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A Definition: Polymorphic Coercion Calculus λC∀mp

A.1 Syntax

Base types ι Blame labels p, q Type variables X ,Y ,Z

Types A,B ,C ::= ι | ⋆ | A→ B | ∀X .A | X | α
Ground types G ,H ::= ι | ⋆→ ⋆ | ∀X .⋆ | X | α

Coercions c, d ::= idA | G ! | G?p | α− | α+ | c → d | c ; d | ∀X .c | ⊥p
A⇝B

No-op coercions cI ::= idA | α− | α+ | cI → dI | ∀X .cI | cI ; dI

Terms M ::= k | x | λx :A.M | M M | ΛX .(M : A) | M A | M 〈c〉 | blame p

Values V ::= k | λx :A.M | ΛX .(M : A) | V 〈G !〉 | V 〈α−〉 | V 〈c → d〉 | V 〈∀X .c〉
Evaluation frames E ::= □M | V □ | □A | □〈c〉

Evaluation contexts F ::= □ | F M | V F | F A | F 〈c〉
Contexts CC ::= □ | λx :A.CC | CC M | M CC | ΛX .(CC : A) | CC A | CC 〈c〉

Type environments Γ ::= ∅ | Γ, x : A | Γ,X
Stores Σ ::= ∅ | Σ, α := A

Definition A.1 (Non-Dynamic Types). We use metavariables A, B, and C to denote types that are not the
dynamic type ⋆.

Definition A.2 (Free Type Variables and Type Substitution). We define the notion of free type variables in
a standard way. The notation ftv(A) denotes the set of type variables occurring free in type A. We write
A[X := B ] for capture-avoiding substitution of type B for free type variable X in type A. We write M [X := α]
and c[X := α] for substitution of type name α for free type variable X in term M and coercion c, respectively.
We write M [X := ⋆] and c[X := ⋆] for substitution of type ⋆ for free type variable X in term M and coercion c,
respectively. It is defined in a standard manner, as substitution of type names, except for the case that coercion
c is a projection or injection; in such a case, the substitution of ⋆ is defined as follows:

G?p [X := ⋆]
def
=

{
id⋆ (if G = X )

G?p (if G 6= X )

G ![X := ⋆]
def
=

{
id⋆ (if G = X )

G ! (if G 6= X )

Note that V [X := ⋆] is not a value in general because, if V = V ′〈X !〉, then V [X := ⋆] = V ′[X := ⋆]〈id⋆〉, which
is not a value. However, if V is closed, it contains no coercion of the form X ! or X ?p for any type variable X
free in V , and, therefore, V [X := ⋆] is still a value.

Definition A.3 (Types and denotations of constants). We assume a meta-level function ty that assigns a
first-order type of the form ι1 → ι2 → · · · → ιn(n ≥ 1) to every constant, and a meta-level partial function δ
that maps pairs of constants to constants. We also suppose δ to respect function ty in the sense that, for any
constant k1 and k2, if ty(k1) = ι→ A and ty(k2) = ι, then δ(k1, k2) is defined and ty(δ(k1, k2)) = A.

Definition A.4 (Notation for Type Environments and Stores). We write dom(Γ) for the set of variables and
type variables bound by type environment Γ, and dom(Σ) for the set of type names bound by store Σ. We use
the notations Γ1#Γ2 and Σ1#Σ2 to denote that their domains are disjoint, that is, dom(Γ1) ∩ dom(Γ2) = ∅
and dom(Σ1) ∩ dom(Σ2) = ∅, respectively. We write Σ1 ⊇ Σ2 if and only if α := A ∈ Σ2 implies α := A ∈ Σ1

for any α and A. Let ∆ contains only type variables. We write Γ \∆ for the environment obtained by removing
all type variables in ∆ from Γ.

A.2 Dynamic semantics

Definition A.5 (Reduction). The reduction relation −→ is a binary relation over pairs of a store and a term.
It is the smallest relation satisfying the rules shown in Section A.2.2 (where stores Σ are omitted if they are not
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important). We use the notation −→∗ to denote the reflexive, transitive closure of −→, and Σ ▷ M ⇑ to denote
that term M diverges under store Σ, that is, for any Σ′ and M ′ such that Σ ▷ M −→∗ Σ′ ▷ M ′, there exist
some Σ′′ and M ′′ such that Σ′ ▷ M ′ −→ Σ′′ ▷ M ′′. We may write −→C and −→∗

C to emphasize the reduction
in λC∀

mp.

