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Gradual typing, proposed by Siek and Taha, is a way to combine static and dynamic typing in a single

programming language. Since its inception, researchers have studied techniques for efficient implementation. In

this paper, we study the problem of space-efficient gradual typing in the presence of parametric polymorphism.

We develop a polymorphic extension of the coercion calculus, an intermediate language for gradual typing.

Then, we show that it cannot be made space-efficient by following the previous approaches, due to subtle

interaction with dynamic sealing, a standard technique to ensure parametricity in polymorphic gradual typing.

1 INTRODUCTION
1.1 Space-Efficient Gradual Typing
Gradual typing [Siek and Taha 2006] is a methodology to combine static and dynamic typing and

allows a single program to involve statically and dynamically typed code. This ability of gradual

typing not only brings the benefits of both the two typing disciplines, but also enables smooth

migration between fully dynamic and static typing. Emerging gradually typed languages include,

for example, Typed Racket [Flatt and PLT 2010], Typed Closure [Bonnaire-Sergeant et al. 2016],

Hack [Facebook 2021], and TypeScript [Bierman et al. 2014].

A key ingredient of gradual typing is a special type ★, which is called the dynamic type. The
dynamic type allows “skipping” the static checking: at compile time, any term can be converted to

the dynamic type and terms of the dynamic type are optimistically supposed to be convertible to

arbitrary types. Instead, the skipped checks are performed at run time by monitoring the conversion.

If conversion to an inconsistent type through the dynamic type is detected, the run-time system

stops the evaluation of the program and reports an error. For example, let a term 𝑀 be of the

dynamic type ★. A static type checker accepts calling it with a Boolean argument 𝑀 true and

applying integer operations𝑀 + 1. However,𝑀 cannot be used as a function nor an integer at run

time if it is, say, a Boolean value. Then, the run-time system detects that the conversion of𝑀 to a

function type or the integer type fails and reports the invalid conversion by raising an exception.

Along with the success of gradual typing in practice, its efficient implementation is gaining

attention. Recently it has been exposed that the efficiency of gradually typed programs is dominated

by the efficiency of conversions. For example, even in simple gradual typing, a naive implementation

of conversions for functions is unexpectedly costly in terms of both time [Takikawa et al. 2016]

and space [Herman et al. 2007, 2010].

The space-consuming problem in gradual typing has been recognized first by Herman et al.

[2007, 2010]. As an intermediate language for simple gradual typing, they proposed a coercion

calculus where a sequence of conversions—which are called coercions [Henglein 1994] in coercion

calculi—can be normalized into a simpler conversion. They also proved that coercions emerging at

run time are collapsed into a coercion of bounded size. This result indicates that simple gradual

typing can be implemented in a space-efficient manner, that is, the space overhead of a gradually

typed program is increased only by an expected factor, compared with the space consumed by

the fully dynamically typed version. Siek et al. [2015] proved correctness of this space-efficient
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implementation by providing a semantics-preserving translation from an unoptimized, non-space-

efficient coercion calculus 𝜆C to an optimized, space-efficient coercion calculus 𝜆S. The previous

work addresses gradual typing with simple types, but support for advanced typing features needs

more sophisticated implementation of coercions. Efficient implementation of realistic gradual

typing is, therefore, still challenging [Kuhlenschmidt et al. 2019].

1.2 Our Work
This work addresses the space-consuming problem in polymorphic gradual typing. As a tool to
investigate this problem formally, we introduce a polymorphic (unoptimized) coercion calculus

𝜆C∀
, which is an extension of the coercion calculus 𝜆C [Siek et al. 2015] with polymorphism. A

question for this extension is how universal types are represented and checked at run time. Inspired

by New et al. [2020]; Toro et al. [2019]; Xie et al. [2018] and motivated by the simplicity, we add the

universal type ∀X .★ and type variables X as new type representations to be checked at run time

and support new coercions that check consistency for these type representations.

As our calculus 𝜆C∀
is designed for polymorphic gradual typing, we have to consider a common

issue in it: how parametricity is enforced. Parametricity [Reynolds 1983; Wadler 1989] is a key

property of polymorphism, guaranteeing the uniform behavior of polymorphic values and enabling

useful reasoning about them. Unfortunately, a naive introduction of polymorphism to gradual

typing breaks parametricity because gradual typing can inspect type arguments at run time via

conversion. To protect type arguments against run-time inspection, Ahmed et al. [2011] proposed

type encapsulation by dynamic sealing. In their calculus, type application generates fresh symbolic

names at run time, and type arguments are encapsulated by them. If encapsulated types are inspected

in a polymorphic context, the run-time system reports an error. Ahmed et al. [2017] proved that

polymorphic gradual typing with dynamic sealing enjoys parametricity. Following Ahmed et al.,

𝜆C∀
is also equipped with dynamic sealing.

Support for dynamic sealing, however, makes it impossible to implement 𝜆C∀
space-efficiently.

The key idea of the space-efficient implementation for simple gradual typing is that a sequence of

multiple coercions can be simplified into a single, smaller coercion. Dynamic sealing precludes this

approach because, briefly speaking, a sequence of coercions with dynamically generated names

cannot be simplified furthermore as all the names are necessary to represent the semantics of the

coercion sequence. We formally address the problem in a specific coercion calculus 𝜆C∀
, but for

the simplicity of its design, we conjecture that other polymorphic gradually typed languages with

dynamic sealing cannot be made space-efficient either; this will be discussed in Section 5.

Below is a summary of our contributions.

• We introduce a type-safe polymorphic coercion calculus 𝜆C∀
with run-time type represen-

tations for universal types and type variables, coercions for them, and dynamic sealing.

• We show that dynamic sealing allows 𝜆C∀
to have a sequence of coercions such that it

cannot be normalized into a smaller coercion and the size of the entire sequence cannot be

bounded.

The rest of this paper is organized as follows. We review the coercion calculus 𝜆C of Siek et al.

and how space efficiency is achieved in simple gradual typing in Section 2. The definition and basic

properties, including type safety, of 𝜆C∀
are presented in Section 3. We state and prove that 𝜆C∀

cannot become space-efficient in Section 4. We discuss related work in Section 5 and give remarks

on future directions in Section 6.
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2 BACKGROUND
This section reviews space efficiency in gradual typing [Herman et al. 2007, 2010; Siek et al. 2015].

We first informally introduce a coercion calculus 𝜆C of Siek et al. [2015] and show how statically and

dynamically typed code cooperate in 𝜆C. We also present that 𝜆C allows coercions of unbounded

size to appear at run time and then review the approach of Herman et al. [2007, 2010] to normalizing

such undesirable coercions and making the coercion calculus space-efficient.

2.1 The Coercion Calculus 𝜆C
Gradual typing can control which parts are statically typed and which are dynamically typed

by type annotation. To see it, first, let’s recall static typechecking. For example, consider a term

let x : Int = 𝑀 in x + 1 in static typing. The term 𝑀 is checked statically to be an integer because

it is annotated with the static type Int. Further, the remaining term x + 1 is typechecked with the

assumption that the variable x is assigned the type Int. Gradual typing can defer this checking

process to run time by using the dynamic type ★. For example, consider a term

let x :★ = 𝑀1 in let y : Int = 𝑀2 in x + y .

The dynamic type ★means that𝑀1 can be of an arbitrary type and x can be supposed to be of any

type during the typechecking of the remaining term let y : Int = 𝑀2 in x + y. Because the operation
+ requires arguments to be integers, we need to check that x is indeed an integer. Gradual typing

performs this checking at run time. If 𝑀1 is not an integer—say, a Boolean value true—then an

exception will be raised at run time. It is notable that the typechecking in terms of term𝑀2 and

variable y is performed statically because they are annotated with the static type Int and thus,𝑀2

must be evaluated to an integer (if the evaluation terminates). Gradual typing enables a spectrum

between dynamic and static typing by introducing the dynamic type.

