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This work studies gradual typing for row types and row polymorphism. Key ingredients in this work are the

dynamic row type, which represents a statically unknown part of a row, and consistency for row types, which

allows injecting static row types into the dynamic row type and, conversely, projecting the dynamic row type

to any static row type. While consistency captures the behavior of the dynamic row type statically, it makes

the semantics of a gradually typed language incoherent when combined with row equivalence which identifies

row types up to field reordering. To solve this problem, we develop consistent equivalence, which characterizes

composition of consistency and row equivalence. Using consistent equivalence, we propose a polymorphic

blame calculus F
ρ
C
for row types and row polymorphism. In F

ρ
C
, casts perform not only run-time checking with

the dynamic row type but also field reordering in row types. To simplify our technical development for row

polymorphism, we adopt scoped labels, which are employed by the language Koka and are also emerging in

the context of effect systems. We give the formal definition of F
ρ
C
with these technical developments and prove

its type soundness. We also sketch the gradually typed surface language F
ρ
G
and type-preserving translation

from F
ρ
G
to F

ρ
C
and discuss conservativity of F

ρ
G
over typing of a statically typed language with row types and

row polymorphism.
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1 INTRODUCTION
1.1 Background: extensibility by rows and gradual typing
Extensibility is a measure of how open and how adaptive software is to future extensions or

changes of system requirements. Extensibility is important not only for maintenance and adding

new features but also for continuous, evolutionary software engineering practices such as Agile

development. For example, consider a software system using a database. We may like to add a new

column to a table in the database when extending the system, and to change the name of an existing

column for refactoring. For such changes, software should be extensible—i.e., no modification to

the existing code should be necessary except for the parts directly influenced by the changes.

One type-based approach to software extensibility is row types [Wand 1987], which address

extensibility in terms of data types. A row type is a finite sequence ℓ1 : A1; ...; ℓn : An of pairs of a

label ℓi and its type Ai; it captures a common form of data types, such as record types and variant

types, ubiquitous among various programming paradigms.

Row types are prominent in research on static typing and have been used in practice in many

situations. From the outset, row types were developed for extensibility—Wand proposed row

types for achieving extensibility originating from inheritance in object-oriented programming

by records [Wand 1987, 1991]. That embedding of object-oriented features by row types is also

adopted by the object system of OCaml in a more sophisticated way [Rémy and Vouillon 1998].

Row types are also able to make variant types extensible. Extensible variant types, also called

polymorphic variants, are one of the techniques to resolve the Expression Problem [Garrigue 2000],
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which is a litmus test to evaluate the suitability of a language for modular software development.

Extensible variant types also provide a theoretical foundation for exceptions open to extension

with user-defined errors. These extensible record and variant types with row types are implicitly

or explicitly available in many languages such as OCaml, Haskell, PureScript, Gluon, Koka, etc.

Another, more recent application of row types is to support effect systems for algebraic effects

and handlers [Plotkin and Pretnar 2009], and multiple languages with such an effect system are

emerging [Hillerström and Lindley 2016; Leijen 2014, 2017; Lindley et al. 2017].

While the practicality of row types has been demonstrated with many applications, strict enforce-

ment of this static typing discipline might interfere with rapid software development, and in such

contexts a dynamic typing discipline would be more suitable. On the other hand, as development

progresses and software is scaled up, static typing provides more benefits, such as extensibility in a

safe manner as well as early error detection and better maintainability.

Gradual typing, proposed independently by Siek and Taha [2006] and Tobin-Hochstadt and

Felleisen [2006], has been studied for resolving the conflict between static and dynamic typing

and for enabling gradual, smooth evolution from fully dynamically typed code to fully statically

typed code. Gradual typing was first proposed for higher-order functions and later extended with

various programming features such as subtyping [Siek and Taha 2007; Xie et al. 2018], parametric

polymorphism [Ahmed et al. 2011, 2017; Igarashi et al. 2017; Toro et al. 2019; Xie et al. 2018], control

operators [Sekiyama et al. 2015; Takikawa et al. 2013], and type inference [Garcia and Cimini 2015;

Miyazaki et al. 2019; Siek and Vachharajani 2008]. A key ingredient for achieving gradual evolution

is the dynamic type, denoted by ⋆, which is the type of dynamically typed code. The dynamic type

makes it possible to inject any statically typed values into the dynamic type and, conversely, to

project dynamically typed values to any static type with run-time type conversions, called casts.

Gradual type systems reflect this semantic ability of the dynamic type to consistency. Consistency

plays the role of type equality in gradual typing and tells where the cast is necessary. Consistency

is designed to be flexible enough to allow possibly successful casts—e.g., between int and ⋆ and

between int → ⋆ and⋆→ bool—but strict enough not to miss definitely unsafe casts, e.g., between

int and bool and between int → ⋆ and bool → ⋆.

1.2 Our work
This work aims at gradual evolution between dynamically typed code and statically typed, safely

extensible code, and to this end we study gradual typing for row types. Key ingredients in our work

are the dynamic row type, denoted by the same notation⋆ as the dynamic type, and consistency for

row types. The dynamic row type has been proposed first by Garcia et al. [2016] for making the

effective use of monomorphic record types in gradual typing, and we extend it to handle variant

types as well. The dynamic row type intuitively represents a statically unknown part of a row. For

example, row type ℓ : int;⋆ ensures that there is an ℓ field coupled with type int but it guarantees
nothing about other fields, neither their presence nor absence. Thus, a record with that row type

must have an ℓ field holding an integer value andmay have other fields; a variant with that row type

requires consumers of the variant to handle the case where the variant is constructed by injecting

an integer value with label ℓ and allows them to handle other cases. We define consistency for

row types taking into account this intuition. Interestingly, the dynamic row type not only enables

gradual evolution of code with record and variant types but also provides fine-grained control over

interfaces of program components, as seen in Section 2.

To bring extensibility achieved by static row typing into gradual typing, we also deal with row

polymorphism [Gaster and Jones 1996; Wand 1987],
1
which gives great modularity and reusability

1
Another major form of polymorphism is subtyping possibly with bounded polymorphism [Cardelli and Wegner 1985].
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to components with row types by enabling a type signature of an expression to expose interesting

fields and to abstract and take the remaining, uninteresting row information as a parameter.

Introduction of row polymorphism to gradual typing, however, gives rise to two technical issues.

The first is on row parametricity. To ensure row parametricity, we need to protect polymorphically

typed values from untyped code. We resolve this issue by applying the idea in the earlier work

on polymorphic gradual typing [Ahmed et al. 2011, 2017; Igarashi et al. 2017; Toro et al. 2019]

to row polymorphism. The second issue is on row equivalence. In a monomorphic setting, we

can assume that the label set is totally ordered and consider only the canonical form of a row.

In a polymorphic setting, however, a row type obtained by substitution for a row type variable

may not be in a canonical form, and therefore row types may be syntactically different even if

they are semantically equivalent. A standard approach to this issue is to identify row types up

to field reordering [Gaster and Jones 1996]. However, perhaps surprisingly, the semantics based

on the earlier polymorphic gradual typing is not well defined in the sense that the behavior of

some program changes depending on representative row types. To solve this problem, we develop

consistent equivalence, which characterizes composition of consistency and row equivalence, and

incorporate it into our gradually typed language instead of consistency and row equivalence.

Thanks to consistent equivalence, the behavior of programs in the language—especially, the order

of run-time checks—is determined by type annotations, not by representative row types. Thus, the

behavior of a program is determined to be unique.

To ease technical development for row polymorphism, we allow duplicate labels in a single row;

such labels are also called scoped [Leijen 2005]. An alternative approach to row polymorphism is to

assume labels in a row to be unique and to introduce qualified types [Gaster and Jones 1996] or

a kind system [Pottier and Rémy 2005] which assert that a row type variable can be instantiated

only with rows without some labels. While we could give a gradually typed language with such a

restriction on row variables, it would make the run-time checking of the language complicated.

By contrast, row polymorphism with scoped labels does not need restriction on row variables

and simplifies our technical development. In addition, the fact that emerging applications of row

types—i.e., effect systems for algebraic effect handlers—adopt scoped labels [Biernacki et al. 2018;

Leijen 2014, 2017; Lindley et al. 2017] motivates us to take this approach.

Employing scoped labels also enables us to use the embedding operation [Leijen 2005], which

embeds a variant expression into a variant type with a wider row statically and wraps a variant

value by a dummy label dynamically. The embedding operation was originally proposed to align

rows in variant types with a polymorphic row variable, and its usefulness is also found in effect

systems [Biernacki et al. 2018; Leijen 2014]. The embedding operation also plays an important role

to make the type system of our calculus syntax-directed.

Below is a summary of the contributions by this work.

• We define consistency for value and row types. While consistency captures the essence of

the dynamic type and the dynamic row type, it is problematic when used together with row

equivalence. To solve the problem with consistency, we also give consistent equivalence.

• We define a polymorphic λ-calculus F
ρ
C
equipped with run-time checking by casts, row types

with scoped labels, the dynamic row type, record and variant types, row polymorphism, and

the embedding operation, using consistent equivalence.

• We show that consistent equivalence characterizes composition of consistency and row

equivalence and that F
ρ
C
satisfies type soundness. We sketch a surface language F

ρ
G
for F

ρ
C
and

type-preserving translation from F
ρ
G
to F

ρ
C
and also state conservativity of F

ρ
G
over typing of

a statically typed language for row types and row polymorphism.
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The rest of this paper is organized as follows. Section 2 presents motivating examples of records

and variants with the dynamic row type. Next, we review a statically typed language F
ρ
with row

types and row polymorphism in Section 3. Section 4 defines consistency and consistent equivalence

that support the dynamic row type and Section 5 formalizes F
ρ
C
. Section 5 also sketches F

ρ
G
and

translation from F
ρ
G
to F

ρ
C
and states properties of F

ρ
C
and F

ρ
G
. After discussing related work in

Section 6, we conclude in Section 7.

This paper omits some parts of definitions and the details of proofs. The full definitions, in-

cluding those of F
ρ
G
and the translation from F

ρ
G
to F

ρ
C
, and the complete proofs are found in the

supplementary material.

2 PROGRAMMINGWITH GRADUAL TYPING FOR ROW TYPES
Records and variants are fundamental building blocks to represent and manipulate data structures.

Records provide a means to put several pieces of data together and to access them by specifying

labels. Variants enables us to do case analysis on labels safely. This section showsmultiplemotivating

examples of gradual typing for record and variant types. The programs presented in this section

are in the surface language F
ρ
G
, but it is easy to translate them to F

ρ
C
.

2.1 Records
Gradual evolution of data structures. A trivial application of “gradualizing” record types is evolving

shapes of data structures gradually. For instance, let us consider development of a window system.

Assume that we have a function window that returns the current window frame.

When development starts with fully dynamic typing, window is given the dynamic type⋆. Since
a value of ⋆ can be supposed to have any type, we can use window as a function of unit → ⋆. We

also assume that a window frame is represented by a record. Then, for example, an expression

checking that the current window is valid can be given as follows:

M

def

= letw = window () inw.width ≤ 2560 & w.height ≤ 1440.

which checks that the width and height of the current window frame are valid. Variable w bound to

the current window is assigned type ⋆ and used as a record holding width and height fields having

integer values. The static assumptions—whether window is a function and whether w is such a

record—are checked at run time; for example, if the width field has a string value, then the run-time

check for the width field will fail and an exception will be raised.

As development progresses, type specifications would gradually become concrete and stable.

Now, suppose that the type ofwindow is refined to be unit → [width : int; height : int;⋆], where⋆ is
the dynamic row type and [ρ] is a record type with row type ρ. Thus, this function type means that a

window frame is represented by a record that holdswidth and height fields with integer values surely

and, in addition, may hold other fields. Since this refinement is consistent with the assumptions on

window and w inM , the expressionM works still without any change. If the change is inconsistent

with the assumption—e.g., the type of window is changed to unit → [width : str; height : str;⋆]—the
type system would detect the type mismatch statically.

The dynamic row type ⋆ left in the record type indicates a possibility that a window frame

has other field specifications which are not fixed. This gives the ability to develop a prototype

implementation rapidly. For example, let us consider prototype development of window drawing in

the stack order, where a window frame with lower depth field is drawn in front of other windows

with greater depth fields. Since window returns the current window frame, it should be the topmost,

i.e., its depth field should be 0. Thus, the checking expression would be rewritten as:

letw = window () inw.width ≤ 2560 & w.height ≤ 1440 & w.depth = 0.
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Here, we do not need to change the type of window because the dynamic row type allows us to

suppose the window frame to have a depth field. This flexibility of the dynamic row type lets us

concentrate on extending software and avoid being bothered by type puzzles. Once it is decided to

deploy this drawing system into production, we could opt to detect typing errors statically and

make the software safer by changing the record type to [width : int; height : int; depth : int;⋆].

