
Supplementary Material for “Gradual Typing for Extensibility by Rows”

Taro Sekiyama

National Institute of Informatics & SOKENDAI

December 30, 2024

1 Definition

1.1 Statically typed language Fρ

1.1.1 Syntax

Variables for types and rows X Kinds K ::= T | R

Base types ι ::= bool | int | ... Constants κ ::= true | false | 0 | + | ...

Types and rows A,B ,C ,D , ρ ::= X | ι | A→ B | ∀X :K .A | [ρ] | 〈ρ〉 | · | ` : A; ρ

Terms M ::= x | κ | λx :A.M | M1 M2 | ΛX :K .M | M A |
{} | {` = M1; M2} | let {` = x ; y} = M1 inM2 |
`M | caseM with 〈` x → M1; y → M2〉 |↑〈` : A〉M

Values w ::= κ | λx :A.M | ΛX :K .M | {} | {` = w1;w2} | w` w` ::= `w |↑〈` : A〉w`

Evaluation contexts F ::= [] | F M2 | w1 F | F A |
{` = F ; M2} | {` = w1;F} | let {` = x ; y} = F inM2 |
` F | caseF with 〈` x → M1; y → M2〉 |↑〈` : A〉F

Typing contexts Γ ::= ∅ | Γ, x :A | Γ,X :K

Definition 1 (Free type variables and type substitution). The set ftv(A) of free variables for types and rows in A
is defined as usual. Substitution A[B/X] of B for X in A is defined in a capture-avoiding manner.

Definition 2 (Domain of typing contexts). We define dom (Γ) as follows.

dom (∅) def
= ∅

dom (Γ, x :A)
def
= dom (Γ) ∪ {x}

dom (Γ,X :K)
def
= dom (Γ) ∪ {X }

Assumption 1. We suppose that each constant κ is assigned a first-order type ty(κ) of the form ι1 → · · · → ιn .
Suppose that, for any ι, there is a set Kι of constants of ι. For any constant κ, ty(κ) = ι if and only if κ ∈ Kι.

The function ζ gives a denotation to pairs of constants. In particular, for any constants κ1 and κ2: (1) ζ(κ1, κ2)
is defined if and only if ty(κ1) = ι→ A and ty(κ2) = ι for some A; and (2) if ζ(κ1, κ2) is defined, ζ(κ1, κ2) is a
constant and ty(ζ(κ1, κ2)) = A where ty(κ1) = ι→ A.

We use the notation and the assumption above also in FρG and FρC.

1

1.1.2 Semantics

Definition 3 (Record splitting). w .` w1, w2 is defined as follows:

{` = w1;w2} .` w1, w2

{`′ = w1;w2} .` w21, {`′ = w1;w22} (if ` 6= `′ and w2 .` w21, w22)

Reduction rules M1 s M2

κ1 κ2 s ζ(κ1, κ2) Rs Const
(λx :A.M)w s M [w/x] Rs Beta

(ΛX :K .M) A s M [A/X] Rs TyBeta
let {` = x ; y} = w inM2 s M2 [w1/x , w2/y] (if w .` w1, w2) Rs Record

↑〈` : A〉 (w`′) s w`
′

(if ` 6= `′) Rs Embed
case (`w)with 〈` x → M1; y → M2〉 s M1 [w/x] Rs CaseL

case ↑〈` : A〉 (w`)with 〈` x → M1; y → M2〉 s M2 [w`/y] Rs CaseR1

casew`
′
with 〈` x → M1; y → M2〉 s M2 [w`

′
/y] (if ` 6= `′) Rs CaseR2

Evaluation rule M1 −→s M2

M1 s M2

F [M1] −→s F [M2]
Es Red

Figure 1: Semantics of Fρ.

Definition 4 (Semantics). The reduction relation s and the evaluation relation −→s of Fρ are defined by the
rules given in Figure 1.

1.1.3 Type system

Type-and-row equivalence rules A ≡ B

A ≡ A
Eq Refl

A ≡ C C ≡ B

A ≡ B
Eq Trans

B ≡ A

A ≡ B
Eq Sym

A1 ≡ A2 B1 ≡ B2

A1 → B1 ≡ A2 → B2
Eq Fun

A1 ≡ A2

∀X :K .A1 ≡ ∀X :K .A2
Eq Poly

ρ1 ≡ ρ2

[ρ1] ≡ [ρ2]
Eq Record

ρ1 ≡ ρ2

〈ρ1〉 ≡ 〈ρ2〉
Eq Variant

ρ1 ≡ ρ2

` : A; ρ1 ≡ ` : A; ρ2
Eq Cons

` 6= `′

` : A; `′ : B ; ρ ≡ `′ : B ; ` : A; ρ
Eq Swap

Figure 2: Type-and-row equivalence of Fρ.

Definition 5 (Type-and-row equivalence). Type-and-row equivalence ≡ is the smallest relation satisfying the rules
given by Figure 2.

Definition 6 (Typing). The well-formedness judgments `s Γ and Γ `s A : K , and the typing judgment Γ `s M : A
of Fρ are the smallest relations satisfying the rules given by Figure 3.

2

Well-formedness rules for typing contexts `s Γ

`s ∅
WFs Empty

x 6∈ dom (Γ)

`s Γ Γ `s A : T

`s Γ, x :A
WFs ExtVar

`s Γ X 6∈ dom (Γ)

`s Γ,X :K
WFs ExtTyVar

Well-formedness rules for types and rows Γ `s A : K

`s Γ X :K ∈ Γ

Γ `s X : K
WFs TyVar

`s Γ

Γ `s ι : T
WFs Base

Γ `s A : T Γ `s B : T

Γ `s A→ B : T
WFs Fun

Γ,X :K `s A : T

Γ `s ∀X :K .A : T
WFs Poly

Γ `s ρ : R

Γ `s [ρ] : T
WFs Record

Γ `s ρ : R

Γ `s 〈ρ〉 : T
WFs Variant

`s Γ

Γ `s · : R
WFs REmp

Γ `s A : T Γ `s ρ : R

Γ `s ` : A; ρ : R
WFs Cons

Typing rules Γ `s M : A

`s Γ x :A ∈ Γ

Γ `s x : A
Ts Var

`s Γ

Γ `s κ : ty(κ)
Ts Const

Γ, x :A `s M : B

Γ `s λx :A.M : A→ B
Ts Lam

Γ `s M1 : A→ B Γ `s M2 : A

Γ `s M1 M2 : B
Ts App

Γ,X :K `s M : A

Γ `s ΛX :K .M : ∀X :K .A
Ts TLam

Γ `s M : ∀X :K .A Γ `s B : K

Γ `s M B : A[B/X]
Ts TApp

`s Γ

Γ `s {} : [·]
Ts REmp

Γ `s M1 : A Γ `s M2 : [ρ]

Γ `s {` = M1; M2} : [` : A; ρ]
Ts RExt

Γ `s M1 : [` : A; ρ] Γ, x :A, y :[ρ] `s M2 : B

Γ `s let {` = x ; y} = M1 inM2 : B
Ts RLet

Γ `s M : A Γ `s ρ : R

Γ `s `M : 〈` : A; ρ〉
Ts VInj

Γ `s M : 〈ρ〉 Γ `s A : T

Γ `s↑〈` : A〉M : 〈` : A; ρ〉
Ts VLift

Γ `s M : 〈` : A; ρ〉 Γ, x :A `s M1 : B Γ, y :〈ρ〉 `s M2 : B

Γ `s caseM with 〈` x → M1; y → M2〉 : B
Ts VCase

Γ `s M : A A ≡ B Γ `s B : T

Γ `s M : B
Ts Equiv

Figure 3: Typing of Fρ.

3

1.2 Gradually typed language Fρ
G

1.2.1 Syntax

Variables for types and rows X Kinds K ::= T | R

Type-and-row names α

Base types ι ::= bool | int | ... Constants κ ::= true | false | 0 | + | ...

Types and rows A,B ,C ,D , ρ ::= X | α | ? | ι | A→ B | ∀X :K .A | [ρ] | 〈ρ〉 | · | ` : A; ρ

Terms M ::= x | κ | λx :A.M | M1 M2 | ΛX :K .M | M A |
{} | {` = M1; M2} | let {` = x ; y} = M1 inM2 |
`M | caseM with 〈` x → M1; y → M2〉 |↑〈` : A〉M

Typing contexts Γ ::= ∅ | Γ, x :A | Γ,X :K

Assumption 2. We assume that operation A⊕ B that produces a type is available. Assumptions for ⊕ are stated
in the beginnings of subsections of proving properties (Section 2.3 and Section 2.4).

1.2.2 Typing

Definition 7 (Type-and-row equivalence). Type-and-row equivalence ≡ is the smallest relation satisfying the rules
given by Figure 2.

Consistency rules A ∼ B

A ∼ A
C Refl

? ∼ A
C DynL

A ∼ ?
C DynR

A1 ∼ A2 B1 ∼ B2

A1 → B1 ∼ A2 → B2
C Fun

A1 ∼ A2

∀X :K .A1 ∼ ∀X :K .A2
C Poly

QPoly (A2) X 6∈ ftv(A2) A1 ∼ A2

∀X :K .A1 ∼ A2
C PolyL

QPoly (A1) X 6∈ ftv(A1) A1 ∼ A2

A1 ∼ ∀X :K .A2
C PolyR

ρ1 ∼ ρ2

[ρ1] ∼ [ρ2]
C Record

ρ1 ∼ ρ2

〈ρ1〉 ∼ 〈ρ2〉
C Variant

A1 ∼ A2 ρ1 ∼ ρ2

` : A1; ρ1 ∼ ` : A2; ρ2
C Cons

` 6∈ dom (ρ2) ρ2 ends with ? ρ1 ∼ ρ2

` : A; ρ1 ∼ ρ2
C ConsL

` 6∈ dom (ρ1) ρ1 ends with ? ρ1 ∼ ρ2

ρ1 ∼ ` : A; ρ2
C ConsR

Figure 4: Consistency.

Definition 8 (Quasi-universal types). The predicate QPoly (A) is defined by: QPoly (A) if and only if

• A 6= ∀X :K .B for any X , K , and B,

• A 6= ·,

• A 6= ` : B ; ρ for any `, B, and ρ, and

• ? occurs somewhere in A.

Type A is a quasi-universal type if and only if QPoly (A).

4

Definition 9 (Labels in row). We define dom (ρ), the set of the field labels in ρ, as follows.

dom (·) def
= ∅

dom (?)
def
= ∅

dom (X)
def
= ∅

dom (α)
def
= ∅

dom (` : A; ρ)
def
= dom (ρ) ∪ {`}

Definition 10 (Row concatenation). Row concatenation ρ1 � ρ2 is defined as follows:

· � ρ2
def
= ρ2

(` : A; ρ1)� ρ2
def
= ` : A; (ρ1 � ρ2)

Definition 11 (Rows ending with ?). Row type ρ ends with ? if and only if ρ = ρ′ � ? for some ρ′.

Definition 12 (Consistency). Consistency A ∼ B is the smallest relation satisfying the rules given by Figure 4.

Consistent equivalence rules A ' B

A ' A
CE Refl

? ' A
CE DynL

A ' ?
CE DynR

A1 ' A2 B1 ' B2

A1 → B1 ' A2 → B2
CE Fun

A1 ' A2

∀X :K .A1 ' ∀X :K .A2
CE Poly

QPoly (A2) X 6∈ ftv(A2) A1 ' A2

∀X :K .A1 ' A2
CE PolyL

QPoly (A1) X 6∈ ftv(A1) A1 ' A2

A1 ' ∀X :K .A2
CE PolyR

ρ1 ' ρ2

[ρ1] ' [ρ2]
CE Record

ρ1 ' ρ2

〈ρ1〉 ' 〈ρ2〉
CE Variant

ρ2 .` B , ρ′2 A ' B ρ1 ' ρ′2
` : A; ρ1 ' ρ2

CE ConsL
ρ1 .` A, ρ′1 A ' B ρ′1 ' ρ2

ρ1 ' ` : B ; ρ2
CE ConsR

Figure 5: Consistent equivalence.

Definition 13 (Row splitting). Row splitting ρ1 .` A, ρ2 is defined as follows.

` : A; ρ .` A, ρ
`′ : B ; ρ1 .` A, (`′ : B ; ρ2) (if ` 6= `′ and ρ1 .` A, ρ2)
? .` ?, ?

Definition 14 (Consistent equivalence). Consistency equivalence A ' B is the smallest relation satisfying the rules
given by Figure 5.

Definition 15 (Type matching). Type matching A.B is the smallest relation satisfying the rules given by Figure 6.

Definition 16 (Typing). The well-formedness judgments ` Γ and Γ ` A : K , and the typing judgment Γ ` M : A
of FρG are the smallest relations satisfying the rules given by Figure 7.

5

Type matching rules A . B

A→ B .A→ B ? . ?→ ?

∀X :K .A . ∀X :K .A ? . ∀X :K . ?

[ρ] . [ρ] ? . [?]

〈ρ〉 . 〈ρ〉 ? . 〈?〉

Figure 6: Type matching.

6

Well-formedness rules for typing contexts ` Γ

` ∅
WFg Empty

` Γ x 6∈ dom (Γ) Γ ` A : T

` Γ, x :A
WFg ExtVar

` Γ X 6∈ dom (Γ)

` Γ,X :K
WFg ExtTyVar

Well-formedness rules for types and rows Γ ` A : K

` Γ X :K ∈ Γ

Γ ` X : K
WFg TyVar

` Γ

Γ ` ? : K
WFg Dyn

` Γ

Γ ` ι : T
WFg Base

Γ ` A : T Γ ` B : T

Γ ` A→ B : T
WFg Fun

Γ,X :K ` A : T

Γ ` ∀X :K .A : T
WFg Poly

Γ ` ρ : R

Γ ` [ρ] : T
WFg Record

Γ ` ρ : R

Γ ` 〈ρ〉 : T
WFg Variant

` Γ

Γ ` · : R
WFg REmp

Γ ` A : T Γ ` ρ : R

Γ ` ` : A; ρ : R
WFg Cons

Typing rules Γ ` M : A

` Γ x :A ∈ Γ

Γ ` x : A
Tg Var

` Γ

Γ ` κ : ty(κ)
Tg Const

Γ, x :A ` M : B

Γ ` λx :A.M : A→ B
Tg Lam

Γ ` M1 : A1 Γ ` M2 : A2 A1 .A11 → A12 A2 ' A11

Γ ` M1 M2 : A12
Tg App

Γ,X :K ` M : A

Γ ` ΛX :K .M : ∀X :K .A
Tg TLam

Γ ` M : A Γ ` B : K A . ∀X :K .C

Γ ` M B : C [B/X]
Tg TApp

` Γ

Γ ` {} : [·]
Tg REmp

Γ ` M1 : A Γ ` M2 : B B . [ρ]

Γ ` {` = M1; M2} : [` : A; ρ]
Tg RExt

Γ ` M1 : A A . [ρ] ρ .` B , ρ′ Γ, x :B , y :[ρ′] ` M2 : C

Γ ` let {` = x ; y} = M1 inM2 : C
Tg RLet

Γ ` M : A Γ ` ρ : R

Γ ` `M : 〈` : A; ρ〉
Tg VInj

Γ ` M : B B . 〈ρ〉 Γ ` A : T

Γ `↑〈` : A〉M : 〈` : A; ρ〉
Tg VLift

Γ ` M : A A . 〈ρ〉 ρ .` B , ρ′ Γ, x :B ` M1 : C Γ, y :〈ρ′〉 ` M2 : D

Γ ` caseM with 〈` x → M1; y → M2〉 : C ⊕D
Tg VCase

Figure 7: Typing of FρG.

7

1.3 Blame calculus Fρ
C

1.3.1 Syntax

Blame labels p, q Type-and-row names α Conversion labels Φ ::= +α | −α
Types and rows A,B ,C ,D , ρ ::= X | α | ? | ι | A→ B | ∀X :K .A | [ρ] | 〈ρ〉 | · | ` : A; ρ

Ground types G ,H ::= α | ι | ?→ ? | [?] | 〈?〉
Ground row types γ ::= α | · | ` : ?; ?

Terms e ::= x | κ | λx :A.e | e1 e2 | ΛX :K .e :: A | e A |
{} | {` = e1; e2} | let {` = x ; y} = e1 in e2 |
` e | case e with 〈` x → e1; y → e2〉 |↑〈` : A〉 e |
e : A

p⇒ B | e : A
Φ⇒ B | blame p

Values v ::= κ | λx :A.e | ΛX :K .e :: A | {} | {` = v1; v2} | ` v |↑〈` : A〉 v |
v : G

p⇒ ? | v : [γ]
p⇒ [?] | v : 〈γ〉 p⇒ 〈?〉 |

v : A
−α⇒ α | v : [ρ]

−α⇒ [α] | v : 〈ρ〉 −α⇒ 〈α〉
Evaluation contexts E ::= [] | E e2 | v1 E | E A | {` = E ; e2} | {` = v1; E} |

let {` = x ; y} = E in e2 |
`E | caseE with 〈` x → e1; y → e2〉 |↑〈` : A〉E |
E : A

p⇒ B | E : A
Φ⇒ B

Name stores Σ ::= ∅ | Σ, α:K := A

Figure 8: Syntax of FρC.

Definition 17 (Comparison between name stores). We write Σ ⊆ Σ′ if and only if, for any α, K , and A, if
α:K := A ∈ Σ, then α:K := A ∈ Σ′.

Definition 18 (Substitution). Type substitution e[A/X] of A for X in e is defined in a capture-avoiding manner
as usual. Value substitution e[v/x] is also defined similarly.

1.3.2 Semantics

Definition 19 (Record splitting). v .` v1, v2 is defined as follows:

{` = v1; v2} .` v1, v2

{`′ = v1; v2} .` v21, {`′ = v1; v22} (where ` 6= `′ and v2 .` v21, v22)

Definition 20 (Field postpending). Field postpending ρ @ ` : A is defined as follows:

(`′ : B ; ρ) @ ` : A
def
= `′ : B ; (ρ @ ` : A)

? @ ` : A
def
= ` : A; ?

Definition 21 (Ground row types of rows).

grow(·) def
= ·

grow(α)
def
= α

grow(` : A; ρ)
def
= ` : ?; ?

Definition 22 (Row embedding). Row embedding ↑ρ e is defined as follows:

↑(` : A; ρ) e
def
= ↑〈` : A〉 (↑ρ e)

↑ρ e
def
= e (if ρ 6= (` : A; ρ′))

8

Definition 23 (Field insertion). Function ↓ρ〈`:A〉e embeds a term e of type 〈ρ�ρ′〉 into 〈ρ�(` :A; ·)�ρ′〉. Formally,

it is defined as follows:

↓ (`′:B ′;ρ)
〈`:A〉 e

def
= case e with 〈`′ x → `′ x ; y →↑〈`′ : B ′〉 (↓ρ〈`:A〉y)〉

↓ρ〈`:A〉e
def
= ↑〈` : A〉 e (if ρ 6= (`′ : B ′; ρ′) for any `′, B ′, and ρ′)

Definition 24 (Name in conversion label). We define name(+α) and name(−α) to be α.

Reduction rules e1 e2

κ1 κ2 ζ(κ1, κ2) R Const
(λx :A.e) v e[v/x] R Beta

let {` = x ; y} = {` = v1; v2} in e2 e[v1/x , v2/y] R Record

case (` v)with 〈` x → e1; y → e2〉 e1[v/x] R CaseL
case ↑〈` : A〉 v with 〈` x → e1; y → e2〉 e2[v/y] R CaseR

v : ?
p⇒ ? v R IdDyn

v : A
p⇒ ? v : A

p⇒ G
p⇒ ? R ToDyn

(if A ' G and A 6= G and A 6= ? and A 6= ∀X :K .B)

v : ?
p⇒ A v : ?

p⇒ G
p⇒ A R FromDyn

(if A ' G and A 6= G and A 6= ? and A 6= ∀X :K .B)

v : G
p⇒ ?

q⇒ G v R Ground

v : G
p⇒ ?

q⇒ H blame q (if G 6= H) R Blame

v : ι
p⇒ ι v R IdBase

v : α
p⇒ α v R IdName

v : A1 → B1
p⇒ A2 → B2 λx :A2.v (x : A2

p⇒ A1) : B1
p⇒ B2 R Wrap

v : ∀X :K .A1
p⇒ ∀X :K .A2 ΛX :K .(v X : A1

p⇒ A2) :: A2 R Content

v : ∀X :K .A
p⇒ B (v ?) : A[?/X]

p⇒ B (if QPoly (B)) R Inst

v : A
p⇒ ∀X :K .B ΛX :K .(v : A

p⇒ B) :: B (if QPoly (A)) R Gen

v : A
−α⇒ α

+α⇒ A v R CName

v : ?
Φ⇒ ? v R CIdDyn

v : α
Φ⇒ α v (if name(Φ) 6= α) R CIdName

v : ι
Φ⇒ ι v R CIdBase

v : A1 → B1
Φ⇒ A2 → B2 λx :A2.v (x : A2

Φ⇒ A1) : B1
Φ⇒ B2 R CFun

v : ∀X :K .A1
Φ⇒ ∀X :K .A2 ΛX :K .(v X : A1

Φ⇒ A2) :: A2 R CForall

Figure 9: Reduction rules of FρC.

Definition 25. Relations −→ and are the smallest relations satisfying the rules in Figures 9, 10, 11, and 12.

Definition 26 (Multi-step evaluation). Binary relation −→∗ over terms is the reflexive and transitive closure of
−→.

1.4 Typing

Definition 27. Judgments Σ ` Γ, Σ; Γ ` A : K , and Σ; Γ ` e : A are the smallest relations satisfying the rules in
Figures 14 and 15.