The coercion calculus 𝜆C is an intermediate language for gradual typing, and it exposes where

run-time checking is performed by coercions. Coercions support injecting values of static types into
the dynamic type and projecting values of the dynamic type to an arbitrary type with run-time

checking. Below are coercions in 𝜆C (we present only the part necessary to explain the essence of

𝜆C):

Coercions c, d ::= G! | G?p | idA | c → d | · · ·
Given a coercion c, coercion application𝑀 ⟨c⟩ checks whether the value of a term𝑀 can be coerced

by c.
The first two coercions, injections G! and projections G?p, represent type conversion using the

dynamic type ★. These coercions are equipped with ground types G and blame labels p. Ground
types represent type tags attached to dynamic values (i.e., values of the dynamic type) at run time.

They consist of base types, such as Int and Bool, and the function type ★ → ★, which signifies

that injected values are functions. A blame label p identifies the run-time checking by projection,

used for analyzing which part in a source program is the cause of a run-time error [Wadler and

Findler 2009]. An injection coercion G! produces a dynamic value tagged with type G. For example,

true ⟨Bool!⟩ is a dynamic value tagged with the ground type Bool. A projection coercion G?p checks
the tag of a given dynamic value. If it is the type G, then the coercion returns the underlying value

of the dynamic value. In general, 𝜆C accepts the reduction 𝑉 ⟨G!⟩ ⟨G?p⟩ ↦−→ 𝑉 . If the attached

tag is not equal to G, then the projection coercion raises an exception blame p with label p that

notifies which run-time checking fails. For example, (true ⟨Bool!⟩) ⟨Bool?p⟩ is evaluated to true,

but (true ⟨Bool!⟩) ⟨Int?p⟩ is evaluated to blame p because Bool ≠ Int. Using these coercions, the

example given at the beginning of this section can be translated to the following term in 𝜆C:

let x :★ = 𝑀1 in let y : Int = 𝑀2 in (x ⟨Int?p⟩) + y
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where the variable x of the type ★ is coerced to Int. If 𝑀1 injects an integer value (e.g., 1 ⟨Int!⟩),
then the projection would succeed and then an integer value would be produced as a final result.

However, if𝑀1 injects a non-integer value (e.g., true ⟨Bool!⟩), then the projection coercion would

raise an exception blame p. This translation to 𝜆C can be performed automatically [Siek and Taha

2006; Siek et al. 2015]: we can find where coercions are inserted from typing derivations of a gradual

type system.

The calculus 𝜆C also supports other forms of coercions such as identity coercions and function

coercions. An identity coercion idA expresses an identity function of type A → A; hence, it does
nothing computationally. A function coercion c → d wraps given functions so that arguments

and return values are coerced by coercions c and d, respectively. For example, consider a term

𝑉 ⟨Int! → Bool?p⟩. The application to a value 𝑉 ′
is reduced as follows:

(𝑉 ⟨Int! → Bool?p⟩)𝑉 ′ ↦−→ (𝑉 (𝑉 ′ ⟨Int!⟩)) ⟨Bool?p⟩ .

Here, the argument 𝑉 ′
is first coerced to the dynamic type by the argument coercion Int! and then

passed to the function 𝑉 . Once 𝑉 returns a value of the dynamic type, it is coerced to Bool by
Bool?p. In general, given coercions c from type A2 to type A1 and d from type B1 to type B2, the
function coercion c → d coerces functions of type A1 → B1 to type A2 → B2. For example, as Int!
is from Int to ★ and Bool?p is from ★ to Bool, the term 𝑉 ⟨Int! → Bool?p⟩ requires the function 𝑉
to be of ★ → ★ and its type is Int → Bool. Notice that function coercions are contravariant for

arguments while covariant for return values.

2.2 Space Efficiency
Herman et al. [2007, 2010] discovered that a naive implementation of run-time checking may

consume an unexpectedly huge space. For example, consider the following mutually recursive

functions 𝑒𝑣𝑒𝑛 and 𝑜𝑑𝑑 in gradual typing:

𝑒𝑣𝑒𝑛 : Int → ★
def

= 𝜆x : Int.if x = 0 then true else (𝑜𝑑𝑑 (x − 1))
𝑜𝑑𝑑 : Int → Bool

def

= 𝜆x : Int.if x = 0 then false else (𝑒𝑣𝑒𝑛 (x − 1))
The functions 𝑒𝑣𝑒𝑛 and 𝑜𝑑𝑑 return a Boolean value that indicates if an argument is even and odd,

respectively. The results of 𝑒𝑣𝑒𝑛 are dynamically typed, while those of 𝑜𝑑𝑑 are statically typed.

Because these functions are tail-recursive, one might expect that their call only consumes a constant

space. However, their translation results 𝑒𝑣𝑒𝑛C and 𝑜𝑑𝑑C to 𝜆C causes unbounded growth of call

stack spaces. The functions 𝑒𝑣𝑒𝑛C and 𝑜𝑑𝑑C are given as:

𝑒𝑣𝑒𝑛C
def

= 𝜆x : Int.if x = 0 then (true ⟨Bool!⟩) else ((𝑜𝑑𝑑C (x − 1)) ⟨Bool!⟩)
𝑜𝑑𝑑C

def

= 𝜆x : Int.if x = 0 then false else ((𝑒𝑣𝑒𝑛C (x − 1)) ⟨Bool?p⟩)
Then, for instance, the evaluation of 𝑜𝑑𝑑C 4 proceeds as follows:

𝑜𝑑𝑑C 4

↦−→∗ (𝑒𝑣𝑒𝑛C 3) ⟨Bool?p⟩
↦−→∗ (𝑜𝑑𝑑C 2) ⟨Bool!⟩ ⟨Bool?p⟩
↦−→∗ (𝑒𝑣𝑒𝑛C 1) ⟨Bool?p⟩ ⟨Bool!⟩ ⟨Bool?p⟩
↦−→∗ (𝑜𝑑𝑑C 0) ⟨Bool!⟩ ⟨Bool?p⟩ ⟨Bool!⟩ ⟨Bool?p⟩
↦−→∗

false ⟨Bool!⟩ ⟨Bool?p⟩ ⟨Bool!⟩ ⟨Bool?p⟩
↦−→∗

false .

As the evaluation process indicates, each time 𝑒𝑣𝑒𝑛C and 𝑜𝑑𝑑C are called, a new coercion emerges

to convert the call result. Such coercions would have to be stored in call stacks because they must

be applied after the function call finishes and control gets back. As a result, the evaluation needs a



Is Space-Efficient Polymorphic Gradual Typing Possible? 5

stack space that cannot be bounded by the program size. Even worse, non-terminating programs

may consume infinite spaces for storing coercions.

Herman et al. solved this problem by normalizing nested coercions that emerge at run time. For

example, we can find that application of coercions 𝑉 ⟨Bool!⟩ ⟨Bool?p⟩ is equivalent to 𝑉 ⟨idBool⟩
because applying projection ⟨Bool?p⟩ to values injected by ⟨Bool!⟩ always succeeds. Herman et

al. generalized this idea and defined coercion normalization. Siek et al. [2015] formulated the

normalization as a meta-level operation c o

9
d that collapses the composition of c and d into a simpler

coercion. For example, Bool! o

9
Bool?p returns idBool and Bool?p o

9
idBool returns Bool?p (recall that

idA is a no-op).
1
Once we allow the reduction𝑀 ⟨c⟩ ⟨d⟩ ↦−→ 𝑀 ⟨c o

9
d⟩, the above example can be

evaluated as follows:

𝑜𝑑𝑑C 4

↦−→∗ (𝑒𝑣𝑒𝑛C 3) ⟨Bool?p⟩
↦−→∗ (𝑜𝑑𝑑C (3 − 1)) ⟨Bool!⟩ ⟨Bool?p⟩
↦−→ (𝑜𝑑𝑑C (3 − 1)) ⟨Bool! o

9
Bool?p⟩ = (𝑜𝑑𝑑C (3 − 1)) ⟨idBool⟩

↦−→∗ (𝑒𝑣𝑒𝑛C (2 − 1)) ⟨Bool?p⟩ ⟨idBool⟩
↦−→ (𝑒𝑣𝑒𝑛C (2 − 1)) ⟨Bool?p o

9
idBool⟩ = (𝑒𝑣𝑒𝑛C (2 − 1)) ⟨Bool?p⟩

↦−→∗ (𝑜𝑑𝑑C (1 − 1)) ⟨Bool!⟩ ⟨Bool?p⟩
↦−→ (𝑜𝑑𝑑C (1 − 1)) ⟨Bool! o

9
Bool?p⟩ = (𝑜𝑑𝑑C (1 − 1)) ⟨idBool⟩

↦−→∗
false ⟨idBool⟩

↦−→ false .