Optional information. Record types combined with the dynamic row type are also useful to attach

optional information. For example, let us consider a function that tests if a given string matches a

given regular expression and returns not only the testing result of Boolean but also a matching

substring if the test succeeds. We also suppose that users have to give an option in order to make

the function return the matching substring for reducing memory consumption. We can give such a

function matching the following type:

val matching : [re : str;match : str;⋆] → [res : bool;⋆].

The fields that appear explicitly in the argument type are mandatory arguments: users have to give

a regular expression by the re field and a string to match by the match field. The dynamic row type

there corresponds to optional arguments: in order for the function to return a matching substring,

one sets the return_sub field to true:2

M

def

= matching {re = "o∗";match = "foo"; return_sub = true}.

The return type of matching means that matching returns whether the string matches the pattern

by the Boolean res field. The dynamic row type in the return type enables augmenting the Boolean

result with the matching substring, if any, by the substr field. Then, we can write a program that

returns the length of the matched substring (if any) or returns -1.

let x : [res : bool;⋆] = M in if x .res then (length x .substr) else −1

matching does not produce the matching substring if the return_sub field is missing or set to false:

let x : [res : bool;⋆] = matching {re = "o∗";match = "foo"} in x .substr −→∗ exception

Thus, the dynamic row type can give natural and flexible type interfaces beyond gradual evolution.

Dynamic data type definition. The dynamic row type in record types is also useful when one

deals with values whose structures are determined by external environments. For example, loading

JSON files and constructing object-relational mappings by analyzing SQL queries at run time are

such practical applications.

2.2 Variants
A key operation on variants is injection, which injects values of different types into a single type

representation, a variant type ⟨ρ⟩, by tagging the values with labels that occur in row type ρ.
The injected values can be projected to the field types of ρ safely. Variants are seen through-

out programming–their applications include enumerated types, heterogeneous collections, and

algebraic data types, sometimes together with recursive types.

Variant types combined with the dynamic row type not only allow gradual evolution of code

with variant types but also can represent cases with uncertainty. For example, let us consider a

function input_event that returns an input event from users. There are several kinds of events,

2
Here we assume that a language supports dynamic field testing on records. We do not deal with such an operation in this

paper, but it is easy to add, like type testing on dynamically typed values [Ahmed et al. 2011].
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such as key down, key up, mouse move, mouse click, etc. We can use variant types to represent

what event happens with additional information of the event (e.g., key codes if key events happen).

val input_event : unit → ⟨key_down : int; key_up : int; ...; ·⟩

where · is the empty row. Suppose that we have to handle all key and mouse events but do not have

to handle events from other input devices such as touchscreens and gamepads. We could naturally

imagine that input_event is changed to take optional arguments to specify what additional events

we are interested in:

val input_event : [⋆] → ⟨key_down : int; key_up : int; ...; ·⟩.

For example, if we are interested in touchscreen events as well, we would call input_event with an

additional argument to enable monitoring touchscreen events, like:

input_event {touch = true}.

For the return type of input_event, enumerating all possible events in the variant type would be

inconvenient from the viewpoints of both efficiency and engineering because it seems that we

have to handle even uninteresting, not happening events. Variant types with the dynamic row type

allow us to take care of only mandatory and interesting events by changing the type signature of

input_event as:

val input_event : [⋆] → ⟨key_down : int; key_up : int; ...;⋆⟩

where key_down, key_up, ... are mandatory events that must be handled and ⋆ in the return type

is for events handled only when interesting. If we do not have additional interesting events, we can

convert ⋆ to the empty row ·:

input_event {} : ⟨key_down : int; key_up : int; ...; ·⟩.

If interested in touchscreen devices, we can convert ⋆ to fields for touchscreen events:

input_event {touch = true} : ⟨key_up : int; ...; touch_start : pos; touch_end : pos; ·⟩

where pos is the type of positions. While we can choose optional events by passing an optional

argument and converting ⋆, we cannot drop mandatory events, such as key_up and key_down.

Furthermore, the flexibility of the dynamic row type makes it possible to monitor events even

from devices unknown to the provider of input_event. Let us suppose that input_event supports
dynamic loading of device driver libraries to monitor events from unknown devices. Such events

could not appear in a type signature of input_event because input_event does not know at compile

time what events will be triggered by an unknown device, though it can know at run time by

dynamic library loading. The dynamic row type enables users of input_event to assert what events

are monitored by input_event when a device driver is loaded. For example, if a barcode reader is

not supported by input_event but it provides a device driver library, we can assert that an event

from the barcode reader may happen by converting ⋆:

input_event {load = "barcode_lib"} : ⟨key_up : int; ...; barcode : str; ·⟩.

It would be difficult to give this flexibility only by static typing.

3 A POLYMORPHICALLY TYPED LANGUAGE FOR ROW TYPES
We start with reviewing a statically typed language F

ρ
with row types and row polymorphism. Our

language F
ρ
is a variant of the language given by Hillerström et al. [2017], from which F

ρ
differs in

that it adopts scoped labels and incorporates row equivalence as a typing rule.
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Variables for types and rows X Kinds K ::= T | R

Base types ι ::= bool | int | ... Constants κ ::= true | false | 0 | + | ...

Types and rows A,B,C,D, ρ ::= X | ι | A → B | ∀X :K .A | [ρ] | ⟨ρ⟩ | · | ℓ : A; ρ

Terms M ::= x | κ | λx:A.M | M1M2 | ΛX :K .M | M A |

{} | {ℓ = M1;M2} | let {ℓ = x; y} = M1 inM2 |

ℓM | caseM with ⟨ℓ x → M1; y → M2⟩ |↑ ⟨ℓ : A⟩M

Values w ::= κ | λx:A.M | ΛX :K .M | {} | {ℓ = w1;w2} | wℓ wℓ
::= ℓw |↑ ⟨ℓ : A⟩wℓ

Evaluation contexts F ::= [ ] | F M2 | w1 F | F A |

{ℓ = F ;M2} | {ℓ = w1; F } | let {ℓ = x; y} = F inM2 |

ℓ F | case F with ⟨ℓ x → M1; y → M2⟩ |↑ ⟨ℓ : A⟩ F

Typing contexts Γ ::= ∅ | Γ, x:A | Γ,X :K

Fig. 1. Syntax of Fρ .

3.1 Syntax
Figure 1 defines the syntax of F

ρ
, a statically typed λ-calculus equipped with polymorphism, records,

variants, and a kind system to classify value types and row types. Metavariable X ranges over

type and row variables and K over kinds. Kind T is the kind of value types, and R is that of row

types. We often just say “types” for value types and “rows” for row types. Evaluation contexts F
and typing contexts Γ are defined in a standard manner.

Types and rows. We use A, B, C, and D to mean types and ρ to mean rows. Types are: variables X ;

base types ι; function types A → B; universal types ∀X :K .A, where X is bound in A and it will be

instantiated with inhabitants of K ; record types [ρ]; or variant types ⟨ρ⟩. Rows are variables, the
empty row ·, or extension (ℓ : A; ρ) of row ρ with label ℓ and A. For example, (ℓ1 : int; ℓ2 : bool; ·) is
a row type having two fields, ℓ1 with int and ℓ2 with bool. Record type [ℓ1 : int; ℓ2 : bool; ·] is given
to records that hold an integer value accessed by ℓ1 and a Boolean value accessed by ℓ2. Variant
type ⟨ℓ1 : int; ℓ2 : bool; ·⟩ is given to an integer value tagged with ℓ1 or a Boolean value tagged

with ℓ2. Types and rows are not distinguished by the syntax; they are by the kind system given in

Section 3.3.

We make a remark on scoped (i.e., duplicate) labels. For example, scoped labels allow row type

(ℓ : int; ℓ :bool; ·) though the same label ℓ occurs twice there. Scoped labels make row polymorphism

easy to use. For example, let us consider a function that removes field ℓ1 :A from a given record and

instead appends field ℓ2 : B to it. A promising type of that function would be ∀X :R. [ℓ1 : A;X ] →
[ℓ2 : B;X ], and, indeed, F

ρ
would allow it to have that type. Similarly, a function that handles only

the case that a given variant is tagged with label ℓ1 would be able to have type ∀X :R. ⟨ℓ1 :A;X⟩ → B

for some type B. These type representations are acceptable thanks to scoped labels. In other words,

if labels in F
ρ
were not scoped (i.e., had to be unique in a row), F

ρ
would not allow such type

representations because row variable X may be instantiated with a row including a field with label

ℓ1 or ℓ2.

Terms and values. Terms are ranged over by M . In Figure 1, the first line for terms—i.e., variables

x; constants κ; functions λx:A.M , where x is bound in M; function applications M1 M2; type

abstractions ΛX :K .M , where X is bound in M; and type applications M A—comes from System

F [Reynolds 1974]. The only difference from System F is that type abstractions abstract not only

over value types but also over row types.
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The second line shows operations on records: {} is the empty record; {ℓ = M1;M2} is the

extension of record M2 with M using label ℓ; and record decomposition let {ℓ = x; y} = M1 inM2

decomposes the record ofM1 into a value held by the outermost ℓ field and the rest of the record and
binds x to the value and y to the remaining record inM2. These operations are fundamental enough

to implement the basic operations on records [Cardelli and Mitchell 1991; Leijen 2005]: Extension

just corresponds to the record extension {ℓ = M1;M2}; Restriction, which removes an ℓ field from

a record M , is implemented by let {ℓ = x; y} = M in y; Extraction (written M .ℓ in Section 2),

which extracts the value of an ℓ field from a record M , is by let {ℓ = x; y} = M in x. The notation
{ℓ1 = M1; ... ; ℓn = Mn} used in Section 2 is an abbreviation of {ℓ1 = M1; { ... ; {ℓn = Mn; {}} ... }}.
Terms in the third line are for variants. Injection (ℓM) tags the value ofM with ℓ. Case expression

caseM with ⟨ℓ x → M1; y → M2⟩ (where x and y are bound in M1 and M2 respectively) tests the

variant value of M on ℓ; if it is tagged with ℓ, M1 will be evaluated with binding of x to the

injected value; otherwise, M2 will be evaluated with binding of y to the variant. The last is the

so-called embedding operation [Leijen 2005], tailored to variant types with scoped labels. Embedding

↑ ⟨ℓ : A⟩M embeds the variant value of M into a variant type extended with field ℓ : A. That is,
if M has type ⟨ρ⟩, the type of embedding term ↑ ⟨ℓ : A⟩M is ⟨ℓ : A; ρ⟩. The embedding operation

may seem to be just an operation to enable width subtyping. This is the case if it is sure that ρ
never contains any ℓ field. However, if ρ could contain an ℓ field—this includes the case that ρ ends

with a row variable because it may be instantiated with a row holding an ℓ field—it is not the case.
In such a case, the embedding operation works as inserting a dummy field with label ℓ, and the

label ℓ attached by the embedding operation does not match with the label ℓ in a case expression.

Instead, the case expression peels off the label given by the embedding operation. For instance, case

expression case ↑ ⟨ℓ : A⟩ (ℓM)with ⟨ℓ x → M1; y → M2⟩ will be reduced to M2 with binding of y

to the value of (ℓM). The embedding operation is useful especially to align variant types containing

row variables. For example, suppose that an expression M has type ⟨X⟩ and consider writing a

program that returns M if some condition M
′
holds and, otherwise, returns ℓ 0. We can make such

a program acceptable using the embedding operation:

if M ′ then ↑ ⟨ℓ : int⟩M else (ℓ 0).

Without the embedding operation, the program would be rejected because terms of ⟨X⟩ could not

have any variant type including an ℓ field. More practical applications of the embedding operation

can be found in the literature on effects [Biernacki et al. 2018; Leijen 2014].

Values, ranged overw , are constants, functions, type abstractions, the empty row, records holding

only values, or variant values. Variant values, ranged over by wℓ
, are values injected with label

ℓ or application of the embedding operation to a variant value with ℓ. Note that injection and

embedding in a variant valuewℓ
shares the same label ℓ.

Notation. We introduce standard notions and notation. The set of type and row variables that

occur free inA is written ftv(A). We define capture-avoiding substitutionM [w/x] (resp.M [A/X ]) of

w (resp. A) for x (resp. X ) inM as usual. We also write A[B/X ] for the capture avoiding substitution

of B for X in A. Filling the hole of evaluation context F with term M is denoted by F [M]. We write

dom (Γ) for the set of variables (both x and X ) bound by Γ. We use similar notation for other syntax

classes throughout the paper.

