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A Definition: Polymorphic Coercion Calculus /\CXW

A.1 Syntax
Base types L Blame labels p, ¢ Type variables X,Y,Z
Types A,B,C = (|x|A—=>B|VXA|X |«
Ground types G, H = (|x—*|VXH|X|«
Coercions c,d = ida| G| G |a |aT|c—=d|c;d|VX.c| LY 5
No-op coercions ' u= idala jat | =dl | VXl |l dt
Terms M = kl|lz| X AM|MM|AX.(M:A)|MA|M(c)|blamep
Values V o= k| X AM|AX.(M:A) | V(G) | Vi{a™) | V{c—d)| V{(VX.c)
Evaluation frames E == OM|VO|OA|O(C)
Evaluation contexts F == O|FM|VF|FA|F{c)
Contexts CC n= O | /\IACC | CcM | MCC ‘ AX(CC : A) | CcA ‘ CC <C>
Type environments r == 0|Tz:A|T,X
Stores Y ou= 0]|3,a:=A

Definition A.1 (Non-Dynamic Types). We use metavariables A, B, and C to denote types that are not the
dynamic type *.

Definition A.2 (Free Type Variables and Type Substitution). We define the notion of free type variables in
a standard way. The notation ftv(A) denotes the set of type variables occurring free in type A. We write
A[X := B] for capture-avoiding substitution of type B for free type variable X in type A. We write M[X := q]
and ¢[X := o] for substitution of type name « for free type variable X in term M and coercion ¢, respectively.
We write M[X := %] and ¢[X := «] for substitution of type * for free type variable X in term M and coercion ¢,
respectively. It is defined in a standard manner, as substitution of type names, except for the case that coercion
¢ is a projection or injection; in such a case, the substitution of x is defined as follows:

id, (if G = X)
G (if G # X)

GIX = #] def idy (if G =X)
R G (if G#£X)

G?P[X =+ ¥ {

Note that V[X := ] is not a value in general because, if V = V/(X!), then V[X := %] = V'[X := «|(id,), which
is not a value. However, if V is closed, it contains no coercion of the form X! or X7? for any type variable X
free in V, and, therefore, V[X := ] is still a value.

Definition A.3 (Types and denotations of constants). We assume a meta-level function ty that assigns a
first-order type of the form ¢; — 13 — -+ = 1p(n > 1) to every constant, and a meta-level partial function ¢
that maps pairs of constants to constants. We also suppose d to respect function ty in the sense that, for any
constant k; and ke, if ty(k1) = ¢ — A and ty(ke) = ¢, then §(k;, ko) is defined and ty(5(k1, ko)) = A.

Definition A.4 (Notation for Type Environments and Stores). We write dom(I") for the set of variables and
type variables bound by type environment I', and dom(X) for the set of type names bound by store X.. We use
the notations T'1#I'y and 31#35 to denote that their domains are disjoint, that is, dom(T';) N dom(T'y) = (
and dom(X;) N dom(Xs) = @, respectively. We write 7 O g if and only if « := A € X5 implies a:= A € ¥
for any o and A. Let A contains only type variables. We write I'\ A for the environment obtained by removing
all type variables in A from T'.

A.2 Dynamic semantics

Definition A.5 (Reduction). The reduction relation — is a binary relation over pairs of a store and a term.
Tt is the smallest relation satisfying the rules shown in Section B2 (where stores ¥ are omitted if they are not



important). We use the notation —* to denote the reflexive, transitive closure of —, and ¥ > M 1} to denote
that term M diverges under store X, that is, for any %’ and M’ such that ¥ > M —* X/ > M’, there exist
some X" and M” such that X' > M — X" > M"”. We may write —¢ and —, to emphasize the reduction
in ACY, .

P

A.2.1 Coercion generation function ‘ coercet (A) = ¢, coerce; (A) = c‘

coercet (1) = id,
coercet (x) = ids
coercet (A — B) = coerce, (A) — coercel (B)
coercet (VX.A) = VX.(coercef(A))
coercet (X) = idx
coercef (B) = idg iff#a
coercet (o) = aT
coerce; (1) = id,
coercey (x) = idy
coerce, (A — B) = coercet(A) — coerce, (B)
coerce (VX.A) = VX.(coerce, (A))
coerce; (X) = idx
coercey (B) = idg if B # «
coerce, (o) = a~
A.2.2 Reduction |S> M — ¥ o M|
krke — (K1, ko) (R_DELTA_C)
A AM)V — Mlz:=V] (R-BETA_C)
Vida) — V (R_ID_C)
(Vie—=ad) V! — (V(V'{c)))(d) (R-WRraAP_C)
V(GHY(G?) — V (R-CoLLAPSE_C)
V(G (H?) — blamep itG#H (R_ConrricT_C)
Via™){at)y — V (R-REMOVE_C)
Vie;dy —  Vi{c)(d) (R-SpLIT_C)
V(L% . 5) — blamep (R-FAIL_C)
(AX.(M : Ag))(VX.c)x — (M{c))[X := 4] (R_TYBETADYN_C)

YE(VX.c):VX.Ag ~ VX . A, a ¢ dom(X)

S5 (AX.(M : 4o))(VX.c) B B
— Y, a:=B> (M{c))[X = a]{coercet (A, [X = a]))

(R-TYBETA_C)

~>

oM — Y > M
Yo E[M] — Y E[M']

E[blame p] — blamep (R_BLAME_C) (R_.CTx_C)

A.3 Type system

This section defines typing rules in )\Cynp. We may write X | T' ko M : A for typing judgment ¥ |T' - M : A
in )\C,Vnp for clarity.



A.3.1 Type well-formedness |¥ |[T'F A

SITHA  S|THB

Y|k (Tw_BASE) Y |TF % (TW_STAR) (Tw_ARROW)
S|THA—B
a € dom(X) Xel YIILXEFA
Tw_NAME ————— (TwW_VAR — 7 ° (Tw_PoLy
SITra ) SIS ) ST )

A.3.2 Store well-formedness

X T|I0FA a ¢ dom(Y)
FX a:=A

F 0 (SW_EMPTY) (Sw_BINDING)

A.3.3 Type environment well-formedness

YET S|ITHA z ¢ dom(T")
YFET,z: A

Y+ 0 (TEW_EMPTY) (TEW_VAR)

SFT X ¢ dom(T)
SHT, X

(TEW_TYVAR)

A.3.4 Coercion typing ‘ S|ITEec: A~ B‘

FY  SHD  X|THA FY S+  X|T+HA S|I'+B
. (CrIp_C)
ST Fida:A~ A S|T+1h ,:A~B

(CT_FAIL_C)

FX YET SITHG X YT Y|ITHG
(CtINJ_C)
SITEG': G~ SITHEG?:x~ G

(CT_PrOJ_C)

XY YHT a:=A X
YITFa :A~a

X YT a:=A X
SITFat:a~A

(CT_CONCEAL_C)

(CT_REVEAL_C)

YITkFc¢: A~ A Y| TFd:B~ B Y, XkFc:A~B

Ct_ArRROW_C Cr_ALL_C
SITrcod (Ao B w @ oB) | ) ST wewaAnwx g (CTARC)
SIThkc:A~B S|Tkd:B~C
CT_SEQ_C
Y|Tke;d: A~ C (Cr-580-C)
A.3.5 Coercion sequence typing | X - @ :A~ B
YH{Y: A~ B ¥ Fec:B~C
SHEP: A~ A (CT-Ni-C) ) oF e (CT_CoNs_C)
YE(e),(c): A~ C
A.3.6 Term typing |X|T'F M: A
Y OSET k) =A FY SFT  12:A€eT
T_VAR_C
SITFk:A (T-Const.C) SITFa:A ( )
| Iz:AF M: B | I'+- M :A— B YITHFM:A
D (T_ABs_C) | LAz | 2 (T_App_C)

S|TFA:AM:A— B S|TF M M :B



SIT,XFM:A
SITFAX.(M:A):VX.A

S|ITHM:VX.B S|THA
ST+ MA:B[X = 4]

(T_TyaBs_C) (T_Tyaprp_C)

FX YT YITHA
Y|T F blamep: A

YITHFM:A Y| Tke¢:A~B
Y|+ M{c): B

(T_-BLAME_C) (T_Crc_C)

A.4 Context typing |¥ ¢ Co: (I'F A) = (I + B)

YreO0:TFHA) = (T'FA) (CrxT-HOLE_C)

Yre Co:TFA) = T,2: AFB)
Yhte A:ACo:(THA) = (IT'FA — B)

(CtxT_ABs_C)

SteCo:(TFA)=T'+FB—-C) X|IVbe M:B
Y ke CcM(Fl—A):>(F/|—C)

(CTxT_-APP1_C)

S| IVke M:B—C Yte Co:(THA) = (I"F B)

C _AprpP2_C
Yo MCo:(THA) = (I"FO) (CtxT_APP2_C)

She Co:t(THA) = (I, X - A"
S ko AX.(Co: AN): (TF A) = (I' FVX.A)

(CtxT_-TyABS_C)

SteCo:(THA) = I'FVX.B) S|k A
She CcA:(TFA) = (I'F B[X := 4]

(CTxT_TyAPP_C)

SheCo:(THA)=(I'FB)  S|IVbgc:BwC
S ke Cole): (DHA) = (I'F C)

(CtxT_-CrC_C)

A.5 Logical relation

Definition A.6 (Mappings). We use metavariable o* to denote type names or the dynamic type . Metavari-
ables p, k, and 6 range over finite mappings from type variables to type names or x (i.e., types ranged over by
a*), ones from type names to relations in (J,,~, Rel,, and ones from variables to pairs of values, respectively.
For X ¢ dom(p), @ € dom(k), and z ¢ dom(), we write p{X +— o*}, k{a — R}, and 0{z — (V1, Vo)}
for the mapping that is the same as p, k, and 6 except that X, «, and z is mapped to a*, R, and (Vq, V3),
respectively. We write §' and 02 for the substitutions that map variable z to values Vi and Vs, respectively, if
6 maps z to (Vi, Va).

defines the logical relation, and defines the auxiliary definitions for it.

A.6 Contextual equivalence

Definition A.7 (Contextual equivalence for terms). Terms M; and Mo of type A are contextually equivalent
ctx

under store ¥ and type environment I', written X | T' Fo My = My : A, if X | T ke My : AandX | T ke Myt A
and, for any context Cc and type B, ¥ k¢ Co: (T'+ A) = (0 + B) implies one of the followings:

e X>Co[M] —§ E1> Vi and ¥ b Co[Ma] —% Yo > Vs for some values Vq and Vs, and stores ¥y and
227

o X Co[M] —¢ X1 > blamep and ¥ > Co[Ma] —¢ Xo > blame p for some label p, and stores ¥; and
22, or

e XD CC[Ml] 'ﬂ and X > Cc[MQ] ﬂ



Atom,, [A1, A2]
Atom?™ [A,, As]
Atom [A] p
Atom™™ [A4] p
Rel, [A41, A2]

Rel,
World,,

Wl g n W2

)

>(n + 1,31, %,, H)

>R

WEH (Oé,Al,AQ,R)

{(W, My, M) | W € World, A W.X1 |0 F My : Ay A W.Es |0 F My: Ao}
{(W, Vy, Vo) | (W, Vq, Vo) € Atom, [A1, A2]}
UnZO Atom,, [p(A4), p(4)]
U0 Atom;™ [o(4), p(4)]
{R C Atom}? [y, Ao |
V(Wh, Vi, Vo) € R.Y Wo 3 Wy, (W, V1, Va) € R}
Ua, 4, Rely [A1, A2]

{(m,X1,%9,k) € Nat x TNStore x TNStore x (TyName — Rel,,) |
m<nAFYX AFXs AVa € dom(k). k(a) € Rely, [E1(a), Za(a)]}

U0 World,,

{(W,Ml,Mg) S Rl Wn< n}
{a = |k(a)], | @ € dom(k)}

Wl.n§ Wg.n AN Wl.Zl 2 WQ.El AN Wl.EQ 2 WQ.EQ A\ Wl.ﬁg LWQ./{J Wi.n A\
W1, Wy € World

Win=Wen—n A Wi J W,

Va € dom(ks). k1(a) = ka(a)

(n, 21,52, [K]n)

{(W, M, M) | Wen>0 = (»W, M, M) € R}
(W, (W.E,a:=Ay),(W.Eg, a0 := Ag), W.k{a — R})

Figure 1: Auxiliary definitions for logical relation.

Definition A.8 (Contextual equivalence for coercion sequences). Coercion sequences (c) and (d) from type A to
C

— ctx ——

type B are contextually equivalent under store X and type environment T, written ¥ |T' F (¢) = (d) : A ~ B,
if ¥ |T ke Aw:A.x@Cg)\x:A.x@:A% B.
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Ve = {(W, Vi, Vo) € Atom"™ []p|3k. Vi=k A Vo=k}

VA — B]p © (W, Vi, Va) € Atom™ [A = B]p |YW' 3 W.VV/, Vi.
(W', VI, V3) € V[A]lp = (W', Vi V{, V2 V3) € €[B] p}
VIVX.A] p © (W, Vi, Va) € Atom™ [VX.A]p |
(V W’ Q w. VBl,B27R, Ml,M27Ol.
W/.El | 0 FB, A W/.EQ | 0+ B A R € Rely:.p, ﬂBl,Bgﬂ A\
W' S ViBy — W'.31,a:=B; > Mi{coercel (p(A)[X = a])) A
W' S VoBy — W35, a0 := By b May(coercet (p(A)[X = al))
= (W' B («a,B1,Bo, R), My, M) € »E[A] p{X — a}) A
VW 3 W. (W, Vix, Vax) € E[A] p{X — *}}
VIXlp E Vp(X)]p
Va]p CE (W, Vila), Vala™)) € Atom™ [a] 0| (W, Vi, Va) € »(W.x(a))}
V[« p CE LW, Vi(GY), Va(GY) € Atom™ [«] 0 | (W, Vi, Va) € »V[G] 0}
E[A]p © (W, My, My) € Atom[A]p |V n < Won.
(VZl, Vi. Wi My, —" Y10 Vi =
3 W/, Vo, W.Xa> My —* WS> Vo AW J,, W A
WX =X A (W/, Vi, Vg) € V[[A]] p) N
(VZl,p. Wi My —" ¥1p> blamep — 3. W.Xo> My —* Yo blamep)}
G [0] C{w,0,0)| W e World}
Q[[F,a;A]] dgf {(W70{$ H(V17V2)}7p)‘(W567p) € g[[r]] A (Wv VlvVQ) € V[[A]]p}
G[r, X] ©{(W,0,0(X = a}) | (W.0,p) € G[T] A o € dom(W.k)} U
{(W,0,p{X = x}) | (W,0,p) € G[I']}
S[0] < World
S[E, o= A] AW e S[X) | WEi(@)=A A W.Sy(a)=A A W.k(a) = [V[A]O]w.a}
SITFM =M:A ¥ SITFMAAS|TEF M:AA

VW,@,p. W e S[[E]] A (ervp) € g[[F]] = (va(el(Ml))vp(02(M2))) € g[[A]]p

SITFMa~M:A < S|THM <M:AANS|THM=<M:A

Figure 2: Logical relation.
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B Definition: Space-Efficient Polymorphic Coercion Calculus )\San

B.1 Syntax
Types A,B,C = |x|A—=B|VX.A|X |«
Ground types G H = i1]|lx—o*|VXx|X|a
Space-efficient coercions st = GM™;blb
Possibly blaming coercions b = 1P|
Intermediate coercions i,7 = g¢;G!|g

Ground coercions g,h = id|s—=t|VX.s,,t
Terms M = klz| e AM|MM|AX.M|MA| M(s)|blamep
Values V u= U|U(g;GHY|U(s—1t)| UNX.s,t)

Uncoerced values U 2= k| :AM|AX.M

Evaluation frames FE == OM|VO|OA

Contexts Cs = O|A:ACs|CsM | MCs|AX.Cs|CsA|Cs{(s)
Type environments r == Q|z:A|T,X

Stores Y ou= 0]3,a:=A

Definition B.1 (Free Type Variables and Type Substitution). We define the notion of free type variables as
well as type substitution A[X := B] and M[X := a] as those in AC},,. The notation M[X := ] and s[X := ]
denote the term and space-efficient coercion obtained by substituting type * for free type variable X in term M
and coercion s, respectively. The term M[X := %] is defined in a standard manner, and space-efficient coercion
s[X := «] is defined as follows (only the interesting cases are shown):

b[X =] (if G = X)

Pop)[X =] %
(G775 b)[X == +] {G?P;(b[X =x]) (if G #X)

gIX = 4] (if G = X)

. ] def
(93 GH[X =+ {(g[X =x]); Gl (if G # X)

Note that V[X := «] is a value if value V is closed.

We write A[o := B] for the type obtained by replacing type name « in type A with type B. The notation
Y(A) denotes the type obtained by replacing type names in A with the corresponding types associated by store
3. Formally, it is defined as follows:

0(4)
(B,a:=B)(4) = X(Ala:=B)]).
We also write X(T") for the type environment obtained by mapping every binding z : A in type environment I'

to z : X(A).

B.2 Dynamic semantics

Definition B.2 (Reduction). The reduction relation — is the smallest relations satisfying the rules in Sec-
tion BZ222. We use the notation —* to denote the reflexive, transitive closure of —, and X > M 1} to denote
that term M diverges under store ¥. We may write —s and —% to emphasize the reduction in )\San.

12



B.2.1 Coercion composition

(Gib)st = Gi(bst)
1Pst = 1P
ig P = 1P
is(h;HY) = (ish); H!
igid = i
(9: G5 (GM5b) = g35b
(g; G g (H™;b) = 1P if G+H
idst = t ift£ 1P At (h; H)At#id
(s—=t)s(s" =>t) = (s'ss)—(tst)
(VX.81,, 8) s (VX.t1,, ) = VX.(s18t),, (s2512)

B.2.2 Reduction |[S>M — X' > M']

krky — (ki ko) (R_DELTA_S)
Az:AM)V — Mlz:="V] (R_BETA_S)
Uld) — U (R_ID_S)
(Us—=t) V. — (U(V{s))(¢) (R-WRAP_S)
U(L?)y — blamep (R_FAIL_S)
M(s)(t) — M(sst (R-MERGE_S)
(AX.M)x — M[X =% (R-TYBETADYN_S)
(AX.M)YVX.s,,tyx — (M[X :=x])(¢t) (R_-TYBETADYNC_S)
Y (AX. M)A — X a:=Ap> M[X :=q] (R-TYBETA_S)
where o ¢ dom(X)
Yo (AX.M)(¥VX.s,, ) A — Z.a:=Ap> (M(s))[X :=q] (R-TYBETAC_S)
where o ¢ dom(X)
E[blame p] — blamep (R-BLAMEE_S) (blame p)(s) — blame p (R_-BLAMEC_S)
oM — ¥ M
So M — Yo Mg oEs) o M{s) — %o M) -CTXOS)

Y E[M] — ¥ > E[M]
(M is not a coercion application.)
B.3 Type system

This section defines typing rules in )\S,Vnp. Note that the notations for type environments and stores (dom(I"),
dom(X), T1#0s, and X1#%5) as well as the well-formedness rules for types, stores, type environments are
defined in the same way as those in )\CYW. We may write X | T' kg M : A for typing judgment ¥ |T' + M : A
in )\San for clarity.

B.3.1 Type well-formedness | |T'F A

S|I+A  X|I+B

Y|k (Tw_BASE Y|k % (Tw_STAR Tw_ARRO
Tk ) T ) ST Ao (TwAROw)
a € dom(X) Xerl YII,XEA
Tw_N —— == (Tw_VAR — 7 °~ (Tw_Po
Y |l'ka (Tw-NAME) |I'EX ( ) Y| FVX.A (Tw-Pory)
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B.3.2 Store well-formedness

X LI0FA a ¢ dom(X)
FX a:=A

F 0 (Sw_EMPTY) (SW_BINDING)

B.3.3 Type environment well-formedness

SHT Y|ITHA z ¢ dom(T")
SFD,z: A

Y+ 0 (TEW_EMPTY) (TEW_VAR)

SET X ¢ dom(T")
SET,X

(TEW_TYVAR)

B.3.4 Coercion typing ‘ YITEs: A~ B‘

/ / /
(A# A" - B and A #VX.A") Ey OFT DITHA 0|THB

FX p-T E|F|‘A (CT,FAIL,S)
Cr_Ip_S . A
SITF id:5d) - 5@ OrS) BIDF L7 A5
SIDFg:A~%G) $|TFG SITFbO:5(G)~A S|TFG
Cr_INJ_S CT_PrROJ_S
ST F g;Gl:Awx (CT-INgS) SITFGP:h:rw A (CT-PROJS)
YITEs: A~ A I THt:B~ B
CT_A S
ST Fsoi (AsB) = (45 By (CT-ARROWS)
YITLXFs:A~ B YIT F t:AX ;=% ~ B[X :=
| ) S | [ *] [ *] (CT,ALL,S)
S|TF VX5, t:VX.Aw VX3
B.3.5 Term typing |X | F M : A
X T ty(k) = A X 0T z:A el
T_VAR_S
SITFE:A (T-Const.S5) STrFa:A (T-VAR-S)

S|T,z:3(4A) - M:B SITHM:A-B S|TFM:A

T_ABS_S _App_
ST F e AM 5(A) o 5 A8 ST F M M:B (T-App-S)
DILXEMA DITEMAXB  BITEA
SITFAXM:VX.A - . SITFMA:BX =x(4)] '~ -
-y FT T A SITFM:A S|TFs:AwB
/ i (T_BLAME_S) | | i (T_Crc-S)

S|T F blamep: A S|TF M(s): B

14



C Definition: Translation from )\Cfnp to )\San

C.1 Coercion translation ||c|r = s

lidalr = id if A is a base type or x or a type name or type variable
lidas,glr = lidalr — Jidg|r
lidvx.alr VX.lidalr,x 5, [idalr
id if G =X ¢ dom(I")
|Gllr = . .
lidg|r; G!  otherwise
G = id if G =X ¢dom(T)
G??;lidg|r otherwise
|O¢_|[‘ = id
|Oz+|1" = Id
|J‘ZWB|F = J_P
le—=dlr = lelr = |d|r
le;dlr = lefrsldlr
|VX'C|F VX-|C|F,X ) |C|F
C.2 Term translation ||M|r = M’
|kl =k
lzlr = =
|[Az: A.M|p A A M|r .4
| My Ma|p | Mi|r | Ma|p
‘AX(MA)‘F AX.|M|1"X
|M Alr |M|r A
| M (c)|r | M|r(|c|r)
|blame p|r blame p
C.3 Bisimulation X |[I'F M~ M': A
FY OSET k) =4
Bs_ConNsT
S|TFk~k:A ( )
FE SET A el gy

Y|Thax~z: A

SIT,z:A-M~M B
S[THA:AM~M:AM : A— B

(Bs_ABs)

SITFMi~M:A—>B X|TFM~M:A
S|TFM My~ M M, : B

(Bs_App)

SIT,XFM~M:A
S|THAX.(M:A) ~AX.M :VX.A

(Bs_TyaBs)

SITFM~M:VX.B S|THA
S|THMA~M A:B[X = A

(Bs_TyAPP)
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X FT Y|ITHA
Y | T+ blamep = blamep : 4

(Bs_-BLAME)

SITFM~a~M:B S|Thcc:BwA
SITF M{c)~ M {|cr): A

(Bs_Crc)

E‘F}—M%M/:A Z|@|—0IdAAM->A
S|(TF M~ M{jidalp) : A

(Bs_CrcID)

SITEFMa~M{s): A  ftv(s)=0 X|0rc c:A~ B

s)
Bs_CRCMORE
Y|THM{c)~ M {(ss]|clp): B ( )

YITHFM=~M:B L|0kFccl:B~ A
SITF M) ~M:A

(Bs_CrcIDL)
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D Auxiliary Lemmas

We first state various weakening and strengthening lemmas, which are common to both calculi. All of them are
proved by straightforward induction.

Lemma D.1 (Weakening Type Environment Preserves Well-formedness).
1. If ¥ | Fl,FQ F A and F#(Fl,rg), then X | Fl,F,FQ A
2. ¥ FTy,T'y and ¥ F T, T and T'#Dy, then ¥+ T, T, T's.

Proof. Straightforward by induction on ¥ | I',T's = A and T's, respectively. Note that the second case rests
on the first case. O

Lemma D.2 (Weakening Stores Preserves Well-formedness).
1L.IUY|THAand ¥ O X, then ¥ |T'F A.
2. If XFT and ¥ D %, then X' F T,

Proof. Straightforward by induction on ¥ | ' = A and X I T, respectively. Note that the second case rests on
the first case. O

Lemma D.3 (Strengthening Type Environment Preserves Well-formedness).
1. If ¥ |Ty,z: B,ToF A then ¥ | T, T2 F A.
2. If X+ Fl,I : B7F27 then ¥ Fl,FQ.

Proof. Straightforward by induction on ¥ | I'1,z : B,I's = A and I'y, respectively. Note that the second case
rests on the first case. O

Lemma D.4 (Types in Type Environment and Store are Well-formed).
1. IfFYand a:=A € ¥, then X | 0 A.
2. IfYXFTandz: A4 € T, then X |T + A.

Proof. Straightforward by induction on F ¥ with CemmaT12 () and on ¥ F I' with Cemma D1 (@), respec-
tively. O

Lemma D.5 (Type Substitution Preserves Well-formedness).
1. Y| IMFAand ¥ | T, X, ToF B and , then ¥ | I'1,I'2[X := A] - B[X = A].
2. It ¥ | Fl FAand X+ F17X7F2 y then ¥ - Fl,FQ[X = A}

Proof. Straightforward by induction on ¥ | I', X, I's = B with Cemma D1 (0) and on I's with the first case,
respectively. O

Lemma D.6 (Types in Store are Well-formed). If -3 and o := A € ¥, then ¥ | § I A.
Proof. By straightforward induction on F ¥ with Cemma 112 (). O
Lemma D.7 (Left Partitions of Well-formed Type Environment are Well-formed). If ¥ F 'y, Ty, then X + T'y.
Proof. By straightforward induction on I's. O
Lemma D.8 (Type Well-formedness Tracks Free Type Variables). If ¥ | I' - A, then ftv(A) C dom(T).
Proof. By straightforward induction on ¥ | T' - A. O
Lemma D.9 (Type Substitution by Type Names Preserves Type Well-formedness).

L. IfFY a:=Band X,a:=B|T'F A4, then ¥ | I'[a := B] F A[ov := B].
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2. fFY,a:=Band ¥,a:=BF T, then ¥ F I'[a := BJ.

Proof. (1) Straightforward by induction on the derivation of ¥,a := B | I' - A with Cemma D1 (@) and
CemmaTa ().
(2) Straightforward by induction on the derivation of ¥, a := B F I'" with Cemma 179 (). O

Lemma D.10 (Replacing Type Names Preserves Type Well-formedness).
1. IfFXand X | T F A, then § | T F X(A).
2. IfFXand X |[T'F A, then X | X(T) - A.

If-3%, then X | TH AT | X(T) - X(A).

If-Yand ¥ |T'F A, then ¥ | X(T') F 2(4).

gro W

If - X, then $ + T iff 0 - 3(T).

Proof. (1) By lexicographic induction on the pair of the size of ¥ and the derivation of ¥ | I' F A. The cases
except that A is a type name are easy to prove.

Assume that A = « for some a. From X | T'F a, we have ¥ = (31, := B, X5) for some B, ¥, ¥s. Because
Y(a) = X1(B), it suffices to show 0 | T' - X1 (B). Because - X1, := B, X9, we have - 3 and 3; | 0 - B. By
the TH, @ | 0 - X1(B). By Cemma D1 (@), we have §§ | T - 31 (B).

(2) Straightforward by induction on the derivation of ¥ | I' F A.

(3) The “only if” direction is proved by lexicographic induction on the pair of the size of ¥ and the derivation
of ¥ | T+ A with Cemma1d (W). The “if” direction is by induction on A.

(4) By (3) and Lemma D2

(5) By straightforward induction on T

O

Corollary D.11 (Associated Types and Type Names in Stores Are Equal by Replacing Type Names ). If - X
and o := A € X, then (o) = X(A).

Proof. Straightforward by the definition of ¥(A). O

E Type Safety

E.1 \C],

Lemma E.1 (Uniqueness of Coercion Typing). If ¥ |T'F ¢: A~ Band X |T' + ¢: A" ~» B, then A = A’
and B = B’.

Proof. By straightforward induction on ¥ |T" F ¢: A ~ B. O
Lemma E.2 (Canonical forms). If ¥ | @ F V : A, then one of the followings holds:
o V

k and A = ty(k) for some k.

o V=X:A.Mand A= A" — B for some A',B,z, M.

o V =AX.(M:A4")and A =VX.A’ for some X,A’, M.
V = V'(G!) and A = % for some G, V'.

e V="V {a")and A =« for some a, V'

e V=V {c—d)and A= A" — B for some A',B,¢c,d, V'.

o V=V (VX.c)and A =VX.A" for some X, A" ¢, V'.

Proof. Straightforward by case analysis on V. O
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Lemma E.3. If ¥ |0 F V : VX.A,, then V = (AX.(M : Ap))(VX.c) and X | O + AX.(M : Ap) : VX.4p and

Y F(VX.c):VX.Ayg ~ VX . A, for some Ay, M, (c).

Proof. By straightforward induction on ¥ | § + V : VX.A. Note that the last rule applied in the typing
derivation is either (T_TyYABS_C) or (T_CRrRc_C) because V is a value. O

Theorem E.4 (Progress (Theorem ?? of the paper)). If ¥ | = M : A, then one of the followings holds:
e M = V for some V,
e M = blamep for some p, or
e X>M — ¥ > M’ for some X/, M'.
Proof. By induction on ¥ | ) = M : A with case analysis on the last rule applied in the typing derivation.
Case (T_ConsT_C), (T_ABs_C), (T_TyaBs_C): M = V for some V immediately.
Case (T_-VAR_C): Contradictory.
Case (T_BLAME_C): Immediate.
Case (T_App_C): We have

M:MlMQ, E|®FM1B4)A, E|®FMQB (EB,Ml,MQ).
By the IHon X | ) -+ M; : B — A, we have three subcases:

Case My = V1(3V1): By the IHon X | ) = M, : B, we have three further subcases:

Case My, = V5(3V5): By X |0 F Vi : B— A and Lemma E3, we consider the following three cases.

Case V7 = ki and ty(k1) = B — A (3k;): By the definition of ty, there exists some ¢ such that B = ..
Thus, by X |0 F V5 : ¢ and Lemma E3, V5 = ky for some ky such that ty(ke) = ¢. Then, by the
definition of §, §(ki, k) is defined. Therefore, (R-DELTA_C) implies ¥ > k1 ks — X > §(ky, ko).

Case V7 = Ax: A M'(3A",z, M’): By (R.BETA_C), > (Az: A" M) Vo — 3X> M'[x:= Vs).
Case V7 = V{{c — d)(3c,d, V{): By (R-WRAP_C), X > (V{{c — d)) Vo — X (V] (Va(c))){(d).
Case My = blame py(3p2): By (R-BLAME_C), ¥ > V (blame ps) — X > blame ps.
Case Db My — Yo b MJ(35s, M2): By (R.CTX_C), S5 Vi My — Sy Vy ML
Case M; = blame p;(3p1): By (R-BLAME_C), ¥ > (blame p;) My — X 1> blame p;.
Case b My — ¥y > M{(3D1, M!): By (R_CTX_C), S5 M; My —> %y > M{ M.

Case (T_Tyaprp_C): We have
M=MA S|0FM:VX.B, |04 (3X,A, B M).

By the TH, we have three subcases:

Case M’ = V(3V): By Lemma EZ3, there exists some Ag, M”, {c) such that V = (AX.(M" : Ag)){VX.c)
and ¥ F (VX.c) : VX.Ap ~ VX.B. By case analysis on A4’.
Case A’ = x: By (R_.TYBETADYN_C), ¥ b (AX.(M" : Ag))(¥X.c)x — T > (M"{c))[X := *].
Case A’ = C(3C): By (R_TYBETA_C), ¥ > (AX.(M": Ag))(VX.c)C — ¥,a := C > (M"{c))[X =
a){coercel (B[X := a))).
Case M’ = blame p(3p): By (R.BLAME_C), ¥ > (blamep) A’ — X > blame p.

Case £ > M' — ¥/ » M”(35', M"): By (R.CTX_.C), S M/ A" — X' M A,

~

Case (T_Crc_C): We have
M=M{c), S|0FM:B, X|0Fc:B~A (3B,c,M).

By the TH, we have three subcases:
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Case M’ = V(3V): We conduct case analysis on c.

Case ¢ =idy (34): By (R.ID_C), X»> V(ida) — X V.

Case ¢ = G??(Ip,G): From ¥ | @ + G? : B ~ A, we have B = x. Thus, ¥ | § ~ V : x and,
by Lemma EZ2, V = V/(H!) for some H,V'. If G = H, then, by (R_COLLAPSE_C), we have ¥ >
V{(GY(G?P) — > V. If G # H, then, by (R_CoNnFLICT_C), &> V/(HI)(G??) — ¥ > blamep.

Case ¢ = at(Ja): From ¥ |0 + a™ : B~ A, we have B = a. Thus, ¥ | + V : a and, by Lemma EZ,
V = V'(a™) for some V’'. By (R.REMOVE_C), ¥ > V'{a"){aT) — X V.

Case ¢ = ¢’ ;d(3c¢', d): By (R.SSpLIT_C), X V{(c';d) — X V{c){d).

Case c = 1%, 5 /(3p,A’,B’): By (R.FAIL.C), X V(LY, 5) — > blamep.

Otherwise: V{c) is a value.

Case M’ = blame p(3p): By (R-BLAME_C), ¥ > (blame p){c) — ¥ > blame p.

Case X> M — X' > M"(3X', M"): By (R.CTx_C), ¥ M'{(c) — X' > M"{c).

O
The proof of preservation starts with various weakening lemmas.

Lemma E.5. If ¥ |T'1,To F ¢: A~ B and ¥+ T'1,T and T#I'y, then ¥ |T'1,I\ T2 F ¢: A~ B.
Proof. By straightforward induction on X | T';,T'y + ¢: A ~» B with Cemma 11 O
Lemma E6. If X [T - c: A~ Band ¥ D Y and -, then ¥ |[T F ¢: A~ B.
Proof. By straightforward induction on X | T' + ¢: A ~» B with Cemma 13 9. O
Lemma E.7. If ¥ |T1,To F M : Aand ¥+ T'1,T and T#I'y, then ¥ | Ty, I\ Ty F M : A.
Proof. By straightforward induction on ¥ | T';, Ty - M : A with Lemmas D1 and E. O
Lemma E8. If X | T M:Aand ¥ D Y and - %', then X' [T F M : A.
Proof. By straightforward induction on ¥ | T' F M : A with Lemmas [0 and E®. O

Lemma E.9 (Agreement (1)). f ¥ | T F ¢: A~ B,then ¥ F T and ¥ |[TF Aand ¥ | T + B and
ftv(c) € dom(T).

Proof. By straightforward induction on ¥ | T' F ¢ : A ~» B with Lemmas [0 (@) and O (). O
Lemma E.10 (Agreement (2)). X |T'F M : A, thenY and X FT and X | T+ A.
Proof. By straightforward induction on ¥ | T' + M : A with Lemmas 04 (2), D3 (@), O3 (0), and ED. O

Lemma E.11 (Strengthening Type Environment in Coercion Typing). ¥ | I'1,z : C,T3 F ¢ : A ~» B, then
E‘Fhrg F C:AWB.

Proof. By straightforward induction on ¥ | T'y;,z: C,Ts F ¢: A ~» B with Cemma 1 3. O

Lemma E.12 (Value Substitution). If ¥ |1,z : A To F M : Band X | Ty = V : A, then ¥ | T'1,T2 F
Mz :=V]: B.

Proof. By straightforward induction on ¥ | ',z : A,T2 b M : B with Lemmas D3, E7, and ETI. O

Lemma E.13 (Type Name Substitution (Coercion)). If ¥ | I'y, X,Ts - ¢: A ~» B and @ € dom(X), then
ST, Te[X :=a] F ¢[X :=q]: A[X :=a] ~ B[X :=q].

Proof. By induction on ¥ | T'1, X,I's F ¢ : A ~ B with case analysis on the last rule applied in the typing
derivation.
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Case (CT_ID_C): We have
c=idy, A=A, B=A, FY, YFI1,X,Ts, 3|1, X,ToFA (34).

Since ida/[X := a] = idg/x.—q), it suffices to show ¥ | I'},I'2[X := o] F idajx.—q) : A[X = o] ~
A'[X = a]. Because ¥ | T'1 F a by (TW_NAME), Cemma 11H implies ¥ | T';, T2[X := o] F A’[X := o] and
Y ET,To[X := a]. Thus, by (CTID_C), ¥ [T'1,I2[X 1= o] F idax.—q) : A'[X := ] ~ A'[X :=al.

Case (CT_INJ_C), (CT_PROJ_C), (CT_FAIL_C): Similarly to the case for (CT_ID_C).
Case (CT_CONCEAL_C): We have

c=p8", A=C, B=p, FXE YXFI1,X, Iy, pg:=CeX (35C).

We have 87 [X :=a] = 8~ and B[X := o] = 8. By Cemma 104 (), ¥ | § - C. By Lemma O3, ftv(C) C 0.
Thus, C is closed and C[X := a] = C. Thus, it suffices to show X | T';,T3[X :=a] F 87 : C ~» 5. By
CemmaD3 (B), ¥ F Iy, To[X = a]. By (CT_CONCEAL_C), © | Iy, [5[X :=a] F 8~ : C ~ 8.

Case (CT_REVEAL_C): Similarly to the case for (CT_CONCEAL_C).

Case (CT_ARROW_C), (CT_SEQ-C), (CT_ALL_C): By the TH(s).

Lemma E.14 (Type Name Substitution). If ¥ | T'1, X,Ts - M : A and o € dom(X), then X | T'y,To[X :
al F M[X :=a]: A[X = al.

Proof. By straightforward induction on ¥ | T'y, X, Ty F M : A with Lemmas D3 and ET3. O

Lemma E.15 (Dynamic Type Substitution (Coercion)). If ¥ | I'1, X, Ty F ¢: A ~» B, then ¥ | I'1,T2[X :
] b c[X =] A[X :=#] ~ B[X :=#].

Proof. By induction on ¥ | 'y, X,T's F ¢ : A ~» B with case analysis on the last rule applied in the typing
derivation.

Case (CT_ID_C): We have
c=idy, A=A, B=A, FY, SFI,X,To, I|0,X,ToFA (34).

Since ida/ [X := ] = id 4/[x.—., it suffices to show X | 'y, To[X :=#] F ida/[x.—y : A'[X 1= 4] ~ A'[X 1= 4]
Because X | T'; F x by (Tw_STAR), Cemma 11 d implies ¥ | I'1, 5[ X = %] F A’[X :=+] and ¥ F Ty, To[X :=
*]. Thus, by (CT_ID_C), ¥ | T'1, To[X 1= «] F ida/xizu : A'[X = 2] ~ A'[X :=#].

Case (CT_FAIL_C): Similarly to the case for (CT_ID_C).
Case (CT_INJ_C): We have

c=G, A=G, B=x FY, SFT,X, 0o, Y|, X,ILFG (3G).

By case analysis on G.

Case G = X: Since G![X := | =id, and G[X := %] = «, it suffices to show X | 'y, T'a[X :=*] F idy : % ~> .
By (TW_STAR), ¥ | I'1,['2[X := ] F *. Because ¥ | I'1 F x again by (Tw_STAR), Cemma D3 (B) implies
Y T, Ia[X :=#]. Thus, by (CTID_C), X | I'1,[2[X =] F idy : %~ *.

Case G # X: Since G[X := x| = G! and G[X := ] = G, it suffices to show that ¥ | I'y,['3[X := %] F
G!: G~ % By CemmaDH, ¥ FI'1,T5[X :=+] and ¥ | I'1,T2[X := «] - G[X := %|(= G). Thus, by
(CTINJ.C), X |, To[X :=+] F G!: G~ *.

Case (CT-PRrROJ_C): Similarly to the case for (CT_INJ_C).
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Case (CT_CONCEAL_C): We have
c=a", A=C, B=qa, FX, XFT,X,Ty, a:=CeX (do,C).

We have a” [X := %] = a~ and a[X := x| = @. By Cemma D4 (), ¥ | ) - C. By Cemma 1R, ftv(C) C 0.
Thus, C is closed and C[X := x] = C. Thus, it suffices to show ¥ | T';,T2[X =% F a= : C ~ «a. By
Cemma [ (B), ¥ F 'y, e[X :=#]. By (CT_CONCEAL_C), ¥ |TI'1,I2[X :=*] F o= : C~ a.

Case (CT_-REVEAL_C): Similarly to the case for (CT_-CONCEAL_C).

Case (CT_ARROW_C), (CT_SEQ_C), (CT_ALL_C): By the IH(s).

Lemma E.16 (Dynamic Type Substitution). If ¥ | 'y, X, T's b M : A, then X | T'1,T3[X =% b M[X =] :
A[X =]

Proof. By straightforward induction on X | T'y, X, T's b M : A with Lemmas 03 and ET3. O

Lemma E.17 (Coercion Generation is Well Typed). Assume that - X and «:=B € Y and ¥ FT'y, X, T's and
¥ |, X, Ty A and « does not occur in type A. Then, the following holds:

o X |, T3[X :=a] b coercel (A[X :=q]) : A[X := a] ~ A[X := B|; and
o X |I',To[X :=a] F coerce,, (A[X = a]) : A[X :=B|] ~ A[X :=q].

Proof. By induction on A. Note that, because ¥ | I'y - o by (TW_NAME), CemmaT1H implies 3 - I'y, o[ X :=
a] and ¥ | T'1,T9[X := a] F A[X := a]. We proceed by case analysis on A.

Case A = ¢(3¢): We have

coercel (1[X = a]) = coerce (1) =id,, coerce; (L[X := a]) = coerce,, (1) =id,, (X :=a] =X =B]=1.

It suffices to show ¥ | 'y, T'o[X := @] F id, : ¢ ~> ¢, which is implied by (CT_-ID_C).
Case A = x: Similar to the case where A = ¢.

Case A= A" — B'(34', B’): We have

+

coerce (A" — B')[X := a]) = coercel (A'[X = a] — B'[X := a]) = coerce,, (A'[X := a]) — coerce];
coerce,, (A" — B")[X := a]) = coerce,, (A'[X := a] = B'[X := a]) = coerce} (A'[X = a]) — coerce,, (B'[X :=
(A" = B)[X = a] = A'[X = a] » B[X i=a], (4 — B)[X =B| = A[X =B - B'[X = B| .
Thus, it suffices to show
o X | I'|,[1[X = a] b coerce, (A'[X := a]) — coercef (B'[X = a]) : (A[X = a] = B'[X = qa]) ~

(A'[X :=B] - B’[X :=B]) and
o X | I',I2[X = a] b coercef (A'[X := a]) = coerce(B'[X = qa]) : (A'[X := B] — B'[X := B]) ~
(A'[X :=a] = B'[X :=q]).

From ¥ |T'y, X,To F A" = B’, we have ¥ | T';, X, s - A" and ¥ | T';, X, Ty - B’. By the IHs,

Y| Ty, To[X :=a] F coercef (A'[X :=aq]) : A'[X :=a] ~ A'[X :=B],
YT, TaX :=a] b coerce; (A'[X :=a]) : A'[X :=B] ~ A'[X :=q,
Y| Ty, To[X :=a] F coercel (B'[X :=al]): B'[X :=a] ~ B'[X :=B],

~

Y| T, [2[X :=a] F coerce,, (B'[X :=a]): B'[X :=B] ~ B'[X :=q] .

(CT-ARROW_C) finishes the case.
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Case A =VY.A'(3Y,A’): We can assume Y # X without loss of generality. We have

coercel (VY. A")[X = a]) = coercel (VY. A'[X = a]) = VY .coerce (A'[X = q]),
coerce,, (VY .A")[X = a]) = coerce_, (VY .A'[X := a]) = VY .coerce,, (A'[X = al),
(VY. ANX == a] =VY.A[X :=a], (VY.A)[X :=B] =VY.A[X :=B].
Thus, it suffices to show
o X |I',['2[X :=a] - VY.coercel (A'[X =« a
o X |T,T9[X :=a] F VY.coerce (A'[X :=a]) : VY. A'[X :=B] ~ VY. A'[X = q.

Form ¥ | T, X, T F VY. A’, we have ¥ | T, X, Ty, Y - A’. By (TEW_TYVAR), ¥ F T';, X, T, Y. By the
TH, we have

[e3

YT, 02X :=aq], Y F coerce (A'[X :=q]): A'[X :=B] ~ A'[X :=q] .

Y|y, To[X :=al, Y F coerce (A'[X :=a]): A[X :=a] ~ A'[X :=B],

(Ct_ALL_Q) finishes the case.
Case A = Y(3Y): We have the following two subcases.
Case Y = X: We have

o

—~

coercel (X[X = al]) = coerce (a) = at, coerce (X[X := a]) = coerce,, (o) = o™,
X[X:=a]=a, X[X:=B]=B.

It suffices to show
e X |I',I3[X :=a] F at:a~ Band
e X |, T2 Xi=a]F a :B~a,
which follows from (CT_-CONCEAL_C) and (CT_-REVEAL_C).
Case Y # X: We have
coerce (Y[X :=a]) = coercel (V) =idy, coerce, (Y[X := al]) = coerce,, (V) =idy,
Y[X:=a]=Y[X:=B] =Y.
It suffices to show ¥ | I'1,T'2[X :=a] F idy : ¥ ~~» Y, which follows from (CT_ID_C).
Case A = B(38): Since « does not occur in type A, 8 # «. We have
coerce (B[X := a]) = coerce (8) =idg, coerce, (B[X := a]) = coerce,, () = idg,
BIX =a]=p[X:=B]=0.

It suffices to show X | I'1, I3[ X := @] F idg : 8 ~ S, which follows from (CT_ID_C).

O
Lemma E.18. If X |0 - M : Aand > M — ¥’ > M’, then either
e ¥ =Xor
e Y =Y a:=Band X |0F B for some B and o € dom(X).
Proof. By easy inductionon X > M — X' > M. O

Theorem E.19 (Preservation (Theorem ?? of the paper)). f X | - M : Aand ¥ > M — X' > M’, then
S0 F M A

Proof. By induction on the derivation of ¥ > M — ¥’ > M’ with case analysis on the last rule used.
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Case (R_-DELTA_C): We have
M =kiky, M =dk,k), ¥ =3 (Fk, k).

From X | @ F kiky: A, wehave ¥ | 0 - k : ¢ — Aand ¥ | @ & ky : . Then, by the assumption on &,
S0 F 6(ki, k) : A.

Case (R_.BETA_C): We have
M=z A MYV, M =M=V, £=3% @4,2,M" V).
From ¥ |0 F (Az: A.M") V : A, we have
S0,z A M A S|0F VAL
Thus, by Lemma ET2, ¥ | ) + M"[z := V]: A.
Case (R-ID_C): We have
M=Vidy), M =V, ¥ =% (34,V).
From ¥ | @  V{(ida/) : A, we have
A=A, |0k V:A.
Case (R-WRAP_C): We have
M= (Vie=d) V', M=(VV{))d), ¥ =% Hed, V,V').
From ¥ |0 = (V{c— d)) V': A, we have

SI0FV:B=C, S|0F V' :D, S|0F c:D~ B,
S|0rd:C~A (3B,C,D).

Thus, X |0 F (V (V'{c)))(d) : A by (T_Crc_C), (T_AppP_C), and (T_Crc_C).
Case (R_FAIL_C): We have

M=V({1% ), M =blamep, ¥ =% (3p,A, B, V).

By Lemma ET0, we have - ¥ and X F @ and ¥ | § - A. By (T_-BLAME_C), ¥ | ) - blamep : A.
Case (R_-CoLLAPSE_C): We have

M=V(G)G?™), M =V, ¥ =% (3pG,V).
From ¥ | 0 = V(G){G??): A, we have
SI0FV:G Z|I0F G :G~x X|0FG?Pixw~G A=G.
Thus, X |0 F V : A.
Case (R_ConFLICT_C): We have
M= V(GY(H?), M =blamep, L =53, G#H (3p,G V).

By Lemma ET0, we have -3 and X F () and ¥ | ) F A. Thus, by (T_-BLAME_C), X | §} I blamep : A.
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Case (R-REMOVE_C): We have
M=V o), M=V, ¥ =% (3a,V).
From X |0 = V{a~){a™): A, we have
SI0FV:B, Z|0Fa :Bw~a X|[0Fat:a~B A=B (3B),
finishing the case.

Case (R_SpLIT_C): We have
M="Vc;d), M =V{c)d), ¥ =% (3Fcd, V).
From X | - V{c;d): A, we have
Y- v:Cc, 2|0k c:C~B, Y|0Fd:B~A (3IB,0).
Thus, X |0 = V{c){d) : A by using (T_Crc_C) twice.
Case (R_-TYBETADYN_C): We have

M = (AX.(M": o)) (VX .c))%, M = (M"{e))[X := ]

E, = Za (EIX7AO7<C>7M”) .

3

From X |0 F ((AX.(M": Ag))(VX.c))x: A, we have

L0 F (AX.(M": Ap))(VX.c):VX.D, A=D[X:=% (3ID).

By Lemma EZ3, ¥ | 0 F AX.(M”: Ag) : VX.4p and ¥ F (VX.¢) : VX.4g ~ VX.D. From ¥ | § F
AX.(M" : Ap) : VX . Ag, wehave X | 0, X = M"” : Ag. By Lemma ETG, X | ) = M”[X := %] : Ag[X :=«]. By
Lemma ETH, ¥ F (c[X :=*]) : Ag[X :=*] ~ D[X :=]. Thus, X |0 - M"[X :=*]{c[X :=]) : D[X := %],
which is what we need to show.

Case (R-TYBETA_C): We have

M = (AX.(M": A))(VX.c))B, M’ = (M"{(c))[X := a](coerce} (A,[X := a]))

Y =Y a:=B, XF{VX.c):VX.Ag~VX.A,, «o¢dom(X) (3X,a,Ao,B,A,,(c),M").

From X | 0 F ((AX.(M" : Ap))(VX.c))B : A, we have

S0 (AX.(M”: A)))(¥X.c) :¥X.D, S|0+FB, A=D[X:=B] (3D).

By Lemmas E3 and ETI, ¥ | ) = AX.(M" : Ag) : VX.Ag and A,, = D. Thus, it suffices to show

Y,a:=B|0F (M"(c))[X := a]{coerce (A,[X :=a])) : A,[X :=B] .

From ¥ | § = AX.(M": Ag) : VX.Ag, we have ¥ | §, X + M" : Ag. By Lemma ET0, we have - X and
YF0and ¥|0FVX.A,. Then, because - X, := B by (SW_BINDING), Lemma EXR implies ¥, := B |
0, X b M": Ag. By Lemma ET4, ¥, :=B | ) - M"[X := a] : Ap[X := a]. By Lemmas EB and ET3,
Y,a:=BF (c[X :=a]): 4g[X :=a] ~ A,[X := a]. Thus,

Yoa=B|0F M'X :=a){c[X :=a]): A [X :=q] .

From ¥ | § - VX.4,,, we have ¥ | 0, X F A4,,. Because « ¢ dom(X), o does not occur in 4,. By
Lemma O2 (W), ¥, :=B | 0, X - A,. By (TEW_EMPTY) and (TEW_TYVAR), &, := B - (, X. Therefore,
by Lemma ET2, ¥, := B | 0 F coercel (An[X = a]) : A,[X = o] ~ A4,[X := B]. By (T_-Crc_C),
Y,a:=B|0F M"[X = a](c[X := a])(coercel (A,[X :=a])) : A,[X :=B].

Case (R-BLAME_C): Similar to the case for (R_CoNFLICT_C).
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Case (R_-CTXE_C): We have
M = E[M;], M' = E[M], SsM — S'>M (3B, M,M).
Case analysis on E.
Case E=0M"(AM"): We have E[M] = My M”. From X |0 = My M" : A,
|0 M:B—A X|0FM':B (3B).

By Lemma ETS, we consider the two cases below.

Case ¥/ = X: Tt suffices to show X |0 - M{ M"” : A. By the IH, ¥ |0 + M| : B — A. By (T_Arp_C),
S0 M M A

Case ¥’ = ¥, a:=C(3a,C): We have a ¢ dom(X) and ¥ | § - C. It suffices to show X,a:=C | 0 F
M] M" : A. By Lemma ET0 and (SW_BINDING), - X, o := C. By LemmaER, X, a:=C |0 - M" : B.
By the IH, 5,a:=C |0 F M{: B— A. By (T_Aprp.C), S,a:=C |0 - M] M": A.

Otherwise: The other cases follow similarly (with Lemmas [T (0I) and ET).
O
Corollary E.20 (Preservation (multi step)). If X |0 F M : Aand X> M —* X' > M/, then X' |0+ M': A.
Theorem E.21 (Type Safety (Theorem B2 of the paper)). If ¥ | ) = M : A, then one of the followings holds:
e > M —* ¥ > V for some store &' and value V such that ¥/ |0 F V : 4;

e x> M —* ¥/ > blame p for some store ¥’ and blame label p; or

e X M.
Proof. By Theorem E4 and Corollary EZ20. O
\4
E.2 ASY,

The proof of type safety of /\Synp is similar to that of )\Cynp. A main difference is the coercion composition s§t.
We first prove Lemma that states that, if s and ¢ are well typed and the target type of s and the source
type of ¢ agree, then s ¢t is well defined and well typed.

Lemma E.22 (Agreement (1)). X |[T'F s: A~ B, then-XY andP-T and @ | T+ A and ¢ | T - B and
ftv(s) C dom(T).

Proof. By straightforward induction on ¥ | T' F s: A ~» B with Lemma [DT0(). O
Lemma E.23. For any A and X, X(A) # .

Proof. By induction on the size of 3. Obvious in the cases where A is not a type name. Assume that A = «
for some a. If @ € dom(X), then ¥ = ¥, a := B, ¥y for some B, 31, 35. By definition, X («) = ¥1(B). By the
IH, ¥, (B) # . Therefore, ¥(a) # *. Otherwise, if @ ¢ dom(X), then ¥(«a) = o # *. O

Lemma E.24 (Coercion Composition is Well Typed). f ¥ |T'F s: A~ Band ¥ |T' F ¢t : B ~» C, then
s'=s3tand X |T' F s : A~ C for some s'. Moreover:

e if s = b, then either ' = s 3t for some b’, or A = %;
e if s =i and ¢t = h, then either ¢’ = s ¢ ¢ for some ¢’, or C = %; and
e if s=gand t=h, then ¢’ = st for some ¢’

Proof. By induction on the sum of the sizes of s and ¢ with case analysis on the shape of s.
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Case s = G??; b(3p, G,b): From X |T'+ G??;b: A~ B,
A=x, Z|T'Fb:3(G)~ B.

By CemmaFE 23, 3(G) # . Therefore, by the TH, there exists some b’ such that &’ =bstand X |T' F b’ :
Y(G)~ C. Since s3t=(G?;b)gt=G?%;(bst) = G?P; V', it suffices to show X |T' = G777 ;b : x ~ C,
which follows from (CT_PRrROJ_S).

Case s = 1P(3p): By definition, L* 3¢t = LP. It suffices to show X |T' F 1? : 4 ~» C. By Lemma EZ2, - %
and PFTand 0 [THFAand 0 [T+ C. By (CT_FAIL.S), X [T F LP: A~ C.

Case s =¢; GI(3G,g): From X |T' + ¢g; G!': A~ B, we have
B=x X|TFg:A~%(G).
Case analysis on the shape of .
Case t = G ;b(3p,b): From X |T F G?P;b:x~ C,
SITFb:E(G)~ C.

By the IH, there exists some s’ such that s = ggband X | T F s : A ~ C. By definition, s 3t =

(g;GNs(G?P;b) =gsb=s". The IH also implies s’ = b’ for some b’, or A = x. For the former case,
st =10, so we finish the case.

Case t = H?? ;b(H # G)(3p,H,b): We have s5t = (¢g; G!)s(H? ;b) = LP and it suffices to show ¥ |
't 1?P: 4~ C. By Lemma EZA F Y and Q- T and § [T FH Aand @ | T' - C. By (CT_FAIL_S),
YITH L1P: A~ C.

Case t = 1P(3p): By definition, ss¢t = (g; G!) 5 LP = LP. Tt suffices to show ¥ | T' F 1?7 : A ~ C. By
Lemma EZ2, - Y and T and @ [T Aand @ | T+ C. Thus, by (CT_FAIL.S), X |T'F L7: A~ C.

Case t =h; H(3H,h): From X |T' F h; H!: %~ C, we have
C=% S|TF h:xwS(H).

By Cemma E 73, Y.(H) # . Therefore, by the TH, there exists some ¢’ such that ¢’ = (¢g; G!) ¢ h and
Y|Pk g : A~ X(H). Since sgt = (g;G)s(h;H) = ((9; G)sh); H =g ; H!, it suffices to show
S|TF g H': A~ x, which follows from (CT_INJ_S).

Case t =id: We have s3t = (g;G!)gid=¢;Gl. From X |T' + id: B ~ C and B = x, we have C = *.
Thus, it suffices to show ¥ |I' F g; G!: A ~» B, which we already have.

Case t = s — t/(3s',t') or t =VX.t/(3X,¢'): These cases cannot happen because they contradict B = *.
Case s =id: From X |T' I id: A ~» B, we have

A=B=%4), F%, 0T, X|T'+ A4 (3A).
Case analysis on the shape of .
Case t =h; H((3H,h): From X |T F h; H! : X(A") ~ C, we have
C=%, S|TF h:3(A)~ 3(H) .

By the IH, there exists some ¢’ such that ¢’ = idgh and & | ' F ¢ : 3(A") ~ X(H). We have
sgt=ids(h; H)=(idsh); H'= ¢ ; H!. By (CT_INJ_.S), we have X | T F ¢'; H!: £(A’) ~> *.
Case t =id: From ¥ |T" F id : B ~» C, we have

C=B=%(B), ¥|I'+B 3B

Because B = X(A’), we have ¥(A’) = X(B’). We have s ¢t = id§id = id. Therefore, it suffices to show
that ¥ | T' F id : 3(A") ~ X(A4’), which we already have.
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Otherwise: We have s ¢t =id§t¢ =t and it suffices to show that ¥ | I" F ¢ : 3(4’) ~ C, which we already
have. Furthermore, we show the following additional properties.

e We show that either b’ = ¢ for some b’, or A = *. Assume that there exists no b’ such that b’ = ¢.
Then, t = H??P ; b for some H, p, and b. From X |T' F H?P ;b : 2(A") ~ C, X(A") = A = *.
o if t =h, then sst =h.

Case s = s — t/(3s',t'): From X |T F &' — ¢/ : A~ B, we have
A=A 5B, B=A"-B" S|TFs:A"wA, S|TFt:B~B" (344" B B".
Case analysis on the shape of t.

Case t = G?7; b(3p, G,b) or t =VX.¢"(3X, t"): These cases cannot happen since they contradict B = A” —
B”.

Case t = 1P(3p): By definition, st = (s" — ¢')§ L? = LP. It suffices to show ¥ |T' - LP: (4" — B') ~ C.
By Lemma EZ2, - Y and P F Tand § | ' A’ — B and § | ' + C. Thus, by (CT_-FAIL_S),
S|TF1P: (A — B')~ C.

Case t = h; H(3H,h): From X |T' F h; H!: (A” — B"”) ~ C, we have

C=x S|TFh:(A"— B")~S(H) .
By the IH, there exists some ¢’ such that ¢’ = (s = t/)shand X |T F ¢’ : A’ —» B’ ~» X(H). We have
sst= (s = t)s(h;H!)= (¢ = t'sh);H! = ¢’;H!. By (CT_INJ_.S),wehave X | T+ ¢/;H!: A" = B’ ~~ *.

Case t =id: From ¥ | ' F id: A” — B"” ~» C, we have

A" - B"=C.
We have s 3t = (' = t') gid = s’ — t/. Therefore, it suffices to show that ¥ | + s’ = ¢/ : A’ = B’ ~»

A" — B”, which we already have.
Case t =" — t"(3s",t"): From X | T F s” = t" : (A" — B") ~ C, we have

C — A/l/ RN B/”, E | F '_ S// . A//l ~ A// E ‘ F l_ t// . B// > B/// (3A///7B/N) .

)

By the IHs, there exist some s”’ and " such that s = s”¢s’ and X |T' F s : A" ~» A’ and t""" = ¢/ 3t"
and X |T'F ¢ : B’ ~ B"”. Since sgt = (' = t')s(s”" = t")=(s"3s") = (t'5t") = """ — /", it suffices
toshow X |T' F ¢ — " : (A" — B’) ~ (A" — B""), which follows from (CT_ARROW).

Case s =VX.s',, s"(3X,s',s"): From X | T F VX.s': A~ B, we have
A=VX.A', B=VYX.B, R|T,X+s:A~wB, S|Tks:A[X:=+~ B[X:=+ (3I4,B).
Case analysis on the shape of t.

Case t = H?? ; b(3p, H,b) or t = s"" — ¢"'(3s”,t"): These cases cannot happen since they contradict B =
VvX.B'.

Case t = 1P(3p): By definition, s 5t = (VX.s')§ L? = 1P, Tt suffices to show ¥ | T' F LP : ¥vX. A" ~ C.
By Lemma EZ2, - Y and T and 0 | T+ VX. A" and 0 | T+ C. Thus, by (CT_FalL_S), X |T' F LP:
VX. A"~ C.

Case t = h; H|(3h,H): From X | F h; H! : VX.B' ~» C, we have
C=x X|TF h:VX.B' ~ S(H).
By the TH, there exists some g’ such that ¢’ = (VX.s' ,s")shand X | T F ¢ : VX. A" ~ X(H).

We have st = (VX.s',, ") s (h; H) = (VX.s',, s")¢h); H = ¢'; HI. By (Ct_INJ_S), we have
ST F g H VXA~
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Case t =id: From ¥ | ' F id : VX.B’ ~» C, we have
VX.B'=C.

We have s 3t = (VX.s' ,, ") sid = VX.s' ,, s”. Therefore, it suffices to show that ¥ | T F VX.s', s :
VX.A" ~ VX.B’, which we already have.
Case t =VY.¢/ ,t"(3Y,t/;t"): From X | T + VY.t : VX.B’ ~» C, we have

Y=X, C=VX.C', SI0,XFt:B ~C,S|TF":B[X =+~ C[X:=+ 3.

By the IH, there exists some s”’ and ¢"”” such that "/ = §’¢t’ and ¥ | T, X + s : A"~ C" and t"" = s"3t"
and X | T F ¢ : A'[X := x| ~ C'[X := %] Since s¢t = (VX.s',,s") s (VX.t',,t") =VX.(s'5t),,(s" ,,t") =
VX", t", it suffices to show X | T' F VX.s¢"” [t : VX.A" ~» VX.C’, which follows from (CT_ALL_S).

O
Next we prove the canonical forms lemma and Progress.
Lemma E.25 (Canonical forms). If ¥ | = V : A, then one of the followings holds:
e V =k and A = ty(k) for some k;
o V =2X:A.Mand A=3%(A") = B for some A’, B, z, M;
e V =AX.Mand A=VX.A' for some X, A’, M;
e V=U(g;G! and A = % for some G, g, U;
e V=U(s—t)and A= A" — B’ for some A’,B’,s,t, U; or
o V=U{X.s,t)and A =VX.A" for some X, A’ s, ¢, U.
O

Proof. Straightforward by case analysis on V.

Theorem E.26 (Progress). If X | ) = M : A, then one of the followings holds:
e M = V for some V;
e M = blame p for some p; or

e x> M — X' > M’ for some X/, M.

Proof. By induction on ¥ | ) = M : A with case analysis on the last rule used. Most cases are similar to the
proof of Theorem EZ, using Lemma EZ3.

Case (T_ConsT_S), (T_ABs_S), (T_TvaBs_S), (T_BLAME_S): Immediate.
Case (T_VAR_S): Cannot happen.
Case (T_APP_S): Similar to the case of (T_ApPP_C) in Theorem E-.
Case (T_TyAPP_S): We have
M=MA, A=B[X:=%4), L|0+ M :VX.B, L|0+A (GX,A,B M).
By the IH, we have three subcases.

Case M’ = V(3V): By Lemma [EZH, there are four cases for V and A’.
Case V = AX.M", A" = B(3IM",B): By (R_TYBETA.S), &> (AX.M")B — ¥, a:=B> M"[X := al.
Case V=U{NX.s,t),A =B(3s,t,U,B): From X |} - U(VX.s):VX.B, we have

S|0F U:VX.A", S[0F V¥X.s, t:VX.A" - VX.B (34").
By Lemma EZ3, U = AX.M" for some M”. By (R_.TYBETAC_S), X > (AX.M")(VX.s,,t)B —
Y,a:=Bp (M"(s))[X :=ql.
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Case V = AX.M", A’ = «(3M"): By (R_TYBETADYN_S), £ b (AX.M")% — X M/[X :=].
Case V=U{WMX.s,t),A =x3s,t,U): By Z |0 F U(VX.s,,t):VX.B and Lemma EZ3, U = AX.M"
for some M”. By (R-TYBETADYNC_S), ¥ > (AX.M")(VX.5,, t)x — X (M"(t))[X = *].
Case M’ = blame p(3p): By (R-BLAMEE_S), ¥ > (blamep) A’ — X > blame p.

Case X> M — ¥'> M"(3IX',M"): By (R.CTXES), X M' A" — ¥'> M" A’
Case (T_-Crc_S): We have
M=MY{s), X|0-M:B, X|0Fs:B~A (3IB,s,M').
By the IH, we have three subcases.

Case M’ = V(3V): Case analysis on V.
Case V =U{t)(3U,t): From X | @+ U(t): B,wehave X |} - U: Cand X |0 + ¢: C ~ B for some
C. By Lemma E24, ¢ § s is well defined. By (R-MERGE_S), ¥ > U(t)(s) — > U(t¢s).
Case V = U(3U): Case analysis on s.
Case s = G??;b(3p, G,b): From X |0 - G?7 ;b : B ~~ A, we have B =*. Thus, X |} - U : x and,
by Lemma [EZ3, there exist some H,h, U’ such that U = U’(h; H!). Contradiction.
Case s = LP(dp): By (R-FAIL_S), ¥ U(L?) — E > blamep.
Case s = ¢; GY(3G, g): U(g; G!) is a value.
Case s =id: By (R.ID_S), X U(id) — > U.
Case s = ¢’ — t(3s',t): U(s’ — t) is a value.
Case s =VX.¢',, s"(3X,s,s"): U(VX.s", s") is a value.
Case M’ = blame p(3p): By (R-BLAMEC_S), ¥ > (blame p){s) — X > blame p.
Case > M’ — X' > M (3%, M"): We have two cases depending on —» is —— or ——.
Case —: By (R.CTXC_S), &> M'(s) — X' M"(s).
Case ——: By the definition of ——, it must be the case that M’ is a coercion application of the form

M (t) for some ¢, M"'. From ¥ | = M"'(t): B,wehave X |0+ M : Cand X |Q + ¢: C ~ B for
some C. By Lemma [E24, ¢ 5 s is well defined. By (R-MERGE_S), X M"'(t)(s) — > M""(t5s).

O
The proof of preservation starts with various weakeninng lemmas.
Lemma E.27. If ¥ | Ao F s: A~ B and A1#As, then ¥ | A1, A F s: A~ B.
Proof. By straightforward induction on ¥ | Ay F s: A ~» B with Cemma DI 1. O

Lemma E.28. If F X3 and ¥ | T+ A4, then X(4) = (X,%)(4).
Proof. By induction on X'
Case ¥’ = (): Obvious.

Case ¥ = ¥ a:=B(3X", a,B): FromF X, %" « :=B, we have - 3, %" and @ ¢ dom(X). Because & | T A4,
type name « does not occur in type A. Therefore, (X,%')(A) = (X, X")(A[a := B]) = (X,%")(A). By the
H, (3, 5")(4) = S(4).

O
Lemma E.29. If - ¥ and § | T' - X(A), then ¥ | T+ A.
Proof. By straightforward induction on A. O
Lemma E.30. If X |T'F s: A~ Band - X,% then X, % |T F s: A~ B.
Proof. By inductionon ¥ |T' F s: A~ B.
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Case (CT_ID_S): By Lemmas D2 (M) and and (CT_ID_S).
Case (CT_FAIL_S): By (CT_FAIL_S).
Case (CT_INJ_S): We have
s=g;G, B=x, Y|I'kg:4~%X(G)(3g,G).

By the IH, ¥, | T F g : A ~ X(G). By (Cr_INJ_S), it suffices to show that X(G) = (X,%')(G). By
Cemma FE29, -3 and § | T+ 3(G). By Cemma 249, ¥ | '+ G. By Cemma E 28, %(G) = (3, %) (G).

Case (CT_PROJ_S): Similar to the case of (CT_INJ_S).

Case (CT_ARROW_S) and (CT_ALL_S): By the IH(s) and the corresponding coercion typing rule.

Lemma E.31. If X |To - M : Aand O F Ty and Ty #@y, then ¥ | Ty, Ty - M : A.
Proof. By straightforward induction on ¥ | T's = M : A with Lemma DI O
Lemma E.32 (Agreement (2)). X [T’ M : A, thenX and 0T and ) | T + A.

Proof. By straightforward induction on ¥ | T + M : A with Lemmas 04 (2), O-3 (0), 010 (@), O3 (0), EZ22,
and D O

Lemma E.33. If X |[T'F M : Aand F X, %/, then X3 |T' + M : A.
Proof. By induction on ¥ |T' F M : A. Most cases are proven easily. We mention only the interesting cases.
Case (T_ABs_S): We have

M=Xg:AAM, A=%A)—B, S|T,z:2(A)+ M :B (3z,A,B,M’) .

