmas 62| and and (T_VLIFT).

In what follows, we suppose that ey cannot be evaluated under . By case analysis on the reduction rule applied
to e.

Case (E_RED): We have 1(¢: B) ey = E[ef] and e’ = E[e}] for some E, e;, and e} such that ej ~ e}. Besides,
¥’ = 3. By case analysis on E.
Case E = []: By Lemmal[61]
Case E =1(¢: B) E’: Contradictory with the assumption that ey = E’[e]] cannot be evaluated under X.
Case otherwise: Contradictory with the assumption that 1(¢: B) ey = FElef].

Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that ey cannot be evaluated under ¥.

Case (T-VCASE): We have e = caseeywith({z — ej;y — eg) and, by inversion, ;0 F ey : (¢: B;p) and

Y;2:Btb e : Aand Z;y:(p) b ey : A for some £, ey, e1, €2, B, p, x, and y.

Y | eg — X' | ¢ for some ¢}, then we have ¥';0 &+ ¢ : (¢: B;p) by the IH, and therefore ¥';0 +

case ey with (¢ — e1;y — e2) : A by Lemmas |62 and and (T_VCASE).

In what follows, we suppose that ey cannot be evaluated under . By case analysis on the reduction rule applied
to e.

Case (E_RED): We have case ey with ({z — e1;y — e2) = FElej] and ¢/ = E[e}] for some E, ef, and €} such
that e ~ e}. Besides, ¥’ = ¥. By case analysis on F.
Case E = []: By Lemma[61]
Case F = case E' with ({2 — e1;y — e2): Contradictory with the assumption that ey = FE’[e]] cannot be

evaluated under X.
Case otherwise: Contradictory with the assumption that case eg with (¢z — z;y — e2) = E[ef].

Case (E_.BLAME): By (T_BLAME).
Case (E_TYBETA): Contradictory with the assumption that ey cannot be evaluated under X.
Case (T_CAST): We have e = ¢y : B = A and, by inversion, ;0 + ey : B and B~ A and $;0 + A : T for some
eo, A, B, and p.
If ¥ | eg — X' | ¢ for some ¢}, then we have X';() - ¢} : B by the TH, and therefore ¥;0 ¢} : B £ A: A by
Lemmas [62| and and (T_CAsT).
In what follows, we suppose that ey cannot be evaluated under .. By case analysis on the reduction rule applied
to e.
Case (E_RED): We have ¢g: B & A = E[e}] and ¢ = El[e}] for some E, ¢}, and e} such that ¢| ~ ¢}. Besides,
Y = Y. By case analysis on E.
Case E = []: By Lemma [61]
Case E = E': B & A: Contradictory with the assumption that ey = E’[¢]] cannot be evaluated under ¥.
Case otherwise: Contradictory with the assumption that ey : B & A = E[e]].
Case (E_BLAME): By (T_BLAME).

Case (E_TYBETA): Contradictory with the assumption that ey cannot be evaluated under X.

45

Case (T_CoNV): We have e = ¢y : B 24 and, by inversion, ;0 F ey: Band T+ B <® Aand ;0 A : T for
some ey, A, B, and .

If Y| eg — X' | ¢} for some ef), then we have ¥';0) - ¢/ : B by the IH, and therefore ;0 - ¢} : B 2A4:4 by
Lemmas 62| and and (T_Conv).

In what follows, we suppose that ey cannot be evaluated under Y. By case analysis on the reduction rule applied
to e.

Case (E_RED): We have ¢, : B 24= Elef] and ¢’ = E[e5] for some E, ef, and e} such that e ~» e}. Besides,
Y’ = 3. By case analysis on E.

Case E = []: By Lemma[6]]
Case E = E': B = A: Contradictory with the assumption that e, = E’ [e]] cannot be evaluated under 3.