A.2.1 Coercion generation function coerce+α (A) = c, coerce−α (A) = c

coerce+α (ι) = idι

coerce+α (⋆) = id⋆

coerce+α (A→ B) = coerce−α (A)→ coerce+α (B)

coerce+α (∀X .A) = ∀X .(coerce+α (A))

coerce+α (X ) = idX

coerce+α (β) = idβ if β 6= α

coerce+α (α) = α+

coerce−α (ι) = idι

coerce−α (⋆) = id⋆

coerce−α (A→ B) = coerce+α (A)→ coerce−α (B)

coerce−α (∀X .A) = ∀X .(coerce−α (A))

coerce−α (X ) = idX

coerce−α (β) = idβ if β 6= α

coerce−α (α) = α−

A.2.2 Reduction Σ ▷ M −→ Σ′ ▷ M ′

k1 k2 −→ δ(k1, k2) (R Delta C)

(λx :A.M )V −→ M [x := V ] (R Beta C)

V 〈idA〉 −→ V (R Id C)

(V 〈c → d〉)V ′ −→ (V (V ′〈c〉))〈d〉 (R Wrap C)

V 〈G !〉 〈G?p〉 −→ V (R Collapse C)

V 〈G !〉 〈H ?p〉 −→ blame p if G 6= H (R Conflict C)

V 〈α−〉 〈α+〉 −→ V (R Remove C)

V 〈c ; d〉 −→ V 〈c〉 〈d〉 (R Split C)

V 〈⊥p
A⇝B 〉 −→ blame p (R Fail C)

(ΛX .(M : A0))〈∀X .c〉 ⋆ −→ (M 〈c〉)[X := ⋆] (R TybetaDyn C)

Σ ` 〈∀X .c〉 : ∀X .A0 ⇝ ∀X .An α 6∈ dom(Σ)
(R Tybeta C)

Σ ▷ (ΛX .(M : A0))〈∀X .c〉B
−→ Σ, α := B ▷ (M 〈c〉)[X := α]〈coerce+α (An [X := α])〉

E [blame p] −→ blame p (R Blame C)
Σ ▷ M −→ Σ′ ▷ M ′

(R Ctx C)
Σ ▷ E [M ] −→ Σ′ ▷ E [M ′]

A.3 Type system

This section defines typing rules in λC∀
mp. We may write Σ | Γ `C M : A for typing judgment Σ | Γ ` M : A

in λC∀
mp for clarity.
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A.3.1 Type well-formedness Σ | Γ ` A

Σ | Γ ` ι (Tw Base) Σ | Γ ` ⋆ (Tw Star)
Σ | Γ ` A Σ | Γ ` B

(Tw Arrow)
Σ | Γ ` A→ B

α ∈ dom(Σ)
(Tw Name)

Σ | Γ ` α

X ∈ Γ
(Tw Var)

Σ | Γ ` X

Σ | Γ,X ` A
(Tw Poly)

Σ | Γ ` ∀X .A

A.3.2 Store well-formedness ` Σ

` ∅ (Sw Empty)
` Σ Σ | ∅ ` A α 6∈ dom(Σ)

(Sw Binding)` Σ, α := A

A.3.3 Type environment well-formedness Σ ` Γ

Σ ` ∅ (Tew Empty)
Σ ` Γ Σ | Γ ` A x 6∈ dom(Γ)

(Tew Var)
Σ ` Γ, x : A

Σ ` Γ X 6∈ dom(Γ)
(Tew Tyvar)

Σ ` Γ,X

A.3.4 Coercion typing Σ | Γ ` c : A⇝ B

` Σ Σ ` Γ Σ | Γ ` A
(Ct Id C)

Σ | Γ ` idA : A⇝ A

` Σ Σ ` Γ Σ | Γ ` A Σ | Γ ` B
(Ct Fail C)

Σ | Γ ` ⊥p
A⇝B : A⇝ B

` Σ Σ ` Γ Σ | Γ ` G
(Ct Inj C)