By the IH, ¥,% | Iz : ¥(4') - M’ : B. By Cemma E3A, + ¥ and 0 - ',z : X(4’). Therefore,
0| T+ (A). By CemmaEY0, $ | [ - 4. By CemmaETs, $(A') = (5,%)(A'). Therefore, we have
S5 | T,z (S,5)(A") F M': B. Then, by (T_ABS_S), 8,5 |T F Az: A".M": (3,5')(A’) — B. Because
(3,2 (A") = 2(A’), we finish the case.

Case (T_Tyapp_S): We have
M=MA, A=B[X:=%4), L|T+M:¥X.B, S|TFA 3X,A B M).

By the IH, ¥, % | T' - M’ :VX.B. By Cemma D2 (I), ¥,% | T+ A’ By (T_Tyapp.S),,5' |T - M’ A’
B[X := (3,%")(A")]. Because (X,%)(A’) = X(4’) by CemmaFE 2R, we finish the case.

Case (T-Crc_S): By the IH, CemmaE 30, and (T_CRC_S).

O
Lemma E.34 (Value Substitution). f X |z: A, T F M:Band X |0 F V:A then X |T - M[z:=V]: B.
Proof. By straightforward induction on ¥ | z : A,T' v M : B with Lemmas D3, EZ3T. O
Lemma E.35. If ¥ | T+ A and dom(T") = dom(I"), then X | TV - A.
Proof. By straightforward induction on ¥ | T' - A. O
Lemma E.36. If ¥ | T, X, Iy - A and o € dom(X), then ¥ | 'y, T2[X := E(a)] F A[X := q].

Proof. By (Tw_NAME), ¥ |T'; b o. By Cemma D3 (I), ¥ | I'y,T2[X := o] F A[X := o|. By CemmaE 34,
Y| Ty, To[X := ()] F A[X :=q). O

Lemma E.37. Assume that - ¥ and o € dom(X).
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1. If@ ‘ Fl,X,FQ - A, then Q] ‘ Fl,FQ[X = E(Oé)] H A[X = Z(Oé)]
2. If@FFl,X,FQ,then@FFl,Fg[X = E(OZ)]
Proof.

1. By (Tw_NaME), 3 | Ty F . By Cemma D10 (@), () | T'; - 3(«). Then, by Cemma D14 (0), we have the
conclusion.

2. By (Tw_NAME) and Lemmas Cemma D 10 (0I) and O3 (B).

Lemma E.38. If - X, then X(A[X := B]) = Z(A)[X := X(B)].
Proof. By induction on .
Case © = (): Obvious.

Case ¥ = ¥/, a:=C(3¥,,C): From F X, we have - ¥’ and ¥’ | @ - C. Therefore, X ¢ ftv(C). Then,
S(A[X = B]) = (¥,0 = O)(A[X = B]) = X(A[X = B][a = C)) = ¥'(4la := CJ[X := Bla:= C])). B
the IH, ¥'(Afo := C][X := Bla:=C]]) = ¥'(A[a := C])[X := ¥/ (Bl :=C])] = B(A)[X := X(B)].

O

Lemma E.39 (Type Name Substitution (Coercion)). If ¥ | T'1, X,Ts F s: A ~» B and a € dom(X), then
YTy, To[X :=%(a)] F s[X :=a]: A[X = 2(«a)] ~ B[X := X(a)].

Proof. By induction on ¥ | Ty, X, To F s: A~ B.
Case (CT_ID_S): We have

s=id, A=B=X(4), +%, OFT;,X,Ts, I|0,X,ToF A

for some A’ s.t. A’ is neither a function nor universal type. By Cemma 38, ¥ | I'y, T2 [X = X(a)] F A'[X =
a]. Moreover, A’[X := a] is neither a function nor universal type. By m @), 0 F Fl, DofX = Y(« ]

Therefore, by (CT,ID,S), S| Ty, To[X = B(a)] F id: S(A/[X := a]) ~ S(A'[X = o). By Lemma]
S(A[X = a)]) = B(4)[X := X(«a)]. Therefore, we have 3 | 'y, I3[ X := X(a)] F id : B(4A)[X := Z(a)] ~
S(ANX = X(a)].

Case (CT_FAIL_S): By CemmaF3d and (CT_FAIL_S).
Case (CT_INJ_S): We have

s=g;G, B=x% X|I'1,X,TyF g: A~ X(G) (3g,G) .

By the IH, 3 | T'1,T2[X = ()] F ¢g[X = a] : A[X = E(a)] ~ Z(G)[X := Z(a)]. By (CT_INI_S), it
suffices to show that X(G)[X := E(a)] = E(G[X := «]), which follows from Lemmas EZ22 and [EZ38.

Case (CT_PROJ_S): Similar to the case of (CT_INJ_S).
Case (CT_-ARROW_S) and (CT-ALL_S): By the IH(s) and the corresponding coercion typing rule.
O

Lemma E.40 (Type Name Substitution). If ¥ | X,I' v M : A and a € dom(X), then ¥ | T'[X := X(a)] F
M[X :=a]: A[X := X(a))].

Proof. By induction on ¥ | X,T" = M : A. Most cases are proven easily using Cemma E-31. We show only the
interesting cases.
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Case (T_ABS_S): We have
M= Xe:AAM, A=%A)Y—=B, S| X Tz:%(A)+ M :B 3z,A,B,M') .

By the TH, ¥ | T[X = X(«)], 2 : E(A’)[X Z(a)] F M'[X :=q]: B[X :=%(a)]. By (T-ABS_S), it suffices
to show that 3(A')[X := 3(a)] = Z(A'[X := q]), which follows from Lemmas and E3R.

Case (T_TYAPP_S):

M=MA4, A=B[Y:=%(4)), S|X,T+ M :VY.B, $|X,T+A (3Y, A B M).

Without loss of generality, we can suppose that Y does not occur in X,I" and ¥. By the IH, % | rx

Y() F M'[X = o] : (VY.B)[X := ¥(a)]. By CemmaEJH, ¥ | I'X = X(o)] F A'[X = a]. By
(T_Tyapp.S), ¥ | I'[X = X(a)] F (M'[X = a]) (A'[X = a]) : B[X = Z(a)][Y = E(A’[X = af)].
Because F ¥ by Cemma F. 39, we have B[X := X(a)][Y := L(4A'[X = a])] = B[X :=X(o)][Y :=X(4)[X =

Y(a)]] = B[Y :=3(4")][X := X(a)], using CemmaF 38.
Case (T_Crc_S): We are given
M=M{s), S|X,TFM:B, S|X,TFs:B~AQGBM,s B).

By the IH, ¥ | T'[X = X(a)] F M'[X := o] : B[X := X(«a)]. Lemma and rule (T_CRrcC_S) finish the
case.

O
Lemma E.41. If - X then ftv(A) = ftv(X(A4)).
Proof. By induction on F 3.
Case ¥ = (): Obvious.

Case ¥ = ¥/ a:=B (3%, o, B): Because - X, we have - X' and ¥’ | ) = B. Therefore, by the IH, ftv(4) =
ftv(A[a :=B]) = ftv(Z/(A[a := B])) = ftv(Z(A)).

Lemma E.42 (Dynamic-Type Substitution (Coercion)). If ¥ | I'1, X, T's F s: A ~ B, then ¥ | I'1,I'3[X =
x| b s[X = %] 1 A[X :=*] ~ B[X :=«].

Proof. By induction on ¥ | 'y, X, Ty F s: A ~» B with case analysis on the last rule applied in the typing
derivation.

Case (CT_ID_S): By Lemmas O3 and and (Ct_ID_S).
Case (CT_FAIL_S): By Cemma 113 and (CT_FAIL_S).
Case (CT_INJ_S): We have

s=g;G, B=% X|I',X,TyF g:A~X(G) (3G,9).

Case analysis on G.

Case G = X: Since (g; G)[X = ] = g[X := «], it suffices to show X | T';,T'o[X =« F g[X =] : A[X :=
*| ~~ %, which follows from the IH.

Case G # X: We have G[X := +] = G. Since (g; GN[X = «] = g[X := %] ; G!, it suffices to show that
YT, To[X :=+ F g[X :=+]; G! : A[X := ] ~ x. By Lemmas EZ2 and EZI, X ¢ ftv(X(G)).
Therefore, by the TH, ¥ | T'1,T9[X := | F g[X = x| : A[X = ] ~» 2(G). Thus, by (CT_INJ_S),
ST, ToX :=+] F g[X :=4]; G!': A[X := %] ~» +. Note that g[X := x| = ¢’ for some ¢’.
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Case (CT_PRrROJ_S): We have
s=GM";b, A=x% X|I',X,T2Fb:3%(G)~ B (Ip,G,D).
Case analysis on G.

Case G = X: Since (G?7; b)[X := +] = b[X := %, it suffices to show X | T';,To[X =] F b[X :=#] : x ~
B[X := %], which follows from the TH.

Case G # X: We have G[X := %] = G. Since (G?7; b)[X := | = G?7; b[X := %/, it suffices to show that
Y| Ty, Ta[X := %] F G?7; b[X := ] : x ~» B[X := #|]. By Lemmas EZ2 and EZT, X ¢ ftv(X(G)).
Therefore, by the TH, ¥ | 'y, T3[X = %] F b[X := %] : ¥(G) ~ B[X := «|. Thus, by (CT_PrROJ_S),
YTy, To[X :=% = G?7;b[X := x| : x ~ B|X :=x|. Note that b[X := ] = b’ for some b'.

Case (CT_ARROW_S) and (CT_ALL_S): By the IH(s).

Lemma E.43 (Dynamic-Type Substitution). If ¥ | X,T' - M : A, then ¥ |T[X 1=« b M[X :=+] : A[X :=
*].

Proof. By straightforward induction on ¥ | X,T' + M : A with Lemmas 03, EZ32, EZ38, and EZ2.

O
Lemma E.44. X |0 F M: Aand X > M — ¥/ > M’, then either
e Y =Xor
oY =X a:=Band X |0+ B for some B and o € dom(X).
Proof. By easy induction on X > M — X' > M'. O

Theorem E.45 (Preservation). X | - M: Aand X M — ¥ > M/, then &' | - M’ : A.
Proof. By induction on the derivation of ¥ > M — 3’ > M’ with case analysis on the last rule used.

Case (R_DELTA_S): We have
M =k ky, M =6k,k), X =3 Fk,ko).

From ¥ |0 F ki ky: A, wehave X |0 F k : ¢ - Aand X | § + Kk : ¢. Then, by the assumption on 4,
S0 F (ki k) : A.

Case (R_BETA_S): We have
M=z A MYV, M =M=V, £S=3% @4,2,M" V).
From ¥ |0 = (Az: A".M") V : A, we have
S0,2:S(A)F M A, S[0F V:s(A).
Thus, by Lemma E34, ¥ | § - M"[z := V]: A.
Case (R_ID_S): We have
M=U{d), M =U, =3 @3U).

From ¥ |0 = U{(id): A, we have ¥ | ) = U : A.
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Case (R_-WRAP_S): We have
M= (U{s—>t) V', M=UV (), X =% Gst, U V).
From ¥ |0 - (U{s = t)) V' : A, we have

Y0 U:B—-C, X|0FV':D, X|0F s:D~ B,
S|0Ft:C—~A (3B,C,D).

Thus, ¥ |0 = (U (V'{s))){t) : A by (CcT_AToM_S), (T_CRC_S), (T_APP_S), and (T_CRC_S).

Case (R_FAIL_S): We have
M=U(1?), M = blamep, X' =% (3p,U).

By Lemma [EZ39, we have - X and O F 0 and 0 | @ - A. By (T_BLAME_S), ¥ |} - blamep : A.

Case (R_MERGE_S): We have
M= M"{s)(t), M =M"(sst) (Is,t,M").
From X | 0 = M"(s)(t) : A, we have
S|0FM':C, S|0Fs:CwB, S|0Ft:B~A (3B,C).

By Lemma E24, X | + s¢t: C ~ A. By (CaT_AToM_S) and (T_CRC_S), X |0 + M"(s¢t): A.
Case (R_TYBETADYN_S): We have
Y =X

M = (AX.M")x, M = M"[X :=+] . (3x,M").

From X |0 - (AX.M")x: A, we have
S|XF M':B, A=B[X =+ (3B).
By Lemma EZ3, ¥ | ) H M"[X := %] : B[X := ]
Case (R_TYBETADYNC_S): We have
M = (AX.M"VX.s,t)*x M =(M"'X:=«)(t), =3 3X,M" s,t).
From ¥ | 0 F (AX.M"){(VX.s,, t)x: A, we have
S|XFM':C, S|0Ft:C[X: =+ B[X:=+], A=B[X:=+ (3B,C).

By Lemma EZ3, ¥ | 0 = M"[X := ] : C[X := %|. By (CcTt_ATOM_S) and (T_CRrC_S), we have ¥ | )
(MP[X 1= )){¢) : B[X := ],

Case (R_TYBETA_S): We have

M = (AX.M")B, M' = M"[X =],
Y =%a:=B, a¢dom(X) (3X,a,B,M").

From ¥ |0 - (AX.M")B : A, we have
SIXEM':C, S|0FEB, A=C[X:=%(B)] (30).
By Cemma E 32, - X. By (SW_BINDING), we have - ¥, o :=B. By Lemma E33, ¥,a:=B | X F M": C.

By Lemma EZ0, ¥, a:=B | F M"[X :=a] : O[X := (X, := B)(a)]. Because (X, :=B)(a) = X(B), we
have ¥, a:=B |0 F M"[X :=a]: C[X := X(B)].

35



Case (R-TYBETAC_S): We have
M = (AX.M")VX.s,,t)B, M = (M"(s))[X :=ql,
Y =% a:=B o«o¢dom(X) (IX,a,B,M"s).
From ¥ |0 F (AX.M")(VX.s,, t)B: A, we have
S|XFM' D, S|XFs:DwC, N|[0FB, A=C[X:=%B)] (3C,D).

By Cemma 32, - 3. By (SW,BINDING) we have F 3, :=B. By Lemma E33, ¥,a:=B | X - M": D.
ByLemmaIEEﬂ EafIB%\QFM”[ |: DIX *(Ea B)(«)]. By Lemma EZ30, 3,0 :=B | X I

D~ C. By Lemma E3Y, ¥, :=B | (Z) F s[X :=0a]: DX = (8,0 :=B)(a)] ~ C[X := (8, a:=B)(«v)].
By (Cct_ATOM_S) and (T- CRC S), ,a:=B|0F (M"(s))[X :=a]: C[X := (X,a = B)(«)]. Because
(3, a :=B)(a) = X(B), we have &, « —IB% |0 (M"(s))[X :=qa]: C[X :=X(B)].

Case (R-BLAMEE_S) and (R-BLAMEC_S): By Lemma E=32 and (T_BLAME_S).
Case (R-CTXE_S): We have
M = E[M], M =EM], YoM — ¥vM (3B M,M).
Case analysis on E.
Case E=0M"(3M"): We have E[M] = My M". From X |0 = My M" : A,
S|0FM:B—>A4 X|0-M':B (3B).

By Lemma E-Z4, we consider the two cases below.

Case ¥/ = X: It suffices to show X | = M{ M"” : A. By the IH, ¥ |0 + M{: B — A. By (T_ApP_S),
S0 M M A

Case ¥’ = 3, := C(3a,C): We have a ¢ dom(X) and ¥ | § - C. It suffices to show X, a0 :=C | § F
M{ M" : A. By Lemma EZ332 and (SW_BINDING), - ¥, := C. By Lemma EZ333, ¥, 0:=C |0 - M":
B. Bythe IH, X,a:=C |0 - M!: B — A. By (T_App_S), X,a:=C |0 - M/ M" : A.

Case E = V(3V): Similar to the case where E =0 M".
Case E =0 B(3B): We have E[M;] = My B. From X |0 - M; B : A4,
S0 F M :V¥X.C, S|0FB, A=C[X:=3%(B) (3X,C).

By Lemma EZZ4, we consider the two cases below.

Case ¥’ = X: By the IH and (T_TYAPP_S).

Case ¥/ = ¥, o := Ag(Ja, Ag): We have a € dom(X) and X | 0 + A. It suffices to show X, a0 :=Ag | 0
M| B : C[X :=3(B)]. By Lemma D2 (), X, := Ag | 0 F B. By the TH, X, v := Ao | O = M] : VX.C.
By (T,TYAPP,S)7 Ya:=4A |0+ M B: C[X = (X, a:= Ag)(B)]. Because ¥ | § - B implies that
a does not occur in B, we have (3, := Ag)(B) = X(B). Therefore, we have X, a0 := Ay |0 - M| B
C[X :=X(B)].

Case (R_-CTXC_S): Similar to the case of (R_-CTXE_S), that is, by the IH and Lemmas EZ4 and EZ30.
O

Corollary E.46 (Preservation (multistep)). X [0 - M: Aand ¥ > M —* ¥’ > M, then X' |0 - M’ : A.
Theorem E.47 (Type Safety). If ¥ | ) = M : A, then one of the followings holds:

e > M —* ¥ > V for some store ¥ and value V such that ¥/ |0 = V : A;

e x> M —* X' > blame p for some store ¥’ and blame label p; or

e x> M 1.
Proof. By Theorem and Corollary EZ8. O
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F Determinacy of Reduction

F.1 \C,

We extend a-equivalence to ¥ > M in a straightforward manner—by considering type variables defined in 3
bound in M. For example, a := Int > 42(a~) and § := Int > 42(87) are a-equivalent and, thus, identified.

Theorem F.1 (Determinacy of Reduction (Theorem B of the paper)). Assume that ¥ | @ = M : A. If
XM — Y1 M and X M — ZQDMQ, thenleZg and My, = Ms.

Proof. By straightforward inductionon ¥ > M — ¥; > M;. We use Lemma E in the case for (R-TYBETA_C)
to show that the input to the coercion generation function is unique. Note that values and blame cannot be
reduced. O

Corollary F.2. If ¥ | ) = M : A, then the reduction sequence starting from given ¥ > M is unique.

F.2 ASY,

Theorem F.3 (Determinacy of Reduction). If X > M — ¥; > My and ¥ > M — X5 > Ms, then ¥ = ¥y
and M1 = MQ.

Proof. By induction on ¥ > M — %7 > M;. The cases except for (R_-MERGE_S) and (R_CTXC_S) are easy
to show, using the fact that values and blame cannot be reduced.

Consider the case for (R_.MERGE_S). We have M = M'(s)(t) for some M’, s, and ¢. It is obvious that the
reduction rules except for (R_MERGE_S) and (R_CTXC_S) cannot be applied to M'(s) (¢). If (R_MERGE_S) is
applied to obtain both ¥; > M; and ¥ > Ms, then we finish the case. Otherwise, assume that (R_-CTX_S) is
applied to obtain ¥y > My. Then, ¥ > M'(s) — X' > M" for some X' and M”. Then, by the definition of
3, M'(s) is not a coercion application, which is a contradiction.

The case for (R_.CTXC_S) is proven similarly.

Corollary F.4. The reduction sequence starting from given ¥ > M is unique.

Note that only Theorem EI assumes the typability of reduced term M. The semantics of )\CXW rests on the
coercion generation function, and to ensure its determinacy, type names chosen at run time for type application
should not occur in the reduced term M (more precisely, should not occur in the input type to the coercion
generation function). The typability of M under store ¥ guarantees it.

G Properties of the Logical Relation

The statements described in this section are on /\CXLP.
Lemma G.1 (Evaluation under Contexts).

1. X > My — Yo > My, then ¥y > F[M;] — X9 > F[M,] for any F.

2. If 1> My —™ Eg > Mo, then 31 > F[M;] —™ 33> F[M,)].

3. If ¥y > M —" ¥y > blamep, then Xy > F[M] —™ X5 > blame p for some m > n.
Proof.

1. Straightforward by induction on F with (R_-CTX_C).

2. Straightforward by induction on n, using the case ().

3. The case (@) implies X1 > F[M] —™ X3 > F|blame p|. It is easy to show that 35 > F[blamep] —* 3o >
blame p by induction on F' with (R_-CTXx_C) and (R_-BLAME_C).

O
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Lemma G.2 (Successive Approximation). Suppose n < m.
b H_RJmJn: I_LRJnJm: \.RJW
b HﬁJmJn: HﬁJnJm: \_"{Jn

Proof. The second case is implied by the first case. Therefore, we consider only the first case in what follows.
We have the conclusion by the following:

(W, My, M) € [|[R|m]n < (W,M,M) € |R|l;y N Win<n
s (W, Mi,My) € RAN Wan<mA Wn<n
= (W,Ml,Mg)GR/\ Wan<n
= (W7M1,M2) S LRJn»
and
(W, My, M) € |[|R]n]m < (W,M,Ms) € |R], N Wn<m
< (W, Mi,My) € RAN Wan<n A Wn<m
== (W7M1,M2)ER/\ Wn<n
& (W,M, M) € |R],
O
Lemma G.3 (Worlds are Stratified). If W € World and (W', My, M2) € W.k(a), then W'.n < W.n.
Proof. Because W € World, we have W.x(a) € Relw ., [W.X1(a), W.32(a)], which implies W.k(a) C
Atom¥ | [W.1 (), W.E5()]. Therefore, by definition, for any (W', My, My) € W.xk(a), we have W' €
World y ., which implies W’'.n < W.n. O

Lemma G.4 (Idempotent Approximation). W.k = |W.k|w ., for any W € World.

Proof. By definition, dom(W.x) = dom(| W.5|w ). Let @ € dom(W.k). By definition, it suffices to show
that W.k(a) = |W.k(a)] w.n. We have | W.k(a)|w.n, € W.k(a) trivially. For showing the converse, let
(W', My, M) € W.k(a). By Lemma G, W'.n < W.n. Thus, (W', My, Ma) € | W.k(a)]w.n- O

Lemma G.5 (World Extension is Reflexive and Transitive).

e For any W € World, W J W.

e For any Wy, Wy, W3 € World, if Wi, O Wy and Wy 3 Ws, then Wy 3 Wj.
Proof.

e Let W € World. It suffices to show that W.kx J | W.k|w ... First, we have | W.k|w.,, = W.k by
Lemma G4. Furthermore, W.x J W.k holds trivially. Therefore, we have the conclusion.

o Let Wy, Wo, W3 € World such that Wy J Wy and Wy 3 W3, It suffices to show that Wi.x 3 | Ws.6] wy .,
that is,
Va € dom(| Ws.k]w, n). Wi.k(a) = | Ws.k]w, n(a) .

Let o € dom(| Ws.k] w,.n). By definition, o € dom(Wjs.k). Since dom(Ws.x) = dom(| W5.5] wy.n),
we have a@ € dom(| W3.k]w,.n). Since Wy J Wi, we have Wo.k 3 | Wa.k] wy.n. Thus, Wa.k(a) =
| Ws.k] w,.n (). By definition,

| Wak]wy (@) = [Wauk(a) wyn = [[Wa.k] won (@) wyn = [ Wkl wam] wry (@) -

Since Wy 3 W, we have Wi.k(a) = | Wa.k] wy.n (), that is, Wi.k(a) = [| Wa.6] wy.n] wy.n ().

Now, it suffices to show that || Ws.k]wy.n]wy.n(a) = | Ws.k] w, .n(@), which is implied by Lemma G2

O
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Lemma G.6 (Addition Extends Worlds). If W € World and W.X; | 0 F A; and W.Xo | O F A and
R € Relw ,, [A1,As] and @ € dom(W.X;) U dom(W.%5), then W B (a, Ay, Ay, R) I W.

Proof. By definition, it suffices to show the following.
o W.n < W.n: Obvious.
e W.Xi,a:=A1 D W.X1 and W.Xs,a := Ay O W.X5: Obvious.

o W.a{a— R} I |W.k|w.n: Let § € dom(| W.6|w ). Weshow that W.k{a — R}B) = |W.k]w.n(B).
By definition, 8 € dom(W.k). Then, W € World implies 8 € dom(W.X;) N dom(W.Xs). Since
a ¢ dom(W.3;) U dom(W.Xs), we have o # . Thus, W.k{a — R}(8) = W.k(5). By Lemma G4,
we have the conclusion.

e WH (a,A1,Ay, R) € World: W € World implies that there exists some n such that W € World,,. We

show that W B (a, A1, A2, R) € World,,. Let W/ = W H («a, A1, Ag, R). We have the conclusion by the
following.

— W'.n < n: This is implied by W € World,, and W.n = W'.n.
— F WX, and F W'.Xs: These are implied by W € World,, and W.X; |0 F A and W.X5 | O - Ao
and @ ¢ dom(W.X;) U dom(W.%5) and (SW_BINDING).

— VB € dom(W'.k). W .k(B) € Relw:r, [W'.E1(8), W .25(B)]: Let 8 € dom(W'.k). By definition,
B =aorf € dom(W.k). If 5 = «, then W.k(8) = R. Because R € Relw ,[A1,A2] =
Rely: ., [W.21(B), W'.X2(B)], we have the conclusion. Otherwise, if 8 # o and 8 € dom(W .k),
then W € World,, implies the conclusion

W' .k(B) = W.k(B) € Rely ., [W.21(8), W.B2(8)] = Relyr. [W.S1(8), W .52(8)] .

Lemma G.7 (Properties of »). Let W € World such that » W is well defined.
1. » W € World.
2.0 W31 W.
3. For any W’ such that W/ 3 W and » W' is well defined, » W' 3 » W.

Proof.

1. Since » W is well defined, there exists some n such that W.n = n+1. W € World implies W € World,,
for some m. Since W.n = n + 1 < m, there exists some mg such that m = mg + 1. The conclusion is
implied by » W € World,,,, which is shown by the following.

o (»W).n < mg because (»W).n =n < mp; note that n +1 < m = my + 1.

o (> W).X; because (> W).X; = W.X; and F W.X; by W € World,,.

E (» W).Xo because (> W).39 = W.Xs and F W.E5 by W € World,,.

Va € dom((»W).k). (> W).k(a) € Relgpwy., [(>W).E1(), (> W).Eo(a)]: Let a € dom((»W).k).
By definition, it suffices to show that | W.k|w.n—1(a) € Relw pn—1 [W.E1(a), W.E3()]. The con-
clusion is implied by the following.

— | Wek|wmo1(a) € Atom¥y, | [W.Ei(a), W.Bs(a)]: Let (W', My, M) € |W.k|w.n1(c).
By definition, (W', My, My) € W.k(a) and W'.n < W.n — 1. Since W € World,,, we have
(W', My, My) € W.k(a) C Atoms  [W.21(a), W.Ea(a)]. Since W'.n < W.n — 1, we have
the conclusion.

— Let (Wl, Vi, Vg) S LWHJ W.,L_l(oz) and Wy J Wi. Then, we show that (WQ, Vi, VQ) S
| W.k]w.n—1(c). By definition, (Wi, Vi, Vo) € W.k(a) and Win < W.n — 1. Since W €
World,,,, W.k(«) satisfies monotonicity, so (Wa, V1, Vo) € W.k(w). Since Won < Win <
W.n — 1, we have the conclusion (W, Vi, Vo) € | W.k|w.n_1().
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2. By the following.

e (W)n=Wmn-1,s0(»W)n< Wn.
[ (P W)El = W.X; and (P W)EQ = W.X,.
o » W € World by the case ().
o W)k 2| W.k|](»w)n by Lemma GH and (» W).k = | W.E]pw).n-
3. The conclusion is implied by the following.
e (Wn < (»W).n: Because W/ I W implies W'.n < W.n, we have (0 W')n = Win —1 <
Wan—1=W)n.
e (W)X, O (W)X and (» W’').35 O (»W).Xa: By definition with W’ 3 W.

o W)k 3 [(WW).k]wwr)m: Let a € dom([(»W).5](»wr).n). Then, the conclusion is implied
by:

L W) k) wrym(a) = [0 W).k(@)](rwiyn (by definition)

= [[W.k(@)|»w)n]»w).n (by definition)

= W "‘9( )| »whm (by Lemma G2 with (» W’').n < (»W).n)
= |[IWk(@)]wnlow)n (by Lemma G2 with (» W').n < W'.n)
= W (O‘)J(>W’) n (by W 3 W)
= | W'k]pwala) (by definition)
= (> W).k(a) (by definition) .

e » V' € World and » W € World: By the case (0); note that W’ € World is implied by W/ J W.
O

Lemma G.8 (Monotonicity of Later Relations). If (W, Vi, Vo) € »(W.k(a)) and W/ I W, then (W', Vq, V3)
> (W k().

Proof. If W’'.n =0, then we have the conclusion by the definition of ».

Suppose that W’.n > 0. Then, it suffices to show that (» W', Vi, V3) € W'.k(a). W' I W implies
0 < W'.n < W, Therefore, (W, Vy, Vo) € »(W.k(a)) implies (> W, V1, Vo) € W.k(a). W 3 W implies
» W' J »W by Lemma G (B). W’ 3 W implies W € World, which further implies W.x(«a) satisfies
monotonicity. Thus, since (» W, V7, Vo) € W.k(a) and » W' I » W, we have (b W', V1, V2) € W.k(a).
Because (> W').n < W', we have (W', Vi, V3) € |W.k(a)|wrn. Because W' 3 W implies W'.x O
| W.5| w'.n, we have the conclusion (» W', V1, V2) € W' .k(a). O

Lemma G.9 (Monotonicity of Atom). If W’ I W and (W, Vi, Va) € Atom™ [A] p, then (W', V1, Va) €
Atom“™ [A] p.

Proof. Because (W, Vi, V) € Atom"™ [A] p, we have W € World,, for some n, and W.5;, | 0 F Vi : p(A)
and W.Xo | 0 = V5 : p(A). Because W' J W, we have W'.X; O W.X; and - W'.X; and W'.Xy D W.X,
and - W’.Xy. Therefore, by Lemma EXR, W'.3; |0 F Vi : p(A) and W'.35 | 0 + Vs : p(A). Furthermore,
W' 3 W and W € World,, implies W’ € World,,. Therefore, we have the conclusion. O

Lemma G.10 (Monotonicity). If W/ 3 W and (W, Vi, V2) € V[A4] p, then (W', V1, Va) € V[A] p.

Proof. By induction on W.n. Note that (W', Vi, V) € Atom** [A] p by Lemma G. We proceed by case
analysis on A.

Case A =1 Obvious.
Case A = o: By Lemma G3.
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Case A=B — C: Let W’ J W’ and V{" and V3’ be values such that (W”, V{", VJ') € V[B]p. Then, it
suffices to show that
(W, Vi VI Va Vi) € E[C]p .
W” 23 W' and W J W imply W 3 W by Lemma GH. Because (W, Vi, Va) € V[A]p=V[B — C]p,
we have the conclusion (W”, Vi V{, Vo V') € £[C] p.
Case A =VX.B: By the following two cases.

e Let W” 3 W' and Cy,Cs, R, My, M5, o such that
- W' |0k Cy,
- W35 |0k Cy,
— R € Relwr , [Cq,Cq],
- WS> V1Cy — WXy, a:=Cy > M{coerce (p(B)[X := a])), and
— W' 3sp> VoCo — W X9, a0 := Co > Ma{coerce (p(B)[X := a])).
Then, we show that

(W”Hﬂ (Oé,(Cl,CQ,R),Ml,MQ) e »é [[B]] p{X — Oé} .

W” 3 W and W’ 23 W imply W” J W by Lemma GH. Because (W, Vi, Va) € V[A] p =V [VX.B] p,
we have the conclusion.

o Let W” J W’'. We show that (W", Vi %, Vax) € E[B] p{X — =}, which is implied by Lemma G3
and (W, Vi, VQ) € V[[VXB]] p-

Case A = %: Since (W, V1, Vo) € V[A] p = V[*] p, there exist some G, V{, and V3 such that

o V= V/(GY,
o Vo= VJ(G!), and
o (W, V], V3) € »V[G]0.

To prove the conclusion, it suffices to show that
(W', V{,Vy) € »V[G]0.

If W’'.n =0, then the conclusion holds trivially. Otherwise, suppose that W’.n > 0. Then, it suffices to show
that (w W', V{, V3) € V[G]0. Because (W, V], V3) € »V[G]0 and 0 < W'.n < W.n by W' I W, we
have (» W, V{, V3) € V[G]0. W' 3 W implies » W' 3 » W by Lemma G (B). Since (»W).n < W.n,
we have the conclusion (» W', V{, V3) € V[G] ) by the IH.

Case A = X: By the case for A = « or that for A = x.
O

Lemma G.11 (World Extension is Closed Under Domains of Interpretation Mappings). If W’ 3 W, then
dom(W'.k) O dom(W.k).

Proof. Let o € dom(W.k). By definition, o € dom(| W.5]|w'.). Because W’ I W implies W'.x 3
| W.k|wr.m, we find W’ .k(a) well defined, that is, @ € dom(W’.k). O

Lemma G.12 (Substitution Monotonicity). If W J W and (W,0,p) € G[I'], then (W',0,p) € G[I].
Proof. By induction on I'.

Case I' = (): Obvious.

Case I' =T",z : A: By the IH and Lemma GI0.

Case I' =T", X: By the IH Lemma GTI.
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Lemma G.13 (Name Store Monotonicity). If W/ J W and W € S[X], then W' € S[X].
Proof. By induction on .

Case ¥ = (: Obvious. Note that W’ 3 W implies W’ € World.

Case ¥ = ¥, a:= A: Because W € S[X] = S[¥,a:= A], we have the following:

o W e S[¥],

o W.3i(a) =A,

o W.35(a) = A, and

o W.k(a) = [V[A] O] w.n.

The conclusion is implied by the following.

e W' € S[¥']: By the IH.
o W'.31(a) = A: Because W’ J W implies W'.X; O W.3;, and W.X;(a) = A, we have W'. % (a) = A.
e W'.X5(a) = A: Proven similarly to the case for W'.X2;.

o W.k(a) = |V[A]O]w:.n: Noting W.k 3 | W.k]wrpn (by W 3 W), a € dom(W.k) =dom(| W.k]w.n),
and W'.n < W.n (by W/ 3 W), we can prove the conclusion as follows:

W' k() | W.k]w n(a) (by W'k 3 | W.k|wn)

| W.k(a)] w. (by definition)

VAl @JWnJ win (by Wos(a) = [VIA]0) w.0)
[VIA] O] w (by Lemma G2 and W/.n < W.n) .

Lemma G.14 (Related Values are Related Terms). If (W, Vq, Vo) € V[A] p, then (W, V1, Vo) € E[A]p

Proof. If W.n = 0, then the conclusion holds obviously. Otherwise, if W.n > 0, then it suffices to show that
W Jo W, which is implied by Lemma G3. O

Lemma G.15 (£ is Closed Under Anti-Reduction). Suppose that
o WX M —™ Xj> M and
e If n < W.n, then there exist some W’ and My such that
— WSy My —* W'.So > M,
- W3, W,
- W%, =X, and
= (W', M, My) € E[A] p
Then, (W, My, Ma) € Atom [A] p implies (W, My, M) € € [A] p.
Proof. By case analysis on the termination of W.%X; > Mj.

Case dm, %1, Vi.m< W A WX My —™ ¥y > Vi: In this case, we must show that there exist some
W' and V5 such that
o W.Xo My —* W' 3o Vo,
e W', W,
e W"X, =X, and
o (W', Vi, Va) € V[A]p
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[TS: The following “WLOG” is okay?] Because W.X; > M; —"™ ¥ > M{ and W.EX, > M; —™ 1> Vi, +—
Theorem E implies that, without loss of generality, we can assume that there exists some ng such that
m=mn+mnyand Zf > M —™ 1> V3. m < W.nand m = n+ np imply n < W.n. Thus, by the
assumption, there exists some W’ and M such that

o Wisp> My —* W/.Zg > MQI,

o« W, W,

o W'Y, =¥, and

o (W', M, M) € E[A] p.
Because W’ J,, W implies Win= Wan—n=W.n—(m—ng) = (W.n—m)+ ng, and m < W.n, we have
no < W'.n. Thus, because (W', M{, My) € E[A]p and W51 > M{ =¥} > M{ —™ % > Vi, there exist
some W' and V, such that

o W' So> M), —* W' 3o Vs,

o« W3y W,

[ W”.El = 21, and
(WH7 Vla V2) € V[[A]] p-

Now, we have the conclusion by the following, in addition to W”.X; = %, and (W", V1, Vo) € V[A]p,
which have been proven.

o W.Xor My —* WSy My —* W' s> V.

e W 1, W by Lemma G3 with W” J,, W and W’ J,, W, and m = n + no.

Case dm,Xq,p. m < W.n A W.E1 > M; —™ %71 > blame p: In this case, we must show that there exists some
Y5 such that W.Xs > My —* g > blamep. [TS: The following “WLOG” is okay?] Because W.%; b +—
M, —" Xf > M and W.X, > M; —™ X; > blame p, Theorem ET implies that, without loss of generality,
we can assume that there exists some ng such that m = n + ng and ) > M{ —"™ %; > blamep. m < W.n
and m = n + ng imply n < W.n. Thus, by the assumption, there exists some W' and M such that

° WZQ > MQ —* W’.EQ > MQI,
« W3, W,

W'%, = %, and

o« (WM, M) € E[A]p.

Because W’ 3J,, W implies W'.n = (W.n — m) + ng, and m < W.n, we have ng < W’'.n. Thus, because
(W, M{,M3) € E[A]p and WX > M{ = X} > M{ —™ X, > blame p, there exists some ¥ such that
W' 3o > My —* Yo > blamep. Since W.Xo > My —* W'.X5 > MJ, we have the conclusion.

Otherwise: In this case, we have no proof obligation.

Lemma G.16 (Monadic Bind). Suppose that

o (W, My, M) € E[A] p and

o VW Vi, Vo W IW AN (W, V1, V) € V[A] p = (W', Fi[V1], Fo[V3]) € E[B]p.
Then, (W, F1[M], F2[Mz]) € Atom [B] p implies (W, Fy[M;], F3[Ms]) € £ [B] p.
Proof. By case analysis on the termination of W.%X; > Mj.

Case In, X1, Vi.n< W A WS> My —™ X1 > Vit Since (W, My, M) € E[A] p, there exist some W’
and V5 such that

L] WEQ > M2 —* W/.EQ > VQ,
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o W Tn W>
[] W/.Zl = 21, and
(] (I/V/7 Vi, Vg) S V[[A]] p.

By the assumption, we have
(W', F[V1], F2[V3]) € E[B]p .

Since W.X1 > My —™ X1 Vi = WX > Vi, we have

W.21 > Fi[My] —" W' > Fy[ V4]
by Lemma G (). Since W.Xo > My —* W'. X5 > Vs, we have

WS b Fo[Mo] —* WSy Fy[Va)

by Lemma G (2). Then, by Lemma IGT3, we have the conclusion.

Case dn, X1, p.n < Wn A W.X1 > My —™ X1 > blamep: Since W.X, > M; —™ X, > blame p, Lemma Gl
(B) implies W.X; > Fi[M;] —™ X; > blamep for some m > n. If m > W.n, then the conclusion holds
trivially by Theorem EZ. Otherwise, if m < W.n, then we must show that there exists some ¥, such
that W.3s > Fa[Ms] —* X > blamep. Since (W, My, My) € E[A]p, there exists some 3o such that
W.35 > My —* Yo > blame p. By Lemma G (B), we have W.Xo > Fo[Ms] —* X5 > blame p. Thus, we
have the conclusion.

Otherwise: There is no n, %1, and M; such that

e n < W,
L] WEl > M1 —" 21 > Ml, and

e M; is a value or blame.

Let n < W.n, ¥; be a name store, and M; be a term such that W.X; o M; —"™ 3; > M;. Then,
M, is neither a value nor blame. By Lemma G (B), W.X; > Fi[M;] —" X; > Fi[M;]. Since M
is neither a value nor blame, Fj[M;] is not either. Therefore, by Theorem E, for any ¥’ and M{ such
W.X1 > Fi[My] —™ X} > M{, we find that M] is neither a value nor blame. Then, we have no proof
obligation for proving the conclusion.

O
Lemma G.17 (Compositionality). Suppose that X ¢ dom(p).
LV[A]p{X — o} = V[AIX :=a*]] p.
2. E[AlP{X > a*} = E[AX == o] .
Proof. We show that
1. VW € World. V V1, Va. (W, V1, Vo) € V[A] p{X — o*} < (W, V1, V2) € V[A[X :=a*]] p and
2. VW € World. V My, Ma. (W, My, M) € E[A] p{X — o*} < (W, My, M) € EJA[X = a*]] p.

We prove both direction of <= by lexicographic induction on the pair of W.n and A. To avoid repetition,
we first show the case (I) using IHs for the case (B), and then the case (B) without using IHs directly but by
assuming the case (0). Note that the proof of the case (B) can be unfolded in the proof of the case (I). Note
that Atom [A] p{X — o*} = Atom [A[X = o*]] p.

1. Let W € World and V7 and V5 be values. We show that
(W, Vi, Va) e V[A] p{X — o*} <= (W, V1, V3) € V[A[X :=a*]]p .

We proceed by case analysis on A.
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Case A = v: Obvious.
Case A = f3: Because S[X := a*] = f, it suffices to show that

(W, Vi, Vz) S V[[ﬂﬂp{X — Ot*} = (W, Vi, VQ) S V[[ﬂ]]p s
which holds obviously as V [5] p is determined independently of given p.

Case A = *: Obvious because x[X := a*] = x and V [+] p is determined independently of given p.

Case A=Y: If Y =X, then
VIAIAX = a*} = VIX]p{X = a*} =V[a'] p{X = a*} = V[a*]p = V[X[X = a*]] p = V[A[X := a*]] .

Note that V [a*] p{X — o*} =V [a*] p.
If Y # X, then

VIAIp{X = o} =V[p(Y)][p{X = o™} =V[p(Y)]p=V[Y]p=V[A[X :=a"]p.

Case A = B — C: We show every case of <.
Case == Suppose that (W, V1, Va) € V[B — C] p{X — o*}. We must show that

(W, V1, Va) € V[(B— C)[X :=a"]p.

Let W/ J W, and V{ and V3 be values such that (W', V{, V3) € V[B[X := «*]] p. Then, it suffices
to show that
(W, Vi Vi, Va V) € E[CIX :=a]]p.

Because W'.n < W.n by W’ I W, the TH implies that it suffices to show that
(W, Vi V], Va V) € E[C] p{X — a*}.

Because (W', V], V) € V[B[X := a*]] p, we have (W', V], V3) € V[B] p{X — «*} by the TH.
Since (W, V1, Vo) € V[B — C] p{X — «*}, we have the conclusion.
Case <=: Suppose that (W, Vi, V3) € V[(B — C)[X := a*]] p. We must show that

(W, Vi, Va) € V[B — C]p{X = a*}.

Let W J W, and V{ and VJ be values such that (W', V{, V3) € V[B]p{X — a*}. Then, it
suffices to show that
(VV’7 1 Vll, Va VQI) S 5[[0]] p{X — OL*} .

Because W'.n < W.n by W’ I W, the TH implies that it suffices to show that

(W', Vi V], Vo Vi) € E[CIX ==a*]] p.
Because (W', V], V3) € V[B]p{X — «*}, we have (W', V], VJ) € V[B[X := o*]] p by the TH.
Since (W, V1, Vo) € V[(B — C)[X := «*]] p, we have the conclusion.

Case A =VY.B: Without loss of generality, we can suppose that ¥ ¢ dom(p{X — oa*}). We show
every case of <.

Case =: Suppose that (W, Vi, V3) € V[VY.B] p{X — a*}. We must show that
(W, V1, Va) € VI(VY.B)[X :=a*]]p,

which is implied by the following two cases.
e Let W/ ,Cy,Cy, R, M{, My, 3 such that
- Waw,
- WX |0FCy,
- W' | OF Cy,
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— R € Relw' , [Cy1,Cq],

- WX ViC — W.X,8=Ci> M{(coerce;(p(B[X =
- WS VoCy — W'Eg,5:=Cyp> Mé(coercezg(p(B[X =
We show that

(W'8 (8,Cq,Cq, R), M{, My) € »E[B[X :=a*|] p{Y — B} .
Suppose that (W' H (8,Cy,Cs, R)).n > 0 (i.e., W .n > 0). Then, it suffices to show that
(»(W'HB(8,Cy,Cy, R)), M|, My) € E[B[X :=a*]]p{Y — B}.

Because W' 3 W implies W'.n < W.n, we have »(W’' B (58,C1,Co,R)).n = (»W').n =
W'n—1< W.n—1< W.n. Thus, by the TH, it suffices to show that

(> (W' B (8,Cy,Cs, R)), M, M) € E[B]p{X — a*HY — B} .

Because of (W, V1, Vo) € V[VY.B] p{X — «a*}, noting that p(B[X := a*]) = p{X — o*}(B),
we have the conclusion.

o Let W/ O3 W. We show that (W', Vi, Vax) € E[B[X := o*]] p{Y — x}. Because W'.n <
W.n by W/ J W, the TH implies that it suffices to show that (W', Vi x, Vax) € E[B] p{X —
a*HY +— «}, which follows from (W, V1, Vo) € E[VY.B] p{X — o*}.

Case <=: Suppose that (W, Vy, Va) € V[(VY.B)[X := a*]] p. We must show that

(W, Vi, V) € VIVY.B] p{X = o*},

which is implied by the following two cases.
o Let W', Cy,Cy, R, M{, Mj, B such that

- wWaw,
— WS |0 F Cy,
— WS | 0F Co,
— R € Relw , [Cq,C4],
— W'.Eip ViC — W5y, :=Cyv> M{{coerce ((p{X — a*}(B))[Y := f])), and
- WS VoCy — W' Eg,8:=Cyp> Mﬁ(coerceg((p{X — a*HB))[Y
We show that

(W' B (8,C1,Cs, R), M{, M) € »E[B]p{X > a"HY = B} .
Suppose that (W' 8 (8,Cy,Cs, R)).n > 0 (i.e., W'.n > 0). Then, it suffices to show that
(»(W'B(8,C1,Cq, R)), M|, My) € E[B]p{X = «*}HY — B}.

Because W' J W implies W'.n < W.n, we have »(W' B (8,C1,Co, R))n = (»W')n =
W'n—1< W.n—1< W.n. Thus, by the TH, it suffices to show that

(»(W' B (8,Cy,Ca, R)), M, M) € E[B[X :=a*]] p{Y ~ B} .

Because of (W, V1, Va) € V[(VY.B)[X := a*]] p, noting that p{X — a*}(B) = p(B[X = a*]),
we have the conclusion.

e Let W/ 3 W. We show that (W', Vi x, Vox) € E[B]p{X — a*}{Y — *}. Because W'.n <
W.n by W' 3 W, the TH implies that it suffices to show that (W', Vi, Vox) € E[B[X =
a*]] p{Y — %}, which follows from (W, Vi, V3) € E[(VY.B)[X := a*]] p.

2. Let W € World and M; and M, be terms. We show that
(W, My, M) € E[A] p{X — o} < (W, My, M) € EJA[X :=a"]]p .

By case analysis on the termination of W.%X; > Mj.
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Case dn, X, Vi.n< W A W.X1 > M; —"™ 31> Vq: In both directions of <=, there exist some W'
and V5 such that

e W.Xob> My —* W'.E51> Vo,
e W 3, W, and
e W' X = %.

Thus, it suffices to show that

(W’, Vi, VQ) S V[[A]] ,O{X — Oé*} <~ (W/, Vi, VQ) S V[[A[X = Oz*]]]p,

which is proven by the case ().

Case dn, X, p.n < W.an A W.31 > My —™ X1 > blame p: In both directions of <=, there exists some
Yo such that W.3s > My —* 35 > blame p. Thus, we have the conclusion.

Otherwise: No proof obligation in this case.
O

Definition G.1 (Loose Coercion Typing). A judgment ¥ | T IF ¢: A ~ B is derived by the same inference
rules as those for coercion typing judgment ¥ |T' F ¢ : A ~» B except that the rules for ¥ |T' IF ¢: A~ B do
not assume - 3. We call the rule corresponding to (Ct_*_C) (CT0-*_C).

[TS: Loose coercion typing is used in Lemma IGZ9 to type the coercion generated by type application, that
is, B, := Ag | ' I+ coercel (B[X := a]) : B[X := a] ~ B[X := Ao, where ¥ | ) - Ay may not hold because
type names in Ag occur only in stores W.%; and W.%5 in world W (and W.%; # W.Xs in general). |

Lemma G.18 (Loosely Typing Coercions). If X |T' F ¢: A~ Band ¥ C ¥ and - ¥/, then ¥’ | T + ¢
A~ B.

Proof. Straightforward by induction on the derivation of ¥ |T' IF ¢ : A ~» B with Lemmas D4. O

Lemma G.19 (Coercion Typed Under Type Environments in Worlds). If X |T' IF ¢: A~ Band W € S[X]
and (W,60,p) € G[I], then W.21 |0 F p(c) : p(A) ~ p(B) and W.E5 | 0 F p(c) : p(A) ~ p(B).

Proof. W € S[X] implies W € World, W.X; D X, and W.X3; O ¥. W € World implies - W.%X; and
F W.%X,. Hence, Lemma GI8 with ¥ |T' + ¢: A ~ B implies

e WX |k c¢c: A~ Band
e W35 |TF ¢: A~ B.
Furthermore, ¥V X € dom(I"). p(X) = V (3a. p(X)=a A a € dom(W.31) N dom(W.X3)) because:
o (W,0,p) € G[I'] implies VX € dom(I"). p(X) =+ V (Ja. a =p(X) A a € dom(W .k)); and
o W € World implies dom(W.x) C dom(W.%1) N dom(W.3s).

Hence, by Lemmas [ETT, ET3, and [ETH, we have the conclusion. O

Lemma G.20 (€ is Closed Under Reduction). Assume that (W, M;, My) € E[A]p and W.Xy > My —"
Y M and W.Xo > My —* X4 > M. Let W = (W —n, 3,55, | W.k|wn-n). Then, (W', M{, M}) €
E[4] p.

Proof. We have (W', M{, Mj) € Atom [A] p by Corollary EZ20. By case analysis on the termination of W'.3; >

Case Am, X, Vi.m < Wi A WS> M{ —™ %1 > V3: We must show that there exist some W’ and V;
such that

° WI.EQ > MQ/ —* W”.EQ > Vo,
° W/I gm Wl»
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L] W”.El = 21, and
o (W' Vq, Vo) € V[A]p.

Because m < W’'.n and W'.n = W.n — n, we have n + m < W.n. Because (W, My, M) € E[A]p and
W.S1 > M; —™t™ 3, > V7, there exist some W' and Vs, such that

o W.Xob> My —* W' Sg> Vo,
o W' dpum W,

e W' = ¥4,

o (W' Vq, Vo) € V[A]p.

Because W.35 > My —* 3, > Mj, Theorem ETT implies that, without loss of generality, we can assume
that W’'. 3y > Mj = %4> M) —* W35 > V,. Now, it suffices to show that W 3, W', which is implied
by the following.

o W' n=W.n—mbecause W"” 1,1, W implies W".n=W.n— (n+m) and W'.n= W.n—n;
e W'Y, W'.2; by Lemma ET8 with W'.5; > M] —™ X0 Vi = WS> Vy;
o W3, W'.Xs by Lemma ET8 with W' .3y > Mj —* W' Xo > Vo
o W'k J | W .k|wrnbecause | W.k|wrn = [|W.Elwann]wn-(ntm) = [ W.E] w.n(ntm) by Lemma G2,
and W".k I | W.k]wn—(nsm) by W' Dnym W;
e W € World by W” J,,4,, W; and
e W' € World: Because W € World, we have W € World,,, for some ny. We show W’ € World,,, as
follows.
— W’'.n < ng because W'.n=W.n—n and W € World,,.
— F W'.3; and F W'.25 by Lemma ETI8 with = W.3; and - W.%,.
— Let @ € dom(W’'.k). We show that | W.k(a)|w.n—n € Relw.nn [W' X1 (), W .32(a)].
s | W.k(a)| wmn C AtomYer  [W'.2i(a), W .Ss(a)]: Let (W, M{", M}") € | W.k(a)| w.nn.
By definition, (W"", M{", My") € W.k(a) and W"'.n < W.n — n. Since W € World,,,, we

have (W', M{", My") € W.k(a) C Atom3y, [W.E1(a), W.Es(a)]. Since W".n < W.n —n
and W'.X; O W.X; and W’'.Xy DO W.X5 by Lemma EIS, we have the conclusion.

x Let (W, V{", V") € | W.k(a)] w.n—n and W3"” T W]”. Then, we show that (W3", V", V") €
| W.k(a@)] won—n. By definition, (W{", V{", V3") € W.k(a) and W{".n < W.n — n. Since
W € World,,,, W.k(«a) satisfies monotonicity, so (W3"”, V{", V3') € W.k(«). Since W3".n <

W/".n < W.n — n, we have the conclusion (W3", V{" V3") € | W.k(a)| w.n—n-

)

2
2

Case Am, X1, p. m < W.n A WS> M] —™ % > blame p: We must show that there exist some %5 such
that W'.Xo > Mj —* Yo > blamep. Because m < W'.n and W/.n = W.n — n, we have n + m < W.n.
Because (W, My, M) € E[A]p and W.X; > My —™t™ 3y > blamep, there exist some Y5 such that
W.Xo > My —* ¥y > blamep. Because W.Xo > My —* X4 > M4, Theorem [EZT implies that, without loss
of generality, we can assume that W’'.Xq > MJ = X4 > My —* o > blame p.

Otherwise: No proof obligation.

O

Lemma G.21 (Related Coercion Applications). If X |T'IF ¢: A~ Band W € S[X] and (W,6,p) € G[I']
and (W, My, My) € £ [A] p, then (W, My{p(c)), My p(c))) < & [B] .

Proof. By induction on W.n.
We first show that

(W, My(p(c)), Ma(p(c))) € Atom[B]p . (1)
Because (W, My, My) € £ [A] p, we have

[ ] WEl ‘ @ F Ml p(A) and
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o W.S, |0 F My: p(A).
By Lemma GI9,
o WS, |0+ plc): p(A) ~ p(B) and
o W.E2 [0+ p(c): p(A) ~ p(B).
Then, by (T_CRC_C), we have
o W.B1 |0+ M(p(c)): p(B) and
o W.S3 [0 F Mx(p(c)) : p(B).

Therefore, we have ().
Let W', V1, V3 such that

o W' I W and
o (W, Vi, Vs) € V[A]p.

By Lemma GI8 with (), it suffices to show that

(W', Vilp(e)), Valp(c))) € E[B]p .
We proceed by case analysis on the rule applied last to derive ¥ | T IF ¢: A ~ B.

Case (CTO0_ID_C): We are given ¢ =id4 and A = B. It suffices to show that

(W', Vilid,ay), Va(id,y(a))) € E[A]p .
By (R-ID_C),
o W'.X1> Vi(idya)) — W'.E1> Vi and
o W'.Xo> Volidya)) — WSy Vo
Supposing that 1 < W’.n, we can prove the conclusion by Lemma GTH with the following.
e » W/ J; W’: By Lemma G2 (B).
e (W)X = W’.X;: By definition.
o (»W').Xy = W’ .35 By definition.

o (W', Vi, Vo) € E[A] p: By Lemma G4, it suffices to show that (» W', V1, Va) € V[A] p, which is
implied by Lemma G0 with (W', V1, Vo) € V[A]p and » W' I W".

Case (CTO_FAIL_C): We are given ¢ = 1% __ 5 for some p. It suffices to show that

(W Vi (ayepmy)s Vel armpimy)) € €180
By (R-FaIL_C),

o W' 3> V1<J_§(A)Wp(3)> — W'.%1 > blame p and
L] W/.ZQ > V2<J‘£(A)wp(3)> — W/.Zg > bIamep.

Supposing 1 < W'.n, we can prove the conclusion by Lemma IGI3 with the following.
e » W 1y W’ by Lemma G (B).
o (P W/).Zl W/.El.
o (P WI).EQ = WI.EQ.
o (» W' blamep,blamep) € £[B] p: Obvious.
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Case (CT0_INJ_C): We are given ¢ = G! and A = G and B = % for some G. It suffices to show that
(W', Vilp(G)Y), Valp(G))) € Ex]p -
Vi{p(G)YY and Vo{p(G)") are values. Thus, Lemma G4 implies that it suffices to show that
(W, Vilp(G)), Valp(G)) € V[l
By definition, it suffices to show that
(W', Vi, Vo) € mV[p(G)]0 .
Suppose that 0 < W’.n. Then, it suffices to show that
(>-W', V1, Va) € V[p(G)]0 .
By Lemma GT4 (W), it suffices to show that
(W', Vi, Va) € V[G]p.

Because (W', V1, Vo) € V[A] p = V[G] p, and » W' I W’ by Lemma G2 (B), we have the conclusion by
Lemma G0

Case (CT0_-PrROJ_C): We are given ¢ = G?? and A = x and B = G for some G and p. It suffices to show that
(W', Vi(p(G)?7), Va(p(G)?7)) € E[G]p -

By case analysis on the reduction of W’.2; > V1 {p(G)??) (such reduction is always possible by Theorem EZ
(Progress)).

Case (R_CoLLAPSE_C): We are given V7 such that
o 11 = V{{p(G)!) and
o W31 Vi(p(G)?P) = W .S > V{{p(G)){(p(G)??) — W' X V.
Because (W', V1, Va) € V[A]p, i.e., (W', V{{(p(G)!), Va) € V[x] p, there exists some V such that
o Vo=V, {p(G)") and
o (W', VI, V) € »V[p(G)]0.
Supposing that 1 < W'.n, we can prove the conclusion by Lemma IGTH with the following.
o WX Vi(p(G)??) — W' Xip> V.
W' So > Valp(G)??) = WS> Vi{p(G)){(p(G)??) — W' .Ey> Vi.
e » W' 1; W': By Lemma G2 (B).
(>W').E = W3
(> W').Ey = W5,
(W', V), V3) € E[G]p: By Lemma GI4, it suffices to show that (» W', V], V3) € V[G]p.
By Lemma GT7 (W), it suffices to show that (» W', V], VJ) € V[p(G)]0, which is implied by
(W', V{,V3) € »V[p(G)]0 and 1 < W'.n.
Case (R_CoNrFLICT_C): We are given V{ and H such that
o V1 = V/(H),
o H # p(@G), and
o Wi Vi(p(G)?P) = W31 > VI{H){(p(G)??) — W'.X; > blamep.
Because (W', Vi, Vo) € V[A4] p, i.e., (W', V{(H!), Va) € V[4] p, there exists some Vj such that
o Vo= VJ(H!) and
o (W', V{,V5) € »V[H].
Supposing that 1 < W’.n, we can prove the conclusion by Lemma GTH with the following.
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W'y > Vi{p(G)??) — W'.X1 > blame p.

W' 39> Valp(G)?P) = W' .S > V3(HD) (p(G)?P) — W'.35 > blame p.
e » W' 1, W': By Lemma G2 (B).

o« (PW).D = W5

o« (PW).Dy = W5,

o (» W’ blamep,blamep) € £[G] p: Obvious.

Otherwise: Contradiction.

Case (CTO_CONCEAL_C): We are given ¢ = o~ and A = C and B = « for some C and a such that o :=C € X.
It suffices to show that

(W Vila™), Vala™)) € Ea]p -
Because Vi{a~) and Va(a™) are values, Lemma G4 implies that it suffices to show that
(W', Vifa™), Va(a™)) € V]e]p .
By definition, it suffices to show that
(W', Vi, Vo) € (W' k(a)) .
Suppose that 0 < W’.n. Then, it suffices to show that
(W' Vi, Vo) € Wik(a).

Because W € S[X] and « := C € ¥, we have W.k(a) = |V[C]0|w.,. Because W' I W, we have
W'k 3 |W.k|wr.n. Because o € dom(W.k) = dom(| W.k|w:.r), we have W' k(o) = |W.k]wrn(a) =
| W.k(a)] wr.n. Thus, it suffices to show that

(W', Vi, Va) € Wak(a) AN (b Win< Wn.

The second conjunct is trivial. Because W.k(a) = |V [C] @] w .n, we can show the first by the following.

o (W' Vi, V3) € V[C]®: Since
—a:=CeX,
- WX D Xby W e S[X], and
~ WS by W € World,

we have p(C) = C. Thus, by Lemma G2 (), it suffices to show that (» W', V1, V) € V[C] p, which
is implied by Lemma G0 with (W', V1, V3) € V[C] p and » W’ 3 W' obtained by Lemma G2 (B).

o (W')n< W.an: By (»wW').n < W.n < W.n; the second inequation is implied by W’ J W.

Case (CTO_REVEAL_C): We are given ¢ = a™ and A = « and B = C for some « and C such that a:=C € X.
It suffices to show that

(W', Vi{a™), Vola™)) € E]C]p .
Because (W', V1, Vo) € V[A] p =V [a] p, there exist some V{ and Vj such that
o Ih = V{<a_>7
o V5= Vj{a"), and
o (W, V], Vy) € »(W .kl(a)).
Thus, by (R_.REMOVE_C),
e WX Vi{la™) = W.Si> Vi{a™ Moty — W31 > V] and
o W'.3Sop Vola™) = W.Esp> Vio{a™ ) at) — W .3y V3.

Supposing 1 < W'.n, we can prove the conclusion by Lemma IGI3 with the following.
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o » W 1, W’ by Lemma G (2).
o« (WD = W5
o« (WS = W',
o (W' V], V)) € £]C] p: By Lemma G4, it suffices to show that
W, Vi, Vy) € V[C]p.
Because
—a:=CeX,
- W.X D Xby W e S[X], and
- F W.E, by W € World,
we have p(C) = C. By Lemma GT3, it suffices to show that

(W', V{,Vy) € V[C]0.
Because W € S[X] and a:=C € 3, we have W.x(a) = [V [C] @] w.n. Thus, it suffices to show that
(W', V], V) € W.k(a) .

Because W’ 3 W, we have W'.x J | W.5|w,. Furthermore, « € dom(W.k) = dom(| W.5|w.n).
Thus, W'.k(a) = | W.k(e)| wr.n. Therefore, it suffices to show that

>-W' V], Vy) € Wikia).
Because (W', V{, V3) € »(W'.k(a)) and 1 < W'.n, we have the conclusion (» W', V{, V) € W' .k(«).

Case (CTO_ARROW_C): We are given ¢ = d; — dy and A = A; — Ay and B = By — Bs for some dy, do, A4,
Ay, By, and Bs. By inversion, ¥ | T' |- dy : By ~» Ay and X | T I+ dy : Ay ~> By. Because Vi(d; — dy) and
Vo({dy — da) are values, Lemma G4 implies that it suffices to show that

(W/, V1<p(d1 — d2)>, V2<p(d1 — d2)>) ey [[Bl — BQ]]p .
Let W” 3 W’ and V{" and V3’ be values such that (W", V{', V') € V[Bi] p. Then, it suffices to show that
(W, (Vilp(di — d2))) V', Valp(di — d2)) V5') € E[Ba] p .
By (R-WraAP_C),
o W'Erv (Vi{p(dr = d2))) V' — WXy (Vi (V{'(p(d1))))(p(d2)) and
o W'Eyv (Valp(di = d2))) Vo' — W".Ea > (Va (V5 (p(d1))))(p(dz)).
Supposing that 1 < W”.n, we can prove the conclusion by Lemma GI3 with the following.
o » W' 33 W by Lemma G (B).
L] (> W”).El = W//.El.
o (P W”).ZZ = W”.EQ.

Finally, Lemma [GT3 requires us to prove that

(- W, (Vi (Vi {p(d1)))){p(d2)), (V2 (V3 (p(d1)))){p(d2))) € E[Ba] p -

Because » W J;y W by Lemma G (B), and W’ 3 W' and W' J W, we have » W” 23 W by Lemma G33.
Now, we have the following.

o S|TIF di: B~ Al
e » V" € S[X]: By Lemma GT3 with » W” J W and W € S[X].
e (W" 0,p) € G[I']: By Lemma GT2 with » W” 3 W and (W,0,p) € G[I].
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o W V' V)) € E£[B1] p by Lemma GIO with (W”, V|, VJ') € V[Bi]p and » W' 3; W”, and
then Lemma GT4.

Because (» W").n < W.n, the IH implies
- W Vi (p(dr)), V3'(p(dr))) € E[A]p .

Let W J »W"” and V" and V3" be values such that (W' V{" Vi") € V[Ai1] p. Then, Lemma GId
implies that it suffices to show that

(W (Vi Vi"){p(d2)), (Vo V5" ){p(d2))) € E[B]p .

Because (W', V1, Vo) € V[A]p = V[4A1 — As]p, W” 3 W' by Lemma GH, and (W, V{", VJ") €
V [A1] p, we have
(WW, 1 Vlm, Vo Vé”) ey [[AQ]] p .

Let W"”" 3 W' and V{"”" and V3" be values such that (W"" V" Vi) € V[As] p. Then, Lemma GId
implies that it suffices to show that

(W, vi"(p(d2)), V3" (p(d2))) € E[Ba] p -
Noting W 3 W by Lemma G3, we have the following.

e X|T Ik dy: Ay ~ Bs.

o W ¢ S[£] by Lemma GI3.

o (W' 6,p) € G[I'] by Lemma GT2.

o (W V" Vi) € E[A2] p by Lemma GIA with (W V"' V") € V[A2] p.

Because W""'.n < W".n < W.n, the IH implies the conclusion.

Case (CT0_SEQ_C): We are given ¢ = ¢ ; ¢y for some ¢; and co. By inversion, ¥ | ' IF ¢; : A ~ C and
Y|T Ik ¢g: C~» B for some C. It suffices to show that

(W', Vilp(er s e2)), Valp(ers e2))) € E[B]p .
By (R-SpLIT_C), we have

o WS> Vi(p(er;ca)) — W.E1> Vi{p(er))(p(c2)) and
° W/.EQ > V2<p(01 X 62)> — WI.EQ > V2<p(C1)><p(CQ)>

Supposing that 1 < W’.n, we can prove the conclusion by Lemma GTH with the following.

e » W 1y W’ by Lemma G71 (2).
° (P W/).El = W/.El.
L] (> WI).EQ = WI.EQ.

Finally, Lemma GT3 requires us to prove that
(> W', Vi{p(c1))(p(c2)), Va(p(cr))(p(c2))) € E[B]p -
Noting » W/’ 3 W by Lemma G3 with » W’ 3 W’ and W’ I W, we have the following.

e X |TIFeg:A~C.

o » IV € S[X] by Lemma GT3 with W € S[X].

e (W' 0,p) € G[I'] by Lemma GI2 with (W,0,p) € G[I'].

o (W' Vi, Vy) € E[A] p by Lemmas GI0 and G4 with (W', Vq, Vo) € V[A] p.
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Because (» W').n < W.n, the IH implies that

(> W', Vi(p(cr)), Valp(cr))) € E[Clp .

Let W’ 2 » W', and V] and Vj be values such that (W", V{, V) € V[C]p. Then, by Lemma GT8, it
suffices to show that

(W, Vi{p(c2)), Valp(e2))) € E[B]p .
Noting W” 3 W by Lemma GH, we have the following.

e X |TIF ¢y: C~ B.

o W” € S[X] by Lemma GT3 with W € S[X].

o (W”,0,p) € G[I'] by Lemma GT2 with (W, 0, p) € G[I].

o (W' V], Vi) € E£]C]p by Lemma G4 with (W", V{, V3) € V[C]p.

Because W”.n < W’'.n < W.n, the IH implies the conclusion.

Case (CTO_ALL_C): We are given ¢ = VX.¢y and A =VX.Ay and B = VX .By for some X, cg, Ag, and By. By
inversion, X | I, X Ik ¢ : Ag ~ By. Without loss of generality, we can suppose that X ¢ dom(p). It suffices
to show that

(W’, V1 <p(VX.C(])>, V2<p(VXCO)>) e & HVXB()] p.

Because V1{p(VX.co)) and Va(p(VX.co)) are values, Lemma IGT4 implies that it suffices to show that
(W/, I/'1</)(V)(.C())>7 V2<p(VX.C())>) ey [[VXB()]] P,

which is implied by the following two cases.

o Let W, Cy,Cq, R, M{', M, o such that
- W' w,
— WIS |0FCy,
— W35 |0+ Cy,
— R € Relwr ., [Cy1,Cq],
— W1 > Vi{p(VX.c0)) C1 — W21, a0 := Cq > M{'(coercel (p(By)[X =
— W3y > Valp(VX.c0)) Co — W' X5, a0 := Co > MJ(coercel (p(By)[X =
Furthermore, let W = W"” B (o, Cy,Cs, R). Then, we must show that

(W M", My) € »E[Bo] p{X — a} .
Suppose that 0 < W"’.n. Then, it suffices to show that
(- W™ M M) € E[Bo] p{X — al .

Because (W', V1, Vo) € V[A] p =V [VX.Ao] p, we have
- WS |0 F Vy:VX.p(Ag) and
- WS |0 F Va:VX.p(Ao).

Thus, Lemma [E=3 implies:

SV = (AXL(M]: AD) VR ),
— WS (VX e s VXA~ VX p(Ag),
— Vo = (AX.(My : AL)){(VX.co), and
WSy b (VX ca) 1 VX . AL ~ VX p(Ag)
for some M;, My, A}, Ay, {c1), (ca).

Let

- M]" = M]/[X = a){c:1[X := q]) and
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— MY = MYX = o{ea]X = a)).