Because a consecutive application of coercions is immediately normalized, the number of coercions

emerging during the evaluation can increase only by a constant factor. Furthermore, Herman et

al. proved that the size of a normalized coercion is bounded by the size of the original program

before insertion of coercions. By combining the two results, a coercion calculus with the reduction

of composing coercions can be proven space-efficient.

Siek et al. [2015] refined the result of Herman et al. with another space-efficient coercion calculus

𝜆S and provided a semantics-preserving translation from 𝜆C to 𝜆S (notice that 𝜆C is not space-

efficient because it does not support the composition reduction). A key to providing such translation

is that nested coercions can be normalized into a simpler one. However, it seems quite challenging

to define coercion normalization satisfying this property for a polymorphic coercion calculus with

dynamic sealing, as we will see in Section 4.

3 POLYMORPHIC COERCION CALCULUS 𝜆C∀

In this section, after presenting an overview of 𝜆C∀
, we develop it formally, and state its basic

properties.

3.1 Overview
We extend 𝜆C with parametric polymorphism by introducing type abstractions and applications to

terms, and universal types to types, as in System F. Main issues to consider are how ground types,

which act as type tags, are extended (or not extended), what kind of coercions are supported for

universal types, and how parametricity is enforced.

For the first two, we add the following three things: (1) the type ∀X .★ to ground types to support

injection (∀X .★)!, which is a tagging for type abstractions, and projection (∀X .★)?p , which checks

whether the value is tagged by (∀X .★)!; (2) type variables to ground type so that conversion between
type variables and★ is possible by X ! and X?p; and (3) coercions of the form ∀X .c between universal

types such that, if c is a coercion from A to B, then ∀X .c is from ∀X .A to ∀X .B. For example, a

1
Precisely speaking, Bool! and Bool?p are represented by idBool;Bool! and Bool?p ; idBool, respectively, in Siek et al. [2015].
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coercion from type ∀X .★→ ★ to type ∀X .X → X is written ∀X .X ! → X?p. To coerce the value of

type ∀X .X → X to the dynamic type, we compose three coercions:

(1) ∀X .X?p → X !, which is from ∀X .X → X to ∀X .★→ ★;

(2) ∀X .(★→ ★)!, which is from ∀X .★→ ★ to ∀X .★; and
(3) (∀X .★)!, which is from ∀X .★ to ★.

This design is (partially) based on the separation of gradual typing and polymorphism as orthogonal

issues—the policy advocated by Xie et al. [2018] and followed by recent calculi [New et al. 2020;

Toro et al. 2019]. Thus, there is no coercion from a universal type, say ∀X .X → X , to function

types, say Int → Int or ★→ ★; such type conversion is possible only by type application.

To enforce parametricity, we follow the standard approach [Ahmed et al. 2011, 2017; Igarashi et al.

2017; Matthews and Ahmed 2008; New et al. 2020; Toro et al. 2019] of using dynamic sealing [Morris

1973; Pierce and Sumii 2000].
2
Instead of usual type-level 𝛽-reduction

(ΛX .𝑉 ) A ↦−→ 𝑉 [A/X ]
that uses type substitution [A/X ], the correspondence between X and A is recorded in a global

store Σ, which decorates the reduction relation, and X in the body 𝑉 is left as it is:

Σ ⊲ (ΛX .𝑉 ) A ↦−→ (Σ,X := A) ⊲ 𝑉
Inside 𝑉 , X acts like a fresh base type. Thus, even when X is bound to Int in the store, injection by

X ! is canceled only by X?p , not by Int?p . To see why this is important for parametricity, readers are

referred to Ahmed et al. [2011, 2017]; Igarashi et al. [2017].

The semantics of coercions between universal types is slightly subtle. First of all, just as coercions

c → d between function types work as wrappers for 𝜆-abstractions, coercions ∀X .c work as

wrappers for Λ-abstractions. Thus, for example, the term

𝑀 = (ΛX .𝑉 ) ⟨∀X .X ! → X?p⟩
is a value, waiting for a type argument to be passed. Here, we assume that the type of ΛX .𝑉 is

∀X .★ → ★ and thus that of 𝑀 is ∀X .X → X . If 𝑀 is applied to a type argument, say Int, and an

integer, say 42,𝑀 Int 42 is reduced as follows:

Σ ⊲

∀X .★→★︷   ︸︸   ︷
(ΛX .𝑉 )⟨∀X .X ! → X?p⟩︸                         ︷︷                         ︸

∀X .X→X

Int 42

↦−→ (Σ,X := Int) ⊲ (𝑉 ⟨X ! → X?p⟩) 42
↦−→ (Σ,X := Int) ⊲ (𝑉 (42 ⟨X !⟩)) ⟨X?p⟩

The projection X?p succeeds only if 𝑉 behaves like ∀X .X → X—that is, 𝑉 returns the argument

42 ⟨X !⟩ as is.
Notice that Λ and ∀ are removed (and the store is extended) in one step. This is in contrast with

the behavior of function coercions, which do not cause 𝛽-reduction in one step (as is shown in the

second step above). It may appear that the following reduction rule, which generates a new name

for a universal coercion, is more reasonable:

Σ ⊲ (𝑉 ⟨∀X .c⟩) A ↦−→ (Σ,X := A) ⊲ (𝑉 X ) ⟨c⟩ .
2
In the literature, there is some confusion about what sealing/unsealing operations are. While Ahmed et al. [2011] call

casts from dynamically generated type names to the dynamic type sealing, the subsequent work [New et al. 2020] calls

type-directed coercions from type arguments to dynamically generated type names sealing. The present work follows the

former terminology because our calculus is closer to the one in [Ahmed et al. 2011] (and conversions from type arguments

to type names are implicit), but we may say “a type name seals a type” to explain the latter.
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According to this rule, the example above would reduce as follows:

Σ ⊲ ((ΛX .𝑉 ) ⟨∀X .X ! → X?p⟩) Int 42
= Σ ⊲ ((ΛX .𝑉 ) ⟨∀Y .Y ! → Y?p⟩) Int 42
↦−→ (Σ, Y := Int) ⊲ (((ΛX .𝑉 ) Y ) ⟨Y ! → Y?p⟩) 42
↦−→ (Σ, Y := Int,X := Y ) ⊲ (𝑉 ⟨Y ! → Y?p⟩) 42
↦−→ (Σ, Y := Int,X := Y ) ⊲ (𝑉 (42 ⟨Y !⟩)) ⟨Y?p⟩ .

One of the intuitive motivations for our choice is that coercions should not involve computational

effects (that is, name generation) other than raising blame. In fact, the second choice would cause

counter-intuitive behavior: coercion ∀X .X?p → X ! from ∀X .X → X to ∀X .★ → ★ followed by

the opposite one ∀X .X ! → X?p (from ∀X .★→ ★ back to ∀X .X → X ) would not act as no-op.3 In
other words, the second choice would break the following equivalence ∀X .(c; d) = (∀X .c); (∀X .d),
which we think should hold. (We conjecture that these coercions are contextually equivalent under

our semantics, although it has not been proved.) PolyG
𝜈
by New et al. [2020] has closely related

operational semantics, although this rather big computation step is divided into multiple steps.

3.2 Syntax and Type System
Figure 1 presents the syntax and type system of 𝜆C∀

.