3.2 Semantics
The semantics of F

ρ
is given by two relations between terms: the reduction rule ⇝s

and the

evaluation relation −→s
, which are defined by the rules in Figure 2.
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Reduction rules M1 ⇝s
M2 Evaluation rule M1 −→

s
M2

κ1 κ2 ⇝s ζ (κ1,κ2) Rs_Const (λx:A.M)w ⇝s
M [w/x] Rs_Beta (ΛX :K .M)A⇝s

M [A/X ] Rs_TyBeta

let {ℓ = x; y} = w inM2 ⇝s
M2 [w1/x,w2/y] (ifw ▷ℓ w1,w2) Rs_Record

↑ ⟨ℓ : A⟩ (wℓ′) ⇝s wℓ′
(if ℓ , ℓ′) Rs_Embed

case (ℓw)with ⟨ℓ x → M1; y → M2⟩ ⇝s
M1 [w/x] Rs_CaseL

case ↑ ⟨ℓ : A⟩ (wℓ)with ⟨ℓ x → M1; y → M2⟩ ⇝s
M2 [w

ℓ/y] Rs_CaseR1

casewℓ′ with ⟨ℓ x → M1; y → M2⟩ ⇝s
M2 [w

ℓ′/y] (if ℓ , ℓ′) Rs_CaseR2

F [M1] −→
s F [M2] (if M1 ⇝s

M2) Es_Red

Fig. 2. Semantics of Fρ .

The reduction rules are shown at the top of Figure 2. The first three rules are standard. Reduction

of constant application κ1 κ2 depends on the denotation mapping ζ , which maps a pair of constants

to the constant corresponding to their denotation. Function and type applications reduce to the

bodies of the abstractions with substitution of the arguments. The rule (Rs_Record) splits a record

valuew intow1, which is associated to ℓ, andw2, which is the result of removingw1 from recordw .

The valuesw1 andw2 are obtained by splitting function ▷ℓ defined as follows.

Definition 1 (Record splitting). w ▷ℓ w1,w2 is defined as follows:

{ℓ = w1;w2} ▷ℓ w1,w2 {ℓ′ = w1;w2} ▷ℓ w21, {ℓ
′ = w1;w22} (if ℓ , ℓ

′
andw2 ▷ℓ w21,w22)

Then, the subsequent term M2 will be executed after substitutingw1 andw2.

The last four reduction rules are for variants. The first is for embedding terms, and it means that

embedding is discarded if a label of an embedding term is different from the one of the variant

valuewℓ
. This is justified by the fact that a variant type ofwℓ

can contain any field other than ℓ
fields and, therefore, only retaining applications of the embedding operation with the same label

ℓ is important. The other rules are for case expressions casewℓ′ with ⟨ℓ x → M1; y → M2⟩. Ifw
ℓ′

is an injection with ℓ, the branch M1 will be evaluated with substitution of the injected value for

x (Rs_CaseL). Ifwℓ′
is an embedding term with ℓ, as explained above, M2 will be evaluated with

substitution of the underlying variant value for y (Rs_CaseR1). If ℓ , ℓ′, M2 will be evaluated

with substitution of the same variant value for y (Rs_CaseR2).

3.3 Type system
As other type systems for row types, the type system of F

ρ
also identifies row types up to reordering

of fields only with distinct labels [Berthomieu and le Moniès de Sagazan 1995; Leijen 2005].

Definition 2 (Type-and-row eqivalence). Type-and-row equivalence A ≡ B is the smallest

congruence relation satisfying the following rule:

ℓ , ℓ′

ℓ : A; ℓ′ : B; ρ ≡ ℓ′ : B; ℓ : A; ρ
Eq_Swap

For example, this definition deems row type (ℓ1 : int; ℓ2 : bool; ρ) equivalent to (ℓ2 : bool; ℓ1 : int; ρ)
if and only if ℓ1 , ℓ2. The restriction on inequality of labels is necessary for type soundness. For

example, a record {ℓ = 0; {ℓ = true; {}}} should not be typed at [ℓ : bool; ℓ : int; ·] because record
decomposition for ℓ extracts the value of the outermost ℓ field.
The type system of F

ρ
is given by three judgments: well-formedness of typing contexts ⊢s Γ,

well-formedness of types Γ ⊢s A : K , and typing judgment Γ ⊢s M : A. The inference rules of

these judgments are in Figure 3 (where trivial well-formedness rules are omitted), and most of
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10 Taro Sekiyama and Atsushi Igarashi

Well-formedness rules (selected) ⊢s Γ Γ ⊢s A : K

⊢s Γ X :K ∈ Γ

Γ ⊢s X : K

WFs_TyVar

Γ,X :K ⊢s A : T

Γ ⊢s ∀X :K .A : T
WFs_Poly

Γ ⊢s ρ : R

Γ ⊢s [ρ] : T
WFs_Record

Γ ⊢s ρ : R

Γ ⊢s ⟨ρ⟩ : T
WFs_Variant

⊢s Γ

Γ ⊢s · : R
WFs_REmp

Γ ⊢s A : T Γ ⊢s ρ : R

Γ ⊢s ℓ : A; ρ : R
WFs_Cons

Typing rules Γ ⊢s M : A

⊢s Γ x:A ∈ Γ

Γ ⊢s x : A

Ts_Var

⊢s Γ

Γ ⊢s κ : ty(κ)
Ts_Const

Γ, x:A ⊢s M : B

Γ ⊢s λx:A.M : A → B

Ts_Lam

Γ ⊢s M1 : A → B Γ ⊢s M2 : A

Γ ⊢s M1M2 : B

Ts_App

Γ,X :K ⊢s M : A

Γ ⊢s ΛX :K .M : ∀X :K .A Ts_TLam

Γ ⊢s M : ∀X :K .A Γ ⊢s B : K

Γ ⊢s M B : A[B/X ]
Ts_TApp

⊢s Γ

Γ ⊢s {} : [·]
Ts_REmp

Γ ⊢s M1 : A Γ ⊢s M2 : [ρ]

Γ ⊢s {ℓ = M1;M2} : [ℓ : A; ρ]
Ts_RExt

Γ ⊢s M1 : [ℓ : A; ρ] Γ, x:A, y:[ρ] ⊢s M2 : B

Γ ⊢s let {ℓ = x; y} = M1 inM2 : B

Ts_RLet

Γ ⊢s M : A Γ ⊢s ρ : R

Γ ⊢s ℓM : ⟨ℓ : A; ρ⟩
Ts_VInj

Γ ⊢s M : ⟨ρ⟩ Γ ⊢s A : T

Γ ⊢s↑ ⟨ℓ : A⟩M : ⟨ℓ : A; ρ⟩
Ts_VLift

Γ ⊢s M : ⟨ℓ : A; ρ⟩ Γ, x:A ⊢s M1 : B Γ, y:⟨ρ⟩ ⊢s M2 : B

Γ ⊢s caseM with ⟨ℓ x → M1; y → M2⟩ : B
Ts_VCase

Γ ⊢s M : A A ≡ B Γ ⊢s B : T

Γ ⊢s M : B

Ts_Eqiv

Fig. 3. The type system of Fρ .

them are standard or easy to understand. We explain only the key rules in what follows. The rules

for well-formedness of types assign kind T to value types and R to row types; the kind of a type

variable is given by a typing context (WFs_TyVar). The type of a constant κ is assigned by function

ty (Ts_Const); we assume that the type respects the denotation of κ. Injection ℓM can be given

any variant type where the first ℓ field has the same type as M . Embedding ↑ ⟨ℓ : A⟩M extends the

variant type of M with field ℓ : A. For case expression caseM with ⟨ℓ x → M1; y → M2⟩, matched

expression M must have a variant type holding an ℓ field and branchesM1 andM2 are typechecked

under the assumptions that x and y are bound to a value injected with ℓ and a variant value

discarding the first ℓ field, respectively. The last rule (Ts_Eqiv) allows reordering of fields with

distinct labels by employing type-and-row equivalence. Thanks to (Ts_Eqiv), the type system

can accept terms like:

λf :∀X :R. [ℓ1 : int;X ] → A.f (ℓ2 : bool; ·) {ℓ2 = true; {ℓ1 = 0; {}}}.

This term would be rejected without (Ts_Eqiv), because f (ℓ2 : bool; ·) requires arguments of

[ℓ1 : int; ℓ2 :bool; ·] but the type of the actual argument {ℓ2 = true; {ℓ1 = 0; {}}} is [ℓ2 :bool; ℓ1 : int; ·],
which is syntactically different from the type required by f (ℓ2 : bool; ·). Type-and-row equivalence

makes these two record types interchangeable and, therefore, the above function application is

accepted by giving [ℓ1 : int; ℓ2 : bool; ·] to the argument record.
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4 CONSISTENCY AND CONSISTENT EQUIVALENCE
This section presents consistency. Consistency for row types allows the dynamic row type to be

interpreted as any row. However, consistency does not consider type-and-row equivalence, which

is problematic when we derive a gradually typed language from F
ρ
with implicit type conversion by

type-and-row equivalence. To resolve the issue on consistency, we introduce consistent equivalence,

which characterizes composition of type-and-row equivalence and consistency.

In this section, we consider gradual types and rows, which are obtained by extending static types

given in Figure 1 with ⋆, which denote the dynamic type or the dynamic row type depending on

contexts.

A,B,C,D, ρ ::= X | ⋆ | ι | A → B | ∀X :K .A | [ρ] | ⟨ρ⟩ | · | ℓ : A; ρ

We show the kind system for the extended types in Section 5.

4.1 Consistency
Consistency ∼ is fundamental to the static aspect of gradual typing and decides possible interaction

between statically typed and dynamically typed code. Usually, it is defined as a binary relation

between types and, intuitively, types are consistent if casts between them could be successful. For

example, statically typed values can be injected to the dynamic type and, conversely, dynamically

typed values could be projected to any type (whether a cast succeeds depends on whether run-time

values can behave as the target type of the cast, though). This is axiomatized by the following rules.

A ∼ ⋆ ⋆ ∼ A

Consistency is also defined so that type constructors are compatible with it. For example, a consis-

tency rule for function types is:

A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

In what follows, we discuss how to extend consistency to deal with row types and universal

types and then give its formal definition. After that, we show issues with consistency in designing

a gradually typed language with it. These issues motivate us to introduce consistent equivalence.

4.1.1 Consistency for row types. A trivial extension of consistency to row types is to allow relating

the dynamic row type to any row type (ρ ∼ ⋆ and⋆ ∼ ρ) and to add the following compatible rules

for the empty row and row extension.

· ∼ ·
A ∼ B ρ1 ∼ ρ2
ℓ : A; ρ1 ∼ ℓ : B; ρ2

These rules make, e.g., (ℓ : int; ·) and (ℓ :⋆; ·) consistent.
While necessary and reasonable, these compatibility rules are not sufficient to contain all pairs

of row types such that casts between them could be successful. The problem is in a case that row

types to be related end with⋆ (i.e., they take the form ℓ1 :A1; ...; ℓn :An;⋆) and they hold field labels
distinct from those of each other. For example, let us consider row types ℓ1 :int;⋆ and ℓ2 :str;⋆where
ℓ1 , ℓ2. While these row types are not consistent only with the above extension of consistency, it

is desirable that they are consistent because casts between record types and between variant types

with these rows could be successful. Casts between record types [ℓ1 : int;⋆] and [ℓ2 : str;⋆] could be
successful because a record value of either of them could hold both ℓ1 and ℓ2 fields. Similarly, casts

between variant types ⟨ℓ1 : int;⋆⟩ and ⟨ℓ2 : str;⋆⟩ could be successful because they accommodate

both of values injected with ℓ1 and ℓ2. It is notable that the assumption that ℓ1 and ℓ2 are distinct
labels is critical here. For example, [ℓ1 : int;⋆] and [ℓ1 : str;⋆] should not be consistent since the

types int and str of their ℓ fields are inconsistent.
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12 Taro Sekiyama and Atsushi Igarashi

The example showing the insufficiency of the simple extension above guides the design of a

new consistency rule for row extension: given consistent row types ρ1 and ρ2, extension of ρ1 with
label ℓ preserves consistency with ρ2 if ρ2 ends with ⋆ and ℓ does not appear in ρ2 . Formally:

ℓ < dom (ρ2) ρ2 ends with ⋆ ρ1 ∼ ρ2

ℓ : A; ρ1 ∼ ρ2
C_ConsL

where dom (ρ2) is the set of the field labels of ρ2. This rule is justified by the intuition that: first, the

occurrence of ⋆ in ρ2 allows assuming that ρ2 could contain a field of ℓ :⋆; and then the ℓ field can

move to the head of ρ2 by type-and-row equivalence since ρ2 is assumed not to have other ℓ fields.
We can apply the same discussion for extension of ρ2 and indeed require consistency to satisfy the

symmetric version of (C_ConsL). Then, row types (ℓ1 : int;⋆) and (ℓ2 : str;⋆) are consistent.