In what follows, we show the conclusion by proving first that
(- W, M"(p{X = a}(co)), My"(p{X = a}(co))) € E[Bo] p{X = a}, (2)

and then that
M{" = M{"(p{X = a}(c)) N My = My"(p{X = a}(c)) - 3)
— We start with proving (B). We have
x (W', Vi, Vo) € V[A] p,ie., (W, (AX.(M] : A))(VX.c1), (AX.(M]: AL)) (VX .co)) € V[VX.Ao] p,
x W 3 W/,
x W' |0F Cy,
W"”.35 | 0 F Cq, and
* R € Relww , [Cq,Cy].
Because
x W’ 3 W’ implies W’ € World, W".X; D W’'.X1, and W".Xy D W'.X,, and
* W' € World implies = W".3; and = W".3,,
we have
x W".E1 F (VX.c1) : VX AL ~ VX .p(4p) and
x W' 3s b (VX.co) : VX.AL ~» VX .p(Ap)
by Lemma E®@. Therefore, noting that « is fresh, we have

*

W' s> ViCy
= W' > (AX.(M]: A)(VX .c)) C
— W"3,a:=Cy > M{[X := o]{a1[X := af){coerce (p(Ao)[X :=a])) (by (R_TYBETA_C))
=  W".31,a:=Cy> M"{coerce} (p(Ao)[X = al]))

and

WN.ZQ > V2 (C2
= W'35> (AX.(M]: AY))(VX.co) Ca
— W', a:=Cy> MJ[X := a]{ca[ X := a){coercel (p(Ag)[X :=a])) (by (R-TYBETA_C))

W 3o, a0 := Cy > M3 {coercel (p(Ao)[X := a])) .

Thus, we have
(WW,M{N,MéN) c »é [[Ao]] p{X — a} .

Because 0 < W'"'.n, we have
(- W" M", M)") € E[A] p{X — a} .

Because
x » W 3 W' by Lemma G2 (B),
* W= W"H (a,Cy,Cy, R) 3 W by Lemma 8,
x« W 3 W' and
« W' I W,
we have » W J W by Lemma GH. Then, we have
* LT, X IF ¢o: Ag ~ By,
x »W'" € S[X] by Lemma GT3 with » W 3 W and W € S[X].
x (wW".0,p{X — a}) € G[I', X] because:
- (wW".0,p) € G[I'] by Lemma GT2 with » W 3 W and (W, 0,p) € G[I'], and
- a € dom((» W").K).
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Because (» W"").n < W".n < W.n, the IH implies the conclusion (B)
(- W7, M{"(p{X = a}(co)), My"(p{X = a}(co))) € E[Bo] p{X = a} .

— We show (B). Because
* XTI VX.co: VX.Ag ~ VX. By,
x W' € S[X] by Lemma GT3 with W/ J W and W € S[X], and
x (W', 60,p) € G[I'] by Lemma GI2 with W’ J W and (W,0,p) € G[I],
we have
« W10 F VX.p(co) : VX.p(Ag) ~ VX .p(Bp) and
x W3 |0 F VX.p(co) : VX.p(Ag) ~ VX .p(Bo)
by Lemma GT9. Then, by (CT_-Cons_C),
x W31 F (VX.c1), (VX .p(co)) : VX.A] ~ VX .p(By) and
x W'.3s F (VX.ca), (VX .p(co)) : VX. AL ~~ VX .p(By).
Because
* W 3 W implies W” € World, W".X; O W’'.%; and W".Xy D W'.2,, and
* W' € World implies = W”.3; and - W' .%,,
Lemma E®@ implies
« W31 F (VX 1), (VX .p(co)) : VX. A} ~» VX .p(By) and
« W35 F (VX.ca), (VX .p(co)) : VX. AL ~» VX .p(By).
Therefore, noting that « is fresh, we have

W”.Zl > V1<p(VXCO)> Cl
W“.Zl > (AX(M{ s A ))(V Cl><VXp(Co)> (Cl

— W"E1,0:=Cy > (M]{c1){p(co)))[X := o] (coercel (p(By)[X :=a])) (by (R_TYBETA_C))
= W'3i,a:=Ci> M"{p(co[X := a]))(coercet (p(By)[X = a])
and
WN.ZQ > V2<p(VX.CQ)> (Cg
= W' (AX.(My: AL))(VX .co) (VX .p(co)) Co
— W35, :=Cy > (M{c2)(p(co)))[X = a](coercet (p(Bo)[X :=«a])) (by (R-TYBETA_C))
= W'3s,a:=Cop> M) {p(co[X := a]))(coercelt (p(Bo)[X = a])) .
Because
x WS> Vi{p(VX.cp)) C1 — W". 31, a:=Cy > M| {coerce (p(By)[X := a])) and
x WS> Volp(VX.co)) Co — W".3g, a0 := Co > MY (coerce (p(By)[X := a])),

Theorem ETT implies (B).
o Let W I W’. We show that

(W, Vi(p(¥X .co)) %, Va(p(¥X .co)) %) € E[Bo] p{X — *} .

Because (W', Vi, Va) € V[A] p =V [VX.Ao] p, we have
- WS |0 F Vp:VX.p(Ag) and
— WSy |0 F VoYX .p(Ag).
Thus, by Lemma E=3,
V= (AX(M - 44) R e,
~ WS WX 1) s VXL AL VX p(Ao),
— Vo = (AX.(Mj : AY))(VX.co), and
— W'y F (VX.co) : VX. Al ~~ VX .p(Ap)
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for some M{, M3, Ay, AL, (c1), (¢2). By (R_TYBETADYN_C),
* =

— I/}V”.Zl > V1{p(VX.co) W5 > (AX.(M] : AD)(VX .c1)(p(VX.co)) x — W".E; > (M{@(p(co»)[)( :
*| and

— WS> Valp(VX o)) % = W".Tg > (AX.(My : A5)) (VX .co)(p(VX .co)) x — W".5a > (Mg(ca)(p(co)))[X :
x].
Supposing that 1 < W”.n, we can prove the conclusion by Lemma GI3 with the following.
— » W 3y W by Lemma G2 (B).
- (WX, = WX,
— (W2, = W5,
Finally, Lemma GI3 requires us to prove that

(> W, (My{c1){p(co)))[X =+, (M{c2){p(co)))[X :=]) € E[Bo] p{X = +} .

Because (W', V1, Vo) € V[VX.Ag]p and W” T W', we have (W", Vix, Vax) € E[Ao] p{X — *}.
Because, by (R-TYBETADYN_C),

— WS> Vix — WS> (M{{c1))[X := 4] and

— W'3E3p> Vox — W' o> (Mi{c2))[X 1= %],
we have L o

(> W, (M{e1))[X = #], (M5(c2))[X :=#]) € E[Ao] p{X = «}

by Lemma G20. We have » W J W by Lemma G3. Therefore, we have the following:

— » W € S[X] by Lemma GT3, and

— (wW",0,p{X — %}) € G[I', X] by Lemma GT2.
Because ¥ | T, X Ik ¢ : Ag ~» By and (» W”).n < W.n, the IH implies the conclusion

(> W (M {c1){p(co))[X =+, (Ms{c2){p(co)))[X = ]) € E[Bo] p{X = %} .
O

Lemma G.22 (Compatibility: Coercion Application). If X |T'HM; < My: Aand ¥ |T' F ¢: A ~ B, then
Y| TF M{c) <X My(c): B.

Proof. We have ¥ |T' F Mi(c): Band ¥ |T' = My(c) : B by (T_Crc_C).
Let W,0,p such that W € S[X] and (W,6,p) € G[I']. Then, we must show that

(W, p(0" (Mi(c))), p(6°(Ma(c)))) € E[B]p .

Because ¥ | '+ My < My : A, we have (W, p(61(M)), p(0*(Mz))) € € [A] p. Then, because & |T' + c¢: A~ B
implies ¥ | T IF ¢: A ~» B, Lemma G2 implies the conclusion. O

Lemma G.23 (Compatibility: Constants). If -3 and X F T and ty(k) = A, then & [Tk < k: A.

Proof. By induction on A. Note that ¥ | T' + k£ : A by (T_ConsT_C).
Let W,0,p such that W € S[X] and (W,0,p) € G[I']. Then, we must show that

(W, k. k) € E[A]p
By Lemma G4, it suffices to show that (W, k, k) € V[A] p. We proceed by case analysis on A.
Case A = v: Obvious.

Case A=1— A’: Let W 3 W, and V7 and V3 be values such that (W', V1, Va) € V[¢] p. Then, it suffices to
show that (W', k Vi,k Va) € E[A] p. Because (W', V1, Va) € V[i] p, we have Vi = Vo = £’ for some k'
Therefore, it suffices to show that (W', k&' kk") € E[A'] p. By (R.DELTA_C), WX > kk' — W' 31>
k" and W'.3s > kk' — W'.35 > k" for some k”. Supposing that 1 < W'.n, we can prove the conclusion
by Lemma GT3 with the following.
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o » W 1, W’ by Lemma G (2).
o« (b W)X, = W.S; and (b W').5y = W’.5s by definition,
e We show that (» W', k" k") € E[A']p. By the IH, ¥ | T+ k" < k" : A’. Because » W' J W by

Lemma G4, we have » W’ € S[X] by Lemma GI3 with W € S[X], and (» W',0,p) € G[I'] by
Lemma G2 with (W, 0, p) € G[I']. Therefore, we have the conclusion.

O
Lemma G.24 (Compatibility: Variables). If X and X +Tandz: 4 € T, then ¥ |[TFz <z : A

Proof. By (T_VAR.C), X |T' F z: A.
Let W,0,p such that W € S[X] and (W,6,p) € G[I']. Then, we must show that

(W,64(2),6%(z)) € €[A]p.
Because (W,0,p) € G[I'] and z: A € T, we have the conclusion by Lemma GT4.

Lemma G.25 (Compatibility: Abstractions). If ¥ |z : AF My < My : B, then ¥ | T'F Az: A.M; <
Azr:A.My: A — B.

Proof. By (T_ABS.C), X [T+ Az:AMy:A—-Band X |T'F Az: AMy: A— B.
Let W,0,p such that W € S[X] and (W,0,p) € G[I']. Without loss of generality, we can suppose that
z ¢ dom(6). Then, we must show that

(W, p(0*(\z: A.My)), p(0*(\z: A.M>))) € E[A — B]p.
By Lemma IGT4, it suffices to show that
(W, p(0*(\z: A.M)), p(0%(\z: A.My))) € V[A — B]p .
Let W', Vi, and V5 such that W/ J W and (W', Vy, Vo) € V[A] p. Then, it suffices to show that
(W', p(0'(A\z: AML)) Vi, p(62 (Az: A.Ma)) Vo) € E[B]p.
By (R-BETA_C),
o W'.S1pp(0t(\z: A.My)) Vi — W'.X1 > p(0*(My))[z := V1] and
o W' . 3o p(0?(\z: AM)) Vo — W'.Xo b p(62(My))[z := Val.
Supposing that 1 < W’.n, we can prove the conclusion by Lemma GTH with the following.
e » 1V J; W’ by Lemma G2 ().
e (W)X, = W'.E; and (»W').3Ey = W’'.E;5 by definition,

e We show that
(> W', p(0"(My))[z := V1], p(6%(Ma))[z := Va]) € E[B]p .

By Lemma G3, » W’ I W. Therefore, we have
— » W' € S[X] by Lemma GT3 with W € S[X] and » W’ 3 W,
— (W', 0,p) € G[I'] by Lemma G2 with (W,0,p) € G[I'] and » W' J W, and
— (W', V1, V3) € V[A] p by Lemma G0 with (W', Vq, Vo) € V[A] p and » W' 3 W'.

The last two imply (» W', 0{z — (V1,Va)},p) € G,z : A]. Because ¥ | T,z : A+ My < My : B, we
have the conclusion

(> W', p(0" (M) [z = Val, p(0° (Ma))[z == Va]) € E[B]p .
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Lemma G.26 (Compatibility: Applications). If X |I'F Mj; < Moy : A —» Band ¥ | T'F My <X Mas @ A,
then 2 | 'k M11 M12 j M21 M22 : B.

Proof. By (T_App_C), we have & |T' - My; Mio: Band ¥ |T' - My Mas : B.
Let W,0,p such that W € S[X] and (W,6,p) € G[I']. Then, we must show that

(W, p(0' (M1 Mi)), p(6%(May May))) € E[B]p .

Because ¥ | ' My < May : A — B, we have (W, p(0*(Miy)), p(0*(Miz))) € EJA — B]p. Let W 2 W,
and Vq; and Va; be values such that (W', Vi1, Va1) € V[A — B] p. Then, by Lemma G, it suffices to show
that

(W', Vi p(6"' (Mi2)), Var p(6°(Ma2))) € E[B]p .

Because

o S|TF My < My : A,

e W' € S[X] by Lemma GT3 with W € S[X] and W/ J W, and

o (W', 0,p) € G[I'] by Lemma GT2 with (W,0,p) € G[I'] and W’ J W,

we have (W', p(6'(Mi2)), p(6%(Ma2))) € E[A]p. Let W” 3 W', and Viz and Vae be values such that
(W, Via, Vo) € V[A] p. Then, by Lemma G, it suffices to show that

(W", Vi1 Vig, Va1 Vo) € E[B]p .

Because (W', Vi1, Va1) € V[A — B]pand W” 3 W’ and (W”, Via, Vaz) € V[A] p, we have the conclusion.
O

Lemma G.27 (Compatibility: Type Abstractions). If ¥ | T, X F M; < My : A, then ¥ | T'F AX .(M; : A) <
AX.(My: A) :VX.A.

Proof. By (T_-TYABS.C), X |T'F AX.(M;: A):VX.Aand ¥ |T F AX.(My: A) : VX . A.
Let W,0,p such that W € S[X] and (W,0,p) € G[I']. Without loss of generality, we can suppose that
X ¢ dom(p). Then, we must show that

(W, p(6"(AX .(My : A))), p(62(AX.(My : A)))) € & [¥X.ALp .
By Lemma GT4, it suffices to show that

(W, p(0 (AX.(M; = A))), p(6*(AX.(My : 4)))) € V[VX.A]p .
This is implied by the following two cases.

e Let W', By, By, R, M{, My, and « such that
- wWIWw,
W' |0F By,
W' 35 | 0 Ba,
R € RelW/_n [[Bl,Bg]],
W' 21> p(0*(AX.(My : A)) By — W31, =By > M{{coercel (p(A)[X :=
W' 3o > p(02(AX.(My : A)) By — W' 3o, a0 := By > Mj{coercel (p(A)[X :=
Let W = W'H («,B1,B3, R). Then, it suffices to show that
(W, M{, M) € wE[A] p{X — a} .

By (R_-TYBETA_C) and Theorem ET0, M{ = p(0'(M;))[X := o] and My = p(6*(M>))[X := a]. Therefore,
it suffices to show that

(W, p(0" (M)[X := o], p(0(M))[X = a]) € & [A] p{X > a} |
Suppose that 0 < W”.n. Then, it suffices to show that

(> W, (6" (M))[X := a], p(6°(M))[X = o) € E[A]p{X = a} .
Because » W"” J W by Lemmas G8, G (), and G4, we have

59



— »W"” € S[X] by Lemma GI3 with W € S[X] and » W” J W and
— (wW",0,p) € G[I'] by Lemma with (W,0,p) € G[I'] and » W" 3 W.

The last one implies (> W",0,p{X — «a}) € G[I', X]. Because X | T, X F My < My : A, we have the
conclusion.

e Let W/ J W. We show that
(W' p(0(AX.(M; = A))) %, p(0*(AX .(My : A)))*) € EJA] p{X > *} .
By (R-TYBETADYN_C),

— W15 p(0 (AX.(M; : A)) % — W'.E; > p(01(My))[X := %] and
WS e p(PAX (Mo A)) % — W5 b p(62(M))[X = ).

Supposing that 1 < W’.n, we can prove the conclusion by Lemma GTH with the following.
— » W’ J; W by Lemma G (B).
— (W)X = W'.X; and (> W').Xy = WX, by definition.
— We show that
(0 W, (0 (MD)[X = 4], p(62(M2))[X i= #]) € E[A]p{X > 5} .

By Lemma G, » W’ 3 W. Therefore, we have

x » W' € S[X] by Lemma GI3 with W € S[X] and » W' J W, and

x (W', 0,p{X — %}) € G[I', X] by Lemma GI2 with (W,0,p) € G[I'] and » W' 3 W.
Because ¥ |I', X - M; < M, : A, we have the conclusion.

O

Lemma G.28 (Loosely Typing Sealing and Unsealing). Assume that « := B € ¥ and ¥ F I'1, X, T's and
Y| Ty, X,ToF A and « does not occur in A. Then, the following holds:

o X |y, T9[X :=a] Ik coercef (A[X :=q]) : A[X :=a] ~ A[X :=B] and
o X | ', T9[X :=a] Ik coerce; (A[X :=q]) : A[X :=B] ~ A[X := a].

Proof. The proof is almost the same as that of Lemma [ETA. We proceed by induction on A. Note that
Y|y, Te[X :=a]F A[X :=a] and ¥ FT'1,T3[X := o] by Lemma [O3.

Case A = By (CT0_ID_C).
Case A = X: By (CTO_REVEAL_C) and (CT0_-CONCEAL_C).
Case A=Y A Y # X: By (Ct0_ID_C)
Case A = [3: Because « does not occur in A,  # a. Then, we have the conclusion by (CT0_-In_C).
Case A = *: By (CT0_ID_C).
Case A = Cy — Cy: By the IHs and (CT0-ARROW_C).
Case A =VX.C: By the IH and (CT0_ALL_C).
O

Lemma G.29 (Compatibility: Type Applications). If ¥ | T F M; < My : VX.B and ¥ | ' - A, then
S|TFMA<MA:B[X = A

60



Proof. By (T_TyApp.C), X |T F My A: B[X == A]and S| T F My A: B[X := A].
Let W,0,p such that W € S[X] and (W,6,p) € G[I']. Without loss of generality, we can suppose that
X ¢ dom(p). Then, we must show that

(W, p(0" (M1 A)), p(6*(Ma A))) € E[BX := Al p .

Because X | '+ My < My : VX.B, we have (W, p(01(M)), p(6%(Mz))) € E[VX.B]p. Let W 2 W, and V;
and Vs be values such that (W', V1, Va) € V[VX.B] p. Then, by Lemma G, it suffices to show that

(W', Vip(A), Vap(4)) € E[BIX == A][p.
Because (W,6,p) € G[I] and & | T'F A, we have p(p(A)) = p(A). Therefore, by Lemma GI7 (2),
E[BIX = A]] p = E[p(B)[X = p(A)]] 0 = E [p(B)[X = p(p(A)]] 0 = E [B[X = p(A)]] p .
Hence, it suffices to show that
(W', Vip(A), Vap(A)) € E[B[X = p(A)]]p .

By Lemma EZ3, there exist some M{, My, C;, Cs, (c1), and (cp) such that

o Vi = (AX.(M]: C1))(¥X.c1) and W'.51 - (VX .c1) : VX.Cy ~ VX .p(B), and

o 5y = (AX.(MJ: C2))(VX.co) and W35 F (VX .cq) : VX .Ch ~» VX .p(B).

By case analysis on p(A).
Case p(A) = Ap: Let a ¢ dom(W'.X;) U dom(W'.E;). By (R-TYBETA_C),

o WS> Vip(A) — W'.31,a:= Ay > M| {coercel (p(B)[X := a])) and

o W'.3Sop Vop(A) — W' .Sa,a:=Ag > My {coercet (p(B)[X := a]))
where

o My = M{[X = af{a[¥ = a]] and

al{ea[X = al).

Suppose that 1 < W’.n. By Lemma GI3, it suffices to show that there exists some W’ such that

o M = MJX :=

[ ] W”.El = W’.El,Oé = Ao,

[ ] W”.ZQ = W/.227Oé = Ao,

o W" 31y W', and

o (W7, M} {coeree (p(B)IX i= al)), MY/ {coerced (p(B)[X = a]))) € & [BIX := Ao]] p.
Let W' = W' B (a, Ao, Ag, [V[Ao] O] wr.n), and W =» W'. Because

e W' e World,

o W'.X1|0F Agand W.E5 |0 F Ag by Lemmas D2 () and O3 (W), and

o D} [[Ao]] @J w'.n € Rele_n [[Ao, Ao]] by Lemma EEEIJ,

we have W} Jg W’ by Lemma GH. Because W J; W}’ by Lemma G (B), we have W’ 3; W’ by
Lemma G3.

Now, it suffices to show that
(W, M {coerce (p(B)[X := al)), My {coerce (p(B)[X := a]))) € E[B[X :=Ag]]p .

By Lemma G2, it suffices to show the following.
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e We show that
coerce (p(B)[X := a]) = p(coerce (B[X := al)) .
It suffices to show that, for any ¥ € dom(p), a # p(Y). Suppose that there exists some ¥ € dom(p)
such that a = p(Y). Because (W,0,p) € G[I'], we have (W',0,p) € G[I'] by Lemma GT2 with
W’ 3 W. Then, because Y € dom(p) and p(Y) = «, we have o € dom(W’.k). Because W' €

World, it implies @ € dom(W’.2;) N dom(W’.3;). However, it is contradictory with the assumption
a & dom(W'.X1) U dom(W'.3s). Therefore, VY € dom(p). a # p(Y).

e We show that
Y,a:= Ay | T IF coercel (B[X :=a]) : B[X :=a] ~ B[X := A .

[0

Because X | ' My < M : VX.B, we have ¥ | T'F VX.B and X I T’ by Lemma ET0. By Lemma D2,
Y,a:=Ag | T FVX.B and ¥, := Ag - I'. By inversion of the first, ¥, := Ay | I, X - B. By
(TEW_TYVAR), 3, := Ag F T', X. Therefore, by Lemma G28, we have the conclusion.

e We show that
W' e S[X,a:=A] .

Because W J W by Lemma GH with W’ J W’ and W' J W, we have W"” € S[%] by Lemma GI3

with W € S[X]. By Lemma G2, we have the conclusion.
o We show that

(W",0,p) € GIIT,

which is proven by Lemma IGT2 with (W,0,p) € G[I'] and W” J W.

o We show that
(W', M, My) € E[B[X :=a]]p.

Because W = » Wy, it suffices to show that
(W', M{", M) € »E[B[X :=a]]p .

Because
— (W', V1, Vo) € V[VX.B]p,
W’ 3 W’ by Lemma 3,
— WS |0+ Agand W55 | 0 F Ay,
[V[A] O wr . € Relywr .y [Ag, Ao,

we have

(W', M{", My') € wE[B] p{X — a} .
By Lemma GT4 (B), we have the conclusion.
Case p(A) = x: By Lemma G4 (B), it suffices to show that
(W', Vik, Vax) € E[B] p{X — *},
which is implied by (W', V1, Va) € V[VX.B] p and W’ 3 W' obtained by Lemma G3.
O
Lemma G.30 (Compatibility: Blame). If- 3 and ¥ FT and ¥ |T'F A, then ¥ |T'F blame p < blamep : A.

Proof. By (T_-BLAME_C), ¥ |T' F blamep : A.
Let W,0,p such that W € S[X] and (W,6,p) € G[I']. Then, we must show that

(W,blame p,blamep) € E[A]p ,

which holds by definition. O

[TS: Ts the title of the next theorem right?]
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Theorem G.31 (Fundamental Property (Theorem B3 of the paper)). I X |T'F M : A, then ¥ | T+ M =
M : A

Proof. Tt suffices to show that ¥ | ' M < M : A, which is proven by induction on the typing derivation with
the compatibility lemmas (Lemmas GZ3, GZ4, G243, G208, G243, G241, G330, and G232). O

Lemma G.32 (Congruence of the Logical Relation). If ¥ Fo Co: (T1F A1) = T Ag) and ¥ | Ty F My =
M2 : Al, then X | FQ = Cc[Ml} ~ CC[MQ} : AQ.

Proof. By induction on the derivation of ¥ k¢ Co: (I'1 F Ay) = (T2 F As).
Case (CTtxT_-HOLE_C): Obvious.
Case (CTXT_ABs_C): We are given
Co=A2:491.Cy, Ao = Aoy — Ass, L ko Co: (D1 Ay) = Do,z 0 Aoy B Ago) (3, Aoy, Aze,Cr) -

By the IH7 b)) | FQ,CL‘ : A21 F C/C[Ml] ~ C/C[MQ] : A22. By Lemma EEZH, b)) | FQ - /\:EA21C6[M1] ~
Az Ag1.Co[Ms] @ Aoy — Ago, which is what we have to prove.

Case (CTXT_ApPP1_C): We are given
CC:C/CM, Z"Cclc(rl}_Al)@(Fgl_B—)Ag), E‘F2I_MB(HC/617M,B)

By the IH, ¥ | 'y F C[Mi] = Ci[Ms] : B — Ay. By Theorem G331, ¥ | Ty = M ~ M : B. By Lemma G20,
Y| Ty b Ch[M] M =~ CL[Ms] M : Ag, which is what we have to prove.

Case (CTxT_APP2_C): We are given
Co=MC., S|Tob M:B— Ay, SteCh:(Tik A= (TyF B) (34, M, B) .

By the IH, ¥ | T's - Ci;[M1] =~ C;[Ms] : B. By Theorem G331, ¥ |To - M ~ M : B — A;. By Lemma 28,
Y| To b MCL[M] =~ MCj[Ms] : Ag, which is what we have to prove.

Case (CTXT-TYABS_C): We are given

By the IH, © | Iy, X  CL[Mi] ~ CL[Ms] : A). By Lemma GZ4, ¥ | Ty - AX.(CL[Mi]: Ab) ~
AX .(C[Ms] = AY) : VX . A5, which is what we have to prove.

Case (CTXT_TYAPP_C): We are given
Co=CLB, StecCh:(TyFA)= (TaFVYX.0), B|T2kB, Ay=C[X:=B](3C.X,B,0C).

By the IH, ¥ | T's F C[Mi] = C[Mz] : VX.C. By Lemma G24, ¥ | T'y - C[Mi] B ~ C[Mz] B : C[X := B],
which is what we have to prove.

Case (CTXT-CRC_C): We are given
CC:C/C<C>, Z}_C C’C(Fll—Al):>(F2|—B), E|F2|‘CIBM—>A2(3CIC,C,B).

By the IH, ¥ | T's F Ci[Mi] = C[Ms] : B. By Lemma G22, ¥ | T'y - C[Mi](c) = Ci[Ma](c) : Aa, which is
what we have to prove.

O
Lemma G.33 (Adequacy of the Logical Relation). Assume that X | 0 F M; = M, : A.
1.Z>M1—>21>V1ifandonlyifZ>M2—)Egng.

2. X> M; — ¥q > blamep if and only if ¥ > My — 3o > blame p.
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3. X M 1 if and only if ¥ > Mo 1.

Proof. Let W be a tuple (0,%,3,{a € dom(X) — |V [Z(a)] 0]o}). We first show that W € World; C World.
Because 0 < 1 and F ¥ by Lemma ETD, it suffices to show that, for any @ € dom(X), [V[E(«)]0]o €
Relp [E(a), E(a)]. By definition, |V [Z(a)]0]o = 0 € Relp [E(e), E(a)]. Therefore, W € World.

Then, we have W € S[X] and (W,0,0) € G[0] by definition. Because X | 0 = M; ~ M, : A, we have
(W, M, M) € E[A]0 and (W, My, My) € E[A]D. By them, Theorem E, and Theorem EZI, we have the
conclusion. O

[TS: Is the title of the next theorem right?]

Theorem G.34 (Soundness w.r.t. Contextual Equivalence (Theorem B™ of the paper)). If ¥ | '+ My ~ M; : A,
then © | T + M; € M, : A.
Proof. By Lemmas G332 and G333 and Theorem EZI. O

Definition G.2 (Identity Coercion Generation). Given a type A, we define coercion coerce(A) as follows:

def .
coerce(t) = id,

def .
coerce(x) = id4

coerce(A) — coerce(B)

)
)
coerce(A — B)
)
)
)

coerce(VX . A L vy .coerce(A)
coerce(X e idy
def .
coerce(a) = idg .

Lemma G.35 (Identity Coercion Generation).
e If a does not occur in type A, then coercet(A) = coerce(A).
e For any V and A, there exist some n and V' such that ¥ > V{coerce(A)) —™ L V' for any X.
elfFYand XFTand ¥ |T'F A, then X | T" F coerce(A) : A ~ A.
Proof.
e By induction on A.
e By case analysis on A.

e By induction on A.

O
Lemma G.36 (Commutativity of Coercion Generation with Type Name Substitution).
e For any A, X, and «, coerce(A)[X := a] = coerce(A[X := a]).
e For any A and X, coerce(A)[X := x| = coerce(A[X = %]).
Proof. Straightforward by induction on A. O

Lemma G.37 (Identity Coercion Produces Logically Related Values). Assume that (W, V1, Vo) € V[A]p
1. If W.Z1 > Vi(coerce(p(A))) —* W.E1 > VY, then (W, V], Vo) € V[A]p
2. If W.E5 > Va(coerce(p(A))) —* W.Eo > Vi, then (W, Vi, V3) € V[A] p

Proof. By induction on the size of A. Let (W, Vi, Vo) € V[A]p

1. Let V{ be a value such that W.X; > Vi{coerce(p(4))) —* W.X; > V{. By case analysis on A.
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Case A =1 (), *, a(Ja), or X (3X): Obvious by the assumption because Vi = V7.

Case 341, A2. A= Ay — As: We have V] = Vi(coerce(p(A1)) — coerce(p(A4z2))) and n = 0. We have to
show that
(W, Vi{coerce(p(A1)) — coerce(p(A2))), Vo) € V[A1 — As]p .

Let W 3 W and Vj; and Vj, be values such that (W', Vi, Viy) € V[A1] p. It suffices to show that
(W', Vi(coerce(p(Ar)) — coerce(p(Az))) Vi, Va Vi) € E[A2] p .

By (R-WRraAP_C),

W51 b Vi{eoerce(p(Ar)) = coerce(p(Az))) Vor — W51 b (Vi (Viy{eoerce(p(A1))){coerce(p(Az))) -

By Lemma G338, W'.X; > V{ {coerce(p(A1))) —™ W'.X1 > V{ for some n and V{'. Therefore, by
(R-C1x_C),

W'. %1 > Vi{coerce(p(Ay)) — coerce(p(As))) Vi, —"T1 W51 > (Vi V{"){coerce(p(As))) .

Assume that n +1 < W'.n. Let W' = (W'.n— (n+1), W .5, W .5, | W .K|ws n(nt1)). We have
W" 3,41 W' by Lemma G2 (B). Therefore, by Lemma GI3, it suffices to show that

(W, (Vi V{')(coerce(p(A2))), Va Via) € E[A2]p .

Because (W', Vi, Vi) € V[Ai] p, we have (W', V{', V§,) € V[Ai] p by the IH. By Lemma GI0
with W’ 3 W', we have (W, V{, V§y). By Lemma GA with W” 3 W' and W’ J W, we have
W' 3 W. Therefore, by (W, V1, Va) € V[A1 — A2] p, we have (W, Vi V', Vy V{,) € £ [Az] p. Let
W 3 W”, and V{" and V3" be values such that (W' V" V") € V[As] p. By Lemma GI8, it
suffices to show that

(W, V" {coerce(p(A2))), V3') € E[A2] p .
By Lemma G338, W".3; > V{"(coerce(p(4z2))) —™ W'".%; > V{" for some m and V{"”. Let
W = (W"mn —m, W" Sy, W"So, | W".E|wr pn—m). By Lemma GIH and the definition of the
term relation, assume that W .n > m and then it suffices to show that

(WI/I/, Vl///l, 2/I/) c V HAQ]] p .

Note that W"" 3, W" and W Jy W"" by Lemma G2 (2) and Lemma GH. Because (W', V{" V") €
V[As] p and W1 > V{"(coerce(p(Az))) —™ W L1 V", we have (W', V"', V§") € V[As] p
by the IH. Because W' J W', we have the conclusion by Lemma GT0.

Case X, A’. A=VX.A": Without loss of generality, we can assume that X & dom(p). We have V| =
V1{¥X .coerce(A’)) and n = 0. We have to show that

(W, Vi{(¥X .coerce(p(A"))), Vo) € V[VX.A']p .

By Lemma EZ3,
o V1 = (AX.(My: Ch))(VX.c1) and & F (VX.¢1) : VX.Cy ~ VX . A, and
o V5 = (AX.(My: C3))(VX.co) and Z F (VX.co) : VX.Cy ~» VX . A’
for some My, My, Cy, Cs, @, and @ We have the conclusion by the definition of the value relation
with the following.
o Let W', By, By, R, M{, M3, and « such that
- Waw,
— W%, |0F By,
— W5 |0F B,
— R € Rely H:Bl,IBQ]],
— W31 > Vi(VX.coerce(p(A")) By — W'.X1,a:= By > M{(coercel (p(A")[X := a])), and
— W'y VaBy — W' o, a0 := By > Mj(coercel (p(A")[X = al)).
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Then, we show that
(W' 8 (o, B1,Ba, R), M], M3) € »E[A] p{X — a} .

By (R-TYBETA_C), Theorem El, and Lemma G3H, M] = (Mi{ca1))[X = «](coerce(p{X —

a}(A”)) and My = (Ma(c2))[X := a]. Assume that W’'.n > 0. Then, it suffices to show that
(»(W'HB (a,B1,B2, R)), M{, M3) € E[A] p{X — a}.

Because
- (W, Vi, VQ) € V[[VXA/]] P, L
- Wi ViBy — WS, a:=B1> (M(c1))[X := a{coercef (p(A")[X := a])) by (R-TYBETA_C),
and
— W'.3op VoBy — W' .Ss, a0 =By (Mg@)[X := a)(coercet (p(A")[X := a])) by (R-TYBETA_C),
we have

(W/BE‘ (047IB31,IBBQ,R),(M1<C1>)[X = Oz],(M2<CQ>)[X = Oé]) e »é [[A/]] p{X — a} s

which implies

(> (W' B (o, By, By, R)), (M{e))[X = al, (Ma{c2))[X := a]) € E[ATp{X — a}.

Let W J »(W'H(a, B1,B2, R)), and V{’ and V3’ be values such that (W", V{’, V') € V[A ] p{X —
a}. Then, by Lemma G8, it suffices to show that

(W, V{'(coerce(pf X — a}(4)), V3) € E[A]p{X = a} .

By Lemma G333, W".X; > V{’{coerce(p{X — a}(4"))) —" W"'.X; > V{” for some n and
V{"”. Assume that W"”.n > n, and let W = (W".n —n, W' S, W' So, | W k] wrn-n). By
Lemmas G (R) and GH, W' J,, W"” and W' Jy W', Then, by Lemma GT3 and the definition
of the term relation, it suffices to show that

(W v{" vy e VAT p{X — a}.

Because (W, V', Vj') € V[A] p{X — a}, we have the conclusion by the ITH and Lemma GTI0.
Let W' 3 W. We show that

(W', Vi(VX .coerce(p(A"))) %, Vox) € E[A] p{X + %} .

By (R-TYBETADYN_C) and Lemma G338,

— W1 > Vi(¥X .coerce(p(A")) % — W' 51> (Mi{c1))[X := «]{coerce(p(A’[X :=#]))) and

— W'.Eyp Vox — W'.Eg > (Ma(co))[X = 4]
Assume W’'.n > 1 (thus, » W' is well defined, and » W’ J; W’ by Lemma G (B)). By
Lemma GI3, it suffices to show that

(> W' (M {c1))[X := #](coerce(p(A'[X = %]))), (Ma(c2))[X :=%]) € E[A]p{X — %} .

Because (W, Vi, Va) € V[VX.A']p and W T W, we have (W', Vi*, Vax) € EJA]p{X —
*}. Because WX > Vix — W'.E; > (Mi{c1))[X = #] by (R-TYBETADYN_C), we have
(> W', (Mi(c1))[X :=#], (Ma(c2))[X :=#]) € E[A] p{X — *} by Lemma GZ0. Let W J» W/,
and V" and V4’ be values such that (W”, V{, VJ') € V[A]p{X — *}. By Lemma GIH, it

suffices to show that
(W, V! (coerce(p(A'[X = «]))), Vi) € E[ATp{X > } .

By Lemma G338, W".X; > V{'(coerce(p(A'[X := «]))) —" W".X; > V{” for some n and
V{"”. Assume that W"”.n > n, and let W = (W".n—n, W' Sy, W' So, | W' .k]wrn-n). By
Lemmas G2 (B) and GH, W 1J,, W and W Jy W'. Then, by Lemma GT3 and the definition
of the term relation, it suffices to show that

(W7 V", V) € VIA]p{X — x}.

Because (W, V|, V') € V[A'] p{X — x}, we have the conclusion by the ITH and Lemma GI0.
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2. Let V3 be a value such that W.X5 > Vao(coerce(p(A))) —* W.35 > Vj. By case analysis on A.
Case A =1 (3), *, a(3a), or X (3X): Obvious by the assumption because Vo = Vj.
Case 3 A1, A2. A= Ay — As: We have Vg = Va(coerce(p(A1)) — coerce(p(Az))). We have to show that
(W, V1, Va(coerce(p(A1)) — coerce(p(A2)))) € V[A1 — Ad]p .
Let W' 3 W and V{; and V{, be values such that (W', V{;, Vg,) € V[A41] p- It suffices to show that
(W', Vi Viy, Valcoerce(p(Ar)) — coerce(p(Az))) Vi) € E[As]p -
By (R-WraAP_C),
W' 35 > Va(coerce(p(A1)) — coerce(p(Aa))) Vg — W'.Ea > (Vo (Vis(coerce(p(A1))))){coerce(p(Az))) .

By Lemma GZ3H, W35 > Vjy(coerce(p(41))) —* W'.3s > V3 for some Vy'. Therefore, by
(R-Ctx_C),

W' o > Vo(coerce(p(A1)) — coerce(p(Az))) Vg —* W'.Sa > (Vo Vi) {coerce(p(As))) .

Assume that 0 < W’'.n. We have W’ Jy W' by Lemma G3H. Therefore, by Lemma GT3, it suffices to
show that
(W', Vi Viy, (Vi V) (coerce(p(Az2)))) € E[A2]p -

Because (W', V{;, Vi3) € V[Ai] p, we have (W', V{,, V3') € V[Ai] p by the IH. By (W, Vy, Va) €
VA1 — As] p, we have (W', V1 Vi, Va Vy') € E[A2] p. Let W 3 W', and V{" and V3" be values
such that (W, V{", V3") € V[As] p. By Lemma G0, it suffices to show that

(W, V1", V3 (coeree(p(A2)))) € € [Aap.

By Lemma G333, W".55 > V3" {coerce(p(Az))) —* W' 3s > V3" for some V3"”'. By Lemma GH,
W' 3y W''. Therefore, by Lemma GIH and the definition of the term relation, assume that W"'.n > 0
and then it suffices to show that

(I/I////7 Vll//, 2////) c V IIAQ]] p .

Because (W, V{", V") € V[Az2] p and W .Eo > V3"(coerce(p(Az)))y —* W' 35> V4", we have
the conclusion by the TH.

Case 3X,A’. A=VX.A": Without loss of generality, we can assume that X ¢ dom(p). We have Vj =
Vo (VX .coerce(A’)). We have to show that

(W, Vi, Vo(VX .coerce(p(A”)))) € VI[VX.A]p .

By Lemma E73,
o Vi = (AX.(M;: C1))(VX.c1) and Z F (VX .c1) : VX.Cy ~ VX.A', and
o Vy = (AX.(My: C3))(VX.co) and ¥ F (VX .cp) : VX.Cy ~» VX . A’
,

for some My, My, Cy, Cs, {c1)
with the following.
o Let W/, By, By, R, M{, Mj, and « such that
- Waw,
W', [0+ By,
WS |0 F B,
~ R € Relyr ., [B1,Ba],
- WS> ViBy — WX, a:=B; > M{{coercel (p(A)[X := a])), and
— W35 > Vo(VX.coerce(p(A'))) By — W'. 3o, a0 := By > Mj{coercel (p(A)[X = al)).

nd (cz). We have the conclusion by the definition of the value relation
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Then, we show that

(W'H (a,Bq,Ba, R), M{, M3) € »E[A] p{X — a} .

By (R-TYBETA_C), Theorem E, and Lemma G338, M{ = (M1{c1))[X := o] and M) = (Ma(c2))[X =
af{coerce(p{X — a}(4’))). Assume that W'.n > 0. Then, it suffices to show that

(’(W/Bﬂ(athB%R))?MllvMé) € g[[AI]] p{X = a} .

Because
— (W, Vi, VQ) € V[[VXA/]] 0,
- W'.Eis ViB — W' .S, a:=B; > (M{c))[X := a]{coerce} (p(A)[X := a])) by (R_TYBETA_C),
and
— W'.3op VoBy — W' .Ss, a0 =By (Mg@)[X := a)(coercet (p(A")[X := a])) by (R-TYBETA_C),
we have

(W' (a,B1,Ba, R), (Mi{c1))[X = o], (Ma(c2))[X :=a]) € BE[A] p{X — a},

which implies

(> (W' B (o, B1,Ba, R)), (M (c1))[X := o], (Ma(c2))[X :=q]) € E[A] p{X — a} .

Let W"” J »(W'H(a,B1,Bs, R)), and V" and Vy' be values such that (W"”, V', V§') € V[A] p{X —
a}. Then, by Lemma GH, it suffices to show that

(W, V], V' {coerce(p{ X + a}(A")))) € EJA] p{X — a} .

By Lemma G333, W”. 55 > V' (coerce(p{X — a}(4")) —* WSy V3" for some V3", Assume
that W”.n > 0. By Lemma G3, W” Jy W"”. Then, by the definition of the term relation, it
suffices to show that

(W, v, V") € VIA]p{X — a} .

Because (W, V', VJ) € V[A] p{X — «}, we have the conclusion by the IH.
Let W’ 3 W. We show that

(W', Vix, Vo(VX .coerce(p(A")) x) € EJA] p{X + %} .

By (R-TYBETADYN_C) and Lemma G338,

- W.Eip Vix — W.E > (M{ca))[X =% and
— WSy > Vo (VX .coerce(p(A')) % — W' B (Ma(ca))[X := %](coerce(p(A'[X = +]))).
Assume W’'.n > 1 (thus, » W' is well defined, and » W’ J; W’ by Lemma G4 (B)). By

Lemma GI3, it suffices to show that

(> W' (M {c1))[X := ], (Ma{ca))[X := #|](coerce(p(A'[X :=«])))) € E[A]p{X — %} .

Because (W, Vy, Vo) € V[VX.A']p and W' T W, we have (W', Vi %, Vax) € E[A]p{X —
*}. Because W' Xy > Vox — WXy > (Ma(c2))[X := ] by (R-TYBETADYN_C), we have
(> W', (Mi(e)[X = #], (Ma(c2))[X :=%]) € E[A] p{X — } by Lemma GZ0. Let W"” J » W',
and V{" and V3’ be values such that (W”, vy, V3') € V[A]p{X — *}. By Lemma GTH, it

suffices to show that

(W, V' Vil {coerce(p(A'[X :=+])))) € E[A] p{X — %} .

By Lemma G333, W .55 > Vi (coerce(p(A'[X = %]))) —* W39 > V3" for some V3"”. Assume
that W”.n > 0. By Lemma G3, W” Jy W”. Then, by the definition of the term relation, it
suffices to show that

(W7, Vi, v5") € VIATp{X — #}.

Because (W, V{', VJ') € V[A'] p{X — %}, we have the conclusion by the IH.
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O

Lemma G.38 (Identity Coercion Produces Contextually Equivalent Values). If ¥ |0 F V : A and ¥ >
V{coerce(A)) —* S V/ then S |0+ V E V' A

Proof. By Theorem G334, it suffices to show that ¥ | = V =~ V' : A. Note that ¥ | § = V' : A by
Lemmas ET0 and G333 and Theorems EZ20 and EI. Let W € S[X] and (W,0,p) € G[0]. By definition,
p = 0 and 0 = (. Therefore, by the definition of the term relation, assume that W.n > 0 and then it
suffices to show that (W, V, V') € V[A]0 and (W, V', V) € V[A]0. Note that W Jy W by Lemma G3.
By Theorem GZX0, ¥ | O = V = V : A. Therefore, (W, V,V) € V[A] 0. By Lemma IG=Xa, we have the
conclusion. O

Lemma G.39 (Subterm Evaluation of Terminating Term). If ¥ > F[M] —™ X' > V, then ¥ > M —™
Yo V" and X' > F[V"] —™ ™ X' V for some m, ¥, and V.

Proof. Straightforward by induction on n with Lemma G and Theorem EZTI. O

Theorem G.40 (Free Theorem: K-Combinator). If X |0 F V:VXVY.X - Y > X and X |0 - V;: A and
Y |0 F Vy:B, then one of the following holds:

e So VABV; Vo —* b V/and X' |0 F V! = V5 : A for some ¥/ and V/;
e x> VABV, Vo —* ¥’ b blame p for some ¥’ and p; or
e XD VABVl Vgﬂ

Proof. By Lemma ET0, ¥ | - A and X | § - B. Therefore, ¥ |0 + VAB V; V5 : A. By Theorem EZ, it
suffices to consider the case that
S VABV, Vo —" S5 V! (4)

for some n, ¥’, and V{. Then, we have to show that
S0 Vi E VAL

By Theorem G, X |- V& V :VXVY.X -V — X.

Let Wo=(n+ 1,52 {a € dom(Z) — |V[E(a)]0]ns+1}). We first show that Wy € World,, 12 C World.
We have n+1 < n+2 and - ¥ by Lemma ET0. Let o € dom(X). It suffices to show that [V [E(«)]0]n41 €
Rel,41 [E(e), X(a)], which is proven by the following.

o We show that |V [2(a)] 0,41 € Atom¥?}; [S(a), ¥(a)]. By definition,

VIZ(@)] 041 € V[E(@)]0 C Atom™ [S(a)] 0 = | ) Atom)}! [S(a), B()] € | Atom,, [S(e), S(a)] -

m>0 m>0

Therefore, for any (W, My, Ms) € [V [Z()] 0] nt1, we have W € World,,, and W.X; | 0 = M; : X(«)
and W.Xo | 0 F M, : X(«) for some m. Also, M; and My are values and W.n < n + 1, which implies
W € World,, 1. Therefore, we have the conclusion.

e We show the monotonicity of |V [Z(«)] |ny1. Let (Wi, V', V) € |[V[E(a)]0]ns1 and Wo T Wi,
Then, we show that (Wa, V{’, VJ') € |V[E(«)]0],+1. By definition, (Wy, V{’, V3') € V[E(a)] 0 and
Win < n+ 1. By Lemma G0, (Wa, V{', VJ') € V[E(a)]0. Because Wo 3 Wi, we have Wan <
Wi.n < n—+ 1. Therefore, we have the conclusion.

Because Wy € S[X] and (Wy,0,0) € G[0] by definition, we have (Wo, V, V) € E[VX.VY.X — YV — X]0,
which implies (WJ, V,V) € V[VX.VY.X — Y — X]0 for some W{ such that W] Jg Wy and W§.2; =
W{.X2 = 3. Let Vo1 be a value and j be a natural number such that, for any o, 3o > Vi (coerce(A)) —J g >
Vo1 (by Lemma GZ33, there exist such Vp; and 7). Let Ry = {(W, Vo1, Vor) | W 3 W§ A W.an < Win —1}.
Then, we have the following.

e Wy J Wy by Lemma G3.
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o W33 |0F A and Wy .3, |0+ A by Lemma ETI.
e Ry € Relyy., [A,A] by the following:

— We show that Ry C Atom‘{,'?/lé_n [A,A]. Let (W, V{", V') € R;. Then, W/ J Wj and W'.n <
Wgn —1and V' = V§ = Vo. By W/ J W{, we have W/ € World and W'.%; D ¥ and
W'y 2 3. Because W'.n < Wg.n — 1, we have W' € Worldyy ,,. Because X [ ) = V; : A, we

have ¥ | @ F Vo1 : A by Lemmas ET0 and G338 and Theorems EZZ1 and El. Because - W’.3; and
F W3y by W € World, we have WX, |0 F Vo1 : Aand WS |0 F Vo : A by Lemma EXR.
Therefore, we have the conclusion.

— We show the monotonicity of Ry. Let (W{, V{', V§') € Ry and Wy J W{. We show that (W3, V{’, V3')
R1. By the definition of Ry, it suffices to show that Wy J W and Wy.n < Wg.n —1. Wy J Wj is
derived by Lemma GH with Wy 3 Wy and W] J W3. Wi.n < Wj.n — 1 is derived by Wy J W/
and (W{, V{', V') € R; (that is, W/.n < Wj.n —1).

e We have X > VA — Y a:=A> M (VY.a~ — idy — a') for some o and M; by Lemma EZ3 and
(R_TYBETA_C). Note that we can assume that « is fresh without loss of generality.

Therefore, by (W§, V, V) € V[VX.VY.X - Y — X]0,
(Wl B (a, A, A, Ry), My, My) € »ENY.X = Y — X]0{X o a} .
Because Wj.n = Wo.n=n+1> 0, we have
(> (Wy B (a,A,A, Ry)), My, M) € EVY.X = YV = X]{X — a}. (5)
Note that W B (o, A, A, Ry) = (W5.n, (T, :=A),(Z,a:= A), Wj.k{a — R1}). Because
> VABV, Vy, — Ya=A> M{¥VY.a~ —=idy = at)BV; Vo (by Lemma G)
—n=b 3> V] (by Theorem EIl with (@)) ,

Lemma implies
Ya=AcM —" XV (6)

for some m, ¥, and V' such that m < n = (»(Wy B (o, A, A, Ry1))).n. Therefore, by (H) and Theorem E,
there exists some Wj such that W1.3, = W1.35 =3¢ and Wy J,, » (W] H (o, A, A, Ry)) and

(W, V', V') € VIVY.X = Y — X]0{X — a} . (7)
Let Ry ={(W, Vo, Vo) | W I Wy A W.n < Wi.n—1}. Then, we have the following.

e W O Wi by Lemma G3.

e W1.3X1 |0+ Band Wi.Xs | @+ B by Lemma 02 () with 3 | § - B. Note that W7.31 = W1.3s =% 2O %,
which can be easily proven by induction on the derivation of (B).

e Ry € Relw, ., [B,B] by the following:

— We show that R, C AtomYy , [B,B]. Let (W', V{’,V}/) € Ry. Then, W' I W; and W'n <
Wim—1and V| = V) = Vo. By W/ 3 Wy, we have W’ € World and W’'.2; 2 ¥y and W'.X5 D
¥1. Because W'.n < Wi.n — 1, we have W’ € Worldw, ,,. Because = | @ = Vo : B, and - W’'.X2;
and F W'.3, (by W’ € World), and £; D X (discussed above), we have W'.X; | 0 F V5 : B and
W'3s |0 F Va:B by Lemma EXR. Therefore, we have the conclusion.

— We show the monotonicity of Re. Let (W{, V{', VJ') € Ry and Wy J W,. We show that (W3, V', VJ') €
Ry. By the definition of Rs, it suffices to show that Wiy J Wy and Wiyn < Wy.n—1. Wy J Wy is
derived by Lemma GH with Wy 3 W/ and W] 3 Wy. Wy.n < Wi.n — 1 is derived by Wy J W/
and (W{, V{', V') € Ry (thatis, W/.n < Wi.n —1).

e We have ¥y > V'B — X1,8 := B> My(id, — S~ — id,) for some 8 and M, by Lemma EZ3 and
(R-TYBETA_C). Note that we can assume that § is fresh without loss of generality.
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Therefore, by (@), we have
(W1 B (8,B,B, Ry), Mo, M) € »E[X - Y = X]{X — a}{Y — B}.

Note that Wy B (8,B,B, Ry) = (Wi.n, (21,8 :=B), (X1,8 := B), Wi.k{8 — Rs}). Because Wi J,, » (W B
(o, A, A, Ry)), we have Wi.n+m = Wj.n — 1 = n, that is, Wi.n = n — m > 0. Therefore,

(> (W1 B (8,B,B,R2)), Mz, Ms) € E[X - YV = X]{X — a}{Y — S} . (8)
We have
Yo VABWV, Vo, — Y,a:=Ap Mi(VY.a~ —idy —at)BV; Vs
—m > V/<VY.Oé_ —idy — 0é+>B Vi Vs
(by Lemma G with (B))
— Y1, B:=Bp> My{a™ —idg — at)(coerce (A) — B~ — coerceg(A» ViV

(by (R-TYBETA_C))
—nm (Mt 5 vy
(by Theorem ETT with (H@)) .

Lemma implies ‘
Zl,ﬁZ:BDMQ —' EQD VN (9)

for some ¢, X9, and V" such that ¢ < n — (m + 2). Therefore,
Yo VABV, Vo —™HF2 5o b V'™ —idg — oﬁ><coerce§ (A) =B~ — coerceE(A)) Vi Va (10)

by Lemma GTl. Because (» (W7 B (8,B,B, Rs))).n = Win—1=n—m —1 > i, we have that, by (B) and
Theorem E, there exists some Wy such that We. Xy = WXy = X9 and Wo J; »(W; B (8,B,B, R2)) and

(Wo, V" V") € V[X = YV = X]W{X — a}{Y — B} . (11)
Now, we have the following.
e Wy J Wy by Lemma G3.
o (W, Vor{a™), Vor{a™)) € V[X]W{X — a}{Y — B}, which is proven as follows. Because

- W2 gz >(I/Vl Bﬂ (ﬁvBaﬁa RQ))v

—» (W1 B (5,B,B,R)) 1 Wy and »(Wy B (o, A, A, Ry)) 31 Wy by Lemmas G8, G (2), and G3,
and

- Wl ;m »(Wé B (Oé,A7A, Rl))7

we have
Wo I (W B (o, A,A, Ry)) and Wo 3 W]

by Lemma G3. Therefore, Wo.k(a) = |Ri|w,.n- Because Won=n—(m+i+1)andi<n—m—1,
we have Wy.n > 0. Therefore, » W5 is well defined, and it suffices to show that

(» Wa, Vor, Vo1) € [Ri]woum -
Because (» Wa).n < Wa.n, it suffices to show that
(» Wa, Vo1, Vo1) € Ry .

By definition, it suffices to show the following.

— » Wy O Wy, which is derived by Lemma G with » W, J W, (implied by Lemma G2 (2)) and
Wy 3 Wg.
— (» Wa).n < Wj.n — 1, which holds because Wa.n=n—(m+i+1)= Wgn—1—(m+i+1).
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Therefore, by (@),
(W, V" (Vor(a™)), V" (Vor{a™))) € E[Y — X]0{X — a}{Y — B} . (12)
Furthermore, we have

Y> VAB V1 VQ

—ym+2 Y1, 8:=Bp> Ma{a™ —idg — a¥)(coerces (A) — B~ — coerceE(A)) Vi Vo
—t Yo Ve~ —idg — a™)(coercey (A) — B~ — coerce}’(A)) ViV
(by Lemma G with (8))
— Yoo (Vo™ —idg — a™) (Vi(coerceg (A)))) (B~ — coerceE(A)) Vo
(by (R-WRrAP_C)/(R-CTXx_C))
—J o> (Va™ —idg = at) Vo )(B~ — coercef; (A)) Va
(by Lemmas G233 and G)
— So > (V" (Vor{a™)))(idg = at)(B~ — coerceE(A» Vo

(by (R-WrAP_C)/(R_-CTx_C))
—yn—(mtititd)  § Vl/
(by Theorem [E) .

By Lemma G339,
Yo V" (Vorla™)) —* Sy V” (13)

for some k, 33, and V" such that k <n— (m—+1i+j+4). Because Wao.n =n — (m+1i+ 1) > k, we have that,
by (I2) and Theorem [, there exists some W3 such that W3.X; = W3.359 = X3 and W3 Ji, W, and

(W3, V" V") € VY = X]0{X — a}{Y — B}. (14)
Now, we have the following.
e W3 J W3 by Lemma 3.
o (W3, Vo(B7), Va(B™)) € V[Y]W{X — a}{Y — B}, which is proven as follows. Because

— W3 Ji. Wa,
- W2 ;z >(I/VlEE(BJB’IB7R2))7and
- >(W1B3(57B7B7R2))g W17

we have

Wy 3 P(Wl H (B,BJB%, RQ)) and W5 J W,

by Lemma GH. Therefore, W3.k(5) = |Rz2] wy.n. Because Wy.n = Waon—k=n—(m+i+k+1) and
k<n—(m+i+j+4), we have Ws.n > 0. Therefore, » W3 is well defined, and it suffices to show that

(> W5, Vo, Vo) € |Ra] wym -
Because (» W3).n < Ws.n, it suffices to show that
(» W3, Vo, Vo) € Ry .
By definition, it suffices to show the following.

— » W3 J Wi, which is derived by Lemma G with » W3 J W; (implied by Lemma G2 (2)) and
Ws 3 W.

— (» W3).n < Wi.n — 1, which holds because Ws.n=n—(m+i+k+1)<n—m—-1= Wi.n—1
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Therefore, by (I3),

(W, V" Vo (B7), V" Va(B7)) € E[X]I{X = a{Y = B} . (15)
Furthermore, we have the following.
X VAB VL Vs
—ymtitit+d Yo > (V" (Vor{a™)))(idg = o) (B~ — coerceE(A)) Va
—k Yg > V" (idg — at)(8” — coerceE(A)) %2
(by Lemma G with (I3))
—3 Yy (VT (Vﬂﬁ’)))(aﬂ(coeme;(A))

(by (R-WRAP_C) and (R-ID_C) with (R_-CTx_C))
—yn—(m+itj+k+7) vV Vl/

(by Theorem ETT with () .
By Lemma G339,

Y3 V" (Va(B7)) —t By V" (16)
for some I, ¥4, and V""" such that | < n—(m+i+j+k+7). Because Ws.n =n—(m+i+k+1) > [, we have
that, by (IH) and Theorem [E, there exists some Wy such that Wy, = Wy.3e = X4 and Wy J; W3 and

(W, V"' V") € VIX]W{X — a}{Y — B}. (17)

By definition, V" = V{;{a™) for some V{; such that (Wy, V{;, V§;) € »(Wik(a)). Because Wyn =
Wsn—Il=n—(m+i+k+Il+1)andl <n—(m+i+j+k+7), we have Wy.n > 0. Therefore,
(» Wy, Vi1, V§1) € Wy.k(a). Because

o W, W3,
o W33 W, and
o Wo I (WH (o, A A, Ry)),
we have Wy J » (Wi B (o, A, A, Ry)) by Lemma G3. Therefore, Wy.k(a) = |R1]w,.n, s0 V§; = Vo1. Now,

we have the following.

> VABV Vy

S5 5 (V7 (Valf=))) o+ {coerce (4)

PR V”"(a*)(coerce}(A)) (by Lemma G with (I))
= Yy V01<a’><a+><coerce;§(A)>

— Xy Voi(coerce (A))  (by (R-ReEMOVE_C)/(R-CTX_C))

—* Y V] (by Theorem E with (@)) .

RN
RN

By Lemma G233 and Theorem E, &' = ¥4 and 4 > Voi(coerce(A)) —* Sy VY.

Because X [0 F VABV; Vo:Aand X VABV, Vo —* ¥ V), wehave X C X and X' |0 F V] : A
by Theorems EZZ1 and E. By Lemma ETQ, - ¥'. By Lemma ER, ¥’ | § + V; : A. By Lemma G333,
¥ > Vi{coerce(A)) —* ¥/ > Vy;. Therefore,

S0V E Vo : A

by Lemma G38.

By the definition of the contextual equivalence, ¥’ | 0 = Vp1 : A. Because ¥ | O - A, we have ¥’ | § - A
by Lemma D2 (). Therefore, ¥’ | § + Voi(coerce(A)) : A by Lemma G333 and (T_Crc_C). Because ¥’ >
Voi{coerce(A)) —* ¥/ > V{, we have

S0 F Vor € VA
by Lemma G38.

Because the contextual equivalence is transitive (which can be easily proven using Theorem El) and sym-
metric, we have X/ | 0 + V] < vy : A. O
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H Space-efficiency
H.1 \C],

Lemma H.1 (Only Type Application Generates Coercions). If ¥ > M — X' > M’ is derived without
(R-TYBETA_C), then, for any ¢’ occurring in M’, there exists some ¢ in M such that ¢’ is a sub-coercion of c.

Proof. By induction on the derivation of X > M — X' > M.
Case (R_DELTA_C), (R_FAIL_C), (R_CoNFLICT_C), (R-BLAME_C): Obvious because there is no ¢’ in M".

Case (R_BETA_C), (R_ID_C), (R_-CoLLAPSE_C), (R_REMOVE_C): Obvious by letting ¢ = ¢’ because any ¢’ in
M’ also occurs in M.

Case (R-WRAP_C): We are given
M= (V{"=d"N)V', M=V V{N") @ d", VvV, V).
By case analysis on c’.

Case ¢’ = ¢ or ¢/ = d”: We have the conclusion by letting ¢ = ¢/ — d”.

Case ¢’ occurs in V or V’: We have the conclusion by letting ¢ = ¢’ because ¢’ also occurs in M.
Case (R_SpPLIT_C): Similarly to the case of (R-WRAP_C).
Case (R_CTx_C): We are given

M = E[M], M = E[M], SvM — M (3B M,M).
By case analysis on c’.

Case ¢’ occurs in M{: By the assumption, ¥ > M; — ¥/ > M/ is derived without (R_-TYBETA_C). There-
fore, by the IH, there exists some c¢; in M; such that ¢’ is a sub-coercion of c¢;. Because M; is a subterm
of M, ¢; occurs in M. Therefore, we have the conclusion by letting ¢ = ¢;.

Case ¢’ occurs in E: Because ¢’ also occurs in M, we have the conclusion by letting ¢ = ¢’.
O

Lemma H.2 (Only Type Application Generates Coercions: Multi-Step Evaluation). If ¥ > M —* ¥/ > M’
is derived without (R_-TYBETA_C), then, for any ¢’ occurring in M’, there exists some ¢ in M such that ¢’ is a
sub-coercion of c.

Proof. Straightforward by induction on the length of the reduction sequence of ¥ > M —* ¥’/ > M’ with
Lemma HTI.
O

Theorem H.3 (AC),, Cannot Be Made Space-Efficient (Theorem ?? of the paper)). There exists a closed
well-typed term M such that, for any natural number n, there exist some store ¥ and term M’ satisfying the

following:

(1) 0o M —* ¥ > M’; and

(2) there exist some types A, B and coercion sequence (¢’) that appears in M’ such that

(i) X+ () : A~ B,
(ii) size ({¢)) > n, and

(iii) there does not exist a coercion ¢ such that

(a) S0+ (¢) =Y : A~ B and
(b) size(c) < size ({c")).
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Proof. Let
o f def Mo ix AX (( Az X.(fo(x = *7P1) fo) (VX %) 7P2) (VX . (% = *7P3 ; X! — id,)) * (z(X))) : X — %),

o V X flid, = (VX.((X770 —id,) ;% — +1)) ; (VX %)!) ;% — #1), and

o M X £V x(0(ntl)).

First, we show that 0 | @ - M : x.

e We start with showing that § | F f: % — (VX.X — %). Let ' =0,/ : x, X,z : X. By (T_ABs_C) and
(T_TyABs_C), it suffices to show that

DT F (folkx = *7P1) ) (VX *)?P2) (VX . (x — *7P3 5 X1 — id,)) * (m(X ) : % .

We have the following derivation.

o pET r:X el F0 pET DITFX
T_VaR.C
: 0T Fa:X (T-Var-C) DT F X!: X = x

(Ct-INnJ_C)
(T_Crc_C)

OIT F o(X]): %
Therefore, by (T_TyAPP_C) and (T_App_C), it suffices to show that
DIT F (folk = *771) o) (VX %) 7P (VX . (x = +7P3 5 X1 — id,)) : VX (X — %) .

We have the following derivations.

F) OFT  O|TFVYX

Cr_ProJ_C
DT F (VX .%)?7P2 1 %~ VX ( )
) OFT,Y T, Y Fx—* DT, Y F Y!:Y ~* DT, Y b ide : %~ *
| * (CT-PrROJ_C) | - | : * (CT_ArRROW_C)
DT,V b x— *7P3 1 % ~o % — % DIT,Y F Yl 5ideix > %~ Y =%

C1_SEQ_-C
DIT,Y Ex—= %P3 ;Y] 5 ide i %~ YV — % ( Q-C)

- (Ct-ALL.C)
DT F VX.(x = %773 ; X! = idy) 1 VX ok ~ VX (X — %)

where § | T, Y F Y!: Y ~ xis derived by (CT_INJ_.C), and @ | I, ¥ F ids : x ~ * is by (CT_ID_C).
Therefore, by (T_Crc_C), it suffices to show that

®|F "fo<*%*?p1>f0:*7

which is derived by the following derivation.

(T_VArR_C)

(CTt_PrOJ_C)

PITE fo:x (T_Crc_C)

DT F % = *?7P1 5~ % — %
DT F folx = *TP1) i x —

0T F folx— *2P1) fo o %

(T_VArR_C)
(T_Aprpr_C)

@|F|‘f0:*

e Next, we show that ) | @ F V : % Because 0 | 0 - f: % — (VX.X — x), (T_Crc_C) implies that it
suffices to show that

B0 F ide = (VX. (X7 = idy) 5%« = *D); (WX x)) 5% =+l ik = (VXX = %) ~o .
By (CT-SEQ_C) and (CT_INJ_C), it suffices to show that
B0 F ide = (VX (X7 = idy) 5% = +D) 5 (VX x)) 1k = (VXX = %)~ % — % .
By (CT-ARROW_C) and (CT_ID_C), it suffices to show that

010 F (VX.((X77 = id,) ;% — %1)) ; (VX )1 VXX — ok~ 5

I0)



e Finally, we show that @ | @ = M : %, which is obvious because @ | @ F f V : VX. X — *.

By (CT_-SEQ_C) and (CT_INJ_C), it suffices to show that

D10 F VX.((X?7P4 —id,) 5% — )t VXX = %~ VX ok .

By (CT-ALL_C), it suffices to show that

D10, X F (X727 = idy);x = *l 1 X = %~ x .

y (CT_SEQ_C) and (CT_INnJ_C), it suffices to show that

D0, X F X2 Sid, : X — %~ % = %,

which is derived by the following.

(CT_PrOJ_C)

D)0, X - X7P4 % X 010, X Fid, : %
B0, X F X774 —idy 0 X = x~> x —

Let
e n>0
def —
o V, = 0Onth(aj) {aq!) - {a;) (a!), and
X, def 0, cp :=%,++ ,ap :=*, and
o F' X O((VX %) 7P2) (VX .(x — #7P3 ; X! = id,)).

We show that

for some F’. We prove it by induction on n. Note that f = Afy: x AX.((Az: X.F[fo(x — x7P1) fo] *

*).

Do M —* X, F'[F[V(x— ) V]x V,]

(CtIn_C)
ok
(CT_ArRROW_C)

(x(X1)): X —

Case n = 1: By (R_.BETA_C), (R_-TYBETA_C), and (R_-WRAP_C), we have the following evaluation sequence:

Therefore, we have the conclusion for the case of n =1 by letting F’ = O(id,).

Case dm. n=m+1 A m > 0: By the IH,

0> M —* 3, > Fy[F[V{x = %P1 V]* V]

Y{ap —idy) (0(Int!))

0> M
= 0o fV*(0{nt!))
— 0> (AX.((Az: X.F[V (% = *7P1) V]x (2(X))) : X — *))x (0{Int!))
— Doy =% (Az:aq F[V{x = *7P1) V]* (z{a1!))
— Dya1 =% (Az 1. F[V (% = *7P1) V]x (z{aq!))) (0{Inth){as
— D,01 = %> (F[V{x = x7P1) V] (0{Int!) (a7 ){a1!)))(idy) .

for some Fy. By (R-SpLIT_C), (R-COLLAPSE_C), (R-WRAP_C), (R_-ID_C), (R-BETA_C), We have

Y > Vik = 7Py V

S & (F V){(VX (X771 = id,) ;% — #1)) ; (VX o)1)
S & V(X .((X771 = id,) ;% — %1)) 3 (VX))

Ll
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where
V' AX (2 X F[V (%= %27 V]x (2(X])): X — %) .

Therefore, by (R_SPLIT_C), (R-CoLLAPSE_C), (R_TYBETA_C), (R-WRAP_C), (R_ID_C), (R_BETA_C),

T b F[V(x = xP1) V]x V,,
Yo b F[V{(VX. (X774 — id,) ;% — *!
S > VI((FX. (X770 < id,) s % — #1)) (V.
Y b Az :an F[V{x — x7P1) V]«

*

=

) (VXD x Vy,  (by Lemma G)

X.(x = *7P3 5 X1 —idy)) * Vi

( ( I Pt — idy ;% — KD (x = x7P3 5 a, ! — idy) (g, — idy) Vi
Az F[V (% = xP1) V]* (x{ap!))) (e, Pt — ide) (! — idi) (o, — idy) V,
(A s @ PV (e = %72) Ve ({an!)) (Vin (g Yan!) (@ 22)) id) () (i)
( V]x (2
(
(

*

/\

)
z{ay,!
(

*

*

T{Op

)
)
(z{an!))) ( )

Az F[V (e = x27) Vs (z(anh))) (Vin(ay,)))(ids) (idy) (id)
FIV (e =0 VI (Vin (e ) (an!)) (idy) (id ) (id,)

(

FIV (% = %771) V] V,,)(id,) (id, ) (id, )

*
*
n

UL L

Then, we have the conclusion by Lemma G when we take Fo[(idy)(id,)(id,)] as F".

Therefore, it suffices to show the item (2) by taking Int as A, x as B, and (Int!), (a7 ), (a1l),. .., {a; ), (o)
as (c’). Note that we can take (Int!) as (¢’) for the case of n = 0 because (Int!) occurs in M. In what follows,
let 20 = @

2-i) X, F () : Int ~ x because X, | 0 F Int! : Int ~ x by (CT.INJ_.C), X, | 0 F «a : * ~ a; by
7
(CT_CoNCEAL_C), and ¥, | 0 F a;!: a; ~ x by (CT_INJ_C).

(2-ii) size ({¢/)) > n because the length of (¢/) is 2n + 1, and the size of every coercion is larger than zero.

cgc C'>

(2-iii) Let ¢ be an arbitrary coercion such that X, | 0 F (c) : Int ~» x. Then, it suffices to show that

size(c) > size ((¢')) .
Because X, | 0 F (c) < (¢} : Int ~ %, we have
S0 F Az:intz(c) € Az Int.z(Int!) (a7 ) (og!) - - (o ) (ay!) : Int — * .