Let 𝜄 range over base types, which include at least Int and Bool. Let A, B range over types, which

are base types 𝜄, the dynamic type★, function types A → B, universal types ∀X .A, or type variables
X . Unlike recent calculi of polymorphic gradual typing [Ahmed et al. 2017; New et al. 2020; Toro

et al. 2019], we do not distinguish type variables and type names for simplicity. Let G,H range over

ground types, which represent type tags. Ground types are base types 𝜄, the function type ★→ ★,

the universal type ∀X .★, or type variables X . Let p, q range over blame labels, which represent

program points to identify where run-time checking fails. Let c, d range over coercions, which

are identity coercions idA, injections G!, projections G?p, function coercions c → d, sequential
compositions c; d, or universal coercions ∀X .c. A universal coercion ∀X .c binds the type variable
X in c. Let 𝑀 range over terms, which are: constants k including integers, booleans, and first-

order primitive functions; variables x; function abstractions 𝜆x :A.𝑀 ; function applications𝑀𝑀 ;

(recursive) type abstractions fix x = ΛX .𝑉 ; type applications 𝑀 A; coercion applications 𝑀 ⟨c⟩; or
run-time errors blame p. Let 𝑉 range over values, which are constants k, function abstractions

𝜆x :A.𝑀 , type abstractions fix x = ΛX .𝑉 , values with a type tag 𝑉 ⟨G!⟩, values wrapped by a

function coercion 𝑉 ⟨c → d⟩, or values wrapped by a universal coercion 𝑉 ⟨∀X .c⟩.
Although recursive type abstractions do not really add expressive power to the calculus (as they

could be expressed by using the dynamic type and a fixed-point combinator), we introduce them to

present some of the examples concisely. blame p stands for a run-time error raised by the failure of

a projection G?p.
Let E range over evaluation contexts, which give standard left-to-right call-by-value semantics.

Let Γ range over type environments, which are a sequence of (1) pairs of a variable and its type

x : A, (2) type variables X , and (3) type bindings X := A. We assume that all variables (x in Γ, x : A)
and type variables (X in Γ,X or in Γ,X := A) in a type environment are pair-wise distinct. Let Σ
range over stores, which are special type environments whose elements are only type bindings. We

often omit ∅ at the head of a type environment and write, e.g., X := Int, x : X for ∅,X := Int, x : X .
Terms 𝜆x :A.𝑀 and fix x = ΛX .𝑉 bind variable x in𝑀 and 𝑉 , respectively; fix x = ΛX .𝑉 , ∀X .A,

and ∀X .c bind type variable X in 𝑉 , A, and c, respectively. The set of free (type) variables in a

3
We show a more detailed comparison in Appendix.
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Syntax

Base Types 𝜄 ::= Int | Bool | · · ·
Types A, B ::= 𝜄 | ★ | A → B | ∀X .A | X

Ground types G,H ::= 𝜄 | ★→ ★ | ∀X .★ | X
Coercions c, d ::= idA | G! | G?p | c → d | c; d | ∀X .c

Terms 𝑀 ::= k | x | 𝜆x :A.𝑀 | 𝑀𝑀 | fix x = ΛX .𝑉 | 𝑀 A | 𝑀 ⟨c⟩ | blame p
Values 𝑉 ::= k | 𝜆x :A.𝑀 | fix x = ΛX .𝑉 | 𝑉 ⟨G!⟩ | 𝑉 ⟨c → d⟩ | 𝑉 ⟨∀X .c⟩

Evaluation Contexts E ::= □ | E [□𝑀] | E [𝑉 □] | E [□A] | E [□ ⟨c⟩]
Type environments Γ ::= ∅ | Γ, x : A | Γ,X | Γ,X := A

Stores Σ ::= ∅ | Σ,X := A

Type well-formedness Γ ⊢ A

Γ ⊢ 𝜄 (Tw_Base) Γ ⊢ ★ (Tw_Star)
Γ ⊢ A Γ ⊢ B

(Tw_Arrow)

Γ ⊢ A → B

X ∈ Γ or X := A ∈ Γ
(Tw_Var)

Γ ⊢ X
Γ,X ⊢ A

(Tw_Poly)

Γ ⊢ ∀X .A
Type environment well-formedness ⊢ Γ

⊢ ∅ (Tew_Empty)
⊢ Γ Γ ⊢ A

(Tew_Var)⊢ Γ, x : A

⊢ Γ
(Tew_Tyvar)⊢ Γ,X

⊢ Γ Γ ⊢ A
(Tew_Binding)⊢ Γ,X := A

Coercion typing Γ ⊢𝐶 c : A⇝ B

⊢ Γ Γ ⊢ A
(Ct_Id)

Γ ⊢𝐶 idA : Γ(A) ⇝ Γ(A)
⊢ Γ Γ ⊢ G

(Ct_Inj)

Γ ⊢𝐶 G! : Γ(G) ⇝ ★

⊢ Γ Γ ⊢ G
(Ct_Proj)

Γ ⊢𝐶 G?p : ★⇝ Γ(G)
Γ ⊢𝐶 c : A′⇝ A Γ ⊢𝐶 d : B⇝ B′

(Ct_Arrow)

Γ ⊢𝐶 c → d : (A → B) ⇝ (A′ → B′)
Γ ⊢𝐶 c : A⇝ B Γ ⊢𝐶 d : B⇝ C

(Ct_Seq)

Γ ⊢𝐶 c; d : A⇝ C
Γ,X ⊢𝐶 c : A⇝ B

(Ct_Cabs)

Γ ⊢𝐶 ∀X .c : ∀X .A⇝ ∀X .B

Term typing Γ ⊢𝑇 𝑀 : A

⊢ Γ ty(k) = A
(T_Const)

Γ ⊢𝑇 k : A
⊢ Γ x : A ∈ Γ

(T_Var)

Γ ⊢𝑇 x : A
Γ, x : Γ(A) ⊢𝑇 𝑀 : B

(T_Abs)

Γ ⊢𝑇 𝜆x :A.𝑀 : Γ(A) → B
Γ ⊢𝑇 𝑀1 : A → B Γ ⊢𝑇 𝑀2 : A

(T_App)

Γ ⊢𝑇 𝑀1𝑀2 : B
Γ, x : ∀X .A,X ⊢𝑇 𝑉 : A

(T_Tyfix)

Γ ⊢𝑇 fix x = ΛX .𝑉 : ∀X .A
Γ ⊢𝑇 𝑀 : ∀X .B Γ ⊢ A

(T_Tyapp)

Γ ⊢𝑇 𝑀 A : B[Γ(A)/X ]
⊢ Γ Γ ⊢ A

(T_Abort)

Γ ⊢𝑇 blame p : A

Γ ⊢𝑇 𝑀 : A Γ ⊢𝐶 c : A⇝ B
(T_Crc)

Γ ⊢𝑇 𝑀 ⟨c⟩ : B

Fig. 1. 𝜆C∀: Polymorphic coercion calculus



Is Space-Efficient Polymorphic Gradual Typing Possible? 9

term is defined in a standard manner. We define 𝛼-conversion in the standard manner and identify

𝛼-equivalent terms. We abbreviate fix x = ΛX .𝑉 to ΛX .𝑉 if x does not occur free in 𝑉 .

We write [𝑉 /x] for capture-avoiding substitution of𝑉 for x and [A/X ] for capture-avoiding type
substitution of A for X . We also use (type bindings in) a type environment as a type substitution

and write Γ(A) for the type defined by:

(∅)(A) = A (Γ, x : B) (A) = (Γ,X ) (A) = Γ(A) (Γ,X := B) (A) = Γ(A[B/X ])).
The type system consists of four judgment forms: type well-formedness Γ ⊢ A, which means that

type A is well formed under type environment Γ; type environment well-formedness ⊢ Γ, which
means that type environment Γ is well formed; coercion typing Γ ⊢𝐶 c : A⇝ B, which means that

c is a well-formed coercion from source type A to target type B; and term typing Γ ⊢𝑇 𝑀 : A, which
means term𝑀 is given type A under type environment Γ.
The rules for type well-formedness Γ ⊢ A and type environment well-formedness ⊢ Γ are

mostly straightforward. Since a type environment contains type variables and type bindings, a type

variable X is well formed under Γ if X ∈ Γ or X := A ∈ Γ (Tw_Var). If a type binding X := A or

a (typed) variable x : A is added to Γ, the type A has to be well formed under Γ ((Tew_Var) and

(Tew_Binding)). For example, ⊢ X := Int, Y := X → X , but not ⊢ Y := X → X ,X := Int because
∅ ⊢ X → X does not hold.