9

Cast and conversion reduction rules for records e1 e2

v : [·] p⇒ [·] v R REmp

v : [α]
p⇒ [α] v R RIdName

v : [ρ]
p⇒ [?] v : [ρ]

p⇒ [grow(ρ)]
p⇒ [?] (if ρ 6= grow(ρ)) R RToDyn

v : [γ]
p⇒ [?]

q⇒ [ρ] v : [γ]
q⇒ [ρ] (if γ ' ρ) R RFromDyn

v : [γ]
p⇒ [?]

q⇒ [ρ] blame q (if γ 6' ρ) R RBlame

v : [ρ1]
p⇒ [` : B ; ρ2] {` = (v1 : A

p⇒ B); v2 : [ρ′1]
p⇒ [ρ2]}

R RRev
(if v .` v1, v2 and ρ1 .` A, ρ′1)

v : [ρ1]
p⇒ [` : B ; ρ2] v : [ρ1]

p⇒ [ρ1 @ ` : B]
p⇒ [` : B ; ρ2]

R RCon
(if ` 6∈ dom (ρ1) and ρ1 6= ?)

v : [ρ]
−α⇒ [α]

+α⇒ [ρ] v R CRName

v : [·] Φ⇒ [·] v R CREmp

v : [` : A; ρ1]
Φ⇒ [` : B ; ρ2]

R CRExtlet {` = x ; y} = v in {` = x : A
Φ⇒ B ; y : [ρ1]

Φ⇒ [ρ2]}
v : [?]

Φ⇒ [?] v R CRIdDyn

v : [α]
Φ⇒ [α] v (if name(Φ) 6= α) R CRIdName

Figure 10: Cast and conversion reduction rules for record types.

1.5 Translation

Definition 28. Relation Γ ` M : A ↪→ e is the smallest relation satisfying the rules in Figure 16.

10

Cast and conversion reduction rules for variants e1 e2

v : 〈α〉 p⇒ 〈α〉 v R VIdName

v : 〈ρ〉 p⇒ 〈?〉 v : 〈ρ〉 p⇒ 〈grow(ρ)〉 p⇒ 〈?〉 (if ρ 6= grow(ρ)) R VToDyn

v : 〈γ〉 p⇒ 〈?〉 q⇒ 〈ρ〉 v : 〈γ〉 q⇒ 〈ρ〉 (if γ ' ρ) R VFromDyn

v : 〈γ〉 p⇒ 〈?〉 q⇒ 〈ρ〉 blame q (if γ 6' ρ) R VBlame

(` v) : 〈` : A; ρ1〉
p⇒ 〈ρ2〉 ↑ρ21 (` (v : A

p⇒ B))
R VRevInj

(if ρ2 = ρ21 � (` : B ; ·)� ρ22 and ` 6∈ dom (ρ21))

(↑〈` : A〉 v) : 〈` : A; ρ1〉
p⇒ 〈ρ2〉 ↓ρ21〈`:B〉(v : 〈ρ1〉

p⇒ 〈ρ21 � ρ22〉) R VRevLift
(if ρ2 = ρ21 � (` : B ; ·)� ρ22 and ` 6∈ dom (ρ21))

(` v) : 〈` : A; ρ1〉
p⇒ 〈ρ2〉 ↑ρ2 (` v : 〈` : A; ?〉 p⇒ 〈?〉)

R VConInj
(if ` 6∈ dom (ρ2) and ρ2 6= ?)

(↑〈` : A〉 v) : 〈` : A; ρ1〉
p⇒ 〈ρ2〉 R VConLift

(↓ρ2〈`:A〉(v : 〈ρ1〉
p⇒ 〈ρ2〉)) : 〈ρ2 @ ` : A〉 p⇒ 〈ρ2〉 (if ` 6∈ dom (ρ2) and ρ2 6= ?)

v : 〈ρ〉 −α⇒ 〈α〉 +α⇒ 〈ρ〉 v R CVName

v : 〈` : A; ρ1〉
Φ⇒ 〈` : B ; ρ2〉 case v with 〈` x → ` (x : A

Φ⇒ B); y →↑〈` : B〉 (y : 〈ρ1〉
Φ⇒ 〈ρ2〉)〉 R CVar

v : 〈?〉 Φ⇒ 〈?〉 v R CVIdDyn

v : 〈α〉 Φ⇒ 〈α〉 v (if name(Φ) 6= α) R CVIdName

Figure 11: Cast and conversion reduction rules for variant types.

Evaluation rules Σ1 | e1 −→ Σ2 | e2

e1 e2

Σ | E [e1] −→ Σ | E [e2]
E Red

E 6= []

Σ | E [blame p] −→ Σ | blame p
E Blame

Σ | E [(ΛX :K .e :: A) B] −→ Σ, α:K := B | E [e[α/X] : A[α/X]
+α⇒ A[B/X]] E TyBeta

Figure 12: Evaluation rules of FρC.

11

Convertible rules Σ ` A ≺Φ B

Σ ` ? ≺Φ ?
Cv Dyn

Σ ` X ≺Φ X
Cv TyVar

name(Φ) 6= α

Σ ` α ≺Φ α
Cv TyName

Σ(α) = A

Σ ` α ≺+α A
Cv Reveal

Σ(α) = A

Σ ` A ≺−α α
Cv Conceal

Σ ` ι ≺Φ ι
Cv Base

Σ ` A2 ≺Φ A1 Σ ` B1 ≺Φ B2

Σ ` A1 → B1 ≺Φ A2 → B2
Cv Fun

Σ ` A1 ≺Φ A2

Σ ` ∀X :K .A1 ≺Φ ∀X :K .A2
Cv Poly

Σ ` ρ1 ≺Φ ρ2

Σ ` [ρ1] ≺Φ [ρ2]
Cv Record

Σ ` ρ1 ≺Φ ρ2

Σ ` 〈ρ1〉 ≺Φ 〈ρ2〉
Cv Variant

Σ ` · ≺Φ ·
Cv REmp

Σ ` A1 ≺Φ A2 Σ ` ρ1 ≺Φ ρ2

Σ ` ` : A1; ρ1 ≺Φ ` : A2; ρ2
Cv Cons

Figure 13: Type convertibility.

Well-formedness rules for typing contexts Σ ` Γ

Σ ` ∅
WF Empty

Σ ` Γ x 6∈ dom (Γ) Σ; Γ ` A : T

Σ ` Γ, x :A
WF ExtVar

Σ ` Γ X 6∈ dom (Γ)

Σ ` Γ,X :K
WF ExtTyVar

Well-formedness rules for types and rows Σ; Γ ` A : K

Σ ` Γ X :K ∈ Γ

Σ; Γ ` X : K
WF TyVar

Σ ` Γ α:K := A ∈ Σ

Σ; Γ ` α : K
WF TyName

Σ ` Γ

Σ; Γ ` ? : K
WF Dyn

Σ ` Γ

Σ; Γ ` ι : T
WF Base

Σ; Γ ` A : T Σ; Γ ` B : T

Σ; Γ ` A→ B : T
WF Fun

Σ; Γ,X :K ` A : T

Σ; Γ ` ∀X :K .A : T
WF Poly

Σ; Γ ` ρ : R

Σ; Γ ` [ρ] : T
WF Record

Σ; Γ ` ρ : R

Σ; Γ ` 〈ρ〉 : T
WF Variant

Σ ` Γ

Σ; Γ ` · : R
WF REmp

Σ; Γ ` A : T Σ; Γ ` ρ : R

Σ; Γ ` ` : A; ρ : R
WF Cons

Figure 14: Well-formedness rules of FρC.

12

Typing rules Σ; Γ ` e : A

Σ ` Γ x :A ∈ Γ

Σ; Γ ` x : A
T Var

Σ ` Γ

Σ; Γ ` κ : ty(κ)
T Const

Σ; Γ, x :A ` e : B

Σ; Γ ` λx :A.e : A→ B
T Lam

Σ; Γ ` e1 : A→ B Σ; Γ ` e2 : A

Σ; Γ ` e1 e2 : B
T App

Σ; Γ,X :K ` e : A

Σ; Γ ` ΛX :K .e :: A : ∀X :K .A
T TLam

Σ; Γ ` e : ∀X :K .A Σ; Γ ` B : K

Σ; Γ ` e B : A[B/X]
T TApp

Σ ` Γ

Σ; Γ ` {} : [·]
T REmp

Σ; Γ ` e1 : A Σ; Γ ` e2 : [ρ]

Σ; Γ ` {` = e1; e2} : [` : A; ρ]
T RExt

Σ; Γ ` e1 : [` : A; ρ] Σ; Γ, x :A, y :[ρ] ` e2 : B

Σ; Γ ` let {` = x ; y} = e1 in e2 : B
T RLet

Σ; Γ ` e : A Σ; Γ ` ρ : R

Σ; Γ ` ` e : 〈` : A; ρ〉
T VInj

Σ; Γ ` e : 〈ρ〉 Σ; Γ ` A : T

Σ; Γ `↑〈` : A〉 e : 〈` : A; ρ〉
T VLift

Σ; Γ ` e : 〈` : A; ρ〉 Σ; Γ, x :A ` e1 : B Σ; Γ, y :〈ρ〉 ` e2 : B

Σ; Γ ` case e with 〈` x → e1; y → e2〉 : B
T VCase

Σ; Γ ` A : T

Σ; Γ ` blame p : A
T Blame

Σ; Γ ` e : A Σ; Γ ` B : T A ' B

Σ; Γ ` e : A
p⇒ B : B

T Cast
Σ ` Γ Σ; ∅ ` e : A Σ; ∅ ` B : T Σ ` A ≺Φ B

Σ; Γ ` e : A
Φ⇒ B : B

T Conv

Figure 15: Typing rules of FρC.

13

Translation rules Γ ` M : A ↪→ e

` Γ x :A ∈ Γ

Γ ` x : A ↪→ x
Trans Var

` Γ

Γ ` κ : ty(κ) ↪→ κ
Trans Const

Γ, x :A ` M : B ↪→ e

Γ ` λx :A.M : A→ B ↪→ λx :A.e
Trans Lam

Γ ` M1 : A1 ↪→ e1 Γ ` M2 : A2 ↪→ e2 A1 .A11 → A12 A2 ' A11

Γ ` M1 M2 : A12 ↪→ (e1 : A1
p⇒ A11 → A12) (e2 : A2

q⇒ A11)
Trans App

Γ,X :K ` M : A ↪→ e

Γ ` ΛX :K .M : ∀X :K .A ↪→ ΛX :K .e :: A
Trans TLam

Γ ` M : A ↪→ e Γ ` B : K A . ∀X :K .C

Γ ` M B : C [B/X] ↪→ (e : A
p⇒ ∀X :K .C) B

Trans TApp

` Γ

Γ ` {} : [·] ↪→ {}
Trans REmp

Γ ` M1 : A ↪→ e1 Γ ` M2 : B ↪→ e2 B . [ρ]

Γ ` {` = M1; M2} : [` : A; ρ] ↪→ {` = e1; e2 : B
p⇒ [ρ]}

Trans RExt

Γ ` M1 : A ↪→ e1 A . [ρ] ρ .` B , ρ′ Γ, x :B , y :[ρ′] ` M2 : C ↪→ e2

Γ ` let {` = x ; y} = M1 inM2 : C ↪→ let {` = x ; y} = (e1 : A
p⇒ [` : B ; ρ′]) in e2

Trans RLet

Γ ` M : A ↪→ e Γ ` ρ : R

Γ ` `M : 〈` : A; ρ〉 ↪→ ` e
Trans VInj

Γ ` M : B ↪→ e B . 〈ρ〉 Γ ` A : T

Γ `↑〈` : A〉M : 〈` : A; ρ〉 ↪→↑〈` : A〉 (e : B
p⇒ 〈ρ〉)

Trans VLift

Γ ` M : A ↪→ e A . 〈ρ〉 ρ .` B , ρ′ Γ, x :B ` M1 : C ↪→ e1 Γ, y :〈ρ′〉 ` M2 : D ↪→ e2

e ′1 = e1 : C
q1⇒ C ⊕D e ′2 = e2 : D

q2⇒ C ⊕D

Γ ` caseM with 〈` x → M1; y → M2〉 : C ⊕D ↪→ case (e : A
p⇒ 〈` : B ; ρ′〉)with 〈` x → e ′1; y → e ′2〉

Trans VCase

Figure 16: Translation rules.

14

2 Proofs

2.1 Consistency

Lemma 1. Suppose A ≡ B. QPoly (A) if and only if QPoly (B).

Proof. Straightforward by induction on the derivation of A ≡ B .

Lemma 2. If A ≡ B, then ftv(A) = ftv(B).

Proof. Straightforward by induction on the derivation of A ≡ B .

Lemma 3. Suppose that ρ1 ≡ ρ2. ρ1 ends with ? if and only if so does ρ2.

Proof. Straightforward by induction on the derivation of A ≡ B .

Lemma 4. If ρ1 ≡ ρ2, then dom (ρ1) = dom (ρ2).

Proof. Straightforward by induction on the derivation of ρ1 ≡ ρ2.

Lemma 5. Suppose A ≡ B.

1. A = ? if and only if B = ?.

2. A = A1 → A2 if and only if B = B1 → B2, and A1 ≡ B1 and A2 ≡ B2.

3. A = ∀X :K .A′ if and only if B = ∀X :K .B ′, and A′ ≡ B ′.

4. A = [ρ1] if and only if B = [ρ2], and ρ1 ≡ ρ2.

5. A = 〈ρ1〉 if and only if B = 〈ρ2〉, and ρ1 ≡ ρ2.

6. A = ρ11� (` : A′; ·)� ρ12 and ` 6∈ dom (ρ11) if and only if B = ρ21� (` : B ′; ·)� ρ22 and ` 6∈ dom (ρ21), and
A′ ≡ B ′ and ρ11 � ρ12 ≡ ρ21 � ρ22.

Proof. Straightforward by induction on the derivation of A ≡ B .

Lemma 6. If A ' B, then B ' A.

Proof. Straightforward by induction on the derivation of A ' B .

Lemma 7. If α ' ρ, then ρ = α or ρ = ?.

Proof. Straightforward by case analysis on the derivation of α ' ρ.

Lemma 8. If · ' ρ, then ρ = · or ρ = ?.

Proof. Straightforward by case analysis on the derivation of · ' ρ.

Lemma 9. If ` : A; ρ1 ' ρ2, then ρ2 .` B , ρ′2 and A ' B and ρ1 ' ρ′2.

Proof. By induction on ` : A; ρ1 ' ρ2.

Case (CE Refl): Obvious since ρ2 = ` : A; ρ1 and ` : A; ρ1 .` A, ρ1.

Case (CE ConsL): Obvious by inversion.

Case (CE ConsR): We have ρ2 = `′ : B ; ρ′2 for some `′, B , and ρ′2.

If ` = `′, then, since ` : A; ρ1 .`′ A, ρ1, we have A ' B and ρ1 ' ρ′2 by inversion. Since `′ : B ; ρ′2 .` B , ρ′2, we
finish.

Otherwise, suppose ` 6= `′. Then, by inversion and definition of type matching,

• ` : A; ρ1 .`′ A′, ` : A; ρ′1,

• ρ1 .`′ A′, ρ′1,

15

• A′ ' B , and

• ` : A; ρ′1 ' ρ′2

for some A′ and ρ′1. By the IH, ρ′2 .` B ′, ρ′′2 and A ' B ′ and ρ′1 ' ρ′′2 for some B ′ and ρ′′2 . Since ` 6= `′, we
have ρ2 = `′ : B ; ρ′2 .` B ′, `′ : B ; ρ′′2 . Since A ' B ′, it suffices to show that ρ1 ' `′ : B ; ρ′′2 . Here, ρ1 .`′ A′, ρ′1 and
A′ ' B and ρ′1 ' ρ′′2 (obtained above). Thus, by (CE ConsR), ρ1 ' `′ : B ; ρ′′2 .

Case (CE DynL), (CE DynR), (CE Fun), (CE Poly), (CE PolyL), (CE PolyR), (CE Record), and (CE Variant):
Contradictory.

Lemma 10. If A1 → A2 ' B1 → B2, then A1 ' B1 and A2 ' B2.

Proof. Straightforward by case analysis on the derivation of A1 → A2 ' B1 → B2.

Lemma 11. If ∀X :K .A ' ∀X :K .B, then A ' B.

Proof. Straightforward by case analysis on the derivation of A1 → A2 ' B1 → B2.

Lemma 12. If ∀X :K .A ' B and QPoly (B), then X 6∈ ftv(B) and A ' B.

Proof. Straightforward by case analysis on the derivation of ∀X :K .A ' B .

Lemma 13. If [ρ1] ' [ρ2], then ρ1 ' ρ2.

Proof. Straightforward by case analysis on the derivation of [ρ1] ' [ρ2].

Lemma 14. If 〈ρ1〉 ' 〈ρ2〉, then ρ1 ' ρ2.

Proof. Straightforward by case analysis on the derivation of 〈ρ1〉 ' 〈ρ2〉.

Lemma 15 (consistent-decomp-aux). uppose that A ∼ B. If ρ1 ∼ ρ21 � ρ22 and ` 6∈ dom (ρ21), then there exist
some ρ11 and ρ12 such that

• ρ1 ≡ ρ11 � ρ12,

• ρ11 � (` : A; ·)� ρ12 ∼ ρ21 � (` : B ; ·)� ρ22,

• ρ11� (` :A; ·)�ρ3�ρ12 ∼ ρ21� (` :B ; ·)�ρ22 for any ρ3 such that dom (ρ3) ∩ dom (ρ21�ρ22) = ∅ if ρ21�ρ22

ends with ?, and

• ` 6∈ dom (ρ11).

Proof. By induction on the derivation of ρ1 ∼ ρ21 � ρ22. Since ρ21 � ρ22 is defined, there are only two cases on ρ21

to be considered.

Case ρ21 = ·: Let ρ11 = · and ρ12 = ρ1. Then, it suffices to show the followings.

• ρ1 ≡ ρ1. By (Eq Refl).

• ` : A; ρ1 ∼ ` : B ; ρ22. Since ρ1 ∼ ρ21 � ρ22 = ρ22 and A ∼ B , we prove this by (C Cons).

• Supposing ρ22 ends with ?, we have to show (` : A; ·)� ρ3 � ρ1 ∼ (` : B ; ·)� ρ22 for ρ3 such that dom (ρ3) ∩
dom (ρ22) = ∅. Since ρ1 ∼ ρ22 and dom (ρ3) ∩ dom (ρ22) = ∅ and ρ22 ends with ?, we have ρ3 � ρ1 ∼ ρ22

by (C ConsL). Since A ∼ B , we have that by (C Cons).

• ` 6∈ dom (·). Trivial.

Case ρ21 = `′ : C ; ρ′21: We have:

ρ21 � ρ22 = `′ : C ; ρ′21 � ρ22 (1)

` 6∈ dom (`′ : C ; ρ′21) (2)

By case analysis on the rule applied last to derive ρ1 ∼ `′ : C ; ρ′21 � ρ22.

16

Case (C Refl): We have ρ1 = `′ : C ; ρ′21 � ρ22. Let ρ11 = `′ : C ; ρ′21 and ρ12 = ρ22. Then, it suffices to show
the followings.

• ρ1 ≡ (`′ : C ; ρ′21)� ρ22. By (Eq Refl).

• `′ : C ; ρ′21 � (` : A; ·)� ρ22 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22. By (C Refl) and (C Cons).

• Supposing (`′ : C ; ρ′21)� ρ22 ends with ?, we have to show

`′ : C ; ρ′21 � (` : A; ·)� ρ3 � ρ22 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

for any ρ3 such that dom (ρ3) ∩ dom (`′ : C ; ρ′21 � ρ22) = ∅. By (C Refl), (C ConsL), and (C Cons).

• ` 6∈ dom (`′ : C ; ρ′21). By (2).

Case (C DynL): We have ρ1 = ?. Let ρ11 = · and ρ12 = ?. Then, it suffices to show the followings.

• ? ≡ ?. By (Eq Refl).

• ` : A; ? ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22. By (C ConsR) and (C Cons) with (2).

• Supposing (`′ : C ; ρ′21)� ρ22 ends with ?, we have to show

(` : A; ·)� ρ3 � ? ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

for any ρ3 such that dom (ρ3) ∩ dom (`′ : C ; ρ′21�ρ22) = ∅. By (C ConsR), (C ConsL), and (C Cons).

• ` 6∈ dom (·). Trivial.

Case (C Cons): We have ρ1 = `′ : D ; ρ′1 and, by inversion, D ∼ C and ρ′1 ∼ ρ′21 � ρ22 for some D and ρ′1. By
the IH, there exist some ρ′11 and ρ12 such that

(a) ρ′1 ≡ ρ′11 � ρ12,

(b) ρ′11 � (` : A; ·)� ρ12 ∼ ρ′21 � (` : B ; ·)� ρ22,

(c) ρ′11 � (` : A; ·) � ρ3 � ρ12 ∼ ρ′21 � (` : B ; ·) � ρ22 for any ρ3 such that dom (ρ3) ∩ dom (ρ′21 � ρ22) = ∅ if
ρ′21 � ρ22 ends with ? for some ρ2, and

(d) ` 6∈ dom (ρ′11)

for some ρ′11 and ρ12.

Let ρ11 = `′ : D ; ρ′11. Then, it suffices to show the followings.

• ρ1 = `′ : D ; ρ′1 ≡ `′ : D ; ρ′11 � ρ12. By (a) and (Eq Cons).

• `′ : D ; ρ′11 � (` : A; ·)� ρ12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22. By (b) and (C Cons) with D ∼ C .

• Supposing (`′ : C ; ρ′21)� ρ22 ends with ? for some ρ2, we have to show

`′ : D ; ρ′11 � (` : A; ·)� ρ3 � ρ12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

for any ρ3 such that dom (ρ3) ∩ dom (`′ : C ; ρ′21 � ρ22) = ∅. By (c) and (C Cons) with D ∼ C .

• ` 6∈ dom (`′ : D ; ρ′11). By (d) and (2).