Σ | Γ ` G ! : G ⇝ ⋆

` Σ Σ ` Γ Σ | Γ ` G
(Ct Proj C)

Σ | Γ ` G?p : ⋆⇝ G

` Σ Σ ` Γ α := A ∈ Σ
(Ct Conceal C)

Σ | Γ ` α− : A⇝ α

` Σ Σ ` Γ α := A ∈ Σ
(Ct Reveal C)

Σ | Γ ` α+ : α⇝ A

Σ | Γ ` c : A′ ⇝ A Σ | Γ ` d : B ⇝ B ′
(Ct Arrow C)

Σ | Γ ` c → d : (A→ B)⇝ (A′ → B ′)

Σ | Γ,X ` c : A⇝ B
(Ct All C)

Σ | Γ ` ∀X .c : ∀X .A⇝ ∀X .B

Σ | Γ ` c : A⇝ B Σ | Γ ` d : B ⇝ C
(Ct Seq C)

Σ | Γ ` c ; d : A⇝ C

A.3.5 Coercion sequence typing Σ ` 〈c〉 : A⇝ B

(Ct Nil C)
Σ ` ∅ : A⇝ A

Σ ` 〈c′〉 : A⇝ B Σ | ∅ ` c : B ⇝ C
(Ct Cons C)

Σ ` 〈c′〉, 〈c〉 : A⇝ C

A.3.6 Term typing Σ | Γ ` M : A

` Σ Σ ` Γ ty(k) = A
(T Const C)

Σ | Γ ` k : A

` Σ Σ ` Γ x : A ∈ Γ
(T Var C)

Σ | Γ ` x : A

Σ | Γ, x : A ` M : B
(T Abs C)

Σ | Γ ` λx :A.M : A→ B

Σ | Γ ` M1 : A→ B Σ | Γ ` M2 : A
(T App C)

Σ | Γ ` M1 M2 : B
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Σ | Γ,X ` M : A
(T Tyabs C)

Σ | Γ ` ΛX .(M : A) : ∀X .A

Σ | Γ ` M : ∀X .B Σ | Γ ` A
(T Tyapp C)

Σ | Γ ` M A : B [X := A]

` Σ Σ ` Γ Σ | Γ ` A
(T Blame C)

Σ | Γ ` blame p : A

Σ | Γ ` M : A Σ | Γ ` c : A⇝ B
(T Crc C)

Σ | Γ ` M 〈c〉 : B

A.4 Context typing Σ `C CC : (Γ ` A)⇒ (Γ′ ` B)

Σ `C □ : (Γ ` A)⇒ (Γ ` A) (Ctxt Hole C)

Σ `C CC : (Γ ` A)⇒ (Γ′, x : A′ ` B)
(Ctxt Abs C)

Σ `C λx :A′.CC : (Γ ` A)⇒ (Γ′ ` A′ → B)

Σ `C CC : (Γ ` A)⇒ (Γ′ ` B → C ) Σ | Γ′ `C M : B
(Ctxt App1 C)

Σ `C CC M : (Γ ` A)⇒ (Γ′ ` C )

Σ | Γ′ `C M : B → C Σ `C CC : (Γ ` A)⇒ (Γ′ ` B)
(Ctxt App2 C)

Σ `C M CC : (Γ ` A)⇒ (Γ′ ` C )

Σ `C CC : (Γ ` A)⇒ (Γ′,X ` A′)
(Ctxt Tyabs C)

Σ `C ΛX .(CC : A′) : (Γ ` A)⇒ (Γ′ ` ∀X .A′)

Σ `C CC : (Γ ` A)⇒ (Γ′ ` ∀X .B) Σ | Γ′ ` A′
(Ctxt Tyapp C)

Σ `C CC A′ : (Γ ` A)⇒ (Γ′ ` B [X := A′])

Σ `C CC : (Γ ` A)⇒ (Γ′ ` B) Σ | Γ′ `C c : B ⇝ C
(Ctxt Crc C)

Σ `C CC 〈c〉 : (Γ ` A)⇒ (Γ′ ` C )

A.5 Logical relation

Definition A.6 (Mappings). We use metavariable α⋆ to denote type names or the dynamic type ⋆. Metavari-
ables ρ, κ, and θ range over finite mappings from type variables to type names or ⋆ (i.e., types ranged over by
α⋆), ones from type names to relations in

∪
n≥0 Reln , and ones from variables to pairs of values, respectively.