The rules for coercion typing and term typing are a straightforward adaptation of previous

work on coercions [Henglein 1994; Siek et al. 2015] and polymorphic gradual typing [Ahmed

et al. 2011; Igarashi et al. 2017]. As in the previous calculi of polymorphic gradual typing, these

rules take type bindings in a type environment into account. For example, if a store has X := A,
then 𝜆x :X .x should have type A → A, not X → X ; otherwise type preservation breaks in

Σ ⊲ (ΛX .𝜆x :X .x) A ↦−→ Σ,X := A ⊲ 𝜆x :X .x. As a rule of thumb, whenever a type annotation

appearing in a term is mentioned elsewhere in a judgment, the type environment is applied to get

the “real” type by expanding type bindings.

An identity coercion idA is a coercion from Γ(A) to itself. An injection is typed as a coercion from

Γ(G) to ★; conversely, a projection G?p is from ★ to Γ(G). A function coercion c → d is a coercion

from A → B to a function type A′ → B′
if c coerces A′

to A and d coerces B to B′
. A composition

coercion c; d, which applies c and d in this order, is from A to C if c coerces A to B and d coerces B
to C. Finally, a universal coercion ∀X .c is from a universal type ∀X .A to a universal type ∀X .B if c
coerces A to B under a type environment augmented with X . In (T_Const), ty is a (meta-level)

function which maps a constant k to a first-order type of the form 𝜄1 → 𝜄2 → · · · → 𝜄n (𝑛 ≥ 1).

3.3 Operational Semantics
Figure 2 defines the operational semantics of 𝜆C∀

. Reduction rules are about basic computation steps

and evaluation rules are about computation of subterms. As we already explained in Section 3.1,

the reduction and evaluation relations involve stores and are written Σ ⊲ 𝑀 −→ Σ′ ⊲ 𝑀 ′
and

Σ ⊲ 𝑀 ↦−→ Σ′ ⊲ 𝑀 ′
, respectively. In the case that the stores are the same on both sides, that is Σ = Σ′

,

we omit them: For example, the rule (R_Beta) is understood as Σ ⊲ (𝜆x :A.𝑀)𝑉 −→ Σ ⊲ 𝑀 [𝑉 /x].
(R_Delta) reduces an application of a primitive function. Here, 𝛿 is a meta-level partial function

from two constants to another and is supposed to preserve types in the sense that 𝑡𝑦 (k1) = 𝜄 → A
and 𝑡𝑦 (k2) = 𝜄 imply 𝑡𝑦 (𝛿 (k1, k2)) = A. (R_Beta) is standard 𝛽-reduction. (R_Id) means that

an identity coercion is an identity function. (R_Wrap) reduces a function application where the

function is wrapped by a function coercion c → d. The coercion c is applied to the argument and

the coercion d is applied to the return value. (R_Collapse) and (R_Conflict) represent type tag

checking. (R_Collapse) is the case that𝑉 passes the check because the ground types in the injection

and projection are the same; they are removed after reduction. (R_Conflict) is the case that𝑉 does
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Reduction Σ ⊲ 𝑀 −→ Σ′ ⊲ 𝑀 ′

k1 k2 −→ 𝛿 (k1, k2) (R_Delta)

(𝜆x :A.𝑀)𝑉 −→ 𝑀 [𝑉 /x] (R_Beta)

𝑉 ⟨idA⟩ −→ 𝑉 (R_Id)

(𝑉 ⟨c → d⟩)𝑉 ′ −→ (𝑉 (𝑉 ′ ⟨c⟩)) ⟨d⟩ (R_Wrap)

𝑉 ⟨G!⟩ ⟨G?p⟩ −→ 𝑉 (R_Collapse)

𝑉 ⟨G!⟩ ⟨H?
p⟩ −→ blame p if G ≠ H (R_Conflict)

𝑉 ⟨c; d⟩ −→ 𝑉 ⟨c⟩ ⟨d⟩ (R_Split)

Σ ⊲ ((fix x = ΛX .𝑉 )
−−−−−→
⟨∀X .c⟩) A −→ Σ,X := A ⊲ 𝑉 [fix x = ΛX .𝑉 /x]

−→
⟨c⟩ (R_Tybeta)

Evaluation Σ ⊲ 𝑀 ↦−→ Σ′ ⊲ 𝑀 ′

E ≠ □
(E_Blame)E[blame p] ↦−→ blame p

Σ ⊲ 𝑀 −→ Σ′ ⊲ 𝑀 ′
(E_Evctx)

Σ ⊲ E[𝑀] ↦−→ Σ′ ⊲ E[𝑀 ′]

Fig. 2. Operational semantics

not pass because the ground types in the injection and projection are different; the term is reduced

to blame p. (R_Split) splits a composition coercion into two consecutive coercion applications. In

(R_Tybeta),

−→
⟨c⟩ stands for a sequence of 0 or more coercion applications, i.e.,𝑀

−→
⟨c⟩ = 𝑀 ⟨c1⟩ · · · ⟨cn⟩.

(R_Tybeta) reduces a type application, in which the type abstraction may be wrapped by universal

coercions. The reduction generates a fresh type name, extends the store Σ by X := A, instead of

applying a type substitution, and removes all binders Λ𝑋 and ∀𝑋 at once, which means that the

type variables X bound by them are considered the same. Moreover, since the variable x bound

by the recursive type abstraction stands for the type abstraction itself, fix x = ΛX .𝑉 is substituted

for x. (E_Blame) reduces a term containing a run-time type error blame p; the current evaluation
context is discarded and the whole term is reduced to blame p. (E_Evctx) is standard, which allows

a subterm to be reduced.

3.4 Properties
We state two basic properties of 𝜆C∀

: determinacy of evaluation (Theorem 1) and type safety

(Theorem 4). Determinacy of evaluation is proved via determinacy of reduction. (We extend 𝛼-

equivalence to Σ ⊲ 𝑀 in a straightforward manner—by considering type variables defined in Σ
bound in 𝑀 . For example, X := Int ⊲ 42 ⟨X !⟩ and Y := Int ⊲ 42 ⟨Y !⟩ are 𝛼-equivalent and, thus,
identified.)

Lemma 1 (Determinacy of reduction). If Σ ⊲ 𝑀 −→ Σ1 ⊲ 𝑀1 and Σ ⊲ 𝑀 −→ Σ2 ⊲ 𝑀2, then
Σ1 = Σ2 and𝑀1 = 𝑀2.

Proof. By straightforward case analysis on Σ ⊲ 𝑀 −→ Σ1 ⊲ 𝑀1. □

Theorem 1 (Determinacy of evaluation). If Σ ⊲ 𝑀 ↦−→ Σ1 ⊲ 𝑀1 and Σ ⊲ 𝑀 ↦−→ Σ2 ⊲ 𝑀2,
then Σ1 = Σ2 and𝑀1 = 𝑀2.

Proof. By case analysis on Σ ⊲ 𝑀 ↦−→ Σ1 ⊲ 𝑀1. In the case of (E_Evctx), we use Lemma 1. □

Type safety follows from progress and preservation [Wright and Felleisen 1994]. We write ↦−→∗

for the reflexive transitive closure of ↦−→, and Σ ⊲ 𝑀 ↑ if there is an infinite evaluation sequence

starting from Σ ⊲ 𝑀 .

Theorem 2 (Progress). If Σ ⊢𝑇 𝑀 : A, then one of the followings holds:
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• 𝑀 = 𝑉 for some 𝑉 ,
• 𝑀 = blame p for some p, or
• Σ ⊲ 𝑀 ↦−→ Σ′ ⊲ 𝑀 ′ for some Σ′ and𝑀 ′.

Proof. By induction on the derivation of Σ ⊢𝑇 𝑀 : A. □

Lemma 2 (Preservation for reduction). If Σ ⊢𝑇 𝑀 : A and Σ ⊲ 𝑀 −→ Σ′ ⊲ 𝑀 ′, then
Σ′ ⊢𝑇 𝑀 ′

: A.

Proof. By case analysis on Σ ⊲ 𝑀 −→ Σ′ ⊲ 𝑀 ′
. □

Theorem 3 (Preservation for evaluation). If Σ ⊢𝑇 𝑀 : A and Σ ⊲ 𝑀 ↦−→ Σ′ ⊲ 𝑀 ′, then
Σ′ ⊢𝑇 𝑀 ′

: A.