4.1.2 Consistency for universal types. Consistency for universal types in this work follows the

earlier work on polymorphic gradual typing by Igarashi et al. [2017]. Their consistency relates

a universal type not only to another universal type but also to what they call a non-∀ type (i.e.,

a type such that its top type constructor is not ∀). The flexibility of their consistency enables

interaction between statically typed code with polymorphism and dynamically typed code without

polymorphism. For example, in their work, universal type ∀X :T.X → X is consistent with non-∀
type ⋆→ ⋆. Igarashi et al. present a few conditions on non-∀ types to be consistent with universal

types; non-∀ types satisfying the conditions are called quasi-universal types
3
because they are not

actual universal types but could behave as such by casts. We adjust their notion of quasi-universal

types to our setting with row types.

Definition 3 (Quasi-universal types). The predicate QPoly (A) is defined by: QPoly (A) if and
only if (1) A is none of ∀X :K . B, · (the empty row), and ℓ : B; ρ for any X , K , B, ℓ, and ρ; and (2) ⋆
occurs somewhere in A. Type A is a quasi-universal type if and only if QPoly (A).

Then, we introduce a consistency rule

QPoly (A2) X < ftv(A2) A1 ∼ A2

∀X :K .A1 ∼ A2

C_PolyL

and its symmetric version.

We make a remark on other choices of consistency for universal types. Ahmed et al. [2011,

2017] give compatibility instead of consistency. Their compatibility is designed to capture as many

possibly successful casts as possible, and, as a result, it deems even perhaps apparently incompatible

types—e.g., ∀X :T.X → X and int → str—compatible. In return for this great flexibility, their

calculus lacks conservativity over typing of System F, the underlying calculus of their gradually

typed language (i.e., a static typing error found by System F may not be found by their gradual

type system). Another definition of consistency is given by Toro et al. [2019]. Their consistency

relates a universal type only to another universal type and not to any non-∀ type. Their gradually

typed language achieves conservativity over typing of System F, but the strict distinction between

universal types and non-∀ types prevents dynamically typed code, where no type information

appears, from using polymorphic values.

We follow Igarashi et al. [2017] because of its balance between flexibility—it allows dynamically

typed code to use polymorphic values—and strictness—it makes a gradually typed language con-

servative over typing of System F. However, we believe that how to deal with universal types in

consistency is orthogonal to consistency for row types and that we can choose a suitable treatment

depending on cases.

3
Igarashi et al. call such types quasi-polymorphic types, but we use that term for consistent use of terminology.
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4.1.3 Formal definition. Now, we present a formal definition of consistency. We say that a relation

between types is compatible if and only if it is closed under type and row constructors.

Definition 4 (Consistency). Consistency A ∼ B is the smallest compatible symmetric relation

satisfying (1) ⋆ ∼ A for any A, (2) (C_ConsL), and (3) (C_PolyL).

4.1.4 Consistency issues. Consistency does not subsume type-and-row equivalence. Thus, if a

gradually typed language employed consistency directly, it would be combined with type-and-row

equivalence, particularly in the form of composition ≡ ◦ ∼. However, use of that composition gives

rise to two issues, which were first found in the work on gradual typing for subtyping [Siek and

Taha 2007].

The first issue is on typechecking. A typechecking algorithm for a type system using ≡ ◦ ∼ for

type comparison would have to decide whether given two types A and B are in ≡ ◦ ∼. Thus, it

would need to find an intermediate type C such that A ≡ C and C ∼ B. But, how? This issue may

not be as serious as the case of subtyping [Siek and Taha 2007] because ≡ just reorders fields in a

row, but it should be still resolved.

The second issue is more serious: incoherent semantics. For example, let us consider the following

gradually typed term:

M

def

= {ℓ1 = ΛX :K .M1; {ℓ2 = ΛX :K .M2; {}}} : ⋆

where we suppose that ℓ1 and ℓ2 are distinct, M1 is a divergent term, and M2 is a term involving

run-time checking that always fails; ascriptionM
′
: A is a shorthand of (λx:A.x)M ′

. In this example,

the record value is injected into the dynamic type ⋆. In the course of the injection, each field value

would be also injected into ⋆ so that it can be used in dynamically typed code. The problem here

is that (1) under the semantics of earlier polymorphic gradually typed languages [Ahmed et al.

2011, 2017; Igarashi et al. 2017], the evaluation result of M changes depending on which field value

is injected into ⋆ first and (2) the use of ≡ ◦ ∼ prevents determining the order of the injections

to be unique. Let us start with seeing the first observation. In the semantics of earlier work on

polymorphic gradual typing [Ahmed et al. 2011, 2017; Igarashi et al. 2017], injection of the type

abstractions ΛX :K .M1 and ΛX :K .M2 into⋆ reduces to terms containingM1 [⋆/X ] andM2 [⋆/X ] as
redexes, respectively. Thus, if ΛX :K .M1 is injected first, the evaluation result would be divergence

sinceM1 is a divergent term; otherwise, if ΛX :K .M2 is first, the result would be a failure of run-time

checking since M2 contains a failing check. Therefore, in order for the semantics to be coherent,

the order of injections of ΛX :K .M1 and ΛX :K .M2 into⋆ has to be unique. However, a gradual type

system employing ≡ ◦ ∼ could not determine the order to be unique. Why not? In gradual typing,

how to inject values into ⋆ is decided by instances of consistency appearing in a typing derivation.

In the example term M , composition ≡ ◦ ∼ would be used to compare [ℓ1 : ∀X :K .A; ℓ2 : ∀X :K . B; ·]
and⋆ (where A and B are types ofM1 andM2, respectively), and there are two possible instances of

consistency to derive [ℓ1 :∀X :K .A; ℓ2 :∀X :K . B; ·] (≡ ◦ ∼) ⋆: one is [ℓ1 :∀X :K .A; ℓ2 :∀X :K . B; ·] ∼ ⋆
and the other is [ℓ2 : ∀X :K . B; ℓ1 : ∀X :K .A; ·] ∼ ⋆. If a typing derivation with the former instance is

given, ΛX :K .M1 would be injected into ⋆ first; otherwise, if one with the latter instance is given,

ΛX :K .M2 would be first—thus, the evaluation result ofM depends on which consistency instance a

given typing derivation has. Although we might be able to design coherent semantics with respect

to choice of consistency instances, we take another approach, consistent equivalence, which seems

more standard in gradual typing [Siek and Taha 2007; Xie et al. 2018].

4.2 Consistent equivalence
To resolve the issues on consistency, we give consistent equivalence ≃, which characterizes com-

position of consistency and type-and-row equivalence. Our idea is to extend the consistency rule
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(C_ConsL) for row extension in such a way as to take into account when a label used for extension

on the left-hand side does and does not appear in a row on the right-hand side. (The rule (C_ConsL)

in Section 4.1.1 handles only the latter case.) A promising rule that handles only the former case is:

ρ2 ≡ ℓ : B; ρ
′
2

A ≃ B ρ1 ∼ ρ ′
2

ℓ : A; ρ1 ≃ ρ2

We merge this rule and (C_ConsL) into a single rule as follows. First, we split ρ2 into the first

field labeled with ℓ and the remaining row; these field and row correspond to ℓ : B and ρ ′
2
in the

rule above, respectively. Even in the case that ρ2 includes no field labeled with ℓ, if ρ2 ends with ⋆,
then we can suppose that ρ2 includes a ℓ field because the dynamic row type can be supposed to

be any row. Since we cannot know what type such a missing ℓ field has, we regard the type as ⋆
conservatively. Finally, we check consistency between A and the type of the ℓ field extracted from

ρ2 and between ρ1 and the remaining row.

The idea above is formalized by the following consistent equivalence rule, which subsumes even

the compatibility rule for row extension (shown in the beginning of Section 4.1.1):

ρ2 ▷ℓ B, ρ ′
2

A ≃ B ρ1 ≃ ρ ′
2

ℓ : A; ρ1 ≃ ρ2
CE_ConsL

where ρ1 ▷ℓ A, ρ2 is a formalization of the “split” operation on row types, defined as follows.

Definition 5 (Row splitting). Row splitting ρ1 ▷ℓ A, ρ2 is defined as follows.

⋆ ▷ℓ ⋆,⋆ ℓ : A; ρ ▷ℓ A, ρ ℓ′ : B; ρ1 ▷ℓ A, (ℓ′ : B; ρ2) (if ℓ , ℓ′ and ρ1 ▷ℓ A, ρ2)

Definition 6 (Consistent eqivalence). Consistent equivalenceA ≃ B is the smallest compatible

symmetric relation satisfying (1) ⋆ ≃ A for any A, (2) (CE_ConsL), and (3) the rule of the same form

as (C_PolyL).

We can confirm that consistent equivalence subsumes both consistency and type-and-row

equivalence by examples. For example, ℓ1 : int;⋆ ≃ ℓ2 : str;⋆ and (ℓ1 :A; ℓ2 :B; ·) ≃ (ℓ2 :B; ℓ1 :A; ·) are
derivable if ℓ1 , ℓ2. More generally, it subsumes the composition of consistency and type-and-row

equivalence. We can show (and indeed have shown) that ≃ coincides with ≡ ◦ ∼, but, following

Xie et al. [2018], we prove another form of equivalence between ≃ and combination of ≡ and ∼; the

statement in this form expects us to incorporate implicit higher-order polymorphism easily.

Theorem 4.1. A ≃ B if and only if A ≡ A
′
and A

′ ∼ B
′
and B

′ ≡ B for some A
′
and B

′
.

We can develop a row-polymorphic gradually typed language easily by using consistent equiv-

alence (we give it in the supplementary material). The language does not rest on consistency

and, therefore, does not cause the issues on typechecking nor semantics raised by consistency. A

typechecking algorithm for that language does not need to infer an intermediate type because it is

enough to check if given two types are in a single relation, consistent equivalence. At first glance,

one might consider that it is problematic that consistent equivalence is not syntax-directed. For

example, when we would like to show (ℓ1 : A; ℓ2 : B; ·) ≃ (ℓ2 : B; ℓ1 : A; ·), it may appear unclear

which rule of (CE_ConsL) and its symmetric version should be applied first. Fortunately, either

is fine, which is shown by the following inversion lemma together with symmetry of consistent

equivalence.

Lemma 4.2. If ℓ : A; ρ1 ≃ ρ2, then ρ2 ▷ℓ B, ρ ′
2
and A ≃ B and ρ1 ≃ ρ ′

2
.

For semantics, use of consistent equivalence makes the typing rules syntax-directed and, therefore,

derivations for a typing judgment and instances of consistent equivalence appearing there are

determined uniquely.

, Vol. 1, No. 1, Article . Publication date: November 2019.



Gradual Typing for Extensibility by Rows 15

Blame labels p, q Type-and-row names α Conversion labels Φ ::= +α | −α
Types and rows A,B,C,D, ρ ::= X | α | ⋆ | ι | A → B | ∀X :K .A | [ρ] | ⟨ρ⟩ | · | ℓ : A; ρ
Ground types G,H ::= α | ι | ⋆→ ⋆ | [⋆] | ⟨⋆⟩

Ground row types γ ::= α | · | ℓ :⋆;⋆

Terms e ::= x | κ | λx:A.e | e1 e2 | ΛX :K .e :: A | e A |

{} | {ℓ = e1; e2} | let {ℓ = x; y} = e1 in e2 |

ℓ e | case ewith ⟨ℓ x → e1; y → e2⟩ |↑ ⟨ℓ : A⟩ e |

e : A

p

⇒ B | e : A
Φ
⇒ B | blame p

Values v ::= κ | λx:A.e | ΛX :K .e :: A | {} | {ℓ = v1; v2} | ℓ v |↑ ⟨ℓ : A⟩ v |

v : G

p

⇒ ⋆ | v : [γ ]
p

⇒ [⋆] | v : ⟨γ ⟩
p

⇒ ⟨⋆⟩ |

v : A

−α
⇒ α | v : [ρ]

−α
⇒ [α] | v : ⟨ρ⟩

−α
⇒ ⟨α⟩

Evaluation contexts E ::= ... | E : A

p

⇒ B | E : A

Φ
⇒ B Name stores Σ ::= ∅ | Σ,α :K := A

Fig. 4. Syntax of FρC.