For X 6∈ dom(ρ), α 6∈ dom(κ), and x 6∈ dom(θ), we write ρ{X 7→ α⋆}, κ{α 7→ R}, and θ{x 7→ (V1,V2)}
for the mapping that is the same as ρ, κ, and θ except that X , α, and x is mapped to α⋆, R, and (V1,V2),
respectively. We write θ1 and θ2 for the substitutions that map variable x to values V1 and V2, respectively, if
θ maps x to (V1,V2).

Figure 2 defines the logical relation, and Figure 1 defines the auxiliary definitions for it.

A.6 Contextual equivalence

Definition A.7 (Contextual equivalence for terms). Terms M1 and M2 of type A are contextually equivalent

under store Σ and type environment Γ, written Σ | Γ `C M1
ctx
= M2 : A, if Σ | Γ `C M1 : A and Σ | Γ `C M2 : A

and, for any context CC and type B , Σ `C CC : (Γ ` A)⇒ (∅ ` B) implies one of the followings:

• Σ ▷ CC [M1] −→∗
C Σ1 ▷ V1 and Σ ▷ CC [M2] −→∗

C Σ2 ▷ V2 for some values V1 and V2, and stores Σ1 and
Σ2,

• Σ ▷ CC [M1] −→∗
C Σ1 ▷ blame p and Σ ▷ CC [M2] −→∗

C Σ2 ▷ blame p for some label p, and stores Σ1 and
Σ2, or

• Σ ▷ CC [M1] ⇑ and Σ ▷ CC [M2] ⇑.
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Atomn [[A1,A2]]
def
= {(W ,M1,M2) |W ∈ Worldn ∧ W .Σ1 | ∅ ` M1 : A1 ∧ W .Σ2 | ∅ ` M2 : A2}

Atomval
n [[A1,A2]]

def
= {(W ,V1,V2) | (W ,V1,V2) ∈ Atomn [[A1,A2]]}

Atom [[A]] ρ
def
=

∪
n≥0 Atomn [[ρ(A), ρ(A)]]

Atomval [[A]] ρ
def
=

∪
n≥0 Atom

val
n [[ρ(A), ρ(A)]]

Reln [[A1,A2]]
def
= {R ⊆ Atomval

n [[A1,A2]] |
∀ (W1,V1,V2) ∈ R. ∀W2 wW1. (W2,V1,V2) ∈ R }

Reln
def
=

∪
A1,A2

Reln [[A1,A2]]

Worldn
def
= {(m,Σ1,Σ2, κ) ∈ Nat× TNStore× TNStore× (TyName ⇀ Relm) |

m < n ∧ ` Σ1 ∧ ` Σ2 ∧ ∀α ∈ dom(κ). κ(α) ∈ Relm [[Σ1(α),Σ2(α)]]}

World
def
=

∪
n≥0 Worldn

bRcn
def
= {(W ,M1,M2) ∈ R |W .n < n}

bκcn
def
= {α 7→ bκ(α)cn | α ∈ dom(κ)}

W1 wW2
def
= W1.n ≤W2.n ∧ W1.Σ1 ⊇ W2.Σ1 ∧ W1.Σ2 ⊇ W2.Σ2 ∧ W1.κ w bW2.κcW1.n ∧

W1,W2 ∈ World

W1 wn W2
def
= W1.n = W2.n− n ∧ W1 wW2

κ1 w κ2
def
= ∀α ∈ dom(κ2). κ1(α) = κ2(α)

▶(n + 1,Σ1,Σ2, κ)
def
= (n,Σ1,Σ2, bκcn)

▶R def
= {(W ,M1,M2) |W .n > 0 =⇒ (▶W ,M1,M2) ∈ R}

W ⊞ (α,A1,A2,R)
def
= (W .n, (W .Σ1, α := A1), (W .Σ2, α := A2),W .κ{α 7→ R})

Figure 1: Auxiliary definitions for logical relation.