Proof. By case analysis on Σ ⊲ 𝑀 ↦−→ Σ′ ⊲ 𝑀 ′
. The case for (E_Evctx) is proved by induction

on E. Use Lemma 2 if E is □. □

Theorem 4 (Type safety). If Σ ⊢𝑇 𝑀 : A, then one of the followings holds:
• Σ ⊲ 𝑀 ↦−→∗ Σ′ ⊲ 𝑉 for some store Σ′ and value 𝑉 ,
• Σ ⊲ 𝑀 ↦−→∗ Σ′ ⊲ blame p for some store Σ′ and blame label p, or
• Σ ⊲ 𝑀 ↑.

Proof. By Theorems 2 and 3. □

4 𝜆C∀ CANNOT BE MADE SPACE-EFFICIENT BY COERCION NORMALIZATION
As mentioned at the end of Section 2, a key property to achieve space-efficiency is that nested

coercions can be normalized into a simpler one. This property (adapted from Theorem 6 of Herman

et al. [2010]) can be formally stated as follows:

Proposition 5 (Size of coercions is bounded). For any closed well-typed term𝑀 , there exists a
natural number 𝑛 such that, for any term𝑀 ′, sequence of coercion applications ⟨c1⟩ · · · ⟨cn⟩ and store
Σ, if

• ∅ ⊲ 𝑀 ↦−→∗ Σ ⊲ 𝑀 ′ and
• 𝑀 ′ contains ⟨c1⟩ · · · ⟨cn⟩,

then there exists a coercion c such that c is contextually equivalent to c1; · · · ; cn and size(c) ≤ 𝑛.

This proposition means that (1) any coercion sequence ⟨c1⟩ · · · ⟨cn⟩ that appears during the

execution of a program 𝑀 can be normalized into a single coercion c in some way, and (2) c
behaves as c1; · · · ; cn and the size of c is bounded by a natural number n depending on only (the

type derivation of) the program 𝑀 . By normalizing all coercions at every evaluation step, the

fraction of the program state occupied by coercions can be bounded, which is what “space-efficient”

means in the literature. (To give a concrete space-efficient calculus, we would have to develop an

effective normalization procedure and an operational semantics that eagerly composes coercion

sequences—just as Bañados Schwerter et al. [2021]; Herman et al. [2007, 2010]; Siek et al. [2015]

did.)

However, Proposition 5 does not hold, that is, it is impossible to derive a space-efficient variant of

𝜆C∀
(by coercion normalization). This impossibility stems from the fact that a sequence X1!; · · · ;Xn!

of injection coercions
4
cannot be made smaller and there is a program that creates a growing

sequence of such injection coercions. In the rest of this section, we disprove Proposition 5 as

Theorem 6.

4
This coercion is well typed if Xi := ★ ∈ Σ for any i.
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We will define contextual equivalence of coercions to formally discuss whether a coercion can

be replaced by a smaller one without affecting the semantics of programs. However, as in the

example of 𝑒𝑣𝑒𝑛C/𝑜𝑑𝑑C in Section 2, what grows large is not a coercion but a sequence of coercion

applications. Therefore, we define contextual equivalence over sequences of coercion applications.

First, we define coercion sequences and coercion sequence typing.

Definition 1 (Coercion seqences). Coercion sequences cs are defined as follows:

cs ::= ⟨c⟩; cs | ⟨c⟩

Definition 2 (Coercion seqence typing). Coercion sequence typing rules are defined as follows:
Γ ⊢𝐶 c : A⇝ B

(Cs_One)

Γ ⊢𝐶𝑆 ⟨c⟩ : A⇝ B
Γ ⊢𝐶 c : A⇝ B Γ ⊢𝐶𝑆 cs : B⇝ C

(Cs_More)

Γ ⊢𝐶𝑆 ⟨c⟩; cs : A⇝ C

Coercion sequences are sequences of ⟨c⟩’s connected by semicolons. ⟨c⟩ coerces A to B if c
coerces A to B. ⟨c⟩; cs coerces A to C if c coerces A to B and cs coerces B to C.

Next, we define coercion contexts and contextual equivalence for coercion sequences to discuss

whether replacement of them affects program semantics.

Definition 3 (Contexts). Contexts C are defined as follows:

C ::= □ | 𝜆x :A.C | C𝑀 | 𝑀 C | fix x = ΛX .C | C A | C ⟨c⟩

Definition 4 (Coercion contexts). Coercion contexts are defined as pairs of term𝑀 and context
C. Then, (𝑀, C)[cs] is defined as follows:

(𝑀, C)[⟨c⟩; cs] = (𝑀 ⟨c⟩, C)[cs]
(𝑀, C)[⟨c⟩] = C[𝑀 ⟨c⟩]

As usual, a context is a term with a single hole and C[𝑀] represents a term obtained by textually

substituting𝑀 for the hole in C. If the hole is surrounded by fix x = ΛX .□, C[𝑀] is well defined
only if 𝑀 is a value 𝑉 . A coercion context is a pair of a term and a context, (𝑀, C). Intuitively,
(𝑀, C)[⟨c1⟩; · · · ; ⟨cn⟩] represents the term C[𝑀 ⟨c1⟩ · · · ⟨cn⟩].

Definition 5 (Contextual eqivalence for coercion seqences). Two coercion sequences
cs1, cs2 are contextually equivalent, written cs1

ctx

= cs2, if, for any coercion context (𝑀, C), type A, and
store Σ, Σ ⊢𝑇 (𝑀, C)[cs1] : A and Σ ⊢𝑇 (𝑀, C)[cs2] : A imply one of the followings:

• Σ ⊲ (𝑀, C)[cs1] ↦−→∗ Σ1 ⊲ 𝑉1 and Σ ⊲ (𝑀, C)[cs2] ↦−→∗ Σ2 ⊲ 𝑉2, for some values 𝑉1 and 𝑉2,
and stores Σ1 and Σ2,

• Σ ⊲ (𝑀, C)[cs1] ↦−→∗ Σ1 ⊲ blame p and Σ ⊲ (𝑀, C)[cs2] ↦−→∗ Σ2 ⊲ blame p, for some
blame label 𝑝 and stores Σ1 and Σ2, or

• Σ ⊲ (𝑀, C)[cs1] ↑ and Σ ⊲ (𝑀, C)[cs2] ↑.

Contextual equivalence, cs1
ctx

= cs2, means that for any coercion context (𝑀, C), if (𝑀, C)[cs1]
and (𝑀, C)[cs2] have the same type, both result in a value, raise the same blame, or diverge.

Next, we define the sizes of a coercion and a coercion sequence in order to discuss space

consumption.
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Definition 6 (Size of coercions). The size size(c) of a coercion c is defined as follows:

size(idA) = 1

size(G!) = 1

size(G?p) = 1

size(c → d) = size(c) + size(d) + 1

size(c; d) = size(c) + size(d) + 1

size(∀X .c) = size(c) + 1

Definition 7 (Size of coercion seqences). The size size(cs) of a coercion sequence cs is defined
as follows:

size(⟨c⟩; cs) = size(c) + size(cs) + 1

size(⟨c⟩) = size(c)
These sizes of a coercion and a coercion sequence are defined as the number of constructors

included in them. The size of a coercion sequence is defined so that ⟨c⟩; ⟨d⟩ and c; d has the same

size.

Finally, we prove the main theorem: There is a term that generates a coercion sequence of

unbounded size, which cannot shrink to a single coercion without modifying the program behavior.

Let CS(𝑀) be the set of coercion sequences in𝑀 .

Theorem 6 (Not space-efficient). There exists a closed well-typed term 𝑀 such that, for any
natural number n, there exist term𝑀 ′ and store Σ such that

(1) ∅ ⊲ 𝑀 ↦−→∗ Σ ⊲ 𝑀 ′, and
(2) there exist a coercion sequence cs ∈ 𝐶𝑆 (𝑀 ′), type B1, and type B2 such that

(a) Σ ⊢𝐶𝑆 cs : B1 ⇝ B2,
(b) size(cs) > 𝑛, and
(c) there does not exist a coercion c such that Σ ⊢𝐶 c : B1 ⇝ B2, cs

ctx

= ⟨c⟩, and size(⟨c⟩) <
size(cs).