Case (C ConsL): We have ρ1 = `′′ : D ; ρ′1 and, by inversion,

• `′′ 6∈ dom (`′ : C ; ρ′21 � ρ22),

• `′ : C ; ρ′21 � ρ22 ends with ?, and

• ρ′1 ∼ `′ : C ; ρ′21 � ρ22

for some `′′, D , ρ′1, and ρ2.

By the IH, there exist some ρ′11 and ρ′12 such that

(a) ρ′1 ≡ ρ′11 � ρ′12,

(b) ρ′11 � (` : A; ·)� ρ′12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22, and

(c) ρ′11�(`:A; ·)�ρ3�ρ′12 ∼ `′ :C ; ρ′21�(`:B ; ·)�ρ22 for any ρ3 such that dom (ρ3) ∩ dom (`′ :C ; ρ′21�ρ22) = ∅
if `′ : C ; ρ′21 � ρ22 ends with ? for some ρ′2, and

(d) ` 6∈ dom (ρ′11).

Suppose that `′′ = `. By (d), `′′ 6∈ dom (ρ′11). Let ρ11 = ρ′11 and ρ12 = `′′ : D ; ρ′12. Then, it suffices to show
the followings.

17

• `′′ : D ; ρ′1 ≡ ρ′11 � `′′ : D ; ρ′12. By (a) and (Eq Cons), we have

`′′ : D ; ρ′1 ≡ `′′ : D ; · � ρ′11 � ρ′12.

Since `′′ 6∈ dom (ρ′11), we have
`′′ : D ; ρ′1 ≡ ρ′11 � `′′ : D ; ρ′12.

• ρ′11 � (` : A; ·)� `′′ : D ; ρ′12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22. Since `′′ 6∈ dom (`′ : C ; ρ′21 � ρ22) and ρ22 ends
with ?, we have

ρ′11 � (` : A; ·)� (`′′ : D ; ·)� ρ′12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

by (c).

• Supposing (`′ : C ; ρ′21)� ρ22 ends with ?, we have to show

ρ′11 � (` : A; ·)� ρ3 � `′′ : D ; ρ′12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

for any ρ3 such that dom (ρ3) ∩ dom (`′ : C ; ρ′21 � ρ22) = ∅. Since `′′ 6∈ dom (`′ : C ; ρ′21 � ρ22), we have

ρ′11 � (` : A; ·)� ρ3 � (`′′ : D ; ·)� ρ′12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22.

by (c).

• ` 6∈ dom (ρ′11). By (d).

Otherwise, suppose that `′′ 6= `. Let ρ11 = `′′ :D ; ρ′11 and ρ12 = ρ′12. Then, it suffices to show the followings.

• `′′ : D ; ρ′1 ≡ `′′ : D ; ρ′11 � ρ′12. By (a) and (Eq Cons).

• `′′ : D ; ρ′11 � (` : A; ·)� ρ′12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22. Since `′′ 6∈ dom (`′ : C ; ρ′21 � ρ22) and `′′ 6= `, we
have `′′ 6∈ dom (`′ : C ; ρ′21 � (` : B ; ·)� ρ22). Since ρ22 ends with ?, we finish by (b) and (C ConsL).

• Supposing (`′ : C ; ρ′21)� ρ22 ends with ?, we have to show

`′′ : D ; ρ′11 � (` : A; ·)� ρ3 � ρ′12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

for any ρ3 such that dom (ρ3) ∩ dom (`′ : C ; ρ′21 � ρ22) = ∅. By (c), we have

ρ′11 � (` : A; ·)� ρ3 � ρ′12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22.

Since `′′ 6∈ dom (`′ : C ; ρ′21 � ρ22) and `′′ 6= `, we have `′′ 6∈ dom (`′ : C ; ρ′21 � (` : B ; ·)� ρ22). Since ρ22

ends with ?, we finish by (C ConsL).

• ` 6∈ dom (`′′ : D ; ρ′11). By (d) and `′′ 6= `.

Case (C ConsR): By inversion, we have

• `′ 6∈ dom (ρ1),

• ρ1 ends with ?, and

• ρ1 ∼ ρ′21 � ρ22.

By the IH, there exist some ρ11 and ρ12 such that

(a) ρ1 ≡ ρ11 � ρ12,

(b) ρ11 � (` : A; ·)� ρ12 ∼ ρ′21 � (` : B ; ·)� ρ22,

(c) ρ11 � (` : A; ·) � ρ3 � ρ12 ∼ ρ′21 � (` : B ; ·) � ρ22 for any ρ3 such that dom (ρ3) ∩ dom (ρ′21 � ρ22) = ∅ if
ρ′21 � ρ22 ends with ? for some ρ2, and

(d) ` 6∈ dom (ρ11).

First, we show
`′ 6∈ dom (ρ11 � (` : A; ·)� ρ12). (3)

Since ` 6∈ dom (ρ21) from the assumption and ρ21 = `′ :C ; ρ′21, ` 6= `′. Since `′ 6∈ dom (ρ1) and ρ1 ≡ ρ11�ρ12,
we have `′ 6∈ dom (ρ11 � (` : A; ·)� ρ12).

It suffices to show the followings.

• ρ1 ≡ ρ11 � ρ12. By (a).

18

• ρ11 � (` : A; ·)� ρ12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22. Since ρ1 ends with ? and ρ1 ≡ ρ11 � ρ12, ρ12 ends with
?. Thus, we have

ρ11 � (` : A; ·)� ρ12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

by (b), (3), and (C ConsR).

• Supposing (`′ : C ; ρ′21)� ρ22 ends with ? for some ρ2, we have to show

ρ11 � (` : A; ·)� ρ3 � ρ12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

for any ρ3 such that dom (ρ3) ∩ dom (`′ : C ; ρ′21 � ρ22) = ∅. By (c), we have

ρ11 � (` : A; ·)� ρ3 � ρ12 ∼ ρ′21 � (` : B ; ·)� ρ22.

By (3), `′ 6∈ dom (ρ11 � (` : A; ·)� ρ3 � ρ12). Since ρ12 ends with ?, we have

ρ11 � (` : A; ·)� ρ3 � ρ12 ∼ `′ : C ; ρ′21 � (` : B ; ·)� ρ22

by (C ConsR).

Case (C DynR), (C Fun), (C Poly), (C PolyL), (C PolyR), (C Record), and (C Variant): Note that the
contradiction in the case of (C PolyL) is proven by the definition of QPoly.

Lemma 16. If A ' B, then A ≡ C and C ∼ B for some C .

Proof. By induction on the derivation of A ' B .

Case (CE Refl): Obvious because ≡ and ∼ are reflexive.

Case (CE DynL): By ? ≡ ? (Eq Refl) and ? ∼ B (C DynL).

Case (CE DynR): By A ≡ A (Eq Refl) and A ∼ ? (C DynR).

Case (CE Fun): We have A1 → A2 ' B1 → B2 and, by inversion, A1 ' B1 and A2 ' B2. By the IHs,

• A1 ≡ C1,

• C1 ∼ B1,

• A2 ≡ C2, and

• C2 ∼ B2

for some C1 and C2. By (Eq Fun), A1 → A2 ≡ C1 → C2. By (C Fun), C1 → C2 ∼ B1 → B2.

Case (CE Poly): We have ∀X :K .A′ ' ∀X :K .B ′ and, by inversion, A′ ' B ′. By the IH, A′ ≡ C ′ and C ′ ∼ B ′

for some C ′. By (Eq Poly), ∀X :K .A′ ≡ ∀X :K .C ′. By (C Poly), ∀X :K .C ′ ∼ ∀X :K .B ′.

Case (CE PolyL): We have ∀X :K .A′ ' B and, by inversion, QPoly (B) and X 6∈ ftv(B) and A′ ' B . By the
IH, A′ ≡ C and C ∼ B for some C . By (Eq Poly), ∀X :K .A′ ≡ ∀X :K .C . By (C PolyL), ∀X :K .C ∼ B .

Case (CE PolyR): We have A ' ∀X :K .B ′ and, by inversion, QPoly (A) and X 6∈ ftv(A) and A ' B ′. By the
IH, A ≡ C and C ∼ B ′ for some C . Since A ≡ C , we can find QPoly (C) by Lemma 1 and QPoly (A), and
X 6∈ ftv(C) by Lemma 2 and X 6∈ ftv(A). Thus, by (C PolyR), C ∼ ∀X :K .B ′.

Case (CE Record): By the IH, (Eq Record), and (C Record).

Case (CE Variant): By the IH, (Eq Variant), and (C Variant).

Case (CE ConsL): We have ` : A′; ρ1 ' B and, by inversion, B .` B ′, ρ2 and A′ ' B ′ and ρ1 ' ρ2. By the IHs,

• A′ ≡ C ′,

• C ′ ∼ B ′,

19

• ρ1 ≡ ρ, and

• ρ ∼ ρ2

for some C ′ and ρ.

If ` ∈ dom (B), then B = ρ21�(` :B ′; ·)�ρ22 for some ρ21 and ρ22 such that ρ2 = ρ21�ρ22 and ` 6∈ dom (ρ21).
Since ρ ∼ ρ21 � ρ22 and C ′ ∼ B ′, there exist some ρ11 and ρ12 such that

• ρ ≡ ρ11 � ρ12,

• ρ11 � (` : C ′; ·)� ρ12 ∼ ρ21 � (` : B ′; ·)� ρ22, and

• ` 6∈ dom (ρ11).

Here, we have
` : A′; ρ1

≡ ` : C ′; ρ since A′ ≡ C ′ and ρ1 ≡ ρ
≡ ` : C ′; ρ11 � ρ12 since ρ ≡ ρ11 � ρ12

≡ ρ11 � (` : C ′; ·)� ρ12 since ` 6∈ dom (ρ11)
∼ ρ21 � (` : B ′; ·)� ρ22

= B .

Otherwise, if ` 6∈ dom (B), it is found from B .` B ′, ρ2 that B = ρ2 and B ends with ?. Since ρ ∼ ρ2, we have
ρ ∼ B . By (C ConsL), ` : A′; ρ ∼ B . Here, we have

` : A′; ρ1 ≡ ` : A′; ρ ∼ B .

Case (CE ConsR): We have A ' ` : B ′; ρ2 and, by inversion, A .` A′, ρ1 and A′ ' B ′ and ρ1 ' ρ2. By the IHs,

• A′ ≡ C ′,

• C ′ ∼ B ′,

• ρ1 ≡ ρ, and

• ρ ∼ ρ2

for some C ′ and ρ2.

If ` ∈ dom (A), then A = ρ11� (` :A′; ·)�ρ12 for some ρ11 and ρ12 such that ρ1 = ρ11�ρ12 and ` 6∈ dom (ρ11).
Here, we have

A
= ρ11 � ` : A′; · � ρ12

≡ ρ11 � ` : C ′; · � ρ12 since A′ ≡ C ′

≡ ` : C ′; ρ11 � ρ12 since ` 6∈ dom (ρ11)
= ` : C ′; ρ1

≡ ` : C ′; ρ since ρ1 ≡ ρ
∼ ` : B ′; ρ2 by (C Cons) since C ′ ∼ B ′ and ρ ∼ ρ2

= B .

Lemma 17. If ρ11 � (` : A; ·) � ρ12 ' ρ21 � (` : B ; ·) � ρ22 and ` 6∈ dom (ρ11) ∪ dom (ρ21), then A ' B and
ρ11 � ρ12 ' ρ21 � ρ22.

Proof. By induction on the derivation of ρ11 � (` : A; ·)� ρ12 ' ρ21 � (` : B ; ·)� ρ22.

Case (CE Refl): Obvious by (CE Refl).

Case (CE ConsL): By case analysis on ρ11.

Case ρ11 = ·: We have A ' B and ρ12 ' ρ21 � ρ22 by inversion, and therefore we finish.

Case ρ11 6= ·: We have ρ11 = `′ : A′; ρ′11. Since ` 6∈ dom (ρ11), it is found that ` 6= `′.

20

Case `′ ∈ dom (ρ21): There exist some ρ211, ρ212, and B ′ such that

• ρ21 = ρ211 � (`′ : B ′; ·)� ρ212,

• `′ 6∈ dom (ρ211),

• A′ ' B ′, and

• ρ′11 � (` : A; ·)� ρ12 ' ρ211 � ρ212 � (` : B ; ·)� ρ22

by inversion. By the IH, A ' B and ρ′11 � ρ12 ' ρ211 � ρ212 � ρ22. By (CE ConsL),

ρ11 � ρ12 = `′ : A′; ρ′11 � ρ12 ' ρ211 � (`′ : B ′; ·)� ρ212 � ρ22 = ρ21 � ρ22.

Case `′ 6∈ dom (ρ21) and `′ ∈ dom (ρ22): There exist some ρ221, ρ222, and B ′ such that

• ρ22 = ρ221 � (`′ : B ′; ·)� ρ222,

• `′ 6∈ dom (ρ221),

• A′ ' B ′, and

• ρ′11 � (` : A; ·)� ρ12 ' ρ21 � (` : B ; ·)� ρ221 � ρ222

by inversion. By the IH, A ' B and ρ′11 � ρ12 ' ρ21 � ρ221 � ρ222. By (CE ConsL),

ρ11 � ρ12 = `′ : A′; ρ′11 � ρ12 ' ρ21 � ρ221 � (`′ : B ′; ·)� ρ22 = ρ21 � ρ22.

Case `′ 6∈ dom (ρ21 � ρ22): It is found that

• ρ21 � ρ22 ends with ? and

• ρ′11 � (` : A; ·)� ρ12 ' ρ21 � (` : B ; ·)� ρ22

by inversion. By the IH, A ' B and ρ′11 � ρ12 ' ρ21 � ρ22. By (CE ConsL), `′ : A′; ρ′11 � ρ12 ' ρ21 � ρ22.

Case (CE ConsR): Similar to the case for (CE ConsL).

Case (CE DynL), (CE DynR), (CE Fun), (CE Poly), (CE PolyL), (CE PolyR), (CE Record), and (CE Variant):
Contradictory.

Lemma 18. If A ' B and ρ11 � ρ12 ' ρ21 � ρ22 and ` 6∈ dom (ρ11) ∪ dom (ρ21), then ρ11 � (` : A; ·) � ρ12 '
ρ21 � (` : B ; ·)� ρ22.

Proof. By induction on the sum of the sizes of ρ11 � ρ12 and ρ21 � ρ22. Since ρ11 � ρ12 is defined, there are only
two cases on ρ11 to be considered.

Case ρ11 = ·: By (CE ConsL).

Case ρ11 = `′ : A′; ρ′11: If ρ21 = ·, then ρ11 � ρ21 = ρ22. By (CE ConsR),

ρ11 � (` : A; ·)� ρ12 ' ` : B ; ρ22 = ρ21 � (` : B ; ·)� ρ22,

and so we finish.

In what follows, we suppose ρ21 6= ·. By case analysis on the rule applied last to derive `′ :A′; ρ′11�ρ12 ' ρ21�ρ22.

Case (CE Refl): Since ρ21 6= ·, we can suppose that ρ21 = `′ : A′; ρ′21. Thus, ρ′11 � ρ21 = ρ′21 � ρ22, and
ρ′11 � ρ21 ' ρ′21 � ρ22 by (CE Refl). By the IH, ρ′11 � (` : A; ·)� ρ12 ' ρ′21 � (` : B ; ·)� ρ22. By (CE Refl)
and (CE ConsL),

ρ11 � (` : A; ·)� ρ12 = `′ : A′; ρ′11 � (` : A; ·)� ρ12 ' ` : A′; ρ′21 � (` : B ; ·)� ρ22 = ρ21 � (` : B ; ·)� ρ22.

Case (CE DynR): We have ρ21 � ρ22 = ?. By (CE ConsR).

Case (CE ConsL): By inversion, ρ21 � ρ22 .`′ B ′, ρ2 and A′ ' B ′ and ρ′11 � ρ12 ' ρ2 for some B ′, and ρ2.

Case `′ ∈ dom (ρ21): There exist some ρ211 and ρ212 such that

• ρ21 = ρ211 � (`′ : B ′; ·)� ρ212,

• ρ2 = ρ211 � ρ212 � ρ22, and

21

• `′ 6∈ dom (ρ211).

Since ρ′11 � ρ12 ' ρ2, we have ρ′11 � ρ12 ' ρ211 � ρ212 � ρ22. By the IH, ρ′11 � (` : A; ·)� ρ12 ' ρ211 � ρ212 �
(` : B ; ·)� ρ22. By (CE ConsL),

`′ : A′; ρ′11 � (` : A; ·)� ρ12 ' ρ211 � (`′ : B ′; ·)� ρ212 � (` : B ; ·)� ρ22.

Thus,

ρ11�(` :A; ·)�ρ12 = `′ :A′; ρ′11�(` :A; ·)�ρ12 ' ρ211�(`′ :B ′; ·)�ρ212�(` :B ; ·)�ρ22 = ρ21�(` :B ; ·)�ρ22.

Case `′ 6∈ dom (ρ21) and `′ ∈ dom (ρ22): There exist some ρ221 and ρ222 such that

• ρ22 = ρ221 � (`′ : B ′; ·)� ρ222,

• ρ2 = ρ21 � ρ221 � ρ222, and

• `′ 6∈ dom (ρ221).

Since ρ′11 � ρ12 ' ρ2, we have ρ′11 � ρ12 ' ρ21 � ρ221 � ρ222. By the IH, ρ′11 � (` : A; ·) � ρ12 ' ρ21 � (` :
B ; ·)� ρ221 � ρ222. By (CE ConsL),

`′ : A′; ρ′11 � (` : A; ·)� ρ12 ' ρ21 � (` : B ; ·)� ρ221 � (`′ : B ′; ·)� ρ222.

Thus,

ρ11�(` :A; ·)�ρ12 = `′ :A′; ρ′11�(` :A; ·)�ρ12 ' ρ21�(` :B ; ·)�ρ221�(`′ :B ′; ·)�ρ222 = ρ21�(` :B ; ·)�ρ22.

Case `′ 6∈ dom (ρ21) and `′ 6∈ dom (ρ22): It is found that

• ρ21 � ρ22 ends with ? and

• ρ2 = ρ21 � ρ22.

Since ρ′11 � ρ12 ' ρ2, we have ρ′11 � ρ12 ' ρ21 � ρ22. By the IH, ρ′11 � (` : A; ·)� ρ12 ' ρ21 � (` : B ; ·)� ρ22.
By (CE ConsL), we finish.

Case (CE ConsR): Similar to the case for (CE ConsL).

Case (CE DynL), (CE Fun), (CE Poly), (CE PolyL), (CE PolyR), (CE Record), and (CE Variant):
Contradictory. Note that the contradiction in the case of (C PolyR) is proven by the definition of QPoly.

Lemma 19. If ρ1 ' ρ21 � ρ22 and ρ1 ends with ? and ` 6∈ dom (ρ1), then ρ1 ' ρ21 � (` : A; ·)� ρ22 for any A.

Proof. By induction on the sizes of ρ1 and ρ21. If ρ21 = ·, then we finish by (CE ConsR).
In what follows, since ρ21 � ρ22 is defined, we can suppose that ρ21 = `′ : B ; ρ′21 for some `′, B , and ρ′21. By

case analysis on the rule applied last to derive ρ1 ' ρ21 � ρ22.

Case (CE Refl): We have ρ1 = `′ :B ; ρ′1 for some ρ′1 such that ρ′1 = ρ′21�ρ22. Since ρ′1 ' ρ′21�ρ22 by (CE Refl),
we have ρ′ ' ρ′21 � (` : A; ·)� ρ22 by the IH. By (CE ConsL), we finish.

Case (CE DynL): By (CE DynL).

Case (CE ConsL): We have ρ1 = `′′ : C ; ρ′1 and, by inversion, ρ21 � ρ22 .`′′ B ′, ρ′2 and C ' B ′ and ρ′1 ' ρ′2 for
some `′′, B ′, C , ρ′1, and ρ′2. Note that ` 6= `′′ since ` 6∈ dom (ρ1).

Case `′′ ∈ dom (ρ21): There exist some ρ211 and ρ212 such that

• ρ21 = ρ211 � (`′′ : B ′; ·)� ρ212,

• ρ′2 = ρ211 � ρ212 � ρ22, and

• `′′ 6∈ dom (ρ211).

Since ρ′1 ' ρ′2, we have ρ′1 ' ρ211 � ρ212 � ρ22. By the IH, ρ′1 ' ρ211 � ρ212 � (` : A; ·) � ρ22. Since
(ρ21 � (` : A; ·)� ρ22) .`′′ B ′, ρ211 � ρ212 � (` : A; ·)� ρ22, we finish by (CE ConsL).

Case `′′ 6∈ dom (ρ21) and `′′ ∈ dom (ρ22): There exist some ρ221 and ρ222 such that

22

• ρ22 = ρ221 � (`′′ : B ′; ·)� ρ222,

• ρ′2 = ρ21 � ρ221 � ρ222, and

• `′′ 6∈ dom (ρ221).

Since ρ′1 ' ρ′2, we have ρ′1 ' ρ21 � ρ221 � ρ222. By the IH, ρ′1 ' ρ21 � (` : A; ·) � ρ221 � ρ222. Since
(ρ21 � (` : A; ·)� ρ22) .`′′ B ′, ρ21 � (` : A; ·)� ρ221 � ρ222, we finish by (CE ConsL).

Case `′′ 6∈ dom (ρ21) and `′′ 6∈ dom (ρ22): We have B ′ = ? and ρ′2 = ρ21�ρ22 and ρ21�ρ22 ends with ?. Since
ρ′1 ' ρ′2, we have ρ′1 ' ρ21 � ρ22. By the IH, ρ′1 ' ρ21 � (` : A; ·)� ρ22. By (CE ConsL), we finish.