Definition A.8 (Contextual equivalence for coercion sequences). Coercion sequences 〈c〉 and 〈d〉 from type A to

type B are contextually equivalent under store Σ and type environment Γ, written Σ | Γ ` 〈c〉 ctx= 〈d〉 : A⇝ B ,

if Σ | Γ `C λx :A.x 〈c〉 ctx= λx :A.x 〈d〉 : A→ B .
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V [[ι]] ρ def
= {(W ,V1,V2) ∈ Atomval [[ι]] ρ | ∃ k . V1 = k ∧ V2 = k}

V [[A→ B ]] ρ
def
= {(W ,V1,V2) ∈ Atomval [[A→ B ]] ρ | ∀W ′ wW . ∀V ′

1,V
′
2.

(W ′,V ′
1,V

′
2) ∈ V [[A]] ρ =⇒ (W ′,V1 V

′
1,V2 V

′
2) ∈ E [[B ]] ρ}

V [[∀X .A]] ρ
def
= {(W ,V1,V2) ∈ Atomval [[∀X .A]] ρ |

(∀W ′ wW . ∀B1,B2,R,M1,M2, α.

W ′.Σ1 | ∅ ` B1 ∧ W ′.Σ2 | ∅ ` B2 ∧ R ∈ RelW ′.n [[B1,B2]] ∧
W ′.Σ1 ▷ V1 B1 −→ W ′.Σ1, α := B1 ▷ M1〈coerce+α (ρ(A)[X := α])〉 ∧
W ′.Σ2 ▷ V2 B2 −→ W ′.Σ2, α := B2 ▷ M2〈coerce+α (ρ(A)[X := α])〉
=⇒ (W ′ ⊞ (α,B1,B2,R),M1,M2) ∈ ▶E [[A]] ρ{X 7→ α}) ∧

∀W ′ wW . (W ′,V1 ⋆,V2 ⋆) ∈ E [[A]] ρ{X 7→ ⋆}}

V [[X ]] ρ
def
= V [[ρ(X )]] ρ

V [[α]] ρ def
= {(W ,V1〈α−〉,V2〈α−〉) ∈ Atomval [[α]] ∅ | (W ,V1,V2) ∈ ▶(W .κ(α))}

V [[⋆]] ρ def
= {(W ,V1〈G !〉,V2〈G !〉) ∈ Atomval [[⋆]] ∅ | (W ,V1,V2) ∈ ▶V [[G ]] ∅}

E [[A]] ρ def
= {(W ,M1,M2) ∈ Atom [[A]] ρ | ∀ n < W .n.

(∀Σ1,V1. W .Σ1 ▷ M1 −→n Σ1 ▷ V1 =⇒
∃W ′,V2. W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ V2 ∧ W ′ wn W ∧

W ′.Σ1 = Σ1 ∧ (W ′,V1,V2) ∈ V [[A]] ρ) ∧
(∀Σ1, p. W .Σ1 ▷ M1 −→n Σ1 ▷ blame p =⇒ ∃Σ2. W .Σ2 ▷ M2 −→∗ Σ2 ▷ blame p)}

G [[∅]] def
= {(W , ∅, ∅) |W ∈ World}

G [[Γ, x : A]]
def
= {(W , θ{x 7→ (V1,V2)}, ρ) | (W , θ, ρ) ∈ G [[Γ]] ∧ (W ,V1,V2) ∈ V [[A]] ρ}

G [[Γ,X ]]
def
= {(W , θ, ρ{X 7→ α}) | (W , θ, ρ) ∈ G [[Γ]] ∧ α ∈ dom(W .κ)} ∪
{(W , θ, ρ{X 7→ ⋆}) | (W , θ, ρ) ∈ G [[Γ]]}

S [[∅]] def
= World

S [[Σ, α := A]] def
= {W ∈ S [[Σ]] |W .Σ1(α) = A ∧ W .Σ2(α) = A ∧ W .κ(α) = bV [[A]] ∅cW .n}

Σ | Γ ` M1 � M2 : A
def
= Σ | Γ ` M1 : A ∧ Σ | Γ ` M2 : A ∧
∀W , θ, ρ. W ∈ S [[Σ]] ∧ (W , θ, ρ) ∈ G [[Γ]] =⇒ (W , ρ(θ1(M1)), ρ(θ