5 BLAME CALCULUS FρC
This section defines a polymorphic blame calculus F

ρ
C
equipped with row types, record and variant

types, and row polymorphism. As earlier polymorphic blame calculi [Ahmed et al. 2011, 2017;

Igarashi et al. 2017; Toro et al. 2019], our calculus is designed so that parametricity holds. In fact,

our calculus is a variant of λB by Ahmed et al. [2017], but it differs from λB in two points. First, the

behavior of casts for universal types follow Igarashi et al. [2017]. Second, more importantly, F
ρ
C

deals with casts for record and variant types. In what follows, after defining the syntax, we show

the type system of F
ρ
C
and then present the semantics.

5.1 Syntax
The syntax of F

ρ
C
is presented in Figure 4, where the parts overlapping with that of F

ρ
are displayed

in gray. To explain some extended parts, we first review run-time enforcement of parametricity by

Ahmed et al. [2011, 2017]. After that, we detail the extended syntax of F
ρ
C
.

5.1.1 Run-time enforcement of parametricity. Ahmed et al. [2011] found that type application with

normal substitution-based semantics breaks parametricity. To recover parametricity in gradual

typing, Ahmed et al. [2017] give a semantics that type application (ΛX :T. e)A generates a fresh type

name α and substitutes α for X in e, where type name α works like an abstract, “fresh base type”: if

a value of type α is injected to the dynamic type, the resulting value can be projected successfully

only to α and projection to other types always fails. While abstract inside e, α should be visible as A

outside e. Ahmed et al. [2017] control such revelation and concealment of actual type information

A of α by explicit type conversion. With a global store mapping α to A, conversion e : B

+α
⇒ C reveals

actual type A of α in type B of term e. By contrast, conversion e : B

−α
⇒ C conceals A in B by α .

Type C is the result of the revelation or concealment. For example, let us consider type application

of Idint
def

= ΛX :T. λx:X .(x : ⋆) : int which would otherwise break parametricity. In Ahmed et al.’s

semantics, application Idint Av (where v is a value of A) is evaluated as follows:

Idint Av −→ ((λx:X .(x : ⋆) : int)[α/X ] : α → int
+α
⇒ A → int) v

−→∗ ((x : ⋆) : int)[v : A

−α
⇒ α/x] : int

+α
⇒ int

= (((v : A

−α
⇒ α) : ⋆) : int) : int

+α
⇒ int.
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The type application generates a fresh type name α , substitutes it for bound type variable X , and

reveals A to the outside (here, function application to v) by conversion α → int
+α
⇒ A → int.

Applied to argument v, the conversion conceals the type A of v by α , as v : A

−α
⇒ α , and passes

the abstracted value to the original function λx:α .(x : ⋆) : int (reduction from the first to the

second line). From the result in the third line, we can find that it will be tested if v : A

−α
⇒ α is

an integer value. Since type name α works like a fresh base type and matches only with α itself,

that test will fail whatever A is–even if A = int. Therefore, Idint behaves uniformly—raises an

exception—whatever type is substituted for X . Our blame calculus F
ρ
C
applies this idea for row

parametricity as well.

5.1.2 The extended syntax of FρC. Types and rows are augmented with type-and-row names, ranged

over by α . Ground types, ranged over by G and H , are type tags given to a value injected to the

dynamic type. Similarly, ground row types, ranged over by γ , are row tags given to a row injected

to the dynamic row type, being a row name, the empty row, or a row extension of the form ℓ :⋆;⋆.

Terms, ranged over by e, have three additional constructors. A cast e : A

p

⇒ B between

consistently equivalent types A and B checks if the value of e can behave as B at run time. Blame

label p represents the location of the cast. A conversion e : A

Φ
⇒ B with conversion label Φ conceals

or reveals type information by the type name of Φ. Blame “blame p” is an (uncatchable) exception

indicating failure of a cast with p. We write e : A

p

⇒ B

q

⇒ C for (e : A

p

⇒ B) : B
q

⇒ C and

e : A

Φ1

⇒ B

Φ2

⇒ C for (e : A
Φ1

⇒ B) : B
Φ2

⇒ C. Evaluation contexts, ranged over by E, are also extended

with casts and conversions. Type abstraction ΛX :K .e :: A is augmented with the type A of e.

Values, ranged over by v, have six additional constructors: the first three values are injections

into ⋆, [⋆], and ⟨⋆⟩ with tag G, [γ ], and ⟨γ ⟩, respectively. The next three values are conversions
that conceal A or ρ by α .
It is notable that embedding ↑ ⟨ℓ : A⟩ v is a value even if embedded value v is injection ℓ′ v ′

where ℓ′ , ℓ, while in F
ρ ℓ and ℓ′ have to be the same in order for the embedding term to be a

value. This is because we would like to make the type system of F
ρ
C
syntax-directed and, for that,

we drop the implicit type conversion rule (Ts_Eqiv) from F
ρ
C
. Thus, for example, injection ℓ v can

be given type ⟨ℓ : A; ℓ′ : B; ·⟩ but cannot be given ⟨ℓ′ : B; ℓ : A; ·⟩ in F
ρ
C
. In order to embed ℓ v into

⟨ℓ′ : B; ℓ : A; ·⟩, we use embedding: embedding value ↑ ⟨ℓ′ : B⟩ (ℓ v) can have type ⟨ℓ′ : B; ℓ : A; ·⟩.
Conversely, if the type of value v is a variant type ⟨ℓ : A; ρ⟩, then v must be either an injection

value ℓ v ′ or an embedding value ↑ ⟨ℓ : A⟩ v ′ for some v
′
. Thus, the embedding operation is not

only useful to make variant types easy to use in the setting with row polymorphism—this motivates

Leijen [2005] to introduce the embedding operation—but also crucial to make a type system for

variant types syntax-directed.

Name stores, ranged over by Σ, bind names generated during evaluation to their actual types

or rows. We suppose that names bound by Σ are unique. We write Σ(α) = A if and only if

α :K := A ∈ Σ.

5.2 Type system
The type system of F

ρ
C
also has three judgments taking forms augmented with Σ: well-formedness

judgments for typing contexts Σ ⊢ Γ and for types Σ; Γ ⊢ A : K , and typing judgment Σ; Γ ⊢ e : A.

Most of the inference rules of these judgments are similar to those of F
ρ
except for three points.

First, the inference rules are also augmented with Σ. Second, new rules for the dynamic type, type-

and-row names, casts, conversions, and blame are added and the typing rule for type abstractions is

adapted for change of syntax; these rules are shown in Figure 5. Third, the implicit type conversion

, Vol. 1, No. 1, Article . Publication date: November 2019.



Gradual Typing for Extensibility by Rows 17

Convertible rules Σ ⊢ A ≺Φ
B

name(Φ) , α

Σ ⊢ α ≺Φ α
Cv_TyName

Σ(α) = A

Σ ⊢ α ≺+α A

Cv_Reveal

Σ(α) = A

Σ ⊢ A ≺−α α
Cv_Conceal

Σ ⊢ A2 ≺Φ
A1 Σ ⊢ B1 ≺Φ

B2

Σ ⊢ A1 → B1 ≺Φ
A2 → B2

Cv_Fun

Well-formedness rules for types and rows Σ; Γ ⊢ A : K

Σ ⊢ Γ α :K := A ∈ Σ

Σ; Γ ⊢ α : K

WF_TyName

Σ ⊢ Γ

Σ; Γ ⊢ ⋆ : K

WF_Dyn

Typing rules Σ; Γ ⊢ e : A

Σ; Γ,X :K ⊢ e : A

Σ; Γ ⊢ ΛX :K .e :: A : ∀X :K .A T_TLam

Σ; Γ ⊢ A : T

Σ; Γ ⊢ blame p : A

T_Blame

Σ; Γ ⊢ e : A Σ; Γ ⊢ B : T A ≃ B

Σ; Γ ⊢ e : A
p

⇒ B : B

T_Cast

Σ ⊢ Γ Σ; ∅ ⊢ e : A Σ; ∅ ⊢ B : T Σ ⊢ A ≺Φ
B

Σ; Γ ⊢ e : A
Φ
⇒ B : B

T_Conv

Fig. 5. The type system of FρC (selected rules).

rule (Ts_Eqiv) with type-and-row equivalence is dropped and field reordering is covered by casts.

Hence, the inference rules of F
ρ
C
are syntax-directed. Figure 5 shows only key rules, and the other

rules have the same forms as those of F
ρ
; interested readers can find the complete definition of the

type system in the supplementary material.

There are two additional well-formedness rules for names and the dynamic type. The dynamic

type ⋆ can be used as both the dynamic value type and the dynamic row type (WF_Dyn). A

type-and-row name is given kind K assigned by Σ (WF_TyName).

New typing rules are added for new constructors. Types in a cast have to be consistently

equivalent. A conversion e : A

Φ
⇒ B converts type A of e to type B by revealing type information

Σ(α) of α in A if Φ = +α , or concealing it if Φ = −α . This idea is formalized by convertibility

Σ ⊢ A ≺Φ
B, which means that, if Φ = +α , B is obtained by substituting Σ(α) for α in A and that, if

Φ = −α , A is obtained by substituting Σ(α) for α in B. Convertibility is the smallest relation such

that (1) it satisfies the rules given at the top of Figure 5 and (2) it is closed under type and row

constructors other than names and function types. The convertibility rules use two operations on

Φ: name(Φ) returns the name of Φ, i.e., name(+α)
def

= name(−α)
def

= α ; Φ is the negation of Φ, i.e.,

+α
def

= −α and −α
def

= +α . The rules (Cv_Reveal) and (Cv_Conceal) reflect the above intuition of

convertibility. The rule (Cv_TyName) means that type information of name(Φ)must be revealed or

concealed. The rule (Cv_Fun) means that convertibility is contravariant on argument types with

the negated Φ and covariant on return types with Φ.

5.3 Semantics
The semantics of F

ρ
C
consists of two relations: the reduction relation e1 ⇝ e2, which handles basic

computation irrelevant to name stores, and the evaluation relation Σ1 | e1 −→ Σ2 | e2, which

reduces a subterm, lifts blame, or handles type application with name generation.
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Reduction rules e1 ⇝ e2

κ1 κ2 ⇝ ζ (κ1,κ2) R_Const (λx:A.e) v ⇝ e[v/x] R_Beta

let {ℓ = x; y} = {ℓ = v1; v2} in e2 ⇝ e[v1/x, v2/y] R_Record

case (ℓ v)with ⟨ℓ x → e1; y → e2⟩ ⇝ e1[v/x] R_CaseL

case ↑ ⟨ℓ : A⟩ vwith ⟨ℓ x → e1; y → e2⟩ ⇝ e2[v/y] R_CaseR

v : A

p

⇒ A ⇝ v (if A = ⋆, ι, or α ) R_Id

v : A

p

⇒ ⋆ ⇝ v : A

p

⇒ G

p

⇒ ⋆ R_ToDyn

(if A ≃ G and A , G and A , ⋆ and A , ∀X :K . B)
v : ⋆

p

⇒ A ⇝ v : ⋆
p

⇒ G

p

⇒ A R_FromDyn

(if A ≃ G and A , G and A , ⋆ and A , ∀X :K . B)
v : G

p

⇒ ⋆
q

⇒ G ⇝ v R_Ground v : G

p

⇒ ⋆
q

⇒ H ⇝ blame q (if G , H ) R_Blame

v : A1 → B1

p

⇒ A2 → B2 ⇝ λx:A2.v (x : A2

p

⇒ A1) : B1
p

⇒ B2 R_Wrap

v : ∀X :K .A1

p

⇒ ∀X :K .A2 ⇝ ΛX :K .(v X : A1

p

⇒ A2) :: A2 R_Content

v : ∀X :K .A p

⇒ B ⇝ (v⋆) : A[⋆/X ]
p

⇒ B (if QPoly (B)) R_Inst

v : A

p

⇒ ∀X :K . B ⇝ ΛX :K .(v : A

p

⇒ B) :: B (if QPoly (A)) R_Gen

v : A

−α
⇒ B

+α
⇒ A⇝ v (if (1) B = α ; (2) B = [α] and A = [ρ]; or (3) B = ⟨α⟩ and A = ⟨ρ⟩) R_CName

v : A

Φ
⇒ A⇝ v (if A = ⋆, α , ι, [⋆], [α], [·], ⟨⋆⟩, or ⟨α⟩ for α , name(Φ)) R_CId

v : A1 → B1

Φ
⇒ A2 → B2 ⇝ λx:A2.v (x : A2

Φ
⇒ A1) : B1

Φ
⇒ B2 R_CFun

v : ∀X :K .A1

Φ
⇒ ∀X :K .A2 ⇝ ΛX :K .(v X : A1

Φ
⇒ A2) :: A2 R_CForall

v : [ℓ : A; ρ1]
Φ
⇒ [ℓ : B; ρ2]⇝ let {ℓ = x; y} = v in {ℓ = x : A

Φ
⇒ B; y : [ρ1]

Φ
⇒ [ρ2]} R_CRExt

v : ⟨ℓ : A; ρ1⟩
Φ
⇒ ⟨ℓ : B; ρ2⟩ ⇝ case vwith ⟨ℓ x → ℓ (x : A

Φ
⇒ B); y →↑⟨ℓ : B⟩ (y : ⟨ρ1⟩

Φ
⇒ ⟨ρ2⟩)⟩ R_CVar

Fig. 6. Reduction rules of FρC except casts for record and variant types.