Case (CE ConsR): Since ρ21 = `′ : B ; ρ′21, by inversion ρ1 .`′ C , ρ′1 and C ' B and ρ′1 ' ρ′21 � ρ22 for some C
and ρ′1. By the IH, ρ′1 ' ρ′21 � (` : A; ·)� ρ22. By (CE ConsR), we finish.

Case (CE DynR), (CE Fun), (CE Poly), (CE PolyL), (CE PolyR), (CE Record), and (CE Variant): Contradictory.
Note that the contradiction in the case of (C PolyL) is proven by the definition of QPoly.

Lemma 20. If A ≡ C and C ≡ B and A ' C and C ' B, then A ' B.

Proof. By induction on A ' C .

Case (CE Refl): Obvious.

Case (CE DynL): By (CE DynL).

Case (CE DynR): We have C = ?. By Lemma 5 (1), A = ?. Thus, we finish by (CE DynL).

Case (CE Fun): We have A = A1 → A2 and C = C1 → C2 and, by inversion, A1 ' C1 and A2 ' C2 for some
A1, A2, C1, and C2. Since A ≡ C , we have A1 ≡ C1 and A2 ≡ C2 by Lemma 5 (2). Again, by Lemma 5
(2), since C ≡ B , there exist some B1 and B2 such that B = B1 → B2 and C1 ≡ B1 and C2 ≡ B2. Since
C ' B , we have C1 ' B1 and C2 ' B2 by Lemma 10. Thus, by the IHs, A1 ' B1 and A2 ' B2. By (CE Fun),
A1 → A2 ' B1 → B2.

Case (CE Poly): We have A = ∀X :K .A′ and C = ∀X :K .C ′ and, by inversion, A′ ' C ′ for some X , K , A′, and
C ′. Since A ≡ C , we have A′ ≡ C ′ by Lemma 5 (3). Again, by Lemma 5 (3), since C ≡ B , there exist some
B ′ such that B = ∀X :K .B ′ and C ′ ≡ B ′. Since C ' B , we have C ′ ' B ′ by Lemma 11. Thus, by the IH,
A′ ' B ′. By (CE Poly), ∀X :K .A′ ' ∀X :K .B ′.

Case (CE PolyL): We have A = ∀X :K .A′ and, by inversion, QPoly (C) and X 6∈ ftv(C), for some X , K , and
A′. QPoly (C) is contradictory with the fact that C = ∀X :K .C ′ for some C ′, which is implied by Lemma 5
(3) with A ≡ C and A = ∀X :K .A′.

Case (CE PolyR): We have C = ∀X :K .C ′ and, by inversion, QPoly (A) and X 6∈ ftv(A), for some X , K , and
C ′. QPoly (A) is contradictory with the fact that A = ∀X :K .A′ for some A′, which is implied by Lemma 5 (3)
with A ≡ C and C = ∀X :K .C ′.

Case (CE Record): We have A = [ρ1] and C = [ρ3] and, by inversion, ρ1 ' ρ3 for some ρ1 and ρ3. Since A ≡ C ,
we have ρ1 ≡ ρ3 by Lemma 5 (4). Again, by Lemma 5 (4), since C ≡ B , there exists some ρ2 such that B = [ρ2]
and ρ3 ≡ ρ2. Since C ' B , we have ρ3 ' ρ2 by Lemma 13. By the IH, ρ1 ' ρ2. By (CE Record), [ρ1] ' [ρ2].

Case (CE Variant): We have A = 〈ρ1〉 and C = 〈ρ3〉 and, by inversion, ρ1 ' ρ3 for some ρ1 and ρ3. Since
A ≡ C , we have ρ1 ≡ ρ3 by Lemma 5 (5). Again, by Lemma 5 (5), since C ≡ B , there exists some ρ2 such that
B = 〈ρ2〉 and ρ3 ≡ ρ2. Since C ' B , we have ρ3 ' ρ2 by Lemma 14. By the IH, ρ1 ' ρ2. By (CE Variant),
〈ρ1〉 ' 〈ρ2〉.

Case (CE ConsL): We have A = ` : A′; ρ1 and, by inversion, C .` C ′, ρ3 and A′ ' C ′ and ρ1 ' ρ3 for some `, A′,
C ′, ρ1, and ρ3. Since A ≡ C , there exist ρ31 and ρ32 such that

• C = ρ31 � (` : C ′; ·)� ρ32,

• A′ ≡ C ′,

23

• ρ1 ≡ ρ31 � ρ32, and

• ` 6∈ dom (ρ31)

by Lemma 5 (6). Again, by Lemma 5 (6), since C ≡ B , there exists some B ′, ρ21, and ρ22 such that

• B = ρ21 � (` : B ′; ·)� ρ22,

• C ′ ≡ B ′,

• ρ31 � ρ32 ≡ ρ21 � ρ22, and

• ` 6∈ dom (ρ21).

Since ρ31� (` : C ′; ·)�ρ32 = C ' B = ρ21� (` : B ′; ·)�ρ22 and ` 6∈ dom (ρ31) ∪ dom (ρ21), we have C ′ ' B ′ and
ρ31 � ρ32 ' ρ21 � ρ22 by Lemma 17. Since C .` C ′, ρ3, we have ρ3 = ρ31 � ρ32, so ρ1 ' ρ31 � ρ32. By the IHs,
A′ ' B ′ and ρ1 ' ρ21�ρ22. Since (ρ21�(`:B ′; ·)�ρ22) .` B ′, ρ21�ρ22, we have `:A′; ρ1 ' ρ21�(`:B ′; ·)�ρ22 = B
by (CE ConsL).

(CE ConsR): We have C = ` : C ′; ρ3 and, by inversion, A .` A′, ρ1 and A′ ' C ′ and ρ1 ' ρ3 for some `, A′,
C ′, ρ1, and ρ3. Since A ≡ C , there exist ρ11 and ρ12 such that

• A = ρ11 � (` : A′; ·)� ρ12,

• A′ ≡ C ′,

• ρ11 � ρ12 ≡ ρ3, and

• ` 6∈ dom (ρ11)

by Lemma 5 (6). Again, by Lemma 5 (6), since C ≡ B , there exists some B ′, ρ21, and ρ22 such that

• B = ρ21 � (` : B ′; ·)� ρ22,

• C ′ ≡ B ′,

• ρ3 ≡ ρ21 � ρ22, and

• ` 6∈ dom (ρ21).

Since ` : C ′; ρ3 = C ' B = ρ21 � (` : B ′; ·) � ρ22 and ` 6∈ dom (ρ21), we have C ′ ' B ′ and ρ3 ' ρ21 � ρ22 by
Lemma 17. Since A .` A′, ρ1, we have ρ1 = ρ11 � ρ12, so ρ11 � ρ12 ' ρ3. By the IHs, A′ ' B ′ and ρ11 � ρ12 '
ρ21 � ρ22. Since ` 6∈ dom (ρ11) ∪ dom (ρ21) and A′ ' B ′, we have ρ11 � (` : A′; ·)� ρ12 ' ρ21 � (` : B ′; ·)� ρ22.

Lemma 21. If A ≡ B, then A ' B.

Proof. By induction on the derivation of A ≡ B .

Case (Eq Refl): By (CE Refl).

Case (Eq Trans): By inversion, A ≡ C and C ≡ B for some C . By the IHs, A ' C and C ' B . We have A ' B
by Lemma 20.

Case (Eq Sym): By inversion, B ≡ A. By the IH, B ' A. By Lemma 6, A ' B .

Case (Eq Fun): By the IHs.

Case (Eq Poly): By the IH.

Case (Eq Record): By the IH.

Case (Eq Variant): By the IH.

Case (Eq Cons): By the IH, (CE Refl), and (CE Cons).

Case (Eq Swap): By (CE Refl) and (CE ConsL).

24

Lemma 22. If A ≡ C and C ∼ B, then A ' B.

Proof. By induction on C ∼ B .

Case (C Refl): By Lemma 21.

Case (C DynL): We have C = ?. By Lemma 5 (1), A = ?. Thus, we finish by (CE DynL).

Case (C DynR): We have B = ?. By (CE DynR).

Case (C Fun): We have C = C1 → C2 and B = B1 → B2 and, by inversion, C1 ∼ B1 and C2 ∼ B2 for some C1,
C2, B1, and B2. Since A ≡ C1 → C2, there exist some A11 and A12 such that A = A1 → A2 and A1 ≡ C1 and
A2 ≡ C2, by Lemma 5 (2). By the IHs, A1 ' B1 and A2 ' B2. By (CE Fun), A1 → A2 ' B1 → B2.

Case (C Poly): We have C = ∀X :K .C ′ and B = ∀X :K .B ′ and, by inversion, C ′ ∼ B ′ for some X , K , C ′, and
B ′. Since A ≡ ∀X :K .C ′, there exists some A′ such that A = ∀X :K .A′ and A′ ≡ C ′, by Lemma 5 (3). By the
IH, A′ ' B ′. By (CE Poly), we finish.

Case (C PolyL): We have C = ∀X :K .C ′ and, by inversion, QPoly (B) and X 6∈ ftv(B) and C ′ ∼ B . Since
A = ∀X :K .C ′, there exists some A′ such that A = ∀X :K .A′ and A′ ≡ C ′, by Lemma 5 (3). By the IH,
A′ ' B . By (CE PolyL), we finish.

Case (C PolyR): We have B = ∀X :K .B ′ and, by inversion, QPoly (C) and X 6∈ ftv(C) and C ∼ B ′. By the
IH, A ' B ′. Since A ≡ C and QPoly (C) and X 6∈ ftv(C), we have QPoly (A) and X 6∈ ftv(A) by Lemmas 1
and 2. Thus, by (CE PolyR), we have A ' ∀X :K .B ′.

Case (C Record): We have C = [ρ3] and B = [ρ2] and, by inversion, ρ3 ∼ ρ2 for some ρ3 and ρ2. Since
A ≡ C , there exists some ρ1 such that A = [ρ1] and ρ1 ≡ ρ3, by Lemma 5 (4). By the IH, ρ1 ' ρ2. Thus, by
(CE Record), we have [ρ1] ' [ρ2].

Case (C Variant): We have C = 〈ρ3〉 and B = 〈ρ2〉 and, by inversion, ρ3 ∼ ρ2 for some ρ3 and ρ2. Since
A ≡ C , there exists some ρ1 such that A = 〈ρ1〉 and ρ1 ≡ ρ3, by Lemma 5 (5). By the IH, ρ1 ' ρ2. Thus, by
(CE Variant), we have 〈ρ1〉 ' 〈ρ2〉.

Case (C Cons): We have C = ` : C ′; ρ3 and B = ` : B ′; ρ2 and, by inversion, C ′ ∼ B ′ and ρ3 ∼ ρ2 for some `, C ′,
B ′, ρ3, and ρ2. Since A ≡ C , there exist some A′, ρ11, ρ12 such that

• A = ρ11 � (` : A′; ·)� ρ12,

• A′ ≡ C ′,

• ρ11 � ρ12 ≡ ρ3, and

• ` 6∈ dom (ρ11)

by Lemma 5 (6). By the IHs, A′ ' B ′ and ρ11 � ρ12 ' ρ2. We have A .` A′, ρ11 � ρ12. Thus, by (CE ConsR),
A ' ` : B ′; ρ2.

Case (C ConsL): We have C = ` : C ′; ρ3 and, by inversion, ` 6∈ dom (B) and B ends with ? and ρ3 ∼ B for some
`, C ′, and ρ3. Since A ≡ C , there exist some A′, ρ11, ρ12 such that

• A = ρ11 � (` : A′; ·)� ρ12,

• A′ ≡ C ′,

• ρ11 � ρ12 ≡ ρ3, and

• ` 6∈ dom (ρ11)

by Lemma 5 (6). By the IH, ρ11 � ρ12 ' B . By Lemmas 6 and 19, ρ11 � (` : A′; ·)� ρ12 ' B .

25

Case (C ConsR): we have B = ` : B ′; ρ2 and, by inversion, ` 6∈ dom (C) and C ends with ? and C ∼ ρ2 for some
`, B ′, and ρ2. By the IH, A ' ρ2. Since A ≡ C and ` 6∈ dom (C) and C ends with ?, we have ` 6∈ dom (A) and
A ends with ? by Lemmas 2 and 3. Thus, by (CE ConsR), we have A ' ` : B ′; ρ2.

Lemma 23. If A ' B and B ≡ C , then A ' C .

Proof. By induction on the derivation of A ' B .

Case (CE Refl): By Lemma 21.

Case (CE DynL): By (CE DynL).

Case (CE DynR): We have B = ?. Since B ≡ C , we have C = ? by Lemma 5 (1). By (CE DynR).

Case (CE Fun): We have A = A1 → A2 and B = B1 → B2 and, by inversion, A1 ' B1 and A2 ' B2 for some
A1, A2, B1, and B2. Since B ≡ C , there exist some C1 and C2 such that C = C1 → C2 and B1 ≡ C1 and
B2 ≡ C2 by Lemma 5 (2). By the IHs, A1 ' C1 and A2 ' C2. Thus, A1 → A2 ' C1 → C2 by (CE Fun).

Case (CE Poly): We have A = ∀X :K .A′ and B = ∀X :K .B ′ and, by inversion, A′ ' B ′ for some X , K , A′, and
B ′. Since B ≡ C , there exist some C ′ such that C = ∀X :K .C ′ and B ′ ≡ C ′ by Lemma 5 (3). By the IH,
A′ ' C ′. Thus, ∀X :K .A′ ' ∀X :K .C ′ by (CE Poly).

Case (CE PolyL): We have A = ∀X :K .A′ and, by inversion, QPoly (B) and X 6∈ ftv(B) and A′ ' B for some
X , K , and A′. By the IH, A′ ' C . Since B ≡ C and QPoly (B) and X 6∈ ftv(B), we have QPoly (C) and
X 6∈ ftv(C) by Lemmas 1 and 2. Thus, ∀X :K .A′ ' C by (CE PolyL).

Case (CE PolyR): We have B = ∀X :K .B ′ and, by inversion, QPoly (A) and X 6∈ ftv(A) and A ' B ′ for some
X , K , and B ′. By Lemma 5 (3), since B ≡ C , there exists some C ′ such that C = ∀X :K .C ′ and B ′ ≡ C ′. By
the IH, A ' C ′. By (CE PolyR), A ' ∀X :K .C ′.

Case (CE Record): We have A = [ρ1] and B = [ρ2] and, by inversion, ρ1 ' ρ2 for some ρ1 and ρ2. By Lemma 5
(4), since B ≡ C , there exists some ρ3 such that C = [ρ3] and ρ2 ≡ ρ3. By the IH, ρ1 ' ρ3. By (CE Record),
[ρ1] ' [ρ3].

Case (CE Variant): We have A = 〈ρ1〉 and B = 〈ρ2〉 and, by inversion, ρ1 ' ρ2 for some ρ1 and ρ2. By Lemma 5
(5), since B ≡ C , there exists some ρ3 such that C = 〈ρ3〉 and ρ2 ≡ ρ3. By the IH, ρ1 ' ρ3. By (CE Variant),
〈ρ1〉 ' 〈ρ3〉.

Case (CE ConsL): We have A = ` : A′; ρ1 and, by inversion, B .` B ′, ρ2 and A′ ' B ′ and ρ1 ' ρ2 for some `, A′,
B ′, ρ1, and ρ2.

If ` ∈ dom (B), then there exist some ρ21 and ρ22 such that

• B = ρ21 � (` : B ′; ·)� ρ22,

• ρ2 = ρ21 � ρ22, and

• ` 6∈ dom (ρ21).

Since B ≡ C , there exist some C ′, ρ31, and ρ32 such that

• C = ρ31 � (` : C ′; ·)� ρ32,

• B ′ ≡ C ′,

• ` 6∈ dom (ρ31), and

• ρ21 � ρ22 ≡ ρ31 � ρ32

by Lemma 5 (6). Since ρ1 ' ρ2 and ρ2 = ρ21�ρ22 ≡ ρ31�ρ32, we have ρ1 ' ρ31�ρ32 by the IH. Besides, A′ ' B ′

and B ′ ≡ C ′, we have A′ ' C ′ by the IH. Since C .` C ′, ρ31 � ρ32, we have ` : A′; ρ1 ' C by (CE ConsL).

Otherwise, if ` 6∈ dom (B), then B ′ = ? and ρ2 = B and B ends with ?. Since ρ1 ' ρ2 and ρ2 = B ≡ C , we
have ρ1 ' C by the IH. Since B ≡ C , we can find C .` ?,C by Lemmas 4 and 3. Since A′ ' ? by (CE DynR)
and ρ1 ' C , we have ` : A′; ρ1 ' C by (CE ConsL).

26

Case (CE ConsR): We have B = ` : B ′; ρ2 and, by inversion, A .` A′, ρ1 and A′ ' B ′ and ρ1 ' ρ2 for some `, A′,
B ′, ρ1, and ρ2. Since B ≡ C , there exist some C ′, ρ31, and ρ32 such that

• C = ρ31 � (` : C ′; ·)� ρ32,

• B ′ ≡ C ′,

• ` 6∈ dom (ρ31), and

• ρ2 ≡ ρ31 � ρ32

by Lemma 5 (6).

If ` ∈ dom (A), then there exist some ρ11 and ρ12 such that

• A = ρ11 � (` : A′; ·)� ρ12,

• ρ1 = ρ11 � ρ12, and

• ` 6∈ dom (ρ11).

Since ρ1 ' ρ2 and ρ2 ≡ ρ31 � ρ32, we have ρ1 ' ρ31 � ρ32 by the IH. Besides, A′ ' B ′ and B ′ ≡ C ′, we have
A′ ' C ′ by the IH. By Lemma 18,

A = ρ11 � (` : A′; ·)� ρ12 ' ρ31 � (` : C ′; ·)� ρ32 = C .

Otherwise, if ` 6∈ dom (A), then A′ = ? and ρ1 = A and A ends with ?. Since A = ρ1 ' ρ2 and ρ2 ≡ ρ31 � ρ32,
we have A ' ρ31 � ρ32 by the IH. By Lemma 19, A ' ρ31 � (` : C ′; ·)� ρ32 = C .

Theorem 1. A ' B if and only if A ≡ A′ and A′ ∼ B ′ and B ′ ≡ B for some A′ and B ′.

Proof. First, we show the left-to-right direction. Suppose A ' B . By Lemma 16, there exists some A′ such that
A ≡ A′ and A′ ∼ B . Since [B == B] by (Eq Refl), we finish

Next, we show the right-to-left. Suppose that A ≡ A′ and A′ ∼ B ′ and B ′ ≡ B . By Lemma 22, A ' B ′. By
Lemma 23, A ' B .

2.2 Type Soundness

Lemma 24 (Weakening). Suppose that Σ ` Γ1,Γ2. Let Γ3 be a typing context such that dom (Γ2) ∩ dom (Γ3) = ∅.

1. If Σ ` Γ1,Γ3, then Σ ` Γ1,Γ2,Γ3.

2. If Σ; Γ1,Γ3 ` A : K , then Σ; Γ1,Γ2,Γ3 ` A : K .

3. If Σ; Γ1,Γ3 ` e : A, then Σ; Γ1,Γ2,Γ3 ` e : A.

Proof. Straightforward by mutual induction on the derivations.

Lemma 25 (Weakening type names). Suppose that Σ ⊆ Σ′.

1. If Σ ` B ≺Φ C , then Σ′ ` B ≺Φ C .

2. If Σ ` Γ, then Σ′ ` Γ.

3. If Σ; Γ ` B : K , then Σ′; Γ ` B : K .

4. If Σ; Γ ` e : B, then Σ′; Γ ` e : B.

Proof. Straightforward by mutual induction on the derivations.

Lemma 26. If QPoly (A), then QPoly (A[B/X]).

Proof. First, we show A[B/X] is not a polymorphic type by case analysis on A.

27

Case A = ?, Y (where X 6= Y), α, ι, A′ → B ′, [ρ], 〈ρ〉, ·, and ` : C ; ρ: Obvious.

Case A = X : Since QPoly (A), A must contain the dynamic type; thus, contradictory.

Case A = ∀Y :K .C : Contradictory with QPoly (A).

Thus, it suffices to show that A[B/X] contains the dynamic type, which is obvious since A contains the dynamic
type (from QPoly (A)) and type substitution preserves that property.

Lemma 27. If ρ1 .` A, ρ2, then ρ1[B/X] .` A[B/X], ρ2[B/X].

Proof. By induction on ρ1.

Case ρ1 = `′ : C ; ρ′1: If `′ = `, then A = C and ρ2 = ρ′1, and, therefore, the statement holds obviously.

Otherwise, if `′ 6= `, then we have ρ′1 .` A, ρ′2 and ρ2 = `′ : C ; ρ′2. By the IH, ρ′1[B/X] .` A[B/X], ρ′2[B/X].
Thus, `′ : C [B/X]; ρ′1[B/X] .` A[B/X], `′ : C [B/X]; ρ′2[B/X], which is what we have to prove.

Case ρ1 = ?: Obvious.

Lemma 28 (Type substitution preserves consistency). If A ' B, then A[C/X] ' B [C/X].

Proof. By induction on the derivation of A ' B . We mention only the interesting cases below.

Case (CE PolyL): We have ∀Y :K .A′ ' B and, by inversion, QPoly (B) and Y 6∈ ftv(B) and A′ ' B . Without
loss of generality, we can suppose that Y 6∈ ftv(C). Thus, Y 6∈ ftv(B [C/X]). By the IH, A′[C/X] ' B [C/X].
By Lemma 26, QPoly (B [C/X]). Thus, by (CE PolyL), ∀Y :K .A′[C/X] ' B [C/X]

Case (CE PolyR): Similar to the case for (CE PolyL).

Case (CE ConsL): We have ` : A′; ρ1 ' B and, by inversion, B .` B ′, ρ2 and A′ ' B ′ and ρ1 ' ρ2. By the
IHs, A′[C/X] ' B ′[C/X] and ρ1[C/X] ' ρ2[C/X]. By Lemma 27, B [C/X] .` B ′[C/X], ρ2[C/X]. Thus, by
(CE ConsL), ` : A′[C/X]; ρ1[C/X] ' B [C/X].