Case otherwise: Contradictory with the assumption that ey : B 2A4=F [e1].
Case (E_BLAME): By (T_BLAME).
Case (E_TYBETA): Contradictory with the assumption that ey cannot be evaluated under X.

O

Theorem 2 (Type soundness). If);0 - e: A and B | e —* X' | ¢ and €’ cannot be evaluated under Y/, then
either €' is a value or ¢/ = blamep for some p.

Proof. By Lemmas [63] and O

2.3 Type-preserving translation
Assumption 3. We assume that A~ A®B and B~ A®B and that if TF A: T andT'- B : T, thenT'+- A®B : T.
Lemma 64.
1. If A> B, then A ~ B. Furthermore, if X; ' A: K, then ;' B: K.
2. If Av[p] and p >¢ B,p’, then A~ [0: B;p']. Furthermore, if ;T F A: T, then ;T F [€: B;p']: T.
3. If Av{p) and p >y B,p', then A~ (£: B;p'). Furthermore, if 5;T = A: T, then ;T F (¢: B;p/) : T.
Proof. 1. Obvious by the definition of type matching.

2. If A is x, it is trivial to show. Otherwise, A = [p]. If £ € dom (p), then p = £: B;p'. Thus, p ~ £: B;p
by Lemma [21] Thus, by (CE_RECORD), [p] ~ [¢: B;p'] Since 3;T F p : R, we find that ;T + B : T and
5Tk p :R Thus, ;T F [¢: B;p']: T by (WF_Cons) and (WF_RECORD).

3. Similarly to the case for record types.

O
Lemma 65.
1. If =T, then D - T.
2. IfTFA:K, then ;' A: K.
Proof. Straightforward by mutual induction on the derivations. O

Lemma 66. IfT'FM: A< e, then ;T e: A.

Proof. By induction on the derivation of I' - M : A < e. The proof is straightforward by using the assumption
about @ stated in this section and Lemmas and O

Lemma 67. IfI'EM: A, thenT'E M : A< e for some e.
Proof. Straightforward by induction on the typing derivation. O

Theorem 3. If '+ M : A, then there exists some e such that ' M : A — e and ;T F e : A.
Proof. By Lemmas [67 and O

46

2.4 Conservativity over typing

In this section, we write I'*, A®, p°, M?* for typing contexts, types, rows, and terms where x and any type name do
not appear.

Definition 29. We write 'y =T if and only if (1)T1 = 0 and e = 0; (2)T1 = T}, 2:4 and Ty = T4, 2:B and
IM=Tyand A=B; or (3)T1 =T, X:K and Ty =T, X:K and T} =T%.

Assumption 4. We assume that A® @ B?® is defined if and only if A° = B®, and if A° = B*, then A®* @ B® = A®.
Assumption 5. We assume that, if Ay = As and By = Bs, then A1 @ By = Ay @ Bs.
Lemma 68. Suppose that ' =1".
1. If+ T, then HTV.
2. IfTHA: K, thenTF A" : K for any A’ such that A= A’.
3. IfT-M: A, thenT'+ M : A" for some A’ such that A = A'.
We mention only the interesting cases.

Case (WFG_CoNs): We are given T'-£: B;p : R and, by inversion, T+ B:T and T+ p:R.

We suppose that some p' such that £: B;p = p' is given. Since £: B;p = p/, there exists some B” and p”’ such
that p’' >y B”,p"” and B=B"” and p=p". By the IHs, "= B"” : T and "+ p"” : R. Thus, T'F£¢:B";p"” : R by
(WFG_CoNs). We can show that T” + p' : R by the fact that p’ >y B”,p".

Case (TG_APP): We are given T'F My My : A and, by inversion, T F My : Ay and T'F- My : Ay and A1> Ay — A
and A2 ~ All-

If A = x, it is easy to show.

Otherwise, we can suppose that A = A1 — A. By the [Hs with Lemma@ I"E M Ay = A and T - My A
for some A, A%y, Al such that A= A', Ajy = Ay, and Ay = A}. By Theorem[d] Ay ~ Aly. Thus, we finish by
(Ta_App).