Let Cc & (30) {an,?%) () - - - {1 7% (o) (Int?7). We can prove ¥ F Co : (0 I Int — %) = () I Int)

easily. Furthermore, by (R-BETA_C), (R-COLLAPSE_C), (R_.REMOVE_C), (R-CTXx_C), we have

Y, > CoAz:Intz{Inth{a ) {aq!) - - - {a;, ) (an!)]

1 1
= Zae (Qeinta(int)(ag ol - (ag ) {an!)) 0){an?®){aik) -+ (a1 7% ) (af ) (Int?)
— T > 0{Int)(aq Yaal) -+ g ) {anl){an ™) (o) -+ {n 27 ) o] ) (Int?9)
— Dy > 0{Int!)(ag Yaal) -+ o ){ai) - - (ar?9) (o )(Int?9)
— S e 0t (ag ) (arl) - (g Yan—a) @129 ) ey - - (a7 o H{Int?9)
—* 3, > 0(Int!)(Int?7)
—  X,>0

Because 0 is a value, and 2 | 0 F Az:Int.z(c) = Az:Int.z(Int!) (o] )(oq!) - (o ) {an!) : Int = %, Corol-
lary E2 implies that X, > Co[hz:Int.z(c)] —& X7, > V' for some ¥/ and V'. Furthermore, by
(R-BETA_C), (R-CTX_C), and Corollary [E2, we have

Yo > Co[Az:Int.z(c)]
= Yo b ((Az:Int.a(c)) 0){a, 29 ) {ait) - (a1 79 )] ) (Int?9)
— 2, > 0{e)(an?) ) - {70 ) (o ) (Int?9)
—* X V.
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Therefore, 0(c) also evaluates to a value, so X, > 0(c) —* o1 > Vp1 for some 3g; and Vp;. Then, by
Lemma G and Corollary E=2,

Y & 0(c) {29 ) ) - (a1 22 ) o Y (Int?9) —* So1 > Vor (@, 29 ) (o)) - - - (g ?7%) (] ) (Int?7)

—* Y eV

Therefore, the subterm Vpi (@, ?%) also evaluates to a value. It indicates that Vp; = Voo(a,!) for some
Voz2. Therefore,

> DO<C> —* Yo1 > V02<Oén!> .

Because 0{c) does not include type application, the derivation of X > 0{c) —* o1 > Voo (a,!) does not
use the rule (R-TYBETA_C). Therefore, Lemma H™ implies that «,,! is a sub-coercion of ¢. Furthermore,
by (R_CoLLAPSE_C), Lemma G, and Corollary E=2, we have

B & 0{e) () (0) - 2%) (@) (It27) — Zor & Voalor!) (@2 Do) - {02 (o) (e 2?)
— 201 > V02<a2_> e <a1?q1><a1+><|nt?‘1>
— XL e V.

Therefore, the subterm V3 (a;F) also evaluates to a value. Then, we can find that Vos = Vysz{«;,) for some
V03, and

Yn > 0(c) —" o1 > Voz{a, ) () .

Therefore, Lemma [H3 implies that «, is a sub-coercion of ¢. Furthermore, by (R_REMOVE_C), Lemma G,
and Corollary EZA, we have

Y & 0(c) {29 ) i) - (a1 7 ) o ) (Int??) —* So1 > Vos{a, Wait) - (a1 27) (o] ) (Int?9)

n

— o1 D V03<O‘n—1?q"*1><a;l"_1> e <0[1?q1><a1‘r><|nt?q>

—* Y sV

Therefore, we can apply the same discussion to Vp3. That is, we can prove that the coercions a,!, o), , ..., 1!, 0
and Int! are sub-coercions of ¢ by induction on n. Therefore, the coercion ¢ involves at least 2n + 1 sub-
coercions. Then, we can easily prove that

size(c) >2(2n+1) —1.
Therefore,
size(c) > 2(2n+1) —1

= size ((Int!), (a7 ), (aal), ..., {ay), (@, 1)).

H.2 S} (Proof of Theorem B2)

height(G?? ; b) = height(b) height(L?) = height(id) = 1
height(g ; G!) = height(g) height(s — ¢) = max(height(s), height(¢)) + 1
height (VX .s ,, t) = max(height(s), height(t)) + 1

size( G?P ; b) = size(b) + 2 size(L?) = size(id) = 1
size(g ; G!) = size(g) + 2 size(s — t) = size(s) + size(t) + 1
size(VX.s ,, t) = size(s) + size(t) + 1
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Lemma H.4 (Bounding Size by Height (Lemma HZJ of the paper)). For any space-efficient coercion s, the
following holds.

e size(s) < 5(2heisht(s) _ 1),
e If 5 is a possibly blaming coercion, then size(s) < 5(2beight(s) — 1) — 2,
e If 5 is an intermediate coercion, then size(s) < 5(2Peigbt(s) — 1) — 2,
e If 5 is a ground coercion, then size(s) < 5(2eight(s) — 1) — 4,
Proof. By induction on s with case analysis on the form of s.
Case s = id(3A): We have
size(id) = 1
height(id) =1 .
Therefore, it suffices to show that 1 < 5(2! — 1) — 4, because s is a ground coercion. Because
O the left-hand sided=1
O the right-hand sided= 5(2! — 1) — 4
=5-4
=1,
finishing the case.
Case s = ' — t/(3¢',t'): We have
size(s’ — t') = size(s) + size(t) + 1
height(s” — ') = max(height(s’), height(¢')) + 1 .
Consider the next two cases.

Case height(s’) > height(¢'): We have max(height(s’), height(¢')) = height(s’). Because s’ — ¢’ is a ground
coercion, it suffices to show that size(s’) + size(t') + 1 < 5(20eight(s)+1 1) — 4. By the TH,

size(s') < 5(2height(s) _ 1)
size(t') < 5(2height(t) _ 1)
Therefore,
size(s') + size(t') + 1 < 5(20eight(s) _ 1) 4 5(2beieht(t) _ 1) 41
< 2. 5(2heieht(s) _ 1) 41
5(2height(s’)+1 1) 4.

Case height(s’) < height(¢'): Similar.
Case s =VX.s',, t/(3X, ', t'): Similar to the case for s = s’ — t'.
Case s = g ; G!(dg, G): We have
size(g ; G!) = size(g) + 1
height(g ; G!) = height(g) .

Because g ; G! is an intermediate coercion, it suffices to show that size(g) + 1 < 5(2eight(9) — 1) — 2. By the
TH, size(g) < 5(2heieht(9) — 1) — 4. Therefore,

size(g) + 1 < 5(20eieht(9) _ 1) 441
S 5(2height(g) _ 1) —92.
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Case s = LP(dp): Similarl to the case s = id.
Case s = G?? ; b(3p, b): We have
size( G?P ; b) = size(b) + 1
height(G?? ; b) = height(b) .

Therefore, it suffices to show that size(b) + 1 < 5(2"¢ight(t) _ 1), By the TH, size(b) < 5(2height(®) _ 1) — 2,
Therefore,

size(b) +1 < 5(20eieht®) _1) 241
< 5(2}1eight(i) _ 1) )

Lemma H.5 (Height of Coercion). height(s) > 1
Proof. Straightforward by induction on s. O
Lemma H.6 (Composition Does Not Increase Height). If sg¢ is well defined, then height(s$t) < max(height(s), height(t)).
Proof. By induction on the sum of size(s) and size(t). We proceed by case analysis on s.
Case s = id: We have height(id) = 1. By case analysis on t.
Case t = g; G!(3g, G): We have id5(g; G!) = (idgg); G! and
height(g ; G!) = height(g), height((id§g); G!) = height(id 5 g) .

Therefore, it suffices to show that height(id § g) < max(height(id), height(g)), which follows from the TH.

Case t = LP(3p): We have id § LP = 1P and height(L?) = 1. Therefore, it suffices to show that 1 <
max(1,1) = 1, which holds trivially.

Otherwise: We have id § ¢ = ¢. Therefore, it suffices to show that height(¢) < max(1, height(t)), which is
trivial.

Case s = s’ — t/(3s',t'): We have height(s’ — ¢') = max(height(s’), height(¢')) + 1. By case analysis on ¢.
Case t = s — t"(3s”,t"”): We have (s" = t')5(s” = t")=(s"¢s") = (¢ §¢") and

height(s” — ¢") = max(height(s”), height(¢")) + 1,
height((s” §s") — (¢’ §¢"”)) = max(height(s” § s"), height(¢' s ¢t")) + 1 .

Therefore, it suffices to show that

max (height(s” § s), height (' §¢”)) + 1 < max(max(height(s"), height(#')) + 1, max(height(s”), height(¢")) + 1) .

By the assumption, (s” §s") — (¢’ ¢t”) is well defined; and so are s” § s’ and t' § t”. Then, by the IHs,
height(s” § s") < max(height(s”), height(s")), height(¢'3t"”) < max(height(#’), height(¢")) .

Therefore,

max (height(s” 3 s), height(¢' § ¢"”)) + 1 < max(max(height(s”), height(s")), max(height(¢), height(¢")))
= max(max(height(s), height(#')), max(height(s"), height(¢")))
= max(max(height(s"), height(#')) + 1, max(height(s”), height(¢")) + 1) .

+
_l’_
Case t = g; G!(3g, G): Similar to the case of s =id,t = g; G.
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Case t = LP(3p): We have (s’ — t') s LP = LP and height(L”) = 1. Therefore, it suffices to show that
1 < max(height(s’ — ¢'), 1), which follows from Lemma HT.

Case t =id: We have (s — t')3id = s’ — ¢ and height(id) = 1. Therefore, it suffices to show that
height(s’ — t') < max(height(s" — ¢’),1), which is trivial.

Otherwise: Contradictory because (s' — t') § ¢ is not well defined.

Case s = VX .81 ,, $2(3X, 51, 2): We have height(VX .s; ,, s2) = max(height(s; ), height(s2)) + 1. By case analysis
on t.

Case t =VY .41 ,, (Y, t, t2): Because (VX.s1 ,, $2) § (VY .11 ,, t2) is well defined, ¥ = X. Furthermore,
(VX .14, 82) 8 (VX 1) = VX (s151) 5, (523 f2), and

height(VX.(s ,, $2)) = max(height(s), height(s2)) + 1
height (VX .(# ,, t2)) = max(height (1), height(#2)) + 1
height (VX .(s1§ t1) ,, (52§ t2)) = max(height(sy § t1), height(se ¢ #2)) + 1 .

Therefore, it suffices to show that
max(height(s; § ), height(sz §#3)) + 1 < max(height(s ), height(sz), height(t;), height(2)) + 1) .

It follows from the TH.
Case t = g; G!(3g, G): Similar to the case of s =id,t = g; G
Case t = LP(3p): Similar to the case of s = 5" — ¢/, ¢t = LP.
Case t = id: Similar to the case of s = s’ — ¢/, ¢ = id.

Otherwise: Contradictory because (VX.s') st is not well defined.
Case s = g; G!(3g, G): We have height(g ; G!) = height(g). By case analysis on ¢.
Case t = id: We have (g; G!)3id = ¢g; G! and height(id) = 1. Therefore, it suffices to show that

height(g ; G!) < max(height(g; G!),1) ,

which is trivial.
Case t = i; H!(3i,H): We have (g; G!)5(i; H!) = ((9:G!)si); H and

height(((g; G!) 54) ; H!) = height((g; G!) i), height(i; H!) = height(i) .
Therefore, it suffices to show that
height((g ; G!) 3 i) < max(height(g ; G!), height (7)) .
By the assumption, ((g; G!)si); H! is well defined, and so is (g ; G!) ¢ i. Then, by the IH,
height((g ; G') 34) < max(height(g ; G!), height(1)) .

Case t = 1P(3p): Provable similarly to the case of s =" — t/,t = 1P,

Case t = G?P ;t/(Ip, t'): We have (i; G) g (G? ;') =ist and height(G?? ; ¢') = height(¢'). Therefore, it
suffices to show that

height (i 3 ¢') < max(height(4), height(¢')) .
By the assumption, 7 § ¢’ is well defined. Then, by the IH,

height(i § ¢') < max(height (i), height(¢)) .
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Case t = H?? ;t/(G # H)(3p, H,¢'): We have (i; GY) g (H?" ;t') = LP and
height(L?) =1, height(H?? ;') = height(t') .
Therefore, it suffices to show that
1 < max(height(i), height(¢)) ,

which follows from Lemma H3.

Otherwise: Contradictory because (i ; G!) ¢t is not well defined.
Case s = LP(3p): We have 1P ¢¢ = LP and height(L?) = 1. Therefore, it suffices to show that
1 < max(1, height(?)) ,
which is trivial.
Case s = G??;b(3G, p,b): We have (G??;b) st = G??;(bst) and
height(G?? ; (b5 t)) = height(bs¢), height(G??;b) = height(b) .
Therefore, it suffices to show that
height(b ¢ t) < max(height(b), height(t)) .
By the assumption, G?? ; (b t) is well defined, and so is b § ¢. Then, by the IH,

height(b ¢ t) < max(height(b), height(t)) .

Lemma H.7. height(s[X := #]) < height(s) and height(s[X := a]) < height(s).

Proof. By straightforward induction on s.

O

Lemma H.8. If ¥ > M —* ¥/ > M’, then for any s’ that occurs in M’, there exists some s that occurs in M

and height(s’) < height(s).

Proof. By induction on the derivation of ¥ > M — ¥/ > M’. We perform case analysis on the rule applied

last to derive ¥ > M — X/ > M’.
Case (R-DELTA_S), (R-FAIL_S), (R-BLAMEE_S), (R-BLAMEC_S): No s’ occurs in M’.
Case (R-BETA_S), (R_ID_S): Obvious because any s’ in M’ also appears in M.
Case (R-WRAP_S): We are given
M= (Ulss—=t)V, M=UV{s)(t), ¥ =% Hs,t,UV).
By case analysis on s'.

Case s’ = s or 8’ = t;: Take s = s; — t;. By definition height(s — ¢) = max(height(s), height(¢)) + 1.

Otherwise: s’ occurs also in M.
Case (R-MERGE_S): We are given
M = My(s1){t1), M' = DMs1s5t;), ¥ =3 (3si,t1, M) .
By case analysis on s'.
Case s’ = s1 3 t;: By Lemma HE, height(s § ¢) < max(height(s;),height(¢)). Take s = s; if height(s;)

height(#) or #; otherwise.
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Otherwise: s’ also occurs in M.
Case (R_TYBETADYN_S), (R_TYBETADYNC_S), (R-TYBETA_S), (R_TYBETAC_S): Easily follows from Lemma 2.
Case (R_.CTXE_S): We are given

M = E[M], M' = E[M], SoM — %M (3E,M,M).

By the IH, for any s’ that occurs in M/, there exists s that occurs in M; (and M, too) and height(s’) <
height(s). (Any s’ that occurs in E also appears in M.)

Case (R_CTXC_S): Similar to the case of (R_.CTXE_S).
O

Theorem H.9 (AS,, is Space-Efficient (Theorem B2 of the paper)). If§ [ = M : Aand 0> M —* X' > M/,
then, for any s’ appearing in M’ there exists some s appearing in M such that height(s’) < height(s) and
size(s’) < 5(2height(s) 1),

Proof. By induction on the length of the evaluation sequence of ) > M —* ¥ > M’. By case analysis on the
length.

/

Case The length is zero: Because M = M’ s’ appears in M. Therefore, we can let s = s’. height(s’) <
height(s’) trivially holds. Furthermore, by Lemma HA, size(s’) < 5(2"eisht(s) — 1),

Case The length is greater than zero: We are given
PoM —*Y">M' YoM — ¥>M @' M.

By the TH, for any s” appearing in M"”, there exists some s appearing in M such that height(s”) < height(s).
By Lemma HB and Lemma HZJ, we conclude that there exists some s appearing in M such that height(s’) <
height(s) and size(s’) < 5(2beight(s") _ 1) < 5(Qheight(s) _ 1),

O

I Translation

I.1 Proof of Theorem
Lemma I.1 (Identity Coercion Translation Preserves Typing). If X | T' ¢ idg : A~ Aand A = {X;,..., X,,} C

dom(I"), then |ida|r\a is a well-defined ground coercion and ¥ | X(I') \ A g [ida[r\a : 2(A[X7 i= %, X, =
x]) ~ B(A[X) 1= 4,y Xy = A]).

Proof. By straightforward induction on the structure of type A with Cemma T3 10 (B) and mn:m (8).
=)

~—

We show the case where A = VX.B. By the IH, ¥ | 3(I', X)\ A k5 [idp|r xna : B(B[X1 =%, X o
S(B[X) = %, Xy 1= #]) and ¥ | 3, X) \ (A, X) Fs [idslroonax) @ SBX = - X X =
*]) ~» S(B[Xy =%, Xy, := #][X :=#]). Since X(T', X)\ A = (2(I')\ A), X and 3(T, X) \ (A, X) Z(F\A)
we have, by (CT,ALL,S), b)) | E(F) \A FS VX.(|idB|(F\A))X 5y ||dB|(F\A)) : E(VXB[Xl =k, = *]) ~
S(VX.B[X) 1= 4, -, X := ]). O

Lemma I.2 (Strengthening).

LY | AL, X, Axk Aand X & ftv(A4), then ¥ | Ay, Ag F A.

2. EXF AL X, Ay, then ¥ F Ay, Ag.

3. UY| AL, X, Ay F¢ ¢c: A~ Band X ¢ ftv(c), then ¥ | A1, Az k¢ ¢: A~ B.
Proof. 1. By induction on A.

2. By induction on As.
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3. By straightforward induction on ¥ |T'1, X, I’y F¢ ¢: A~ B.
O

Lemma I.3 (Coercion Translation Preserves Typing). f X |T' F¢ ¢: A~ Band A = {Xy,..., X} C dom(T),
then ¥ | X(T') \ A kg [c|ma @ B(A[Xy 1= %, -+, Xy = #]) ~ B(B[X7 =%, -, Xy 1= #]).

Proof. The proof is by induction on the derivation of ¥ |T' k¢ ¢ : A ~ B with case analysis on the last rule
applied.

Case (C1_ID_C): By Lemma [.
Case (CT_INJ_C): We are given
c=Gl, A=G, B=« F¥ 3FI, T|TFG (3G).

We have two cases.
Case G =X ¢T'\ A: We have |G!|p\a =id. By ¥ |T'F X, we have X € T', and thus X € A. It suffices
to show X | X(T'\ A) Fg id: (X[X1 := %, -, X, := #]) ~ %, which follows from (CT_ID_S).

Otherwise: We have X € I'\ A and |G!|m\a = |idg|ma 5 G By (CtIp.C), ¥ |T' k¢ idg : G ~ G.
Therefore, by Lemma [T, |idg|r\a is a well-defined ground coercion and ¥ | X(I') \ A Fg [idg|p\a :
S(G[Xy =%, Xy = *]) » B(G[X7 := %, -+, X, :=#]). But, G[X; :=*,---, X, := x| = G because G
cannot be a type variable X; € A. Thus, by (Ct_INJ_S), ¥ | ¥(I') \ A kg |idg|ma; G 2(G) ~ *.
Since X(x) = %, we have ¥ | X(I') \ A kg |idg|m\a; G B(G) ~ E(x).

Case (CT_PRrROJ_C): Similarl to the case of (CT_INJ_C).
Case (CT_-CONCEAL_C): We are given
c=a", A=A B=qa FX XFT, a=AceX (Ja).

We have |a”|p\a = |ida|m\a = id. Then, by (Tw_NAME), ¥ |I'\ A F «, and so, by Cemma 710 (), we
have ¥ | 3(I'\ A) - . Furthermore, Cemma D10 (H) implies § - (I'\ A). Hence, by (CT_ID_S), we have
Y| X(T\A) Fg id: 3(a) ~ X(«a). Therefore, by Corollary D11, X(a[X; := %,---, X, := «]) = X(a) =
Y(A) = Z(A[Xy =%, -+, X, := %)) (the last equality comes from ¥ and (SwW_BINDING), and so we have
SIS\ A) Fs id: S(A) ~ S(a).

Case (CT_REVEAL_C): Provable similarly to the case of (CT_CONCEAL_C).
Case (CT_FAIL_C): We are given
c=1%_, F%, SFT, S|TFA, S|TFB (Jp).

By CemmaD1d (), we have ¥ | T\ A F A[X; :=x,--, X, :i=x] and X | T\ A F B[X] := %, -+, X, := %]
Then, by Cemma D10 (B), we have § - (') \ A and, by Cemma D10 (B), we have () | Z(T)\ A F Z(A[X; :=
x5 Xy = #]) and 0 | B(I) \ A F X(B[X; := *,---, X;, := %]). Because |L%_ ;|lra = LP, we have, by
(CT_FAILS), B | X(T)\ A kg LP : B(A[X7 := 4, -, Xy = ]) ~ B(B[X7 := %, -+, X,, 1= ).

Case (CT_ARROW_C): We are given
c—c —d, A=A > B, B=A"—B"
STk ¢ A"~ A, S|T ke d:B ~ B" (3A, A", B, B" ¢ d).
We have |¢/ = d'[r\a = |¢/|m\a — |d'|p\a. By the IHs,
SIEM)\A Fg [ ma : B(AY[Xy =%, Xy = 4]) v BA[Xy i= 4,0, Xy 1= 4])
YIET)\A Fg [d|pa : B(B[X1i= %, Xy i=#]) ~ B(B"[X1 := %, -, X, i=#]) .

Thus, by (CT_ARROW_S), ¥ | X(I') \ A Fs ['|[ma = [d'ma 0 (B(A[X) =%, -+, X, 1= #]) = B(B'[X; =
Ky X = ])) > (B(A[ Xy =%, Xy = %) = S(B'[Xy := %, -+, X, :=%])). By the definiton of ¥(A),
we have ¥ | X(I') \ A ks |c[p\a @ BA[X7 =%, -+, Xy = #]) ~ B(B[Xy =%, -+, Xp 1= #]).
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Case (CT_SEQ_C): We are given
c=c;d, S|Tkecd:A~C, X|Tked:C~B (3C,d,d).
We have |¢’; d'|[p\a = [¢'Ir\a § |d'|p\a- By the TH,

S|IEM)\A Fg |c’\F\A CB(A[X =k, Xy = A]) o B(CO[X =%y, Xy = %))
SIET)\A kg [d|ma : B(C[X1 i= %, -, Xy i=#]) ~ B(B[X] =%, -+, X, :=

|
X,
N~—

Therefore, by Lemma E24, ¥ | X(I') \ A k5 [¢|[ma§ld a0 2(A[X) =, Xy 1= «]) ~ B(B[X; =
Ky ey Xy = A]).

Case (CT_ALL_C): We are given
c=VX.c/, A=VX.A', B=VX.B', YX|I,X k¢ : A"~ B (3X,A,B ).

We have [VX.c'|ma = VX |c'[ma),x » [¢Ima = VX[ xna » [¢mxnax) (because (T, X) \ A
(D\A), X and (T, X)\ (A, X) = '\ A). By the TH,

SIEC,X)\NA kg ‘C/|(F,X)\A N(A[Xy =, Xy = K]) ~ B(B[X] =%, X, 1= ])
IETL,X)\(AX) Fs [ xnax) s BATXL =%, Xy = H][X i=+]) v B(B[X] =%, Xy = #][X = 4]) .

Thus, by (CT_ALL_S), ¥ | 5(I') \ A k5 [VX.c'|pa @ B(VX.A[X) = %,---, X, = «]) ~ B(VX.B'[X] =
*y ey Xy = %)

Theorem I.4 (Translation Preserves Typing (Theorem B3 of the paper)). If ¥ | T' ¢ M : A, then ¥ |
() Fs [M]p : X(A).

Proof. By induction on the derivation of ¥ | T' ¢ M : A. We perform case analysis on the rule applied last

toderive X | T ¢ M : A.

Case (T_ConsT_C): We are given
M=k tX ZFT, tyk)=4 (Gk).

We have |k|r = k. By Cemma D10 (H), @ = 3(T'). Since A is a constant type, by A = X(A), ty(k) = Z(A).
Therefore, by (T_CONST_S), we have ¥ | (T') kg k: Z(A).

Case (T-VAR_C): We are given
M=z FY X+T, z:Ael (Jz).

We have |z|r = z. By Cemma D10 (6), § - X(I"). By the definition of X(T), z : £(4) € X(I'). By
(T-VAR.-S), & | 2(T') kg z : Z(A).

Case (T_-ABs_C): We are given
M=Xx:AM, A=A —-B, X |lz:Atc M':B (3A,B,z,M’) .

We have [Az: A'.M'|p = Az:A'|M'|p4a. By the IH, S | S(I),z : B(4) Fs |M'|raia : S(B). By
(T-ABs_S), X | XT') ks Az: A" |M'|p 3.4 : Z(A") — X(B). By the definition of (A — B), we have
S|S0 Fg Az: A M/ |painr : S(A' = B).

Case (T_App_C): We are given
M:MlMQ, E|F}_C MliB—)A, E|F}_C MQZB (HB,Ml,MQ).

We have |M1 MQ‘F = |M1|1" |M2|]_“. By the II’IS7 b)) | Z(F) l_S' |M1|]_" : Z(B — A) and X | r }_S |M2‘1" : Z(B)
By the definition of (B — A), we have ¥ | ¥(I") kg |Mi|r : (B) — X(A4). Therefore, by (T_APP_S),
Y| XT) ks |Mip | Mzp : 2(A).
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Case (T_TyaBs_C): We are given
M =AX.(M':4), A=VYX.A, S|0,X Fc M':A (3X,A,M).

We have [AX.(M': A))|lr = AX.|M'|r,x. By the IH, |M’'|p x is well defined, and ¥ | ¥(T"), X Fg |M'|r.x :
Y(A’). Therefore, by (T-TyaBS_S), ¥ | 3(T') ks AX.|M'|r x : VX.X(A’). By the definition of X(VX.4), we
have ¥ | ¥(T") Fg AX.|M'|p x : B(VX.4").

Case (T_Tvyaprp_C): We are given
M=MA, A=B[X:=4], S|I+Fc M :¥X.B, £|T+A @X, A, B M).
We have |M' A'|r = |M'|r A’. By the IH, ¥ | ¥(T') kg |M’|p : £(VX.B). By the definition of (VX .A4), we
have © | S(I') s [M’|p : VX.X(B). Therefore, by (T_TYAPP_S), B | (') Fg |M'|r A" : S(B)[X := 2(4")],
and so, by the definition of X(B[X := A']), we have ¥ | (') Fg |M'|p 4" : Z(B[X := 4']).
Case (T-BLAME_C): We are given
M = blamep, FX, XFI, Z|T'FA (3p).

We have |blamep|r = blamep. By Cemma D10 (8), () + X(T'). By Cemma D10 (8), § | 3(T') F X(4).
Therefore, by (T_-BLAME_S), 3 | (') kg blamep : £(A).

Case (T_Crc_C): We are given
M=M/{), L|Ttc M:B, L|Ttcc:B~A (IB,c,M').

We have |[M'(c)|r = |M'|r{|¢|r). By the IH, ¥ | (T") kg |M'|p : ¥(B). By Lemma 3, we have ¥ | (") Fg
lelr : X(B) ~ 2(A). Thus, by (T_-Crc_S), we have 3 | (') kg |M'|r{|c|r) : Z(A).

O
I.2  Proof of Theorem &4
Lemma 1.5 (Identity Coercions as The Left Unit). If ¥ |T' g t: A~ B, then idgt¢ = t.
Proof. By induction on the structure of type t¢.
Case t = 1P (Ip): idg LP = 1P,
Case t =id: id ¢id = id.
Caset=h; H! (3h,H): ids(h; H)=(dsh); H =h; H\.
Otherwise: id§t = t.
O
Lemma 1.6 (Identity Coercions as The Right Unit). sgid = s.
Proof. By induction on the structure of type s.
Case s = G?? ;b (3G, p, b): By the IH, bsid = b. Therefore, (G?? ;) 3id = G?7; (bsid) = G?7 ; b.
Case s = 1P (Ip): LPgid= 17,
Case s =i (Fi): i5id = i.
O

Lemma 1.7 (Composition is Associative). If ¥ | T' kg s : A ~» Band ¥ | T Fg s3 : B ~ C and
Y|T kg s3: C~ D, then (s1552) 883 =512 (525 83).
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Proof. By induction on the total sum
of the sizes of sy, s5, and s3. First, we consider the cases where either s;, s, or s3 is an identity coercion.

Case s; = id: By Lemma [3,

(id§52) 583 = 52§ 83,

id;(52353)252353 .
Case s3 = id: By Lemma [ and Lemma [,

(s15id)§ 83 = 515 83,

s15(id3s3) =s18s3 .
Case s3 = id: By Lemma [,

(81 982)8id = 51§ 89,

515 (s25id) = 51§52 .

Next, we consider the cases where neither s;, so, or s3 is an identity coercion. By case analysis on whether
s1 1s an intermediate coercion or not.

Case s; = G177 ; by (3G1,p1,b1): Because X |T' g G177 ; by : A ~~ B is derived by (CT_PROJ_S), we have
A:*7 Z|Fl_sb12(G1)WB
Then, by the TH, (b1 § s2) § 83 = b1 § (82§ s3). Therefore,

(G175 b1) 5 82) 583 = (G 5 (b1 §s2)) 583
9

(Gl?pl bl) (82 9 83)
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Case sg = LP* (Ip1):

(L7 §s2) 583 =17 583
=17

1Pt s (s9583) = LPt .

Case s; = 41 (Ji1): By case analysis on whether s, is an intermediate coercion or not.

Case so = Go7P2 ; by: Because ¥ |I' g G772 ; by : B ~~ (' is derived by (CT_PROJ_S), we have
B=x, Y| kg by:5(Go)~ C.
Since 7; is not an identity coercion, ¥ | I' F i1 : A ~» % is derived by (CT_INJ_S). Therefore,
h=qg;G! Y|Tksg:A~3X(G) (Eg,G).

By case analysis on whether G; = Gs or not.
Case G; = G3: By the TH, we have (g1 §b2) $s3 = g1 ¢ (b2 ¢ s3). Therefore,

((g1; G11) 5 (G177 5 b2)) § 53 = (915 b2) § 83
g1 (b2933>7

(915 G1!) s ((G17P2 5 b2) §83) = (915 G1!) § (G1 7725 (b2 § 83))
g1;(bags3) .
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Case G1 # Ga:
(915 G11) 3 (G277 5 b2)) 383 = L7 583
— J_P27
(91: G1) 5 ((G2772 1 b2) § s3) = (915 G1!) § (G272 5 (b2 § s3))
=17
Case s3 = L7 (Ipa):
(1§ L17?) 583 =155 =17,
5 (L7 5s3) =i LP2 =17
Case so = i (Jiz): By case analysis on whether s3 is an intermediate coercion or not.

Case s3 = G373 ; by (3Gs, p3, b3): Because X | T' Fg G37P3 ;b3 : C' ~~» D is derived by (CT_PROJ_S), we
have

C=% 3|0 Fsby:2(CGs)~ D .
Since iy is not an identity coercion, ¥ | T' F iy : B ~ « is derived by (CT_INJ_S). Therefore,
ib=g2;Gal, Y|Tbg go:B~E(G1) (392, G) .

By case analysis on whether Gy = G3 or not.
Case Gy = G3: By the TH, we have (i1 ¢ g2) § b3 = i1 § (g2 ¢ b3). Therefore,

(i15(g2; G2!1)) 3 (G277 5 b3) = ((41 § 92) 5 G2!) § (G277 ; b3)
(21 $92)3 03,
(

i15((g25 G2!) 5 (G277 5 b3)) = 11§ (g2 % b3)
= 19!}2)
Case Gy # Gs:
(1§ (923 G2!1)) 3 (G377 5 b3) = ((41 5 g2) 5 G2!) § (G377 ; b3)
— | Ps ,
i1 §((g25 Go!) § (G377 5 b)) = iy § L7
_lps

Case s3 = L7 (3ps):

(1§ip) 5 L7 =17,
(gL =asglh =17

Case s3 = i3 (Jiz): (Proof follows in the next paragraph.)

Next, we consider the cases where s1, s2, or s3 are intermediate coercions, but neither of them is not an
identity coercion. By case analysis on whether 7; is a ground coercion or not.

Case 44 = g1 ; G1! (g1, G1): Since X | T kg g1 ; Gi!: A~ B is derived by (CT_INJ_S), we have
B=x, X|Ttgsgg:A~2(G).
By case analysis on is.
Case ip = go ; G2! (Jg2, G2): Since ¥ |T' bg go; Go!: %~ C is derived by (CT_INJ_S), we have
C=x% X|T kg go:k~ 5(Go).

By case analysis on is.
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Case i3 = g3 ; G3! (g3, G3): Since ¥ |T' kg g3; G3!: %~ D is derived by (CT_INJ_S), we have
D:*, Z|F|_593*WE(G3)
By the IH, (g1; G1!) 3 (925 G2!) § g3) = ((91; G1!) § (925 G2!)) § g3. Therefore,

((g91; G113 (92; G21)) 5 (935 Gs!) = (((91; G11) 3 92) 5 G2!) 5 (935 Ga!)
((((g15: G1Y) 5 92) 5 Go!) 5 93) 5 Gs!
(91; G1) 5 (((925 Go!) 5 g3) 5 Gs!)
(915 G1Y) 5 ((925 G21) 5 93)) 5 Ga!
(
(

— =~

(915 G1!) 5 ((g25 G2!) 5 (935 G3!))

((91; G115 (g925 G2)) 5 g3) 5 Ga!
(((g1; G1D) 592) 5 Gal) 2 g3); Gs! .

Otherwise: Contradictory because C' cannot be a dynamic type.

Otherwise: Contradictory because B cannot be a dynamic type.
Case iy = g1 (Jg1): By case analysis on whether 4, is a ground coercion or not.

Case io = g2 ; Go! (Fg2, G2): Since X | T Fg go; Go! : B ~» (' is derived by (CT_INJ_S), we have
O:*, Z|stggBWE(G2)

By case analysis on i3.
Case 13 = g3 ; G3! (g3, G3): Since X | T kg g3; G3!: % ~» D is derived by (CT_INJ_S), we have

D=% X | kg g3:%~2(Gs) .
Therefore,

(913 (925 G2!)) 5 (935 Ga!) = (
(

(915 92); G2!) 5 (93 G3!)
((91592); G21) 5 93) 5 Ga!
913 (((92; Ga!) § g3) 5 Ga!)
= (915 ((92; G2!) 5 93)) ; G5!
(913 (925 G2!)) 5 93); Gs!
(((91892) 5 Gal) § 93) 5 Gs! .

915 ((92; G2!) 5 (g3 Gal))

Otherwise: Contradictory because C' cannot be a dynamic type.
Case iz = g2 (Jg2): By case analysis on whether 45 is a ground coercion or not.

Case i3 = g3 ; G3! (3g3, G3): By the IH, (g1 5 92) $ 93 = 915 (92§ 93). Therefore,

(91392)3(93; Ga!) = ((91592) § 93) 5 Gs!
915 (923 (935 G3!))

Case i3 = g3: (Proof follows in the next paragraph.)

Finally, we consider the cases where s1, s2, and s3 are ground coercions, but neither of them is not an identity
coercion. By case analysis on g;.
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Case g1 = s — ] (3s],t{): Since X |T' kg sf = t{ : A ~> B is derived by (CT_ARROW_S), we have
A=A =B, B=A, > By, S|l tgs:As~A, S|T kg tl:B ~ By (341, By, Ay, By) .
By case analysis on s,.
Case go = 8§ — ) (3sh,th): Since X |T' kg sb — t5: B~ C is derived by (CT_ARROW_S), we have
C=A;+Bs, S|TFgsy:Ag~ Ay, S|T Fg th: By~ By (343,B;) .

By case analysis on s3.

Case g5 = s§ — t§ (3s},t}): Since X |T kg st — 5 : C ~ D is derived by (CT_ARROW_S), we have
D:A4—>B4, Z|F|_58§IA4WA37 E‘F'_Sté:BSWB4 (3A4,B4).

By the IHs, (s5¢s5) 581 = s5¢(s5¢s1) and (¢ 5¢5)5t5 =15 (t55¢t5). Therefore,

((s1 = t1) 5 (s5 = t3)) 5 (53 = 15) = ((s5551) = (t1513)) 5 (53 = 1)
=(s33(s3881)) = (L 513)583)
=((s3383)551) = (L 513) 5 83)

(51 = t1) 5 ((s5 = 1) 5 (55 = 13)) = (51 = 1) 5 (535 85) = (&35 13))
=((s3582)581) = (15 (t2513))
=((s333)351) = (L 513) 5 83)

Otherwise: Contradictory because C' cannot be a function type.

Otherwise: Contradictory because B cannot be a funcion type.
Case g1 =VX.s1 ,, 1 (3X,s1,%): Since & |T' kg VX.s],, ¢ : A~ B is derived by (CT_ALL_S), we have

A=VYX.A,, B=VX.B, Y|I,X kg s,:A ~ B,
Z|F|‘5’ t{Al[X I:*]WBl[X ZZ*] (HAl,Bl).

By case analysis on ss.
Case go =VY.sh,, 8, (3Y,s5,t5): Since ¥ | T' Fg VX .8} ,, 8} : B~ C is derived by (CT_ALL_S), we have

Y=X, C=VYX.C;, S|T,X Fg sh:By~ C,
E‘F"S téBl[X :*]wCl[X Z:*] (301)

By case analysis on s3.
Case g5 =VZ.s} ,, t} (37,84, t5): Since X |T' kg VX.s%,, th : B ~ C is derived by (CT_ALL_S), we have

Z=X, D=VX.Dy, S|T,X kg sh:C~ Dy,
ST kg th: G[X =] ~ Di[X :=+] (3Dy).

Then, by the TH, (s155) 555 = s15(s53s5) and (¢ 55) ¢ 5 = #1 5 (t5 ¢ t4). Therefore,

(VX515 41) 5 (VX .85, 1)) 3 (VX 85, 85) = (VX (51 38) o, (115 85)) 3 (VX85 ,, 85)
= VX.((s135) §83) » (1 5 82) 3 83),

(VX510 81) 5 (VX855 1) 3 (VX 55, 85)) = (VX s, 81) 3 (VX (53, 855 855, 83))
=VX.(s e

Otherwise: Contradictory because C' cannot be a polymorphic type.

Otherwise: Contradictory because B cannot be a polymorphic type.
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Lemma 1.8 (coerce(A) Generates a No-op Coercion). coerce}(A) and coerce (A) are no-op coercions.

Proof. By straightforward induction on A. O
Lemma 1.9 (Type Name Substitution Preserves Well-formedness). Suppose - ¥, a := C.

1. f ¥ |T[a:=C]F A, then 8,0 :=C | T A.

2. X FT[a:=C], then ¥, :=CFT.

3. Y |Ta:=C] kg ¢c: A~ B, then ¥,a:=C|T k¢ ¢: A~ B.
Proof. 1. By straightforward induction on ¥ | I'jac := C] = A.

2. By straightforward induction on ¥ I I'[e := C].

3. By straightforward induction on ¥ | I'jac:=C] F¢ ¢: A~ B.
O

Lemma I.10 (Noop Coercion Exists for a Well-formed Type). If - ¥ and ¥ | I' - A, there exist no-op coercions
cl and d! such that X | T ko el : A~ B(A) and X | T ko df : 3(A) ~ A.

Proof. By induction on X.
Case ¥ = {): Since X(A4) = A, it suffices to take ¢! = df =id,.
Case & = %, :=B: By Lemma D9, X | I'[a := B] - A[a := B]. By the IH, there exist ¢} and df such that
Yo | Tla:=B] Fo db: Afa = B] ~ To(Ala = B))
Yo | T[a:=B] ko df : Zo(Ala :=B]) ~ Ala :=B] .
By Lemma U and ¥(A) = Xg(Afa := B)),
Y T ke ¢ Ala:=B]~ %(4) X |T ko d):2(A) ~ Ala:=B] .

We have F Y and o :=B € Yand ¥ FI', X and £ | I, X F Ao := X] (by induction on A), and, by
Lemma ET4,

Y| T Fo coercef (A): A~ Ala:=B] X |T k¢ coerce, (A) : Ala:=B] ~ A .
Let ¢! be coerce (A);ch and d! be dl; coerce (A), which are no-op coercions by Lemma [8. By (CT_SEQ_C),

YT Fo coercel (A);ch: A~ X(A) 2T ke dl; coercey (A) : B(A) ~ A .

e

O

Lemma I.11 (No-Op Coercion Translates to Unit). Suppose & |T' Fo ¢l : A~ Band A = {X;,..., X, } CT.
(1) X |S(T\A) bg t:S(B[X1 :=*,--+, X, == #]) » C, then || a 5t =t
(2) X [S(C\A) bg s: C~ S(A[Xy :=+,+-+, X, :=+]), then s§ |/ |p\a = s.

Proof. We show both items simultaneously by induction on ¥ | I' ¢ ¢! : A ~ B with case analysis on the
last typing rule used.

Case (CT_ID_C): We are given ¢/ =id4 (and A = B and that A is neither a function nor universal type). If A
is X; for some i, then |id|r\a = id and, otherwise |ids |\ a = id. In either case, Lemma [3 and Lemma [@
finish the case.

Case (CT_FAIL_C), (CT_INJ_C), (CT_PrR0OJ_C): Cannot happen because ¢! is a no-op coercion.
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Case (CT_CoNCEAL_C): We are given ¢! = a~ for some a. Since |o~ |r\a = id, Lemma [3 and Lemma [B
finish the case.

Case (CT_REVEAL_C): We are given ¢!

finish the case.

= o™ for some a. Since |at|ma = id, Lemma [3 and Lemma [0

Case (CT_ARROW_C): We are given:
CI:C{—>C£7 A:Al—)AQ, BZBl—>BQ,

ST ke el :Bi~ A, S|T ke ch: Ay~ By (3cf,ch, A1, As, By, By)
We have [c!ma = |cf|ma = [ed]ma.

(1) Assume X | Z(T'\ A) Fg t: X(B1[X1 := %, -, Xy := %)) = E(Ba[ Xy :i=%,-++, X, :=+]) ~ C. We will
show that |¢/|r\a § ¢ =t by case analysis on the rule applied last to derive ¥ | B(T') bg ¢ : 5(By[X :=
*yo0 Xp = #]) = B(Ba[ Xy i= %, -, Xy i=#]) ~ C.

Case (CT_INJ_S): We are given
=g;G!, C=x,
YIE(T\A) Fs g: X(Bi[X1 =%, +, X :=%]) = Z(B2[X1 :=x*,--+, X,, :=%]) ~ X(G) (3G,g) .
By coercion typing rules, it must be the case that X(G) =x - xand g =s' - t' and ¥ | E(T'\A) kg
s ik B(B1[Xy =k, X =) and B | BT\ A) Fg ' B(Ba[Xy := %, -+, X, 1= #]) ~ x for
some s’ and t’. By the IH, s’ ¢ |c{|F\A =s" and |c§|F\A st’ = t’. Thus, we have
(Ietlma = lezlma) 3 (8" = ¢)5 GY) = ((ella = leslma) 5 (s" = 1)) 5 G!
= ((5"3leflrva) = (lezlma s 1) 5 G
=(s"—=t);aGl.
Case (CT-FAIL_S): We are given ¢ = L? for some p. Then, (|c{|ra — [cd|ma) § L7 = L7,
Case (CT_ARROW_S): We are given
t:5/—>t/, 0201%02,
L|IS(T\A) bg s Cp~ B(Bi[Xy =%, -+, X, := #]),
LIT\A bFg t/: X(Bo[Xy i= %, X, i=*]) ~ Cy (301, Co, 8, ) .

By the IH, s’ |c{|p\A = s’ and |c£|p\A $t = t. Therefore,

(lCﬂI‘\A - |c£|I‘\A) s(s" = 1) =(s"3 Cﬂr\A) — (|C§|F\A st=s —=t'=t.

Otherwise: Cannot happen.

(2) Assume X | B(T\A) Fg s: C ~ S(A1[Xy i=*, -+, Xy i=#]) = B(A2[Xq =, -, X, :=«]). We will
show that s3 ICI|F\A = s by case analysis on the rule applied last to derive ¥ | Z(T'\ A) kg s: C ~
S(A1[X1 =%, Xy =) = D(A2[ Xy =%, -, X, = ]).

Case (CT_PROJ_S): We are given

s=G?";b, C=x,
SIETN\NA) Fs b:X(G) ~» B(A41[ X1 =%, -, Xy i=4]) = B(Aa[Xy =%, X :=%]) (Ip, G,b) .

Then, b is either 17 for some ¢ or b is an intermediate coercion. The former case is easy because
s;|cI|p\A =GP, (J_q;|cl\p\A) = G77; 19 = 5. In the latter case, by coercion typing rules, it must be
the casethat X(G) = x > xand b= s’ = t'and ¥ | Z(T\A) kg s : Z(A1[ Xy =%, -+, Xy i= %) ~ *
and X | Z(T\A) Fg ¢/ : %~ Z(As[ Xy := %, -+, X, := %]) for some s’,¢'. By the IH, |c{|p\A 58’ =5
and t' 3 |c§|F\A = t'. Thus, we have

(G275 (s" = 1)) 5 (leflmva = leslma) = G275 (5" = )5 (lefloa = leslma))
= G?7; ((leflma §s) = (' 5]cdma))
=G (s =>t)=s.
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Case (CT_FAIL_S): We are given s = L” for some p. Then, L7 5|c![pa = LP.
Case (CT_ARROW_S): We are given

S:S/—>t/, 0201—)02, Z|E(F\A) Fs S/:Z(Al[Xl =, Xy, ::*])Wcl,
LIB(C\A) Fg t': Oy~ B(Ax[ X7 i=x, -, X, :=%]) (3O, Co, 8, 1) .

By the IH, [c{[r\a §5" = s" and t' 5 |c}|ra = ¢/. Therefore,

(5" = )3 (lellma = [dlra) = (lellma 3 8) = (¢ 5 chlna) = ' = /= 5.
Otherwise: Cannot happen.
Case (CT_ALL_C): We are given

' =vVX.cl, A=VX.A4y, B=VX.By, Z|I,X k¢ cl: A0~ By (3cb, X, A, Bo) .

We have |CI‘1'*\A = VX'|06|(F\A),X 59 |66|F\A~

(1) Assume ¥ | Z(T'\ A) Fg t: VX.2(By[Xy := %, -+, X, := #]) ~ C. We will show that |c!|3t = ¢ by case
analysis on the rule applied last to derive ¥ | 3(T'\ A) kg t: VX.X(Bo[X1 :=*,- -+, X, :=%]) ~ C.

Case (CT_INJ_S): We are given
t=g;Gl, C=% X|3ST\A) s g:VX.Z(Bo[X1:=x*,--,X,:=%]) ~X(G) (3G,g).
By coercion typing rules, it must be the case that
S(G)=VXx, g=VX.t', ",
LIZ(T\A),,X Fg t':B(Bo[Xy =%, -+, Xpp i=%]) ~ %
LB\ A) Fg t7:S(Bo[Xq i=%, -+, Xy, = #|[X 1= %]) ~ %

for some t’ and t”’. By the IH, ‘Cé|(F’X)\A st' =t and |Cé|(F7X)\(A,X) st = t"”. Thus, we have

(VX .colma) 5 (WXt 5, t7) 5 G) = (VX Jeglrya) x »» [eblma) § (VX2 7)) 5 G

= (VX .|chlrxna » el xna,x)) 5 (VX .7, 7)) 5 G!
=(

= (

VX .((|cbl @ xna §t) o (eblmxnax) 5t7)) ; G
t

VX ) Gl=t .

Case (CT_FAIL_S): We are given ¢ = L? for some p. Then, |VX.cf|r\na § L7 = L7,
Case (CT_ALL_S): We are given

t=VX.t, ”, C = VX.Cy, E|P,X Fs 1/ S(BolXy i= %, -, X, 1= ]) ~ Co,
b)) | r F (Bo[Xl = %, Xn = *MX = *D ~ Co[X = *] (E'CO,t/7tN) .

By the IH, |C(I)|(F7X)\A st/ =t and ‘Cé|(1‘7x)\(A)X) st = t". Therefore,

(|VX CO‘F\A) (VX t/ LAl t/l) (VX ‘CO|(F\A X 5 ‘CO|F\A) (VXt 2 ”>
= (VX.|cblrxna - el x) s (VX 1)
=VX.((Ieglrxna 5t » (gl xonax) §17)
=vX.t' ,t"=t.

Otherwise: Cannot happen.

(2) Assume X | 2(T'\A) kg s: C ~ VX . Z(Ap[ Xy :=*,- -, X, 1= «]). c'lp\a = s by
case analysis on the rule applied last to derive ¥ | Z(T'\A) kg s: C ~» VX.X(Ag[X1 =%, -, X, :=#]).
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Case (CT_PROJ_S): We are given
s=G?";b, C=x% X|ET\A)Fg b:Z(G) ~VX.Z(Ao[X1:=%*,--, X :=%]) (Ip, G,b) .

Then, b is either L7 for some ¢ or an intermediate coercion. The former case is easy because
=G ; (L% \cé|p\A) = G77; L9 In the latter case, by coercion typing rules, it must be
the case that

Y(G)=VXx b=VX.s, s’
LIB(T\A), X kg s 1%~ B(Ao[Xy 1= %, -, X, i= #]),
LIXTN\A) Fg 8" 1%~ B(Ag[ Xy =%, -+, Xy i= #|[X :=%])

for some s’ and s”. By the IH, s’ [c{|r,x)a = s" and s 5 |cf|(r,x)\(a,x) = s”. Thus, we have

(G ;VX.s",, s") s (VX .cllma) = G775 (VX5 . 8”) 5 (VX .[cf|may.x + lcblma))
= G5 ((VX.s", 8") § (VX |chl o xna » leoloxnax))
=G (VX.(s" 3 bl xona) 3 (87 ledl e xonax))
(

=G ;(VX.s, s").

Case (CT_FaIL_S): We are given s = L? for some p. Then, 17 3 (
Case (CT_ALL_S): We are given

VX-C&F\A) = J_p.
SZVX.S/,,SH, CZVXCO, Z|F,X l_s 8/2 COWE(Ao[Xl Z:*,~-~7Xn Z:*]),
LI T bg 8" Co[X :=+] ~ B(Ag[ X1 :=%,- -, X, i=+|[X :=%]), (3Co,s',s").
By the IH, s’ |Cé|(1"7x)\A = s" and 5”3 |C{)|(F,X)\(A7x) = 5. Therefore,

(VX.s",, ") 5 (

vX-C(I)|F\A) = (VX.s",,s") 5 (VX. |C(I)|(F\A) X 5 |C(I)|F\A)
= (VX.s",, s") ¢ (VX. |Co| TXNA 5 |Co| X\ (A, X))

=VX.(s'3]cblrxna) »» (8”3 lcdl @ xnax))
=VX.s, s =s.

Otherwise: Cannot happen.
Case (CT_SEQ_C): We are given
d=c:cl, DITrod:A~C, R |TFecd:C~B (3, 0)
(1) Assume X | B(T'\ A) kg t: B[X; :=*,---, X, := %] ~» D. We will show that |¢/|r\a §t = t. In fact,

I ma st = (leflma $ledlma) 5t

= |C{|F\A 9 (|C§\F\A 5t) (Lemma [2)
= |C{|F\A 5t (by the IH)
=t (by the IH).

(2) Assume X | S(T\A) kg s: D ~ A[Xy :=*,- -+, X, := x]. We will show that s§|c/|[r\a = s. In fact,

=s3(lcl )

= (s3lcilma) s letlma (Lemma [7)
=53 (by the IH)
=5 (by the IH).
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Lemma I.12 (Determinacy of Evaluation to Values). The following holds.
(1) > M —¢ o> Vand X0 M —¢ X1 > My, then ¥y > My —% Zop V.
(2 HX> M —% o> Vand X0 M —g X1 > My, then ¥y > M; —% Xo> V.
Proof.
(1) By case analysis on the length of the evaluation sequence ¥ > M —% Zo> V.

Case where the length is zero: We are given M = V, but it is contradictory with the assumption ¥ >
M —C 21 > Ml.

Case where the length is larger than zero: We are given
YoM —e 3> Mz, Y3b> Mz —F5 S Vo (383, Ms) .
By Theorem ETl, ¥3 = ¥; and M3 = M;. Therefore, by the assumption, X; > M; —§ o> V.
(2) Provable similarly to the case (1).
O

Lemma 1.13 (Determinacy of Coercion Applications Evaluated to Values (Single)). If X | @ s M : A and
2|0ks s: A~ Band X> M —g X1 > M and X1 > Mi(s) —% o> V, then X > M(s) —%§ Zo> V.

Proof. By case analysis on the rule applied last to derive ¥ > M —g 31 > M;.

Case Reduction rules of —+5: ((R_DELTA_S), (R_BETA_S), (R_WRAP_S), (R_TYBETA_S), (R_TYBETAC_S),
(R-TYBETADYN_S), (R_TYBETADYNC_S), (R_.BLAMEE_S), (R_.CTXE_S))

Because ¥ > M %55 %) > My, by (R_.CTXC_S) we have ¥ > M(s) —g X1 > M;(s). Therefore,
Yo M(s) —g 1> Mi(s) —5 3> V.
Case (R-ID_S): We are given
M=U(d, M =U, ¥ =% (3U).
Lemma 3 implies id § s = s. Therefore, by (R-MERGE_S),
Yo U(id)(s) —s X U(id g s)
= X U(s)
—s o> V.
Case (R_FAIL_S): We are given
M = U(LP), M; = blamep, X3 =X (Gp,U).

By (R-BLAMEC_S), £ > (blame p)(s) —>s X > blamep. Therefore, Lemma [I2 implies ¥ > blamep —%
Yo > V, but it does not hold. Hence, there is a contradiction.

Case (R-MERGE_S): We are given
M = MY, My = M(sst), =% 3s,¢,M).
The inversion of the derivation of ¥ | g M’{s")(¢') : A implies
S0 bg s A B, S|0kst B A (34,B).

By (R-MERGE.S), ¥ > M'(s' s t')(s) —s X > M'{(s'5¢')¢s). Therefore, Lemma T2 implies ¥ >
M'{((s"¢t)5s) —% g V. Furthermore, by (R-MERGE_S),

Yo M (s (') s) —g B> M (Wt'58) —s > M'(s"5(t59)) .
Also, Lemma [0 implies (s §¢") s = "¢ (' ¢ s). Therefore,

Db MY ) (s) —% B M{(s'3(H38) =5 M{((s'3t)3s) —% Son V.
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Case (R-BLAMEC_S): We are given
M = (blamep)(s’), M; = blamep, X, =X (dp,s).

By (R-BLAMEC_S), ¥ > (blamep)(s) —g X > blame p. Therefore, Lemma [12 implies ¥ > blamep —%
Yo > V, but it does not hold. Hence, there is a contradiction.

Case (R_CTXC_S): We are given
M = M'{s), M = M/(s"), SoM S5 Si>M (3, M, M).
By (R-MERGE_S), ¥1 > M{(s')(s) —s X1 > M{(s’5s). Hence, Lemma T2 implies ¥ > M{(s" §s) —%
Yo > V. Furthermore, by (R-MERGE-S), ¥ > M'(s')(s) —s X > M'(s' §s). Also, by (R-CTXC_S),
S M(s'gs) —g X1 > M{(s"§s). Therefore,

oM (Y s) —5 B> M (s'3s) —5 21> M{(s'3s) —% S V.

O

Lemma I1.14 (Determinacy of Coercion Applications Evaluated to Values (Multi)). If ¥ | § Fg¢ M : 4 and
X|0Fs s: A~ Band XM —% Xy > M and Xy > Mi(s) —% o> V, then ¥ M(s) —§ So> V.

Proof. By induction on the length of the evaluation sequence ¥ > M —% X1 > M. O
Lemma 1.15 (Determinacy of Blame). The following holds.

(1) fX> M —¢ Ya>blamep and E> M — ¢ X1 > My, then ¥y > My — ¢ 3g > blame p.

(2) fX> M —% o> blamep and ¥ > M —g 1 > My, then ¥y > My —% Xg > blame p.
Proof. Provable similarly to Lemma [T2. O

Lemma I.16 (Determinacy of Coercion Applications Evaluated to Blame (Single)). If ¥ | § kg M : 4 and
Y|0Fgs:A~ Band X> M —g Xy > M and ¥y > Mi(s) —% X > blamep, then ¥ > M (s) —% Yo >
blame p.

Proof. By case analysis on the rule applied last to derive X > M —g 31 > Mj.
Case (R_FAIL_S): We are given
M = U(LP), M, = blamep/, £, =% (3, U).

By (R-BLAMEC_S), X > (blame p’)(s) —s X > blame p’. Therefore, Lemma [TH implies ¥ > blame p’ —%
Yo > blamep. Hence, ¥ = X5 and p’ = p. Also, LP§s = LP. Therefore, by (R-MERGE_S) and (R_FAIL_S),

Yo ULPYs) —s > U{LPss) =X U(LP) — 5 X > blamep .
Case (R_.BLAMEC_S): We are given
M = (blamep’)(s"), M; = blamep’, ¥; =¥ (Ip/,s').

By (R-BLAMEC_S), X > (blame p’)(s) —s X > blame p’. Therefore, Lemma [TH implies X > blame p’ —%
35 > blame p. Hence, ¥ = Y5 and p’ = p. Therefore, by (R_-MERGE_S) and (R_BLAMEC_S),

¥ > (blame p)(s')(s) —s X > (blamep)(s’§s) —r5 X > blamep .

Otherwise: Provable similarly to Lemma [T3. The proof uses Lemma [CT3.
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Lemma I.17 (Determinacy of Coercion Applications Evaluated to Blame (Multi)). If ¥ | § Fg M : A and
Y|0Fgs:A~ Band ¥> M —% Xy > M and Xy > My(s) —% X > blamep, then ¥ > M (s) —% 2o >
blame p.

Proof. Provable similarly to Lemma [CT4. The proof uses Lemma [T8. O

Lemma I.18 (Determinacy of Consecutive Coercion Applications Evaluated to Values). If X | ) g M{s) : B
and X |0 Fg t: B~ Cand ¥ > M(s) —% X1 > My and ¥q > M (t) —& X V, then X > M(s§t) —%
22 > V.

Proof. Lemma [I4 implies £ > M (s)(t) —& Zo > V. By (R-MERGE_S), £ > M(s)(t) —s X > M(sst).
Therefore, Lemma [T2 implies ¥ > M(s§t) —% Yo V. O
: B

Lemma 1.19 (Determinacy of Consecutive Coercion Applications Evaluated to Blame). If 3| @ kg M(s)
and ¥ | 0 Fg ¢t : B~ Cand ¥ > M(s) —% X1 > My and ¥y > M(t) —% X2 > blamep, then ¥
M(sgt) —% 3g > blamep.

Proof. Provable similarly to Lemma [I8. The proof uses Lemma [T4. O

Lemma 1.20 (Evaluation of Coercion Applications). If ¥ | ) Fg¢ M : Aand ¥ | § Fg s : A ~ B and
YoM —% ¥y > My, then one of the following holds:

(1) > M(s) —%5 31> Mi(s);
(2) there exist some s and M such that ¥ > M(s) —§ X1 > Ma(sy §s) and My = My(sy); or
(3) there exists some p such that ¥ > M(s) —% X1 > M; and M; = blamep.

Proof. By induction on the length of the evaluation sequence ¥ > M —% 3 > M;. We perform case analysis
on the length.

Case the length is zero: Because ¥ = ¥ and M = M, we have X > M (s) —% > M(s).
Case the length is larger than zero: We are given
Y>M —iYe M, YoM —gSioM (3X,M).

Corollary EZ8 implies ¥’ | ) ks M’ : A. By Lemma EZ4 and Lemma EZ30, we have X' | kg s : A ~ B.
By case analysis on the result of the TH.

Case (1): We are given
Y M(s) —E X > M(s) .

By case analysis on the rule applied last to derive ¥/ > M’ —g X1 > M.

Case (R_-DELTA_S), (R-BETA_S), (R-WRAP_S), (R_TYBETA_S), (R_-TYBETAC_S), (R.BLAMEE_S), (R_-CTXE_S):
We show the case (1). Because ¥/ > M’ —“+g ¥, > M, the assumption and (R_CTXC_S) imply

e M(s) —5 X > M (s) —g T1 > My(s) .
Case (R_ID_S): We are given
M =U(d), M, =U, % =% (3U).

We show the case (1). Lemma [H implies id § s = s. Therefore, the assumption and (R-MERGE_S)
imply
> M(s) —5 X > Uid)(s)
—s X' > U(ids s)
= X' U(s).
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Case (R_FAIL_S): We are given
M' = U(LP), M; = blamep, ¥ =% (3p,U).
We show the case (3). The assumption, (R_MERGE_S), and (R_FAIL_S) imply
Yo M(s) —6 X U(LP)s) —s X' > U(LPgs) =% > U(LP) —g X' > blamep .
Case (R-MERGE_S): We are given
M = M"(s"(t"), My = M"(s'st"), ¥ =% (3, ¢',M").
We show the case (2). By inversion of the derivation of ¥/ | @ Fg M”{(s'){t') : A, we have
Y| 0tgs:A~B, Y|0Fst:B ~A (3A,B).
Therefore, Lemma [ implies s" 5 (¢’ §s) = (s'5t') 3 s. Hence, the assumption and (R_MERGE_S) imply
Y M(s) —5 X > M7 (") (t')(s)
—5 X' > M"(s" Wt 5 s)
—5 E/DMH<S/ (t'5s))
= e MY 50)55)
Case (R-BLAMEC_S): We are given
M' = (blamep)(s’), M; = blamep, ¥; =X (dp,s’).
We show the case (3). The assumption, (R_MERGE_S), and (R_BLAMEC_S) imply
Y M(s) —% X > (blamep)(s’)(s) —s X' > (blamep)(s'§s) —s X' > blamep .
Case (R_CTXC_S): We are given
M = M'(s"), My = M"(s)), ¥'oM' 55 >M" (3, M, M").
We show the case (2). The assumption, (R_MERGE_S), and (R_CTXC_S) imply
Lo M(s) —E X > M (N s) —s X > M'(s'ss) —g L1>M"(s"35) .
Case (2): We are given
N> M(s) —6 X > My(sass), M = My(sy) (Is2, Ma) .

By case analysis on the rule applied last to derive ¥’ > Ma(ss) —rg 31 > M. It suffices to consider only
the following cases.

Case (R_ID_S): We are given
My =U, s=id, My =U, ¥ =% (3U).
We show the case (1). Lemma [H implies id § s = s. Therefore, by the assumption,

S M(s) —5 5 > Ulids s)
= Yo Us).

Case (R_FAIL_S): We are given
My = U, s3=1P M; = blamep, ¥, =% (3p,U).
We show the case (3). We have LP §s = LP. Therefore, the assumption and (R_FAIL_S) imply

Y M(s) —5 X' > U(LP) — 5 X' > blamep .
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Case (R-MERGE_S): We are given
My = M"(s'), My = M"(s'3s})), ¥ =% (3, M").
We show the case (2). By inversion of the derivation of ¥’ | @ Fg M”(s')(s2) : A, we have
Y kg s A~C Y| 0kgs:C~~A (3A,0).
Therefore, Lemma [T implies s’ §(s2§s) = (s'¢s2) ¢ s. Hence, the assumption and (R-MERGE_S) imply
Lo M(s) —5 XM (") sa5s) —s X > M (' §(s285)) =%">M"{(s"552)55) .
Case (R-BLAMEC_S): We are given
M, = blamep, M; = blamep, ¥; =% (3p).
We show the case (3). By the assumption and (R-BLAMEC_S),
Y M(s) —% ¥ > (blamep)(sz3s) —rs X' > blamep .
Case (R_-CTXC_S): We are given
My = Ms(sy), X' My 55 10 My (IM3) .
We show the case (2). By the assumption and (R_CTxC_S),
Yo M(s) —6 X' > Ma(s2§s) —rg 31> Ms(sa5s) .
Case (3): We are given
Lo M(s) —E X >M, M =blamep (Ip).
Contradictory because ¥’ > blamep — ¢ X1 > M; does not hold.
O

Lemma 1.21 (Evaluation of Application of Composed Coercions). If ¥ | Fg M(s): Band X |0 Fg t: B ~
C and ¥ > M(s) —g X1 > My —%§ 3o > Mo, then one of the following holds:

(1) E>M(sst) —% Zop My(t);

(2) there exist some D, s3, and M3 such that ¥ > M(sgt) —% o> Ms((s35s)3t) and My = Mz (s3§s) and
22|@ FS 53SDWA.

(3) there exists some p such that ¥ > M(s5t) —% Yo > blamep and My = blamep.

Proof. By induction on the length of the evaluation sequence 31 > M; —% Xo > M. We perform case
analysis on the length.

Case The length is zero: We have X7 = Y5 and M; = M,. By case analysis on the rule applied last to derive
Y M(s) —g X1 > M. It suffices to consider only the following cases.

Case (R-ID_S): We are given
M=U, s=id A=B, M;=U, ¥ =% (3U).

We show the case (1). Lemma [3 implies id § ¢t = t. Furthermore, ¥ > U(t) —% X > U(t) holds trivially.
Case (R_FAIL_S): We are given

M=1U, s=17 M; =blamep, % =% (3p,U).

We show the case (3). We have 1P st = 1P, Furthermore, by (R_FAIL), ¥ > U(L?) — g ¥ > blame p.
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Case (R-MERGE_S): We are given
M= M{s"), M = M{'ss), ¥, =% (3s',M).
(

We show the case (2). By inversion of the derivation of ¥ | @ g M’
A~ Aand ¥ | 0 kg s : A~ B. Therefore, Lemma 2 implies s’
(R-MERGE_S),

sV (s): B, we have X | 0 kg ¢ :
s(sst) = (s'¢s)gt. Hence, by
YoM (s sst) —s XM (s's(s5t))=3> M {((s'55)5t) .
Case (R-BLAMEC_S): We are given
M = blamep, M; = blamep, ¥y =% (3p).
We show the case (3). By (R-BLAMEC_S),
Y > (blamep)(sst) —s X > blamep .
Case (R_-CTXC_S): We are given
My =M{s), YoM S5 SioM (GM).

We show the case (2). Theorem EZH implies 31 | § g M'(s) : B. Therefore, Lemma [EZ32 implies + 3
and @ F 0. Hence, because X1 | § g M'(s) : B is derived by (T_CRC_S), we have X1 | ) Fg s: A ~
B (3A). Furthermore, since Lemma [ implies id § s = s, by (R_CTxC_S),

Lo M(sst) —sg N> M (sst)y=%;>M{(idss)st).

Furthermore, M; = M’(id ¢ s). Therefore, it suffices to show that X1 | § kg id : A ~ A. Lemma EZ2
implies ) | ) F A. Hence, by Cemma D12 (W), 3, | § F A. Therefore, by (CT_ID_S), X1 |0 Fg id: Z(A) ~
¥ (A). Since A does not contain any type names, 3(A4) = A. Hence, we have X1 |0 g id: A ~ A.

Case The length is larger than zero: We are given
YoM —s YoM, YoM —§ YoM (3IX,M).

By case analysis on the rule applied last to derive ¥ > M(s) —g 31 > M. It suffices to consider only the
following cases.

Case (R_ID_S): We are given
M=U, s=id, A=B, Mi=U, % =% 3U).

Contradictory because X > U —g ¥’ > M’ does not hold.
Case (R_FAIL_S): We are given

M=U, s=1P M = blamep, ¥, =X (3p,U).

Contradictory because ¥ > blamep —g ¥’ > M’ does not hold.
Case (R-MERGE_S): We are given

M = M"(s"), My = M'{(ss3s), 1 =% (3s,M").
By inversion of the derivation of ¥ | ) Fs M (s')(s) : B, we have
S|0ks M": A, S|0bkgs:A~A S|0ksgs:A~B (34).

Therefore, Lemma and (T_Crc_S) imply X | @ Fg M"(s"$s) : B. Furthermore, Lemma [ implies
s's(sst)=(s"¢s)gt. Therefore, by (R-MERGE_S),

Yo M'(ssst) —gs oM (s s(sst))=S> M"{(s"3s8)5t) - (x).

By case analysis on the result of the TH.
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Case (1): We are given
S M'{(s'gs)st) —5 Ta> Ma(t) .
We show the case (1). By (x), we have
YoM (s sst) —s N> M"{(s §5)5t) —§ Do > Ma(t) .
Case (2): We are given

> M”<(8/ 3 S) ; t> _>§ 22 > M3<(83 ?; (S/ g S)) g t>, M2 = M3<53 3 (SI ; S)>, EQ | @ "S 83 D ~~ A/ (E'D,Sg,Mg) .

We show the case (2). By Lemma EZ4 and Lemma EZ0, we have ¥y | § Fg s’ : A’ ~ A and
Y |0 ks s: A~ B. Therefore, Lemma 4 implies s3§ (s’ §s) = (s335’) ¢ s. Hence, by (x), we have

S M (s sst) —s N> M"{(s"3s)3t)
—5 Do > M3((s33(s"55))31)
= N> Ms(((s335')38)3¢) -
Furthermore, My = M3((s35s’) 3 s). Moreover, Lemma implies Xo | 0 g 5358 : D~ A.
Case (3): We are given
Lo M'{((s"ss)st) —& Yo blamep, My = blamep (3p) .
We show the case (3). By (%),
YoMV sgt) —s L M"{(s"§s)3t) —5 o> blamep .
Case (R_.BLAMEC_S): We are given
M = blamep, M; = blamep, ¥ =% (3p).
Contradictory because ¥ > blamep —g ¥’ > M’ does not hold.
Case (R-CTXC_S): We are given
M, = M"(s), SoM S¢S >M" 3M').