Case (CE ConsR): Similar to the case for (CE ConsL).

Lemma 29 (Type substitution). Suppose that Σ; Γ1 ` A : K .

1. If Σ ` Γ1,X :K ,Γ2, then Σ ` Γ1,Γ2 [A/X].

2. If Σ; Γ1,X :K ,Γ2 ` B : K ′, then Σ; Γ1,Γ2 [A/X] ` B [A/X] : K ′.

3. If Σ; Γ1,X :K ,Γ2 ` e : B, then Σ; Γ1,Γ2 [A/X] ` e[A/X] : B [A/X].

Proof. Straightforward by mutual induction on the derivations. Only the interesting case is (WF TyVar). Suppose
we have Σ; Γ1,X :K ,Γ2 ` Y : K ′. By inversion, Σ ` Γ1,X :K ,Γ2 and Y :K ′ ∈ Γ1,X :K ,Γ2. By the IH, Σ `
Γ1,Γ2 [A/X]. If X 6= Y , then Y :K ′ ∈ Γ1,Γ2 [A/X] and, therefore, by (WF TyVar), Σ; Γ1,Γ2 [A/X] ` Y : K ′.
Otherwise, if X = Y , then we have to show Σ; Γ1,Γ2 [A/X] ` A : K . Since Σ; Γ1 ` A : K and Σ ` Γ1,Γ2 [A/X],
we have Σ; Γ1,Γ2 [A/X] ` A : K by Lemma 24 (2).

Note that the case for (T Cast) uses Lemma 28 and that the case for (T Conv) depends on the fact that e
and B are closed.

Lemma 30 (Type substitution on convertibility). Suppose that α does not occur in A.

1. Σ, α:K := B ` A[α/X] ≺+α A[B/X].

2. Σ, α:K := B ` A[B/X] ≺−α A[α/X].

Proof. Let Σ′ = Σ, α:K := B . By induction on A.

28

Case A = X : We have A[α/X] = α and A[B/X] = B .

First, we have to show Σ′ ` α ≺+α B , which is shwon by (Cv Reveal).

Next, we have to show Σ′ ` B ≺−α α, which is shown by (Cv Conceal).

Case A = Y where X 6= Y : By (Cv TyVar).

Case A = α: Contradictory with the assumption that α does not occur in A.

Case A = α′ where α 6= α′: By (Cv TyName).

Case A = ?: By (Cv Dyn).

Case A = ι: By (Cv Base).

Case A = A1 → A2: By the IHs, we have

• Σ′ ` A1[α/X] ≺+α A1[B/X],

• Σ′ ` A2[α/X] ≺+α A2[B/X],

• Σ′ ` A1[B/X] ≺−α A1[α/X], and

• Σ′ ` A2[B/X] ≺−α A2[α/X].

By (Cv Fun), Σ′ ` A1[α/X] → A2[α/X] ≺+α A1[B/X] → A2[B/X] and Σ′ ` A1[B/X] → A2[B/X] ≺−α
A1[α/X]→ A2[α/X].

Case A = ∀X ′:K .A′: By the IH and (Cv Poly).

Case A = [ρ]: By the IH and (Cv Record).

Case A = 〈ρ〉: By the IH and (Cv Variant).

Case A = ·: By (Cv REmp).

Case A = ` : A′; ρ: By the IHs and (Cv Cons).

Lemma 31.

1. If Σ ` Γ1, x :A,Γ2, then Σ ` Γ1,Γ2.

2. If Σ; Γ1, x :A,Γ2 ` B : K , then Σ; Γ1,Γ2 ` B : K .

Proof. Straightforward by mutual induction on the derivations.

Lemma 32 (Value substitution). If Σ; Γ1 ` v : A and Σ; Γ1, x :A,Γ2 ` e : B, then Σ; Γ1,Γ2 ` e[v/x] : B.

Proof. By mutual induction on the derivations. The only interesting case is (T Var).
Suppose that Σ; Γ1, x :A,Γ2 ` y : B . By inversion, Σ ` Γ1, x :A,Γ2 and y :B ∈ Γ1, x :A,Γ2. By Lemma 31,

Σ ` Γ1,Γ2. If x 6= y , then y :B ∈ Γ1,Γ2. Thus, by (T Var), Σ; Γ1,Γ2 ` y : B . Since y [v/x] = y , we finish.
Otherwise, if x = y , then we have to show that Σ; Γ1,Γ2 ` v : A (note that y [v/x] = v and that A = B since
y :B ∈ Γ1, x :A,Γ2). Since Σ; Γ1 ` v : A and Σ ` Γ1,Γ2, we have Σ; Γ1,Γ2 ` v : A by Lemma 24 (3).

The cases for (T Const), (T TApp), (T REmp), (T VInj), (T VLift), (T Cast), and (T Conv) also use
Lemma 31.

Lemma 33 (Canonical forms). Suppose that Σ; ∅ ` v : A.

1. If A = ι, then v = κ for some κ.

2. If A = B → C , then v = λx :B .e for some x and e, or v = κ for some κ such that ty(κ) = B → C .

3. If A = ∀X :K .B, then v = ΛX :K .e :: B for some e.

29

4. If A = [·], then v = {}.

5. If A = [` : B ; ρ], then v = {` = v1; v2} for some v1 and v2.

6. If A = 〈` : B ; ρ〉, then v = ` v ′ or v = ↑〈` : B〉 v ′ for some v ′.

7. If A = ?, then v = v ′ : G
p⇒ ? for some v ′, G, and p.

8. If A = [?], then v = v ′ : [γ]
p⇒ [?] for some v ′, γ, and p.

9. If A = 〈?〉, then v = v ′ : 〈γ〉 p⇒ 〈?〉 for some v ′, γ, and p.

10. If A = α, then v = v ′ : B
−α⇒ α for some v ′ and B.

11. If A = [α], then v = v ′ : [ρ]
−α⇒ [α] for some v ′ and ρ.

12. If A = 〈α〉, then v = v ′ : 〈ρ〉 −α⇒ 〈α〉 for some v ′ and ρ.

Proof. By case analysis on the typing rule applied to derive Σ; ∅ ` v : A.

Case (T Var), (T App), (T TApp), (T RLet), (T VCase), and (T Blame): Contradictory.

Case (T Const), (T Lam), (T TLam), (T REmp), (T RExt), (T VInj), (T VLift): Obvious.

Case (T Cast): We have Σ; ∅ ` e : B
p⇒ A : A for some e, B , and p. By inversion, Σ; ∅ ` A : T. We do case

analysis on the rule applied last to derive Σ; ∅ ` A : T.

Case (WF TyVar), (WF REmp), and (WF Cons): Contradictory.

Case (WF TyName), (WF Base), (WF Fun), and (WF Poly): Contradictory because there are no values

of the form e : B
p⇒ A in these cases.

Case (WF Dyn), (WF Record), and (WF Variant): Obvious because of the definition of values.

Case (T Conv): We have Σ; ∅ ` e : B
Φ⇒ A : A for some e, B , and Φ. By inversion, Σ; ∅ ` A : T. We do case

analysis on the rule applied last to derive Σ; ∅ ` A : T.

Case (WF TyVar), (WF REmp), and (WF Cons): Contradictory.

Case (WF Dyn), (WF Base), (WF Fun), and (WF Poly): Contradictory because there are no values of the

form e : B
Φ⇒ A in these cases.

Case (WF TyName), (WF Record), and (WF Variant): Obvious because of the definition of values.

Lemma 34. If Σ; ∅ ` v : 〈·〉, contradictory.

Proof. Straightforward by case analysis on the rule applied last to derive Σ; ∅ ` v : 〈·〉.

Lemma 35 (Value inversion: constants). If Σ; ∅ ` κ : A, then A = ty(κ).

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` κ : A.

Lemma 36 (Value inversion: constants). If Σ; ∅ ` λx :A.e : A′ → B, then A = A′ and Σ; x :A ` e : B.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` λx :A.e : A′ → B .

Lemma 37 (Value inversion: constants). If Σ; ∅ ` ΛX :K .e :: A : ∀X ′:K ′.A′, then X = X ′ and K = K ′ and
A = A′ and Σ; X :K ` e : A.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` ΛX :K .e :: A : ∀X ′:K ′.A′.

30

Lemma 38 (Value inversion: record extensions). If Σ; ∅ ` {` = v1; v2} : [ρ], there exist some A and ρ′ such that
ρ = [` : A; ρ′] and Σ; ∅ ` v1 : A and Σ; ∅ ` v2 : [ρ′].

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` {` = v1; v2} : [ρ].

Lemma 39 (Value inversion: variant injections). If Σ; ∅ ` ` v : 〈` : A; ρ〉, then Σ; ∅ ` v : A.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` ` v : 〈` : A; ρ〉.

Lemma 40 (Value inversion: variant lifts). If Σ; ∅ `↑〈` : A〉 v : 〈` : B ; ρ〉, then Σ; ∅ ` v : 〈ρ〉 and A = B.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ `↑〈` : A〉 v : 〈` : A; ρ〉.

Lemma 41 (Value inversion: casts). If Σ; ∅ ` v : A
p⇒ B : B, then Σ; ∅ ` v : A and A ' B.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` v : A
p⇒ B : B .

Lemma 42 (Value inversion: conversions). If Σ; ∅ ` v : A
−α⇒ α : α, then Σ; ∅ ` v : A and Σ(α) = A.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` v : A
−α⇒ α : α.

Lemma 43 (Value inversion: conversions with records). If Σ; ∅ ` v : [ρ]
−α⇒ [α] : α, then Σ; ∅ ` v : [ρ] and

Σ(α) = ρ.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` v : [ρ]
−α⇒ [α] : α.

Lemma 44 (Value inversion: conversions with variants). If Σ; ∅ ` v : 〈ρ〉 −α⇒ 〈α〉 : α, then Σ; ∅ ` v : 〈ρ〉 and
Σ(α) = ρ.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` v : 〈ρ〉 −α⇒ 〈α〉 : α.

Lemma 45. If Σ | e −→ Σ′ | e ′ or e = blame p, then Σ | E [e] −→ Σ′ | e ′′ for some e ′′.

Proof. If e = blame p, then we finish by (E Blame). If Σ | e −→ Σ′ | e ′, we can prove the statement straightfor-
wardly by case analysis on the evaluation rule applied to derive Σ | e −→ Σ′ | e ′.

Lemma 46 (Unique ground type). If Σ; ∅ ` A : T and A 6= ? and A is not an universal type, then there exists an
unique ground type G such that A ' G.

Proof. By case analysis on A.

Case A = X : Contradictory with Σ; ∅ ` A : T

Case A = α: Only ground type α is consistent with α.

Case A = ?: Contradictory with A 6= ?.

Case A = ι: Only ground type ι is consistent with ι.

Case A = B → C : Only ground type ?→ ? is consistent with B → C .

Case A = ∀X :K .B : Contradictory.

Case A = [ρ]: Only ground type [?] is consistent with [ρ].

Case A = 〈ρ〉: Only ground type 〈?〉 is consistent with 〈ρ〉.

Case A = ·: Contradictory with Σ; ∅ ` A : T.

Case A = ` : B ; ρ: Contradictory with Σ; ∅ ` A : T.

31

Lemma 47. If Σ; ∅ ` ρ : R and ρ 6= ?, then grow(ρ) is defined and grow(ρ) is a ground row type.

Proof. Straightforward by case analysis on the derivation of Σ; ∅ ` ρ : R.

Lemma 48. If grow(ρ) is defined, then ρ ' grow(ρ).

Proof. Obvious by definition of grow .

Lemma 49. If grow(ρ) is defined and Σ; Γ ` ρ : K , then Σ; Γ ` grow(ρ) : K .

Proof. Obvious by definition of grow .

Lemma 50.

1. If Σ; Γ ` A : K , then Σ ` Γ.

2. If Σ; Γ ` e : A, then Σ ` Γ and Σ; Γ ` A : T.

Proof. Straightforward by induction on the typing derivations with Lemmas 24 and 29.

Lemma 51 (Progress). If Σ; ∅ ` e : A, then one of the followings holds:

• e is a value;

• e = blame p for some `; or

• Σ | e −→ Σ′ | e ′ for some Σ′ and e ′.

Proof. By induction on the derivation of Σ; ∅ ` e : A.

Case (T Var): Contradictory.

Case (T Const), (T Lam), (T TLam), (T REmp), and (T Blame): Obvious.

Case (T App): We have Σ; ∅ ` e1 e2 : A and, by inversion, Σ; ∅ ` e1 : B → A and Σ; ∅ ` e2 : B . If e1 = blame p for
some p, or Σ | e1 −→ Σ′ | e ′1 for some Σ′ and e ′1, then we finish by Lemma 45.

In what follows, we can suppose that e1 = v1 for some v1 by the IH. If e2 = blame p for some p, or Σ | e2 −→
Σ′ | e ′2 for some Σ′ and e ′2, then we finish by Lemma 45.

In what follows, we can suppose that e2 = v2 for some v2 by the IH. We have Σ; ∅ ` v1 : B → A. Thus, by
Lemma 33, there are two cases on v1 to be considered.

Case v1 = λx :B .e ′1 for some x and e ′1: By (R Beta)/(E Red).

Case v1 = κ1 and ty(κ1) = B → A for some κ1: By the assumption on constants, B = ι for some ι. Since
Σ; ∅ ` v2 : ι, we have v2 = κ2 for some κ2. By the assumption on constants, ζ(κ1, κ2) is defined. Thus, we
finish by (E Const)/(R Red).

Case (T TApp): We have Σ; ∅ ` e1 B : C [B/X] and, by inversion, Σ; ∅ ` e1 : ∀X :K .C and Σ; ∅ ` B : K . If
e1 = blame p for some [p], or Σ | e1 −→ Σ′ | e ′1 for some Σ′ and e ′1, then we finish by Lemma 45.

In what follows, we can suppose that e1 = v1 for some v1 by the IH. We have Σ; ∅ ` v1 : ∀X :K .C . Thus, by
Lemma 33, v1 = ΛX :K .e ′1 :: C for some e ′1. By (E TyBeta), we finish.

Case (T RExt): We have Σ; ∅ ` {` = e1; e2} : [` : B ; ρ] and, by inversion, Σ; ∅ ` e1 : B and Σ; ∅ ` e2 : [ρ]. If
e1 = blame p for some p, or Σ | e1 −→ Σ′ | e ′1 for some Σ′ and e ′1, then we finish by Lemma 45.

In what follows, we can suppose that e1 = v1 for some v1 by the IH. If e2 = blame p for some p, or Σ | e2 −→
Σ′ | e ′2 for some Σ′ and e ′2, then we finish by Lemma 45.

In what follows, we can suppose that e2 = v2 for some v2 by the IH. Then, we finish because e = {` = v1; v2}
is a value.

32

Case (T RLet): We have Σ; ∅ ` let {` = x ; y} = e1 in e2 : A and, by inversion, Σ; ∅ ` e1 : [` :B ; ρ] and Σ; x :B , y :[ρ] `
e2 : A. If e1 = blame p for some p, or Σ | e1 −→ Σ′ | e ′1 for some Σ′ and e ′1, then we finish by Lemma 45.

In what follows, we can suppose that e1 = v1 for some v1 by the IH. Since Σ; ∅ ` v1 : [` : B ; ρ], we have
v1 = {` = v ′1; v ′2} for some v ′1 and v ′2 by Lemma 33. Thus, we finish by (R Record)/(E Red).

Case (T VInj): We have Σ; ∅ ` ` e ′ : 〈` : B ; ρ〉 and, by inversion, Σ; ∅ ` e ′ : B and Σ; ∅ ` ρ : R. If e ′ = blame p for
some p, or Σ | e ′ −→ Σ′ | e ′′ for some Σ′ and e ′′, then we finish by Lemma 45.

In what follows, we can suppose that e ′ = v for some v by the IH. Then, we finish because e = ` v is a value.

Case (T VLift): We have Σ; ∅ `↑ 〈` : B〉 e ′ : 〈` : B ; ρ〉 and, by inversion, Σ; ∅ ` e ′ : 〈ρ〉 and Σ; ∅ ` B : T. If
e ′ = blame p for some p, or Σ | e ′ −→ Σ′ | e ′′ for some Σ′ and e ′′, then we finish by Lemma 45.

In what follows, we can suppose that e ′ = v for some v by the IH. Then, we finish because e = ↑ 〈` : B〉 v is a
value.

Case (T VCase): We have Σ; ∅ ` case e ′ with 〈` x → e1; y → e2〉 : A and, by inversion, Σ; ∅ ` e ′ : 〈` : B ; ρ〉. If
e ′ = blame p for some p, or Σ | e ′ −→ Σ′ | e ′′ for some Σ′ and e ′′, then we finish by Lemma 45.

In what follows, we can suppose that e ′ = v for some v by the IH. We have Σ; ∅ ` v : 〈` : B ; ρ〉. Thus, by
Lemma 33, there are two cases on v to be considered.

Case v = ` v ′ for some v ′: By (R CaseL)(E Red).

Case v = ↑〈` : B〉 v ′ for some v ′: By (R CaseR)(E Red).

Case (T Cast): We have Σ; ∅ ` e ′ : B
p⇒ A : A and, by inversion, Σ; ∅ ` e ′ : B and B ' A and Σ; ∅ ` A : T. If

e ′ = blame q for some q , or Σ | e ′ −→ Σ′ | e ′′ for some Σ′ and e ′′, then we finish by Lemma 45.

In what follows, we can suppose that e ′ = v for some v by the IH. By case analysis on B ' A.

Case (CE Refl): We have B = A. By case analysis on A.

Case A = X : Contradictory with Σ; ∅ ` A : T.

Case A = α: By (R IdName)/(E Red).

Case A = ?: By (R IdDyn)/(E Red).

Case A = ι: By (R IdBase)/(E Red).

Case A = A1 → A2: By (R Wrap)/(E Red).

Case A = ∀X :K .A′: By (R Content)/(E Red).

Case A = [ρ]: By case analysis on ρ. Note that Σ; ∅ ` ρ : R since Σ; ∅ ` [ρ] : T.

Case ρ = X , ι, A′ → B ′, ∀X :K .A′, [ρ′], and 〈ρ′〉: Contradictory with Σ; ∅ ` ρ : R.

Case ρ = α: By (E RIdName)/(E Red).

Case ρ = ?: By Lemma 33, v = v ′ : [γ′]
q⇒ [?] for some v ′, γ′, and q . We have [γ′] ' [?] by

(CE DynR)/(CE Record). Thus, we finish by (R RFromDyn)/(E Red).

Case ρ = ·: By (R Remp)/(E Red).

Case ρ = ` : C ; ρ′: By Lemma 33, v = {` = v1; v2} for some v1 and v2. Thus, v .` v1, v2. Since ` : C ; ρ′ .`
C , ρ′, we finish by (R Rev)/(E Red).

Case A = 〈ρ〉: By case analysis on ρ. Note that Σ; ∅ ` ρ : R since Σ; ∅ ` 〈ρ〉 : T.

Case ρ = X , ι, A′ → B ′, ∀X :K .A′, [ρ′], and 〈ρ′〉: Contradictory with Σ; ∅ ` ρ : R.

Case ρ = α: By (E VIdName)/(E Red).

Case ρ = ?: By Lemma 33, v = v ′ : 〈γ′〉 q⇒ 〈?〉 for some v ′, γ′, and q . We have 〈γ′〉 ' 〈?〉 by
(CE DynR)/(CE Variant). Thus, we finish by (R VFromDyn)/(E Red).

Case ρ = ·: By Lemma 34.

Case ρ = ` : C ; ρ′: By Lemma 33, there are two cases to be considered.
If v = ` v ′ for some v ′, then we finish by (R VRevInj)/(E Red).
Otherwise, if v = ↑〈` : C 〉 v ′ for some v ′, then we finish by (R VRevLift)(E Red).

Case A = · and ` : B ; ρ: Contradictory with Σ; ∅ ` A : T.

33

Case (CE DynL): We have B = ?. By Lemma 33, v = v ′ : G
q⇒ ? for some v ′, G , and q . By case analysis on

A.

Case A = H : By (R Ground)/(E Red) or (R Blame)/(E Red).

Case A = X : Contradictory with Σ; ∅ ` A : T.

Case A = ?: By (R IdDyn)/(E Red).

Case A = A1 → A2 (A1 → A2 6= ?→ ?): Since A1 → A2 ' ?→ ?, we finish by (R FromDyn)/(E Red).

Case A = ∀X :K .A′: By (R Gen)/(E Red).

Case A = [ρ] (ρ 6= ?): Since [ρ] ' [?], we finish by (R FromDyn)/(E Red).

Case A = 〈ρ〉 (ρ 6= ?): Since 〈ρ〉 ' 〈?〉, we finish by (R FromDyn)/(E Red).

Case A = ·: Contradictory with Σ; ∅ ` A : T.

Case A = ` : C ; ρ: Contradictory with Σ; ∅ ` A : T.

Case (CE DynR): We have A = ?.

If B = ?, then we finish by (R IdDyn)/(E Red).

If B = ∀X :K .B ′, then we finish by (R Inst)/(E Red).

Otherwise, by Lemma 46, there exists some G such that B ' G . If B = G , then e = v : G
p⇒ ? is a value.

Otherwise, we finish by (R ToDyn)/(E Red).

Case (CE Fun): By (R Wrap)/(E Red).

Case (CE Poly): By (R Content)/(E Red).

Case (CE PolyL): By (R Inst)/(E Red).

Case (CE PolyR): By (R Gen)/(E Red).

Case (CE Record): We have A = [ρ1] and B = [ρ2] and ρ2 ' ρ1 for some ρ1 and ρ2. Since Σ; ∅ ` [ρ1] : T, we
have Σ; ∅ ` ρ1 : R. By Lemma 50, Σ; ∅ ` [ρ2] : T, so Σ; ∅ ` ρ2 : R.