2(M2))) ∈ E [[A]] ρ

Σ | Γ ` M1 ≈ M2 : A
def
= Σ | Γ ` M1 � M2 : A ∧ Σ | Γ ` M2 � M1 : A

Figure 2: Logical relation.
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B Definition: Space-Efficient Polymorphic Coercion Calculus λS∀mp

B.1 Syntax

Types A,B ,C ::= ι | ⋆ | A→ B | ∀X .A | X | α
Ground types G ,H ::= ι | ⋆→ ⋆ | ∀X .⋆ | X | α

Space-efficient coercions s, t ::= G?p ; b | b
Possibly blaming coercions b ::= ⊥p | i

Intermediate coercions i , j ::= g ;G ! | g
Ground coercions g , h ::= id | s → t | ∀X .s ,, t

Terms M ::= k | x | λx :A.M | M M | ΛX .M | M A | M 〈s〉 | blame p

Values V ::= U | U 〈g ;G !〉 | U 〈s → t〉 | U 〈∀X .s ,, t〉
Uncoerced values U ::= k | λx :A.M | ΛX .M

Evaluation frames E ::= □M | V □ | □A

Contexts CS ::= □ | λx :A.CS | CS M | M CS | ΛX .CS | CS A | CS 〈s〉
Type environments Γ ::= ∅ | Γ, x : A | Γ,X

Stores Σ ::= ∅ | Σ, α := A

Definition B.1 (Free Type Variables and Type Substitution). We define the notion of free type variables as
well as type substitution A[X := B ] and M [X := α] as those in λC∀

mp. The notation M [X := ⋆] and s[X := ⋆]
denote the term and space-efficient coercion obtained by substituting type ⋆ for free type variable X in term M
and coercion s, respectively. The term M [X := ⋆] is defined in a standard manner, and space-efficient coercion
s[X := ⋆] is defined as follows (only the interesting cases are shown):

(G?p ; b)[X := ⋆]
def
=

{
b[X := ⋆] (if G = X )

G?p ; (b[X := ⋆]) (if G 6= X )

(g ;G !)[X := ⋆]
def
=

{
g [X := ⋆] (if G = X )

(g [X := ⋆]) ;G ! (if G 6= X )

Note that V [X := ⋆] is a value if value V is closed.
We write A[α := B ] for the type obtained by replacing type name α in type A with type B . The notation

Σ(A) denotes the type obtained by replacing type names in A with the corresponding types associated by store
Σ. Formally, it is defined as follows:

∅(A) def
= A

(Σ, α := B)(A) def
= Σ(A[α := B]) .

We also write Σ(Γ) for the type environment obtained by mapping every binding x : A in type environment Γ
to x : Σ(A).

B.2 Dynamic semantics

Definition B.2 (Reduction). The reduction relation −→ is the smallest relations satisfying the rules in Sec-
tion B.2.2. We use the notation −→∗ to denote the reflexive, transitive closure of −→, and Σ ▷ M ⇑ to denote
that term M diverges under store Σ. We may write −→S and −→∗

S to emphasize the reduction in λS∀mp.
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B.2.1 Coercion composition s # t = s ′

(G?p ; b) # t = G?p ; (b # t)
⊥p # t = ⊥p

i #⊥p′
= ⊥p′

i # (h ; H !) = (i # h) ; H !

i # id = i

(g ;G !) # (G?p ; b) = g # b
(g ;G !) # (H ?p ; b) = ⊥p if G 6= H

id # t = t if t 6= ⊥p′
∧ t 6= (h ; H !) ∧ t 6= id

(s → t) # (s ′ → t ′) = (s ′ # s)→ (t # t ′)
(∀X .s1 ,, s2) # (∀X .t1 ,, t2) = ∀X .(s1 # t1) ,, (s2 # t2)

B.2.2 Reduction Σ ▷ M −→ Σ′ ▷ M ′

k1 k2 −→ δ(k1, k2) (R Delta S)

(λx :A.M )V −→ M [x := V ] (R Beta S)

U 〈id〉 −→ U (R Id S)