Theorem EZH implies 31 | @ g M"(s) : B. Furthermore, By Lemma [EZ4 and Lemma EZ30, we have
31 |0 kg t: B~ C. Therefore, by the TH, one of the following holds:
(1) Tiv M"(sst)y —% Xo > Ma(t);

(2) there exist some D, s3, and Mz such that X1 > M"(s5t) —% Zo > Ms((s33s)3t) and My = M3z(s35s)
and X9 | @ kg s3: D~ A; or

(3) there exists some p such that 3y > M"(s§t) —%§ Yo > blamep and My = blame p.
Furthermore, by (R_-CTXC_S), ¥ > M(s¢t) —s X1 > M"(sst). Hence, we have the conclusion.

O

Lemma 1.22 (Typability of Bisimulation). If ¥ | ' M ~ M’ : A, then ¥ | T k¢ M : Aand X | X(T) kg
M’ X(4).

Proof. By induction on the derivation of X | '+ M =~ M’ : A. We perform case analysis on the rule applied
last to derive X |[THF M ~ M’ : A.

Case (Bs_CoNsT): We are given
M=M=k F¥%, SFT, tyk)=A (k).

Therefore, by (T_ConsT_C), ¥ | T k¢ k : A. Furthermore, by Cemma D10 (H), () - X(T"). Moreover,
ty(k) = A = £(A). Therefore, by (T_CoNsT_S), X | ¥(T') kg k: Z(A).
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Case (BS_VAR): We are given
M=M=z +r% XrI, z:4A€l (32).

Therefore, by (T_-VAR.C), ¥ | ' k¢ z : A. Furthermore, by Cemma D10 (H), § - 3(I'). Moreover,
z: X(A) € ¥(I'). Therefore, by (T_-VAR_S), £ | 3(T") Fg z : 3(A).

Case (Bs_ABs): We are given
A=A 5B, M=X:AM, M =X x:AM, S|T,a:AFM~M:B (34,B,z, M, M) .
By the IH,
S|T,a:A e My: B, $|S(D),z:5(4) s M/ :S(B).

Therefore, by (T_ABS_C), ¥ | ' F¢ Az:A'.M; : A’ — B. Furthermore, by (T_ABs_S), ¥ | X(T") kg
Az 3B(A). M : B(A") — X(B). Since £(4") — X(B) = (A’ — B), we have the conclusion.

Case (BS_APP): We are given

M=DMM, M =MM, S|T-M~M:B—A X|TFM~M:B (3B, M,M,M,M).

By the IHs,

S|T ke Mi:B— A, S|S(T) ks M :5(B) = S(4), S|T ke My: B, S|S(T) s M):5(B) .

Therefore, by (T_App_C), X |T' F¢ My My : A. Furthermore, by (T_App_S), ¥ | X(T') kg M{ Mj : (A).
Case (Bs_TyABs): We are given

A=VX.A, M =AX.(M:4), M =AX.M{, S|, X+M=~M:A GBX, A, M,M).
By the IH,
ST, X Fe My: A, S |3, X Fg M :3(4) .

Therefore, by (T_TYaBS_C), ¥ | T ¢ AX.(M; : A') : VX.A'. Furthermore, by (T_TvaBs_S), ¥ | (') kg
AX .M : VX.3(A"). Since VX .X(A") = X(VX.A"), we have the conclusion.
):

Case (Bs_Tyapp): We are given
A=B[X:=A), M=DMA, M =MA4, S|TFM=~M:VX.B, S|TFA (3X,A, B M,M).
By the TH,

S| ke My :VX.B, X|S(I) ks M :VX.5(B) .

Therefore, by (T_Tyapp.C), X | I' b¢ My A’ : B[X := A’]. Furthermore, by (T_TyaPpP_S), ¥ | 3(I') Fg
M A" ¥(B)[X :=3(A")]. Since B(B)[X :=X(A")] = X(B[X := A4']), we have the conclusion.

Case (BS_BLAME): We are given
M = blamep, M’ = blamep, FX, X+, X|THA (3p).

Therefore, by (T_-BLAME_C), ¥ | I’ k¢ blamep : A. Furthermore, Cemma D10 (H) and Cemma T 10 (B)
imply 0 - X(T") and § | (") - X(A). Hence, by (T_BLAME_S), X | X(T") kg blamep : 3(A).

Case (Bs_CRrc): We are given
M = M(c), M =M{c|r), Z|T-My~M:B, S|ltcc:B~A (IM,c,M],B).
By the IH, X |T' ¢ M; : Band ¥ | ¥(T') ks M{ : ¥(B). By (T_-Crc.C), ¥ |T k¢ M{c) : A. By
Lemma 3, ¥ | ¥(T") Fg |c|p : £(B) ~» X(A). Finally, (T_Crc_S) finihes the case.
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Case (Bs_CrcIp): We are given
M = M/{idaly), S|TFM~M A, |0 Fcida: A~ A (GM).
By the TH,
ST ke M:A, S|S(T) Fs M| :%(A).
By Lemma 3, ¥ | @ Fg |idalg : $(A4) ~ X(A4). Hence, by (T_Crc_S), ¥ | 3(T') kg M{(|lidalg) : Z(A4).
Case (Bs_CRCMORE): We are given

M = My{c), M'= M(ss]clp),
SITHM~M(s):B, S|0Fcc:B~A (3B,c,s,M,M).

By the IH,
S| ke My:B, S|S(T) kg M(s): S(B) .

By (C_-Crc_C), we have ¥ | I" F¢ M : A is derived. The judgment ¥ | 3(I') Fg M{(s) : X(B) must
be derived by (T_CRcC_S) and we have ¥ | X(T') kg M{ : C and ¥ | 3(T") kg s : C ~» X(B) for some
C. Since ftv(s) = 0, we have ¥ | § kg s : C ~» X(B) by Lemma ETT and Lemma [2. By Lemma [3,
|0 ks |elg: X(B) ~ 2(A). By Lemma EZ4, 3 | @ g s3]clp : C ~ 3(B). Finally, by (T_CRC_S), we
have ¥ | X(T") Fg M': X(A).

Case (Bs_CrcIDL): We are given
M= M/(", S|TFMy~M:B, S|Ttcc :B~A (3!, M,B).
By the TH,
Y|P ke My:B, $|X%(T) kg M :%(B) .

Therefore, by (T_CrRc_C), & | T k¢ M{c!) : A. Furthermore, by Lemma 48, ¥ | X(T') kg M’ : X(A)

Lemma I.23 (Well-Formedness of Bisimulation). f ¥ |I'F M ~ M': A, then - X, X F T, and ¥ | T+ A.
Proof. By Lemma 23, ¥ |T' k¢ M : A. Then, by Lemma ET0, - > and S F T and ¥ | T' - A. O

Lemma 1.24 (Variable Weakening of Bisimulation). If ¥ | T1,To v M = M’ : Aand ¥ | Ty + B and
z € dom(T'1,T9), then ¥ |Ty,z: B,To b M~ M': A.

Proof. By straightforward induction on the derivation of ¥ |T'1, Ty = M ~ M’ : A. O

Lemma 1.25 (Type Variable Weakening of Bisimulation). If ¥ |T'F M ~ M’ : A and X ¢ dom(T") is fresh,
then X | X, T M~ M': A.

Proof. By straightforward induction on the derivation of ¥ [T M ~ M’ : A. O

Lemma 1.26 (Type Binding Weakening of Bisimulation). If ¥ [T M ~ M’ : Aand X | ) - A’ and « is fresh,
then X, a:= A" | T M=~ M : A

Proof. By straightforward induction on the derivation of ¥ | T+ M ~ M’ : A. O

Lemma I.27 (Value Substitution for Bisimulation). If ¥ |T'y,z : B, ToF M~ M : Aand ¥ | T, T2 - V =
V':B,then X | T'1,To - Mz := V]~ M'[z:= V'] : A

Proof. By induction on the derivation of ¥ |1,z : B,To - M ~ M’ : A. The proof is similar to Lemma ET2
except that Lemmas and 23 are used, instead of Lemmas [E7.) O
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Lemma I.28 (Distribution of Substitution on Composition). If ¥ | I'|, X, Ty Fg s : A ~ B and ¥ |
I'', X, Ty bg t: B~ C and « is fresh, then (s5¢)[X := a] = s[X := o] §¢t[X := a.

Proof. By induction on the sum of the sizes of s and t. We perform case analysis on s.
Case s = id: Lemma [H implies id ¢ ¢ = ¢ and id § ¢[X := o] = ¢t[X := «]. Therefore,
(id g t)[X := a] = t[X = q]

Case s = s = t1 (3s1,81): Because ¥ | T'1, X, Ty Fg 81 — ¢ : A~ B is derived by (CT_ARROW_S), we have

A:A1—>Bl7 B:A2—>BQ,
YT, X, Ty kg s1:Ag~ Ay, Y|, X, To bg t1: B~ By (341,42, B, Bo) .

We perform case analysis on ¢.

Case t = so — ty (Js9,t2): Because X | 'y, X, T's g s2 — to : (A2 — Bg) ~» Cis derived by (CT_ARROW_S),
we have

C:A3—>Bg, E|F1,X,F2 l_S 522A3WA27 E|F1,X,F2 l_S tQZBg'V‘-)Bg (3A3,B3).

Therefore, by the THs, (s2551)[X := a] = $2[X := a]§s1[X := a] and (t36)[X = a] = 4[X = a]sk[X =
«]. Hence,

((s1 = t) 5 (s2 = 82))[X =] = (

= (2% sl)[X =a] = (b st)[X = a]
= (2[X =0a]5s[X :=a]) = (L[X:
=(s1[X ==0] = u[X :=0a])5 (s [X
= ( )

81—>t1)[ —a] (82%152 [

Case t = g2 ; Go!(3ga, Go): Because X | T'1, X, Ty Fg go; Go!: (A3 — Bs) ~» C is derived by (CT_INJ_S), we
have ¥ | T'1, X, Ty Fg g2 : (A2 = B2) ~» X(Gz). Therefore, by the IH, ((s1 — t1) § g2)[X = a] = (51 —
t1)[X = a] § g2[X := «]. Hence,

((s1 = 1) 5 (925 G21))[X =] = (((s1 = 1) § 92) ;s G2)[X =
= ((s1 > 1) § g2)[X = 0] ; Go![X =]
= ((s1 = t)[X = a] § g2[X = q]) ; G2![X = q]
= (51 = t)[X :=a] ¢ (g2[X 1= o] ; G![X :=q])
= (s1 = 1)[X == af5(g2; GoN)[X == q]

Case t = LP? (Ipo):

= (81 — tl)ﬁ;J_pz[X = a]
=(s1 = t)[X :=a] s LP?[X :=q] .
Otherwise: Contradictory because ¥ | I'1, X, T's Fg t: (A2 — Bs) ~» C does not hold.

Case s =VY.s1 (Y, s1): Without loss of generality, we can assume Y # X. Because X | I'1, X, T’y kg VY. :
A ~~ B is derived by (CT_ALL_S), we have

A=VY.A', B=VY.B, S|TI,X,T5,Y tgs:A~B (34, B).

By case analysis on t.
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Case t =VZ.t; (3Z,1): Because X |I'1, X, T2 g VZ.t; : VY .B' ~~ C is derived by (CT_ALL_S), we have
Z=Y, C=VY.C') |0, X,T2,Y Fs t: B ~ C', (3C").
Therefore, by the TH, (s1 §4)[X := a] = s1[X := o] § ]
(VY.s1) 5 (VY.0))[X :=a] = (VY.(51 8 01))[X := q]

Case t = ¢g; G! (3g, G): Provable similarly to the case of s = 51 — #;.
Case t = 172 (Ips): Provable similarly to the case of s = s; — 1.
Otherwise: Contradictory because ¥ | I'1, X, Ty Fg ¢t :VY.B’ ~» C does not hold.

Case s = g1 ; G1! (3G1,¢1): Because X | I'1, X, T's Fg g1; G1!: A~ B is derived by (CT-_INJ_S), we have
BZ*, E|F1,X,F2 |_S glAWE(Gl)
By case analysis on t.

Case t =id: Because ¥ |I'1, X, T2 kg id : % ~» C is derived by (CT_ID_S), we have C' = x. By Lemma [,
(g1;Gil)sid = g1; Gl and (1[X == a]; Gi[X := a]!) 5id = ¢1[X = o] ; G1[X := a]!. Therefore,

((g15 G 3id)[X == o] = (915 GY)[X := q]
=q[X =a]; G1[X = ]!
= (X ==a]; G1[X = a]!
= (qui[X :==a]; G1[X :=a]!) 5id[X :=q] .

Case t = G17P2 ; 1y (Ipa, tp): Because X | 'y, X,Ts Fg G17P2 5ty : % ~ C is derived by (CT_PROJ_S), we
have ¥ | Ty, X,Ty Fg to: 3(Gy) ~ C. Therefore, by the TH, (g1 § &)[X := a] = ¢1[X := o] § &[X = a].
Hence,

(915 G1) 5 (G177 1)) [X = o] = (g1 5 12)[X := o]

al[X = a] i t[X = qf

(1[X :=a]; G1[X :=a]!) 5 (G1[X := a]?"? ; [ X := o)

(913 GI)[X := ] 5 (G172 ; t)[X :=q] .

Case t = Ho?P2 ; t9(Hs # G1)(3pa, Ho, t2): Because « is fresh, we have G; # « and Hs # «. Therefore,
G1[X = o] # Hz[X := o]. Hence,
((91 5 Gll) 3 (HZ?;Dz 3 tg))[X = Oé} = J_p2 [X = Oé]
= (X =0a]; G1[X = a]!) § (Ha[X = a]?P? ; &[X = q])
=(g1; G1))[X =] s (Ha?"? ; 6)[X :=q] .
Case t = 172 (dpy): Provable similarly to the case of s = s; — #;.
Case s = G17P* ; by (3G, p1, b1): Because X | T'y, X, Ty Fg G177 by : A ~> B is derived by (CT_PROJ_S), we
have ¥ | T'y, X, T’y Fg by : £(G1) ~» B. Therefore, by the IH, (b; §t)[X = o] = 01[X = o] $ t[X = a].
Hence,

(G177 b0) s D)X = a] = (G17P7 5 (b1 5 1))[X := q]
=GM[X =a]; (i st)[X =«
=GM[X =ao];([X =a]st
=(G™[X :=qa]; hi[X := q]
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Case s = LP* (3py):

O

Lemma I.29 (Identity Coercion Translation Simulates Dynamic Type Substitution). If - ¥ and ¥ | T’ F¢
ida: A~ Aand X ¢ dom(T) , then [ida[X := +]|r = |ida|r.

Proof. By induction on A.
Case A = ¢ (3): [id,[X = «]|r = |id,;x.—y|r = [id,|p.
Case A = %, A = (38): Provable similarly to the case of A = ..
Case A= A" — B’ (3A’, B’): By the IHs, |ida/[X := «]|r = |ida/|r and |idp/[X := *]|r = |idp/|r. Therefore,
lidar— p/[X := %[ = |id(ar By [ x:=4 [T
= |idA’[X::*]~>B’[X::*]|F
= lidarpx:=alr = lidp/ix.=4I0
= |IdA/[X = *]|F — |IdB/[X = *HF
= |idA/‘1‘ — |idB/|p
= |ida—pr -

Case A =VY.A' (3Y, A’): Without loss of generality, we can assume Y # X. Since X ¢ dom(I') and Y # X
X & dom(T', Y) By the IHs, |ida/[X := #||r = |ida/|r and |id/[X :=]|r,y = |idas|p,y. Therefore,

lidyy a/[X = %]|r = [id(vy. a7)[x:=4 T

= lidyy . a/[x:=4T

=VY.lidax.=q I,y 5 lidarx.=4|r
=VY.|ida'lp,y 5 lidar|r
= lidyy . ar|r

Case A=Y (3Y): We perform case analysis on whether ¥ = X or not.

Case Y = X:
|Idx[X = *“F = |idX[X::*]|F
= lids|r
=id
= lidx|r -
Case Y # X:

lidy [X = «]|r = [idy[x.=ur

=lidy|r .
O

Lemma 1.30 (Coercion Translation Simulates Dynamic Type Substitution). If - ¥ and ¥ |T' k¢ ¢: A~ B
and X ¢ dom(T") , then |c[X :=+]|r = |¢|r.
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Proof. By induction on ¢ with case analysis on c.
Case ¢ =idy (3A’): By Lemma 2, |id 4/ [X := *||r = |ida/|p.
Case ¢ = G! (3G):
Case G = X: We are given
[ X!Ir =id, X![X :=+]=1id, .
Therefore,

|X'[X = *]|F = |Id*|F
id
= | X|r .

Otherwise: We are given G![X := ] = G!. Therefore,
|GIX :=+][p = |Gr .
Case ¢ = G?P (dp, G): Provable similarly to the case of ¢ = G.
Case c = a~ (3a): |a"[X :=A]r = |a"|r.
Case ¢ = ' (Ja): Provable similarly to the case of ¢ = a™.
Case c=¢ — d' (3c',d'): Since Z |T' k¢ ¢/ = d': A~ B is derived by (CT_ARROW_S), we have
A=A, =B, B=Ay =By, S|T ko ¢ : Ay~ A,
SIT ke d': By~ By (341, As, B1, Bs) .
By the THs, |¢'[X := «]|r = |¢/|r and |d'[X := *]|r = |d'|r. Therefore,
(¢! = d)[X :=Alr = ['[X := ] = d'[X :=A]|r
= [[X i=+lr = |d'[X == A]|r
= [c[p = |d'[p
=l —=dlr.

Case ¢ =VY.c' (3Y,¢'): Without loss of generality, we can assume Y # X. Since ¥ | T F¢ VY.¢': A~ B is
derived by (CT_ALL_S), we have

A= VY.Al, B = VY.Bl, by | F, Y |_C C/ . A1 ~ Bl (E'Al,Bl) .
Since X ¢ dom(T") and YV # X, we have X ¢ dom(T', V). By the IHs, |¢/[X := #]|[r = |¢/|r and |¢'[X :=

«||r,y = |¢|r,y. Hence,
|(VY.d")[X = |r = VY .c'[X :=A||r
=VY.[d[X :=H|p,y » |[[X :=A|p
= VY.‘CI|F,Y I ‘Cl|r

= |VY.C/|F .
Case c=c';d (3c,d'): Since X | T k¢ ¢’ ;d : A~ B is derived by (CT_SEQ_S), we have
S|Dhe ¢ A~ C, S|Tked:C~B (3C).
By the IHs, |¢/[X :=#]|r = |¢/|r and |d'[X = #]|r = |d/|r. Therefore,
[(¢"5 d)[X = A]|p = |¢'[X := ] ; d'[X :=A]Ir

= |'[X :=+]|r ¢ |d'[X :=«]|r
=Ic'lr3]d'|r

=|d;dr.
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Case ¢ = 1%, 5 (3p, A", B'):

|J‘Z’WB’ [X = *]|F = |J‘€\’[X:=*]WB/[X:=*]|F

= L%l

O

Lemma 1.31 (Identity Coercion Translation and Substitution). Suppose =X and X | 'y, X, Ts F¢ ida : A ~
A.

(1) If a is fresh, |ida|r[X = a] = [ida[X = a]|p, (r,[x:=a])-
(2) lidalpy x,r, [X i=#] = [i[da[X = ][r, 1, [x:=4-
Proof. (1) By induction on A.
Case A =1 (Fu):

|idL|F1,X,F2 [X = a] = Id[X = Oé]
=id
= |id.|r,,(ra[x:=a])
= id,(x:=a] ITy ,(Ta [ X :=a))

= |idL[X = a]|p17(p2[X::a]) .

Case A =%, A = (38): Provable similarly to the case of A = ..

Case A = A/ — B/ (E|A/7 B/)Z By the IHS, |idA’|F1,X,F2 [X = Oé] = |IdA/[X = a]|p17(p2[X;:aD and “dB"Fl,X,Fz [X =
a] = |idp/[X := a]|r, (r,[x:=a)). Therefore,

lida'—p/|ry, x 0, [X == o] = (lidar|r, x 1, = lidp/|r, x 1,)[X = a
= lidas|r,, x,r, [ X = a] = |idp/|r, x,r,[X = q]
= lida[X == of|r, (ry[x:=a)) = lidp [X = a]|r, (0,1x:=a)
= lidarpxi=allry, (rapxi=a)) = lidprxi=allrymapxi=a)
= [idar[x:=a]» B/[X:=a] 1y (o[ X :=a])
= [id(ar—Bn[x:=a] Ty, (P2 (X :=a))
= lidar— 5/ [X == oflp, (2] x:=a)) -

Case A =VY.A' (3Y, A’): Without loss of generality, we can assume Y # X. Since X € dom(I';, X, T'5),
X e dom(I‘l,X,Fg, Y) By the IHS, |idA’|F1,X,F2 [X = a] = “dA/ [X = a}|p1,(p2[x:=a]) and |idA/‘F17X1F2’y[X =
a] = [ida/[X := o]|r, (ry[x:=a)),y. Therefore,

lidvy ar|ry, x, 1, [X == a] = (VY [idas |0, x 15, v 5 lidar|ry, x,1,) [X :=q]
=VY.lida|r, x,05,v[X == @], [idasr, x,r,[X = q]
=VY.|ida [X = allr, (ry[x:=a)), v » lida/ [X = a]|r, (r,1x:=a)
= VY. [ida/(x:=a) |1y (Ta[X:=a)). ¥+ lidarx=a) Ty, (s [x=a))
= lidvy.(a/[x:=a)) IT1 (Do [X:=a])
= |id(vy. 47 [x:=a] 11, (T2 X :=a))
= lidvy. 4/ [X = o|r, (ra(x:=a)) -

Case A=Y (3Y): We consider the following cases.
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Case Y € dom(I'y, X,T'2): We have
lidy|r,x r,[X = a] =id[X := a]
=id .

We perform case analysis on whether ¥ = X or not.
Case ¥ = X:

id = |ida|r, 0y [x:=a])
= |idx[x:=a]|ry (o [x:=a))
= |idx[X = Oz”ph(pz[)(:a]) .

Case Y # X: We are given
Y € I'y, (TefX :=«a)), |idy|F17(F2[X::a]) =id .
Therefore,
id = [idy|r, (1, (x:=a)

= lidyx:=a]lry,(Pa[Xi=a])
= |idy[X = a]|p17(p2[X::a]) .

Case Y ¢ dom(I';, X,T'5): Contradictory.

(2) Provable similarly to the case (1).

Lemma 1.32 (Coercion Translation and Type Substitution). Let =¥ and ¥ |T'y, X, Ty F¢ ¢: A~ B.
(1) If a is fresh, then |c|r, x r,[X := o] = [c[X = a]|r, (r.[x:=a))-
(2) lelry,x .0, [X =] = [e[X = +]|r, (s x: =)

Proof. (1) By induction on ¢ with case analysis on c.

Case ¢ =idy (3A’): Straightforward by Lemma [C3T.
Case c = G! (3G):
Case G =Y and Y & (I'1, X,T'5) (3Y): Contradictory.
Otherwise: Since ¥ | T'1, X, T2 F¢ G!: A ~ B is derived by (CT_INJ_C), we have

FY, SFTLX,Th, S|TL,X.IhFG.
By (CT_ID_C), we have ¥ | T, X, Ty F¢ idg : G ~» G. Therefore, by Lemma 31,

lidg|r,, x,r,[X = a] = |idg[X = ol|r, (0, (x:=a)) -
Hence,

|Gllr, . x.r,[X :==a] = (lidg|r, x,r, ; GH[X = q]
= lide|r, x,r, [X = o ; (GI[X = a])
=lidg[X := aHFl,(FQ[XZZQD $(GIX = q))
= lidgx:=a Iy, (Mo [x:=a)) ; (G[X := a])
= lidgx:=alry (Pa[x:=a)) 3 G[X = a]!
=[GIX = a]llr, (ry[x:=a)
= |GI[X = o[, (r[x:=a]) -
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Case ¢ = G?P (dp, G): Provable similarly to the case of ¢ = G
Case ¢ =~ (38):

1870, x.0,[X = 0] =id[X :=q]
=id
= |87 Ir, (Pa[x:=a))
= [B7[X = al|r, (ry[x:=a)) -

Case ¢ = 8% (38): Provable similarly to the case of ¢ = 3.
Case c=c¢ — d' (3¢, d’): Because X |T' k¢ ¢/ — d' : A~ B is derived by (CT_ARROW_C), we have

A:A1—>Bl, B:AQ—)BQ7 E|F|—C C/ZAQWAl, E|P Fo d/:Bl""')BQ (3A17A2,B1,BQ).
Therefore, by the IHs, we have

||y x.r. [X = a] = [[X := ]|, (rs[x:=a))

|d'[ry,x,r,[X == o] = |d'[X = allr, (r,(x:=a]) -

Hence,

¢/ = d'|ry x,0,[X = o] = (|¢|ry x,r, = |d|ry,x,0,)[X = a]
=1 |r, x . [X == a] = |d'|r, xr,[X = q]
= |'[X = allr, (roxi=ap) = 1d'[X = allr, (0x:=a))
= |[X == a] = d'[X = allr, (ryx:=a))
=|(c" = d")[X = alr, (r[x:=a)) -

Case ¢ =VY.c' (Y, ¢'): Without loss of generality, we can assume Y # X. Because T | I'1, X, [y F¢
VY.c': A~ B is derived by (CT-ALL_C), we have

A=VY.A', B=VY.B, S|, X,T2,Y Fc ¢ :A ~B (34, B).
Since Y # X, we have (I'y, Y)[X := a] = (T'2[X := «a]), Y. Therefore, by the IHs, we have

||y x,r [X = a] = ['[X := ]|, (ra[x:=a))
=a]=|c

]

Ic/|ry x .m0, v [X [X = a]|r, (rox:=a)), Y -

Hence,
VY .c'Ir, x 0,[X =] = (VY| |, xra, v 5 €0y x 10,) [X = af
=VY.|¢r, x,ra, v [X = o], [¢Ir, x 0, [X = o]

= VY.|C,[X = O‘]|F17(F2[X::a]),y s ‘C/[X = a]|pl,(F2[X;:a])
= |VY.C/[X = a]|p1’(p2[x:a])

= [(VY.¢)[X := of|r, ([ x:=a)) -
Case ¢ =c';d (3c,d’): Because & |T'1, X, Ty F¢o ¢’ ;d' 1 A~ B is derived by (CT_SEQ_C), we have
ST, X,To ko ¢ :Aw A, S|T1,X,To ke d: A~ B (3A).
By the IHs,

"X = a]lr,,(rs[x:=a)

[/[ry x,m [X i=a] = [c
(0% |d/[X = a]|pl’(p2[x:a]) .

|d'|ry xr [X =
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Furthermore, by Lemma [3,
by ‘ Z(F17X7F2> l_S ‘CI|F1,X’F2 : E(A) ~ Z(A/), by | E(Fl,X,Fg) l_S |dl|[‘1)X7F2 . E(A/) ~ E(B) .
Hence, by Lemma 28,
(|C/|F17X,F2 5 |d/|F17X7F2)[X = a] = |C/‘F17X,F2 [X = Oé} 9 |d/|F1,X7F2[X = Oé] .
Therefore,
s d'ry,x.ra [X = a] = (|| xr, 31d |y x 0, [X i=af
= |cIry,x,re[X = o] 3d|ry x ru[X = a]
= |¢'[X = a]r, (ryxi=a)) § |4 [X = Alr, (0y[x=a))
= |CI[X = Oé] s d/[X = O[]|F17(F2[X::a])
=[(c¢"; d)[X == a]|p, (ra[x:=a)) -

Case ¢ = 1%, p (3p,A’, B'):
Lo prIryx o, [X o= a] = LP[X :=a]
— |J—Z/[X::O¢]WB’[X::O¢] |F1 L(M2[X:=a])
= |J‘i’wB’[X = a]|F1,(F2[X::a]) .
(2) We only show the interesting cases because the other cases are proved similarly as the case (1). By induction
on ¢ with case analysis on c.

Case c = G! (3G):
Case G =Y (3Y):
Case Y ¢ (T'1, X,T'3): Contradictory.
Case Y € (I'1, X,T9): Since ¥ | T, X, Ty F¢ Y!: A~ B is derive by (CT_INJ_C),
A=G, B=x F3% SFI[,X,Is X|0LX,ToF7Y.
By (Ct_Ip_.C), X | T'1, X, T3 F¢ idy : Y ~ Y. By case analysis on whether ¥ = X or not.
Case Y = X: By Lemma I3, |idx|r,, x,r,[X := ] = [idx [X := #]|p, (r,[x:=4))- Therefore,
[ X!ry .0, [X 1= ] = (lidx[r, xp, 5 XD[X = A
= lidx[r, x r,[X := #]
= lidx[X := *]|F1,(F2[X::*])
= lidx[x:=u] |1y (D [x:=4])
= ‘id*|F17(F2[X¢:*D
= ‘X'[X = *le,(p,z[X::*]) .
Case Y # X: By Lemma 30, [idy|r, x,r,[X = ] = [idy[X := ]|, (0,[x:=4)). Furthermore,
since Y € (I'1, X,T'2), we have Y € (T'y, (T'2[X := «])). Therefore,

Y p, axi=s]) = lidy|r, myxi=ay 5 Y.

Hence,

[ Y, x. o [X =+ = (lidy|r,x,rp; YD[X := %]
= lidy|r, xr,[X :=%; V!
= idy [X = #|p, (ry[x:=a)) 3 V!
= |idyx:= |0y, (ma[xi=s]) 5 Y
= [idy [r, (s [x:=s) 5 ¥!
= | Y, (raox:=4])
= | YI[X == +]|p, (ro[x:=4)) -
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Otherwise: Since G does not contain type variables, we have G[X := x| = G and G![X := ] = G
By Lemma 3, |idg|r, x,r,[X := %] = |idg[X := #]|r, (r,[x:=4)). Therefore,

|Gllr,,x 1, [X ==+ = (lid¢|r,,x,r, ; GH[X = ]
= |idg|r,, x,r[X =%]; G!
= lida[X = «|r, (0, x:=4]) 5 G!
= |id gximu |1y, (o [x:=4)) 3 G!
= lida|r,,(ry(x:=s)) 5 G!
= |G!|F1,(F2[X::*])
= [GIX == A|r, (ra[x:=4]) -

Case ¢ = G777 (Ip, G): Provable similarly to the case of ¢ = GI.

Otherwise: Provable similarly to the case (1).

Lemma 1.33 (Type Substitution for Bisimulation). Let ¥ | X, I'F M ~ M’ : A.

(1) If awis fresh and X | 0+ B, then X,a:= B |T[X :=a]F M[X :=a] = M'[X :=q] : A[X :=q].

(2) D|T[X =+ F M[X =% = M'[X := %] : A[X :=«].
Proof. By induction on the derivation of X | X, T'+ M = M’ : A. We perform case analysis on the rule applied
last to derive ¥ | X, T F M ~ M’ : A. We show only ¥,a0:= B |T[X :=a] F M[X :=a] = M'[X :=q] :
A[X :=a]. D |T[X =+ F M[X :=*] = M'[X := ] : A[X := x| can be similarly shown.
Case (Bs_CRc): We are given

M =M, M =M{clxr), L|X,TFM~M:B, $|X,Thcc:B~A (3IM,M,c B).

By the IH, we have ¥ | T'[X := o] F Mi[X := o] = M{[X := o] : B[X := a]. By Lemma ET3, we have
Y| TX :==a] k¢ ¢[X :=a]: B[X := a] ~ A[X := a]. By Lemma 232, we have [c[X := o]|p[x:=a] =
(lelx,r)[X := a]. Rule (Bs_CRrc) finishes the case.
Case (Bs_CrcIp): We are given
M = M{lidalg), S|X.TFMa~M:A S|0Fcida: A~ A (3AM]).
We have
(M{{lidalo)[X = a] = MI[X = a]{(Jidalo)[X = a]) .
By Lemma 3T, we have |idalg[X = a] = [ida[X = a]|p = |ida[x.=q)[¢- By the IH,
Y,a:=B|[X :=a]k M[X :==a] ~ M{[X :=a]: A[X :=q] .
Rule (Bs_CrcID) finishes the case.

Case (BS_CRCMORE): We are given

M = Mi(c), M= M(ss|cly),
S|X,TEMy~M{(s):C, T|0kFcc:C~A (3C,c,s, M, M) .

We have
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By the IH,

Y,a:=B|T[X :=a]F Mi[X :=a] = M{[X :=a|(s[X :=qa]): C[X :=q] .

By Lemma ET3, ¥ | § k¢ ¢[X = a] : O[X := o] ~ A[X := a]. Since ftv(s) = ftv(c) = 0, we have
ftv(s[X := a]) = 0. By Lemma 32, |c[X = of|p = |¢|p.x[X = a]. By Lemma [Z8, (s |c|p)[X = a] =
s[X :=a]s|c|p[X := a]. Therefore,
S[X 5= a] 3 |e[X := allo = s[X i= a] 3 |clg[X := o]
— (s3]clo)[X i=a] .
Rule (Bs_CRCMORE) finishes the case.
Case (Bs_CrcIDL): We are given
M=M(", S| X,T-My~M:D, S|0tcc:D~A (3M,, D).
By the IH,
Y,a:=B|[X :=a]F Mj[X :=a]~ M'[X :=q]: D[X :=q] .
By Lemma E@ and Lemma [ET3,
Y,a:=DB|0Fc d[X:=a]: DX :=a]~ A[X :=q] .
Since no-op coercions are closed under type name substitution, we have, by (Bs_CRrRcIDL),
Y,a:=B|T[X :=a]F (M[X := a]){![X :=a]) = M'[X :=a] : D[X :=q] ,
finishing the case.
Otherwise: Similarly to Lemma ET4. The proof uses Lemmas and 23 instead of Lemma E72.
O

Lemma I.34 (Coercion Composition Preserves Bisimilarity). If & |0 F M ~ M'(s)(t) : A, then ¥ |0+ M ~
M'(sgt): A.

Proof. By induction on the derivation of ¥ | 0 & M ~ M'(s)(t) : A. We perform case analysis on the rule
applied last to derive ¥ | ) = M ~ M'(s)(t) : A, which is either (Bs_Crc), (Bs_CrcID), (Bs_CRCMORE), or
(Bs-CrcIDL).

Case (Bs_CRrc): We are given
M=M{c), t=lcly S|0FM ~M(s):B, S|0Fcc:B~A (3M,M,c)

By Lemma [, we have ¥ | ) Fg M'(s) : X(B). By inversion, ¥ |} kg s: C ~ X(B) for some C. Thus,
ftv(s) = 0. By (Bs-CRCMORE),
S|I0F M(c)~ M(ss

C|@> AL
Case (Bs_-CrcIp): We are given
t=|idA‘@, EI@"M%M/<S>:A, E‘@l—cldAAWA

By Lemma 23, we have X | ) g M'(s) : 3(A). By inversion, X | § kg s: C' ~» X(A) for some C. Thus,
ftv(s) = 0. By (Bs_.CRCMORE),

S0 M(ida) ~ M (s3lidalg): A .
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Case (BS_CRCMORE): We are given

M= M1<C>> t= t/; C|®7 ftV(t/) =0,
S|0FM~M{s)(t'):B, Y|0tc c:B~A (IB,c,t', M) .

By the IH, ¥ | 0 - My = M'(s ¢t') : B. By Lemma 29, we have ¥ | g M'(s3¢') : ¥(B). By inversion,
|0 ts set': C~ XB(B) for some C. Thus, ftv(sst’) = 0. By (BS.CRCMORE),

SI0FM(Gda) =~ M {(s3t')s

clo): A .
Lemma [ finishes the case.
Case (Bs_CrcIDL): We are given
M=M({", 2 |Tkec :B~A X|TFM~M{s)t):B (3M,c,B).
By the TH, ¥ | T+ M; = M’(s¢t) : B. Applying (Bs_CRCIDL) finishes the case.
O

Lemma 1.35 (Typing Coercions in Coercion Sequences). Let n > 0. If ¥ F 0,{c1),...,{(cn) : A ~ B,
then there exist some Ag,..., A, such that A9 = A and A, = B and, for any ¢ such that n > ¢ > 0,
E‘@ FC CiIAi_lwAi.

Proof. By induction on n.
Case n =1: Because X F 0, (¢1) : A~ B is derived by (CT_-CoNs_C), we have
SEO0:A~ A, Z|0tc e:A~B (34).
Because X F () : A~ A’ is derived by (CT_NIL_C), we have A = A’. Therefore, ¥ | F¢ ¢ : A~ B.
Case n =k + 1(k > 1): Because X 0, {c1),...,{ck), {ck+1) : A ~ B is derived by (CT_ConNs_C), we have
S0, (1), (k) A~ A, B0 ko g1 A~ B (3A).

Therefore, by the IH, there exist some Ag,..., Ay such that A4g = A and A, = A’ and, for any 7 such that
k>i>0,2|0 Fe ¢ : Ai—1 ~ A;. Therefore, we have the conclusion by letting A1 = B.

O

Lemma 1.36 (Canonical Forms of Coercion Applications). For any M and ¢, there exist some M’ n > 0, and
€1,...,cp such that M’ is not a coercion application and M{c) = M'{¢;)---(c,) and ¢, = c.

Proof. By induction on M. We perform case analysis on M.

Case M = M"{c") (3c¢”,M"): By the TH, there exist some M’ that is not a coercion application, m > 0, and
¢hy. .., chosuch that M (") = M"(¢}) ---{cl,) and ¢}, = ¢”. Therefore, because M {c) = M"'{c1)---{cl.){c),

rm m

we have the conclusion by letting M’ = M, n=m+ 1, and ¢py1 = c.

Otherwise: Because M is not a coercion application, we have the conclusion by letting M’ = M, n = 1, and
c1 = C.

O

Lemma 1.37 (Canonical Forms of Coercion Applications with Function Coercions). If ¥ | @ ¢ V{c — d) :
A — B, then there exist some V' that is not a coercion application, n > 0, and ¢, ..., ¢,, di, ..., d, such that
Vie—=dy=V"{(ct > di) - {cn = dp) and ¢, = ¢ and d,, = d.

Proof. By induction on V. By inversion of the derivation of ¥ | ) ¢ V{c — d) : A — B, we have
S|0kc VA =B, Y|0Ftcc:AwA, X|0tcd:B ~B (3A,B').

By case analysis on V.
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Case V =k (3k),V = Az: A".M (3A”,z, M): Obvious.

Case V = V(¢! = d’) (3¢, d’, V'): By the IH, there exist some V" that is not a coercion application, m > 0,
and ¢1,...,Cn,dy,...,dy such that V(¢ = d') = V"{c; = d1) - (¢sy — dp) and ¢,,, = ¢/ and d,,, = d'.
Therefore, because V{c — d) = V"{c; = dy) - (¢ = dm){c — d), we have the conclusion by letting
Vi=V" n=m+1, ¢py1 = ¢, and dpy1 = d.

Otherwise: Contradictory because 3 | F¢ V : A’ — B’ does not hold.

Lemma I1.38 (Typing Coercions in Function Coercion Sequences). Let n > 0. If ¥ |
di)--+(¢cn = dn) : A — B, then there exist some Ag,..., Ay, By,..., B, such that 4, =
and, for any i such that n >4 >0, X |0 Fo ¢;: A; ~ A;_ 1 and B |0 F¢ d; : B;_1 ~ B;.

wd O

0 Fe M{a
A and B, =
Proof. By induction on n

Case n = 1: By inversion of the derivation of ¥ | ) F¢ M{(c; — di) : A — B, there exist some Ag, By such that
S|0Fc cg: A~ Agand X | O ¢ dy : By ~ B. Therefore, we have the conclusion by letting 41 = A and
B, = B.

Case n =k + 1(k > 1): By inversion of the derivation of ¥ | § o M{cy — di) -+ (cx = di){crt1 — drg1) :
A — B, we have

2|@FCM<Cl*>d1>'”<ck*>dk>ZAI%B/, E‘@Fc C]H_lSAWA/ E|@FC dk_._l:B/WB (HA/,B/).

Therefore, by the TH, there exist some Ay, ..., Ag, Bo, ..., Bg such that Ay = A’ and B, = B’ and, for any ¢
such that K >i> 0,2 |0 o ¢;: 4; ~ A;_1and X | @ F¢ d; : B;_1 ~ B;. Hence, we have the conclusion
by letting Agy1 = A and By,1 = B.

O

Lemma I.39 (Bisimulation and Composition). If neither M nor M’ is a coercion application and ¥ | §
M{c1) - {cn) ~ M'(s) : Apt1 (for n > 0), then there exist a nonnegative integer 7 and Ay, ... 4,, such that:

e X |0F M=~ M': Ay, whose derivation is a subderivation of ¥ |0 F M{c1) - (cn) = M'(s) : Apt1;
e X |0Fo A~ Ay .. B |0 o cnt Ay~ Angas

e 1 <n

e the first i coercions ¢y, ..., ¢; are no-op; and
o s=lidailoslcirrlos -5 lenl

S=11d4; 11109 |Ci+1l0 9 9 1Cnlp-

Proof. By induction on n with case analysis on the rule last applied to derive X | 0 & M {c1) - (c,) = M'(s) :
Ap 41, which is either (Bs_CrcIp), (BS_CRCMORE), or (Bs_CRrRCIDL).

Case (Bs_-Crc): We are given
SI0FMict) - {en 1) =M : Ay, s=lcalp -

Since M’ is not a coercion application, it must be the case that X | 0 = M (¢1) -+ (cp_1) = M’ : A, is derived
by a sequence of applications of (Bs_CRcIDL). Thus, taking i = n — 1, we have

e X |0 M=~ M : Ay, whose derivation is a subderivation of ¥ | O = M{c1) -+ (cn) = M'(s) : Apy1;
e X |DbFo Al Ay . 2|0 Fe cp Ay~ Apya;
® ¢y, ..., cp_1 are no-op; and

o s=lida, ,[03cnlo
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Case (Bs_CrcIp): We are given

s=lida, o, B|IOFM{cr) - (cn)m M : Appr, |0 b ida,,, : Ang1 ~ Apyr

n+1

Since M’ is not a coercion application, it must be the case that X | @ = M (¢1) -+ {(cp) =~ M’ : A,11 is derived
by applying (Bs_-CRCIDL) n times, we have for all j € [1...n]

=c, S|0-MaM:A, S|0bccl:Aj~ Ay (GAr,... Ancf,....cl).
Taking ¢ = n finishes the case. (Here, |ida, ,|p$§[ciy1lp$- -3 |cnlp means [ida,,, [p.)
Case (Bs_CRCMORE): We are given
s=3s"3|calp, B|0FMcr) - (cn1) e M'(s'): A, S0 Fc cp:Ap~Apr (34,,8) .
By the IH, for some nonnegative i, Ay, ..., A,_1, we have

e X |0 M=~ M': Ay, whose derivation is a subderivation of ¥ | 0 = M{c1) - (cp—1) &= M'(s") : Ap;
e X |0k A~ As |0 cpr i Ay~ Ay

e 1 <n-—1

e the first ¢ coercions cy, ..., ¢; are no-op; and
I | o o o

o s =lidalo3lcitilos 5 ea—1lo-

It is immediate that s = s’ § [cn|p = |ida,, |0 § |[cit1lo - § [cnlp, finishing the case.
Case (Bs_CrcIDL): We are given
cn=cl, S|0FMc)) - {cn 1) =M {(s): An, T|0Fc cn:An~ Anyr (34,,c0).

By the IH, for some nonnegative i, Ay, ..., A,_1, we have

e X |0 M=~ M : Ay, whose derivation is a subderivation of ¥ | O = M{c1) -+ (cp—1) = M'(s) : Ay;
L] El@" C12A1V‘->A27...7E|®|_ Cnfl:An—l“""A’rﬁ

e i <n—1

e the first ¢ coercions cy, ..., ¢; are no-op; and
o s=lida, loslcivalos -5 lcn
§=1104,,110 9 |Ci+1|0 9 9(Cn—110-

By Lemma [T, (|idA1,+1|® 9 |Ci+1|®;' 9 ‘cn71|®) 9 |Cn|@ = |idAm+1|® 9 ‘ci+1‘®g' : 'glcnfl‘@ =S, ﬁniShing the case.
O

Lemma 1.40 (Uncoerced Values are Bisimilar to Values). If ¥ | ' M ~ U : A, then there exists some V
that is not a coercion application, nonnegative integer n, Ao,..., A4, and ¢!,... ¢l such that

M=Vl (), S|Troe 4 1~A,(1<i<n), A,=A X|TFV=x=U:A.
Furthermore,

1. If U = Fk for some k, then V = k and Ay = ty(k).
2. If U = Ax: By.M{ for some z, By and M/, then

V:)\l'lBo.Ml, A():Bo—>00, E|F'_M1%M1/CO (EIMl)

3. If U = AX.M{ for some X and M/, then

V = AX(Ml SB()), AOZVX.B(), E|F,XFM1%M{BQ (HMl,Bo) .
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Proof. Straightforward if M is not a coercion application. If M is a coercion application, by Lemma 238, there
exists some term M; such that M is not a coercion application and

M= My () 3cd,...,ch).
Since X | T'+ My(cl)---{cl) ~ U : A is derived by (Bs_CRCIDL), we heve
Ap=A, SITFM~U:4, S|Trcecl:A; 1~ A4, (1<i<n) (34g,...A,).
Furthermore,

Case U = k (3k): Since M is not a cercion application, ¥ | I' F My ~ k : Ay is derived by (Bs_CONsT).
Therefore, we have My = k and Ay = ty(k).

Case U = Az : By.My (3By, z, My): Since M is not a coercion application, ¥ | T' F My & Az: Bg.Mj : Ag is
derived by (Bs_ABs). Therefore, we have

M, = \z:By.My, Ag=DBy— Co, S|TFMy~M:C (3Ms,Cy).
Case U = AX.Mj (3X, My): Since M; is not a coercion application, ¥ | I' b M; = AX. M, : Ag is derived by
(Bs_T'yaBs). Therefore, we have
M, = AX.(Msy: By), Ao=VX.By, |0, X+FM~M:By (3IMa,Bo) .
O

Definition I.1 (Value Coercions). We define value coercions ve, which are a subset of coercions in /\Cynp7 and
v

space-efficient value coercion vs, which are a subset of space-efficient coercions in ASy, , as follows.

ver=Gla |ec—=d|VX.c
Vs =1

Definition 1.2 (No-op Value Coercions). We define No-op value coercions vc!, which are a subset of value
coercions in ,\C\;w as follows.

vel = Gl a™ | ef —dl | vX.c!

Lemma I.41 (Ground Coercion Composition). If ¥ | Fg g1 : A~ Band X | kg g2 : B ~ C, then there
exists some g3 such that g3 =¢g1 392 and X |0 Fg g3: A~ C.

Proof. First, we consider the cases where either g; or g is an identity coercion.
Case g1 = id: By Lemma [[3, id § g5 = ¢5.
Case g2 = id: By Lemma [@, ¢; §id = g;.
Next, we consider the cases where neither g; nor go is an identity coercion. By case analysis on go.
Case go = s3 — la (Jso, t2): Because ¥ | ) Fg s3 — to : B ~ (' is derived by (CT_ARROW_S), we have
B=B— By, C=0C —0Cy X|0kg sy:C~ By,
|0 kg ty: By~ Cy (3By, Ba, C1, Cs) .
By case analysis on g¢.
Case g1 = 81 = t1 (g1, G1): Because ¥ |0 Fg sy — ¢ : A~ B is derived by (CT_ARROW_S), we have
A=A1 = Ay, Y|0Fgsg:B~ A, Y|0Fg ty: Ay~ By (A1, As)

Therefore, by Lemma [EZ24, there exists some s such that s = s3$s; and X | 0 kg s: C; ~» A;. Similarly,
by Lemma [EZ24, there exists some ¢ such that t = #; $t; and X | g ¢ : Ay ~ Cy. Hence,

(Sl4)151);(82%tg):(SQSSl)*)(tlgtg)
=5—=1.

Furthermore, by (CT_ARROW_S), X |0 kg s = t: (41 — Ag) ~ (C) — Cs).
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Otherwise: Contradictory because B cannot be a function type for all space-efficient value coercions except
id.

Case go =VX.59,, t5 (3X, 52,1): Because X | ) Fg VX.s5 : B ~» C is derived by (CT_ALL_S), we have

BZVX.Bl, C:VXC&, E‘@,X FS 52131”‘)01,
ZI@,X l_S tQZBl[X Z:*]W Cl[X Z:*] (HBl,Cl) .
By case analysis on ¢;.

Case g1 =VY.s1,, 81 (3Y7,81,4): Because X |0 Fg VY.s1,,8; : A~ (VX.By) is derived by (CT_ALL_S), we
have

Y:X, A:VXAl, E‘@"S SliAlel,
by | @ l_S t : Al[X = *] V‘-)Bl[X = *] (E'Al)

Therefore, by Lemma [E24, there exists some s such that s = s;§s; and X | Fg s: Ay ~ Cy. Similarly,
by Lemma EZ4, there exists some ¢ such that ¢ = 1§t and X | 0 Fg ¢ : A;[X = ] ~ C1[X := «].
Hence,

(VX.Sl ’s tl) 9 (VX.SQ ys tg) = VX.(Sl H 52) ys (tl S t2)
=VX.s,,t.

Furthermore, by (CT_ARROW_S), X | g VX.s,,t:VX. 4y ~ VX.C).

Otherwise: Contradictory because B cannot be a polymorphic type for all space-efficient value coercions
except id.

O

Lemma 1.42 (Space-efficient Value Coercion Composition). If ¥ | Fg vs; : A~ Band X |0 Fg vsy: B ~
C, then there exists some vs3 such that vss = vs; §vse and X | @ Fg vsz : A~ C.

Proof. If both vs; and wvsy is a ground coercion, straightforward by Lemma [CZ1. We consider the cases where
neither vs; or vse is a ground coercion. By case analysis on vss.

Case vsy = g2 ; Go! (g2, Go): Because X | 0 Fg go; Go!: B ~ C is derived by (CT_INJ_S), we have
C=x%, X|0Fs go:B~X(Gs) .
By case analysis on vs;.
Case vs; = g1 ; G1! (g1, G1): Because X |0 g g1 ; Gi!: A ~ B is derived by (CT_INJ_S), we have
B=x, X|0ts g:A~X(G).

Since B = x, go = id (otherwise B cannot be a dynamic type, which is contradiction). Since ¥ | ) Fg id :
* ~» X(Gy) is derived by (CT_ID_S), we have » = X(Gz). There is contradiction because Gy # * and for
any A in a:= A € ¥ is not a dynamic type.

Case vs; = g1 (3g1): By Lemma [CAI, there exists a ground coercion g3 such that g5 = g1 3 g0 and ¥ | 0 F¢
g3 : A ~ X(G2). Therefore,

915 (92; Ga!) = (915 92) ; Go!
=g3; Go! .

By (CTINJIS), X |0 Fe g3; Gol i A~ .
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Case vsy = s9 — o (Is2, t2): Since wsy is a ground coercion, vs; = g1 ; Gi! (g1, G1). Because ¥ | ) Fg s —
to : B ~» C is derived by (CT_ARROW_S), we have

B:B1—>Bg, 0201%02, Z|@|_582201WB1,
E‘@ '_S tQIBQWCQ (E'Bl,BQ,Cl,CQ) .

Since X | 0 ks g1; Gi! : A ~» B is derived by (CT_INJ_S), however, contradictory because B cannot be a
dynamic type.

Case vsy =VX.59,, ta (3X, 59, %): Since vsy is a ground coercion, vs; = ¢1 ; Gi! (391, G1). Because ¥ | § Fg
VX .s9 : B ~ C is derived by (CT_ALL_S), we have

B:VX.Bl, C:VAX.C&7 2‘®,X l—s 52131“’901,
Y|10,X Fg to: Bi[X :=+] ~ C1[X :=%] (3B, (1) .

Since ¥ | 0 kg g1; Gi! : A ~ B is derived by (CT_INJ_S), however, contradictory because B cannot be a
dynamic type.

O

Lemma 1.43 (Value Coercions are Translated to Space-Efficient Value Coercions). If ¥ | § F¢ ve: A ~ B,
then |uclg is a space-efficient value coercion and X | @ Fg |vc|g : 2(A) ~ 3X(B).

Proof. By Lemma 3, there exists some |vc|y such that X | 0 Fg |vc|g : X(A) ~ 32(B). Therefore, it suffices
to show that |vc|y is a space-efficient value coercion. By case analysis on vc.

Case vc = G! (3G):
Case G = X (3X): |G!|g =id. id is a space-efficient value coercion.
Case G is not type variable: |G!|g = |idglg; G'.
Case G =1 (Fu): |id,|p;e! =id ;e id; ¢l is a space-efficient value coercion.
Case G = X (3X): |idx|p; X! =id; X!. id; X! is a space-efficient value coercion.
Case G = a (Ja): |ida|g; ol =id;al. id;a! is a space-efficient value coercion.
Case G =* — *x |idssilp; (x = %) = (Jide|g = |idi|g); (x = %) = (id = id) ; (x = %)L, (id = id); (x — *)!
is a space-efficient value coercion.
Case G = VX% (3X): lidyx.i]p; (VX %) = (VX.ideJg) ; (VX ) = (VX id) 5 (VX.%)!. (VX.id) ; (VX %) is a
space-efficient value coercion.

Case vc = a~ (Ja): |a~|p =id, and id is a space-efficient value coercion.
Case vc = ¢ — d (J¢,d): |¢c — d|p = |clg — |d]p, and |c|p — |d|y is a space-efficient value coercion.
Case ve =VX.c (3X,¢): VX .c|g =VX.|c|x ,, |¢lp, and VX .|c|x ,, |¢|g is a space-efficient value coercion.
O

Lemma I.44 (Value Coercion Composition, Consecutively Applied). Let n > 0. For any ¢ such that n >4 > 0,
it Y |0 kg vs; : Aj—1 ~ A, then there exists some vs such that vs = vs; §---3vs, and 3 |0 Fg vs: Ag ~ A,,.

Proof. By induction on n.
Case n = 1: Obvious.
Case n =k + 1(k > 1): By the IH,
vs' =wvs1§---svsg, XN|0 kg vs' Ay~ A (Jus') .

Therefore, by Lemma A2, there exists some vs such that vs = vs’ §vspr1 and X | 0 g vs : Ag ~ Agy1.
Hence,

vs = vs' § VS41

= US1 9§ USL § USk+1 ,

so we have the conclusion.
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O

Lemma 1.45 (Replacement of Coercion Arguments). Let n > 0. If neither M7 nor Mj is a coercion application,
and X | 0 F My(c1) - {cn) = M{(s) : Apy1, B |0 F ¢;: Ay~ Ajyg (for 1 <i<n), X |0+ My =~ M : A; and
Y| 0F My~ M) : Ay, then X | O F Ma(er) -+ (cn) m My(s) : Apy1.

Proof. By induction on n.

Case n = 1: By case analysis on the rule applied last to derive 3 | 0 - M;(¢1) &= M{(s) : Aa, which is either of
(Bs_CrclID), (Bs_CrcIpL), (Bs_Crc), or (BS_CRCMORE).

Case (Bs_CrcID): We are given
s=lida,lp, |0 Fcida,: Ay~ Az, D[0F Mi(cr) = M : Ay .

Since M is not a coercion application, X | § = Mi{c;) &~ M{ : A, is derived by (Bs_CRCIDL). Therefore,
we have

clzc{, Z|®}_M1%M1/A1, E|®|‘C{ZA1WA2 (E'C{)
Hence, by (Bs_-CrcIDL) and (Bs_CRDID), we have ¥ | ) - Ma(cl) ~ M}(|ida,lg) : Aa.

Case (Bs_CRrCIDL): Similary to the case (Bs_CrcID).
Case (Bs_CRrc): We are given

S:|C1|q), 2|®FM1%M{A1, Z|®|7C‘61:A1WA2.
Hence, by (Bs_CRcC), we have X | 0 = Ma(c1) ~ Mj(|e1]g) = Ao.
Case (BS_CRCMORE): We are given

cilg, Z|0F M~ M/{s): A1, X|0Fc cp: A1~ A4 (3s).

/o
s=1s"3
Because M is not a coercion application, 3 | = My ~ M{(s’) : A; is derived by (BS_CRcID). Therefore,
we have s’ = |ida, |p. Hence, X | 0 F Ma(c1) =~ M4{|ida,|g $|c1]o) : A2 is derived as follows.
SI0FM~M;:A
[0 F M, 2 (Bs_CRrclIp)
Z|@FM2RU’M2<‘IC{A1|@>SA1 E|®Fc 612A1WA2
10 F Ma(er) = My(lida, [p 5 |calo) = Az

(Bs_.CRCMORE)
Case n =k + 1(k > 1): By case analysis on the rule applied last to derive X | O b Mj{c1)---{ck) (ck+1) =
M (s) : Ag41, which is either of (Bs_CrcID), (Bs_-CrcIDL), (Bs_Crc), or (BsS_.CRCMORE).
Case (Bs_CrcID): We are given
s=lida,,lo, S0 Mer)- () (cea) & My Aps

Since M] is not a coercion application, X | § = Mj{c1)---{ck) {(ckt1) =~ M] : Agy1 is derived by apply-
ing (BS_CRCIDL) k+1 times. Therefore, there exists ¢! (1 < i < ks) such that ¢; = ¢!. Hence, by
(Bs_CrcIDL) and (Bs_CrcID), we have X | O = Ma(cq) -+ - (c) (cpy1) = My(s) : Apq1.

Case (Bs_CrcIDL): Similary to the case (Bs_CrcID).

Case (Bs_Crc): We are given
8:|Ck+1‘@, EHZ)FM1<01><C]C>NM1IA]€

By the TH, ¥ | 0 = Ma(c1) - {cx) = M4 : Ay. Therefore, by (BS_-CRc), X | O F Ma(cy) -~ {ck) {crr1) =
Ms(lekv1lo) = Akr.
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Case (BS_CRCMORE): We are given
s=s85|ckr1lg, X|0F Mi{cr) - (ex) = M{(s'): Ap (3s') .
BytheTH, X | O F Ma{c1) -« (ck) = My(s’) : Aj. Therefore, by (BS_.CRCMORE), 3 | 0 - Ma(cy) -« - (cg) (chy1) ~
M;(s" 5 [crs1lo) + Apsr.
O

Lemma 1.46 (Intermediate Coercion Composition Determines the Left Coercions). If s §¢ = i, then there
exists some j such that s = j.
Proof. Staraightforward because the contrapositive holds trivially. O

Lemma 1.47 (No-op Coercion Types are not Dynamic Types). If ¥ | ) ¢ ¢! : A ~ B, then A and B are non
dynamic types.

Proof. Straightforward by induction on the derivation of ¥ | ) F¢ ¢/ : A ~ B. O
Lemma 1.48 (No-op Coercion Types are Same Under ). If ¥ |T" F¢ ¢/ : A ~ B, then %(B) = X(A).
Proof. Straightforward by induction on the derivation of ¥ |I' F¢ ¢/ : A ~ B. O

Lemma 1.49 (Space-efficient Value Coercion Composition and Identity Coercion). If X | @ g vs; : A ~ B
and X |0 g vsy: B~ C and vs; § vsy = id, then vs; = id and vsy = id.

Proof. (1) Suppose that vs; # id. By case analysis on vs;.
Case vsy = g1 ; G1! (3g1, Gh): Since X | 0 Fg g1 ; Gi!: A ~ B is derived by (CT_INJ_S), we have B = x.
By case analysis on the rule applied last to derive X |} kg wvsg : x ~ C.

Case (CT_ID_S): Contradictory because vs; § vsy = (g1 ; G1!) sid = ¢1 ; G1! # id.
Case (CT_INJ_S): We are given

VS = g2, GQ!, b)) ‘ @ [ g2 P x> E(GQ) (392, GQ) .

Since B =%, X | 0 F g2 : % ~ X(Gz) is derived by (CT_ID_S), * = X(Gs). There is contradiction
because Go # * and for any A in a:= A € ¥ is not a dynamic type.
Otherwise: Contradictory because B cannot be a dynamic type.
Case vs; = 81 — t1 (Is1,11): Since X |0 g s1 — 1 : A~ B is derived by (CT_ARROW_S), we have B is
a function type. By case analysis on the rule applied last to derive ¥ | @ kg vss : B ~ C.
Case (CT_ID_S): Contradictory because vsy §vsy = (81 — t1) 5id = s = t #id.
Case (CT_INJ_S): Contradictory because vsy § vsy = (s1 — 1) § (g2 ; G2!) = ((s1 = t1) § g2) ; Ga! # id.
Case (CT-ARROW_S): We are given vsy = s2 — o (Ise, t2). Contradictory because vs; § vse = (81 —
tl) 3 (82 — tg) = (82 5 81) — (tl 5 tz) 75 id.
Otherwise: Contradictory because B cannot be a function type.
Case vsy =VX.51,, 1 (3X,s1,t): Since X |0 g VX.s1,, 8 : A~ B is derived by (CT_ALL_S), we have
B =VX.B; (3B;). By case analysis on the rule applied last to derive X | ) g vsy : B ~ C.
Case (CT_ID_S): Contradictory because vsy § vsa = (VX .51 ,, t1) oid = VX .81 ,, 81 # id.
Case (CT_INJ_S): Contradictory because vsy §vsa = (VX .81,,61)5(g2; Ga!) = (VX .81,,t1)592); Ga! # id.
Case (CT_ALL_S): We are given vsy = VX.sq ,, to (32, t2). Contradictory because vsy § vsa = (VX.s1 ,,
tl) H (VX.SQ ’s tg) = VX.(Sl H 82) ’s (ﬁl H tQ) 75 id.
Otherwise: Contradictory because B cannot be a polymorphic type.

(2) Suppose that vsy # id. By case analysis on vs;.

Case vs; = id: Contradictory because id = vs; § vsy = id § vso = vss.
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Case vsy = g1 ; G1! (g1, G1): Since X | 0 Fg g1 ; Gi!: A ~ B is derived by (CT_INJ_S), we have B = x.
By case analysis on the rule applied last to derive X | §§ Fg wvsy : x ~ C.

Case (CT_INJ_S): We are given
US2 = g2 ; GQ!, b)) ‘ @ - go Kk~ Z(GQ) (Hgg, GQ) .

Since B =%, & | 0 F g2 : x ~ X(Gz) is derived by (CT_ID_S), * = X(G2). There is contradiction
because Gs # * and for any A in a:= A € ¥ is not a dynamic type.
Otherwise: Contradictory because B cannot be a dynamic type.

Case vsy = 81 — 1 (Js1,t1): Since X |0 kg sy — t; : A~ B is derived by (CT_ARROW_S), we have B is
a function type. By case analysis on the rule applied last to derive ¥ | @ Fg vse : B ~ C.

Case (CT_INJ_S): Contradictory because vsy §vsa = (51 = t1)§(g2; G2!) = ((s1 = t1) § g2) ; Ga! # id.

Case (CT_ARROW_S): We are given vsy = s2 — ty (Js2, t2). Contradictory because vsy § vsy = (81 —
tl) 5 (82 — tz) = (52 H 51) — (tl H tg) #id.

Otherwise: Contradictory because B cannot be a function type.

Case vsy =VX.81,, 1 (3X,s1,t): Since X |0 Fg VX.s1,, 8 : A~ B is derived by (CT_ALL_S), we have
B =VX.B; (3By). By case analysis on the rule applied last to derive X | ) Fg vsy : B ~ C.

Case (CT_INJ_S): Contradictory because vsy §vse = (VX .s1,,61)¢(g2; Ga!) = (VX .51,,t1)592); Ga! # id.

Case (CT_ALL_S): We are given vsy = VX .83 ,, to (32, t2). Contradictory because vsy § vso = (VX.$1 ,,
t)§ (VX .52, t2) = VX (515 82) », (1§ 12) # id.
Otherwise: Contradictory because B cannot be a polymorphic type.

O

Lemma I1.50 (Intermediate Coercions are Bisimilar to Values). If 3 | O = V ~ M’'(s) : A, then there exists
some ¢ such that s = 7.

Proof. By induction on the derivation of ¥ | = V = M’(s) : A. We perform case analysis on the rule applied
last to derive X | O = V = M'(s) : A, which is either (Bs_CrcID), (Bs_CRrc), (BS_CRCMORE) or (Bs_CRcIDL).

Case (Bs_CrcID): We are given s = |idalg. By the definition of the translation, |idalg is a ground coercion,
that is, intermediate coercion, so we have the conclusion.

Case (Bs_CRro): Since Vi(c) is a value, we are given
V ="Vi{ve), s=luclp, Z|0FVixaM :B, Y|0tcc:B~A (IB,ve, V1) .
Moreover, by Lemma 43,
s=wvs=lvclg, X|0Fg vs:X(B)~ X(4) (Jos) .
Since vs is an intermediate coercion, we finish the case.
Case (BS_.CRCMORE): We are given

V="V, s=s3]|clp, T|0FVix=M{(s):B, L|0rcc:B~A (3IB,c,s,Vq).

By the TH, there exists some 7’ such that s’ = i’. Furthermore, Lemma 22 implies > | ) Fg M'(i’) : 3(B).
Because this judgment is derived by (T_CRcC_S), we have ¥ | § kg i’ : C ~ X(B) (3C). Moreover, by
Lemma 3, X | 0 kg |c|p : £(B) ~ X(A). By case analysis on c.

Case ¢ = G! (3G): Since X |0 k¢ ¢: B~ A, G is not a type variable and |G|y = |idg|g ; G!. Therefore,

s=143|Gp
=i'3(lidglp; G")
— (i'3]idgly) ; G -
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Case ¢ = o~ (Ja): Similar to the case of ¢ = GL.

Case c=c — d' (3¢, d"): Because X | 0 ¢ ¢’ — d' : B ~» A is derived by (CT_ARROW_C), there exist
some A’, B’ such that B = A" — B’. Because X | 0 Fg i/ : C ~ (X(4") — X(B’)) is derived by
(CT_ARROW_S), there exist some s”, " such that ' = s — t”. Therefore,

s=(s"—=t") sl = d|y
=(s" = t")3(Iclo = |d'lo)
= (Ic'lo§s") = (" 51d']p) -

Case ¢ =VX.c¢' (3X,¢'): Similarl to the case of ¢ = ¢’ — d’.

Otherwise: Contradictory with the assumption that V;(c) is a value.

Case (Bs_-CrcIDL): We are given
V=V, S|0rVixM{(s):B, S|0tcc :B~A (3B, V).
By the TH, there exists some i’ such that s = i’. We conclude the case by (Bs_CrRcIDL).
O

Lemma 1.51 (Coercion Reduction Preserves Bisimilarity (Single Coercion)). If ¥ | ) F V{c¢) = U(s) : A, then
either of the following holds:

(1) there exists some Vj such that X > V(c) —¢ X Viand X |0 Vi = U(s) : A; or

(2) there exists some p such that ¥ > V(c) —¢& X > blamep and s = L7,
Proof. By induction on c. We perform case analysis on the last rule to derive X | 0 F V{c) ~ U(s) : A.
Case (Bs_Crc): We are given

s=lclp, X|0FHV=U:B, X|0tcc:B~A (3IB).
By case analysis on c.

Case ¢ =idy (34"): By (RID_C), X V(ida/) —¢ Z > V. Because ¥ | ) k¢ idar : B ~ A is derived by
(Ct_In_C), we have A’ = B = A. Therefore, it suffices to show that

SI0F Ve Ulidalg): A,

which is given by (Bs_CRrcID).

Case c=G! (3G),c=a” (Fa),c=c = d' (3, d"),c =VX.c' (3X,): Because V{c) is a value, we have
the conclusion by letting Vi = V{(c).

Case ¢ = G?? (Ip, G): Lemma 22 implies ¥ | § F¢ V(G??) : A. By inversion of the derivation of this
judgment, we have A = G and 3 | @ k¢ V : x. Therefore, Lemma [E implies that there exist some H, V;
such that V' = Vi (H!). Now, we have ¥ | 0 - V1(H!) = U : B. However, there is contradiction because
there are no rules to derive X | 0+ Vi(H!) =~ U : B.

Case ¢ = at (Ja): We are given |at|y = id. Lemma 22 implies 3 | ) ¢ V{a™) : A. By inversion of the
derivation of this judgment, we have A = A (3A), B=a and ¥ | ) k¢ V : a. Therefore, Lemma E2

implies that there exist some V; such that V = Vi{(a~). Furthermore, since X |0+ Vi{a™) = U : ais
derived by (Bs_CrcIDL), we have

TI0FVimU:B, 2|0tca :B~a (3B).

Since ¥ |  F¢ a= : B ~ « is derived by (CT_-CONCEAL_C), we have B = A. Furthermore, by
(R-REMOVE_C),

Vie) = Vi{a7)(a™)
*)*C V1 .

Therefore, it suffices to show that X | ) = V3 ~ U{(id) : A, which is given by (Bs_CrcIb).
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Case ¢ = ¢1; ¢2 (e, c2): We are given |cg ; calp = |eilp ¢ | calp. By (R-SPLIT_C), > V{cy; c2) —¢ U
V{er){co). Because X | b ¢1; ¢a: B~ A is derived by (CT_-SEQ-C), we have

S|0kc e1:B~B, Y|0tcca:B ~A (3B).

Therefore, by Lemma [3, we have X | § Fg |c1]g : X(B) ~ X(B’) and X | 0 g |calg : B(B') ~ X(A).
Furthermore, by applying (Bs_Crc) and (BS_CRCMORE) to X |0+ V ~ U : B,

S0F Ve (ea) = Ullerlo§lealo) : A -

Case ¢ = 15, 5 (3p, A", B’): By (R.FAIL.C), > V(L% 5) —c T > blamep. Therefore, it suffices to
show that s = 1P, which is given by

s =L plo
=17
Case (Bs_CRCMORE): We are given
s=383]lclp, T|0FV=U($)Y:B, Z|0Fcc:B~A (3B,5).

Therefore, Lemma 22 implies ¥ | ) Fg U(s’) : ¥(B). Because this judgment is derived by (T_CRC_S), we
have ¥ | ) Fg s’ : C ~ 3(B) (3C). By case analysis on c.