If ρ2 = ?, then we finish by Lemma 33, and (R RFromDyn)/(E Red) or (R RBlame)/(E Red).

In what follows, we suppose ρ2 6= ?. By case analysis on ρ1.

Case ρ1 = ?: Since ρ2 6= ? and Σ; ∅ ` ρ2 : R, grow(ρ2) is defined and is a ground row type by Lemma 47.

If grow(ρ2) = ρ2, then v : [ρ2]
p⇒ [?] is a value.

Otherwise, if grow(ρ2) 6= ρ2, we finish by (R RToDyn)/(E Red).

Case ρ1 = α: Since ρ2 ' α and ρ2 6= ?, we have ρ2 = α by Lemmas 6 and 7. We finish by (R RIdName)/(E Red).

Case ρ1 = ·: Since ρ2 ' · and ρ2 6= ?, we have ρ2 = · by Lemmas 6 and 8. We finish by (R REmp)/(E Red).

Case ρ1 = ` : C1; ρ′1: By Lemmas 6 and 9, ρ2 .` C2, ρ
′
2 and C2 ' C1 and ρ′2 ' ρ′1 for some C2 and ρ′2.

If ` ∈ dom (ρ2), then there exist some ρ21 and ρ22 such that

• ρ2 = ρ21 � (` : C2; ·)� ρ22,

• ρ′2 = ρ21 � ρ22, and

• ` 6∈ dom (ρ21).

Since Σ; ∅ ` v : [ρ2], there exist some v1 and v2 such that v .` v1, v2 by Lemmas 33 and 38. Thus, we finish
by (R RRev)/(E Red).
If ` 6∈ dom (ρ2), then we finish by (R RCon)/(E Red).

Case ρ1 = X , ι, C → D , ∀X :K .C , [ρ′], and 〈ρ′〉: Contradictory with Σ; ∅ ` ρ1 : R.

Case (CE Variant): We have A = 〈ρ1〉 and B = 〈ρ2〉 and ρ2 ' ρ1 for some ρ1 and ρ2. Since Σ; ∅ ` 〈ρ1〉 : T,
we have Σ; ∅ ` ρ1 : R. By Lemma 50, Σ; ∅ ` 〈ρ2〉 : T, so Σ; ∅ ` ρ2 : R.

By case analysis on ρ2.

Case ρ2 = ?: We finish by Lemma 33, and (R VFromDyn)/(E Red) or (R VBlame)(E Red).

Case ρ2 = α: Since ρ2 ' ρ1, we have ρ1 = α or ρ1 = ? by Lemma 7.

If ρ1 = ?, then v : [α]
p⇒ [?] is a value.

Otherwise, if ρ1 = α, then we finish by (R VIdName)/(E Red).

Case ρ2 = ·: Contradictory by Lemma 34.

34

Case ρ2 = ` : C2; ρ′2: If ` ∈ dom (ρ1), then we finish by Lemma 33, and (R VRevInj)/(E Red) or (R VRevLift)/(E Red).
Otherwise, suppose ` 6∈ dom (ρ1). Since Σ; ∅ ` ρ2 : R and ρ2 6= ?, it is found that grow(ρ2) is defined. If

ρ1 = ? and grow(ρ2) = ρ2, then v : [ρ2]
p⇒ [?] is a value. If ρ1 = ? and grow(ρ2) 6= ρ2, then we finish by

(R VToDyn)/(E Red).
Otherwise, suppose ρ1 6= ?. Then, we finish by Lemma 33, and (R VConInj)/(E Red) or (R VConLift)/(E Red).

Case ρ2 = X , ι, C → D , ∀X :K .C , [ρ′], and 〈ρ′〉: Contradictory with Σ; ∅ ` ρ2 : R.

Case (CE ConsL): We have B = ` : C2; ρ2 for some `, C2, and ρ2. Since Σ; ∅ ` e ′ : B , we have Σ; ∅ ` B : T by
Lemma 50. However, there is a contradiction that Σ; ∅ ` ` : C2; ρ2 : T does not hold.

Case (CE ConsR): We have A = `:C1; ρ1 for some `, C1, and ρ1. However, it is contradictory with Σ; ∅ ` A : T.

Case (T Conv): We have Σ; ∅ ` e ′ : B
Φ⇒ A : A and, by inversion, Σ; ∅ ` e ′ : B and Σ ` B ≺Φ A and Σ; ∅ ` A : T.

If e ′ = blame q for some q , or Σ | e ′ −→ Σ′ | e ′′ for some Σ′ and e ′′, then we finish by Lemma 45.

In what follows, we can suppose that e ′ = v for some v by the IH. By case analysis on Σ ` B ≺Φ A.

Case (Cv Dyn): By (R CIdDyn)/(E Red).

Case (Cv TyVar): Contradictory with Σ; ∅ ` A : T.

Case (Cv TyName): By (R CIdName)/(E Red).

Case (Cv Reveal): We have B = α and Φ = +α and Σ(α) = A for some α. By Lemma 33, v = v ′ :

C
−α⇒ α for some C . Since Σ; ∅ ` v : B , we have Σ(α) = C by Lemma 42, so A = C . We finish by

(R CName)/(E Red).

Case (Cv Conceal): v : B
Φ⇒ A is a value.

Case (Cv Base): By (R CIdBase)/(E Red).

Case (Cv Fun): By (R CFun)/(E Red).

Case (Cv Poly): By (R CForall)/(E Red).

Case (Cv Record): We have B = [ρ2] and A = [ρ1] and Σ ` ρ2 ≺Φ ρ1 for some ρ1 and ρ2. Since Σ; ∅ ` A : T,
we have Σ; ∅ ` ρ1 : R. By case analysis on Σ ` ρ2 ≺Φ ρ1.

Case (Cv Dyn): By (R CRIdDyn)/(E Red).

Case (Cv TyName): By (R CRIdName)/(E Red).

Case (Cv Reveal): We have ρ2 = α and Φ = +α and Σ(α) = ρ1 for some α. By Lemma 33, v = v ′ :

[ρ′]
−α⇒ [α] for some v ′ and ρ′. By Lemma 43, Σ(α) = ρ′, so ρ′ = ρ. We finish by (R CRName)/(E Red).

Case (Cv Conceal): v : B
Φ⇒ A is a value.

Case (Cv REmp): By (R CREmp)/(E Red).

Case (Cv Cons): By (R CRExt)/(E Red).

Case (Cv TyVar), (Cv Base), (Cv Fun), (Cv Poly), (Cv Record), and (Cv Variant): Contradictory
with Σ; ∅ ` ρ1 : R.

Case (Cv Variant): We have B = 〈ρ2〉 and A = 〈ρ1〉 and Σ ` ρ2 ≺Φ ρ1 for some ρ1 and ρ2. Since Σ; ∅ ` A : T,
we have Σ; ∅ ` ρ1 : R. By case analysis on Σ ` ρ2 ≺Φ ρ1.

Case (Cv Dyn): By (R CVIdDyn)/(E Red).

Case (Cv TyName): By (R CVIdName)/(E Red).

Case (Cv Reveal): We have ρ2 = α and Φ = +α and Σ(α) = ρ1 for some α. By Lemma 33, v = v ′ :

〈ρ′〉 −α⇒ 〈α〉 for some v ′ and ρ′. By Lemma 44, Σ(α) = ρ′, so ρ′ = ρ1. We finish by (R CVName)/(E Red).

Case (Cv Conceal): v : B
Φ⇒ A is a value.

Case (Cv REmp): We have Σ; ∅ ` v : [·], which is contradictory by Lemma 34.

Case (Cv Cons): By (R CVar)/(E Red).

Case (Cv TyVar), (Cv Base), (Cv Fun), (Cv Poly), (Cv Record), and (Cv Variant): Contradictory
with Σ; ∅ ` ρ1 : R.

35

Case (Cv REmp) and (Cv Cons): Contradictory with Σ; ∅ ` A : T.

Lemma 52. If Σ; Γ ` A : T and A ' G, then Σ; Γ ` G : T.

Proof. By case analysis on G .

Case G = ι, ?→ ?, [?], and 〈?〉: Obvious.

Case G = α: Since A ' α, we have A = α or A = ? by Lemmas 6 and 7. In either case, Σ; Γ ` A : T.

Lemma 53. If Σ; ∅ ` v : [ρ] and v .` v1, v2, then there exist some ρ1, ρ2, and A such that ρ = ρ1 � (` : A; ·)� ρ2

and ` 6∈ dom (ρ1) and Σ; ∅ ` v1 : A and Σ; ∅ ` v2 : [ρ1 � ρ2].

Proof. By induction on the derivation of v .` v1, v2.

Case {` = v1; v2} .` v1, v2: We have v = {` = v1; v2}. Since Σ; ∅ ` v : [ρ], there exist A and ρ′ such that
ρ = ` : A; [ρ′] and Σ; ∅ ` v1 : A and Σ; ∅ ` v2 : [ρ′].

Case {`′ = v ′1; v ′2} .` v1, {`′ = v ′1; v ′′2 } where ` 6= `′ and v ′2 .` v1, v
′′
2 : We have v = {`′ = v ′1; v ′2} and v2 = {`′ =

v ′1; v ′′2 }. Since Σ; ∅ ` v : [ρ], there exist some B and ρ′ such that Σ; ∅ ` v ′1 : B and Σ; ∅ ` v ′2 : [ρ′] and ρ = ` :B ; ρ′.
Since Σ; ∅ ` v ′2 : [ρ′] and v ′2 .` v1, v

′′
2 , there exist some ρ′1, ρ′2, and A such that

• ρ′ = ρ′1 � (` : A; ·)� ρ′2,

• ` 6∈ dom (ρ′1),

• Σ; ∅ ` v1 : A, and

• Σ; ∅ ` v ′′2 : [ρ′1 � ρ′2]

by the IH. Since Σ; ∅ ` v ′1 : B and Σ; ∅ ` v ′′2 : [ρ′1 � ρ′2], we have Σ; ∅ ` {`′ = v ′1; v ′′2 } : [`′ : B ; (ρ′1 � ρ′2)] by
(T RExt).

Lemma 54. If Σ; Γ ` e : 〈ρ〉 and Σ; Γ ` ρ′ : R and ρ′ � ρ is defined, then Σ; Γ `↑ρ′ e : 〈ρ′ � ρ〉.

Proof. By induction on ρ′.

Case ρ′ = ·: Trivial since ↑· e = e.

Case ρ′ = ` : A; ρ′′: We have ↑ρ′ e = ↑ 〈` : A〉 (↑ρ′′ e). Since Σ; Γ ` ρ′ : R, we have Σ; Γ ` A : T and Σ; Γ ` ρ′′ : R.
By the IH, Σ; Γ `↑ρ′′ e : 〈ρ′′ � ρ〉. By (T VLift), Σ; Γ `↑〈` : A〉 (↑ρ′′ e) : 〈` : A; ρ′′ � ρ〉.

Case otherwise: Contradictory with ρ′ � ρ is defined.

Lemma 55. If Σ; Γ ` e : 〈ρ1 � ρ2〉 and Σ; Γ ` A : T, then Σ; Γ ` ↓ρ1〈`:A〉e : 〈ρ1 � (` : A; ·)� ρ2〉.

Proof. By induction on ρ1.

Case ρ1 = `′ : B ; ρ′1: We have ↓ρ1〈`:A〉e = case e with 〈`′ x → `′ x ; y →↑〈`′ : B〉 (↓ρ
′
1

〈`:A〉y)〉. It suffices to show that

Σ; Γ ` case e with 〈`′ x → `′ x ; y →↑〈`′ : B〉 (↓ρ
′
1

〈`:A〉y)〉 : 〈`′ : B ; ρ′1 � (` : A; ·)� ρ2〉

Since Σ; Γ, y :〈ρ′1 � ρ2〉 ` A : T by Lemmas 50 and 24, we have

Σ; Γ, y :〈ρ′1 � ρ2〉 ` ↓
ρ′1
〈`:A〉y : 〈ρ′1 � (` : A; ·)� ρ2〉

36

by the IH. Thus, by (T VLift),

Σ; Γ, y :〈ρ′1 � ρ2〉 `↑〈`′ : B〉 (↓ρ
′
1

〈`:A〉y) : 〈`′ : B ; ρ′1 � (` : A; ·)� ρ2〉

(note that Σ; Γ, y :〈ρ′1 � ρ2〉 ` B : T by Lemmas 50 and 24). Since Σ; Γ, x :B ` `′ x : 〈`′ : B ; ρ′1 � (` : A; ·)� ρ2〉 by
(T VInj) (note that Σ; Γ, x :B ` ρ′1 � (` : A; ·)� ρ2 : R by Lemma 24), and Σ; Γ ` e : 〈`′ : B ; ρ′1 � ρ2〉, we have

Σ; Γ ` case e with 〈`′ x → `′ x ; y →↑〈`′ : B〉 (↓ρ
′
1

〈`:A〉y)〉 : 〈`′ : B ; ρ′1 � (` : A; ·)� ρ2〉

by (T VCase).

Case ρ1 = ·: We have ↓ρ1〈`:A〉e = ↑〈` : A〉 e. It suffices to show that Σ; Γ `↑〈` : A〉 e : 〈` : A; ρ2〉, which is shown by

(T VLift).

Case otherwise: Contradictory with the fact that ρ1 � ρ2 is defined.

Lemma 56 (Convertibility inversion: function types). If Σ ` A1 → B1 ≺Φ A2 → B2, then Σ ` A2 ≺Φ A1 and
Σ ` B1 ≺Φ B2.

Proof. Straightforward by case analysis on Σ ` A1 → B1 ≺Φ A2 → B2.

Lemma 57 (Convertibility inversion: universal types). If Σ ` ∀X :K .A ≺Φ ∀X :K .B, then Σ ` A ≺Φ B.

Proof. Straightforward by case analysis on Σ ` ∀X :K .A ≺Φ ∀X :K .B .

Lemma 58 (Convertibility inversion: record types). If Σ ` [ρ1] ≺Φ [ρ2], then Σ ` ρ1 ≺Φ ρ2.

Proof. Straightforward by case analysis on Σ ` [ρ1] ≺Φ [ρ2].

Lemma 59 (Convertibility inversion: variant types). If Σ ` 〈ρ1〉 ≺Φ 〈ρ2〉, then Σ ` ρ1 ≺Φ ρ2.

Proof. Straightforward by case analysis on Σ ` 〈ρ1〉 ≺Φ 〈ρ2〉.

Lemma 60 (Convertibility inversion: row cons). If Σ ` ` : A; ρ1 ≺Φ ` : B ; ρ2, then Σ ` A ≺Φ B and Σ ` ρ1 ≺Φ ρ2.

Proof. Straightforward by case analysis on Σ ` ` : A; ρ1 ≺Φ ` : B ; ρ2.

Lemma 61 (Subject reduction on reduction). If Σ; ∅ ` e : A and e e ′, then Σ; ∅ ` e ′ : A.

Proof. By case analysis on the derivation of Σ; ∅ ` e : A.

Case (T Var), (T Const), (T Lam), (T TLam), (T REmp), (T Blame): Contradictory; there are no reduction
rules to apply.

Case (T TApp), (T RExt), (T VInj), (T VLift): Contradictory; there are no applicable reduction rules.

Case (T App): We have e = e1 e2 and, by inversion, Σ; ∅ ` e1 : B → A and Σ; ∅ ` e2 : B for some e1, e2, and B .
By case analysis on the reduction rules applicable to e1 e2.

Case (R Cons): We have e1 = κ1 and e2 = κ2 and e ′ = ζ(κ1, κ2) for some κ1 and κ2. By Lemma 35,
ty(κ1) = B → A. By the assumptions about constants, ty(ζ(κ1, κ2)) = A. Thus, Σ; ∅ ` ζ(κ1, κ2) : A by
(T Const).

Case (R Beta): By Lemma 33, e1 = λx :B .e ′1 and e2 = v2 and e ′ = e ′1[v2/x] for some x , e ′1, and v2. By
Lemma 36, Σ; x :B ` e ′1 : A. Since Σ; ∅ ` v2 : B , we have Σ; ∅ ` e ′1[v2/x] : A by Lemma 32.

Case (T RLet): We have e = let {` = x ; y} = e1 in e2 and, by inversion, Σ; ∅ ` e1 : [` : B ; ρ] and Σ; x :B , y :[ρ] `
e2 : A. The reduction rules applicable to e is only (R Record). We can suppose that e1 = {` = v1; v2} and
e ′ = e2[v1/x , v2/y]. By Lemma 38, Σ; ∅ ` v1 : B and Σ; ∅ ` v2 : [ρ]. Since Σ; x :B , y :[ρ] ` e2 : A, we have
Σ; ∅ ` e2[v1/x , v2/y] : A by Lemma 32.

37

Case (T VCase): We have e = case e0 with 〈` x → e1; y → e2〉 and, by inversion, Σ; ∅ ` e0 : 〈` : B ; ρ〉 and
Σ; x :B ` e1 : A and Σ; y :〈ρ〉 ` e2 : A for some e0, e1, e2, `, x , y , B , and ρ. By case analysis on the reduction
rules applicable to e.

Case (R CaseL): We can suppose that e0 = ` v and e ′ = e1[v/x] for some v . By Lemma 39, Σ; ∅ ` v : B .
Since Σ; x :B ` e1 : A, we have Σ; ∅ ` e1[v/x] : A by Lemma 32.

Case (R CaseR): We can suppose that e0 = ↑ 〈` : C 〉 v and e ′ = e2[v/y] for some C and v . By Lemma 40,
Σ; ∅ ` v : 〈ρ〉. Since Σ; y :〈ρ〉 ` e2 : A, we have Σ; ∅ ` e2[v/y] : A by Lemma 32.

Case (T Cast): We have e = e0 : B
p⇒ A and, by inversion, Σ; ∅ ` e0 : B and B ' A and Σ; ∅ ` A : T for some

e0, B , and p. Besides, we have Σ; ∅ ` B : T by Lemma 50. By case analysis on the reduction rules applicable to
e.

Case (R IdDyn), (R IdBase), (R IdName), (R REmp), (R RIdName), and (R VIdName): We have B =
A and e0 = v and e ′ = v for some v . Since Σ; ∅ ` e0 : B , we have Σ; ∅ ` v : A, which is what we have to
show.

Case (R Blame), (R RBlame), (R VBlame): Obvious by (T Blame) since e ′ = blame q for some q .

Case (R ToDyn): We have e0 = v and A = ? and e ′ = v : B
p⇒ G

p⇒ ? for some v and G such that B ' G .

Since Σ; ∅ ` v : B and B ' G , we have Σ; ∅ ` G : T by Lemma 52. Thus, Σ; ∅ ` v : B
p⇒ G

p⇒ ? : ? by
(T Cast).

Case (R FromDyn): We have e0 = v and B = ? and e ′ = v : ?
p⇒ G

p⇒ A for some v and G such that
A ' G . Since Σ; ∅ ` A : T and A ' G , we have Σ; ∅ ` G : T by Lemma 52. Since Σ; ∅ ` v : ?, we have

Σ; ∅ ` v : ?
p⇒ G

p⇒ A : A by (T Cast) (note that G ' A by Lemma 6).

Case (R Ground): We have e0 = v : G
p⇒ ? and B = ? and A = G and e ′ = v for some v and G . Since

Σ; ∅ ` e0 : B , i.e., Σ; ∅ ` v : G
p⇒ ? : ?, we have Σ; ∅ ` v : G by Lemma 41. Thus, we have Σ; ∅ ` e ′ : A.

Case (R Wrap): We have e0 = v and B = B1 → B2 and A = A1 → A2 and e ′ = λx :A1.v (x : A1
p⇒ B1) :

B2
p⇒ A2. Since B1 → B2 ' A1 → A2, we have A1 ' B1 and B2 ' A2 by Lemmas 10 and 6. Besides, we have

Σ; ∅ ` A1 : T, Σ; ∅ ` A2 : T, Σ; ∅ ` B1 : T, and Σ; ∅ ` B2 : T since Σ; ∅ ` A1 → A2 : T and Σ; ∅ ` B1 → B2 : T.

Thus, since Σ; x :A1 ` v : B1 → B2 by Lemma 24, we have Σ; ∅ ` λx :A1.v (x : A1
p⇒ B1) : B2

p⇒ A2 : A1 → A2.

Case (R Content): We have e0 = v and B = ∀X :K .B ′ and A = ∀X :K .A′ and e ′ = ΛX :K .(v X : B ′
p⇒

A′) :: A′ for some v , X , K , A′, and B ′. Since ∀X :K .B ′ ' ∀X :K .A′, we have B ′ ' A′ by Lemma 11. Since
Σ; ∅ ` ∀X :K .A′ : T, we have Σ; X :K ` A′ : T. Thus, since Σ; X :K ` v : ∀X :K .B ′ by Lemma 24, we have

Σ; ∅ ` ΛX :K .(v X : B ′
p⇒ A′) :: A′ : ∀X :K .A′.

Case (R Inst): We have e0 = v and B = ∀X :K .B ′ and e ′ = (v ?) : B ′[?/X]
p⇒ A for some v , X , K , and B ′.

Besides, QPoly (A).

Since Σ; ∅ ` v : ∀X :K .B ′, we have
Σ; ∅ ` v ? : B ′[?/X].

Since QPoly (A) and B ' A, i.e., ∀X :K .B ′ ' A, we have B ′ ' A and [[Xnotinftv(A)]]. Thus, by Lemma 28,
B ′[?/X] ' A. By (T Cast),

Σ; ∅ ` (v ?) : B ′[?/X]
p⇒ A : A.

Case (R Gen): We have e0 = v and A = ∀X :K .A′ and e ′ = ΛX :K .(v : B
p⇒ A′) :: A′ for some v , X , K , and

A′. Besides, QPoly (B).