5.3.1 Reduction except cast for records and variants. The reduction rules except cast for record and

variant types are shown in Figure 6. Most of the reduction rules for casts and conversions there

come from Ahmed et al. [2017]. Cast semantics for universal types follows Igarashi et al. [2017].

The first five rules are for function application, record decomposition, and case matching. The

rule (R_Record) for record decomposition assumes that the first field label of a record matches

with the pattern label, while the reduction rule (Rs_Record) of F
ρ
does not assume that and looks

for the ℓ field from a record. This assumption is valid in F
ρ
C
because F

ρ
C
reorders the record fields

by casts so that the static assumption of (T_Record)—the first field of a decomposed record has

the same label as the pattern—is ensured even at run time. Similarly, the rules (R_CaseL) and

(R_CaseR) for case matching also assume that a matched term has the same label as the pattern.

For variants, instead of field reordering, applications of the embedding operation are inserted.

Casts (except for record and variant types) behave as follows. Casts where both sides are the

dynamic type, a base type, or a type name behave as identity functions. If a value of A is injected

to the dynamic type, it is tagged with ground type G consistently equivalent to A (R_ToDyn).

Conversely, if a value of ⋆ is projected to A, it will be checked if the injected value is tagged with

G consistently equivalent to A (R_FromDyn). If the check succeeds, the projection returns the

injected value (R_Ground); otherwise, it raises an exception (R_Blame). Casts between function

types and between universal types produce a wrapper of a given value by decomposing the types.
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Cast rules for records e1 ⇝ e2

v : [ρ]
p

⇒ [ρ] ⇝ v (if ρ = · or α ) R_RId

v : [ρ]
p

⇒ [⋆] ⇝ v : [ρ]
p

⇒ [grow(ρ)]
p

⇒ [⋆] (if ρ , grow(ρ)) R_RToDyn

v : [γ ]
p

⇒ [⋆]
q

⇒ [ρ] ⇝ v : [γ ]
q

⇒ [ρ] (if γ ≃ ρ) R_RFromDyn

v : [γ ]
p

⇒ [⋆]
q

⇒ [ρ] ⇝ blame q (if γ ; ρ) R_RBlame

v : [ρ1]
p

⇒ [ℓ : B; ρ2] ⇝ {ℓ = (v1 : A
p

⇒ B); v2 : [ρ
′
1
]

p

⇒ [ρ2]} (if v ▷ℓ v1, v2 and ρ1 ▷ℓ A, ρ ′
1
) R_RRev

v : [ρ1]
p

⇒ [ℓ : B; ρ2] ⇝ v : [ρ1]
p

⇒ [ρ1 @ ℓ : B]
p

⇒ [ℓ : B; ρ2] (if ℓ < dom (ρ1) and ρ1 , ⋆) R_RCon

Fig. 7. Reduction rules for casts between record types.

Casts from a quasi-universal type to a universal type also produces a wrapper (R_Gen). Casts from

a universal type to a quasi-universal type apply a given type abstraction to ⋆ (R_Inst).

The last six rules are for conversions. Revealing the concealed type A (or ρ) of a value reduces to
the value itself (R_CName). If types in a conversion take the same “atomic” form, it is just like an

identity function (R_CId). If types in a conversion are not atomic, a new term is constructed by

decomposing a given value and applying conversion with the type subcomponents to the result.

5.3.2 Cast reduction for records. The reduction rules for record casts are given in Figure 7.

If record types in a cast are the same and their rows are the empty row or a row name, the cast

behaves as an identity function (R_RId).

If a record of type [ρ] is injected into the record type [⋆], it is tagged with a ground row

type consistently equivalent to ρ (R_RToDyn). However, such a ground row type is not always

determined uniquely especially if ρ is a row extension. For example, row extension (ℓ : A;⋆) is
consistently equivalent to any ground row type of the form (ℓ′ : ⋆;⋆). We find a ground row

type from ρ by using function grow, which is defined as follows: grow(·)
def

= ·; grow(α)
def

= α ; and

grow(ℓ : A; ρ)
def

= ℓ :⋆;⋆. If ρ = grow(ρ), term v : [ρ]
p

⇒ [⋆] is a value, not needed to reduce.

If the type of a record to be cast is [⋆], then the record can be supposed to be tagged with a

ground row type γ . If γ is consistently equivalent to the target type ρ of a cast, the cast reduces

to another cast from γ to ρ (R_RFromDyn); otherwise, if γ is not consistently equivalent to ρ, an

exception is raised (R_RBlame). Note that a cast v : [⋆]
p

⇒ [⋆] is handled by (R_RFromDyn). One

might consider why reduction of cast v : [⋆]
p

⇒ [ρ] is not defined as (R_FromDyn) in Figure 6,

that is, the reduction does not proceed as the cast first reduces to v : [⋆]
p

⇒ [grow(ρ)]
p

⇒ [ρ]
and then tests equality of grow(ρ) and the ground row type γ attached to v. We do not give such

reduction because a ground row type of ρ may not be determined to be unique and, therefore,

equality test of grow(ρ) and γ may fail even if the record v can behave as grow(ρ). For example, if

ρ = (ℓ1 : A; ℓ2 : B; ·) and the ground row type γ attached to v is ℓ2 :⋆;⋆, then grow(ρ) = ℓ1 :⋆;⋆ is

different from γ (if ℓ1 , ℓ2), but the record v may hold both of fields labeled with ℓ1 and ℓ2. Instead
of syntactic equality, use of consistent equivalence for comparison of grow(ρ) and γ might work

better; indeed, the cast semantics given by (R_RFromDyn) uses this approach.

The other cast reduction rules (R_RRev) and (R_RCon) are applied to a cast v : [ρ1]
p

⇒ [ℓ :B; ρ2]
which tests whether record v of type [ρ1] has an ℓ field and, if so, whether the value of the ℓ field
and the other fields can behave as B and ρ2, respectively. The rule (R_RRev) handles the case that
the source row type ρ1 holds an ℓ field. In this case, and only in this case, we can find the value v1

of the ℓ field from record v by record splitting v ▷ℓ v1, v2, where v2 is the result of removing v1
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from v. The record splitting on v is defined as Definition 1. Row splitting ρ1 ▷ℓ A, ρ ′
1
returns the

type A of v1 and the row type ρ ′
1
for the fields of v2. As a result, the cast reduces to a record value

composed of an ℓ field holding v1 : A

p

⇒ B and record v2 : [ρ
′
1
]

p

⇒ [ρ2]. If an ℓ field is not found in

ρ1 (i.e., ℓ < dom (ρ1)), the rule (R_RCon) is applied. In this case, we can find that ρ1 ends with ⋆
since ℓ < dom (ρ1) but ρ1 should be consistently equivalent with ℓ : B; ρ2. Thus, v may hold an ℓ
field in the part hidden by ⋆. The reduction result tests it by the cast from [ρ1] to [ρ1 @ ℓ : B]. The
row type ρ1 @ ℓ : B is the same as ρ1 except that ℓ : B is added as the last field. Formally, ρ @ ℓ : A
is defined as follows.

Definition 7 (Field postpending). Field postpending ρ @ ℓ : A is defined as follows:

(ℓ′ : B; ρ) @ ℓ : A
def

= ℓ′ : B; (ρ @ ℓ : A) ⋆@ ℓ : A
def

= ℓ : A;⋆

Note that we can assume that ρ1 ends with ⋆ and, therefore, ρ1 @ ℓ : B is well defined if the

reduced term is well typed. If record v holds an ℓ field and its value can behave as type B, then the

subsequent cast from [ρ1 @ ℓ : B] to [ℓ : B; ρ2] will test if the other fields of v can behave as ρ2.

Examples. Let us consider a few examples of reduction. In what follows, we shade subterms to

be reduced and underline their reduction results.

First, cast {ℓ1 = 0; {ℓ2 = true; {}}} : [ℓ1 : int; ℓ2 : bool; ·]
p

⇒ [⋆] reduces as follows:

{ℓ1 = 0; {ℓ2 = true; {}}} : [ℓ1 : int; ℓ2 : bool; ·]
p

⇒ [⋆]

−→ {ℓ1 = 0; {ℓ2 = true; {}}} : [ℓ1 : int; ℓ2 : bool; ·]
p

⇒ [ℓ1 :⋆;⋆]
p

⇒ [⋆]

−→ {ℓ1 = 0 : int
p

⇒ ⋆; {ℓ2 = true; {}} : [ℓ2 : bool; ·]
p

⇒ [⋆]} : [ℓ1 :⋆;⋆]
p

⇒ [⋆]

−→ {ℓ1 = 0 : int
p

⇒ ⋆; {ℓ2 = true; {}} : [ℓ2 : bool; ·]
p

⇒ [ℓ2 :⋆;⋆]
p

⇒ [⋆]} : [ℓ1 :⋆;⋆]
p

⇒ [⋆]

−→ {ℓ1 = 0 : int
p

⇒ ⋆; {ℓ2 = true : bool
p

⇒ ⋆; {} : [·]
p

⇒ [⋆]} : [ℓ2 :⋆;⋆]
p

⇒ [⋆]} : [ℓ1 :⋆;⋆]
p

⇒ [⋆]

where a term in an odd-numbered line reduces by (R_RToDyn) and one in an even-numbered line

by (R_RRev).

In order to access to an ℓ field of the above reduction result, we have to project it to, e.g., record

type [ℓ : A;⋆]. The result can be written v : [ℓ1 :⋆;⋆]
p

⇒ [⋆] where

v
′ def

= {ℓ2 = true : bool
p

⇒ ⋆; {} : [·]
p

⇒ [⋆]} v

def

= {ℓ1 = 0 : int
p

⇒ ⋆; v ′ : [ℓ2 :⋆;⋆]
p

⇒ [⋆]}.

Then, v : [ℓ1 :⋆;⋆]
p

⇒ [⋆]
q

⇒ [ℓ : A;⋆] −→ v : [ℓ1 :⋆;⋆]
q

⇒ [ℓ : A;⋆] by (R_RFromDyn).

If ℓ = ℓ1, then the result reduces to:

{ℓ1 = 0 : int
p

⇒ ⋆
q

⇒ A; v
′
: [ℓ2 :⋆;⋆]

p

⇒ [⋆]
q

⇒ [⋆]}

by (R_RRev). Thus, if A = int, we can extract the integer value held by the ℓ1 field in v. Otherwise,

if A , int, an exception blame q will be raised.

Let us return to reduction of v : [ℓ1 :⋆;⋆]
q

⇒ [ℓ : A;⋆]. If ℓ , ℓ1, then:

v : [ℓ1 :⋆;⋆]
q

⇒ [ℓ : A;⋆]

−→ v : [ℓ1 :⋆;⋆]
q

⇒ [ℓ1 :⋆; ℓ : A;⋆]
q

⇒ [ℓ : A;⋆] (R_RCon)

−→∗{ℓ1 = 0 : int
p

⇒ ⋆; v ′ : [ℓ2 :⋆;⋆]
p

⇒ [⋆]
q

⇒ [ℓ : A;⋆]} : [ℓ1 :⋆; ℓ : A;⋆]
q

⇒ [ℓ : A;⋆]

−→ {ℓ1 = 0 : int
p

⇒ ⋆; v ′ : [ℓ2 :⋆;⋆]
q

⇒ [ℓ : A;⋆]} : [ℓ1 :⋆; ℓ : A;⋆]
q

⇒ [ℓ : A;⋆] (R_RFromDyn).