Proof. Let𝑀 = (fix f = ΛX .𝜆x :X .f ★ (x ⟨X !⟩))★ (0 ⟨Int!⟩). Fix 𝑛. Let
𝑀 ′ = (fix f = ΛX .𝜆x :X .f ★ (x ⟨X !⟩))★ (0 ⟨Int!⟩ ⟨X1!⟩ · · · ⟨Xn!⟩), and
Σ = ∅,X1 := ★, . . . ,Xn := ★

where X1, . . . ,Xn are distinct type variables. (1) can be proved easily, so we omit its proof. We prove

(2). Let

cs = ⟨Int!⟩; ⟨X1!⟩; · · · ; ⟨Xn!⟩,
B1 = Int, and

B2 = ★.

(a) and (b) can be proved easily, so we omit proofs about them. We prove (c), which is equivalent to

“for any coercion c, if Σ ⊢𝐶 c : B1 ⇝ B2 and cs ctx

= ⟨c⟩, then size(⟨c⟩) ≥ size(cs)”. Fix c and suppose

Σ ⊢𝐶 c : B1 ⇝ B2 and cs ctx

= ⟨c⟩. Let C = □ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩⟨Int?p⟩. Then, we have
(0, C)[⟨Int!⟩; ⟨X1!⟩; · · · ; ⟨Xn!⟩] = 0 ⟨Int!⟩ ⟨X1!⟩ · · · ⟨Xn!⟩ ⟨Xn?

pn⟩ · · · ⟨X1?
p1⟩ ⟨Int?q⟩ and

(0, C)[⟨c⟩] = 0 ⟨c⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩.
Both

Σ ⊢𝑇 0 ⟨Int!⟩ ⟨X1!⟩ · · · ⟨Xn!⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ : Int
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and

Σ ⊢𝑇 0 ⟨c⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ : Int
are easily proved because Σ ⊢𝐶 c : Int ⇝ ★. Therefore, by ⟨Int!⟩; ⟨X1!⟩; · · · ; ⟨Xn!⟩

ctx

= ⟨c⟩, terms

0 ⟨Int!⟩ ⟨X1!⟩ · · · ⟨Xn!⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ and 0 ⟨c⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ have the same

result (a value, a blame, or divergence). Σ ⊲ 0 ⟨Int!⟩ ⟨X1!⟩ · · · ⟨Xn!⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ↦−→∗

Σ ⊲ 0 is clear, so 0 ⟨c⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ is also evaluated to a value, i.e., there exist store

Σ1 and value 𝑉1 such that Σ ⊲ 0 ⟨c⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ↦−→∗ Σ1 ⊲ 𝑉1. Thus, subterm 0 ⟨c⟩ is
also evaluated to a value, i.e., there exist store Σ2 and value 𝑉2 such that Σ ⊲ 0 ⟨c⟩ ↦−→∗ Σ2 ⊲ 𝑉2.

Hence by Theorem 1,

Σ ⊲ 0 ⟨c⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ↦−→∗ Σ2 ⊲ 𝑉2 ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ↦−→∗ Σ1 ⊲ 𝑉1.

To reach 𝑉1, the value 𝑉2 must be of the form 𝑉3 ⟨Xn!⟩ for some 𝑉3 and

Σ ⊲ 0 ⟨c⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ↦−→∗ Σ2 ⊲ 𝑉3 ⟨Xn!⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ .
Thus, Xn! is a subcoercion of c (this proof is omitted). Because

Σ2 ⊲ 𝑉3 ⟨Xn!⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ↦−→ Σ2 ⊲ 𝑉3 ⟨Xn−1?
pn−1⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ,
we have

Σ ⊲ 0 ⟨c⟩ ⟨Xn?
pn⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ↦−→∗ Σ2 ⊲ 𝑉3 ⟨Xn−1?
pn−1⟩ · · · ⟨X1?

p1⟩ ⟨Int?q⟩ ↦−→∗ Σ1 ⊲ 𝑉1 .

The same argument can be made for 𝑉3. Therefore, by induction on 𝑛, Xn!, . . . ,X1! and Int! are all
subcoercions of c, which means that c has at least (𝑛 + 1) leaves when it is viewed as an abstract

syntax tree. It is easy to show

size(c) ≥ 2(𝑛 + 1) − 1,

and

size(⟨c⟩) = size(c)
≥ 2(𝑛 + 1) − 1

= 2𝑛 + 1

= size(⟨Int!⟩; ⟨X1!⟩; · · · ; ⟨Xn!⟩).
□

Remark: In fact, it is impossible to distinguish X1!; · · · ;Xn! and X1!; · · · ;Xm! unless the context

has corresponding projections Xi?
p
for all 𝑖 . Since the term𝑀 used in the proof does not contain

projections Xi?
p
for any 𝑖 , coercion Int!;X1!; · · · ;Xn! can be normalized to a smaller coercion, say

Int!;X1! without changing the behavior. In general, however, it is not the case because we can write

a function that, given 𝑛, returns 0⟨Int!⟩⟨𝑋1!⟩ · · · ⟨𝑋𝑛!⟩ and a list of projections ⟨𝑋𝑖?
𝑝⟩. Then, a caller

can apply Xn?
p
, . . . , X1?

p
to observe if 0 ⟨Int!⟩ is wrapped by injections ⟨X1!⟩ · · · ⟨Xn!⟩ in this order.

5 RELATEDWORK
Polymorphic Gradual Typing. Protection of type arguments by dynamic sealing is the standard

approach to enforcing parametricity in gradual typing [Ahmed et al. 2011, 2017; Igarashi et al.

2017; Matthews and Ahmed 2008; New et al. 2020; Toro et al. 2019]. We, therefore, believe that

other calculi of polymorphic gradual typing suffer the same problem of accumulated type names

in a sequence of dynamic checks, as we will informally discuss below. Notice that some previous

work [Ahmed et al. 2011, 2017; New et al. 2020; Toro et al. 2019] distinguishes between type variables

and dynamically generated type names, unlike our calculus 𝜆C∀
. We use 𝛼 , 𝛽 , 𝛾 for denoting type

names.
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Dynamic sealing has been introduced first by Ahmed et al. [2011] to polymorphic gradual

typing—although the general idea of dynamic sealing as an alternative for statically enforced type

abstraction can date back to [Matthews and Ahmed 2008; Morris 1973; Pierce and Sumii 2000]—and

their calculus is refined to a polymorphic calculus 𝜆B by Ahmed et al. [2017]. The calculus 𝜆B

implements run-time coercion (except for sealing and unsealing) by cast 𝑀 : A
p

=⇒ B, which

coerces a value of type A to type B, and dynamic sealing and unsealing by conversion 𝑀 : A
𝜙
=⇒ B,

where a conversion label 𝜙 signifies that the conversion seals (𝜙 = −𝛼) or unseals (𝜙 = +𝛼) a type
argument with type name 𝛼 . Using these constructors, as in our calculus 𝜆C∀

, the calculus 𝜆B also

allows the accumulation of sealing as: 𝑉 : Int
−𝛼
=⇒ 𝛼 : 𝛼

p1
=⇒ ★ : ★

−𝛽
=⇒ 𝛽 : 𝛽

p2
=⇒ ★ : ★

−𝛾
=⇒ 𝛾 : · · · ,

where 𝛼 seals Int, and 𝛽 and 𝛾 seal★. Removing intermediate conversions (e.g., one for 𝛽) from this

accumulated sealing does not preserve the semantics. The calculus System FC proposed by Igarashi

et al. [2017] also enforces parametricity by the same approach. Thus, the space necessary to run

programs in 𝜆B and those in System FC cannot be bounded in general, as in our calculus 𝜆C∀
.

Toro et al. [2019] derived a polymorphic calculus GSF𝜀 by Abstracting Gradual Typing (AGT)

[Garcia et al. 2016], which is a methodology to design gradually typed calculi systematically.

Languages derived by AGT use evidence to justify coercion. Evidence is a pair of types ⟨A, B⟩ which
intuitively represents that coercion from A to B might be successful. Evidence is gradually refined

into more “precise” types [Wadler and Findler 2009] (i.e., types in which there are fewer occurrences

of the dynamic type) as the program execution proceeds, and if A and B become inconsistent,

the run-time system reports an error. For parametricity, Toro et al. extended evidence to pairs of

evidence types which can accumulate type names. For example, an evidence type 𝛼𝛽 Int
means that

𝛼 seals 𝛽 and 𝛽 seals Int. Thus, we can describe also in GSF𝜀 a sealing sequence that works as a

counterexample to space-efficiency.