Case ¢ =idy (3A’): By (RID_C), X V(ida) —¢c > V. Because X | ) F¢ idas : B ~» A is derived by
(CT_ID_C), we have A’ = B = A. Therefore, it suffices to show that

E‘@" V= U<S/3 idA|@>:A.

Now, we have X | 0 kg s’ : C ~» X(A), so by Lemma [T, s’
that

idalp = s’. Therefore, it suffices to show

S0 VaUGS):A,

which holds already.

Case ¢ = G! (3G),c=a (Ba),c=c — d' (3,d"),c =VX.c' (3X, ¢'): Because V{c) is a value, we have
the conclusion by letting V3 = V{c).

Case ¢ = G?? (Ip, G): Lemma [22 implies X | § k¢ V{(G??) : A. By inversion of the derivation of this
judgment, we have A = G and 3 | @ ¢ V : *. Therefore, Lemma [EZ implies that there exist some H, V;
such that V = Vi (H!). Now, we have ¥ | @ - Vi (H!) ~ U(s') : B. We perform case analysis on the last
rule to derive X |0 - Vi (H!) = U(s') : B.

Case (Bs_CRrc): We are given

s =|H|y, L|0+-Vi~U:B, $|0+c H:B ~B (3B).

Because X | ¢ H!: B’ ~ B is derived by (CT_INJ_C), we have B’ = H and B = x. Furthermore,

by Lemma 3, ¥ | 0 g |H!lp : 2(H) ~ X(x) and X | 0 Fg |G?P|y : (%) ~ X(G). By case analysis

on whether H = G or not.

Case H = G: By (R_CoLLAPSE_C), ¥ > V1(G)(G?") — ¢ ¥ > Vi. Therefore, it suffices to show
that

o

S0 Vi UG 3|G?)): G .

Lemma [Z3 implies - ¥ and X + ) and ¥ | @ = G. Therefore, by (CT_ID_C), ¥ | @ ¢ idg :
G ~ G. Hence, by Lemma [3, ¥ | § Fg |idglg : 2(G) ~ X(G). Furthermore, by Lemma [T,
|idg|@ 9 ‘idgm = |idg‘@. By Lemma [T, |idg|@ H |idg|@ = |idg|@. Since % ‘ 0 Fo G :x~ G, G is
not a type variable. Thus, |G!|p = |idg|g; G! and |G?P|yp = G?P ; |idg|g. Therefore,
|Gl 51G?%o = (lidelo; G 5 (G775 [idalp)
= lidclg s lidalo

= lidgly -
Hence, it suffices to show that X | 0 + Vi ~ U(|idg|y) : G, which is given by (Bs_CrcID).
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Case H # G: By (R_.ConrLICT_C), ¥ > Vi (H!)(G??) — ¢ X > blame p. Therefore, it suffices to show
that s = LP. Therefore,

s=|H!

03|G?Pg .

Since X |0 F¢ G?? :x~ Gand X |0 F¢ H!: H ~» %, G and H are not type variables. Thus,
|H!|@ = |idH|@ N H! and |G?p|@ = G7? 5 ‘idg|@. Hence,

|H!

Gy = (liduly; H!) 3 (G ; lidclp)
=17,

035

Case (Bs_CRCMORE): We are given

/ "
s =83

Hlp, S|0FVixU({s"):B, S|0Fc H':B ~B (3B',s").

Because ¥ | ) k¢ H!: B’ ~» B is derived by (CT_INJ_C), we have B’ = H. Therefore, Lemma 22
implies ¥ | § kg U{s”) : ¥(H). Because this judgment is derived by (T_CRC_S), we have X |
0 Fs s”: C ~ X(H) (3C). Furthermore, by Lemma 3, X | @ kg |H!|p : X(H) ~ X(B) and
Y0 kg |G?P)g: B(B) ~ X(G). Therefore, by Lemma 2

(S”;

By case analysis on whether H = G.

Case H = G: By (R_CoLLAPSE_C), ¥ > V1(G)(G?") — ¢ ¥ > Vi. Therefore, it suffices to show
that

H!g)5|G?|g = s"5(

Hllp3[G?]) -

S0 Vi~ U(s" 3]G

)3

Lemma [Z3 implies - ¥ and X + ) and ¥ | @ = G. Therefore, by (CT_InD_C), ¥ | @ ¢ idg :
G ~ G. Hence, by Lemma [3, ¥ | 0 Fg |idglp : 2(G) ~ X(G). Furthermore, by Lemma [T,

lidglp ¢ lidglo = |idgle and s” §lidg|g = s”. Therefore,

(S/l;

We perform a case analysis on whether G = X (3X) or not.
Case G = X (3X):

G?)): G .

Gllg) 5 |G?]g = s"5(

Gllos|G?lg)

s"5 (|1 X!

05]1X7p) = s"5(id5id)

Case G # X (3X): By Lemma [T, |idg|g 5 lidglg = |lidg|p and s” ¢ |idg|p = s”. Therefore,

5" (1GYg 5 1G?P]g) = s" 5 ((lidelo s GY) 5 (G775 lidglp))
= 5" 5 (lidalp s lidalp)
= 8//3 idg|@
— 8// .

Hence, it suffices to show that X | 0 F Vi ~ U(s”) : G, which holds already.

Case H # G: By (R_.ConNFLICT_C), ¥ > Vi {H!)(G??) —c X > blame p. Therefore, it suffices to show
that s = L?. Lemma 50 implies that there exists some 7 such that s” = i. Therefore,

"

s=(s"5[H!g) 3 |G|y
=s"5([H!g51G?" )

9
— i3 (H!lp31G?]o)

05
05
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Assume that there exists a type variable X such that G = X. Thus, |X?P|p = id. Hence, X | 0 kg
id : ¥(B) ~ X(X). However, it is contradictory because it cannot be derived any rules. Therefore,
G is not a type variable. Also, H is not a type variable. Hence,

G?p) = i3 ((lidule; H!) 5 (G?7; idgly))
=451P

=17.

i3 (|H!

05

Case (Bs_CrcIp) and (Bs_CrcIDL): Contradictory because H! is not a no-op coercion.
Case ¢ = at (Ja): Since ¥ |0 F¢ at : B ~ A is derived by (CT_-REVEAL_C), we have

B=a, A=A a=Ac¥ (34).
Lemma 22 implies ¥ | @ ¢ V{a™) : A. Since & |0 ko V{a™) : A is derived by (T_Crc_C), we have
S|0kFe V:ia.

Therefore, Lemma [EZ implies that there exist some V; such that V = Vi{a™). By (R_REMOVE_C),

Vie) = Vila7)(a")
—)E« V1 .
Moreover, since
s=s"3|cly
=s"3]aty
=s'gid

/
237

it suffices to show that ¥ |0 F Vi =~ U(s’) : A. Now, we have ¥ | 0 F Vi(a™) = U(s’) : a. We perform
case analysis on the last rule to derive ¥ | @ F Vi{a™) =~ U(s’) : a, which is either of (Bs_-CrcID),
(Bs_CrcIDL), (Bs_Crc), or (Bs_.CRCMORE).

Case (Bs_CrclIp): We are given
s =lidalg, Z|0FVi{a )= U:a, Y|0Fcidy:a~a.
Since X |0+ Vi{a™) = U : a is derived by (Bs_CRcIDL) and (CT_CONCEAL_C), we have
S0 VimU:A 2|0kca :Awa.

Therefore, it suffices to show that X |0 F Vi = U{|ida|g) : A, which is given by (Bs_CRrcID).

Case (Bs_-CrcIDL): We are given
S0 VirU$):C, B|0bkca :Cwa.

Since X | @ k¢ a™ : C ~ « is derived by (CT_CONCEAL_C), we have C = A.

Case (Bs_Crc): We are given
s=la|p=id, Z|0-Vi~U:B, Y|0Ftca :B ~a (IB).
Because X | @ F¢ a” @ B’ ~» « is derived by (CT_CONCEAL_C), we have B’ = A. Here, we have
s=s=id
= |idalp -

It suffices to show that X

|0 F Vi~ Ulidalg) : A. By Lemma 23, - X and ¥ - () and X | 0 - A.
Therefore, by (CT_ID_C), ¥ | 0

Fe ida 0 A ~~ A. Hence, by (BS_CRCID), we finish the case.
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Case (BS_CRCMORE): We are given

/ 1
s =83

a’lp, Z|0FVi=U(E") B, B|0tca :B ~a (IB,s").
Because ¥ | ) F¢ o™ : B’ ~» a is derived by (CT_CONCEAL_C), we have B’ = A. Furthermore,

/
s=s =3s"3

a g
=s"3id

"
=S .

Therefore, it suffices to show that X | 0 F Vi ~ U{s”) : A, which already holds.

Case ¢ = ¢1; ¢2 (e, ca): Weare given |er;ealp = |crse2lg = |e1lpd]e2]p. By (R-SPLIT_C), ¥ > V{cy;e2) —¢
Y V{cr){ca). Because X |0 k¢ ¢1; ¢ : B~ A is derived by (CT_SEQ_C), we have

S|0rkc e1:B~B, Y|0tcca:B ~A (3B).

Therefore, by Lemma [3, we have X | § Fg |ei]g : X(B) ~ X(B’) and X | 0 Fg |ealp : Z(B') ~ L(4).
Therefore, by Lemma [,

(s"$lealo) s lealo = 5”5 (Jenlo 5 [e2lo) -
Furthermore, by applying (Bs_CRCMORE) to ¥ |0+ V ~ U{s') : B,
S0k Vie) = U(s"s|erlp) : B .

Then, we can apply the TH. We perform case analysis on the result.

Case (1): We are given
Yo Vi) —e X Vi, Z|0FVix U s|elg): B (3Vh) .
By applying (R-CTx_C) repeatedly, X > V{c1)(c2) —& X > Vi{cz). Furthermore, by (BS_CRCMORE),
S0 Viea) = U((s"5 lealo) 3l e2lo) - A -

Therefore, we can apply the ITH. By case analysis on the result.
Case (1): We are given

Yo V1<CQ> —%‘ Yo VQ, E|@|‘ VQ%U<(313|01|@);|62|@>2A (E'VQ)
Therefore,
Y V<61 ) CQ> —C Y V<Cl><02> *)2« Y V1<CQ> —)Ev Y VQ .

Furthermore, because X | 0 Vo &= U{((s"§|c1lp) ¢ |e2lg) : A and (8" ¢ |cilp) 3 |calp = s 5 (Jeilp § | cala),
we have

D10 Vam Uls'5(lealoslealo)) : A
Case (2): We are given

Y V1<CQ> —)Zv Ebblamepg, (S/$|Cl|@);|02|@ = 1P (Eipg) .

Therefore,
Yo Vi) —o Lo Vie)(c) —& X Vi{c) —5 X > blameps .
Furthermore,
s=3s"3(lcilp§]e2lo)
= (s"3le1lo) 3 |e2lo
— 1P
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Case (2): We are given
Y Vie) —¢& Yo blamepr, s’ g|alg =17 (3p) -
Therefore, by (R-CTX_C) and (R-BLAME),

Yo Vi) —o > Vi) (c) —& X (blamepy)(ca) —¢& X > blamep; .

Furthermore,
s=15"5(lcilo§]c2lo)
= (s"3e1lp) 3 | ealo
= 1" g ]ealp
Sy

Case ¢ = 1%, 5 (3p, A, B’): By (R.FAIL_C), ¥ > V(L%, 5) —c X > blamep. Therefore, it suffices to
show that s = 1”. By Lemma [5G0, there exists some 4 such that s’ = . Therefore,

§ = 8/ g |J‘p’~»->B’|
=s'g1P
=i lP
=17.
Case (Bs_CrcID): We are given
SZ‘idA‘(/L E|(Z)|—V<C>%U:A.
By inversion of the derivation of X | 0 F V{c) = U : A, we have
c=c, X|0-Vx=U:B, 2|0Fc:B~A (3,B).
By Lemma [58, there exists a value Vs such that ¥ V{c!) —% S Voand T |0F Vo~ Ut A.
Case (Bs_CrcIDL): We are given
c=c, 2|0FVxU{s):B, Z|0Fcc:B~A (3,B).

By Lemma [0, there exists a value Vs such that £ V{c!) —% S Voand T [0+ Vo~ U(s) : A.

Lemma 1.52 (Coercion Reduction Preserves Bisimilarity). Let n > 0. If X | 0 - V{er)---(cn) = U(s) : A,
then either of the following holds:

(1) there exists some V; such that X > V{ey) -+ (¢,) —& I> Viand X |[0F Vi~ U(s) : A.
(2) there exists some p such that X > V{cy) - (c,) —& L >blamep and s = L7,

Proof. By induction on n.

Case n = 1: By Lemma [

Case n =k + 1(k > 1): We perform case analysis on the last rule to derive 3 | 0 = V{c1) -+ - {cx) (cky1) =~ U(s) :
A.

Case (Bs_CRrc): We are given

s=|cey1lp, Z[O0F Via) ()= U:B, E|DFc cgpr1:B~A (3B).
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By Lemma [0, we have
LIV rU:A4, c¢i=c, A,=B,
S0 bFe Ay~ A (3Vi,Ag,..., Ag,clcl) .
Therefore, by Lemma [,
Yo Vi) =52V, T|0FVIicU:A (3W).

By (Bs_.CrcIDL), ¥ | @ + Vi{cl) ~ U : Ay. Similarly, by applying Lemma and (Bs_CrcIDpL)
repeatedly, there exists V} such that

Yo Vi) () —e 2o Vi, T|0FVixU:Ag.
By (Bs_Crc),
b)) | @ F Vk<Ck+1> ~ U<|Ck+1|@> AL

Therefore, by Lemma BT, it suffices to consider the following two cases.

Case (1) in Lemma [51: We are given
> Vk<Ck+1> —>*C > VQ, E|®|‘ VQ% U<‘Ck+1|@>ZA (E'VQ) .
Therefore,

X V{er) - (er){cks1) —¢ 2> Vi(ertr)

—oX> Vs

Hence, it suffices to show that ¥ | O F Vo &~ U(|ck41]p) : A, which holds already.
Case (2) in Lemma [51: We are given

Yo Vilegt1) —& Zeblamep,  |ept1lp = L7 (3p) .

Hence,
Y V<Cl> cee (ck><ck+1> —)Ew Y Vk<ck+1>
—¢ X > blamep .
Furthermore,
s = |crt1lp
=17,

Case (Bs_CRCMORE): We are given
s=58"g|cks1lg, Z|OF Vi) (k)= U(s"Y: B, L|0t¢c cgt1:B~A (IB,s').

Therefore, we can apply the IH, and perform case analysis on the result.

Case (1): We are given
Lo Vie) ey —& X Vy, Z|0F ViU B (3Vh).
Therefore, by applying (R_CTx_C) repeatedly, we have
o Vie) - (ep){ers1) —& 2 Vi(egyr) -
By (BS_-CRCMORE),
S0 Vifersr) = U(s" 5 [erralo) 1 A

Therefore, by Lemma [21], it suffices to consider the following two cases.
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Case (1) in Lemma [B1: We are given
Y V1<C]€+1> —>2« YoV, X | 0F Vo =~ U<S/ H ‘Ck+1|@> A (HVQ) .
Therefore,

Yo Vier) - (er){crs1) —¢ > Vifers)

—o X Vs

Hence, it suffices to show that X | 0 & Vo &~ U(s’$|cky1]p) : A, which holds already.
Case (2) in Lemma [B1: We are given

Yo Vilegr1) —& Yo blamep, s ¢ lckyilo = L7 (3p) .
Hence,

X Ve - (er){crs1) —¢ X Vifers)

—& Y blamep .
Furthermore,

s =s"3[ckalo
=17.

Case (2): We are given
Lo Vie) (k) —¢& Yo blamep, s =17 (3p).
Therefore, by (R-CTX_C) and (R-BLAME_C),

Yo Vi) - (ex){ckt1) — 5 L > (blame p){crt1)
—¢c X > blamep .

Furthermore,

s=5"|crs1lo
=175 |ckr1lp
=17 .

Case (Bs_CrclIp): We are given
s=lidalg, X0 V{cr) - (ecx)mU:A, Z|0tc cpy1:B~A.
By inversion of the derivation of 3 | @+ V{c1) -+ (cx) = U : A, we have for all 0 <14 < k
ci=cl, L|0FVaU:A, S|0Fcci:Aj~ Ay, A=A (Gcl ek Ao Agy) .

By applying Lemma repeatedly, there exists a value Vi such that X > V(cl)---(c]) —& N> Vo

and X |0 F Vo U: A.
Case (Bs_CRcIDL): We are given

b1 =Crirs S|OF V() (k)= U(s):B, S|0btcci:B~A.

Therefore, we can apply the IH, and perform case analysis on the result.
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Case (1): We are given
Yo Vie) - ck) —e XV, Z|0-Vi=U(s): B (3V).
Therefore, by applying (R-CTX_C) repeatedly, we have
S Ve - (ecipr) —& Do Vilciga) -
By (Bs_CrcIDL),
S0F Vifcipa) = Ufs): A

Therefore, by Lemma R, it suffices to consider the following two cases.

Case (1) in Lemma [51: We are given
Lo Vilepy) —e Zo Vo, |0 Vom U(s): A (V).
Therefore,

Ze Ve - (er)cipr) — 2> Vilep)
_>*C > Vs

Hence, it suffices to show that ¥ | 0 Vo & U(s) : A, which holds already.
Case (2) in Lemma [B1: We are given
Yo Vilep,,) —& Soblamep, s= 17 (3p).

Hence,

So Ve {e)(eia) —6 E> Vilcppn)
—& Y blamep .

Furthermore, we already have s = L?.
Case (2): We are given
Y> Vie) - {ck) —¢ Eoblamep, s=17 (3p).
Therefore, by (R-CTXx_C) and (R_-BLAME_C),

S Vier) - (er)(crt1) —>¢ B> (blame p){cki1)
—¢c %> blamep .

Furthermore, we already have s = 1P.

O

Lemma 1.53 (Coercion Reduction Preserves Bisimilarity (for Function Coercions)). Let n > 0. If 77 is not a
coercion application, and X | O F Vi(er = di) - {cn = dn) = U{(s) : A’ - B and X | O F Vo = Uj(s’) : 4,
then either of the following holds:

(1) there exists some Ms, Ay, and Ay such that > (Vi{er — di) -+ (¢ = dp)) Vo —& B (Vi M3)(dy) -~ (dn)
and X |0 F Mz ~ Uj(s"3|cnlps---¢leilg) : A1 and X |0 o 1 : Ay ~ Ag; or

(2) there exists some p such that X > (Vi{cy — di)---{(cp, = dpn)) Vo —% T > blamep and s' ¢ cplp -3
leifp = L7,

Proof. By induction on n.

Case n=1: By (R-WRAP_.C), ¥ > (Vi(c1 — dv)) Vo —¢c X > (V1 (Va(e1)))(d1). Therefore, it suffices
to show that ¥ | @ = Valer) ~ Ui(s’ ¢ |cilp) : A. We perform case analysis on the last rule to derive
S10F Vi — dy) = Uj(s): A — B’.
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Case (Bs_CRrc): We are given
s=let = dilp, Z|O0FVimU :C Z|0Fce—d:C ~ (A= B) (3C).
Because X |0 F¢ ¢ — dp : C' ~ (A’ — B’) is derived by (CT_ARROW_C), we have
C'=A—=B, S|0Fcec:A~A S|0Fcd:B~B (3A,B).

Therefore, by (BsS_.CRCMORE), X | 0 = Va(e1) ~ Uj(s’' ¢
Case (BS_CRCMORE): We are given

C1 |@> : A

SZSO;‘Cl%dﬂ@, 2|@F Vlel/<50>SC/ E|®FC Clﬁdllclw(A/*)B/) (30/,80).
Because X |0 F¢ ¢ — di : C' ~ (A’ — B’) is derived by (CT_ARROW_C), we have
C'=A—=B, S|0Fce:AwA X|0Fcd:B~B (3A,B).

Therefore, by (BS_.CRCMORE), ¥ | 0 - Va(c1) = Us(s’ g
Case (Bs_CrcID): We are given

C1 |@> DA

s=lidasplp, S|0F Vilen —»d)~Ul: A = B,
b)) | 0 Fc idA/_>B/ : (A/ — B/) > (A/ — B/) .

Because X |0 = Vi{c; — di) =~ U] : A’ — B’ is derived by (Bs_CRrRcIDL), we have
a=c, ;di=d, S|0FVi=U:C, Y|0Fcel—d:C~ (A —=DB) (3Cd,d).
Because X |0 ¢ of — df: €'~ (A" — B') is derived by (CT_ARROW_C), we have
C'=A—B, Y|0Fccl:A A X|0Fcd:B~ B (34,B).

Therefore, by (Bs_CRCMORE), ¥ | () = Vo(cl) ~ Us(s"3
Case (Bs_CrcIDL): Similarly to the case (Bs_CRcID).

C{|@> : A

Case n =k + 1(k > 1): We perform case analysis on the last rule to derive ¥ | O = Vi{c; — di)---(cx —
dk> <Ck+1 — dk+1> ~ U1/<S> A — B,

Case (Bs_CRc): We are given

S = |Ck+1 — dk+1|@7 by | 0+ V1<Cl — d1> <Ck — dk> ~ Ull - C’
El@ "c Ck—&-l‘)dk—&-l: C/W(A/—)B/) (30/) .

Because X | 0 Fo cpy1 — diy1: €'~ (A" — B’) is derived by (CT_ARROW_C), we have
C'=A" 5 B", S|0kc cppr: A~ A", S0 ke dyr: B~ B (34", B") .

Therefore, by (BS_CRCMORE), ¥ | @ F Va(cgr1) =~ Us(s"$ |ck+1lp) : A”. Hence, by Lemma R0, we
consider the following two cases.

Case (1) in Lemma [R1: We are given
Y V2<Ck+1> —>*C x> V3, by | (Z) F V3 ~ U2/<8/$ |Ck+1‘@> s A (3V3) .

By the IH, we consider the following two cases.
Case (1): We are given
Y (V1<Cl — d1> s <Ck — dk>) V3 —>*C Y (Vl M4)<d1> s <dk>,
S |0F My~ Up((s”3lcrsalo) $lerlo s -3 lealo) - A (3My) .
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By (R-WRrAP_C) and (R_CTx_C),

Yo (Viler — dy) - (e — dp)(crsr — dp1)) Vo —c o (Viler = di) -+ {cx — di,)) (Valers1)))(dpr1)
— Yo (Viler = di) -~ (ex = di)) V) (dry1)
5 N> (Ve My)(dy) -+ (di){dys1) -

Therefore, it suffices to show that 3 | @ & My =~ UJ(s’ §|ckr1lp $|cklp -5 |cilg) : A, which holds
already.

Case (2): We are given
ZD(V1<01—>d1>-~-<C]€—>dk>) V3 —>*C Y. > blamep, (s’;\ck+1|@);|ck|@3--~;\c1|@:Lp (ﬂp).
By (R-WRrAP_C), (R_CTX_C), and (R_-BLAME_C),

Y > (V1<Cl — d1> s <Ck — dk><ck+1 — dk+1>) VQ —>C Y > ((V1<61 — d1> s <Ck — dk>) (V2<Ck+1>))<dk+1>
—o B ((Vi{er = di) -+ (cr = di)) V) (drt1)
—% T > (blame p){di+1)
—¢c %> blamep .

Therefore, it suffices to show that " §|cp+1]g 3 |cklo $ - §|cilp = LP, which holds already.
Case (2) in Lemma [R1: We are given

Yo Volepy1) —6 Y >blamep, s ¢leprilo=LP (3p) .
By (R-WRrAP_C), (R_CTX_C), and (R-BLAME_C),

Eo (Vi{a = di) - (k. = di)(cr1 = diy1)) Vo —r0 B> ((Viler = di) - (e = di)) (Va{cr41)))(dit1)
—ro X ((Vi{er = d) -+ {ex — di)) (blame p))(di+1)
—¢ X > (blame p)(di11)
—¢c X > blamep .

Furthermore, since

certloslerlos s leilo = L7 s erlos -5 leilo
— 1P

/
53

we finish the case.

Case (BS_.CRCMORE): We are given

s =508 |cky1 = dryilo, X0 Vi{er = di) - (cx = di) = Ui (s0) : C'
by | 0 Fo Ck+1 — dk+1 : O~ (A/ — B/) (HC/,SO) .

Because X | @ o cpy1 — dgy1: C' ~ (A" — B’) is derived by (CT_ARROW_C), we have
C'=A" 5 B", S|0Fc cpir: A~ A", £|0 ¢ dpsy: B" ~ B (3A",B") .

Therefore, by (BS_CRCMORE), ¥ | @ F Va(cg+1) =~ Us(s" $ |ck+1lp) : A”. Hence, by Lemma K1, we
consider the following two cases.

Case (1) in Lemma [51: We are given
Y V2<Ck+1> —>*C > Vg, b | (Z) H V3 ~ U2,<S/§ |Ck+1‘@> : AH (E' Vg) .

By the IH, we consider the following two cases.
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Case (1): We are given

X (V1<01 — d1> s <C}€ — dk>) Vs —>*C X (Vl M4)<d1> s <dk>,
S0F My~ Uy((s" 5 [erralo) s lerlos---5leilo) s A (3My)
By (R-WRrAP_C) and (R-CTx_C),
Lo (Via = di) - (ex = di) (1 = dig1)) Vo —c Zo (Vila = di) - (ex = di)) (Va{crt1)))(div1)

—o Xe (Vier = d) -+ (ex = di)) Va)(dr1)
—o B> (Vi My)(dy) - (di)(dps1) -

Therefore, it suffices to show that 3 | @ & My =~ Uj(s’ §|ckv1lp ¢ |cklp s - ¢ |cilg) : A, which holds
already.
Case (2): We are given

Lo (Vi{er = di) -+ (ep — di)) Vs —5 S >blamep,  (s"$|cks1lo) $leelo s 3|alg = L7 (3p) .
By (R-WRAP_C), (R-CTXx_C), and (R-BLAME_C),

Y (V1<Cl — d1> s <Ck — dk>(ck_,_1 — dk+1>) V2 —>C Y ((V1<01 — d1> s <Ck — dk>) (V2<Ck+1>))<dk+1>
—ro o (Via = di) - (s = di)) V) {dt1)
—& X (blame p) (dg41)
—¢c X > blamep .

Therefore, it suffices to show that s" ¢ |ckr1lg§|cklp o+ §|c1lp = LP, which holds already.
Case (2) in Lemma [51: We are given

Y V2<6k+1> —>*C’ Y blamep, s’ H ‘Ck+1|@ =17 (Ep) .
By (R-WRrAP_C), (R_CTX_C), and (R-BLAME_C),

Yo (Viler = di) -+ {cp = di){cpr1 = dit1)) Va —c 2o (Vi{er = di) -+ {cp — di)) (Va{cgs1))){dit1)
—ro X ((Vi{er = d) -+ {cx — di)) (blame p))(di+1)
—¢ X > (blame p)(di11)
—¢c %> blamep .

Furthermore, since

ceriloslerlos - sleilo = L7 s erlos -5 leilo

’
53

we finish the case.

Case (Bs_CrcID): We are given
s=lidasplg, Z|0F Viler — di)-+(chy1 — dpp1) = U : A" — B .
Because X |0+ Vi{er — dy) -+ {cpr1 — dp1) =~ Uj : A" — B’ is derived by (Bs_CRcIDL), we have
c=cl, di=d, S|0tcc:Aj,~A, X|0Fcd:B ~ B,

tie=A". Bl,=DB (3c,d, A} B) (1<Vi<k+l).

7

Therefore, by (Bs_.CRCMORE), ¥ | 0 - Va(ef, ) = Us(s's
(Bs_CRCMORE).

¢ii1lo) © Ajyq. Hence, similarly to the case
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Case (Bs_CrcIDL): We are given
i1 = Chpts dopt =digy, S0 Vile = di) - (e = dy) = Ui(s) : C'
20 ke Ci-s-l —dj 0~ (A= B) (30i+1,d£+1, ).
Because ¥ |0 F¢ ¢f,; = df,, : C' ~ (A’ — B’) is derived by (CT_ARROW_C), we have
C'=A-B, S|0tcci A ~A 2|0tcd,:B~B (34,B).

Hence, by the TH, we consider the cases similarly to the case (BS_CRCMORE).

Lemma 1.54 (Inversion of Bisimilar Identity Coercion Applications). If ¥ | 0 + V{vey) - -+ (ve,) = U(id) : A
and V is not a coercion application, then X | ) = V{vey)---(ve,) = U : A.

Proof. By induction on the derivation of ¥ | ) = V{vey) - - (vey,) = U(id) : A.

Case n =0: Since V and U are not coercion aplications, ¥ | @ = V = U(id) : A is derived by (Bs_CRrcID).
Therefore, we have

lidalg=id, S|0FV~U:B, S|0rcids:B~A (3B).
Hence, it suffices to show that B = A. Since ¥ | @ F¢ ida : B ~ A is derived by (CT_ID_C), we have B = A.

Case n > 0: We perform case analysis on the last rule to derive X | 0 - V{(vey) -+ - (ve,) = U(id) : A, which is
either (Bs_CrcID), (Bs_CrcIDL), (Bs_-CRc), or (BS_CRCMORE).

Case (Bs_CrcID): We are given
S10F Vi{vey) - (vep) = U:B, X|0Fcidga:B~A.

It suffices to show that B = A. Since X | @) ¢ id4 : B ~ A is derived by (CT_ID_C), we have B = A.

Case (Bs_CrcIDL): We are given vc, ia a no-op coercion and
ve, =vek B0 V{ve) - (vep_1) = Ud): B, 2|0 Fc vl :B~A (v, B).
Therefore, by the TH, we have ¥ | @ = V(vcy) -+ (vep—1) = U : B. Hence, by (BS_CRCIDL), we have

S| 0F Vivey) - (vep_1) (vel) = U : A.
Case (Bs_CRc): We are given

lveplp =id, X |0F V{ver) - (ven—1) = U:B, X|0Fcve,:B~A (3IB).

We perform case analysis on vc,,.
Case vc, = G! (3G): Since X |0 F¢ G!: B ~ A, G! does not contain any free type variables. Therefore,
there is contradiction because |vey|g = |Gllp = |idg|p ; G! # id.
Case ve, = ¢ — d (Je, d): There is a contradiction because |vey|g = [¢ — d|g = |clp — |d|p # id.
Case ve, = VX.c (3X, ¢): There is a contradiction because |ve,|p = [VX.c|p = VX .|c|p # id.
Case ve, = 7 (36): By (Bs_CrcIDL), we have X |0 F V{vey) -+ (vep—1) (B7) = U : B.
Case (Bs_CRCMORE): We are given

sslueplpg=id, X |0F V{vey) - {vep—1) =~ U(s): B,
|0 ke ve,: B~ A (3B,s) .
By Lemma A0, there exists some intermediate coercion 4 such that s = 7. By Lemma 22, ¥ | § +

U(i) : X(B). Since 2 | Fg U{(i) : X(B) is derived by (T_CRC_S), we have 2 | kg i: C ~ X(B) (30).
We perform case analysis on vc,,.
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Case ve, = G! (3G): Since X | § F¢ G! : B ~ A, G! does not contain any free type variables. By
Lemma [T, 4§ |[idg|g = i. Therefore,

Gl

i5lvenlo =5

=i (lidglg; G!)
= (i3lidalg) ; G!
=1i;G!

There is contradiction because i ; G! # id.
Case vc, = ¢ — d (3¢, d): Since X | F¢ ¢ — d : B ~ A is derived by (CT_ARROW_C), we have

B:Bl—>BQ, A:A1—>A2, El‘@, Z|®|‘G

By the definition, X(B; — Bs) = X(B1) — X(B2). We perform case analysis on i.

Case i = g2 ; Ga! (3go, Ga), i = VX .83 (Is2): Contradictory because the return type of ¢ cannot be a
function type.

Case i = 81 — $2 (381, $2):

c—dlpg=(s1 — s2)5|c—d|y
= (s1 = s2) 5 (clo — |dlp)
= (lclo s s1) = (s231dlp) -

However, there is a contradiction because (|clg §s1) — (s25|d|g) # id.

55

Case 7 = id:

C—>d|@=id3‘c—>d‘@
:|C—>d|@

55

= [clog = ldlo -

However, there is a contradiction because |clg — |d|p # id.
Case ve, =VX.c (3X, ¢): Similary to the case ve, = ¢ — d.
Case ve, = 7 (38): We are given id = s¢ |87 |¢g = s5id and s§id = s by Lemma [@. By the IH, we have
Y|0F V{vey) - (vep—1) = U : B. Hence, by (BS_CRCIDL), we have X | @ = V{(vey) - -+ (vep—1) (B7) =

U: A
O
Lemma 1.55 (Inversion of Bisimilar Coercion Applications). If X | @ F V(G!) =~ U{(id; G!) : x and X(4’) =
Y(G),then X |0+ V = U:G.
Proof. By Lemma 38, there exist some V; that is not a coercion application, n > 0, ¢i,..., ¢, such that
V(G = Vi{e1)---{(cn) and ¢, = G!. Furthermore, because Vi{ci)---(c,) is a value, there exist some

vey, .. ., ve, such that, for any ¢ such that n >4 > 0, ¢; = ve;. Therefore,
S|0F Vi{ver) - (ven—1) (G)) = U(id; G1) : % .
By case analysis on n.
Case n =1: We have V = Vj. By case analysis on the last rule to derive X | 0 F V(G!) = U(id; G!) : *.

Case (Bs_CrclIp): Contradictory because there is no identity corcion id4 such that |idalg =id; GI.
Case (Bs_CrcIDL): Contradictory because G! is not a no-op coercion.
Case (Bs_Crc): We are given

|Gllp=id; G, |0 V=U:B, X|0tFc G':B~x (3IB).
Since X | @ F¢ G!': B ~» x is derived by (CT_INJ_C), B = G.
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Case (Bs_CRCMORE): There exist some A, s such that X |0 - V = U(s) : A. Because V is not a coercion
application, X | 0 F V = U(s) : A is derived by (Bs_CrcIp). Hence, X |0+ V = U : G.

Case n > 1: By case analysis on the last rule to derive ¥ | 0 = Vi(vcy) -+ (vep—1) (GY) = U(id ; G!) : *.

Case (Bs_CrclIp): Contradictory because there is no identity corcion id4 such that |idalg =id; GI.
Case (Bs_CrcIDL): Contradictory because G! is not a no-op coercion.
Case (Bs_CRc): We are given

id; G'=|Glg, Z|0F Viver) - (vep_1) = U: A, Z|0tkc G': A~x (34).

Because X | @ F¢ G!: A ~ % is derived by (CT_INJ_C), we have 4 = G.
Case (Bs_CRCMORE): We are given

id; G!'=s¢

Gllg, Z|0F Vi(ver) - (vep_1) = Uls): 4, Z|0kc Gl: A~ (JA4,5) .

By Lemma [0, there exists some 7 such that s = i. Because ¥ | § F¢ G!: A ~ x is derived by
(Ct_INJ_C), we have A = G. Therefore, by Lemma 23, we have ¥ | § g U(i) : 3(G). Because this
judgment is derived by (T_CRC_S), we have ¥ | § Fg i : B ~ X(G) (3B). Hence, by Lemma [T, we
have i ¢ |ida/|p = i. Therefore, we have

id; Gl=s¢|Glp
=13 G'|q)
=13 (lidgle; GY)
= (i3 lidgle) ; G!
=i;G!.

Therefore, s = ¢ = id. Hence, by ¥ | § - Vi{ver) -+ (vep—1) = U(id) : G and Lemma 39, for all
1 < i <n —1 there exists some A; such that

SO0 VimU: A, Y|0bFc ve: A~ Ay, Apn=0G.
Furthermore, there exists some j such that 0 < j <n —1 and
vei =¢; (L<Vi<j), id=lida,,loslveiilos---5lveals (Getsenohef)
Therefore, by Lemma 3, for all 1 <i<n-—1
vsi = |vcilg, 2|0 Fg s X(A;) ~ B(Air1) (Fvst,...,vsp—1) -
Hence, by Lemma 24, there exists some vs such that vs = vsj11§---§ vs,. Therefore,

id = |idAz+1|(Z) 9 |’UC]‘+1‘@ AR |UC7L|@
= |id141+1 |(0 3 (ijJrl ERRRE Z}Sn)
~ lida

= Vs .

i1 |(/) 5 Vs

Furthermore, V7 is not a cercion aplication, by Lemma [34, we have ¥ | O F Vi(vey) -+ (vep—1) = U = G.

O

Lemma 1.56 (No-op coercion Preserves Bisimularity for Values). If £ [0+ V ~ V' : Aand & | ) F¢o o -
A ~ B, then there exists a value V; such that ¥ > V{c!) —s X>Viand X |0 Vi~ V' B.

Proof. By induction on ¢!. By case analysis on ¢!.

Case ¢! =ids: We are given B = A. By > V(idy) —¢ X V, it suffices to show that X [0 - V ~ V' : A4,
which has been assumed.
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Case ¢! = at (Ja): We are given
A=a, B=B, X|0Flca":a~B (IB).

By Lemma 22, ¥ | @ ¢ V : a. By Lemma EZ, it must be the case that ¥ | § k¢ V : « is derived by
(T_Crc_C) and (CT_CONCEAL_C); we are given

V="Va"), Z|0Fa :Bwa, X|0F Vo:B, S|0FVela )=V :ia (3V).
We perform case analysis on V.

Case V' = U] (3U]): It must be the case that ¥ |} - Va(a™) = U] : v is derived by (Bs_CRcIDL); we are
given

S|0F Var U B

Since X > Vola™ Y aT) —¢ U Vo, it suffices to show that 3 | @ = Vo &~ U] : B, which has been shown.

Case V' = U{(s) (U], s): We perform case analysis on the rule applied last to derive ¥ | § F Va(a™) ~
U{(s) : a, which is either (Bs_CrcID), (Bs_CrcIDL), (Bs_CRrc), or (Bs_CRCMORE).

Case (Bs_CrcID): We are given
s=lidalg, Z|0F Vala )= U :a
Since ¥ | O F Va(a™) ~ U : « is derived by (Bs_-CrcCIDL), we are given

S|0F Vo Ul:B

Q

Therefore, since ¥ > Vo(a™){aT) —c ¥ > Vs, it suffices to show that ¥ | 0 F V5
is given by (Bs_CRrcID).
Case (Bs_CrcIDL): We are given

Ul(s) : B, which

S0 Vor Ulls): B

Q

Therefore, since ¥ > Vo(a™ ) (aT) —c X > Vs, it suffices to show that ¥ | 0 F V5
has been shown.

Case (Bs_CRrc): We are given

Ul(s) : B, which

s=la"lg, |0k Vom U :B
s = |a~|p = id. Therefore, since X > Vola™ Y aT) —c X > Vs, it suffices to show that X | 0+ Vy =~
U{(s) : B, which is given by (Bs_CrcID).
Case (Bs_.CRCMORE): We are given

s=sgla" g, T|0F Var U/(s): B (3Is).
By Lemma [T, s = s’ §|a~|p = s’. Therefore, since ¥ > Vo(a™){at) —¢ T > Vs, it suffices to show
that ¥ | O F Vo = U{(s’) : B, which has been shown.

Case ¢! =cl;ch (3ct, cl): We are given

Y0k :AwC, 2|0Fc:C~B (30).

We have ¥ > V{cl;cl) —¢ S V{cl){cl). Furthermore, by (T-Crc-C), & | F <cl) C. Hence, by
the TH, there exists a value Vs such that ¥ > V{cl) —¢c > Vo and B |0 F Vs : C. Therefore7
by Lemma 22, ¥ | § = V5 : C. By (T_Crc.C), ¥ | 0 F Va(cb) : B. Moreover, by the TH, there
exists a value V3 such that ¥ > Vo(cl) —¢c b Vzand X | 0 = V3 ~ V' : B. Therefore, we have
Yo Vielid) —e S Vaand 2|0 Vs~ V' B
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Case cl =a,cd =cl = b, and f =VX.cl: Since V{c!) is a value, it suffices to show that ¥ | ) - V{c!) ~
V'’ : B, which is given by (Bs_CRrcIDL).

O

Lemma 1.57 (Bisimulation and Composition (Value on the Left)). If 3 |0 F V{vey) -+ (vey,) = U'(s) : A, for
some n > 0, then there exist a nonnegative integer n, j and Vi, Aq, ... A, such that:

e X |0F Va U': Ay, whose derivation is a subderivation of ¥ | O F V{(vey) -« (ven) = U'(s) : Ap;

e X |0 tcwve i Aig~~A; (1<i<n);

*j<n
e the first j coercions vey, ..., vc; are no-op value ceorcions; and
o s=lida,lo5|veit1lo s 5 vealp.

Furthermore,

1. If A = B,, — C, for some B,,, C,, then there exists B; and C; for 7 € [0..n], and ¢; and d; for i € [1..n]
such that

AozBo—> Co, AizBi—> Ci, ’()CiZCi—>di,
er}_CiZBi‘V‘-)Bi,h Z|F}—dlCZ,1WCZ(1§Z§n)
2. If A=VX.B, for some X, B,, then there exists B; for i € [0..n] and ¢; for ¢ € [1..n] such that
Ag=VX.By, A;=VX.B;y, we;=VX.¢;;, Y|T,X Fo ¢i:Bi—1~B; (1<i<n).
Proof. By Lemma 34, we have
e X|0F V=~ U: A, whose derivation is a subderivation of ¥ | 0 = V(vey) - -+ (ven) = U'(s) : Ay;
e X |0 bFe ve i Ajg ~ A; (1<i<n)and A, = 4;

e j<n
e the first j coercions vc, ..., vc; are no-op value ceorcions; and
o s=lida,lo5lveit1lo 55 vealp.

Furthermore,

Case A= B,, —» C, (3B,, Cy): Since X | 0 F¢ wvey, @ Ap—1 ~ (B, — C,) is derived by (CT_ARROW_C), we
have

vep = ¢y = dp, Ap_1=DB,_1— Ch_1,
» | 1] Fo ¢p:Bp~ B,_1, X | 1] Fo dy: Cho1 ~ Cp, (ch, dy, Br—1, Cnfl) .

Similarly, since X | 0 ko wve; @ A1 ~ (B; — C;) is derived by (CT_ARrROW_C), we have
ve; = ¢ — di, Ay = By = C,
Y|Ote ¢;: By~ Bi—1, X|0Fe di:Ciy~C; (Fe,di, B, C;) (1<i<mn).
Case A =VX.B, (3B,): Since X | 0 F¢ vep @ Ap_y ~ VX.B,, is derived by (CT_ALL_C), we have
vep, =VX. e, Ap_1=VX.B,_1, X|0t¢c cy:Bp_1~ By, (3en,Bnoi) .
Similarly, since ¥ | @ F¢ we; : A;—1 ~ VX.B; is derived by (CT_ALL_C), we have

’UCiZVX.CZ', A1:VXB“ E|@ Fc C; ZBi_lei (E'Cl,Bl) (]. SZSH) .
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O

Lemma I.58 (Uncoerced Values are Bisimilar to Values (Value on the Left)). If ¥ |T'+ V = U : A, then there
exists V7 that is not a coercion application, a nonnegative integer n, A; for 0 € [0..n] and ve! for 0 € [1..n] such
that

V="Vi{wel)--(vel), A=A, S |TFVimU:4, X|TFcuocl:A4, 1~ A4, (1<i<n).
Furthermore,
1. If A = for some ¢, then we have
n=0, A=tyk).
2. If A= B, — C, for some B, C,, then there exists B; and C; for i € [0..n], and ¢! and d! for i € [1..n]
such that
Ay = By — Cp,
Ai=B; = C;, vel=c=dl, S|+ :B~B_1, S|TFd:C1~C(1<i<n).
3. If A=VX.B, for some X, B,, then there exists B; for i € [0..n] and ¢! for i € [1..n] such that
Ap = VX By,
A; =VX.B;, wel=VX.l, S|, X Fccl:Bi1~B (1<i<n).
Proof. By Lemma [0, there exists some term V; such that V7 is not a coercion application and
V="V, A,=A X|TkVi~U: A,
YT ko A1 ~A, (1<i<n) (3Ao,...,An,cl, ... ch).
Furthermore, V = Vi(cl)---(cl) is a value, there exists ve! such that ¢! = vel (i € [1..n]). Moreover,
Case A =1 =1ty(A) (3): By Lemma [0, we have
Ag=ty(k), S |THEk=kK:0.

If we suppose n > 0, then there is a contradiction because there is no rule to derive ¥ | T’ ¢ vel @ A, 1 ~ .
Hence, n = 0.

Case A = B, — C, (3B,, C,,): By Lemma [0, we have
Ao=DBy— Co, S|TFMy~M:Co (3Ms,Co) .
Since ¥ | T k¢ vel @ A,y ~ (B, — Cp) is derived by (CT_ARROW_C), we have
Apn_1=B,_1— Cp_1, vc{1 = ch — de,
S|T ke ch By~ Booy, E|T ke dh: Coy ~ Cp (3Byp_q, Cpa, el dl)

Similarly, since & | T ¢ vel : A;_1 ~ (B; — C;) is derived by (CT_ARROW_C) for i € [1..n], there exists
B; and C; for i € [0..n] and ¢! and d! for i € [1..n] such that

Aij=B; = Ci, vel=c=dl, ST+ :B~B_y, S|TFHA:C1~C (1<i<n).
Case A =VX.B,, (3X, B,): By Lemma [0, we have
Ao =VYX.By (3By).
Since X | T k¢ wvel : A, ~ VX .B, is derived by (CT_ALL_C), we have
Ap 1 =VX.B,1, wvel=VX.cl, S |I,Xt+toecl:B, 1~ B, (3B, 1,c.).

Similarly, since ¥ | ' k¢ wvel @ A;_; ~ VX.B; is derived by (CT_ALL_C) for i € [1..n], there exists B; for
i € [0..n] and ¢! for i € [1..n] such that

Ay =VX.B;, wvel=vX.l, S| X, Ttoe:Bi1~B (1<i<n).
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O
Lemma 1.59 (Bisimulation up to Reduction (Lemma B of the paper)). Suppose that ¥ |0+ M ~ M’ : A.

(1) If ¥ > M —¢ ¥y > M, then there exists some Yo, My, Mj such that ¥y > My —§ X9 > My and
YoM —% Yo Mjand Xy |0 F My ~ Mj : A.

(2) If ¥ > M —g X; > M{, then there exist some Xo, My, My such that ¥, > M{ —%§ ¥ > My and
YoM —% B> Myand 3o |0 F My = M - A.

(3) If M = V, then there exists some V' such that ¥ > M’ —% > Vand X |0F V&~ V' A
(4) If M" = V', then there exists some V such that X M —¢ X Vand X |[0F Vr V' A
(5) If M = blamep, then ¥ > M’ —% X > blamep.
(6) If M’ = blamep, then ¥ > M —¢ X > blamep.

Proof. We prove the cases (3), (5), (1), (4), (6), (2) in order.

(3) By induction on the derivation of X | ) - V &~ M’ : A. We perform case analysis on the rule applied last
toderive X |0 F V = M': A

Case (Bs_ConsT), (Bs_ABS), (Bs_TyaBs): Because M’ is a value, we have the conclusion by letting
Vi =M.
Case (Bs_CRrc): We are given
V="V, M =M{clp), Z|0FVimM :B, X|0rcc:B~A (3B,c, M, Vq).
Furthermore, since Vi(c) is a value, there exists a value coercion vc such that ¢ = vc. By the TH,
SeM —s SV, L|0-VixV:B (3V]).
We perform case analysis on whether V{ is coercion application or not.
Case V{ = U] (3Uy): By (Bs_Crc),
S0 Vi{ve) = U{Juc|g) : A .

By case analysis on wc.

Case vc = G! (3G): Since ¥ | § k¢ G!: B ~ A, G! does not contain any free type variables.
Therefore, we have |G!|yp = |idg|g ; G!. Since X > M{ —% > U and U{(lidg|p ; G!) is a value,
by Lemma T4, we have

Yo Mi((lidelo s GY) —5 Se Ui(lidalo; G) -

Therefore, it suffices to show that ¥ | 0 = V1(G!) ~ U{(|idg|g ; G!) : A, which has been shown.
Case vc = o~ (Ja): Because | ) ¢ o~ : B ~ A is derived by (CT_CONCEAL_C), we have

A=a, B=B, a:=Be¥x (IB)

Also, we have |a~ |y = id. Hence, by (R_ID_S), we have ¥ > U{(id) —% X > U{. Since U is a
value, by Lemma [T4, we have

o M{aly) = S Mid)
—5E> U .

Therefore, it suffices to show that ¥ | ) - Vi{a~) ~ U] : A, which is given by (Bs_CrcIDL).
Case ve = ¢/ — d' (3¢, d’): Wehave |/ — d'|g = |c'|g — |d'|g- Because U{{|c'|g — |d'|g) is a value,
we can prove this case similarly to the case of ¢ = G!.
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Case ve = VX.c' (3X, ¢'): We have |VX.c|p = VX.|c'|p,x 5, |¢'|p- Because U{(VX.|c'|g x » |c']p) is a
value, we can prove this case similarly to the case of ¢ = G.
Case V| = U{(t) (3¢, U{): By Lemma 22, ¥ | § kg U{(t) : X(B). Since X | 0 kg Uj(t) : X(B) is
derived by (T_-Crc_S), we have

|0 kg t:A'«»—)E(B) (EA/).

By Lemma 43, |vc|p is a space-efficient value coercion. Also, since Uj(t) is a value, t is a space-

efficient value coercion and ¢t # id. Therefore, by Lemma 32, ¢ § |vc|g is a space-efficient value

coercion. We perform case analysis whether ¢ ¢ |vc|gp = id or not.

Case t 3
t # id.

Case t ¢ |vc|p # id: By the definition of space-efficient value coercions, U{(t ¢ |vc|g) is a value. By
(R_-MERGE_S), X > U{(t){|vclp) —s X > U{(t¢|vc|p). Therefore, Lemma I8 implies

velp = id: By Lemma 4, ¢ = id and |vc|gp = id. However, there is contradiction because

Y M (sgluclp) —5 L Ut

velg) -

Hence, it suffices to show that X | - Vi (ve) ~ U{(t3
Case (Bs_CrcID): We are given

velg) + A, which is given by (BS_CRCMORE).

M = M/(lidalg), Z|0FVaM A X|0Fcida:A~A (3M).
By the IH,
SeM —s XSV, T|0FVaV:A 3V)).

Lemma [ implies ¥ | @ Fg M{ : ¥(A4) and X | 0 kg M{(lidalp) : £(A). Because this judgment is
derived by (T_CRrc_S), we have

¥ 0 ks lidalg : Z(A) ~ X(4) .
By case analysis on V7.
Case V{ = U] (3U{): By case analysis on A:

Case A=A"— B’ (3A',B’): We have |ida—p/lg = |idarmplg = lidalp — |idp/|p. Furthermore,
Ul{lidaslp — lidp/|g) is a value. Therefore, Lemma [CI4 implies

Yo M{(lidalg — lidpr|g) —% T Uj(lidarlp — lids|g) -
Moreover, by (Bs_CrcID),
by | DEV = Ull<|id,4/|q) — ‘idB/‘@> A= B .

Case A =VX.A’ (EX,A/): |idVX,A’|® = |idVX.A"(Z) = VX.‘idA/M’X 55 |idA/|@, and U{(VX.|idA/|@’X 5y
lidas|g) is a value. Therefore, this case is provable similarly to the case of A = A" — B’.

Otherwise: Since X | @ k¢ ida : A ~ A, A does not have any free type variables. Therefore, we
have |idalp = id. By (R-.ID_S), ¥ > U{(id) —s X > U;. Therefore, Lemma T4 implies

S M(id) —% Yo U .

Hence, it suffices to show that ¥ | 0 + V = U] : A, which has been shown.
Case V{ = U{(s) (s, U{): By Lemma 23 and Corollary EZG, 3 | § g5 U{(s) : X(A4). Because this
judgment is derived by (T_CRC_S), we have ¥ | 0 g s: A" ~» X(A4) (3A’). Therefore, Lemma [T
implies s §|idalp = s. Therefore, by Lemma [14

Yo M(lidalp) —5 X > Uj(sslidalg) =S > U{(s)
(note that Uj(s) is a value). Hence, it suffices to show that ¥ |} = V ~ U{(s) : A, which has been

shown.
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Case (BsS_CRCMORE): We are given
V="V, M =M/(ssl|clp), |0+ VixeM(s):B, Y|0tcc:B~~A (IB,c,s,M], V1) .
Furthermore, since Vi(c) is a value, there exists a value coercion vc such that ¢ = ve. By the TH,
Lo M(s) —5 eV, Z|0-Vi=V{:B (3V]).

We also have, by Lemma T2, ¥ | ¢ Vi : Band X |0 g M{(s): X(B). By Lemma ET0, we have
F3X, X+ 0,and ¥ | 0 + B. Therefore, by (CT_ID_C), we have & | () ¢ idg : B ~ B.

S0 g |velp: B(B) ~ X(A) .

Moreover, Corollary EZ8 implies ¥ | @ g V] : X(B). By case analysis on V7.

Case V{ = U (3U{): By (Bs_CrcID), X | 0 + Vi ~ U{{lidglg) : B. Lemma [CI0 implies |idp
|vc|g. Therefore, by (BS_CRCMORE),

oslvclp =

Y| 0F Vi{ve) = Ul{|vclp) : A .

By case analysis on vc.

Case vc = G! (3G): Since ¥ | ) F¢ G!: B ~ A, G! does not contain any free type variables.
Therefore, we have |G!|g = |id¢|g ; G!. Because U{(|idg|p ; G!) is a value, Lemma I8 implies

Yo Mi(ss(lidple; GY) —5 > Ul(lidalo; @) -

Therefore, it suffices to show that 3 | § - Vi{G!) ~ U{(|lidg|g; G") : A, which has been shown.
Case vc = a~ (Ja): Because X | 0 k¢ a™ : B ~ A is derived by (CT_CONCEAL_C), we have

A=a, B=B, a:=BeX (IB)
Also, ¥ |0 Fg M{(s) : X(B) is derived by (T-CRC_S), we have
L0 ks M A, T 0Fgs:A~X(B) (A).
By Lemma [T, s § |a~ |p = s. Therefore,

> M(ss

alp) = ToM(s)
—5E> U .

Therefore, it suffices to show that ¥ | 0 - Vi{a~) ~ U] : A, which is given by (Bs_CrcIDL).
Case vc = ¢/ — d’' (3, d"): Wehave | — d'|p = |c'|g — |d'|g. Because U{{|c'|g — |d'|p) is a value,
we can prove this case similarly to the case of ¢ = G!.
Case ve =VX.c¢' (3X, ¢'): We have |VX.c'|p = VX.|c'|p.x », |¢'|p- Because U{(VX.|c'|p x », |']p) is a
value, we can prove this case similarly to the case of ¢ = G.
Case V| = U{{t) (3¢, U]): Because ¥ | g U(t) : ¥(B) is derived by (T_CRC_S), we have

|0 ks tIA/wE(B) (HA/).

By Lemma A3 implies that |vc|y is a space-efficient value coercion. Also, because Uj(t) is a value,

t is a space-efficient value coercion and t # id. Therefore, Lemma [Z2 implies that ¢ §|vc|y is a

space-efficient value coercion. We perform case analysis whether ¢ §|uvc|g = id or not.

Case t§
t#£id.

Case t §|vc|g # id: By the definition of space-efficient value coercions, Uj(t§ |vc|g) is a value. By
(R_-MERGE_S), X > U{(t){|vclp) —s X > U{(t¢|vc|p). Therefore, Lemma I8 implies

velg = id: By Lemma 4, ¢ = id and |vc|p = id. However, there is contradiction because

Y M (sgluclp) —s X Ut

velg) .

Hence, it suffices to show that ¥ | - Vi (ve) &~ U{(t3

velg) + A, which is given by (BS_CRCMORE).
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Case (Bs_CrcIDL): We are given
V=v!), D|0FVicM:B, 2|0tcc:B~A (3B, V).
By the IH,
SeM —y SV, |0-Vix V) :B (3V]).
By (Bs_CrcIDpL), we have
SI0F V(Y= VA

Therefore, we conclude the case by letting V' = V.
Case (BS_VAR), (Bs_App), (Bs_Tvarp), (Bs_BLAME): Contradictory because M is a value.

(5) By induction on the derivation of ¥ | ) - blamep ~ M’ : A. We perform case analysis on the rule applied
last to derive 3 | @ - blamep ~ M’ : A, which is either of (Bs_BLAME) or (Bs_CRcID).

Case (Bs_BLAME): We have M’ = blame p. Hence, X > blamep —% X > blame p.
Case (Bs_CrcID): We are given

M = M{{lidalp), X|0tcida:A~~A, X |0Fblamep~ M :A (3M).
By the IH, ¥ > M{ —% X > blamep. By (R_.BLAMEC_S),
Y > (blamep){lidalg) —& X > blamep .

Lemma [Z3 implies - 2, X F @, and ¥ | @ = A. Therefore, by (CT_ID_C), X | 0 k¢ ida : A ~ A.
Hence, by Lemma 3, we have X | § Fg |idalg : X(A4) ~» X(A). Therefore, by Lemma T4, we have
> M{(lidalp) —% X > blamep.

(1) By induction on the derivation of ¥ | § = M =~ M’ : A. We perform case analysis on the rule applied last
toderive X |0 F M ~ M’ : A.

Case (Bs_CoNsT), (BS_VAR), (BS_ABs), (Bs_TvaBs), (Bs_.BLAME): Contradictory because ¥ > M —¢
Y1 > My cannot be derived.

Case (Bs_APP): We are given

M = MyMs, M = MjM;, X|0F My~ Mj:B— A,
S| 0F My~ M,: B (3B, M, My, M}, M) .
Lemma 22 implies ¥ | ) ¢ My M3 : Aand ¥ | 0 g M3 Mj : 3(A). Therefore, Theorem ET9 implies

|0 ke M;: A. We perform case analysis on the rule applied last to derive ¥ > My Mz —s¢ X1 > My,
which is one of the following rules.

Case (R_DELTA_C): We are given
My = ke, Mz = ks, My = §(kayks), 31 =% (Fhko,ks) .
Because k» is a value, by the case (3),
Lo My —5 XV, Y|0kk~Vi:B—A (3V).
Similarly, by the case (3),
Se M, —3 Se Vi S0k~ VB AV .
Therefore, by applying (R-CTXE_S) repeatedly, we have

Yo MyMy —6 X VoV oo (x).
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Lemma 22 implies ¥ | ) F¢ ks : B — A. Because this judgment is derived by (T_ConsT_C), we
have ty(ks) = B — A. By the definition of ty, there exists some ¢ such that B = . Furthermore,
since M1 = §(kg, k3), we have ¥ | 0 F¢ 8(ko, k3) : A. Because 3 | 0 ¢ (ko, k3) : A is derived by
(T_ConsT_C), we have ty(d(ks, k3)) = A. Therefore, by (Bs_CONST), 3 | 0 & §(ke, k3) ~ d(ke, ks3) :
A. We perform case analysis on the rule applied last to derive ¥ | @ - k3 & V4 : ¢, which is either of
(Bs_ConsT) or (Bs_CrclID).

Case (Bs_CoNsT): We have
Vi =ky, FX, XTHO.
By case analysis on the rule applied last to derive X | O - ky &= V3 : « — A, which is either of

(Bs_ConsT) or (Bs_Crclb).
Case (Bs_CoNsT): We have V§ = ky. Therefore, by (x) and (R-DELTA_S),

> My My —& X Vo Vi —5 X (ko ks) -

Hence, it suffices to show that X | 0 - §(ke, k3) = §(ka, k3) : A. Now, wehave X | ) Fo 6(ke, k3) :
A. Because ¥ | O ¢ O(ko, k3) : A is derived by (T_ConsT_C), we have ty(d(kse, k3)) = A.
Therefore, by (Bs_CONST), X | O & §(ke, k3) = 6(ka, k3) : A.

Case (Bs_-CrcID): We are given

Vo= Ulid,alg), Z|0Fk~Uy:t—A.
Because ¥ | O F &y ~ it — A is derived by (Bs_CONST), we have Uy = ky. Furthermore,

lid,—alp = lid,~alp
= lid,|p — [idalg
=id — ‘idA|@ .

Therefore, by (*), (R-WRAP_S), (R_ID_S), and (R_-DELTA_S),

YoMy My —s 3> Vo Vy
= Y (k(id — |idalp)) k3

—s N> (ke (k3(id)))(lidalg)

5 S0 (o ks)lidalo)

—5 2> 8(ko, k3)(|idalg) -
Hence, since |idalg = |idalg, it suffices to show that X | 0 b §(ke, k3) =~
A. Now, we have ¥ |  F¢ 0(ko,k3) : A. Because X | 0 F¢ (ke k3) :
(T_ConsT_C), we have ty(d(ke, k3)) = A. Therefore, by (Bs_CONST), X |
3(ky, ks) : A. Hence, by (BS_CRCID), £ | 0 8(ky, k3) ~ (k. k3){|idalg) : A.

Case (Bs_CrcID): We are given

6(ka, ks)(lidalo) :
A is derived by
0 F

5(k2, kg) ~

Vi = Ug(lidifg), T[0F ks~ Uz:e (3Tp) .

We have |id,|g = [id,|p = id. Therefore, Us(id) is not a value, so there is a contradiction.
Case (R_BETA_C): We are given

My = M\z:B'.My, My = Vs, My =DMfz:=Vs, % =% 3B,z M,Vs).
Because Az : B’.My is a value, the case (3) implies
YoM, —5 X Vy, XB|0FXz:B.My=Vy:B—A (3V3).
Similarly, the case (3) implies

oM, —s X Vs, Z|0FVsxVy:B (3Vy).
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Therefore, by applying (R_CTXE_S) repeatedly, we have
YoMy My —6 X VoV oo (%) .

Lemma 22 implies X | § F¢ Az: B'.My : B — A. Because this judgment is derived by (T_ABS_C),
we have B’ = B. We perform case analysis on the rule applied last to derive X | § = Az: B.My =~
V4 : B — A, which is either of (BS_ABS) or (Bs_CRrcID).

Case (BS_ABs): We are given
V= z:B.M,, $|0z:BFMo~M:A (3M).
Therefore, by (%) and (R_BETA_S),
> My My —% > (Az:B.My) Vg —g B> Mz := V3] .

Hence, it suffices to show that ¥ | 0 - My[z := V3] = Mj[z := V4] : A, which is given by
Lemma [X4.
Case (Bs_-CrcID): We are given

Vi= Ullidpoalg), S|0FAe:B.My~U,:B— A (3UL).
Because X |0 - Az: B.My ~ Uj : B — A is derived by (BS_ABSs), we have
U, = Ae:B.M], S|0,2:BFMo~M:A (3M).
Furthermore, by (Bs_-CrcID), X | 0+ Vs = Vi(|lidg|g) : B. Therefore, by the case (3), we have
Yo Vilidglg) —s > V5, T |0k Va= VY 3vy) .

Hence, since |idpalg = |idg—alp and |idalg = lidalg, by (%), (R-WRAP_S), (R_-CTXE_S),
(R-CTxC_S), and (R-BETA_S), we have

¥ > My My _>S Yo (Us(lidp—alo)) V3
> (Uz(lidplp — IIdA|m>)

—rs Xo ((Az: B.My) (V3<||dB|@>))<|idA|@>
((
(

—5 X ((A\z: B. M4) Vi) (lidalp)

—rs N> (M2 := V5'){|idalo) -
Therefore, it suffices to show that 3 | § F M4[ = Vi3] = (My[z = V3])(|idalp) : A. By
Lemma 74, we have ¥ | 0 b My[z := V3] =~ [ = Vy]: A Therefore by (Bs_CrcID),

N|0F Mz := Vs] = (Mgl := V5'])(lidaly) - A
Case (R-WRAP_C): We are given

My = Vale = d), Mz = V3, M = (Va(Va{c)){d), %1 =X (e, d, Vo, V3).
Because Va(c — d) is a value, by the case (3) we have
SeMy —5 XV, T|0FVolc—dy=Vy:B—A (3V,).
Similarly, by the case (3), we have
LMy —5 S Vy, Z|0FVsxVy:B (3Vy).
Therefore, by applying (R-CTXE_S) repeatedly, we have

YoMy My —& XV, Vs
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By Lemma [, we have ¥ | ) F¢ Va(c — d) : B — A. Therefore, by Lemma [C34, there exist some
V4 that is not a coercion application, n > 0, and cy,..., ¢y, dy, ..., d, such that

Vale = d) = Vyler = dy) - (cp = dn), cn=c¢, dy=4d.
Moreover, by Lemma [(38, we have

An+1 = A, B,i1=B, X | 0D be e Bit1 ~ B,
We perform case analysis on whether V3 is a coercion application or not.
Case V§ = Uy(s) (3Us, s): By Lemma [C39, we have
E|®|‘CCZ—>dZCZWCZ+1(1§ZSTL), E|®|‘V4R‘JU2/01,

s=lidg  lpslcir1 = digalps - §len — dulp  (3Ch, ..., Crya)
and there exists nonnegative integer j (1 < j < n) such that

I
Ci = C;,y

di=d! (3cf,....c],di,...d}) (1 <i<j).

Furthermore, ¥ | ) k¢ ¢; — d; : C; ~ Ciy is derived by (CT_ARROW_C), we have C; = B; —
A;. Hence, by Lemma [C3, we have

Y0 ks feilp: 2(Biy1) ~ B(Bi), T |0 Fs [dilp: B(Ai) ~ E(Aip1) (1<Vi<n).
Moreover, we have

lejr1 = divilo s 5 len = dulo = |cjr1 = divalo 3§ lcn = dulo
= (lejr1lo = |djx1lo) 3---3 (lenlo — dnlo)
= (l¢jr1lp = Idj1alg) 5+~ 3 (lealo — ldnlp)

= (lenlo s~ 3lejvilo) = (Idjxilo s~ 3 1dnlo) -

Furthermore, by applying Lemma [CIT repeatedly, we have

lejatlo =lcisloslctlos---sletle,  Idigalo=Idilo s~ 51di1o 5 |djzalo -

Hence,

s =lidp; a0 3 lcj+1 = divalo - 5 len = dulo
=|cjy1 = divilo s 3len = dulo
= (lejx1lo = Idj+1lo) 5 -+ 5 (Iealo — [dnlg)
=(lenlo s 5lej+1lo) = (Idjsalo s+ - 3 [dnlo)
=(lealos - sleilo) = (Idilo s -3 1dnlo) -

By case analysis on V3.
Case V4 = Uj (3U}): By (Bs_.CrcIp), 3 | 0+ V3 =~ Ui(|idg|p) : B. Furthermore, now,

|0k Valer = di) - {en = dn) = Ug(lenlo 3+~ 3lerlo) = (Idilo 5+~ 5 1dnlg)) : B — A

Therefore, by Lemma 53, we consider the following two cases.
Case (1) in Lemma [53: We are given

X> My My = ZD(V4<01 — d1><cn — dn>) V3
—e 2 (VaMs)(dr)---(dn) ,
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and
S0F Ms~ Ug(lidploslenlos -5 leilo) : B (3Ms) -
Furthermore, by (R_-WRAP_S), we have
Y My My —sX> Vo Vy

= I (Us{(lenlos---5lclo) = (ldilos---51dnlp))) Us
—s X0 (Uy (Us(lenlo s 5lealo)))(dilo s 5 1dnlp) -

Therefore, it suffices to show that
0F (Ve Ms)(dr) - (dn) ~ (Uz (Us{lenlo 35 lerlo))){Idilo -+ 5 ldnlo) : A

By Lemma [Z3, - S and £+ 0 and $ | 0 - B. By (CT_Ip_C), S| 0 ¢ idg : B ~ B. By
Lemma [T, we have |idg|g$ |cnlg = |cnlg. Therefore,

S0+ Ms =~ Us(lcalps---5lcilo) : Br .
By (Bs_App),
Y[0F VaMs = Uy (Us{lealps -3 eilo)) = A1

By Lemma 23, ¥ | O+ A;. By (C1_ID_C), X | 0 k¢ ida, : A1 ~ A;. By (Bs_CrcID) and
(Bs_CRCMORE) repeatedly,

S0 (VaMs){dr) - (dn) ~ (Uz (Us(lenlp 53 lealo))){lidasfo 5 [dilo s -5 [dnlo) - A

By Lemma [T, we have [ida,|g$|dilg s - 5 |dnlo = |dilp -+ ¢ |dnlp. Therefore, we finish
the case.
Case (2) in Lemma [53: We are given

EDMQMg = ED(V4<01—>d1>"'<0n—)dn>)V3
—& Y blamep

and
lidglgslcnlos---5lclo =17 (3p) .

By Lemma[Z3, F Y and X - and X | O+ B. By (C1_Ip_.C), X |} F¢ idg : B~ B. By
Lemma [T and Lemma [, |idp|g§|cnlg s ¢ lcilo = |cnlo - ¢ |c1lg. Therefore, we have

lenlo§---5lcilo = L7 .

Hence, by (R-WRAP_S), (R_FAIL_S), (R_.CTXE_S), (R-CTxXC_S), (R-BLAMEE_S), (R_BLAMEC_S),
we have

EDMQ/Mé—{"gED Vo Vs

= o (Up{(lealos---sleilo) = (Idilo 3+~ 31 dnlo))) U,
—>s2>(U2(U3<\CnIm3 9|61|@>))<|d1\m3---3|dn|@>
= Z> (U (Us(L")(Idnlg 5 )
HSED(UQ(bbmep)X 03 Idn|w>

—g X > (blame p)(|di g 5 --9|dn|@>

—g X > blamep .