As in the case of ℓ = ℓ1, if ℓ = ℓ2 and A = bool, we can extract the Boolean value held by the ℓ2
field in v; if ℓ = ℓ2 but A , bool, an exception blame q will be raised. If ℓ , ℓ2, the last shaded
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Cast and conversion reduction rules for variants e1 ⇝ e2

v : ⟨α⟩
p

⇒ ⟨α⟩ ⇝ v R_VIdName

v : ⟨ρ⟩
p

⇒ ⟨⋆⟩ ⇝ v : ⟨ρ⟩
p

⇒ ⟨grow(ρ)⟩
p

⇒ ⟨⋆⟩ (if ρ , grow(ρ)) R_VToDyn

v : ⟨γ ⟩
p

⇒ ⟨⋆⟩
q

⇒ ⟨ρ⟩ ⇝ v : ⟨γ ⟩
q

⇒ ⟨ρ⟩ (if γ ≃ ρ) R_VFromDyn

v : ⟨γ ⟩
p

⇒ ⟨⋆⟩
q

⇒ ⟨ρ⟩ ⇝ blame q (if γ ; ρ) R_VBlame

(ℓ v) : ⟨ℓ : A; ρ1⟩
p

⇒ ⟨ρ2⟩ ⇝ ↑ρ21 (ℓ (v : A

p

⇒ B))
R_VRevInj

(if ρ2 = ρ21 ⊙ (ℓ : B; ·) ⊙ ρ22 and ℓ < dom (ρ21))

(↑ ⟨ℓ : A⟩ v) : ⟨ℓ : A; ρ1⟩
p

⇒ ⟨ρ2⟩ ⇝ ↓
ρ21
⟨ℓ:B⟩

(v : ⟨ρ1⟩
p

⇒ ⟨ρ21 ⊙ ρ22⟩)
R_VRevLift

(if ρ2 = ρ21 ⊙ (ℓ : B; ·) ⊙ ρ22 and ℓ < dom (ρ21))

(ℓ v) : ⟨ℓ : A; ρ1⟩
p

⇒ ⟨ρ2⟩ ⇝ ↑ρ2 (ℓ v : ⟨ℓ : A;⋆⟩
p

⇒ ⟨⋆⟩)
R_VConInj

(if ℓ < dom (ρ2) and ρ2 , ⋆)

(↑ ⟨ℓ : A⟩ v) : ⟨ℓ : A; ρ1⟩
p

⇒ ⟨ρ2⟩ ⇝ R_VConLift

( ↓
ρ2
⟨ℓ:A⟩

(v : ⟨ρ1⟩
p

⇒ ⟨ρ2⟩)) : ⟨ρ2 @ ℓ : A⟩
p

⇒ ⟨ρ2⟩ (if ℓ < dom (ρ2) and ρ2 , ⋆)

Fig. 8. Reduction rules for casts between variant types.

part in turn evaluates to:

v
′
: [ℓ2 :⋆;⋆]

q

⇒ [ℓ2 :⋆; ℓ : A;⋆]
q

⇒ [ℓ : A;⋆] (R_RCon)

−→∗ {ℓ2 = true : bool
p

⇒ ⋆; {} : [·]
p

⇒ [⋆]
q

⇒ [ℓ : A;⋆]} : [ℓ2 :⋆; ℓ : A;⋆]
q

⇒ [ℓ : A;⋆]
−→∗ blame q (R_RBlame)

This behavior is expected because v does not hold any field with label ℓ other than ℓ1 and ℓ2.

5.3.3 Cast reduction for variants. The reduction rules for casts between variant types are given in

Figure 8. The first four rules are similar to ones for records. The other four rules are for a cast from

⟨ℓ : A; ρ1⟩ to ⟨ρ2⟩ where ρ2 , ⋆. We can suppose that the cast variant value is an injection tagged

with ℓ or an embedding value with ℓ : A under the assumption that it is typed at ⟨ℓ : A; ρ1⟩.
The rules (R_VRevInj) and (R_VRevLift) are applied if ρ2 holds an ℓ field. We use row con-

catenation to split ρ2 into the preceding fields ρ21 such that ℓ < dom (ρ21), the first ℓ field
with type B, and the following fields ρ22 after the ℓ field. Row concatenation ⊙ is defined by:

(ℓ1 : A1; ...; ℓn : An; ·) ⊙ ρ2 = ℓ1 : A1; ...; ℓn : An; ρ2.
If the cast variant value is an injection ℓ v, the cast reduces by (R_VRevInj). Since the target

variant type ⟨ρ2⟩ requires a value injected with ℓ to be typed at B, the reduction result injects the

result of casting v to B with ℓ. Furthermore, the injection ℓ (v : A

p

⇒ B), which can be typed at

⟨ℓ : B; ρ22⟩, is embedded into ⟨ρ21 ⊙ (ℓ : B; ·) ⊙ ρ22⟩ = ⟨ρ2⟩ by a sequence of applications of the

embedding operation with fields in ρ21, which is defined as follows.

Definition 8 (Row embedding). Row embedding ↑ρ e is defined as follows:

↑(ℓ : A; ρ) e
def

= ↑ ⟨ℓ : A⟩ (↑ρ e) ↑ρ e
def

= e (if ρ is not a row extension)

The rule (R_VRevLift) is applied if the cast variant value is an embedding value ↑ ⟨ℓ : A⟩ v. In
this case, the field ℓ :B in ρ2 is inserted by applying the embedding operation to the result of casting

v to the variant type ⟨ρ21 ⊙ ρ22⟩ with the other fields. The insertion of field ℓ : B is performed by

the following operation.
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Definition 9 (Field insertion). Function ↓
ρ
⟨ℓ:A⟩

e embeds a term e of type ⟨ρ ⊙ ρ ′⟩ into ⟨ρ ⊙ (ℓ :

A; ·) ⊙ ρ ′⟩. Formally, it is defined as follows:

↓
(ℓ′:B′;ρ)
⟨ℓ:A⟩

e

def

= case ewith ⟨ℓ′ x → ℓ′ x; y →↑⟨ℓ′ : B′⟩ ( ↓
ρ
⟨ℓ:A⟩

y)⟩

↓
ρ
⟨ℓ:A⟩

e

def

= ↑ ⟨ℓ : A⟩ e (if ρ is not a row extension)

Row embedding ↑ρ e is justified as follows. If ρ is not a row extension (i.e., it is the empty row),

then e is typed at ⟨ρ ⊙ ρ ′⟩ = ⟨ρ ′⟩ and, therefore, ↑ ⟨ℓ : A⟩ e has type ⟨ℓ :A; ρ ′⟩ = ⟨ρ ⊙ (ℓ :A; ·) ⊙ ρ ′⟩.
If ρ is row extension ℓ′ : B′

; ρ ′′, then it is checked whether e is an injection or an embedding term

with ℓ′ by case matching. If e is an injection, it can have type ⟨(ℓ′ :B′
; ρ ′′) ⊙ (ℓ :A; ·) ⊙ ρ ′⟩ because in

general an injection with ℓ can be typed at ⟨ℓ : A; ρ⟩ for any row ρ. Otherwise, if e is an embedding

term, the embedded value y is typed at ⟨ρ ′′ ⊙ ρ ′⟩. Thus, row embedding is recursively applied to

embed y into ⟨ρ ′′ ⊙ (ℓ : A; ·) ⊙ ρ ′⟩, and then, the embedding operation with ℓ′ : B′
is applied to the

result in order to embed it into ⟨(ℓ′ : B′
; ρ ′′) ⊙ (ℓ : A; ·) ⊙ ρ ′⟩.

The last two rules (R_VConInj) and (R_VConLift) are for the case that ρ2 does not hold an

ℓ field. In this case, we can suppose that ρ2 ends with ⋆ under the assumption that the reduced

term is well typed. If the cast variant value is an injection ℓ v, it is cast to the variant type ⟨⋆⟩ and
then embedded into type ⟨ρ2⟩ (R_VConInj). If the cast value is an embedding value ↑ ⟨ℓ : A⟩ v, the
embedded value v is cast to ⟨ρ2⟩ and field ℓ : A is inserted, and then the result is cast to ⟨ρ2⟩ again
(R_VConLift). The field insertion is necessary for dynamic gradual guarantee [Siek et al. 2015];

in this paper we do not prove that property, but we will show the need of the field insertion by

examples in the following.

Examples. First, let us consider cast (↑ ⟨ℓ2 : bool⟩ (ℓ1 0)) : ⟨ℓ2 : bool; ℓ1 : int; ·⟩
p

⇒ ⟨⋆⟩, which
reduces as follows.

(↑ ⟨ℓ2 : bool⟩ (ℓ1 0)) : ⟨ℓ2 : bool; ℓ1 : int; ·⟩
p

⇒ ⟨⋆⟩

−→ ↑⟨ℓ2 : bool⟩ (ℓ1 0) : ⟨ℓ2 : bool; ℓ1 : int; ·⟩
p

⇒ ⟨ℓ2 :⋆;⋆⟩
p

⇒ ⟨⋆⟩ (R_VToDyn)

−→ ↑⟨ℓ2 : ⋆⟩ ((ℓ1 0) : ⟨ℓ1 : int; ·⟩
p

⇒ ⟨⋆⟩) : ⟨ℓ2 :⋆;⋆⟩
p

⇒ ⟨⋆⟩ (R_VRevLift)

−→ ↑⟨ℓ2 : ⋆⟩ ((ℓ1 0) : ⟨ℓ1 : int; ·⟩
p

⇒ ⟨ℓ1 :⋆;⋆⟩
p

⇒ ⟨⋆⟩) : ⟨ℓ2 :⋆;⋆⟩
p

⇒ ⟨⋆⟩ (R_VToDyn)

−→ ↑⟨ℓ2 : ⋆⟩ ((ℓ1 (0 : int
p

⇒ ⋆)) : ⟨ℓ1 :⋆;⋆⟩
p

⇒ ⟨⋆⟩) : ⟨ℓ2 :⋆;⋆⟩
p

⇒ ⟨⋆⟩ (R_VRevInj)

Next, let us cast the above result to ⟨ℓ :A;⋆⟩; let v
def

= (ℓ1 (0 : int
p

⇒ ⋆)) : ⟨ℓ1 :⋆;⋆⟩
p

⇒ ⟨⋆⟩. Then,

(↑ ⟨ℓ2 : ⋆⟩ v) : ⟨ℓ2 :⋆;⋆⟩
p

⇒ ⟨⋆⟩
q

⇒ ⟨ℓ : A;⋆⟩ −→ (↑⟨ℓ2 : ⋆⟩ v) : ⟨ℓ2 :⋆;⋆⟩
q

⇒ ⟨ℓ : A;⋆⟩ (1)

by (R_VFromDyn).

If ℓ = ℓ2, then (1) reduces to ↑ ⟨ℓ2 : A⟩ (v : ⟨⋆⟩
q

⇒ ⟨⋆⟩) by (R_VRevLift). Thus, the cast just

changes the type given to the embedding operation.

If ℓ , ℓ2, then, by (R_VConLift), (1) reduces to:

( ↓
ℓ:A;⋆
⟨ℓ2:⋆⟩

( v : ⟨⋆⟩
q

⇒ ⟨ℓ : A;⋆⟩ )) : ⟨ℓ : A; ℓ2 :⋆;⋆⟩
p

⇒ ⟨ℓ : A;⋆⟩. (2)

If ℓ = ℓ1, then the shaded part in (2) reduces to ℓ1 (0 : int
p

⇒ ⋆
q

⇒ A) by (R_VFromDyn) and

(R_VRevInj). Thus, if A , int, blame q is raised; otherwise, (2) reduces to

( ↓
ℓ:A;⋆
⟨ℓ2:⋆⟩

(ℓ1 0)) : ⟨ℓ : A; ℓ2 :⋆;⋆⟩
p

⇒ ⟨ℓ : A;⋆⟩
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If ℓ , ℓ1, then the shaded part in (2) reduces to ↑ ⟨ℓ : A⟩ (ℓ1 (0 : int
p

⇒ ⋆) : ⟨ℓ1 :⋆;⋆⟩
q

⇒ ⟨⋆⟩) by
(R_VFromDyn) and (R_VConInj). Note that if ℓ : A;⋆ in the shaded part were ℓ : A; ·, exception
blame q would be raised by using (R_VBlame).

Finally, we show that the field insertion in (R_VConLift) is crucial to prove dynamic gradual

guarantee. To confirm that, let us suppose that (R_VConLift) does not perform field insertion and

instead takes the following form.