Since Σ; ∅ ` v : B , we have
Σ; X :K ` v : B

by Lemma 24.

Since QPoly (B) and B ' A, i.e., B ' ∀X :K .A′, we have B ' A′ and [[Xnotinftv(B)]] by Lemmas 6 and

12. Furthermore, Σ; ∅ ` ∀X :K .A′ : T, we have Σ; X :K ` A′ : T. Thus, we have Σ; ∅ ` ΛX :K .(v : B
p⇒ A′) ::

A′ : ∀X :K .A′.

38

Case (R RToDyn): We have e0 = v and A = [?] and B = [ρ] and e ′ = v : [ρ]
p⇒ [grow(ρ)]

p⇒ [?] for some v
and ρ such that ρ 6= grow(ρ). By Lemma 48, ρ ' grow(ρ), and therefore [ρ] ' [grow(ρ)] by (CE Record).

Since Σ; ∅ ` v : [ρ] and Σ; ∅ ` [grow(ρ)] : T by Lemma 49, we have Σ; ∅ ` v : [ρ]
p⇒ [grow(ρ)]

p⇒ [?] : [?].

Case (R RFromDyn): We have e0 = v : [γ]
q⇒ [?] and B = [?] and A = [ρ1] and e ′ = v : [γ]

q⇒ [ρ1] for some
v , γ, ρ1, and q such that γ ' ρ1. Since γ ' ρ1, we have [γ] ' [ρ1] by (CE Record). Since Σ; ∅ ` e0 : B , i.e.,

Σ; ∅ ` v : [γ]
q⇒ [?] : [?], we have Σ; ∅ ` v : [γ] by Lemma 41. Thus, we have Σ; ∅ ` v : [γ]

q⇒ [ρ1] : [ρ1] by
(T Cast).

Case (R RRev): We have

• e0 = v ,

• A = [` : A′; ρ1],

• B = [ρ2], and

• e ′ = {` = (v1 : B ′
p⇒ A′); v2 : [ρ′2]

p⇒ [ρ1]}
for some v , `, A′, B ′, ρ1, ρ2, and ρ′2 such that v .` v1, v2 and ρ2 .` B ′, ρ′2. Since Σ; ∅ ` v : B B = [ρ2] and
v .` v1, v2, there exist some ρ21, ρ22, and B ′ such that

• ρ2 = ρ21 � (` : B ′; ·)� ρ22,

• ρ′2 = ρ21 � ρ22,

• ` 6∈ dom (ρ21),

• Σ; ∅ ` v1 : B ′, and

• Σ; ∅ ` v2 : [ρ21 � ρ22].

Since B ' A, i.e., [ρ21 � (` : B ′; ·)� ρ22] ' [` : A′; ρ1], we have B ′ ' A′ and ρ21 � ρ22 ' ρ1 by Lemmas 6, 13,
and 9. Since Σ; ∅ ` A : T, i.e., Σ; ∅ ` [` : A′; ρ1] : T, we have Σ; ∅ ` A′ : T. Thus,

Σ; ∅ ` v1 : B ′
p⇒ A′ : A′

by (T Cast).

Since ρ21 � ρ22 ' ρ1, i.e., ρ′2 ' ρ1, we have [ρ′2] ' [ρ1] by (CE Record). Since Σ; ∅ ` v2 : [ρ′2] (note that
ρ′2 = ρ21 � ρ22) and Σ; ∅ ` [ρ1] : T (from Σ; ∅ ` A : T), we have

Σ; ∅ ` v2 : [ρ′2]
p⇒ [ρ1] : [ρ1]

by (T Cast).

Thus, by (T RExt),

Σ; ∅ ` {` = (v1 : B ′
p⇒ A′); v2 : [ρ′2]

p⇒ [ρ1]} : [` : A′; ρ1].

Case (R RCon): We have

• e0 = v ,

• A = [` : A′; ρ1],

• B = [ρ2], and

• e ′ = v : [ρ2]
p⇒ [ρ2 @ ` : A′]

p⇒ [` : A′; ρ1]

for some v , `, A′, ρ1, ρ2 such that ` 6∈ dom (ρ2) and ρ2 6= ?.

Since B ' A, there exist some B ′ and ρ′2 such that

• ρ2 .` B ′, ρ′2,

• B ′ ' A′, and

• ρ′2 ' ρ1

by Lemmas 13, 6, and 9. Since ` 6∈ dom (ρ2) and ρ2 .` B ′, ρ′2, it is found that ρ2 ends with ? and B ′ = ?
and ρ′2 = ρ2. Thus, by Lemma 19, ρ2 ' ρ2 @ ` : A′. Since Σ; ∅ ` ρ2 : R and Σ; ∅ ` A : T, we have
Σ; ∅ ` [ρ2 @ ` : A′] : R. Thus,

Σ; ∅ ` v : [ρ2]
p⇒ [ρ2 @ ` : A′] : [ρ2 @ ` : A′]

39

by (T Cast).

Since ρ′2 ' ρ1 and A′ ' A′ (CE Refl) and ` 6∈ dom (ρ′2) (since ` 6∈ dom (ρ2) and ρ2 = ρ′2), we have
ρ′2 @ ` : A′ ' ` : A′; ρ1 by (CE ConsR). Thus,

Σ; ∅ ` v : [ρ2]
p⇒ [ρ2 @ ` : A′]

p⇒ [` : A′; ρ1] : [` : A′; ρ1]

by (T Cast).

Case (R VToDyn): We have e0 = v and A = 〈?〉 and B = 〈ρ〉 and e ′ = v : 〈ρ〉 p⇒ 〈grow(ρ)〉 p⇒ 〈?〉 for some
v and ρ ρ 6= grow(ρ).

By Lemma 48, ρ ' grow(ρ), and therefore 〈ρ〉 ' 〈grow(ρ)〉 by (CE Variant). Since Σ; ∅ ` v : 〈ρ〉 and

Σ; ∅ ` 〈grow(ρ)〉 : T by Lemma 49, we have Σ; ∅ ` v : 〈ρ〉 p⇒ 〈grow(ρ)〉 p⇒ 〈?〉 : 〈?〉.
Case (R VFromDyn): We have e0 = v : 〈γ〉 q⇒ 〈?〉 and B = 〈?〉 and A = 〈ρ1〉 and e ′ = v : 〈γ〉 q⇒ 〈ρ1〉 for

some v , γ, ρ1, and q such that γ ' ρ1. Since γ ' ρ1, we have 〈γ〉 ' 〈ρ1〉 by (CE Variant). Since Σ; ∅ ` e0 : B ,

i.e., Σ; ∅ ` v : 〈γ〉 q⇒ 〈?〉 : 〈?〉, we have Σ; ∅ ` v : 〈γ〉 by Lemma 41. Thus, we have Σ; ∅ ` v : [γ]
q⇒ [ρ1] : [ρ1]

by (T Cast).

Case (R VRevInj): We have e0 = ` v and A = 〈ρ11 � (` : A′; ·) � ρ12〉 and B = 〈` : B ′; ρ2〉 and e ′ = ↑
ρ11 (` (v : B ′

p⇒ A′)) for some `, v , ρ2, ρ11, A′, and B ′ such that ` 6∈ dom (ρ11).

Since Σ; ∅ ` ` v : 〈` : B ′; ρ2〉, we have Σ; ∅ ` v : B ′ by Lemma 39. Since 〈` : B ′; ρ2〉 ' 〈ρ11 � (` : A′; ·) � ρ12〉,
we have B ′ ' A′ by Lemmas 14 and 9. Since Σ; ∅ ` 〈ρ11 � (` : A′; ·) � ρ12〉 : T, we have Σ; ∅ ` A′ : T and
Σ; ∅ ` ρ12 : R.

Σ; ∅ ` ` (v : B ′
p⇒ A′) : 〈` : A′; ρ12〉

by (T Cast) and (T VInj).

Since Σ; ∅ ` 〈ρ11 � (` : A′; ·)� ρ12〉 : T, we have Σ; ∅ ` ρ11 : R. Thus, by Lemma 54,

Σ; ∅ `↑ρ11 (` (v : B ′
p⇒ A′)) : 〈ρ11 � (` : A′; ρ12)〉.

Case (R VRevLift): We have e0 = ↑〈` : C 〉 v and B = 〈`:C ; ρ2〉 and A = 〈ρ1〉 and e ′ = ↓ρ11〈`:C 〉(v : 〈ρ2〉
p⇒ 〈ρ11 � ρ12〉)

for some `, C , v , ρ1, ρ2, ρ11, and ρ12 sch such that ρ1 = ρ11 � (` : C ; ·)� ρ12 and ` 6∈ dom (ρ11).

Since Σ; ∅ ` e0 : B , i.e., Σ; ∅ `↑〈` : C 〉 v : 〈` : C ; ρ2〉, we have Σ; ∅ ` v : 〈ρ2〉 by Lemma 40. Since B ' A, i.e.,
〈`:C ; ρ2〉 ' 〈ρ1〉, and ρ1 = ρ11�(`:C ; ·)�ρ12 and ` 6∈ dom (ρ11), we have ρ2 ' ρ11�ρ12 by Lemmas 14 and 9.
Thus, (CE Variant), 〈ρ2〉 ' 〈ρ11�ρ12〉. Since Σ; ∅ ` A : T, i.e., Σ; ∅ ` 〈ρ1〉 : T, we have Σ; ∅ ` 〈ρ11�ρ12〉 : T.
Thus, by (T Cast),

Σ; ∅ ` v : 〈ρ2〉
p⇒ 〈ρ11 � ρ12〉 : 〈ρ11 � ρ12〉.

Since Σ; ∅ ` B : T, i.e., Σ; ∅ ` 〈` : C ; ρ2〉 : T, we have Σ; ∅ ` C : T. Thus, by Lemma 55,

Σ; ∅ ` ↓ρ11〈`:C 〉(v : 〈ρ2〉
p⇒ 〈ρ11 � ρ12〉) : 〈ρ11 � (` : C ; ·)� ρ12〉,

which is what we have to show.

Case (R VConInj): We have e0 = ` v and B = 〈` : B ′; ρ2〉 and A = 〈ρ1〉 and e ′ = ↑ρ1 (` v : 〈` : B ′; ?〉 p⇒ 〈?〉)
for some `, v , B ′, ρ1, and ρ2 such that ` 6∈ dom (ρ1) and ρ1 6= ?.

Since B ' A, i.e., 〈` :B ′; ρ2〉 ' 〈ρ1〉. By Lemma 14, ` :B ′; ρ2 ' ρ1. By 9, ρ1 .` A′, ρ′1 for some A′ and ρ′1. Since
` 6∈ dom (ρ1), ρ1 ends with ?, that is, there exists some ρ′′1 such that ρ′′1 � ? = ρ1. Since ↑ρ1 e ′′ = ↑ρ′′1 e ′′ for
any e ′′, it suffices to show that

Σ; ∅ `↑ρ′′1 (` v : 〈` : B ′; ?〉 p⇒ 〈?〉) : 〈ρ′′1 � ?〉.

Since Σ; ∅ ` e0 : B , i.e., Σ; ∅ ` ` v : 〈` : B ′; ρ2〉, we have Σ; ∅ ` v : B ′ by Lemma 39. Thus, by (T VInj),
Σ; ∅ ` ` v : 〈` : B ′; ?〉. We have 〈` : B ′; ?〉 ' 〈?〉 by (CE Refl), (CE ConsL), and (CE Variant). Since
Σ; ∅ ` 〈?〉 : R, we have

Σ; ∅ ` ` v : 〈` : B ′; ?〉 p⇒ 〈?〉 : 〈?〉
by (T Cast). Since Σ; ∅ ` A : T, i.e., Σ; ∅ ` [ρ1] : T, we have Σ; ∅ ` ρ′′1 : R. Thus, by Lemma 54,

Σ; ∅ `↑ρ′′1 (` v : 〈` : B ′; ?〉 p⇒ 〈?〉) : 〈ρ′′1 � ?〉.

40

Case (R VConLift): We have e0 = ↑〈` : B ′〉 v and B = 〈`:B ′; ρ2〉 and A = 〈ρ1〉 and e ′ = (↓ρ1〈`:B ′〉(v : 〈ρ2〉
p⇒ 〈ρ1〉)) :

〈ρ1 @ ` : B ′〉 p⇒ 〈ρ1〉 for some `, v , B ′, ρ1, and ρ2 such that ` 6∈ dom (ρ1) and ρ1 6= ?.

Since [NS; gemp| − e0 : B], i.e., Σ; ∅ `↑ 〈` : B ′〉 v : 〈` : B ′; ρ2〉, we have Σ; ∅ ` v : 〈ρ2〉 by Lemma 40. Since
B ' A, i.e., 〈` : B ′; ρ2〉 ' 〈ρ1〉, there exist some A′ and ρ′1 such that

• ρ1 .` A′, ρ′1,

• B ′ ' A′, and

• ρ2 ' ρ′1
by Lemmas 14 and 9. Since [lnotindom(r1)], it is found that

• ρ1 ends with ?, i.e., ρ1 = ρ′′1 � ? for some ρ′′1 ,

• A′ = ?, and

• ρ′1 = ρ1.

Thus, ρ2 ' ρ1, and therefore 〈ρ2〉 ' 〈ρ1〉 by (CE Variant). Since Σ; ∅ ` A : T, i.e., Σ; ∅ ` 〈ρ1〉 : T, we have

Σ; ∅ ` v : 〈ρ2〉
p⇒ 〈ρ1〉 : 〈ρ1〉

by (T Cast). Since ↓ ρ1〈`:B ′〉e
′′ = ↓ ρ

′′
1

〈`:B ′〉e
′′ for any e ′′, and Σ; Γ ` B ′ : T from Σ; ∅ ` B : T, i.e., Σ; ∅ `

〈` : B ′; ρ2〉 : T, we have

Σ; ∅ ` ↓ρ1〈`:B ′〉(v : 〈ρ2〉
p⇒ 〈ρ1〉) : 〈ρ′′1 � (` : B ′; ·)� ?〉.

Since ρ′′1 � (` : B ′; ·)� ? = ρ1 @ ` : B ′, we have

Σ; ∅ ` ↓ρ1〈`:B ′〉(v : 〈ρ2〉
p⇒ 〈ρ1〉) : 〈ρ1 @ ` : B ′〉.

Since ρ1 ' ρ1 by (CE Refl), and ρ1 ends with ? and ` 6∈ dom (ρ1), we have ρ′′1 � (` : B ′; ·) � ? ' ρ1, i.e.,
ρ1 @ ` : B ′ ' ρ1 by Lemma 19. Thus, 〈ρ1 @ ` : B ′〉 ' 〈ρ1〉 by (CE Variant). Since Σ; ∅ ` A : T, i.e.,
Σ; ∅ ` 〈ρ1〉 : T, we have

Σ; ∅ ` (↓ρ1〈`:B ′〉(v : 〈ρ2〉
p⇒ 〈ρ1〉)) : 〈ρ1 @ ` : B ′〉 p⇒ 〈ρ1〉 : 〈ρ1〉

by (T Cast), which is what we have to show.

Case (T Conv): We have e = e0 : B
Φ⇒ A and, by inversion, Σ; ∅ ` e0 : B and Σ; ∅ ` A : T and Σ ` B ≺Φ A

for some e0, B , and Φ. Besides, we have Σ; ∅ ` B : T by Lemma 50. By case analysis on the reduction rules
applicable to e.

Case (R CName), (R CRName), and (R CVName): We have e0 = v : A
−α⇒ B and Φ = +α and e ′ = v for

some v and α. Since Σ; ∅ ` e0 : B , i.e., Σ; ∅ ` v : A
−α⇒ B : B , we have Σ; ∅ ` v : A by Lemma 42, 43, or 44.

This is what we have to show.

Case (R CIdDyn), (R CIdName), (R CIdBase), (R CREmp), (R CRIdDyn), (R CRIdName), (R CVIdDyn), (R CVIdName):
We have e0 = v and e ′ = v and A = B for some v . Since Σ; ∅ ` e0 : B , we finish.

Case (R CFun): We have e0 = v and B = B1 → B2 and A = A1 → A2 and e ′ = λx :A1.v (x : A1
Φ⇒ B1) :

B2
Φ⇒ A2 for some v , A1, A2, B1, B2, and x . Since Σ ` B ≺Φ A, i.e., Σ ` B1 → B2 ≺Φ A1 → A2, we have

Σ ` A1 ≺Φ B1 and Σ ` B2 ≺Φ A2 by Lemma 56. Since Σ; ∅ ` A1 → A2 : T and Σ; ∅ ` B1 → B2 : T, we have

Σ; ∅ ` A1 : T and Σ; ∅ ` A2 : T and Σ; ∅ ` B1 : T and Σ; ∅ ` B2 : T. Thus, we have Σ; x :A1 ` x : A1
Φ⇒ B1 : B1

by (T Conv). Since Σ; x :A1 ` v : B1 → B2 by Lemma 24, we have

Σ; x :A1 ` v (x : A1
Φ⇒ B1) : B2

Φ⇒ A2 : A2

by (T App) and (T Conv). Thus,

Σ; ∅ ` λx :A1.v (x : A1
Φ⇒ B1) : B2

Φ⇒ A2 : A1 → A2

by (T Lam).

41

Case (R CForall): We have e0 = v and B = ∀X :K .B ′ and A = ∀X :K .A′ and e ′ = ΛX :K .(v x : B ′
Φ⇒

A′) :: A′ for some v , X , K , A′, B ′, and x . Since Σ ` B ≺Φ A, i.e., Σ ` ∀X :K .B ′ ≺Φ ∀X :K .A′, we have
Σ ` B ′ ≺Φ A′ by Lemma 57. Since Σ; ∅ ` ∀X :K .A′ : T and Σ; ∅ ` ∀X :K .B ′ : T, we have Σ; X :K ` A′ : T
and Σ; X :K ` B ′ : T. Since Σ; X :K ` v : ∀X :K .B ′ by Lemma 24, we have

Σ; X :K ` v x : B ′
Φ⇒ A′ : A′

by (T Var), (T App), and (T Conv). Thus,

Σ; ∅ ` ΛX :K .(v x : B ′
Φ⇒ A′) :: A′ : ∀X :K .A′

by (T TLam).

Case (R CRExt): We have e0 = v and B = [` : B ′; ρ2] and A = [` : A′; ρ1] and e ′ = let {` = x ; y} =

v in {` = x : B ′
Φ⇒ A′; y : [ρ2]

Φ⇒ [ρ1]} for some v , `, A′, B ′, ρ1, ρ2, x , and y . Since Σ ` B ≺Φ A,
i.e., Σ ` [` : B ′; ρ2] ≺Φ [` : A′; ρ1], we have Σ ` B ′ ≺Φ A′ and Σ ` ρ2 ≺Φ ρ1 by Lemmas 58 and 60, and
Σ ` [ρ2] ≺Φ [ρ1] by (Cv Record). Since Σ; ∅ ` A : T, i.e., Σ; ∅ ` [` : A′; ρ1] : T, we have Σ; ∅ ` A′ : T and
Σ; ∅ ` ρ1 : R, and therefore Σ; ∅ ` [ρ1] : T. Thus,

Σ; x :B ′, y :[ρ2] ` {` = x : B ′
Φ⇒ A′; y : [ρ2]

Φ⇒ [ρ1]} : [` : A′; ρ1]

by (T Conv) and (T RExt). Since Σ; ∅ ` e0 : B , i.e., Σ; ∅ ` v : [` : B ′; ρ2], we have

Σ; ∅ ` let {` = x ; y} = v in {` = x : B ′
Φ⇒ A′; y : [ρ2]

Φ⇒ [ρ1]} : [` : A′; ρ1],

which is what we have to prove.

Case (R CVar): We have e0 = v and B = 〈` : B ′; ρ2〉 and A = 〈` : A′; ρ1〉 and e ′ = case v with 〈` x → ` (x :

B ′
Φ⇒ A′); y →↑ 〈` : A′〉 (y : 〈ρ2〉

Φ⇒ 〈ρ1〉)〉 for some v , `, A′, B ′, ρ1, [r2], x , and y . Since Σ ` B ≺Φ A,
i.e., Σ ` 〈` : B ′; ρ2〉 ≺Φ 〈` : A′; ρ1〉, we have Σ ` B ′ ≺Φ A′ and Σ ` ρ2 ≺Φ ρ1 by Lemmas 59 and 60, and
Σ ` 〈ρ2〉 ≺Φ 〈ρ1〉 by (Cv Variant). Since Σ; ∅ ` A : T, i.e., Σ; ∅ ` 〈` : A′; ρ1〉 : T, we have Σ; ∅ ` A′ : T and
Σ; ∅ ` ρ1 : R, and therefore Σ; ∅ ` 〈ρ1〉 : T. Thus,

Σ; x :B ′ ` ` (x : B ′
Φ⇒ A′) : 〈` : A′; ρ1〉

and
Σ; y :〈ρ2〉 `↑〈` : A′〉 (y : 〈ρ2〉

Φ⇒ 〈ρ1〉) : 〈` : A′; ρ1〉

by (T Conv) and (T VInj). Since Σ; ∅ ` e0 : B , i.e., Σ; ∅ ` v : 〈` : B ′; ρ2〉, we have

Σ; ∅ ` case v with 〈` x → ` (x : B ′
Φ⇒ A′); y →↑〈` : A′〉 (y : 〈ρ2〉

Φ⇒ 〈ρ1〉)〉 : 〈` : A′; ρ1〉,

which is what we have to show.

Lemma 62. If Σ | e −→ Σ′ | e ′, then Σ ⊆ Σ′.

Proof. Obvious by case analysis on the evaluation rule applied to derive Σ | e −→ Σ′ | e ′.

Lemma 63 (Subject reduction). If Σ; ∅ ` e : A and Σ | e −→ Σ′ | e ′, then Σ′; ∅ ` e ′ : A.

Proof. By induction on the derivation of Σ; ∅ ` e : A.