Therefore, it suffices to show that ¥ | § - blamep = blamep : A. By Lemma 23, we have
FYand X+ 0 and ¥ | - A. Therefore, by (BS_BLAME), X | § - blame p ~ blame p : A.
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Case V4 = U4(t) (3¢, U3): By Lemma 22, we have ¥ | @ g Uj(¢) : X(B). Since this judgment
is derived by (T_CRC-S), we have & | 0 Fg ¢t : C' ~ X(B) (3C’). Therefore, Lemma [
implies t ¢ (|enlo s -3 leilg) =t ¢ lenlo s -5 |c1]g. Here, we have

S0 Vi{er = di) -+ (en = dn) = Up((lealo s+ 3 lelo) = (Idilo s+ 3 ldnlo)) : B — 4,
S0 Var Ut): B .

Therefore, by Lemma 23, we consider the following two cases.
Case (1) in Lemma [53: We are given

EDM2M3 = ED(V4<61*>d1>"‘<Cn*>dn>)V3
—o X (Ve Ms)(dy) -+ (dn) (3Ms),

and

S0 Ms = Us(tglenlos---§lelo) : B

Hence, by (R_-WRAP_S), (R-MERGE_S), (R_-CTXE_S), (R_-CTXxC_S), (R_.BLAMEE_S), (R_.BLAMEC_S),

we have

S MyMy—5X> Vo Vs

= 2o (Ux{(lenlos s leilo) = (ldilos--- 5 1dnlo))) (Us(t))
—g S0 (Uy (Us(t){|enlo s 5 lclo)))(dilo s -5 dnlo)
—s S0 (Uz (Us(ts(lealo s -5 lerlo)))(ldilo s+ 5 |dnlo)
= S (Uy(Us(tslenlps---slelo)))ldilps -5 ldnlg) -

Therefore, it suffices to show that
10F (Va Ms)(dy) - (dn) ~ (Uz (Us(t5 lenlo s+ 3 lexlo)))(dilo s -5 [dnlo) - A .
By (Bs_App),
S|0F VaMs ~ Uy (Us(tslenlos -5 leilo)) - Ar -

By Lemma EQ, - ¥ and X F § and X |0 F A;. By (CT_ID_.C), X | 0 F¢ ida, : A1 ~ A;.
By (Bs-CrcIp) and (Bs_CRCMORE) repeatedly,

S| OF (VaMs)(dr) - (dn) = (Us (Ug(t3]cnlo 3~ 3 lealo)))(lidaylo s |dilo 55 dnlo) - A .

Furthermore, by Lemma [T and Lemma T2, we have |id 4, |p3|di]g¢- - 5| dnlo = |dilps- - <3| dnlg-
Therefore, we finish the case.

Case (2) in Lemma [B3: We are given

XMy My = ED(V4<01 — d1><cn—> dn>) Vs
—& Y blamep

and
tslenlos---slalo=L1" (3p) .

Furthermore, by (R-WRAP_S), (R-MERGE_S) (R_FAIL_S), (R.CTXE_S), (R_.CTXC_S),
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(R-BLAMEE_S), (R-BLAMEC_S), we have

> My M; —>§Zl> Vo Vs
> (Us(lenlo s -5 lealo) = (Idulo 5+ 51dnlo))) (Us(E))

—>sE> Uy (U3(t)(enlo 55 lealo))){ldilp s~ 5 | dnlo)
Uy (Us(ts (Ienlo s+ 3 lealo))))(dalo s -5 dnlo)

= Us (Us(tslenlos -3 leilo)))(ldilo s -3 dulo)
Us (U,

5(LPN))(ldr 5
—s X0 (Uy (blamep))(|difp -5
—g X > (blame p)([difg 5 - -5 [dnlo)
—g %> blamep .

dnlo)
dnlo)

> (
(
—>SE|>(
> (
> (
(

Therefore, it suffices to show that ¥ | (§ - blame p &~ blame p : A. By Lemma 23, we have
FXand X+ 0 and ¥ |0+ A. Therefore, by (BS_.BLAME), ¥ | § F blame p = blame p : A.

Case V4 = Uj (3U;): By Lemma A8, we have
S0 Fc el Bipi~ B, T|0Fc dl A~ A (1<i<n),
YI0FVarUy:B — Ay (3c,...c dl, ..., d By, ..., Buy1, C1y .oy Crgl)
By Lemma [58, we have
Yo Vlcl) —E S VY, X|0F VY~ Vj:B,
Therefore, by (R-CTX_C),

Yo MMy = N (Vilel = db)-- (] = dl)) Vs
—& S (Valel = df) -+ (ch_y = df,_1)) (Va(ch)))(d),)
—o S (Valel = di) - (ch_y = df 1)) Vi(d,) .

Similarly, by applying (R-CTX_C) repeatedly, there exists V3" such that

S M My —5 S (Vale] = df) -+ (ch_y — dl_y)) Vi)(d))
—& S (Va V3" )(di) -+ (dh)

and
S0k VY = Vi B .
Furthermore, we have

Lo My My —5X> Vy Vg
= s ULVI.

Therefore, it suffices to show that
S{OF (Ve V")) - (dh) =~ Uy Vi A
By (Bs_Aprp),
S|0F VeV =~ Uy Vy: Ay
By applying (Bs_CRcCIDL) repeatedly, we finish the case by

S0 (Ve V"W dly--(dly = Uy Vi A
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Case (R-BLAME_C): We are given
M, M3 = Elblamep], M; = blamep, %, =% (Ip, E).

Because My M3 = E[blame p], it suffices to consider the following two cases.
Case E =0 Mz and My = blame p: Since ¥ | § - blamep ~ Mj : B — A, by the case (5), we have

Y My —% X blamep .
Therefore, by (R-CTXE_S) and (R_BLAMEE_S),

Y > My My —% X (blame p) My
—g %> blamep .

Hence, it suffices to show that 3 | f - blamep ~ blamep : A. By Lemma 23, we have + 3 and
Y0 and ¥ |0+ A. Therefore, by (BsS_.BLAME), X | § - blame p ~ blame p : A.

Case E = Vo and My = V, and M3 = blamep (3V3): Since X |0+ Vo = Mj : B — A, by the
case (3), we have

SeMy, —E XV, (3Vy).
Furthermore, since ¥ | ) - blame p ~ Mj : B, by applying the case (5), we have
Y > My, —% Y > blamep .
Therefore, by (R_.CTXE_S) and (R_BLAMEE_S),

S MM, —% S V)M,
—& X Vy (blamep)
—g X > blamep .

Hence, it suffices to show that ¥ | @ I blamep =~ blamep : A. By Lemma 23, we have - 3 and
Y0 and X |0+ A. Therefore, by (BS_.BLAME), X | @ - blame p ~ blame p : A.

Case (R_CTX_C): We are given
M2M3:E[M4], M1 = E[Mg,], EDM4 —C 211>M5 (3E,M47M5) .

Because My M3 = E[M,], it suffices to consider the following two cases.
Case E=0M;s and My = My: Wehavenow X |0 F Mo~ M} : B— Aand X > My —¢ X1 > Ms.
Therefore, by the IH, we have

> > Ms —)*C ZQDMG, EDMé —>§ ZQDMé, 22|@|_M6AN4M(§B—>A (HEQ,Mﬁ’Mé).
Hence, by applying (R_-CTX_C) repeatedly, we have

EDMgMg 4)021[>M5M3
—)éEQDMﬁMg.

Furthermore, by applying (R-CTXE_S) repeatedly, we have
Yo My My —E Yo M{M; .

Therefore, it suffices to show that Yo | § = Mg M3 ~ M} M3 : A. By Lemma EZ4 and Lemma 28,
we have Xy | 0 - M3 ~ Mj : B. Hence, by (BS_ApPP), Xo | O F Mg M3 = M} M : A.
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Case E= Vo0 and My = Vo and M3 = My (3V3): Since X | O F Vo &= M4 : B — A, by the case
(3), we have

Se M, L S VL, S|0F Vam Vi:B oA (3V)).
Furthermore, since ¥ | 0 = Mz &~ M} : B and X > M3 —¢ X1 > Ms, by the TH, we have
i Ms —E So> Mg, N> My —6 B> M, o |0F Mg~ M;: B (32, Mg, M) .
Therefore, by applying (R_CTx_C) repeatedly, we have
> Vo My —so 31> Vo Ms
5 Sy Vo Mg
Furthermore, by applying (R_CTXE_S) repeatedly, we have
> My My —§ X Vo M,
—& Ba > Vg M .

Therefore, it suffices to show that o | 0 Vo Mg = Vg M{ : A. By Lemma E24 and Lemma [28,
we have ¥y |+ Vo = V4 : B — A. Therefore, by (BS_APP), Xo | O F Vo Mg =~ Vy M : A.

Case (Bs_TyapP): We are given
A=C[X:=B], M =MB, M =MB, S|0FM~DM:VX.C, S|0-B (3X,B,C,M,M).

By case analysis on the rule applied last to derive ¥ > My B —¢ X7 > Mj, which is one of the
following three rules.

Case (R-TYBETA_C): We are given
B=B, M, = (AY.(Ms:A))(VY.c), M = MY :=a](c[Y := a]){coercel (D[Y := a])),

L (VY.e): VY. A ~VY.D, ¥ =X a:=B 3a,Y,A4,D,{(c), M) .

Lemma 22 implies X | § Fo (AY.(M;3: A)){(VY.c) : VX.C. Therefore, Lemma E3 implies ¥ = X
and D = C. Since (AX.(M5: A"))(VX.c) is a value, so by the case (3), we have

oMy —5 X Ve, T|0F(AX.(M3: A)(VX.c)~ Vy:VX.C (3Vy).
Therefore, Lemma 22 implies ¥ | § Fg V3 : 3(VX.C). Hence, by Lemma EZH, we consider the

following two cases.
Case Vy = AX. M3 (3M3): By (R_.CTXE_S) and (R_-TYBETA_S),
Yo MB—EXe Vo B
= Y (AX.M)B
—s X, a:=Bp> Mj[X :=q] .

Therefore, it suffices to show that

Ya:=B|0F
M3[X := a]{c[X = a]) (coerce (C[X = a]))

M;[X = q]

Because ¥ | 0 b (AX.(M5: A"))(VX.c) ~ AX.Mj : VX.C is derived by (Bs_-CrcIDL) and
(BS_-TYABS), we have

{cy=(c), |0, XF Mz~ M:C (3cl)).
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Therefore, (c[X :=a]) = (![X := a]) is also a sequence of no-op coercions. Furthermore, by
Lemma B, coercel (C[Y := a]) is a no-op coercion. Moreover, by Lemma [C33, we have ¥, o :=
B|0F M3[X :=a] = M{[X :=a] : C[X := a]. Furthermore, Lemma [Z3 implies - > and X + ()
and ¥ | 0 F VX.C. Because ¥ | ) + VX.C is derived by (TW_PoLY), we have ¥ | 0, X + C.
Therefore, Lemma ETA implies

Y,a:=B|0 Fc coerce (C[X :=a)): C[X :=a] ~ C[X :=B].

(e}

Hence, we have (x) by applying (Bs_CRcIDL) repeatedly.
Case Vi = Uj(VX.s,,t) (3s,t, Uj): BecauseX | 0 kg Us(VX.s,,t) : £(VX.C)is derived by (T_-Crc_S),

we have
S|0ks Up:C', B0 kg VX.s,,t: C'~VX.C (3C").

Since ¥ | 0 Fg VX.s,,t: C' ~ VX.C is derived by (CT_ALL_S), we have C/ = VX.C" (3C").
Therefore, by Lemma [EZH, there exists some M, such that U] = AX.Mj. Hence, by (R_-CTXE_S)
and (R_TYBETAC_S),

e MyB-—X> VyB
= Yo (ULvX.s, t)B
= Y ((AX.M;)(VX.s,, t))B
—s B, =B (Mi(s))[X := q]
= Y, a:=Bp> M[X :=a|(s[X :=q]) .

Therefore, it suffices to show that

Ya:=B|0+
M3[X := a]{c[X = a]) (coerce (C[X := a]))

~
~

M;[X = o](s[X := a])

By case analysis on (VX.c).
Case (VX.c) =0: Because ¥ | 0 F AX.(M3: A") ~ (AX.M{)(VX.s ,, t) : VX.C is derived by
(Bs-CrclID), we have

VX.s,, t=lidvx.clg, D|0FAX.(M3:A") =~ AXMPZ VX.C .
Therefore,

VX .5, t = |idvx.cle
=VX.[idclg,x » lidclo -

Hence, s = |id¢|p x and ¢t = |id¢|g. Furthermore, because ¥ | § - AX.(Ms: A’) =~ AX.Mj :
VX.C is derived by (Bs_TYABS), we have

A=C, S|0,X+M~M:A .

Moreover, because (VX .c) = ), we have (¢[X := a]) = (). Therefore, it suffices to show that

Ya:=B|0F
M3[X := a]{coerce} (C[X := al))

Mi[X = o|(s[X = a])
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Because ¥ |0, X - M3 ~ M} : C' and ¥ | ) F B, Lemma [33 implies
Y,a:=B |0 M[X :=a]~ My|X :=0a]: C[X :=q] .
By (Bs_CrclIp),
S,a:=B|0F M3[X := a] ~ Mj[X := a](lidoix.mayls) : C[X :=a] .

Furthermore, Lemma [Z3 implies - ¥ and X F @ and ¥ | @ - VX.C and ¥ F (), X. Moreover,
because X | § - VX .C is derived by (Tw_PoLy), we have X | §, X - C. Therefore, Lemma E_T7
implies
Y,a:=B|0 Fc coerce (C[X :=a)): C[X :=a] ~ C[X :=B].
Hence, by (BsS_CRCMORE),
Ya=B|0F
M3[X := a{coerce (C[X := a]))

M;[X := a)(|idc[x.=a] coercel (C[X = al)|p)

059

Therefore, it suffices to show that

0§ |coerce (C[X == a])|p = s[X :=qa] .

By Lemma 8, Lemma [0, Lemma [T and Lemma =32,

‘idC[X::a]

lidcix:=ajlo § | coerce (C[X := a))lp = lidcixi=alo 5 1¢"|o (3¢)
= lidcpxi=allo
= lide[X :=allp
= lidele,x[X = a]
=s[X :=q].

Case (VX.c) #0: Let n > 0 such that (VX.c) = 0,(VX.c1),...,(VX.c,). Then, because ¥ +
0, (vX.c1),...,(VX.cp) : VX. A" ~ VX .C, Lemma 33 implies

Ao =VX.A", A, =VX.C, T|0FcVX.ci: A1~ A (3Ag,...,A)(1<Vi<n).
Each X |0 F¢ VX.¢; 1 Aj—1 ~ A; is derived by (CT_ALL_C), we have

B():Al, Bn:C, AZ:VXBZ, E|@,X "C CiZBiflei (E'Bo,,Bn)(].SVZSTL)

Furthermore, (AX.(M5 : A))(VX.c) = (AX.(M5 : A))(VX.c1) - (VX.c,). Therefore,
S|0F(AX.(Ms: A))(VX 1) - (VX .cn) = (AX.M3)(VX .5 ,, t) : VX.C .
Hence, Lemma implies that there exists nonnegative 5 (1 < j < n) such that
VX.s,, t=lida,,lo5 VX ciq1lo5--- 5 VX cnlp, Z|0FAX.(Ms: A') =~ AX.M;: Cp,
Y0 VX : Cimy~ Gy Cp=VX.C (3Cy,...,Ch) .

Therefore, because ¥ | § F¢ VX.¢; : Ci—q1 ~ C; is derived by (CT_ALL_C), we have 4; =
C; =VX.B;. Moreover, by Lemma [T, because
VX.s, t=lida, o5 (IVX.cipalp 55 VX calp)
= VX .cjt1lp 3 5 [VX . calp
= (VX l¢j41lo,x » [cj41lo) § -+ 3 (VX [enlo,x , |cnlo)
=VX.(l¢j41lo,x 55 lenlo,x) 5 (Iej+1lo 5+ 5 lenlo)
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we have
s=lcit1lox § - 3lenlo,x, t=lci41los - 5lenlo -
Therefore, it suffices to show that

Sa:=B|0F
M;3[X :=a]{c1[X = al]) - {en[X := a]) {coerce (C[X := al))

~
~

Mz[X = al(([¢j1lo,x 3+ 3l enlo,x)[X = o])
ClX :=B|
Now, X |0, X F¢ ¢; : Bi—1 ~ B; (1 <Vi < n). Therefore, Lemma 3 implies
Y0, X ks |cilox : 2(Bi—1) ~ X(B;) (1<Vi<n).
Hence, by Lemmas and Lemma 32,
(Iejalox 5+ 5 lenlo, x)[X == o] = [¢jpalo.x[X = a5+ 5 |enfo x [X = 0]

=lej[X =a]lps- - 5[ea[X =0y .
Therefore, it suffices to show that

S,a:=B|0F
M3[X = a){c1[X := al]) - (en[X 1= a]) {coerce (C[X := a)))

~
~

Ms[X = al{lcj1[X =allp 5 3 |enX = aflp)
: C[X :=B].

Because ¥ | 0 - AX . (M3 : A’) ~ AX. M} : VX.A' is derived by (Bs_TYABS), we have ¥ | (), X +
M ~ M : A’. Therefore, Lemma [33 implies

Ya:=B|0F M3[X :=a] = Mj[X :=q]: A'[X :=q] .
Hence, by (Bs_CRrclID),
Y,a:=B|0F Ms[X :=a] = M3[X = o(|ida/[x.=a]lg) : A'[X :=0] .
Furthermore, by Lemma ET3, we have
Sa=B|0tFc ¢[X:=a]: Bi_1|[X :==a] ~ Bi[X :==a] (1<Vi<n).
Hence, note that By = A’, by (BsS_CRCMORE),

S,a:=B|0F
M3 X = a]{c1[X = q])

~
~

M3[X = af{lid ar(x:=a)l0 § |c1[X := ]lg)
B[ X i=q].

Furthermore, Lemma [3 implies
S,a:=B|0 ks |e1[X = a]lp: B(A'[X = a]) ~ Z(B1[X :=q]) .
Therefore, Lemma [T implies

lidapxi=ajlo 3 |1 [X = aflp = | [X = a]lg -
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Hence,

Ya:=B|0+
Ms[X = a){a1[X = a]) = M3[X := o){|c1[X = al|p) : Bi[X :=a] .

Therefore, note that B, = C, by applying (BsS_.CRCMORE) repeatedly, we have

Sa:=B|0F
Ms[X = af{a[X =a]) - (cn[X = a])

~
~

M3[X = al(Jer[X = allp§ - §[ea[ X = allp)
:CX :=q].

Furthermore, Lemma [Z3 implies - 3 and ¥ F ) and 3 | § - VX.C. Because X | ) - VX.C is
derived by (Tw_PoLy), we have ¥ | §, X i C. Therefore, by Lemma [ET4, we have

S,a:=B|0 Fc coercel (C[X :=a]): C[X :=a] ~ C[X :=B] .

[

Hence, by Lemma [, coercel (C[X := a]) is a no-op coercion. Therefore, by (Bs_CRcIDL),

Ya=B|0F
M;[X = a]{c1[X := al]) - (en[X 1= a]) {coerce (C[X = a)))

~
~

M3[X = a(|ea[X == llp5---3

cn[X = allp)

Case (R-TYBETADYN_C): We are given
B=x, My, = (AY.(Ms:A"))(VY.c), M; = (Ms(c))[Y := %],
21 = E (HY,A/,<C>,M3) .

Lemma 2 implies ¥ | ) ¢ (AY.(M3 : A’)){(VY .c) : VX.C. Therefore, Lemma EZ3 implies ¥ = X.
Since (AX.(M3 : A’))(VX.c) is a value, so by the case (3), we have

Se M, —% Se V], S0 (AX.(My: A)VX.c)~ V] :¥X.C (3V)).
Therefore, Lemma 22 implies X | § Fg Vj : 3(VX.C). Hence, by Lemma EZ3, we consider the
following two cases.
Case V4 = AX.M; (3M3): By (R-CTXE_S) and (R-TYBETADYN_S),

Yo Myx —5 X Vyx
= Yo (AX.M)*
— s Yo MIX =+ .

Therefore, since (M3(c))[X 1= %] = M;[X := *](c[X := %]}, it suffices to show that
|0 M3[X :=+]{c[X :=*]) = M4y[X :=+]: C[X :=%] (x).

Because ¥ | 0 F (AX.(M3: A"))(VX.c) =~ AX.M] : VX.C is derived by (Bs_CrcIDL) and
(Bs_TyABSs), we have

{ey=1(ch), £|0tcVXcl:Ci~ Ciy1, Cppr=C

E|Q)7X|_M3%M3/01, (3<Cl>,CZ> (TLZZZl)

Therefore, (c[X = x|) = (c![X :=
we have ¥ | 0 F M3[X = %] &= Mj[X = ] : C1|X := x|. Hence, we have () by applying
(Bs_CrcIDL) repeatedly.
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Case Vg = Uj(VX.s,,t) (3s,t, Uy): Because X | ) Fg Us(vX.s,,t) : VX.C is derived by (T_CRC_S),
we have ¥ | 0 Fg Uj : VX.C' (3C’). Therefore, by Lemma EZH, there exists some Mg such that
Us; = AX.MJ. Hence, by (R-CTXE_S) and (R-TYBETADYNC_S),

B> Myx —5X> Vax
= X (Uy(VX.s,, t))*
Yo ((AX. M) (VX s, 1)) x
e b MIX = (1) .
Therefore, since (Ms(c))[X :=«] = Ms[X := +]{c[X := #]), it suffices to show that
Y 0F M[X = +{c[X :=#]) & M4[X :=*|(t) : C[X := %]

By case analysis on (VX.c).

Case (VX.c) =0: Because ¥ | 0 F AX.(M;: A") ~ (AX.M{)(VX.s ,, t) : VX.C is derived by
(Bs_-CrclID), we have

VX.s,,t=|idvx.clg, D|0FAX.(M3:A")~AX.M;:VX.C .
Furthermore,

VX .5, t = lidvx.clo
= VX.|idc|@,X »» lidelg

Therefore, we have s = |id¢|p x and t = |id¢|p. Furthermore, because ¥ | ) - AX (M5 : A’) =
AX.Mj :VX.C is derived by (Bs_TyAaBs), we have

A=C, |0, XFMy~M;:C.
Moreover, because (VX .c) = (), we have (¢[X := x]) = (). Therefore, it suffices to show that
L0F M[X := ] ~ Mj[X :=+](lidc|g) : C[X :=%] .
Because ¥ | 0, X + M3 ~ Mj : C', Lemma 33 implies
|0 M3[X :=*] & Mj[X :=%]: CO[X :=+] .
By (Bs_CrclID),
D0F Ma[X =] m Mg[X = #(lidcx.zu o) : C[X =] .

Also, since [id(x:—.|p = [idc[X = «][p = [idc|p by Lemma 230, we finish the case.

Case (VX.c) #0: Let n > 0 such that (VX.c) = 0,(VX.c1),...,(VX.c,). Then, because ¥ +
0, (vX.c1),...,(VX.cp) : VX. A" ~ VX .C, Lemma 33 implies

AOZVX.A/, An:VXC, E|@ '_C VX.CiZAiflv-)Ai (E'Ao,,An)(:lSV’LSn)
Each ¥ |0 ¢ VX.¢; : A;—1 ~ A; is derived by (CT_ALL_C), we have
BQZA/, Bn:C, AZ‘:VX.Bi, Z|@,X '_C Ci:Bi—l“""Bi (HBQ,,Bn)(1§VZS’n)

Furthermore, (AX.(M5 : A))(VX.c) = (AX.(M5 : A"))(VX.c1) - (VX.c,). Therefore,

S0 (AX.(Ms : A)(VX.c1) - (VX .cn) ~ (AX.M)(VX.s) : VX.C .
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Hence, Lemma implies that there exists nonnegative j (1 < j < n) such that

VX5, t=lida 05 VX .ciqilos -5 IVX culp, |0 AX.(Ms: A") =~ AX. M3 :VX.C',
S0 Fo VX.en: O~ VX.C (3C") .

Moreover, by Lemma [T, because
VX.s pwt= ‘idA]+1 |0 9 (|VXCJ+1|® EREE |VXCTL|®)
= VX.cjtalp s 3 [VX.calp

= (VX l¢j41lo,x » [¢j+1lp) § -~ 3 (VX [en
=VX.(l¢jt1lo,x 55 len

0,X »» |cﬂ‘@)

0.x) 5 (Iejr1lo -3 lenlo)

we have

s=lci+1lo,x 5 3lenlox, t=lc41lo3 -3 cnlo -
Therefore, it suffices to show that

S0k
Ms[X = #(c1[X == #]) -~ (ca] X = #])

~
~

M3[X o= #(lejalo s - 5 [cnlo)

Now, X |0, X F¢ ¢; : Bi—1 ~ B; (1 <Vi < n). Therefore, by Lemma [3, we have
Y0 ks |elg: B(Bica[X i=%]) ~» S(Bi[X :=%]) (1<Vi<n).
Hence, by Lemma 30,
lealos -5 lenlo = [a[X i=lo 55 en[X =]y .
Therefore, it suffices to show that

|0+
M3[X = +{c1[X = *]) -+ {cn[X :=#])

~
~

Ma[X = A{|er[X = lg 5+ 5 [en[X = +]lp)

Because ¥ |0 F AX (M3 : A") = AX. M5 : VX.C' is derived by (Bs_TvABs), we have
A=0C, S0, XFM=~M:C.
Therefore, Lemma 33 implies
YL |0F M3[X i=+] = M[X =] : O'[X :=+] .
Hence, by (Bs_CrcID),
S0F M3 X =] ~ Mi[X := #{fid orpx.mnfp) : C[X := 4] .
Therefore, Lemma ET3 implies

Y0 o ¢[X =% Biq1[X =+~ Bi[X :=% (1<Vi<n).

158



Hence, note that By = A’ = C’, by (BsS_CRCMORE),

|0+
M3[X = *]<01[X = *]>

~
~

M3[X = #|{lidcrix:=ulo § [e1[X = #] o)

Furthermore, Lemma 3 implies
S0 ks [a[X =g : Z(C'[X :=#]) ~ X(B1[X = «]) .
Therefore, Lemma [T implies
liderxi=aln § [ [X i= [ = [er[X == Ay -
Hence,
S0 F MY = xl{ea[X 1= #]) & MI[X i= #]{|ea[X 1= #]lg) : By[X 1= 4] .
Therefore, note that B, = C, by applying (Bs_CRCMORE) repeatedly, we have
S0k

Case (R-BLAME_C): We are given
My = blamep, M; = blamep, %X, =X (3p).
Because X | @ - blame p ~ MJ : VX.C, the case (5) implies
Y > My, —% X > blamep .
Therefore, by (R_.CTXE_S) and (R_BLAMEE_S),

Y > MyB —%5 X > (blamep) B
—g %> blamep .

Therefore, it suffices to show that 3 | ) - blame p ~ blame p : C[X := B]. Lemma [Z3 implies - &
and X F 0 and ¥ | 0 = C[X := B]. Therefore, by (Bs_.BLAME), ¥ | @ - blame p ~ blamep : C[X :=
B].

Case (R_CTX_C): We are given

My = MsB, S My —¢ S My (3M;) .
Therefore, because ¥ | @ = My ~ M, : VX.C and X > My —¢ X1 > M3, the TH implies
Sy My —E Sy My, S5 M, —% Sov M, So|0F My~ M, :V¥X.C (3D, My, MJ) .
Therefore, by applying (R_CTx_C) repeatedly, we have

ZDMQBH(jZlDMgB
—>Z‘422|>M4B.

Furthermore, by applying (R_-CTXE_S), we have
Y>MyB —% Yo My B .

Therefore, it suffices to show that X5 | 0 - My B ~ M B : C[X := BJ. Since ¥ C ¥, by Lemma D2,
we have X5 | - B. Hence, by (Bs_Tyapp), Xo |0+ My B~ M, B : C[X := BJ.
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Case (Bs_CRrc): We are given
M= Myc), M =Mclp), S|0FMy~M:B, Y|[0Fcc:B~A (3B, c, My, M) .

By Lemma 3, ¥ | @ kg |c|p : 2(B) ~ X(A). We perform case analysis on the rule applied last to
derive ¥ > My(c) —¢ 31 > My, which is one of the following rules.

Case (R_ID_C): We are given
M2 = M1 = V2, Cc = idA/, 21 =X (HA/, VQ) .

Since X | @ F¢ ida : B ~ A is derived by (CT_-ID_C), we have A’ = B = A. By (Bs_Crclb),
Y| 0F Vor My(lidalg) : A. Hence, by the case (3), we have

Lo Mylidalp) —s X Vs, XD|0FVom Vy:A (3Vy).
Therefore,

Yo My(lelo) = T > My(lidale)
—sX> V.

Hence, it suffices to show that X | 0 Vo &~ V : A, which holds already.
Case (R_FAIL_C): We are given

My = Vo, c¢=1%,_,, M =blamep, %, =% (3p, A, B, Va).
Therefore, because X | O - Vo &~ M4 : B, by the case (3), we have
SeM, —%L Yo Vi, S|0FVes Vi:B (AVY).
Furthermore, by (R_FAIL_S),

5o VillLsoale) = o Va(L?)
—g X > blamep .

Hence, by Lemma [T, we have
Yo My(| L arlo) —5 S blamep .

Therefore, it suffices to show that X | ) F blame p ~ blame p : A. By Lemma 23, we have - X and
YF@and X |0+ A. Therefore, by (Bs_.BLAME), ¥ | @ - blame p & blamep : A.

Case (R-CoLLAPSE_C): We are given
My = V2<G'>7 c= G?pv M, = VQa X =X (Elp7 G7 V2) :

Since ¥ | k¢ G?P : B ~» A is derived by (CT-PrOJ_C), we have B = x and A = G. Therefore,
since X | ) F Vo(G!) = My : x and Vo(G1!) is a value, by the case (3), we have

YoMy —s X Vy, B|0F Vo(GYx Vyix (IV3).
Since ¥(x) = *, by Lemma 22, we have ¥ | ) kg Vj : x. Therefore, by Lemma EZ3, we have
Vi= Ulh: HY (3H,h, UL .
Hence, X | O b Vo(G!) ~ Us(h; H!) : x. We perform case analysis on the last rule to derive

| 0F Vol{G) = Us{h; H!Y : x, which is either of (Bs_CrcID), (Bs_.CrcIDL), (Bs_-CRC), or
(Bs_CRCMORE).

Case (Bs_CrcIp): Contradictory because there is no identity coercion id 4 such that [ida|g = h; HL.
Case (Bs_CrcIDL): Contradictory because G! is not a no-op coercion.
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Case (Bs_CRrc): We are given
h;H' = |Gy, Z|0FVomUs:D, X|0Fec G':D~x% (3D).
Since ¥ | @ F¢ G!': D ~» % is derived by (CT_INJ_C), we have
D=G, +%, XZFHO, Z|0FG.
Also, G does not include any free type variables. Therefore,
hy Hl =[Gy = lidglp s Gt [G?]p = G?7;idglp -

Hence, H = G and h = |idg|g. Furthermore, by Lemma [CT, |idg|g § [idg|p = |idg|g. Therefore,

(hs HY) |G g = (lidglo; G) §[G?P]y
= (lidelp; G1) 3 (G?7; |idclg)
= lidglp s lidclo
Therefore, by (R-MERGE_S), we have
Lo Vi(|GPlg) = D> Uy(h; HO)(|G?7]p)

—s 2> Uy((h; H!)
= > Uylidelo) -

G?|p)

Also, by Lemma CZ3 and B =%, X | @ Fg M, : X(x). By (CT_PROJ_C), we have X | § o G?? :
*x ~» G. By Lemma [3, we have X | § Fg |G?P|y : (%) ~ X(G). Therefore, by Lemma T4,

S e My(|G?P]g) —5 X Us(lidel) -

Hence, it suffices to show that ¥ | 0 + Vo &~ Uj(lidg|p) : G, which holds by (Bs_CrcID).
Case (Bs_CRCMORE): We are given

h;H! =53

Glop, S|0F Var Us(s):D, S|0re G':D~x (35,D).

Since ¥ | § k¢ G!: D ~» % is derived by (CT_INJ_C), we have D = G. Furthermore, by
Lemma [48, there exists an intermediate coercion j such that s’ = j. Hence, by Lemma =22, we
have X | 0 Fg U(j) : X(G). Since this judgment is derived (T_CRC_S), we have ¥ | @ g j :
D’ ~ 3(@G) (3D’). Therefore, by Lemma [T, we have j ¢ |idg|g = j. Therefore,

hi;H!' =s"3|Gy
13 1Glg
i3 |G g
5 (lidalo 5 GY)
(73 lidelg) ; G
(73 lidclp) 5 G!
=7;G!.

73
75
753

Hence, H = G and h = j. Furthermore,

(h; G §|G?]g = (h; GY)§|G?P]y
= (h; GY)3(G?";idglo)
= hslidely
= hslidgle
=h.
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Therefore, by (R-MERGE_S), we have

e Vo(lG?g) = X» Usg(h; GY{G?7]y)
= X Ug(h; GO{G?]o)

= X U2 h, G'><G |IdG|q)>

NG5 idalo)

—sg N> Ug((h; GY) 5 (G?7; lidale))
—g X Uphslidglg)

= o UR) .

(
(
(
= X Uyh;G!
(
(
(

By case analysis on h.
Case h =id: We have X | § kg id : D’ ~ 3(G). Since this judgment is derived by (CT_ID_S),
we have D’ = X(@G). Therefore, by (R_ID_S) and what have been proven, we have

Y VoG |g) —s T > Ug(h)

= Yo Uy(id)
—s XUy .
Therefore, by Lemma [CI8, we have
Do Mylclp) = T Mp{|G?7]o)
—5X> Uy .

It suffices to show that ¥ | 0 F Vo = Uj : G. Since X | O - Vo(G!) =~ Uj(id ; G!) : %, by
Lemma [B8, we have ¥ |+ Vo =~ Uj : G.
Otherwise: Uj(h) is a value. Therefore, by Lemma [I8, we have
S o My(lclg) = B> My(|G?7]o)
—E S Us(h) .
Hence, it suffices to show that ¥ | 0 - Vo ~ Uj(h) : G, which already holds.
Case (R_CoNFLICT_C): We are given

= Vo(G!), ¢=H??, M = blamep, G#H, ¥ =% (@p, G H,V3).

Because & | ) k¢ H7p B ~~ A is derived by (CT_-PROJ_C), we have B = x and A = H. Therefore,
S| 0F Vo(G!) ~ M, : %, so by the case (3), we have

YoMy, —5 Ze V), D|0FV(GY)=Vy:x (3Vy).
By Lemma 22 and Y(x) = x, we have ¥ | } Fg V3 : x. Therefore, by Lemma [E2H, we have
Vy = Uslhg ; Hy!) (3he, Ho, U3) .

We perform case analysis on whether H, = H or not.

Case Hy = H: We perform case analysis on the last rule to derive ¥ | 0 = Vo(G!) & Uj{hy ; Hy!) : %
which is either of , which is either of (Bs_CrcID), (Bs_-CrcIDL), (BS_CRcC), or (BS_CRCMORE).

Case (Bs_CrcID): Contradictory because there is no identity coercion id4 such that |idalg =
h; H

Case (Bs_CrcIDL): Contradictory because G! is not a no-op coercion.

Case (Bs_CRC): We are given

hg;Hg!:|G!|@, Z|@'—V2 U2 D Z|®}—C G!': D~ % (HD)
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Since ¥ | § F¢ G!: D ~» x is derived by (CT_INJ_C), we have D = G. Also, G does not
include any type variables. Therefore, |G!|g = |idg|g ¢ G!. Hence, by Lemma 22, we have
Y| 0 kg Uy:3(G). Therefore,
hQ 3 HQ' = |G'|@
= |idg

03 Gl

Hence, H = H, = G, which is contradictory to G # H.
Case (Bs_CRCMORE): We are given

hy i Hol = 83|y, S|0F Vam UMs'): D, S|0Fc Gl:D~x (3s,D).

Since ¥ | @ F¢ G!: D ~ % is derived by (CT_INJ_C), we have D = G. Furthermore, by
Lemma 8, there exists an intermediate coercion j such that s’ = j. Hence, by Lemma 232,
we have ¥ | ) Fg Us(j) : £(G). Since this judgment is derived (T-CRC_S), we have ¥ | ) g
j: D'~ 3(G) (3D'). Therefore, by Lemma [T, we have j ¢ lidg|g = j. Therefore,

hy s Hol = 8" |G|y

=731GYe
=73|Gp
=73 (lidglp; G)
= (j3lidglo) ; G!
= (jslidalp) ; G!
=7;G!.

Hence, H = H, = G, which is contradictory to G # H.
Case Hy # H: We are given

(ho s Hol) § [H?P|g = (hg s Ha!) § (H?? 5 |idg|p)
=17

Therefore, by (R-MERGE_S) and (R_FAIL_S),

S Uslhg s HOY(JH?P|g) —s B> Ug(LP)
—g X > blamep .

Hence,

S0 s My:S(x), S0 ks [H?)y: D) ~ 2(G),
Y My —5 X Uylhy s He!), S Uslho; Ho!)(|H?P|p) —& X > blamep .

Therefore, by Lemma [T, we have

o My(lelo) = T o My([H?"|p)
—% X > blamep .

Hence, it suffices to show that ¥ | @ I blamep =~ blamep : A. By Lemma [23, we have - 3 and
Y@ and X |0+ A. Therefore, by (BS_BLAME), X | @ - blame p ~ blame p : A.

Case (R_-REMOVE_C): We are given
M2 = V2<Oé_>, c = Oé+, M1 = Vg, 21 =X (Hp,a, Vg) .
Since ¥ |0 k¢ at : B ~» A is derived by (CT-REVEAL_C), we have

B=a, A=A «a:=AcX (3A).
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Furthermore, we have |a™|y = id. By (Bs_.CrcID), ¥ | 0 F Vala™) = Mj(lidalp) : . Since
lida|g = id, we have & | O F Va(a™) ~ Mj(id) : a. Therefore, since Vo{a™) is a value, by the case
(3),
My{ja™|g) = M3(id) —%5 Vg, X |0F Vala )= Vy:a (3V5).
Therefore, it suffices to show that ¥ | 0 - Vo &~ Vy : A. We perform case analysis on whether V3 is
a coercion application or not.
Case V§ = Uy (3Uy): Since X | O F Vala™) = Uj : a is derived by (Bs_CrcIDL), we have X | )
V2 ~ U2/ DAL
Case V§ = Uy(t) (3U5,t): By Lemma and Vs is a value, we have Vo = Vy(vey) -+ {(ve,—1) and
ve, = o~ for some Vi, wveq, ..., ve,. By Lemma 24, there exists nonnegative integer j < n such
that
An:A, An,1:A7 Z|@|‘V4%U2/A0,
E|®}_UCZ'ZAZ',1WA¢, (E'Ao,...,An)7
and
t= |idA7+1|03|vcj+1|Q);"'g‘Ucn+1|(/)a 'Uci:szI (ch{v"'avcl) (1§Z§J) .
By Lemma [T, we have
t=lida; . lo§lvcivalos-- -5 venlo

= lida; 1o 3 vejt1lo 3 5 [ven—1lo $la[p

= |vcjp1lp -5 ven—1lo

= lidaglo§[veilo s -5 lvetlo s lociaala s 5 lven—1lp

= lidaglo §lvealp s+ 5 [ven—1lo -
By Lemma E9, - ¥ and ¥ + § and ¥ | § + Ay. By (C1Ip.C), X | § k¢ ida, : Ag ~ Ao.

Therefore, it suffices to show that 3 | 0 = Vi(vey) -+ (vep—1) & Ug(lid 4, |p3]verlps: - -$|ven—1le) : A,
which is given by applying (Bs_CrcID) and (BsS_.CRCMORE) n — 1 times.

Case (R_SpLIT_C): We are given

My =V, c=c1;5¢, M =V{a)e), L1 =% (Fe,c, Vo).

Therefore, it suffices to show that
S 10F Valer) (e2) = My(lers ealp) - A
Because X |0 F¢ ¢1;ca: B~ A is derived by (CT_SEQ_C), we have
S0 ke e1:BwD, S|0kc c:D~A (3D).
Therefore, because X | ) - Vo ~ M3 : B, by applying (Bs_CRCMORE) twice, we have
S|0F Valer) (e2) = My((Jewlo) 3 |e2lo) - A -
Hence, it suffices to show that
le1 s calo = (lerlo) 5 lealo -
By Lemma 3, we have
S0 Fs falp: X(B) ~ (D), B0 ks |ealg: B(D) ~» 5(4) .
Hence, by Lemma [T, we have
(Iealo) 5 lealo = (Jelo 5 lealo) -

Therefore,

le1; calp = (Je1lg § | c2ln)
= (lcilo) 3

CQ|@ .
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Case (R-BLAME_C): We are given
My = blamep, M; = blamep (3p) .
Therefore, because X | @ - blame p ~ MJ : B, by the case (5), we have
> My —% Y blamep .

By case analysis on the length of the evaluation sequence ¥ > M; —% X > blamep.
Case the length is zero: We are given M, = blame p, but it is contradictory.
Case the length is larger than zero: We are given

> My, —s X > My, YoM, —5 X>blamep (3IX, M) .

By Lemma [, we consider the following three cases.
Case (1) in Lemma [Z20: We are given

5> My(|clo) —5 X > (blamep){|clo) -
Therefore, by (R_BLAMEC),

5o My(|clp) —5 X > (blame p)(|cly)
—g % > blamep .

Hence, it suffices to show that ¥ | ) - blamep ~ blamep : A. By Lemma [Z3, we have - X
and X 0 and ¥ | = A. Therefore, by (Bs_BLAME), ¥ | § - blame p ~ blame p : A.

Case (2) in Lemma [Z0: We are given

S o My(lclo) —5 > Mi((s"55) 5 |clo),
blamep = M;(s'3s), X |0+rg s :D~ C (3D,s, M) .

However, blame p = M/ (s’ 3 s) does not hold, so there is a contradiction.
Case (3) in Lemma [ZI: We are given

Y My(|clg) —% X >blamep’, blamep = blamep’ (3Ip’) .

Because blamep = blamep’, we have p = p’. Therefore, it suffices to show that ¥ | 0 F
blame p & blame p : A. By Lemma [Z3, we have - X and ¥ F () and X | § = A. Therefore, by
(BS-BLAME), X | ) - blame p = blame p : A.

Case (R_CTXx_C): We are given
My = Ms{(c), > My —¢c E1> Mz (IM3) .
Therefore, by the IH, we have
i My —E Yo My, XMy —5 Sa> My, 9|0k My~ M;:B (359, My, M) .
Hence, by (R_.CTXx_C),

X M2<C> —c X1 D> M3<C>
—>2« Yo > M4<C> .

Furthermore, by Lemma [29, we have ¥ | ) Fo My(c) : A. We perform case analysis on the length
of the evaluation sequence ¥ > My —% Xo > Mj.

Case the length is zero: We have ¥ = Y9 and Mj = M,. Furthermore, we have ¥ | 0 b My ~ M, :
B. Therefore, by (Bs_.CRCMORE),

S0 Mile) ~ My{clp) : A .
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Case the length is larger than zero: We are given
YoMy —s YoM, YoM —L S M (3X,M).

Therefore, by Lemma 21, we consider the following three cases.
Case (1) in Lemma [20: We are given

Y My(lclg) —5 2> My(|clg) -
Therefore, it suffices to show that
22 | (Z) = M4<C> ~ M4<|C|@> A

Now, we have o | 0 - My ~ M, : B. By Lemma 23, - ¥ and X + () and 3 | § - B. By
(CtIn_C),X |0 ¢ idg : B ~ B. Therefore, by (Bs_CrcIb),

22 | (Z) H M4 ~ Mi<|ldB|@> : B .

Hence, by (BS_.CRCMORE), Xs | @ = My(c) =~ M/(|idg|g 3 |clg) : A. Therefore, it suffices to
show that [idg|g $|clp = |c|p, which is given by Lemma [CTTI.
Case (2) in Lemma [20: We are given

Yo My(lclo) —5 Ba> Mg((s"55)5lclo), My= Mg(s'ss),
22|@|_S S/ZDWC (HD,SI,M(;).

Therefore, it suffices to show that
Np [ 0+ My(e) ~ Mg((s"55) 5 [clg) : A .
Because 3o | 0 - My ~ M{(s" 3 s) : B, by (Bs_CRCMORE), we have
Np [ O+ My(e) ~ Mg((s"55) 5 [clg) : A .
Case (3) in Lemma [ZZ0: We are given
Y My(|clg) —& o >blamep, M; = blamep (3p) .

Therefore, X5 | @ = My ~ blamep : B. Since X5 | 0 - My ~ blamep : B is derived by the
combination of (Bs_CRCIDL) and (Bs_BLAME), there exists n > 0 and ¢!, ..., c] such that

My = (blamep){ci)---(c},), Ang1=B, 2|0t ¢+ Ai~> Ay,

n

22|@|_C,{ZAZ'M->AZ‘+17 "22, ZQ"@, 22|@|_A1 (3A17...,An+1).
Therefore, by (R-BLAME_C), (R-CTXx_C) and what have been proven, we have
> M2<C> —)*C Yo > M4<C>

= Yy (blamep){cl)---(c){c)

— ¢ Yo > (blame p)(cd) - (cl)(c)

—C ...

—¢ Yo > (blame p)(c)

—¢ Yo > blamep .

Furthermore, by Lemma 22, we have ¥ | ) F¢ (blamep)(cl)---(cL){c) : A. Therefore, by
Theorem ET9, we have B = A; = A (1 <i <n+1). Hence, it suffices to show that

Yo |0+ blamep ~ blamep : A .
Therefore, by Lemma 23, we have - Y5 and X3 - 0 and X9 | @ = A. Hence, by (BS_BLAME),
Yo | 0+ blamep ~ blame p : A.
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Case (Bs_CrcIp): We are given
M = M(lidalg), S|0FM=~M:A (3M]).
By the IH,
L1 M —E Yo My, XM —%5 Yo My, So |0F My~ My: A (3Xa, My, M) .
Furthermore, by Lemma 22, we have
S0 Fs M :S(A) .

Moreover, by Lemma [Z3, we have H ¥ and ¥ + () and ¥ | § - A. Therefore, by (CT_-In_C),
|0 ke idy: A~ A. Hence, by Lemma 3, we have

|0 ks [idalp: X(A) ~ X(A) .

Therefore, by Lemma 20, we consider the following three cases.

Case (1) in Lemma [20: We are given
5o M (fidale) —5 Tz > My{fidale)
Therefore, it suffices to show that
S [0+ My ~ M{fidaly) A
Now, we have Xo |0 - My = M, : A, so, by (Bs_CRcID), we have
S5 [0F My~ My{fidaly) : A
Case (2) in Lemma [20: We are given
55 M(fidale) —% Sa b My{slidale), M= M(s) (3s,M]).
Therefore, it suffices to show that
Yo |OF My = Mi(sslidalg): A .
Now, we have Xo | O b My = Mj(s) : A, so by Lemma 29, we have X5 | § bg Mi(s) : Z(4).
) (

Because this judgment is derived by (T_-CRC_S), we have X3 | Fg s: B ~ X(A4) (IB). Therefore,
by Lemma Lemma [T,

s3lidalp = s lidalg

=S .

Therefore, it suffices to show that 3o | 0 b My ~ M{(s) : A, which holds already.
Case (3) in Lemma [20: We are given

Yo M(lidalg) —% So> My .
Therefore, it suffices to show that
ZQl(Z)I—MQWMQ/ZA7

which holds already.
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Case (BsS_CRCMORE): We are given

M = Ms(c), M'= Mj(s3|cly),
S0 My~ My(s):B, S|0bcc:B~A (3B,c s, My, M) .

By Lemma 222, we have
|0 ks Mi(s):3(B) .
Since this judgment is derived by (T_CRC_S), we have
Y[0tFgs:C~X(B) (30).
By Lemma [3, we have
10 Fs lelg: X(B) ~ 5(4) .

We perform case analysis on the rule applied last to derive ¥ > My(c¢) —¢ X1 > Mj, which is one of
the following rules.

Case (R_.ID_C): We are given
M2 = VQ, c = idA/, M1 = VQ, 21 =% (HAI, VQ) .

Therefore, ¥ | § k¢ idas : B ~» A. Because this judgment is derived by (CT_-ID_C), we have
A’ = B = A. Therefore, since ¥ |0 Fg s : C ~ X(A), so by Lemma [T, we have s ¢ |idalp = s.
Furthermore, since 3 | ) = Vo ~ Mj(s) : A, by the case (3), we have

Lo My(s) —E X Ve, S|0FVoxVi:A (3V3).
Therefore,

o Miisslcly) = So Miss
= Y My(s)
—5E> Vg

idalp)

Hence, it suffices to show that ¥ | 0 = Vo = V; : A, which holds already.
Case (R_FAIL_C): We are given

My = Vo, c¢=1%,_,, M =blamep, X, =% (3p, A, B, Va).
Therefore, because X | O - Vo &= Mi(s) : B, by the case (3), we have
Yo My(s) —E X Ve, L|0FVoxVy:B (IVy).
Furthermore, by (R_FAIL_S),

Do VillLhoale) = S Vol ale)
= Y V(P
—g X > blamep .

Hence, by Lemma [T9, we have
Y My(ss|Lh 4oy —& X >blamep .

Therefore, it suffices to show that X | ) F blamep ~ blamep : A. By Lemma 23, we have - ¥ and
Y@ and X |0+ A. Therefore, by (BS_BLAME), X | @ - blame p ~ blame p : A.
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Case (R_CoLLAPSE_C): We are given

= VoG, c=G7, M = Vs, %, =3 (Ip, G, Va).
Since ¥ | 0 k¢ G?P : B ~~» A is derived by (CT_PrROJ_C), we have B = x and A = G. Therefore,
Y0 Vo(GY) = Mj(s) : %, so by the case (3), we have
Yo My(s) —E X Vy, T|0F Vo(G) =~ Vy:x (3Vy).
By Lemma 22 and (%) = x, we have ¥ | § Fg V3 : . Therefore, by Lemma [EZH, we have
Vi=Ulh:HY (3H,h, U .

Hence, ¥ | 0 + V2<G'> ~ Uj(h; H!Y : x. We perform case analysis on the last rule to derive

Y| 0F VolGY =~ Uj{h; H!) : x, which is either of (Bs_-CrcID), (Bs_CrcIDL), (Bs_CRc), or

(Bs_CRCMORE).

Case (Bs_CrclID): Contradictory because there is no identity coercion id 4 such that |idalg = h; H!.

Case (Bs_CrcIDL): Contradictory because G! is not a no-op coercion.
(

Bs_Crc): We are given
hiHI=|Gly, S|0FVam U,:D, S|0 ke Gl:D~s« (3D).

Since ¥ | @ F¢ G!: D ~~ x is derived by (CT_INJ_C), we have D = G. Also, G does not include
any free type variables. Therefore,

Case

h; H = |Gy
= lidglo; G
Hence, H = G and h = |idg|g. Furthermore, by Lemma [T, |idg|g ¢ lidg|g = |idg|p. Therefore,
(h; G 31GP] = (daly; G 31GP]o
= (lidalo; G5 (G775 [idclo)
= lidalo 5 lidalo
= lidglg -

Therefore, by (R-MERGE_S), we have
e Vo(|GPg) = Te Up(h; GH(G?y)
—s > Uy((h; GY)s
= v Us(fidelp) -

)

Hence, by Lemma [T4,
X My{|G?Pg) —s B> Uglidalo) -
Therefore, it suffices to show that X | 0 - Vo =~ Us{|lid¢|y) : G, which is given by (Bs_CrcID).
Case (BS,CRCMORE). We are given
hiHl =s'3|Glg, S|0F Vam ULs'):D, S|0Fc Gl:D~x (3s,D).

Since ¥ | § k¢ G!: D ~ % is derived by (CT_INJ_C), we have D = G. Furthermore, by
Lemma [Z8, there exists an intermediate coercion j such that s’ = j. Hence, by Lemma 22, we
have ¥ | § Fg Us(j) : £(G). Since this judgment is derived (T_CRC_-S), we have ¥ | 0§ Fg j :
D'~ ¥(G) (3D’). slidg|g = j. Therefore,

h;H!= ’°|G!|@
=7351G
=7351G
=73 (lidglg; GY)
(]9|idG|®);G
=(j3lidalg); G
=7;G!.
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Hence, H = G and h = j. Furthermore,

(h; GY3[GTg = (h; G1)§|G?P[y
= (h; G1)5(G?";lidglp)
= hslidaly
=hslidalo
=h.

Therefore, by (R-MERGE_S), we have

Lo Vi(|GPlp) = T» Us(h; GH{G?|y)

= X Us(h; GI)(|G?]p)

= Yo Uy(h; GY(G? ;lidglp)

= X U2<h,G'><G7p |IdG|@>
—rs D> Us((h; G1) 3 (G5 ]idglo))
—g X > Uy(hglida|g)
= Yo Uy(h) .

By case analysis on h.

Case h =id: We have X | § kg id : D’ ~ 3(G). Since this judgment is derived by (CT_ID_S),

we have D' = X(G). Therefore, by (R_ID_S) and what have been proven, we have

Y V2/<|G?p|@> —9 Y U2/<h>

= Yo Uy(id)
—s XUy .
Therefore, by Lemma I8, we have
S My(sslelp) = S>My(s5[G?]g)
—¢E> Uy .

It suffices to show that ¥ |0 F Vo = Uj : G. Since & | 0 F Vo(G!) =~ Uj(id; G!) : x, b

Lemma B3, we have X |0 - Vo = Uj : G.
Otherwise: Uj(h) is a value. Therefore, by Lemma [I8, we have

Yo Mi(sslelg) = X My(ss

—& T Uy(h) .

)

Hence, it suffices to show that ¥ | 0 = Vo &~ Uj(h) : G, which already holds.
Case (R_ConrLICT_C): We are given

= Vo(G!), ¢=H?, M = blamep, G#H, ¥ =% (@p, G H,V>).

y

Because X | @ ¢ H?? : B ~ A is derived by (CT_PR0OJ_C), we have B = x and A = H. Therefore,

|0 VoGl =~ Mj(s) : , so by the case (3), we have
Yo My(s) —e X Ve, T|0F Vo(G)~ Vy:x (3Vy).
By Lemma 22 and Y (%) = +, we have ¥ | } kg V3 : x. Therefore, by Lemma [EZ2H, we have
Vo = Uylhy ; Hy!) (3hg, Ha, Uy) .

We perform case analysis on whether Ho = H or not.

Case Hy = H: We perform case analysis on the last rule to derive ¥ | 0 b Vo(G!) = Uj(hy ; Ha!) : %
which is either of , which is either of (Bs_CrcID), (Bs_CrcIDL), (Bs_CRcC), or (BS_CRCMORE).
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Case (Bs_CrcIp): Contradictory because there is no identity coercion id4 such that |idalg =
h; H

Case (Bs_CrcIDpL): Contradictory because G! is not a no-op coercion.

Case (Bs_Crc): We are given

hy i Hol = |Gllg, S|0F Vom U,:D, X|0Fc Gl:D~x (3D) .

Since ¥ | @ F¢ G!: D ~» % is derived by (CT_INJ_C), we have D = G. Also, G does not
include any free type variables. Therefore, we have |Gl|g = |idg|p ; G!. Therefore,

hg N HQ' = |G'|@
= lidely; G! .

Hence, H = H, = G, which is contradictory to G # H.
Case (BS_.CRCMORE): We are given

hys Hol=s"§|Glg, X |0 Vom Us(s'y: D, X|0tFc G':D~x (3s,D).

Since . | 0 F¢ G!: D ~~» % is derived by (CT_INJ_C), we have D = G. Furthermore, by
Lemma [28, there exists an intermediate coercion j such that s’ = j. Hence, by Lemma X2,
we have ¥ | 0 Fg Ug(j) : £(G). Since this judgment is derived (T_CRC_S), we have ¥ | 0 kg
j: D'~ 3(G) (3D'). Therefore, by Lemma [T, we have j § |idg|g = j. Therefore,

hy s Hol = 8" ¢ |G|y

=73|Go
=7 3|Go
=73 (lidglp; G!)
= (jslidglp) ; G!
= (jslidglp) ; G!
=7j;G!.

Hence, H = H, = G, which is contradictory to G # H.
Case Hy # H: We are given

(ho; Ho!) s [H?P|g = (ho 5 Hy!) § (H?P 5 |idglp)

=17

Therefore, by (R-MERGE_S) and (R_FAIL_S),

Yo Uylhy s HoY(|H?P|g) —s X Ug(LP)
—g X > blamep .

Hence,

N0 bs My(s):5(x), [0 Fg [H?P|p: X(x) ~ 3(G),
Y > My(s) —§ X Uylhy s Hol), X Us(he; Ho!){(|H?P|p) — X > blamep .

Therefore, by Lemma [TU, we have

To My(sslclo) = X My(ss|H?|p)
—5 X > blamep .

Hence, it suffices to show that ¥ | f  blamep ~ blamep : A. By Lemma [23, we have - 3 and
Y+ ®and X |0+ A. Therefore, by (BS_.BLAME), X | @ - blame p ~ blame p : A.
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Case (R_-REMOVE_C): We are given
M2 = V2<of>, c = OéJr, Ml = VQ, 21 =X (Elp,a, Vg) .
Since ¥ |0 k¢ at : B ~ A is derived by (CT-REVEAL_C), we have
B=a, A=A, a:=AcX¥ (3A).
By Lemma [B0, s = ¢ (3i). Therefore, we have
s3latly =s3laly
=s3id
=i35id
=1.

Here, we have ¥ | 0 - Va(a™) &~ MJ(i) : @. Then, by the case (3),

My(s

atlg) = My(i) —5 Vs, S|0F Vala Y= Vy:a (3V3).

Therefore, it suffices to show that ¥ | @ Vo &~ V3 : A. We perform case analysis on whether Vj is

a coercion application or not.

Case V4 = U (3U3): Since X | O F Vala™) = Uj : « is derived by (Bs_CRcIDL), we have X | 0 -
V2 ~ UQI DA

Case V§ = Uy(t) (3U4,t): By Lemma and Vs is a value, we have Vo = Vy(vey) -+ {(ve,—1) and
ve, = o~ for some Vi, veq, ..., ve,. By Lemma X4, there exists nonnegative integer j < n such
that

An:A, An_liA, Z|@FV4%U2/A0,
E|®}_UCiZAi_1WAi, (E'Ao,...,An)7

and
= |idAj+1|®;|UCj+1|@;"'g‘Ucn+1|®a ’UCZ':’UCZI (306{7"'7UC§) (1SZSJ) .
By Lemma [T1, we have

t=lida; i lo s veivilos -5 lvenlo
= lida, 10§ lvcjsalo s+ 5 [ven—1lo 5l o

= |vcjp1lp -5 ven—1lo

= lidaylo 3 lvetlo s -5 lvello s lvejalo 35 [ven—1lo

= lida,lo § veilp s -5 ven—1lp -

By Lemma E9, - ¥ and ¥ + § and ¥ | § F Ap. By (CTtIp.C), ¥ | § k¢ ida, : Ao ~ Ao.
Therefore, it suffices to show that ¥ | 0 = Vy(ver) -+ - (ven—1) = Ug(lid 4, lgs|verlps: - -3lven—1lo) : A,
which is given by applying (Bs_CrcID) and (BS_.CRCMORE) n — 1 times.

Case (R_SpLIT_C): We are given

My = Vo, c=c1;c, M =Vo{c)e), X1 =X (e, Vo).
Therefore, it suffices to show that
L[ 0F Valer) (ca) = My(sslers calg) - A
Because X | F¢ ¢1;¢o: B~ A is derived by (CT_SEQ_C), we have

Y|Oktc ca:B~D, Y|0Fc c:D~~A (3ID).
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Therefore, because ¥ | @ = Vo &~ Mj(s) : B, by applying (Bs_CRCMORE) twice, we have
LI0F Valer) (e2) = My((s5[crlg) 3 lealo) - A -
Hence, it suffices to show that
sglen; calo = (s5leilo) 5 calo -
By Lemma [3, we have
10 ks lealp: B(B) ~ X(D), X0 ks ealp: (D) ~» E(4) .
Hence, by Lemma [, we have
(s5leilo) 5 lealo =55 (Iealo 5 [e2lo) -

Therefore,

s3ler;calg =83 ([cilo s lealp)

= (s3]calo) 5 lcalo -
Case (R-BLAME_C): We are given
My = blamep, M; = blamep (3p) .
Therefore, because X | @ F blame p &~ M, (s) : B, by the case (5), we have
Y > My(s) —% X blamep .

By case analysis on the length of the evaluation sequence X > My(s) —% 3 > blame p.
Case the length is zero: We are given M;(s) = blame p, but it is contradictory.
Case the length is larger than zero: We are given

S M(s) —g XM, XM, —% Soblamep (3%, M) .

By Lemma [, we consider the following three cases.
Case (1) in Lemma [Z20: We are given

Y > My(ss

clg) —5 3> (blamep)({cly) -
Therefore, by (R-BLAMEC),

B> My(s s |cly) —5 X o (blame p){|cly)
—g %> blamep .

Hence, it suffices to show that ¥ | ) - blamep ~ blamep : A. By Lemma [Z3, we have - %
and X+ 0 and ¥ | @ - A. Therefore, by (Bs_BLAME), ¥ | § - blame p ~ blamep : A.

Case (2) in Lemma [ZZ0: We are given
Zo My(sslclo) —5 X Mi((s"59) 5 |clo),
blamep = M;(s'3s), X |0tg s :D~ C (3D,s, M) .

However, blame p = M/ (s’ § s) does not hold, so there is a contradiction.
Case (3) in Lemma [20: We are given

Y My(ss

clg) —%& X blamep’, blamep = blamep’ (Jp’) .

Because blamep = blamep’, we have p = p’. Therefore, it suffices to show that 3 | 0
blame p = blame p : A. By Lemma [Z3, we have - X and ¥ 0 and X | ) = A. Therefore, by
(Bs_BLAME), ¥ | @  blame p ~ blame p : A.
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Case (R_CTXx_C): We are given
My = Ms{(c), > My —¢c 1> Mz (IM3) .
Therefore, by the IH, we have
1> My —E Yo My, X M(s) —5 Yo My, So|0F My~ M :B (I8, My, My) .
Hence, by (R_.CTXx_C),

Y > M2<C> —o 21 D> M3<C>
L Sy Mac)

Furthermore, by Lemma 22, we have X | § Fo My(c) : A. We perform case analysis on the length
of the evaluation sequence ¥ > Mj(s) —% 3o > M.

Case the length is zero: We have ¥ = Y5 and Mj(s) = M,. Furthermore, we have ¥ | ) - My ~
Mj(s) : B. Therefore, by (Bs_CRCMORE),

|0 Mylc) = My(sslelg): A .
Case the length is larger than zero: We are given
Yo My(s) —g X'> M, XM —t S M, (3X,M).

Therefore, by Lemma X, we consider the following three cases.
Case (1) in Lemma [20: We are given

¥ > My(ss

clo) —% T2 > Mi(|clp) -
Therefore, it suffices to show that
Yo | 0 My(c) =~ My(|clp) : A .

Now, we have o | 0 - My ~ M, : B. By Lemma 23, + ¥ and X + () and 3 | § - B. By
(CtIn_C),X |0 ¢ idg : B ~» B. Therefore, by (Bs_CrcIb),

22 | (Z) H M4 ~ Mi<|ld3|@> : B .

Hence, by (BS_CRCMORE), X5 | @ = My{(c) ~ M;{lidg|g 5 |clg) : A. Therefore, it suffices to
show that |idg|g $|clp = |c|p, which is given by Lemma [T
Case (2) in Lemma [20: We are given

Y My(ss

clp) —5 Bo> Mg((s"§s)5clg), My= Mg(s"s),
S |0 kg s’ D~ C (3D,s', M) .

Therefore, it suffices to show that
Sa |0 F Male) ~ MI(s'55)3 lelo) < A
Because 3o | 0 - My ~ M{(s"$s) : B, by (Bs_CRCMORE), we have
Sa |0+ M) ~ M(($5) 3 elo) : A -
Case (3) in Lemma [CX0: We are given

Y > My(ss

clp) —5 B2 >blamep, My = blamep (3p) .
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Therefore, X5 | @ - My ~ blamep : B. Since X5 | 0 - My ~ blamep : B is derived by the
combination of (Bs_CRCIDL) and (BS_BLAME), there exists n > 0 and ¢!, ..., c] such that
M4 = (blamep)(cb e <C{L>7 An+1 = B, 22 | @ F C{ N Az s A,‘+1,
Yo |0 F el Ay~ Ajpr, o Sob0, S |0F A (BAn,...,An) .

Therefore, by (R-BLAME_C), (R_CTx_C) and what have been proven, we have

Y M2<C> —)*C 22 > M4<C>
= Yy (blamep)(cl)---(ch)(c)
—c Bo > (blame p)(cd) - (cl)(c)
—>C ...
—¢ Yo > (blame p)(c)
—¢ Yo > blamep .

Furthermore, by Lemma [Z2, we have X5 | § o (blamep){cl)---(cl)(c) : A. Therefore, by
Theorem ETY, we have B = A; = A (1 <1i <n+ 1). Hence, it suffices to show that

Yo |0 F blamep ~ blamep : A .

Therefore, by Lemma [Z3, we have F X5 and 35 F () and X | @ - A. Hence, by (BS_BLAME),
Yo | 0+ blamep ~ blame p : A.

Case (Bs_CrcIDL): We are given
M = My{(c"), S|0+My~M :B, S |0tcc:B~A (3B, ¢, M) .

We perform case analysis on the rule applied last to derive ¥ > My(c!) —¢ ¥, > Mj, which is one of
the following rules.

Case (R_ID_C): We are given
My = Vo, f=idar, My =1V, % =% (34, V).

Since ¥ | @ k¢ ida @ B ~ A is derived by (Ct_ID_C), we have A’ = B = A. Therefore, by
Lemma [B8, ¥ > Va(ida) —¢& > Voand X |0F Vo= M/ - A,
Case (R_.REMOVE_C): We are given

My = Vola™), =a®, My =V, %, =% (3a, Vo).
Since ¥ |0 + aT : B~ A is derived by (CT_-REVEAL_C), we have
B=a, A=A «a:=AcX (JA).

By Lemma 38, there exists a non-cercion application value V3 and coercions ci,-- - , ¢, such that
Vola™) = Vi{c1) -+ {cn—1){a™) (¢ = a7 ) and Vo = V3{c1) - {cp_1). Therefore, it suffices to
show that X |0 F Vi{c1) -+ {cn_1) = M’ : A. We perform case analysis on M.

Case M' = Mj(s) (3s): By Lemma [39, there exists nonnegative j (1 < j < n) such that

c=c (1<i<j), ecn=0a", Appi=a, S|0F Vs M A, XS|0kFc c:Ai~ Ay,

§ = |idA7‘@ 3 ‘Cj+1|03"'3|cn|® (3A17"'3A7L+17C{7"'7C]I') .

Since ¥ | 0 k¢ a™ : A, ~ «a is derived by (CT_CONCEAL_C) and o := A € X, we have 4,, = A.
By applying (Bs_CrcIDL) j times, (Bs_CrcID), and (BS_CRCMORE) n — j — 1 times, we have

S0F Valer), oo () (ean)se s (enm1) = My(lida,fo 5 [cial0 5 -5 lenlo) - A .
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Furthermore, since ¢, = a~ is a no-op coercion, by Lemma [T, we have

s=lida,loslcivilos 5 lcnlo
= lida,lo s lciv1los---5la" g

= lida,lo 3 lcjrlo s

cn—1lo

Therefore, we have ¥ | 0 - Va(ef), ..., (c]) (¢jq1),. .., (cn1) = My(s) : A.
Otherwise: Since X | 0 F Vi{e1),...,{cn_1){a™) = M': a is derived by (Bs_CRrcIDL), we have

S0 Vi{er), ..o lecn )M :C, S|0Fca :C~a (3C).

Since ¥ | § k¢ o= : C ~ «a is derived by (CT_CONCEAL_C) and a := A € X, we have
C=A=A.
Case (R_SpPLIT_C): We are given

My = Vo, cf=clicd, My =Volcd)cd), ¥ =% @3, ).
Furthermore, 3 |} ¢ ¢l ; el : B ~ A is derived by (CT_SEQ_C), we have
S|0bFccd:B~C, S|0Fcch:C~A (30).

Therefore, it suffices to show that ¥ | § F Vo(cl) (ck) ~ M’ : A, which is given by applying
(Bs_CrcIDL) twice.
Case (R_.BLAME_C): We are given

M, = blamep, M; = blamep (3p) .
Therefore, because ¥ | @ - blamep ~ M’ : B, by the case (5), we have
LM —% Y blamep .

Hence, it suffices to show that ¥ | @ F blamep ~ blamep : A. By Lemma 23, we have - X and
YF@and X |0+ A. Therefore, by (Bs_.BLAME), ¥ | @ - blame p = blame p : A.

Case (R_CTXx_C): We are given
My = Ms(c!), S My —¢c S0 My (IM3) .
Therefore, by the IH, we have
1> My —E Yo My, YoM —% Sae My, So|0F My~ M:B (359, My, M) .
Hence, by (R_.CTXx_C),
Yo My(c!h) —¢ 21 > Ms(ch)
5 To b My(c!) .
Therefore, it suffices to show that ¥ | § = My(c!) ~ M : A, which is given by (Bs_CRrcIDL).
(4) By induction on the derivation of ¥ | 0 - M ~ V' : A with case analysis on the last rule used.

Case (Bs_CoNsT), (Bs_ABs), (Bs_TyaBs): Because M is a value, we have the conclusion by letting V' =
M.

Case (Bs_CrcID): We are given
V' = Ul{idalg), S|0FM~U:A S|0Fcida: A~ A (3U]).
By the IH,
SeM —5LSs Vi, S|0FVixa U A GW).
By (Bs_CrcID), X | O F Vi ~ U{{lidalg) : A.
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Case (Bs_CRrc): We are given
M = M(c), V'=U{{clp), T|0-My~U :B, X|0tcc:B~A (IB,c,M,U]).