Case (TG_TAPP): This case uses the fact that A = B, then A[C/X]= B[C/X].
Case (TG_VCASE): This cases uses the second assumption about ® stated in this section.
Lemma 69. If A® ~ B®, then A® = B*.

Proof. By Lemma there exists some C? such that A° = C° and C° ~ B®. Then, it is easy to show that
C*® = B? by induction on the derivation of C* ~ B?®. O

Lemma 70.
1. If =T, then F° 'S,
2. IfT°F A® . K, thenT*F° A® . K.
3. IfT°F M*®: A, then T F° M5 : A.
X0

Proof. By mutual induction on the derivations.
Below are important facts to show this lemma.

1. IfI'$ =° M* : A, then x and any type name do not appear in A.
2. If A®> B®, then A® = B*.

3. If pf by A%, p35, then p; =10: A%; p5.

47

The case for (TG_APP) is interesting, so we mention only that case. We are given I'* = M7 M5 : A and, by
inversion, I'* = My : Band I'* - My : C and BoB; — Aand C ~ By. By the IHs, I'* ° M7 : Band T* H° M5 : C.
Thus, we can find * and any type name do not appear in B nor C. Thus, B = B; — A. Since C ~ Bj, we find
C = By by Lemmal69] Thus, by (Ts_EQuiv), I'* +° M3 : B;. By (TS_APP), we have I'* -° M M; : A.

The first assumption about @ stated in this section is used in the case for (TG_VCASE). O

Lemma 71.
1. IfF° %, then - T°%.
2. IfT*F° A K, thenT*+ A% : K.
3. IfTS+° M5 : A%, then T = M* : B*® for some B® such that A* = B*.
Proof. By mutual induction on the derivations. We mention only the interesting cases.

Case (Ts_AppP): We are given I'* +* M7 M3 : A® and, by inversion, I'* F° My : B® — A® and I'* -° MJ : B®. By
the IHs, T - M¢ : Bf — A and IS - M : By and B® — A° = Bf — A3 and B® = Bj for some B}, B, and
A3
We have Bf — A;>B; — Aj. By Lemmal[j| (2, we have B* = B; and A° = A;. Thus, B; = Bj. By Lemmal|22]
Bs ~ Bf. Thus, by (TG_App), I - M M : As.

Case (Ts_TAPP): Similar to the case of (TS_APP); we use the fact that, if A = B, then A[C/X] = B[C/X].

Case (TSs_RLET): We are give I'* F° let {{ = z;y} = M7 in M3 : A® and, by inversion, I'* +° M7 : [¢: B®; p®] and
s, 2:B%, y:[p5] F° My : As.

By the IHs with Lemma s MP:[0:Bg;p] and T, 2:B% y:[p°] = Ms : A for some p§, Af, and B§ such
that p® = p§ and A°®* = A§ and B® = B;.

Since T'¢, 2:B%, y:[p°] = %, 2:B§, y:[pj], we have T'* z:Bg, y:[p§] = Ms : A5 for some A$ such that Aj = AS by
Lemma [68 Since A® = A§, we finish by (T_RLET).

Case (Ts_VCASE): Similar to the case of (TS_RLET). This case also uses the first assumption about @ stated in
this section.

O
Theorem 4. 1. IfT*F M®: A%, then T° ° M* : A5,
2. IfT$+° M*®: A%, then T'* = M* : B® for some B® such that A* = B*.
Proof. By Lemmas [70] and [71} O

48

	Definition
	Statically typed language F
	Syntax
	Semantics
	Type system

	Gradually typed language FG
	Syntax
	Typing

	Blame calculus FC
	Syntax
	Semantics

	Typing
	Translation

	Proofs
	Consistency
	Type Soundness
	Type-preserving translation
	Conservativity over typing