Case (T Var), (T Const), (T Lam), (T TLam), (T REmp), (T Blame): Contradictory; there are no reduction
rules to apply.

42

Case (T App): We have e = e1 e2 and, by inversion, Σ; ∅ ` e1 : B → A and Σ; ∅ ` e2 : B for some e1, e2, and B .

If Σ | e1 −→ Σ′ | e ′1 for some e ′1, then we have Σ′; ∅ ` e ′1 : B → A by the IH, and therefore Σ′; ∅ ` e ′1 e2 : A by
Lemmas 62 and 25, and (T App).

If Σ | e2 −→ Σ′ | e ′2 for some e ′2, then we have Σ′; ∅ ` e ′2 : B by the IH, and therefore we have Σ′; ∅ ` e1 e ′2 : A by
Lemmas 62 and 25, and (T App).

In what follows, we suppose that neither e1 nor e2 cannot be evaluated under Σ. By case analysis on the reduction
rule applied to e.

Case (E Red): We have e1 e2 = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such that e ′1 e ′2. Besides,
Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = E ′ e2: Contradictory with the assumption that e1 = E ′[e ′1] cannot be evaluated under Σ.

Case E = v1 E ′: Contradictory with the assumption that e2 = E ′[e ′1] cannot be evaluated under Σ.

Case otherwise: Contradictory with the assumption that e1 e2 = E [e ′1].

Case (E Blame): By (T Blame).

Case (E TyBeta): Contradictory with the assumption that neither e1 nor [e2] cannot be evaluated under Σ.

Case (T TApp): We have e = e1 B and, by inversion, Σ; ∅ ` e1 : ∀X :K .C and Σ; ∅ ` B : K and A = C [B/X] for
some e1, X , K , B , and C .

If Σ | e1 −→ Σ′ | e ′1 for some e ′1, then we have Σ′; ∅ ` e ′1 : ∀X :K .C by the IH, and therefore Σ′; ∅ ` e ′1 B : C [B/X]
by Lemmas 62 and 25, and (T TApp).

In what follows, we suppose that e1 cannot be evaluated under Σ. By case analysis on the reduction rule applied
to e.

Case (E Red): We have e1 B = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such that e ′1 e ′2. Besides,
Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = E ′ B : Contradictory with the assumption that e1 = E ′[e ′1] cannot be evaluated under Σ.

Case otherwise: Contradictory with the assumption that e1 B = E [e ′1].

Case (E Blame): By (T Blame).

Case (E TyBeta): We have e1 B = E [(ΛX ′:K ′.e ′0 :: C ′) B ′] and e ′ = E [e ′0[α/X ′] : C ′[α/X ′]
+α⇒ C ′[B ′/X]]

and Σ′ = Σ, α:K ′ := B ′ for some E , X ′, K ′, e ′0, B ′, C ′, and α. By case analysis on E .

Case E = []: We have e1 = ΛX :K .e ′0 :: C by Lemma 33 (note that X = X ′ and K = K ′ and C = C ′)
and B ′ = B .
It suffices to show that

Σ, α:K := B ; ∅ ` e ′0[α/X] : C [α/X]
+α⇒ C [B/X] : C [B/X].

Since Σ; ∅ ` e1 : ∀X :K .C , i.e., Σ; ∅ ` ΛX :K .e ′0 :: C : ∀X :K .C , we have Σ; X :K ` e ′0 : C by Lemma 37.
Thus, Σ, α:K := B ; X :K ` e ′0 : C by Lemma 25. Since Σ, α:K := B ; ∅ ` α : K by (WF TyName), we
have

Σ, α:K := B ; ∅ ` e ′0[α/X] : C [α/X]

by Lemma 29.
Since Σ; ∅ ` e1 : ∀X :K .C , we have Σ; ∅ ` ∀X :K .C : T by Lemma 50. Thus, since α is a fresh type name
for Σ, α does not occur in C . Therefore, we have

Σ, α:K := B ` C [α/X] ≺+α C [B/X]

by Lemma 30. Since Σ; ∅ ` e : A, we have Σ; ∅ ` A : T by Lemma 50, and therefore Σ; ∅ ` C [B/X] : T.
Thus, by (T Conv),

Σ, α:K := B ; ∅ ` e ′0[α/X] : C [α/X]
+α⇒ C [B/X] : C [B/X].

43

Case E = E ′ B : Contradictory with the assumption that e1 = E ′[(ΛX ′:K ′.e ′0 :: C ′) B ′] cannot be evaluated
under Σ.

Case otherwise: Contradictory with the assumption that e1 B = E [e ′1].

Case (T RExt): We have e = {` = e1; e2} and, by inversion, Σ; ∅ ` e1 : B and Σ; ∅ ` e2 : [ρ] and A = [` : B ; ρ]
for some `, e1, e2, B , and ρ.

If Σ | e1 −→ Σ′ | e ′1 for some e ′1, then we have Σ′; ∅ ` e ′1 : B by the IH, and therefore Σ′; ∅ ` {` = e ′1; e2} : [` :B ; ρ]
by Lemmas 62 and 25, and (T RExt).

If Σ | e2 −→ Σ′ | e ′2 for some e ′2, then we have Σ′; ∅ ` e ′2 : [ρ] by the IH, and therefore we have Σ′; ∅ ` {` =
e1; e ′2} : [` : B ; ρ]. by Lemmas 62 and 25, and (T RExt).

In what follows, we suppose that neither e1 nor e2 cannot be evaluated under Σ. By case analysis on the reduction
rule applied to e.

Case (E Red): We have {` = e1; e2} = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such that e ′1 e ′2. Besides,
Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = {` = E ′; e2}: Contradictory with the assumption that e1 = E ′[e ′1] cannot be evaluated under Σ.

Case E = {` = v1; E ′}: Contradictory with the assumption that e2 = E ′[e ′1] cannot be evaluated under Σ.

Case otherwise: Contradictory with the assumption that {` = e1; e2} = E [e ′1].

Case (E Blame): By (T Blame).

Case (E TyBeta): Contradictory with the assumption that neither e1 nor [e2] cannot be evaluated under Σ.

Case (T RLet): We have e = let {` = x ; y} = e1 in e2 and, by inversion, Σ; ∅ ` e1 : [` : B ; ρ] and Σ; x :B , y :[ρ] ` e2 :
A for some `, x , y , e1, e2, B , and ρ.

If Σ | e1 −→ Σ′ | e ′1 for some e ′1, then we have Σ′; ∅ ` e ′1 : [` :B ; ρ] by the IH, and therefore Σ′; ∅ ` let {` = x ; y} =
e ′1 in e2 : A by Lemmas 62 and 25, and (T RLet).

In what follows, we suppose that e1 cannot be evaluated under Σ. By case analysis on the reduction rule applied
to e.

Case (E Red): We have let {` = x ; y} = e1 in e2 = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such that
e ′1 e ′2. Besides, Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = let {` = x ; y} = E ′ in e2: Contradictory with the assumption that e1 = E ′[e ′1] cannot be evaluated
under Σ.

Case otherwise: Contradictory with the assumption that let {` = x ; y} = e1 in e2 = E [e ′1].

Case (E Blame): By (T Blame).

Case (E TyBeta): Contradictory with the assumption that e1 cannot be evaluated under Σ.

Case (T VInj): We have e = ` e0 and, by inversion, Σ; ∅ ` e0 : B and A = 〈` : B ; ρ〉 for some `, e0, B , and ρ such
that Σ; ∅ ` ρ : R.

If Σ | e0 −→ Σ′ | e ′0 for some e ′0, then we have Σ′; ∅ ` e ′0 : B by the IH, and therefore Σ′; ∅ ` ` e ′0 : 〈` : B ; ρ〉 by
Lemmas 62 and 25, and (T VInj).

In what follows, we suppose that e0 cannot be evaluated under Σ. By case analysis on the reduction rule applied
to e.

Case (E Red): We have ` e0 = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such that e ′1 e ′2. Besides,
Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = `E ′: Contradictory with the assumption that e0 = E ′[e ′1] cannot be evaluated under Σ.

Case otherwise: Contradictory with the assumption that ` e0 = E [e ′1].

44

Case (E Blame): By (T Blame).

Case (E TyBeta): Contradictory with the assumption that e0 cannot be evaluated under Σ.

Case (T VLift): We have e = ↑ 〈` : B〉 e0 and, by inversion, Σ; ∅ ` e0 : 〈ρ〉 and A = 〈` : B ; ρ〉 for some `, e0, B ,
and ρ such that Σ; ∅ ` B : T.

If Σ | e0 −→ Σ′ | e ′0 for some e ′0, then we have Σ′; ∅ ` e ′0 : 〈ρ〉 by the IH, and therefore Σ′; ∅ `↑〈` : B〉 e ′0 : 〈` :B ; ρ〉
by Lemmas 62 and 25, and (T VLift).

In what follows, we suppose that e0 cannot be evaluated under Σ. By case analysis on the reduction rule applied
to e.

Case (E Red): We have ↑〈` : B〉 e0 = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such that e ′1 e ′2. Besides,
Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = ↑〈` : B〉E ′: Contradictory with the assumption that e0 = E ′[e ′1] cannot be evaluated under Σ.

Case otherwise: Contradictory with the assumption that ↑〈` : B〉 e0 = E [e ′1].

Case (E Blame): By (T Blame).

Case (E TyBeta): Contradictory with the assumption that e0 cannot be evaluated under Σ.

Case (T VCase): We have e = case e0 with 〈` x → e1; y → e2〉 and, by inversion, Σ; ∅ ` e0 : 〈` : B ; ρ〉 and
Σ; x :B ` e1 : A and Σ; y :〈ρ〉 ` e2 : A for some `, e0, e1, e2, B , ρ, x , and y .

If Σ | e0 −→ Σ′ | e ′0 for some e ′0, then we have Σ′; ∅ ` e ′0 : 〈` : B ; ρ〉 by the IH, and therefore Σ′; ∅ `
case e ′0 with 〈` x → e1; y → e2〉 : A by Lemmas 62 and 25, and (T VCase).

In what follows, we suppose that e0 cannot be evaluated under Σ. By case analysis on the reduction rule applied
to e.

Case (E Red): We have case e0 with 〈` x → e1; y → e2〉 = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such
that e ′1 e ′2. Besides, Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = caseE ′ with 〈` x → e1; y → e2〉: Contradictory with the assumption that e0 = E ′[e ′1] cannot be
evaluated under Σ.

Case otherwise: Contradictory with the assumption that case e0 with 〈` x → x ; y → e2〉 = E [e ′1].

Case (E Blame): By (T Blame).

Case (E TyBeta): Contradictory with the assumption that e0 cannot be evaluated under Σ.

Case (T Cast): We have e = e0 : B
p⇒ A and, by inversion, Σ; ∅ ` e0 : B and B ' A and Σ; ∅ ` A : T for some

e0, A, B , and p.

If Σ | e0 −→ Σ′ | e ′0 for some e ′0, then we have Σ′; ∅ ` e ′0 : B by the IH, and therefore Σ′; ∅ ` e ′0 : B
p⇒ A : A by

Lemmas 62 and 25, and (T Cast).

In what follows, we suppose that e0 cannot be evaluated under Σ. By case analysis on the reduction rule applied
to e.

Case (E Red): We have e0 : B
p⇒ A = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such that e ′1 e ′2. Besides,

Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = E ′ : B
p⇒ A: Contradictory with the assumption that e0 = E ′[e ′1] cannot be evaluated under Σ.

Case otherwise: Contradictory with the assumption that e0 : B
p⇒ A = E [e ′1].

Case (E Blame): By (T Blame).

Case (E TyBeta): Contradictory with the assumption that e0 cannot be evaluated under Σ.

45

Case (T Conv): We have e = e0 : B
Φ⇒ A and, by inversion, Σ; ∅ ` e0 : B and Σ ` B ≺Φ A and Σ; ∅ ` A : T for

some e0, A, B , and Φ.

If Σ | e0 −→ Σ′ | e ′0 for some e ′0, then we have Σ′; ∅ ` e ′0 : B by the IH, and therefore Σ′; ∅ ` e ′0 : B
Φ⇒ A : A by

Lemmas 62 and 25, and (T Conv).

In what follows, we suppose that e0 cannot be evaluated under Σ. By case analysis on the reduction rule applied
to e.

Case (E Red): We have e0 : B
Φ⇒ A = E [e ′1] and e ′ = E [e ′2] for some E , e ′1, and e ′2 such that e ′1 e ′2. Besides,

Σ′ = Σ. By case analysis on E .

Case E = []: By Lemma 61.

Case E = E ′ : B
Φ⇒ A: Contradictory with the assumption that e0 = E ′[e ′1] cannot be evaluated under Σ.

Case otherwise: Contradictory with the assumption that e0 : B
Φ⇒ A = E [e ′1].

Case (E Blame): By (T Blame).

Case (E TyBeta): Contradictory with the assumption that e0 cannot be evaluated under Σ.

Theorem 2 (Type soundness). If ∅; ∅ ` e : A and ∅ | e −→∗ Σ′ | e ′ and e ′ cannot be evaluated under Σ′, then
either e ′ is a value or e ′ = blame p for some p.

Proof. By Lemmas 63 and 51.

2.3 Type-preserving translation

Assumption 3. We assume that A ' A⊕B and B ' A⊕B and that if Γ ` A : T and Γ ` B : T, then Γ ` A⊕B : T.

Lemma 64.

1. If A . B, then A ' B. Furthermore, if Σ; Γ ` A : K , then Σ; Γ ` B : K .

2. If A . [ρ] and ρ .` B , ρ′, then A ' [` : B ; ρ′]. Furthermore, if Σ; Γ ` A : T, then Σ; Γ ` [` : B ; ρ′] : T.

3. If A . 〈ρ〉 and ρ .` B , ρ′, then A ' 〈` : B ; ρ′〉. Furthermore, if Σ; Γ ` A : T, then Σ; Γ ` 〈` : B ; ρ′〉 : T.

Proof. 1. Obvious by the definition of type matching.

2. If A is ?, it is trivial to show. Otherwise, A = [ρ]. If ` ∈ dom (ρ), then ρ ≡ ` : B ; ρ′. Thus, ρ ' ` : B ; ρ′

by Lemma 21. Thus, by (CE Record), [ρ] ' [` : B ; ρ′] Since Σ; Γ ` ρ : R, we find that Σ; Γ ` B : T and
Σ; Γ ` ρ′ : R. Thus, Σ; Γ ` [` : B ; ρ′] : T by (WF Cons) and (WF Record).

3. Similarly to the case for record types.

Lemma 65.

1. If ` Γ, then ∅ ` Γ.

2. If Γ ` A : K , then ∅; Γ ` A : K .

Proof. Straightforward by mutual induction on the derivations.

Lemma 66. If Γ ` M : A ↪→ e, then ∅; Γ ` e : A.

Proof. By induction on the derivation of Γ ` M : A ↪→ e. The proof is straightforward by using the assumption
about ⊕ stated in this section and Lemmas 64, 65, and 50.

Lemma 67. If Γ ` M : A, then Γ ` M : A ↪→ e for some e.

Proof. Straightforward by induction on the typing derivation.

Theorem 3. If Γ ` M : A, then there exists some e such that Γ ` M : A ↪→ e and ∅; Γ ` e : A.

Proof. By Lemmas 67 and 66.

46

2.4 Conservativity over typing

In this section, we write Γs , As , ρs , M s for typing contexts, types, rows, and terms where ? and any type name do
not appear.

Definition 29. We write Γ1 ≡ Γ2 if and only if (1) Γ1 = ∅ and Γ2 = ∅; (2) Γ1 = Γ′1, x :A and Γ2 = Γ′2, x :B and
Γ′1 ≡ Γ′2 and A ≡ B; or (3) Γ1 = Γ′1,X :K and Γ2 = Γ′2,X :K and Γ′1 ≡ Γ′2.

Assumption 4. We assume that As ⊕ B s is defined if and only if As ≡ B s , and if As ≡ B s , then As ⊕ B s ≡ As .

Assumption 5. We assume that, if A1 ≡ A2 and B1 ≡ B2, then A1 ⊕ B1 ≡ A2 ⊕ B2.

Lemma 68. Suppose that Γ ≡ Γ′.

1. If ` Γ, then ` Γ′.

2. If Γ ` A : K , then Γ′ ` A′ : K for any A′ such that A ≡ A′.

3. If Γ ` M : A, then Γ′ ` M : A′ for some A′ such that A ≡ A′.

We mention only the interesting cases.

Case (WFg Cons): We are given Γ ` ` : B ; ρ : R and, by inversion, Γ ` B : T and Γ ` ρ : R.

We suppose that some ρ′ such that ` : B ; ρ ≡ ρ′ is given. Since ` : B ; ρ ≡ ρ′, there exists some B ′′ and ρ′′ such
that ρ′ .` B ′′, ρ′′ and B ≡ B ′′ and ρ ≡ ρ′′. By the IHs, Γ′ ` B ′′ : T and Γ′ ` ρ′′ : R. Thus, Γ′ ` ` : B ′′; ρ′′ : R by
(WFg Cons). We can show that Γ′ ` ρ′ : R by the fact that ρ′ .` B ′′, ρ′′.

Case (Tg App): We are given Γ ` M1 M2 : A and, by inversion, Γ ` M1 : A1 and Γ ` M2 : A2 and A1 . A11 → A
and A2 ' A11.

If A = ?, it is easy to show.

Otherwise, we can suppose that A = A11 → A. By the IHs with Lemma 5, Γ′ ` M1 : A′11 → A′ and Γ′ ` M2 : A′2
for some A′, A′11, A′2 such that A ≡ A′, A11 ≡ A′11, and A2 ≡ A′2. By Theorem 1, A′2 ' A′11. Thus, we finish by
(Tg App).

Case (Tg TApp): This case uses the fact that A ≡ B, then A[C/X] ≡ B [C/X].

Case (Tg VCase): This cases uses the second assumption about ⊕ stated in this section.

Lemma 69. If As ' B s , then As ≡ B s .

Proof. By Lemma 16, there exists some C s such that As ≡ C s and C s ∼ B s . Then, it is easy to show that
C s = B s by induction on the derivation of C s ∼ B s .

Lemma 70.

1. If ` Γs , then `s Γs .

2. If Γs ` As : K , then Γs `s As : K .

3. If Γs ` M s : A, then Γs `s M s : A.

xo

Proof. By mutual induction on the derivations.
Below are important facts to show this lemma.

1. If Γs `s M s : A, then ? and any type name do not appear in A.

2. If As . B s , then As = B s .

3. If ρs1 .` As , ρs2, then ρs1 ≡ ` : As ; ρs2.

47

The case for (Tg App) is interesting, so we mention only that case. We are given Γs ` M s
1 M s

2 : A and, by
inversion, Γs ` M s

1 : B and Γs ` M s
2 : C and B .B1 → A and C ' B1. By the IHs, Γs `s M s

1 : B and Γs `s M s
2 : C .

Thus, we can find ? and any type name do not appear in B nor C . Thus, B = B1 → A. Since C ' B1, we find
C ≡ B1 by Lemma 69. Thus, by (Ts Equiv), Γs `s M s

2 : B1. By (Ts App), we have Γs `s M s
1 M s

2 : A.
The first assumption about ⊕ stated in this section is used in the case for (Tg VCase).

Lemma 71.

1. If `s Γs , then ` Γs .

2. If Γs `s As : K , then Γs ` As : K .

3. If Γs `s M s : As , then Γs ` M s : B s for some B s such that As ≡ B s .

Proof. By mutual induction on the derivations. We mention only the interesting cases.

Case (Ts App): We are given Γs `s M s
1 M s

2 : As and, by inversion, Γs `s M s
1 : B s → As and Γs `s M s

2 : B s . By
the IHs, Γs ` M s

1 : B s
1 → As

1 and Γs ` M s
2 : B s

2 and B s → As ≡ B s
1 → As

1 and B s ≡ B s
2 for some B s

1 , B s
2 , and

As
1.

We have B s
1 → As

1 .B s
1 → As

1. By Lemma 5 (2), we have B s ≡ B s
1 and As ≡ As

1. Thus, B s
2 ≡ B s

1 . By Lemma 22,
B s

2 ' B s
1 . Thus, by (Tg App), Γs ` M s

1 M s
2 : As

1.

Case (Ts TApp): Similar to the case of (Ts App); we use the fact that, if A ≡ B , then A[C/X] ≡ B [C/X].

Case (Ts RLet): We are give Γs `s let {` = x ; y} = M s
1 inM s

2 : As and, by inversion, Γs `s M s
1 : [` : B s ; ρs] and

Γs , x :B s , y :[ρs] `s M s
2 : As .

By the IHs with Lemma 5, Γs ` M s
1 : [` : B s

0 ; ρs0] and Γs , x :B s , y :[ρs] ` M s
2 : As

0 for some ρs0, As
0, and B s

0 such
that ρs ≡ ρs0 and As ≡ As

0 and B s ≡ B s
0 .

Since Γs , x :B s , y :[ρs] ≡ Γs , x :B s
0 , y :[ρs0], we have Γs , x :B s

0 , y :[ρs0] ` M s
2 : As

1 for some As
1 such that As

0 ≡ As
1 by

Lemma 68. Since As ≡ As
1, we finish by (T RLet).

Case (Ts VCase): Similar to the case of (Ts RLet). This case also uses the first assumption about ⊕ stated in
this section.

Theorem 4. 1. If Γs ` M s : As , then Γs `s M s : As .

2. If Γs `s M s : As , then Γs ` M s : B s for some B s such that As ≡ B s .

Proof. By Lemmas 70 and 71.

48

	Definition
	Statically typed language F
	Syntax
	Semantics
	Type system

	Gradually typed language FG
	Syntax
	Typing

	Blame calculus FC
	Syntax
	Semantics

	Typing
	Translation

	Proofs
	Consistency
	Type Soundness
	Type-preserving translation
	Conservativity over typing