By Lemma [38, there exist some Ms that is not a coercion application, n > 0, and ¢y,... ¢, such
that Mi(c) = Ma(c1)---(c,) and ¢, = c. Since U is a value, there exists ¢/ ... ¢/ _; such that

c; =cl (1 <i<n—1). Furthermore, by Lemma [0, we have
M2 = V27 An+1:14, Z‘w F CiZAiWAi+1 (1§z§n), E|®}_ Vg"&i UIIZAl (aAl,...,An+1) .
By Lemma 332, we consider the following two cases.
Case (1): where
Y V2<01>"'<Cn> —>*C Y Vg, E‘@" Vg’f?JUll<|C|@>A (E'Vg)
Then,
E>M1<C> = X V2<cl>~~<cn>
—o X V3.

It suffices to show that ¥ | ) - V3 =~ U{{|c|g) : A, which holds already.
Case (2): where

Yo Vale) - {cn) —¢& L blamep, |clp =17 (3p) .
It means that
V' = U{{|clo)
- L)
However, it is contradictory because Uj(L?) is not a value.

Case (Bs_CRCMORE): We are given

M = M{c), V' =U/(s3|clp), Z|0FM =~ U{(s):B, X|0Ftcc:B~A (3IB,c,s, M, U]).

By Lemma 38, there exist some Ms that is not a coercion application, n > 0, and ¢y, ... ¢, such that
Mi(c) = Ma(c1)---{cp) and ¢, = ¢. By Lemma [39,

E|®}_M2% Ul/ZAl, E|@ = ci:Ai“""Ai-&-l (1§z§n), An+1:A7 (HAl,...,A,,H_l)

and, for some k < n, ¢1, ..., ¢, are no-op and s = [ida,, 93 [cr+1l0 3§ |cnlp. By Lemma [0, there
exists a vlaue V5 such that My = V5. By Lemma 52, we consider the following two cases.

Case (1): where
Yo Vola) - (en) —& X Vs, S|0F Var Ul{ss|clp): 4 (3V3).
Then,

EDM1<C> = X V2<C1>~'-<Cn>
—)EED Vs .

It suffices to show that X | 0 F Vi ~ U{(s5|c|p) : A, which holds already.
Case (2): where

Y Valer) - {cn) —& L >blamep, s5lclp=L7 (3p).
It means that

V' = Uj(sslclp)
= Uj(L”) .

However, it is contradictory because Uj(L?) is not a value.
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Case (Bs_CrcIDL): We are given
M =M/, S|0FMy~V':B, X|0Fcc:B~A (3M,c,B).

By the IH, there exists V; such that ¥ > M; —% Y Vi and £ | 0 - Vi = V' : B. Therefore, by
(R_CTx_C), we have ¥ > M (c!) —% L Vi(c!). Moreover, by Lemma 58, there exists a value Vs
such that £ > Vi(c!) —& S Voand X |0 Vo V' Al

Case (Bs_VAR), (Bs_ApP), (Bs_TvaPP), (Bs_BLAME): Cannot happen because the RHS is a value.

(6) By induction on the derivation of ¥ | ) = M = blamep : A. We perform case analysis on the rule applied
last to derive ¥ | ) = M ~ blame p : A, which is either of (Bs_.BLAME) or (Bs_CrcIDL).

Case (Bs_BLAME): We have M = blame p. Hence, £ > blamep —¢ X > blame p.
Case (Bs_-CrcIDL): We are given

M=M(, Z|0rcc:B~A X|0FM ~blamep:B (3M, ', B).
By the IH, ¥ > M; —% X > blamep. By (R_BLAME_C), X > (blame p)(c!) —% X > blamep.

(2) By induction on the depth of the derivation of ¥ | = M =~ M’ : A. We perform case analysis on the rule
applied last to derive ¥ |- M ~ M’ : A.

Case (Bs_ConsT), (Bs-VAR), (Bs_ABs), (Bs_TvaBs), (Bs_-BLAME): Contradictory with ¥ > M’ —g
Zl > Ml/

Case (Bs_App): We are given
M= MM, M =MM, S|0FM~M:B—A S|0FM~M:B (3B, M, M, M, M) .
By case analysis on the rule applied last to derive ¥ > MJ Mj —g 3y > M{, which is one of the
following rules.
Case (R_-DELTA_S): We are given

My = ke, My = ks, M = 6(ka,k3), X1 =% (Tko,ks) .
By the case (4), we have
YoMy —E Ep Vo, X|0FVomk:B— A
YoMy —e Xp Vs, X|0FVs=ks:B.
We perform case analysis on whether V3 is a coercion application or not.

Case Vs is not a coercion application: Since ¥ | @ = Vo &~ kg : B — A is derived by (Bs_CONsT),
we have

Vo=hey, F3, TF0, ty(ke)=B—A.

By the definition of ty, B is a base type. Therefore, by Lemma [58, V3 is not a coercion application
and

Vs = ks, ty(ks)=5B.
Therefore, by (R-CTX_C) and (R_DELTA_C),
> My My —>*CE[>M2 V3
—)2« x> Vo V3
= ¥ kg kg
—rC > 5(k2, k‘g) .
Hence, it suffices to show that X | @ b §(ks, k3) = (ke, k3) : A. By (Bs_APP) and Lemma [23,
we have ¥ | @ ¢ ko k3 : A. Therefore, by the assumption on 6, X | § k¢ 8(ke, k3) : A. Because

this judgment is derived by (T_ConNsT_C), we have ty(5(ks, k3)) = A. Hence, by (Bs_CONST),
b)) | @ = §(k2, ]Cg) ~ 5(k2, kg) : A
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Case V3 is a coercion application: By Lemma 58, there eixsts Vy that is not a coercion application
such that

Vo= Vil = dly-- (! -dl), ©|0FVixky:By— Cy, B=DB,, A=C,,
Zl@"cCZI‘:Bini_l, Z|(Z)}—Cdf:0i_1w0i
(3Bel..chdl .. .dl By... By, Co...Cy) .

Since X | 0+ Vy = kg : By — Cp is derived by (BS_CONST), we have Vy = kp, and By and Cj
are base types. Furthermore, by Lemma 58, we have

Yo Valc) —& o VY, X|0FVixk:B,_1 (3Vy).
Therefore, by applying (R_-WrapP_C), (R_CTX_C), we have
Yo My My —5 S (kolel — dl)y - (] —al)) vs
—& B ((keef = di) -+ (eny = di_1)) (Valen)(dy,)

n—1 n—1

0 B> ((kafef = di) - {enoy = dy_1)) (V)){dy) -
Similarly, by Lemma and applying (R_-WRraP_C), (R_.CTX_C) repeatedly, we have
S0 VY~ ks: By,
and

S My My —¢ So ((kafef = di) -+ {eny = dyy 1)) (V3)){dy,)

n—1

—¢ S (k Vi) {dy) - (di) -

Since By is a base type, by Lemma [B8, V3’ is not a coercion application. Therefore, since
Y0k V§ ~ks: By is derived (Bs_CONST), we have V4’ = ks. Thus,

Lo (ky Vi) d)) - (d]) = o (kks)(d)) - (d])
—c 2 0(ka, kg)(dh) -+ (d]) .

Hence, it suffices to show that X | 0 & 6(ke, k3)(dL)--- (d}) ~ 6(ks, k3) : A. By (BS_AppP) and

Lemma 22, we have ¥ | ) k¢ koks : Cp. Therefore, by the assumption on 6, ¥ | § ¢

0(ka, k3) : Co. Because this judgment is derived by (T_CONST_C), we have ty(d(ke, k3)) = Co.

Hence, by (BS_-CoNsT), ¥ | 0 + §(ka, k3) ~ (ke, k3) : Cp. By (Bs_ConsT) and (Bs_CrcIDpL),
Case (R_-BETA_S): We are given

My = Xg: A My, My=V;, M = Mz:=Vy], % =% 34,2z, M, V3.
By the case (4), we have
YoMy, —¢ X Vo, XD|0FVomdz: A M:B—A.
By Lemma [58, there exists V4 that is not a coercion application such that

Vo=Vylct = aly--- (! = dl), B,=B, C,=A, X|0F VixAz:A .M]:By— Cp,
Y0 ke B~ By, X|0Fcd :Ciy~C (3l .. dl...d By... By, Cy...C) .

Furthermore, ¥ |0+ Vy = Az : A".M; : By — Cp is derived by (Bs_ABs), we have
Bo=A", Vi=Xe:Bo.My, 3|0,2:BoF My~ M :Co (3IMy).
Similarly, by the case (4), we have

YoMy —c N> Vs, XD|0FVsxVi:B.
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Furthermore, by Lemma (58, we have
Yo Vslcl) —E B VY, S|0F Vi x~k:B,1 (3VY).
Therefore, by (R-CTXx_C) and (R-WRrAP_C),

> My My —>E«ED Vo V3
= Yo ((Az:Bo.My){ch = dby - (] — dl)) Vs
—& S0 ((Az: Bo-Ma)(ci = di) - (ch_y —= dh,_1)) (Va(c)))(dh)

n—1 n—1
—& o ((Az: Bo-Ma){e = di) -+ ey — dy_q)) V3'){dy,) -

Similarly, by Lemma and applying (R-WRAP_C), (R-CTx_C) repeatedly, we have
S|0F VY~ V]: By,
and

= dy, 1)) V3){dy,)

Y My Mz —5 S o ((Az: Bo.My) (el —dl)y---(c
—5 2> (Az: Bo.My) V") (dL) - - - (d!

—¢ o (My[z = V3")){dy) - (d]) -

I
n—1
)

Hence, it suffices to show that X | O b (My[z := V3"]){dL) - (d}) ~ Mj[z := V] : A By Lemma [Z37,
S0k Mz = V3’ ~ Mjlz := V4] : Co. By applying (Bs_CRCIDL) repeatedly, we have
S| 0 My[z = Vi"{dL) - (d]) =~ Mj[z .= V]] : A.

Case (R-WRAP_S): We are given

My =Us(s = t), My = Vg, M= (Uy(V5(s)))(t), %1 =% (35,8, U3 Vy) .
Since My(= Uj(s — t)) and V4 are values, by the case (4),
YoMy, —e X Vo, N|0FVoam Uys—t):B—A (IVa),
and
YoMy —e X Vs, XD|0FVsx Vi:B (3Vs).
By applying (R-CTx_C) repeatedly, we have

> My Ms —)EED Vo My
—)*CZD Vo V3.

We perform case analysis on whether V5 is a coercion application or not.

Case V3 is not a coercion application: Since ¥ | § = Vo =~ Uj(s — t) : B — A is derive by
(Bs_CrclID), we have

|idB_>A|Q):S—>t, E|@}—0Id3_>A(B—)A)W(B—>A), E‘@"VQQU?/(B%A)
Furthermore, since

s—t=lidg_alp
= [idp—alo
= lidplp — [idalg
= lidplp — lidalp ,

we have

s=lidglg, t=lidalg .
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Therefore, it suffices to show that ¥ | 0 F Vo Vs = (Us (V4{lidg|g))){|lidalg) : A. By Lemma [23,
wehave FX, S FH(), 2| 0F A, X |0 F B. By (CT_Ip_C), we have

Y|Otrcidg: A~ A, 2|0 bFeidg: B~ B.

Hence, ¥ | 0 = Vo Vi & (U5 (V4({lidglg))){idalg) : A is derived as follows:
S0k Vs~ VB

Bs_CrcID

S|0F Vom U):B— A E@FVS’“VéqidBW:BEBsAPP))
S10F Vo Vs~ UL (Vi{idglo)) : A )
[0F V2 Vs = Uz (Vs(lidslo)) (Bs_Crclp)

E|0F Vo Vs = (U; (Vs(lidglg)))(lidale) : A
Case V3 is a coercion application: By Lemma 338 and Vs is a value, Vo = Vy{ver) - - - {(ve,,) for some
Vy, ver, ..., ve,, and n > 0. By Lemma [E374, we have

Bn:B, Cn:A, UCi:Ci%di, E|®}_V4%U2/ZB()—)C(),
Y[0tc ¢i:Bi~ Bi-1, Y|0kFc di:Ci1~ C;i (3er,...s¢n,d,...,dn,Bo,..., By, Co,...,Cp),

and there exists nonegative integer j such that

j<n, ¢ —d=c —d (1<i<j),

s —>t= ‘idA]+1|@3|Cj+1 — dj+1|@$---3\cn — dn‘@ (HC{,...,CJI,d{,...,dJI) .

By Lemma EQ, - Y and X @ and X |0 F By and X | @ - Cy. By (CtIn_C), X | 0 ¢ idp, :
By~ Bpand ¥ | 0 F¢ id¢, : Cy ~ Cp. Furthermore, by Lemma [CTH, we have

s—=>t= |idA]+1|(0 3 |cj+1 — dj+1|® ;;|Cn — dn|0
=lcjp1 = dig1lo s 5 len = dulp

o

I I o
=lcg > dilps--3

cf = dilgs-5le = digalos 5 len — dulo
= |Cl — dl‘@g"'ﬂcn — dn|®

=lct = dilps---§len = dulp

= (lerlo = ldilo) 5§ (Ienlp = |dnlo)

=(lenlo - 5leilo) = (Idilo s 51dnlp)

= (lenlo s~ 3lerlo) = (Idilo§ -5 [dnlo) -

Therefore,
s=lenlos-sleilg, t=ldilg§---35|dnlp -

We perform case analysis on V3 is coercion application or not.
Case V4 = U4 (3U4): By Lemma 23, - Y and ¥ F P and ¥ | ) - B. By (C1Ip_C), X | 0 F¢
idg : B~ B. By (Bs_.CrcID), X | 0 F V3 ~ Uj(lidglg) : B. Now, we have

S10F Viler = di) - (en = dn) = Up{([enlo 3 -5 lelp) = (Idilp s+ 5 ldnlo)) : B — A4,
S0 Vs~ Ulidsle) : B .

Therefore, by Lemma 53, we consider the following two cases.
Case (1) in Lemma [B3: We are given

EDMgMg 4)229 VQ V3
= ED(V4<61 — d1>"'<cn - dn>) Vs
—o 2> (Vi Ms)(dr) -~ (dn) (IMs)

and

S0 Ms~ Uslidglos|calos---¢leilo) : Bo -
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Hence, it suffices to show that

|0+
(Vi Ms)(dy)--- (dn)

~
~

(Uz (Us{lealo s+ lealo)))ldulo s -~ 5 dnlo)

By (Bs_App),
S|0F VaMs ~ Uy (Us(lidglo §lcalo s 5 leilo)) : Co -
By (Bs_CrcIp) and applying (Bs_CRCMORE) repeatedly, we have

|0
(VaMs)(dr) -~ (dn)

~
~

(Us (Us(lidslo 3 [enlos -5 crlo))){lidcylo s [dila s -5 |dnlo)

Therefore, by Lemma [T, we conclude the case by
lidglo§lenlos- - 5leilo = lenlos - 5lealo, lideolosldilos - 5ldnlo = |dilo5---5|dnlo -
Case (2) in Lemma [B3: We are given

YoMy My —& X Vo Vs
= ED(V4<01 — d1><Cn—> dn>) V.
—& X blamep (3p)

and
lidglo s lcnlos---5lcilo = L7 .

By Lemma EQ, - X and ¥ F () and X | 0 = B. By (CT_Ip_C), ¥ |0 ¢ idg : B~ B. By
Lemma [T and Lemma 4, |idg|g§|calg s - ¢ leilp = |cnlo s ¢ |c1lg. Therefore, we have

lenlos -5 lcilp = L7 .

Hence, by (R_-WRAP_S), (R_FAIL_S), (R_-CTXE_S), (R_-CTXxC_S), (R_.BLAMEE_S), (R_.BLAMEC_S),

we have

E>M2’M§—>§E|> Vo Vs

= X (U <(|cn|®;"'3|cl|®)_>(|dl|(2)3"'3|dn|®)>)US
_>52>(U2(U3<‘Cn|03 “$leilg)))(ldalg § -3 1dnlp)
= 20> (Uy (Us(LP){ldalo§ -5 |dnlo)
—>s2>(U2(blamep))< 055 1dnlo)

—5 Y (blame p)(|dig

-5 ldnlo)
—g X > blamep .

Therefore, it suffices to show that ¥ | §§ - blame p =~ blame p : A. By Lemma 23, we have
FXand X+ 0 and X |- A. Therefore, by (BS_.BLAME), ¥ | § F blame p & blame p : A.

Case V4 = U4(t) (3U4,t): By Lemma 53, we consider the following two cases.
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Case (1) in Lemma [B3: We are given

EDMgMg = ED(V4<01*>d1>"‘<Cn*>dn>)Vg
—re B> (VaMs)(dr) - (dn) (3M5) ,

and
S|0F Ms~ Us(tslenlos---$leilo) - Bo

Hence, by (R-WRAP_S), (R_MERGE_S), (R_CTXE_S), (R_-CTxC_S), (R-BLAMEE_S), (R-BLAMEC_S),
we have

EDMQ’M§—>§Z|> Vo Vs

= S (Ux{(enlo -3 lelo) = (Idilos -5 ldnlo))) (Us(t))
HSED( 5 (Us(t){lenlo s -5 lealo)))Idulo 5 -+ 5 dnlo)
—s X > (Uz (Us(ts (Ienlo s -5 erlo))))(dilo 3+ 5 dnlo)
= Xo (Uz(Us(tslealo s lelo)))ldilo s 3l dnlo) -

Therefore, it suffices to show that
S0F (Vo Ms)(dr) - (dn) ~ (U3 (Us(t 5 |enlo s -5 lealo)))(Idilo s~ §[dnlp) - A
By (Bs_App),
SI10F VaMs~ Uy (Us(tslenlo s 5 leilo)) : Co -

By Lemma [23, X and X+ 0 and X | 0 + Cy. By (CtIp_C), X |0 k¢ idg, : Co ~ Co.
By (Bs-CrcIp) and (Bs_CRCMORE) repeatedly,

E10F (VaMs){dr)--- {dn) ~ (Uz (Us(t5]cnlo 5 -5l erlo))){lideylo 5 [dalo s -~ 5 |dnlo) : A

Furthermore, by Lemma [CTT and Lemma 72, we have |id ¢, [p3|dilpe: - -5l dnlo = |dilps- - -2 dnlg-
Therefore, we finish the case.

Case (2) in Lemma [53: We are given

X> My My = ED(V4<01 — d1><0n — dn>) V3
—& Y blamep

and
tslenlos---slelo=L1" (3p) .

Furthermore, by (R_-WRAP_S), (R_.MERGE_S) (R_FaIL_S), (R_.CTXE_S), (R_.CTXC_S),
(R-BLAMEE_S), (R-BLAMEC_S), we have

EDMQ’M:;—)EED Vo Vs

= o (Ux{(lealos---5leilo) = (Idilo 3+~ 3 dnlo))) (Us(t))
—s Lo (Uz (U, <t><|cn|@ 5.5 lelo)))dilo§ - -5 dnlo)
—>s 5> (Uz (Us(ts (Ienlo s+~ 3lerlo)))){dilo s -5 dnlo)
= X> (Uy (Us(tslenlo s -5 lerlo))Idilos 3 |dnlo)
> (U (Us(LP)){Idrlo's - -~ 5 dnlo)
—5 2> (Uz (blamep)){[dily 5 -5 [dnlo)

—rs T (blame p)([dilp 5+ - -5 [dnlp)
—g X > blamep .

Therefore, it suffices to show that 3 | §§ - blame p = blame p : A. By Lemma 23, we have
FYand X+ 0 and ¥ | - A. Therefore, by (BS_BLAME), X | § - blame p ~ blame p : A.

183



Case (R-BLAMEE_S): We are given
Mj M} = E[blamep], M{ = blamep (Ip,E) .

Because Mj M4 = E[blame p], we consider the following two cases.
Case E =0 M4 and My = blamep: Since ¥ | O - My ~ blamep : B — A, by the case (6), we have
Y> My —% ¥ blamep. By (R-CTx_C) and (R-BLAME_C),

Y My My —& 3> (blamep) Ms
—c X > blamep .

Thus, it suffices to show that X | @ - blame p = blamep : A. By Lemma [Z3, ¥ and X + §) and
Y | )+ A. Therefore, by (Bs_.BLAME), ¥ | } - blame p = blame p : A.

Case E = Vi and Mj = VJ and M3 = blamep (3V3): Since ¥ | § - M3 ~ blamep : B, by the
case (6), X > M3 —¢ X > blamep. By the case (4), there exists a value V such that

oMy —E X Vo, B|0FVoxVy:B— A.
By (R-C1tx_C) and (R-BLAME_C),

> My Mg —>2«E[> Vo M3
—& 2> Va (blame p)
—¢c X > blamep .

Thus, it suffices to show that X | § - blame p = blamep : A. By Lemma 23, - ¥ and ¥ + () and
Y| O+ A. Therefore, by (Bs_BLAME), ¥ | @ - blame p ~ blame p : A.

Case (R_-CTXE_S): We are given
M{M = E[M], M = E[M], So M —s oM, (3EM,M).

Because Mj M4 = E[M,], we consider the following two cases.
Case E=0Mjand Mj = M;: By X |0 My~ Mj: B — Aand ¥> M) —g 31> M, and the
IH,

Elesl _>Z' EQDMé, EDMQ —>*C 22[>M67 EQ|@|_M6%MéB—)A (HZQ,Mﬁ,Mé).
By applying (R_CTXE_S) repeatedly, we have

S My M —ss ¥y > MM
—% S > MM

Similarly, by applying (R_CTx_C) repeatedly, we have
> My Mg —}E Yo > Mg Mg .

Therefore, it suffices to show that Xo | 0 b Mg Ms ~ M{ M4 : A. By Lemma 28, X5 | 0 - M3 =
M : B. Finally, by (BS_APP), Sy | 0 Mg My ~ M} M, : A.

Case FE = Vy0Oand Mj = Vj and Mj = M, (3V3): Because X | 0 = My =~ V; : B — A, by the
case (4), there exists some V5 such that

YoMy, —& B Vy, Z|0FVorVy:B—A.
By the IH (applied to X | 0 F M3 =~ My : B and ¥ > M{ —g X1 > M),

21DM5/ —)g ZQDMé, > Ms —>E’ 22l>]\467 22|®|_M6%Mé3 (HZQ,M(;,MG/).
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By applying (R_CTXE_S) repeatedly, we have
Se MM, = S V)M,
—s X1 Vg M
— Xo > Vo M .
Furthermore, by applying (R_CTX_C) repeatedly, we have

> My Mg —>62[> Vo My
—)gZQD Vo Mg .

Therefore, it suffices to show that 3o | 0 - Vo Mg ~ V4 M{ : A. By Lemma [Z8, 3y | - Vo =
Vg : B — A. Finally, by (BS_APP), Xo | O F Vo Mg ~ V3 M : A.

Case (Bs_TyApp): We are given
A=C[X:=B], M =MB, M =MB, S|0FM=~M,:vX.C, $|0FB (3X,B,C,M,Ms).

By case analysis on the rule applied last to derive ¥ > My B —g ¥ > M{, which is one of the
following rules.

Case (R_TYBETA_S): We are given
M, = AY.M),, B=B, M = MJ[Y:=qa], ¥ =3a:=8B (3Y,M,B,a).
Then, since AY.Mj is a value, by the case (4), we have
YoMy, —¢ X Vo, B|0F Vom AY. My :VX.C (3V2) .
By Lemma I35,

Vo= Va(vX.cl)---(vX.cl), ¢, =C,
Y0k Vs AY.M;:VX.Co, 2|0, X bFe el Ciq~ G
(Vg, Co,...,Cn,Cé,...,CJI-) .
Furthermore, since ¥ | ) - V3 ~ AY.Mj : VX.C is dericed by (Bs_TYABS), we have
X = Y, V3 :AX.(Mglco), El@,X"Mg%MéCQ <3M3)
Therefore, by (R-CTX_C) and (R-TYBETA_C),

Yo MyB —5 X VoB

= Yo (AX.(M3: Co){(vX.cl)--- (VX.cI)B
= Yo (AX.(Ms: Co)(VX.cI))B
—o B, =B (Ms3(ch))[X := a](coercel (C[X = a)))

= Y,a: =B (Mslc])---(cI)[X := a]{coerce (C[X := a]))
Hence, it suffices to show that

Ya=B|0+
(My{el) - (eh))[X = a]{eoerce (C[X = al)

~
~

M3[X = o]
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By Lemma 23, we have - 3 and X F () and X | § - VX.C. Therefore, by (TEW_TYVAR), X - (), X.
Furthermore, because ¥ | § - VX.C is derived by (TwW_PoLy), we have ¥ | §, X  C. Therefore, by
Lemma ET7, we have

2|0 b coerce (C[X :==a)): C[X :=a] ~ C[X :=B].

Moreover, by Lemma [R, coercel (C[X := a]) is a no-op coercion. Now, we have ¥ | 0, X
M; =~ Mj : Cy. By Lemma @8, ¥,a0 := B | §,X - M3 ~ M} : Cy. By Lemma 33, ¥, :=
B|0F M[X :=a] = Mj[X := o] : (4|X := a]. By Lemma ET3 and Lemma [EB, we have
Y,a0:=B|0 k¢ c[X :=a]: Ci_1[X := a] ~ Ci[X := a]. By applying (Bs_CrcIDL) repeatedly,
we have

Sa=B|0F

Mi[X = ]

By (Bs_CrcIDL) again, we have

S,a:=B|0F
(M3]X = a)(ci[X :=a])--- {c][X = a])){coercef (C]X := a)))

~
~

Mi[X = ]

Since M3[X := a](cl[X :=a]) -+ (cL[X :=a]) = (M3z(c])---(c})[X := a], we finish the case.

n

Case (R-TYBETADYN_S): We are given

M, = AY.M,, B=x, M = M[Y:=+« @Y,M).
Then, since AY .M is a value, by the case (4), we have
S My —5 S Ve, S|0F Vam AY.M,:VX.C (3Va) .
By Lemma [58,

Vo = Va(¥X.cl)---(vX.cl), C,=C,
Y0 Vs AY.M]:VX.Co, 2|0, X Fecl:Ciq~ G
(3V3, 007..., Cn,c(l),...,cjl-)
Furthermore, since ¥ | ) - V3 =~ AY . Mj : VX.C is dericed by (Bs_TYABS), we have
X = Y, Vg :AX.(M3:CO), E|®,X|‘M3%Mé€0 (HMg)
Therefore, by (R-CTx_C) and (R_-TYBETADYN_C),

ZDMQ*—>*CED Vo %

[
14
v

=
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Hence, it suffices to show that
S0 (Ma{el) - (€)X 1= 4] ~ M[X i= ] : C[X = 4]
Now, we have ¥ | (), X b M5 = Mj : Cy. By applying (Bs_CRCIDL) repeatedly, we have
S0, X F Mylel) - (ch) = M} < C .
By Lemma 33, we finish the case by getting
S0+ (My(ed) - (h)IX = 4] ~ MILX 1= #] : CLX 1= ] .
Case (R_TYBETAC_S): We are given
M} = (AY.M){(¥Y.s 1), B=B,
M = (My(s))[Y :=qa], ¥ =3 a:=B (3Y,M;, s, tBa).
Then, since (AY.M3){(VY.s ,, t) is a value, by the case (4), we have
oM, —e X Vo, B|0F Vom (AY.M)(VY.s,,t):VX.C (IVa).
By Lemma [(38, we have Vo = Vi(vey) - - (ve,) (3V3). By Lemma 39, we have
S0k Vs AY.My: Ay, |0 bFc vei:Aig ~ Ay, A, =VX.C, j<n,
ve; =vel (1<i<j), VYY.s, t=lida,,lo3lveitilos - 5lveals
(EAO,...,An,j,vcé,...,chI-)
Furthermore, ¥ | 0 ¢ wvey, : A1 ~ VX .C is derived by (CT_-ALL_C), we have
Ap 1 =VX.Cph_q, Co,=0C, wvec, =YX.cq,
ve; =vel =VX.cl (1<i<j), 2|10,X Fc cp:Cphq~ C .
Similarly, > | @ F¢o ve; : A;—q ~» VX.C; is derived by (CT_ALL_C), we have
A, =vX.C;, C,=0C, wve; =VX.c,
Y10, X Fo ¢ Cimy~ G (3Co,...,Cpycryenayen) (1<i<n).
Therefore, X | O F V3 =~ AY.M] : VX.C) is derived by (BS_TYABS), we have
Y =X, Vi=AX.Ms:Co), S|0,XFM~M:C (3Ms).
Moreover, by Lemma [T, we have

VY.s b= lidvx.cpp 0§ VX ciralo s 5 VX cnlo
= VX .cjtalp 33 VX cnlo
= (VX.l¢j41lo,x » [¢jlo) -+ 5 (VX |enlo,x 5, [cnlo)
=VX.(l¢j+1lo.x 5§ lenlo,x) 5 (Iej+1lo 5 [enlo)
=VX.(lealo,x 5+ 3 lenlo,x) s (leilo », lenlo) -

Therefore, ¥ = X, s = |¢j11lp.x §- 5 |cnlp,x, and ¢ = [¢j41]p ,, [cnlp. Furthermore, by applying
(CT_CoNS_C) repeatedly, we have ¥  (VX.¢;) : VX.Cy ~» VX.C. Therefore, by (R-CTx_C) and
(R-TYBETA_C),

Yo MB —5 X VoB
= > (AX.(M;5: Cp)(vX.c1) - (VX.cp)) B
= Yo (AX.(M5: Cp)(VX.c))B

—sc X, a =B (M3(c))[X := a]{coerce} (C[X := al))
= XY a:=Bp> (Ms{c1)- - (c))[X = a]{coerce

et
Q
>
i

L,

«
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Hence, it suffices to show that

Sa:=B|0F
(Mz{c1) -+ (eo))[X := a]{coerce (C[X = a]))

~
~

(Mz(lerlo,x 53 lenlo,x )X = o]
: ClX :=B].

By Lemma 23, we have - ¥ and X + @ and ¥ | § - VX.C. Therefore, by (TEW_TYVAR), X - 0, X.
Furthermore, because X | ) - VX .C is derived by (TW_PoLY), we have ¥ | §, X + C. Therefore, by

Lemma ET4, we have

Y| 0 b coerce (C[X :==a)): C[X :=a] ~ C[X :=B].

Moreover, by Lemma [R, coercel (C[X := a]) is a no-op coercion. Now, we have ¥ | 0, X + M;
M} : Co. By Lemma 8, X, :=B | §,X - M3 =~ Mj : Cy. By Lemma (33, ¥,a :=B | 0
Ms[X :=a] = Mj[X = o] : Cy|X := a]. By (Bs-CrcID), X,a:=B |0 F M3[X :=a] =
al(lidgy(x:=alo) : Co[X := o]. By Lemma [ET3 and Lemma E®, we have ¥, :=B | ) F¢ ¢[X :

o] : C;1][X = o] ~ Ci[X := «a]. By applying (Bs_CRCMORE) repeatedly, we have

Sa:=B|0F
M;3[X :=af{c1[X :=a]) - {cn[X := a])

~
~

M3[X = a(lidgyx:=allo § [er[X == allo 3+ 5 [enX == ally)

By (Bs-CrcIDL), we have

Ya:=B|0+
(M3[X = a)(c1[X = q]) - (cn][X = a]))(coercel (C[X := al))

~
~

M3[X = o(lidcypxemaplo 3 [er[X = lg 55 [eal X = alp)

By Lemma (32 and Lemma 28, we have
lidoyx:=aylo § [c1[X == allp§ -5 [cn]X :=a]l
= lidg,[X :=a]|g 5 |a[X = q]
— lideylo.x X := ol letlo.x[X = a]§-5 leale,x[X = ]
= (lidcylo,x 3 le1lo,x § - 3 lenlo,x)[X = o] .

9 3|Cn[X = O‘]l@

Therefore, since

(M3(lid ¢, lo, °|01|@x3~~°|0n|wx>)[X al
= My[X := ]<(|ldco 9|Cn|@x)[X = al)
= M3[X := a](lldco[X::a]|@9|Cl[ =allps---3len[X = allp) ,

and M3[X :=al{1[X :=a]) - (en[X :=a]) = (Ms{c1) -+ (cn))[X := @], we finish the case.

Case (R_TYBETADYNC_S): We are given
= (AY.M)(VY.s ., 1), B=x M =M[Y=+(t) (3Y,M,s1).
Then, since (AY.M}){VY.s ,, t) is a value, by the case (4), we have
oMy —6 X Vo, B|0F Vom (AY.M)(VY.s,,t):VX.C (V).
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By Lemma 38, we have V, =

|0k Vi AY.M;: Ay,
ve; =wvel (1< <j),

V3<v61> R

by | (Z) }_C VC; . Ai,1 ~ Ai, An

VY.s,, t=lida,,lp§lveirilos

(ven) (3V3). By Lemma 39, we have
=VX.C,

J=mn,

s lvenlo

(340, ..., vc]I-)
Furthermore, 3 | 0 F¢ wvey, @ A1 ~ VX .C is derived by (CT_ALL_C), we have
Ap1 =VX.Cpeyy, Cp=0C,
ve; =vel =V¥X. el (1<i<j), 2|0, X Fo cn:
1 ~ VX.C; is derived by (CT_ALL_C), we have

A, =vX.C;, C,=0C,
E|@,X l_C ci:Ci_lei (HCO,

Therefore, X | 0 F V3 =~ AY.Mj : VX.C) is derived by (Bs_TYABS), we have
Y:X, V3=AX.(M3:C()), E|®,X|—M3%MéCo

oo
Ap,j,veg, ...,

ve, = VX.cp,

Cho1~ C .
Similarly, ¥ | @ Fo ve; + Ay
ve; = VX . ¢,

,Csctyennsn) (1<i<n).

(3M3) .
Moreover, by Lemma [T, we have

VY.s, t= |idVX.CJ+1‘(Z) 5 |VX.cj+1|@ AR ‘VX.CM@
= |VX.cjtalp 33 VX cnlo
= (VX.I¢j+1lo.x » [cj+1lp) § -+ 5 (VX [enlo,x 5 lenlo)
=VX.(l¢j+1lo.x § - $lenlo,x) 5 (Iej+1lo 5 [enlo)
=VX.(letlo,x 5+ 5 lenlo,x) 5 (letlo 5 [enlo) -
Therefore, ¥ = X, s = |cj41]p,x § -3
and (R_-TYBETADYN_C),

lcnlo,x, and t = |cj41lp ,, [cnlp. Therefore, by (R_CTXx_C)

ZDMQ*—VEED Vo %

= > (AX.(M; : Co){(vX.c1) - (VX.cp)) *
= > (AX. (M5 : Co){(VX.c))*

— 0 D> (Ms{c))[X = ]
= X> (Ms(er) - (cn))[X i= 4]

Hence, it suffices to show that
|0+
(Ms(cr) -+ (en))[X := ]
Ms[X = H(leilo s~ 3] calo)
ClX := ¥

Now, we have X | 0, X}—Mg C’O By Lemma 333, ¥ | 0 F M3[X = #] = M3[X *| : Co[X

%|. By (Bs_CrclIp), X | § F M: [ *] = M3[X = %](lid ¢y x:=4]0) : Co[X := %]. By Lemma [EZIIL
we have X | 0 Fo ¢[X =] : C;_ 1[X := %] ~ C;[X := #]. By applying (BS,CRCMORE) repeatedly,
we have

Sa:=x|0F

= sf{er[X 1= 4]) - (eal X = 4])

o

= *(lidcyx:=slo § 1 [X = ]lg§- -3
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By Lemma 30, we have

lid gy x:=xl0 § [c1[X == H[g 5§ |cn[X :=A][g

= lidg, [X :=+]lg § [er[X :=H]lp 5§ [en[X :=H]|p
= lideyloslerlo s §lenlo -
Therefore, since
My[X :=H(lerlo s+ -5 |enlo)
= M3[X :=[(fidc,lo 3 [c1lo 35 lenlo)
= M[X = «[(lidyx:=aplo 3 e[ X = lo 5+~ 3cal X = +]lp) ,

3
and M3[X :=+|{c1[X :=*]) - (en[X :=]) = (M3{(c1) - {cn))[X := %], we finish the case.
Case (R-BLAMEE_S): We are given

M = blamep, M] = blamep, ¥; =X (3p).
Because X | ) - My = blame p : VX.C, by the case (6), we have
My —¢ blamep .
Therefore, by (R-BLAME_C),

Y>M;B = X (blamep)B
—¢c X > blamep .

Hence, it suffices to show that ¥ | ) - blamep ~ blamep : C[X := B]. Lemma 23 implies - %,
Y FQ,and X | @+ C[X := B]. Therefore, by (Bs_.BLAME), 3 | | - blame p ~ blame p : C[X := B].
Case (R_-CTXE_S): We are given

M| = M}B, SvM, —s X0 M, (3M).
Therefore, by the IH, we have
S M, —% Son M, S My —5 Sev My, So|0F My~ M, :VX.C (352, My, M)) .
Hence, by applying (R_CTXE_S) repeatedly, we have

S MjB —s > M,B
S YA

Furthermore, by applying (R_CTX_C) repeatedly, we have
S>MyB —% Sa> My B .

Therefore, it suffices to show that X | 0 - My B =~ M, B : C[X := B]. By Lemma [ER, we have
S | 0+ B. Hence, by (Bs_TYAPP), Sy | ) - My B~ M| B : C[X := B].
Case (Bs_CrcID): We are given

M/:M2/<|id,4‘q)>7 E|®|—M%M2/:A E‘@l—cidA:AWA (HMZI)

By case analysis on the rule applied last to derive ¥ > Mj(|idalg) —s X1 > M{, which is one of the
following rules.

Case (R_ID_S): We are given
M, = U, lidalp=id, M =1Uj, ¥ =% (3U},A).
By the case (4),
YoM —EXV, S0 VaU A (V).

finishing the case.
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Case (R_FAIL_S): Cannot happen since |id4|p cannot be a failure coercion L”.
Case (R-MERGE_S): We are given

My = Mils), M= Mjlsslidalo), T =2 (3s.M).

By Lemma 22, we have X | § Fg Mj(s) : ¥(A4). This judgment must be derived by (T_CRC_S)
and we have X | 0 g s : B ~» X(A) for some B. By Lemma [T1, we have s ¢ |ida|g = s. Hence,
M| = Mi(s). Therefore, it suffices to show that ¥ | 0 b M ~ M;(s) : A, which holds already.

Case (R-BLAMEC_S): We are given
M, = blamep, M, = blamep, ¥; =X (3p).

Since ¥ | ) = M =~ blamep : A, by the case (6), X > M —¢ X > blame p. Hence, it suffices to show
that 3 | @ - blame p &~ blame p : A. By Lemma [Z3 implies - 3 and X+ () and X | § = A. Therefore,
by (BS_.BLAME), 35 | ) - blame p ~ blame p : A.

Case (R_CTXC_S): We are given
M = My(lidalg), E> M, —s S M, (3M) .
By the IH,
Yi> My —E Sa> My, YoM —¢ Sov My, Xo|0F My~ My: A (3o, My, My) .

By Lemma 23, ¥ | @ kg My : £(A). By Theorem EZH, 37 | § Fg Mj : £(A4). By Lemma [3,
1|0 Fs lidalp: 2(A) ~ X(A). By Lemma [0, we consider the following three cases.
Case X1 > My(lidalg) —% o> Mi(lidalp): We have

S > My(lidalp) —rs S1 > M5(lidalp)
—5 So > My{lidalg) -

Thus, it suffices to show that
Yo |0+ My~ M{lidalg): A .

The rule (Bs_CrcID) finishes the case.
Case X > M3(lidalg) —% Zo> Mi(sslidalp), M;= Mi(s) (3B,s,M,): We have

Y My(|idalo) —s B1 > My(lidalp)
—)g Yo > Mé(s 3 |idA‘@> .

Thus, it suffices to show that

Yo |0 My~ M(ss

idA|@> . A .

The rule (BsS_CRCMORE) finishes the case.
Case X > M3(lidalgp) —§ X2 > My, M, = blamep (3p): We have

2> My(lidalo) —s 31> Mz([idale)
—% Yo > blamep .

It suffices to show that 35 | ) F My ~ blame p : A, which holds already because M, = blame p.

Case (Bs_-CRrc): We are given

M = My(c), M'=M{|clp), S|0FMy~M,:B, X|0rc c:B~ A (3B, c, My, M) .

By case analysis on the rule applied last to derive X > Mj(|c|g) —s X1 > M], which is one of the
following rules.

191



Case (R_ID_S): We are given
MZ/ = U2/7 |C|® =id, Ml/ = UQIa Y1 =X (ElUQl) .

By Lemma 38, there exist some M3 that is not a coercion application, n > 0, and ¢y, ..., ¢, such
that Ma(c) = Ms(c1)---{(cn) and ¢, = c. Hence, by Lemma [0, there exists some V3 such that
Ms = V3. By Lemma 52, since we have

by |®|‘ V3<61>'-~<Cn> ~ U2/<Id>A7

we consider the following two cases.
Case (1) in Lemma [52: We are given

Yo Vs(er) - (en) —E XV, S|0F Vim Ulid): A (IVy).
Therefore,

EDMQ<C> = ¥ V3<C1>"'<Cn>
—o X Vg

Hence, it suffices to show that
S0 V= Us: A.

By case analysis on Vj.

Case V4 = V5(c¢') (3¢, V5): By Lemma [38, there exist some Vg that is not a coercion appli-
cation, m > 0, and cf,...,c,, such that Vs5(c') = Vg(c])---(cl,) and ¢}, = ¢’. Because
Ve(ci) -+ {cl,) is a value, we have

ve; = ¢ (Fuer, .. vep) (1 <i<m) .
Therefore,
Y |0F Ve{ver) - (vep) ~ Uy(id) : A .
Then, by Lemma 34, there exists j < m such that id = [ida, g § [velo 5+ 5 |vemlp and
An=A4, 2|0k ve;:Ai1~A; (FAg,...An)(1 <Vi<m).
Therefore, Lemma [43 implies
vs; = |veilp, |0 Fs wvs;:B(Ai-1) ~ X(A;) (Fost, ..., v8,) (1 <Vi<m).

Hence, by Lemma [, there exists some vs such that vs = vs; §---§vs,, and X | 0 Fg vs :
3(Ap) ~ X(A). Therefore, by Lemma [T1, we have

id = [ida,lo5veilos -5 vemlo
= |veilp -5 [vemlo
=VSj G5 USy

= Vs .

Therefore, by Lemma (54, we have X | 0 - Vg(vcy) - - (vel,) = Us : a.
Vy =

( :
Otherwise: Since Vj is not a coercion application, ¥ | § - V4 ~ Uj{|idalg) : A is derived by
(Bs_CrcID). Therefore, we have & |0 F Vi~ Uj : A.
Case (2) in Lemma [52: We are given

Yo Vi(c) -+ (cn) —& L>blamep, id= 17 (3p).

Since id # LP | there is a contradiction.
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Case (R_FAIL_S): We are given
My = U, |clp=1F, M| =blamep, %y =3 (3p,U3).

By Lemma [£38, there exist some M3 that is not a coercion application, n > 0, and ¢y,..., ¢, such
that Ma(c) = Ms(c1)---(cn) and ¢, = c¢. Hence, by Lemma [0, there exists some V3 such that
M; = Vzand X |0 F Vi3 =~ Uy : C. By Lemma 52, we consider the following two cases.
Case (1) in Lemma [52: We are given

Y V3<cl>---<cn> —>2« Y V4, Z|@|‘ V4%U2/<LP>A (3V4)

By Lemma A0, there exists some ¢ such that |? = 7. However, this is contradictory because 17
is not an intermediate coercion.

Case (2) in Lemma [52: We are given
Yo Va(er) - (cn) —¢& E>blamep (Ip) .
Therefore,

EDMQ<C> = X V3<Cl>"'<0n>
—¢ X > blamep .

Hence, it suffices to show that 3 | ) - blame p = blame p : A. Lemma 23 implies F X and X F ()
and X | ) - A. Hence, by (Bs_BLAME), X | ) - blame p = blame p : A.

Case (R_MERGE_S): We are given
My = Ms(s'), M{=Ms(s'5(Iclo)), %1 =% (3s' M) .
Then, it suffices to show that
S| 0 My(c) = My(s'3 (|clg)) - A,

which is given by (BS_CRCMORE).
Case (R-BLAMEC_S): We are given

Mj; = blamep, M| = blamep, ¥; =% (3p).

By Lemma 38, there exist some M3 that is not a coercion application, n > 0, and ¢y, . . ., ¢, such that
Ms(c) = Ms{c1) -+ {cp) and ¢, = c¢. Therefore, Lemma implies X | 0 = M3 ~ blamep : C (30).
Since M3 is not a coercion application, 3 | ) - M3 = blame p : C is derived by (BS_BLAME), so we
have M3 = blame p. Therefore, by applying (R-BLAME_C) repeatedly, we have

EDM2<C> = EDM3<01>"'<Cn>
Y (blamep)(ci) - {cn)
—¢ X > blamep .

Hence, it suffices to show that X | § - blame p ~ blamep : A. Lemma 23 implies - X and ¥ +
and X | ) = A. Therefore, by (Bs_.BLAME), ¥ | @ - blame p = blame p : A.

Case (R_.CTXC_S): We are given
M| = Mj{|clg), T>My S5 D1 M, ¥ =% (3M).

By Lemma [38, there exist some M3 that is not a coercion application, n > 0, and ¢y, ..., ¢, such
that My(c) = Mz{c;)---(c,) and ¢, = c. Furthermore, because ¥ > My 55 ¥ > M3, Mj is not
a coercion application. Therefore, because ¥ | 0 = Mz{c1)---(c,) = Mj{|c|g) : A, by Lemma 39,
there exists 7 < n such that

lclp = lida, .y loslcivilos---5leals, ZI10F Mz~ M;: C (3C) .
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Moreover, the derivation ¥ | § - M3 ~ Mj : C is a sub derivation of the derivation ¥ | § +
Ms{cy) - {cn) = Mi{|c|p) : A. Therefore, by the IH,

EDMg —% EQDM4, 211>Mé —>g EQDML 22|®|‘M4%M40 (322,M4,M4).
Hence, by applying (R-CTX_C) repeatedly, we have

EDMQ<C> = EDM3<61>'~'<CTL>
—>6 22 I>M4<cl>---<cn> .

Also, ¥ > Mj —% ¥a > M,. Furthermore, Lemma 22 implies ¥ | § g Mj(|c|p) : £(A). Because
this judgment is derived by (T_-CRC_S), we have ¥ |} g MJ: D and 2|0 kg |c|g: D ~ A (3D).
Therefore, Lemma 20, we consider the following three cases.

Case (1) in Lemma [20: We are given
S > My(lelo) —5 X2 > Mi{lclo) -
Therefore, it suffices to show that
Ba [0 My(er) -+ (en) = My([clp) - A .

By Lemma EZ4 and Lemma [28, 35 | 0 F M3(c1) - - (cn) &~ Mj{|c|g) : A. Hence, by Lemma [43,
o |0k My(er) - (en) = My clg) : A.
Case (2) in Lemma [20: We are given

S My|clp) —5 B2 v Mg(tslclo), M{= Mg(t) (3t, M) .
Therefore, it suffices to show that

P | 0+ M4<Cl> T <Cn> ~ M5/<t3

clg) + A

By Lemma EZ4 and Lemma [Z8, X5 | 0 b Ms{c1) - {cn) = My{|clp) : A. Here, we have
Yo |0k My~ Mt): C. By Lemma [, X | 0 = My(c1) - (cn) = ML(t){|c|g) : A. Therefore,
Lemma 234 implies g | 0 - My{c1) -+ {cn) &= Mi(t ¢ |clp) : A.

Case (3) in Lemma [20: We are given

Y My(|clg) —& Xa> My, M, = blamep (3p) .
Therefore, 35 | § = My =~ blame p : C, so by the case (6), we have
Yo My —¢ X blamep .
Hence, by applying (R-CTX_C) and (R-BLAME_C), we have

Y M2<C> —)é« 22 > M4<Cl> cee <Cn>
—& Xg > (blamep){cr) - - {cp)
—¢ X > blamep .
Therefore, it suffices to show that X5 | § - blamep = blamep : A. By Lemma EZ4 and

Lemma 78, Yo | 0 b Ms(c1) -+ (cn) = Mj(|c|p) : A. By Lemma [Z3, - 33 and Xy - 0 and
Yo | O+ A. Hence, by (Bs_.BLAME), X5 | @ - blame p ~ blame p : A.

Case (Bs_CRCMORE): We are given

M = My{c), M' = My(sslclg), X|0F My~ My(s): B,
|0 ke c: B~ A (3B, c,s, My, My) .

By case analysis on the rule applied last to derive X > Mj(s g
following rules.

clp) —s X1 > M{, which is one of the
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Case (R_ID_S): We are given
My = Us, sslelo=id, M =1U; % =% (3U3).

By Lemma 38, there exist some M3 that is not a coercion application, n > 0, and ¢y, ..., ¢, such
that Ma(c) = Ms{(c1)---(cn) and ¢, = c. Hence, by Lemma [0, there exists some V3 such that
M; = Vsand 2 |OF V3~ Uj: C (3C). Therefore,

Hence, by Lemma 532, we consider the following two cases.
Case (1) in Lemma [52: We are given

S5 V(o) (en) —5 D6 Vi, S|0F Vam Uid): A (3V3) .

Therefore,
Yo M) = Z Ms(er) - (cn)
= XD V3<61> s <Cn>
—>*C X> V4 .

Hence, it suffices to show that
|0 VirUs: A.

By case analysis on Vjy.
Case Vi = V5(c¢') (3¢, V5): By Lemma 38, there exist some Vg that is not a coercion appli-

cation, m > 0, and cf,...,c, such that Vs(c') = Vg(c])---(c],) and ¢}, = ¢’. Because
Ve(cy) -+ {cl,) is a value, we have

ve; = ¢ (Fver, .. ven) (1< Vi<m) .
Therefore,

Y| 0F Velver) - (vey) =~ Us(id) : A .
Then, by Lemma 34, there exists j < m such that id = [ida, g § [vclo §- -5 |vemlp and
Apn=A4, 2|0 kg ve;: Ai_1~A; (FAg,... An)(1 <Vi<m).
Therefore, Lemma [Z3 implies
vs; = |veilg, |0 Fs wvsi:B(Ai—1) ~ Z(A;) (Fosy, ..., v8,)(1 <Vi<m).

Hence, by Lemma [, there exists some vs such that vs = vs; §---§vs,, and X | 0 Fg vs :
Y(Ap) ~ X(A). Therefore, by Lemma [T1, we have

id = [ida;lo§vejlos-- -5 vemlo
= lveilp 5+ 3 vemly
=VSj G §US,
= us .
Hence, by Lemma 54, we have ¥ | § = Vg(vep) - -« (vel,) = Uz : a.
Otherwise: Because X | 0 F Vi = Uj(|idalp) : A is derived by (BS_CRCID), we have X |0 F Vy ~
U;: A.
Case (2) in Lemma [52: We are given

X Vi(er) - (cpn) —¢& L>blamep, id= 17 (3p).

Because id # 1P, there is a contradiction.
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Case (R_FAIL_S): We are given
My = Uy, sslclp=1P, M| = blamep, ¥ =% (3p,Uj).

By Lemma [38, there exist some M3 that is not a coercion application, n > 0, and ¢y, ..., ¢, such
that Ma(c) = Ms(c1)---(cn) and ¢, = c¢. Hence, by Lemma [0, there exists some V3 such that
My = Vzand X |0 F Vi3~ U : C. By Lemma 52, we consider the following two cases.

Case (1) in Lemma [52: We are given

Y V3<Cl>"'<0n> —>2« Y V4, Z|@|‘ V4%U2/<J_p>z4 (E'V4)

By Lemma [50, there exists some ¢ such that L? = 7. However, this is contradictory because 1”
is not an intermediate coercion.

Case (2) in Lemma [52: We are given
Y Va(er) - (cn) —¢& L >blamep (3p) .
Therefore,

Yo My(c) = Eo Ms(er) - (cp)
= XD V3<cl>-~'<0n>
—& X blamep .

Hence, it suffices to show that 3 | ) - blame p =~ blame p : A. Lemma 23 implies F 3 and X F ()
and X | 0 - A. Hence, by (Bs_BLAME), X | ) - blame p ~ blame p : A.

Case (R-MERGE_S): We are given
My= MY(s'), M=Mys's(s3]cly), Sa=3 (3,M).
Then, it suffices to show that

S| 0F My(c) = Ma(s'5(s3

clo)): A .

Now, we have ¥ | 0 - My ~ M4(s')(s) : B. Therefore, Lemma [C3d implies & | O - My =~ Mj(s'ss) : B.
Hence, by (Bs-CRCMORE),

S| 0 My(c) = My((s"55) 5 |clg) - A .

Therefore, it suffices to show that

(s"ss)slclo=15"5(ss|clp) -

Lemma 22 implies ¥ | § Fg M4(s')(s) : £(B). By inversion of its derivation, we have ¥ | 0 Fg s :
D~ Cand 2|0 tg s: C~ B (3D, C). Furthermore, Lemma 3 implies ¥ | § kg [c|g : X(B) ~
3(A). Therefore, Lemma 4 implies (s’ 3s) 5 |clpg =" 5(s¢]|clg)-

Case (R-BLAMEC_S): We are given

M, = blamep, M, = blamep, ¥; =X (3p).

By Lemma 338, there exist some M3 that is not a coercion application, n > 0, and ¢y, . . ., ¢, such that
Ms(c) = Ms(c1)---{cp) and ¢, = c. Therefore, Lemma implies ¥ | O = M5 = blamep : C (30C).
Since M3 is not a coercion application, 3 | ) - M3 = blame p : C is derived by (BS_BLAME), so we
have M3 = blame p. Therefore, by applying (R-BLAME_C) repeatedly, we have
x> M2<C> = X M3<C1> ce <Cn>
Y > (blamep){c1) -+ {cn)
—& Y blamep .

Hence, it suffices to show that X | @ - blame p ~ blamep : A. Lemma 23 implies - X and X +
and X | O - A. Therefore, by (Bs_BLAME), ¥ | @ - blame p ~ blame p : A.
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Case (R_CTXC_S): We are given
M{:Mé<sg|c|$>a ZDMé i>S Eleév Y =X (ElMé) :

By Lemma 38, there exist some M3 that is not a coercion application, n > 0, and ¢y, ..., ¢, such
that Ma(c) = Ms(c1)---(c,) and ¢, = ¢. Furthermore, because ¥ > My —»g X1 > Mj, M} is not a
coercion application. Therefore, because ¥ | 0 - Ms(c1) - (cn) = M3(s 5 |c|g) : A, by Lemma [39,
there exists j < n such that

sslclo=1lida,,loslciralos - 3lenlo, X|0FMz=M,:C (3C).

Moreover, the derivation ¥ | @ = Mz ~ Mj : C is a sub derivation of the derivation ¥ | @
Ms(cr) - (cn) m= Mj(s5|clg) : A. Therefore, by the TH,

21[>Mé —)g« ZQDML > Ms —>E« ZQDM4, 22|@|_M4%M40 (322,M4,M4).

Hence, by applying (R-CTX_C) repeatedly, we have
Y M2<C> = X M3<Cl> s <Cn>
—)Ev 22 > M4<Cl> ) <Cn> .

Also, ¥ > My —§ Yo > M,. Furthermore, Lemma 22 implies ¥ | § Fg M3 (s3|c|p) : £(A). Because
this judgment is derived by (T_-CRC_S), we have ¥ | Fg My : Dand X | @ kg s3lclg: D ~ A (D).
Therefore, Lemma 20, we consider the following three cases.

Case (1) in Lemma [Z0: We are given

o My(sslclo) —% D2 M(ss3|clp) -
Therefore, it suffices to show that
Bo |0 F Ma(er) -+ (en) = My(s§clp) - A

By Lemma EZ4 and Lemma [Z8, o | @ B Ms(c1) - (cn) ~ Mj(s 3
Lemma 8, Xo | 0 F My(cy) -+ {cn) = My{(s3|c|g): A
Case (2) in Lemma [20: We are given

3lelo) —5 Zov Mg(ts(sslclo)), My= Mg(t) (3t,M;).

clg) : A. Hence, by

¥ > My(s

Therefore, it suffices to show that
Do [0 Ma(er) - (en) = My(ts(s5clo)) - A

By Lemma EZ24 and Lemma , So | O F Ms(er) - {cn) = Mi(sg|clp) : A. Furthermore,
Yo | OF My~ ML(t): C. Hence, Lemmamﬂlmphes S| 0k M4<cl> en) = MI(t)(ss|clg) : A
Therefore, Lemma 34 implies 3o | 0 = My{c1) -+ {cn) = MI{(t3(s5|clp)) : A.

Case (3) in Lemma [Z0: We are given

> My(sglelg) —& B> My, M, = blamep (3p) .

Therefore, 35 | ) = My = blame p : C, so by the case (6), we have
Yo My —¢ Y blamep .
Hence, by applying (R-Ctx_C) and (R-BLAME_C), we have

Y M2<C> —)zv EQ > M4<Cl> s <Cn>
—¢& Xg > (blamep){cr) - - (cp)
—¢ Yo > blamep .
Therefore, it suffices to show that X9 | () - blamep =~ blamep : A. By Lemma EZ4 and

Lemma 28, X5 | O b Ms(c1) - {cn) =~ Mj(s¢|clp) : A. Hence, Lemma 23 implies - 3
and Xo F 0 and X5 | @ F A. Therefore, by (BsS_BLAME), 33 | § - blame p ~ blamep : A.
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Case (Bs_CrcIDL): We are given
M= My, S |0-My~M:B, S|0tcc:B~A (3Myc!,B).
By the TH, we have
Lo M —% Y3 My, YoMy —5 N3 Mz, YN3|0F My~ My:B (IMz, M3, %3) .

By (R_C1tx_C), we have ¥ > My(c!) —% X3 > Mz(c!). Therefore, it suffices to show that ¥ | () -
Ms(cly ~ M} : A, which is given by (Bs_CRrcIDL).

O
Lemma 1.60 (Bisimulation Preserves Behavior). Suppose that 3 |0 M ~ M’ : A.

(1) X > M —¢ X' > V, then there exists some V' such that ¥ > M’ —% ¥’ > V', Furthermore, if
A =1, then there exists some k such that V = V' = k.

2) X > M —% ¥ > V/, then there exists some V such that X > M —% X' > V. Furthermore, if A = ¢,
S c
then there exists some &k such that V = V/ = k.

(3) > M —¢ ¥ pblamep iff ¥ M’ —% ¥’ > blame p.
4 oMyt 2o M 4.
Proof.

1) By induction on the length of the evaluation sequence ¥ > M —% Y/ > V. By case analysis on the
y g c y y
length.

Case The length is zero: We have ¥ = ¥’ and M = V. Therefore, Lemma implies
SeM —y SV, D|0FVaV A 3V).

Furthermore, assume A = (. Then, Lemma [22 implies ¥ | ) Fg V' : ¥(:). Hence, Lemma EZH
implies that there exists some k such that V' = k. By Lemma [58, V is not a coercion application.
Therefore, since X | 0 = V & k : ¢ is derived by (BS_CONST), we have V = k.

Case The length is larger than zero: We are given
YoM —c Xi> M, YipM —L YV (38, M).
Lemma implies
Y1 M —E S My, N M —5 Yo My, Yo |0k Mym My: A (IXg, Moy, My) .
Therefore, by applying Lemma T2 repeatedly, we have
Li> M —E So My —E Y >V
Then, by the IH, there exists some V' such that X3 > My —% ¥’ > V', Therefore,
oM —§ o My —5 X > VL
Furthermore, if A =, then the TH implies that there exists some k such that V = V' = k.
(2) Provable similarly to the case (1).

(3) Each direction is provable similarly to the case (1).

(4) Consider each direction.
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* (=)
Lemma 23 implies ¥ | § Fg M’ : £(A). Therefore, by Theorem EZQA, we consider the following
three cases.

Case There exist some ¥/, V/ such that ¥ > M’ —% X' > V': By the case (2), there exists some V
such that ¥ > M —¢ X' > V. However, by Corollary EZ2, it is contradictory with X > M 1.

Case There exist some X/, p such that ¥ > M" —% ¥’ > blamep: By the case (3), ¥ > M —¢
¥’ > blame p. However, by Corollary E2, it is contradictory with X > M 1.

Case X > M’ {: Obvious.

o (&)
Provable similarly to the case of (=).

O

Lemma I.61 (Relating Terms in ACy,, and ASy, , via Translation (Lemma I3 of the paper)). If X |T' o M : A,
then ¥ |T'F M = |M|r : A.

Proof. By induction on the derivation of ¥ | T' o M : A. We perform case analysis on the rule applied last
to derive X | T F¢ M : A.

Case (T_-ConsT_C): We are given
M=k F3 SFT, tyk)=A (3k).
We have |k|r = k. Therefore, by (Bs_CONsT), & | T'Fk~k: A.
Case (T_VAR_C), (T_BLAME_C): Provable similarly to the case of (T_CoNsT_C).
Case (T_-ABs_C): We are given
A=A = Ay, M =Xx:A1. My, Y |T,z:A be My: Ay (A1, As,z, Ms) .

We have |A\z: A1 Ma|r = Az : A1.|Ma|r z.4,. By the IH, ¥ | T,z : Ay b My = |Ms|r 4.4, : A2. Therefore, by
(BS,ABS), b)) | ' Az: A].M2 AT A1~|M2|F,1:A1 : A1 — AQ.

Case (T_Arp_C), (T_TvaBs_C), (T_Tvyarp_C): By the IH(s), similarly to the case of (T_ABs_C).
Case (T_Crc_C): We are given

M= M{c), X|Ttec My:B, E|T'tgc:B~A (¢, M,B).

We have |Mi{c)|r = |Mi|r{|c|r). By the IH, ¥ | T'+ M; ~ |Mi|r : B. Then, we have the following derivation.

S|THM~|M|r:B  S|Thcc:BwA
S| TF Mc)~ |[Mr{c|r): A

(Bs_Crc)

Theorem 1.62 (Correctness of Translation (Theorem B4 of the paper)). Suppose X |0 Fo M : A.

(1) If ¥ M —¢ X' > V, then there exists some V' such that ¥ > |[M|y —% ¥’ > V’. Furthermore, if
A =1, then there exists some k such that V = V' =k.

(2) If X > M|y —%5 X' > V/, then there exists some V such that ¥ > M —% ¥’ > V. Furthermore, if
A =, then there exists some k such that V = V' = k.

(3) > M —¢ Y p>blamep iff ¥ M|y —% X/ > blamep.
(4) So M iff S |[Mlg .

Proof. Follows from Lemma [61 and Lemma [G0. O
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J A counterexample to Proposition 19 (Bisimulation, AC to AS) in

“Blame and coercion: Together again for the first time” [Siek et
al., JFP’ 21|

The syntax, semantics, and type system mentioned in this section are those of A\C and AS in “Blame and
coercion: Together again for the first time” [Siek et al., JEP21]. The relation &~ found in this section is also
defined there.

Let

f e N\e:lintx ,
M (fGidme > idioe)) (0(L™P8))) idine)
My = ((f(idint — idine)) (blame p)){idint) ,
M (prmEBool g )
We show that: (1) M ~ M'; (2) M —¢ Moy; and (3) for any M; such that M' —%§ Mg, My % M;. Note

that it is easy to check that the closed terms M and M’ are of Int. Below, the rules (i), (ii), and (iii) are for
the bisimulation relation = in [Siek et al., JEP’21].

(1) We show that M =~ M’. First, we can prove f(idine — idint) = f{idjnt — idint) and O(J_'"th°°'> ~ O(J_lnth°°l>

as follows.
f %f '_ f : Int — |nt |id|nt%|nt|cs = id|nt — id|nt ( )
f ~ f<id|nt — idInt> |idlnt — idlnt‘cS = idInt — idInt (11)
f<id|nt — idInt> ~ f<id|nt — idlnt>
0~0 FO0:Int lidine|® = idint
0~ 0<id|nt> (1) |J_Inthoo||CS _ J_Inthool

O<J_Inthool> ~ 0<J_InthooI> (11)

Then, we can derive M = M’', i.e., ((f{idint = idint)) (O(L'"th°°'>))<id|nt) ~ (f(L'"t”B‘m' — idint)) 0.

f<idlnt N idlnt> % f(idlnt N idlnt> O<J_InthooI> z 0<J_Inthool>
(f (idine = idine)) (O(L™75)) ~ (f{idine — idine)) (O(L™7%))  [idine| = idine
((f idine = idine)) (O(L™PEN) ) idine) == (F(L"PE0! — idine)) O

(iii)

Note (idjpe — idint) § (J_lnth°°| — idjn) = L !ntpBool _y i4, ¢ in the above application of (iii).
(2) M —¢ My, ie., ((flidine — idine)) (0(L™PEN)) (idine) —¢ ((f(idine — idine)) (blame p))(idine) by the
following evaluation derivation.
0(L'mtPBeely __, - blame p
(f (idine = idine)) (0(L"™PBNY) 0 ((f(idine — idine)) (blame p))
((f (idine = idine)) (O(L"™PEN)) (idine) —>¢ ((f(idint = idint)) (blame p)) (idine)

3) We show that, for any M} such that M’ —% M], My % M]. Because
0 s Mo 0

M/ _ (f<L|nthOOI N idlnt>) 0 —g (f (0<Llntp800|>))<id|nt>
—s  (f (blame p))(idjnt)
—s  (blame p)(idjnt)

—g blamep ,
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we show that, for any
{ (f<J_Inthool N idlnt>) 07

(f (O LB ) (idhe)
M, € (f (blame p)){idint),
(blame p)(idint),
blamep } ,
Mp 3 M{. Note that My = ((f(idint — idin)) (blame p)) (idine)-

Case I. M} = (f(L"™7B — id},t)) 0: We show that

((f (idint — idine)) (blame p))(idine) % (f (L™PB = idjne)) 0 .

Assume ((f(idipe — idine)) (blame p))(idine) ~ (f(L"™PB°" 5 id.)) 0. It can be derived only by the
rule (iii). Then, by inversion,

(f(idine = idint)) (blame p) ~ (f(t)) (0(s))

for some coercions t and s such that ¢§ (s — id) = L™?B° — id).,. Furthermore, by inversion, it

implies blame p = 0(s). It must be the case that blame p = 0(s) is derived by the rule (i) because only
the term on the right-hand side is a coercion application. Then, its inversion implies blamep = 0,
but it does not hold. Therefore, there is a contradiction.

Case II. M} = (f (0(L"PB°°"Y))(id}n,): We show that

((f (idine = idine)) (blame p)) idine) 5 (f (O(L"™ 7)) {idne) -

Assume ((f{idint — idint)) (blame p)){(idint) = (f (O(L'"th°°l>))<id|nt>. By case analysis on which rule
is applied to derive the assumed bisimilarity.

The rule (i) is applied: We are given the following derivation.

((f<id|nt — id|nt>) (blamep))<|d|nt> ~ f (0<J_|nthooI>)
((f(idint — idint)) (blame p)){idine) = (f (0<J_InthOOI>))<id|nt>

However, the premise judgment cannot be derived in =~ (the rule (iii) cannot be applied because
it requires the function part on the right-hand side be a coercion application).

The rule (ii) is applied: We are given the following derivation for some coercion s and ¢.
(f (idine — idint)) (blame p) ~ (f (0( L")y (5) lidine|© =t $31=idnt

((/f{idint — idinc)) (blame p))(idine) = (f (0(L"™7°))) id )

The premise judgment (f(idine — idine)) (blame p) ~ (f (0(L"™PB°")))(s) can be derived only by
the rule (i) because only the term on the right-hand side is a coercion application. Then, its
inversion implies

(f (idint — idine)) (blame p) & f (0(L'mtPBolY)

and then
blame p ~ 0(L'"PBeely

However, this judgment cannot be derived as discussed in Case I.

The rule (iii) is applied: This case needn’t be considered because the term on the right-hand side
is not a function application.

Case ITI. M} = (f (blame p))(idint): We show that

((f(idint — idint)) (blame p))(idint) 7 (f (blame p))(idint) -

Assume ((f(idine — idint)) (blame p))(idint) = (f (blame p))(idint). By case analysis on which rule is
applied to derive the assumed bisimilarity.

The rule (i) is applied: This case needn’t be considered for a reason similar to Case II.
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The rule (ii) is applied: By a reasoning similar to Case II/(ii), f(idjnt — idint) & f, but it cannot
be derived.

The rule (iii) is applied: This case needn’t be considered because the term on the right-hand side
is not a function application.

Case IV. Mj = (blame p)(idjnt): We show that

((f(idint — idint)) (blame p)){idint) % (blame p)(idint) -

Assume ((f(idint — idint)) (blame p))({idint) = (blame p)(idist). By case analysis on which rule is applied
to derive the assumed bisimilarity.

The rule (i) is applied: We are given the following derivation.

((f(idint — idint)) (blame p))(idint) ~ blame p

((f(idint — idint)) (blame p))(idint) ~ (blame p)(idint)

However, the premise judgment cannot be derived because, for any M, if M; =~ blame p, then
M; = blamep.

The rule (ii) is applied: We are given the following derivation for some coercion s and ¢.
(f(idint — idint)) (blame p) = (blame p)(s) lidine|® = ¢ st =idnt
)

(( (it — idinc)) (blame p)){idint) ~ (blame p)(idime)

The premise judgment (f(idjnt — idint)) (blame p) & (blame p)(s) can be derived only by the rule
(i). Then, its inversion implies

(f (idint — idint)) (blame p) =~ blame p .

However, it does not hold.

The rule (iii) is applied: This case needn’t be considered because the term on the right-hand side
is not a function application.

Case V. M/ = blamep: My # blame p clearly.
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