The calculus PolyC
𝜈
proposed by New et al. [2020] supports term-level sealing and unsealing

operations. Thus, PolyC
𝜈
enables us to choose which terms are sealed, unlike other calculi, where

sealing is controlled by the semantics. It is possible to run programs in PolyC
𝜈
space-efficiently if

no sealing is used, but it results in sacrificing parametricity.

Space-efficient Gradual Typing. Herman et al. [2007, 2010] pointed out the space consumption

problem in gradual typing. They defined coercion composition and dynamic semantics for eager

composition. Moreover, they proved that the space that a program in their calculus consumes is

bounded. However, an algorithm for composition normalization is not clear in their work because

it is defined as a set of equations.

Siek et al. [2015] proposed a space-efficient coercion calculus 𝜆S, which also has both coercion

composition and eagerly composing semantics. They defined space-efficient coercions, which is a

kind of canonical forms of coercions. Their composition is defined on space-efficient coercions

as a recursive function so that it can be computed algorithmically. Kuhlenschmidt et al. [2019]

implemented the Grift compiler for a gradually typed 𝜆-calculus, by using space-efficient coercions.

The Grift compiler does not fully benefit from space-efficient coercions in that coercions at tail

positions do not normalize. Later, Tsuda et al. [2020] proposed an implementation technique to

normalize coercions at tail positions by using coercion passing translation.

As another approach to the space-efficiency problem, Siek and Wadler [2010] introduced three-

some casts to a cast (rather than coercion) calculus, another common intermediate language for

gradual typing. More recently, Bañados Schwerter et al. [2021] discussed space-efficiency of AGT

using Runtime Language (RL) of GTFL≲ , which is a gradually typed calculus with records and

subtyping, proposed by Garcia et al. [2016]. In the AGT setting, type conversion is represented by

evidence and composition of evidence is called consistent transitivity [Garcia et al. 2016]. Bañados
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Schwerter et al. proved that a sufficient condition that RL can be made space-efficient is that the

composition is associative and bounded. As far as we know, all the previous work for space-efficient

gradual typing has been limited to a simply typed setting (with subtyping).

Coercions on Polymorphic Types. Coercions are studied as a technical device to give the semantics

of subtyping [Breazu-Tannen et al. 1991; Mitchell 1984] or more general type conversion [Luo

1999; Swamy et al. 2009]. A sophisticated coercion language for parametric polymorphism has

been studied by Cretin and Rémy [2012], who unify previous work [Breazu-Tannen et al. 1991;

Mitchell 1988; Rémy and Yakobowski 2010] on coercions for parametric polymorphism. Our setting

does not need such sophistication, though, mainly due to the separation of gradual typing and

polymorphism.

6 DISCUSSION
We have proposed a polymorphic coercion calculus 𝜆C∀

, a polymorphic extension of the existing

coercion calculus 𝜆C with dynamic sealing to enforce parametricity. We have proved that some

coercions do not have compact forms due to interaction with dynamic sealing and the dynamic type

and thus conclude that a space-efficient variant of 𝜆C∀
cannot be derived—at least, by following

the same approach by Herman et al. [2007, 2010]; Siek et al. [2015]. We believe that this result can

be adapted to other existing calculi for polymorphic gradual typing.

Theorem 6 relies on the fact that a sequence of injection coercions of the form X ! can be arbitrarily
large. We conjecture that such sequences are the only obstacle to space-efficient coercions and

there is a version of 𝜆C∀
, which is mostly space-efficient. We expect that we can formally show that

a calculus is mostly space-efficient by using a tweaked size function in which the size of a sequence

of injections is set to be a constant.

Another observation about Theorem 6 is that, to form a sequential composition of injections, we

need an injection whose source type is ★, as the target type of an injection is always ★. Since ★ is

not a ground type, such an injection has to be of the form 𝑋 ! where 𝑋 := ★ in the store. Similarly, a

sequence of projections can be formed only by 𝑋?
𝑝
with 𝑋 := ★.

Thus, we also conjecture that forbidding the dynamic type as a type argument will lead to a space-

efficient calculus. Although it is theoretically interesting future work to prove such a conjecture,

we expect that the restriction is too severe in practice—especially when dynamically typed code

accesses polymorphically typed code through the dynamic type. It is likely that dynamically typed

code would have no idea what type argument to pass and, as argued by Ahmed et al. [2011], passing

the dynamic type to polymorphic functions seems to be a reasonable choice.

It is also an interesting question whether we can strike a balance between (space) efficiency

and parametricity by reducing the overhead of coercions and dynamic sealing by other means. A

possible approach is hinted by Igarashi et al. [2017], who suggested that type arguments should be

sealed only when they interact with the dynamic type.
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A COMPARISON OF TWO SEMANTICS FOR UNIVERSAL COERCIONS
Let

𝑉1 = ΛX .𝜆x :X .x

𝑀2 = 𝑉1 ⟨∀Y .Y?p1 → Y !⟩ ⟨∀Z .Z ! → Z?p2⟩ .

Under our semantics

Σ ⊲ (ΛX .𝑉 ) ⟨∀X .c1⟩ · · · ⟨∀X .cn⟩ A ↦−→ (Σ,X := A) ⊲ 𝑉 ⟨c1⟩ · · · ⟨cn⟩

term𝑀2 Int 0 reduces to 0 as follows.

∅ ⊲ 𝑀2 Int 0 = ∅ ⊲ (𝑉1 ⟨∀X .X?p1 → X !⟩ ⟨∀X .X ! → X?p2⟩) Int 0
↦−→ X := Int ⊲ (𝜆x :X .x) ⟨X?p1 → X !⟩ ⟨X ! → X?p2⟩ 0
↦−→ X := Int ⊲ ((𝜆x :X .x) ⟨X?p1 → X !⟩ (0 ⟨X !⟩)) ⟨X?p2⟩
↦−→ X := Int ⊲ ((𝜆x :X .x) (0 ⟨X !⟩ ⟨X?p1⟩)) ⟨X !⟩ ⟨X?p2⟩
↦−→ X := Int ⊲ ((𝜆x :X .x) 0) ⟨X !⟩ ⟨X?p2⟩
↦−→ X := Int ⊲ 0 ⟨X !⟩ ⟨X?p2⟩
↦−→ X := Int ⊲ 0

The same term would reduce to blame p1 under the following reduction rule

Σ ⊲ (𝑉 ⟨∀X .c⟩) A ↦−→ (Σ,X := A) ⊲ (𝑉 X ) ⟨c⟩

https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/1596550.1596598
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/3290330
https://doi.org/10.4230/LIPIcs.ECOOP.2020.8
https://doi.org/10.1145/99370.99404
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1007/978-3-319-89884-1_1
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as follows.

∅ ⊲ 𝑀2 Int 0 = ∅ ⊲ (𝑉1 ⟨∀Y .Y?p1 → Y !⟩ ⟨∀Z .Z ! → Z?p2⟩) Int 0
↦−→ Z := Int ⊲ (𝑉1 ⟨∀Y .Y?p1 → Y !⟩ Z) ⟨Z ! → Z?p2⟩ 0
↦−→ Z := Int, Y := Z ⊲ (𝑉1 Y ) ⟨Y?p1 → Y !⟩ ⟨Z ! → Z?p2⟩ 0
↦−→ Z := Int, Y := Z,X := Y ⊲ (𝜆x :X .x) ⟨Y?p1 → Y !⟩ ⟨Z ! → Z?p2⟩ 0
↦−→ Z := Int, Y := Z,X := Y ⊲ ((𝜆x :X .x) ⟨Y?p1 → Y !⟩ (0 ⟨Z !⟩)) ⟨Z?p2⟩
↦−→ Z := Int, Y := Z,X := Y ⊲ ((𝜆x :X .x) (0 ⟨Z !⟩ ⟨Y?p1⟩)) ⟨Y !⟩ ⟨Z?p2⟩
↦−→ Z := Int, Y := Z,X := Y ⊲ blame p1
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