(↑ ⟨ℓ : A⟩ v) : ⟨ℓ : A; ρ1⟩
p

⇒ ⟨ρ2⟩ ⇝ v : ⟨ρ1⟩
p

⇒ ⟨ρ2⟩ (R_VConLift’)

As an example, consider reduction of term e given as follows:

v

def

= ℓ (0 : int
p1

⇒ ⋆) : ⟨ℓ :⋆;⋆⟩
p2

⇒ ⟨⋆⟩

e

def

= (↑ ⟨ℓ : bool⟩ v) : ⟨ℓ : bool;⋆⟩
p3

⇒ ⟨ℓ′ : str;X⟩
p4

⇒ ⟨ℓ : bool;⋆⟩

Dynamic gradual guarantee [Siek et al. 2015] states that changing types in a program to ⋆ does not

change its behavior. In the case of e, it means that, if e[(ℓ : bool;⋆)/X ] does not raise blame, e[⋆/X ]
does not either. First, let us reduce e[(ℓ : bool;⋆)/X ].

( ↓
ℓ′:str;·
⟨ℓ:bool⟩(v : ⟨⋆⟩

p3

⇒ ⟨ℓ′ : str;⋆⟩)) : ⟨ℓ′ : str; ℓ : bool;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VRevLift)

−→∗ ( ↓
ℓ′:str;·
⟨ℓ:bool⟩(↑ ⟨ℓ

′
: str⟩ v)) : ⟨ℓ′ : str; ℓ : bool;⋆⟩

p4

⇒ ⟨ℓ : bool;⋆⟩

−→∗ (↑ ⟨ℓ′ : str⟩ (↑ ⟨ℓ : bool⟩ v)) : ⟨ℓ′ : str; ℓ : bool;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_CaseR)

−→∗ (↑ ⟨ℓ : bool⟩ v) : ⟨ℓ : bool;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VConLift’)

−→∗ ↑ ⟨ℓ : bool⟩ v

Thus, e[(ℓ : bool;⋆)/X ] evaluates to a value under use of (R_VConLift’). If dynamic gradual

guarantee holds, so should e[⋆/X ]. However, it does not:

e[⋆/X ] −→ v : ⟨⋆⟩
p3

⇒ ⟨ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VConLift’)

−→∗ ↑ ⟨ℓ′ : str⟩ v : ⟨ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VFromDyn) and (R_VConInj)

−→ v : ⟨⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VConLift’)

−→∗ ℓ (0 : int
p1

⇒ ⋆
p4

⇒ bool) (R_VFromDyn) and (R_VRevInj)

−→∗ blame p4 (R_Blame)

We can confirm that both e[(ℓ :bool;⋆)/X ] and e[⋆/X ] evaluate to values if we use (R_VConLift).
We show only the reduction of e[⋆/X ]; the reduction of e[(ℓ : bool;⋆)/X ] is similar to the case of
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Evaluation rules Σ1 | e1 −→ Σ2 | e2

Σ | E[e1] −→ Σ | E[e2] (if e1 ⇝ e2) E_Red Σ | E[blame p] −→ Σ | blame p (if E , [ ]) E_Blame

Σ | E[(ΛX :K .e :: A)B] −→ Σ,α :K := B | E[e[α/X ] : A[α/X ]
+α
⇒ A[B/X ]] E_TyBeta

Fig. 9. Evaluation rules of FρC.

using (R_VConLift’).

( ↓
ℓ′:str;⋆
⟨ℓ:bool⟩(v : ⟨⋆⟩

p3

⇒ ⟨ℓ′ : str;⋆⟩)) : ⟨ℓ′ : str; ℓ : bool;⋆⟩
p3

⇒ ⟨ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VConLift)

−→∗ ( ↓
ℓ′:str;⋆
⟨ℓ:bool⟩(↑ ⟨ℓ

′
: str⟩ v)) : ⟨ℓ′ : str; ℓ : bool;⋆⟩

p3

⇒ ⟨ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩

−→ (↑⟨ℓ′ : str⟩ (↑ ⟨ℓ : bool⟩ v)) : ⟨ℓ′ : str; ℓ : bool;⋆⟩
p3

⇒ ⟨ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_CaseR)

−→ (↑⟨ℓ′ : str⟩ ((↑ ⟨ℓ : bool⟩ v) : ⟨ℓ : bool;⋆⟩
p3

⇒ ⟨⋆⟩)) : ⟨ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VRevLift)

−→ (↑⟨ℓ′ : str⟩ v′) : ⟨ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VToDyn) and (R_VRevLift)

(where v
′ = (↑ ⟨ℓ : ⋆⟩ v) : ⟨ℓ :⋆;⋆⟩

p3

⇒ ⟨⋆⟩)

−→ (↓
ℓ:bool;⋆
⟨ℓ′:str⟩ (v

′
: ⟨⋆⟩

p4

⇒ ⟨ℓ : bool;⋆⟩)) : ⟨ℓ : bool; ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩ (R_VConLift)

−→∗ (↑ ⟨ℓ : bool⟩ (↑ ⟨ℓ′ : str⟩ v)) : ⟨ℓ : bool; ℓ′ : str;⋆⟩
p4

⇒ ⟨ℓ : bool;⋆⟩

−→∗ (↑ ⟨ℓ : bool⟩ ((↑ ⟨ℓ′ : ⋆⟩ v) : ⟨ℓ′ :⋆;⋆⟩
p

⇒ ⟨⋆⟩))

Thus, we believe that the field insertion is key to show dynamic gradual guarantee, though it is left

as future work.

5.3.4 Evaluation. The evaluation rules are shown in Figure 9. A term evaluates if its subterm

under an evaluation context reduces (E_Red), triggers an exception (E_Blame), or involves type

application (E_TyBeta). As discussed in Section 5.1, type application (ΛX :K .e :: A)B generates a

fresh name α , substitutes α for X in e, stores the actual type (or row) B of α in name store Σ, and
reveals B to evaluation context E.

5.4 Properties
We show type soundness of F

ρ
C
via progress and subject reduction.

Theorem 5.1 (Type soundness). If ∅; ∅ ⊢ e : A and ∅ | e −→∗ Σ′ | e′ and e′ cannot be evaluated

under Σ′
, then either e

′
is a value or e

′ = blame p for some p.

We also show that our surface language F
ρ
G
is conservative over typing of F

ρ
C
. We omit the full

presentation of F
ρ
G
, but, as usual [Siek and Taha 2006], it is obtained by changing F

ρ
so that (1)

types are extended with ⋆ and (2) the typing rules use consistent equivalence instead of type

equality. We write Γ ⊢ M : A if M has type A under Γ in F
ρ
G
. For example, the typing rule for record

decomposition in F
ρ
G
is

Γ ⊢ M1 : A A ▷ [ρ] ρ ▷ℓ B, ρ ′ Γ, x:B, y:[ρ ′] ⊢ M2 : C

Γ ⊢ let {ℓ = x; y} = M1 inM2 : C

Tg_RLet

where type matching A ▷ [ρ] is defined as: ⋆ ▷ [⋆] and [ρ] ▷ [ρ]. Type-preserving translation

Γ ⊢ M : A ↪→ e fromM of A under Γ in F
ρ
G
to e in F

ρ
C
is given by inserting casts where type matching

and consistent equivalence are used. The full definitions are found in the supplementary material.

Theorem 5.2. If Γ ⊢ M : A, then there exists some e such that Γ ⊢ M : A ↪→ e and ∅; Γ ⊢ e : A.
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We state that the language F
ρ
G
is a conservative extension of F

ρ
in terms of typing.

Theorem 5.3 (Conservativity over typing). Suppose that ⋆ does not appear in Γ, A, and M . (1)

If Γ ⊢ M : A, then Γ ⊢s M : A. (2) If Γ ⊢s M : A, then Γ ⊢ M : B for some B such that A ≡ B.

6 RELATEDWORK
6.1 Row types, row polymorphism, and their applications
Row types were introduced by Wand [1987], who has studied type inference for objected-oriented

languages and modeled objects in a variant of λ-calculus equipped with record types and variant

types with rows. Wand also introduced row type variables for row type inference and discussed

row polymorphism informally. Although that work supposed labels in a row type to be unique, it

allowed record extension {ℓ = M1;M2} even for record M2 holding an ℓ field; if M2 contains an ℓ
field, its value will be overwritten by M1. However, this overwriting semantics causes an issue that

some programs do not have principal types [Wand 1991]. Gaster and Jones [1996] resolved this

issue by allowing record extension only when record M2 does not contain an ℓ field. With help of

presence and absence types [Rémy 1989], they gave a type inference algorithm that produces a

principal type (if any). In order for row type substitution to preserve uniqueness of labels, they

employed qualified types called “lacks” predicates, which constrain quantified row type variables to

be instantiated only with row types that lack some fields. The use of presence and absence types

also enabled them to deal with record restriction, which was not handled by Wand [1987, 1991].

Another approach to principal typing for rows is to lift the uniqueness restriction and to allow

scoped labels. Scoped labels were first discussed by Berthomieu and le Moniès de Sagazan [1995] in

the context of process calculi and later applied to functional programming by Leijen [2005], who

also developed a sound and complete unification algorithm for inference of row types with scoped

labels. In this work we adopt scoped labels, which enable us not only to simplify the metatheory of

our calculus but also to use the embedding operation [Leijen 2005]. The embedding operation is

helpful to align variant types with different row types in a polymorphic setting. In our work, it is

also important to make the type system of F
ρ
C
syntax-directed.

Row types have been applied, e.g., to model objects [Rémy and Vouillon 1998; Wand 1987, 1991]

and polymorphic variants [Garrigue 1998] and have been found in many programming languages.

A more recent application of row types is an effect system for effect handlers [Plotkin and Pretnar

2009] with [Leijen 2014, 2017; Lindley et al. 2017] or without [Hillerström and Lindley 2016] scoped

labels. Actually, our formalization of scoped labels and the embedding operation is influenced by

Hillerström et al. [2017] and Biernacki et al. [2018], respectively.

6.2 Gradual typing for records and variants
Takikawa et al. [2012] studied gradual typing for first-class classes. They employed row types and

row polymorphism for expressing presence and absence of interesting methods. Thus, they did not

handle variant types and considered row polymorphism together with lacks predicates. Their work

dealt with specifications written in the form of contracts and supposed contracts to play a role

of interface for module components. This style of gradual typing is called “macro”-level gradual

typing. i.e., typed and untyped modules are mixed, while we focus on “micro”-level gradual typing,

where typed and untyped expressions are mixed. Technically, this difference appears, e.g., in the

need of consistency. In addition, as our work, they also protected polymorphically typed values

from untyped code. Their development, sealing contracts, has finer-grained control than row names

in our work in that sealing contracts can expose absence of fields, while row names cannot.

Garcia et al. [2016] proposed a general framework to derive a gradually typed language from a

statically typed one. They also developed gradual rows, which are rows possibly ending with the
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26 Taro Sekiyama and Atsushi Igarashi

dynamic row type, for record types via application of their framework to a calculus with width and

depth record subtyping. Thus, a clear difference between their and our work is support for variant

types and row polymorphism. The consistency relation in their work involves row equivalence, and,

therefore, it seems to be equivalent to consistent equivalence given by the present work (modulo

support for variant types and row polymorphism).

Jafery and Dunfield [2017] introduced dynamic sums for gradual datasort refinement. A dynamic

sum A +? B can be interpreted as both of a single type A and B, and its value can be deconstructed

by a case expression having a single branch for A or B. In our calculus dynamic sums can be encoded

by two-fold variant type ⟨ℓ1 :A; ℓ2 :B; ·⟩ which are coerced to ⟨ℓ1 :A; ·⟩ or ⟨ℓ2 :B; ·⟩ in case matching

via injection to ⟨⋆⟩. Unlike our work, they did not deal with labeled fields and row polymorphism.

7 CONCLUSION
We have introduced the dynamic row type and consistency for gradual typing with row types

and row polymorphism. While consistency captures the static aspect of the dynamic row type,

we have found that it is problematic if combined with row equivalence. To solve the problem

with consistency, we have developed consistent equivalence and shown that it characterizes

composition of consistency and row equivalence. We also have given a polymorphic blame calculus

F
ρ
C
with scoped labels, row types, row polymorphism, and consistent equivalence and proven its

type soundness as well as type-preservation of translation from surface language F
ρ
G
to F

ρ
C
and

conservativity of F
ρ
G
over typing of F

ρ
. The cast semantics of F

ρ
C
is designed carefully to take into

account criteria of gradual typing [Siek et al. 2015], but proving them is left as future work. Another

direction of future work is to extend our calculus to effect systems for effect handlers [Plotkin and

Pretnar 2009]. It is also interesting to “gradualize” other formalisms, such as presence and absence

types [Pottier and Rémy 2005] and a general framework for row types [Morris and McKinna 2019].
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