(U 〈s → t〉)V −→ (U (V 〈s〉))〈t〉 (R Wrap S)

U 〈⊥p〉 −→ blame p (R Fail S)

M 〈s〉 〈t〉 −→ M 〈s # t〉 (R Merge S)

(ΛX .M ) ⋆ −→ M [X := ⋆] (R TybetaDyn S)

(ΛX .M )〈∀X .s ,, t〉 ⋆ −→ (M [X := ⋆])〈t〉 (R TybetaDynC S)

Σ ▷ (ΛX .M )A −→ Σ, α := A ▷ M [X := α] (R Tybeta S)

where α 6∈ dom(Σ)

Σ ▷ (ΛX .M )〈∀X .s ,, t〉A −→ Σ, α := A ▷ (M 〈s〉)[X := α] (R TybetaC S)

where α 6∈ dom(Σ)

E [blame p] −→ blame p (R BlameE S) (blame p)〈s〉 −→ blame p (R BlameC S)

Σ ▷ M −→ Σ′ ▷ M ′
(R CtxE S)

Σ ▷ E [M ] −→ Σ′ ▷ E [M ′]

Σ ▷ M −→ Σ′ ▷ M ′
(R CtxC S)

Σ ▷ M 〈s〉 −→ Σ′ ▷ M ′〈s〉

(M is not a coercion application.)

B.3 Type system

This section defines typing rules in λS∀mp. Note that the notations for type environments and stores (dom(Γ),
dom(Σ), Γ1#Γ2, and Σ1#Σ2) as well as the well-formedness rules for types, stores, type environments are
defined in the same way as those in λC∀

mp. We may write Σ | Γ `S M : A for typing judgment Σ | Γ ` M : A

in λS∀mp for clarity.

B.3.1 Type well-formedness Σ | Γ ` A

Σ | Γ ` ι (Tw Base) Σ | Γ ` ⋆ (Tw Star)
Σ | Γ ` A Σ | Γ ` B

(Tw Arrow)
Σ | Γ ` A→ B

α ∈ dom(Σ)
(Tw Name)

Σ | Γ ` α

X ∈ Γ
(Tw Var)

Σ | Γ ` X

Σ | Γ,X ` A
(Tw Poly)

Σ | Γ ` ∀X .A
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B.3.2 Store well-formedness ` Σ

` ∅ (Sw Empty)
` Σ Σ | ∅ ` A α 6∈ dom(Σ)

(Sw Binding)` Σ, α := A

B.3.3 Type environment well-formedness Σ ` Γ

Σ ` ∅ (Tew Empty)
Σ ` Γ Σ | Γ ` A x 6∈ dom(Γ)

(Tew Var)
Σ ` Γ, x : A

Σ ` Γ X 6∈ dom(Γ)
(Tew Tyvar)

Σ ` Γ,X

B.3.4 Coercion typing Σ | Γ ` s : A⇝ B

(A 6= A′ → B ′ and A 6= ∀X .A′)
` Σ ∅ ` Γ Σ | Γ ` A

(Ct Id S)
Σ | Γ ` id : Σ(A)⇝ Σ(A)

` Σ ∅ ` Γ ∅ | Γ ` A ∅ | Γ ` B
(Ct Fail S)

Σ | Γ ` ⊥p : A⇝ B

Σ | Γ ` g : A⇝ Σ(G) Σ | Γ ` G
(Ct Inj S)

Σ | Γ ` g ;G ! : A⇝ ⋆

Σ | Γ ` b : Σ(G)⇝ A Σ | Γ ` G
(Ct Proj S)

Σ | Γ ` G?p ; b : ⋆⇝ A

Σ | Γ ` s : A′ ⇝ A Σ | Γ ` t : B ⇝ B ′
(Ct Arrow S)

Σ | Γ ` s → t : (A→ B)⇝ (A′ → B ′)

Σ | Γ,X ` s : A⇝ B Σ | Γ ` t : A[X := ⋆]⇝ B [X := ⋆]
(Ct All S)

Σ | Γ ` ∀X .s ,, t : ∀X .A⇝ ∀X .B

B.3.5 Term typing Σ | Γ ` M : A

` Σ ∅ ` Γ ty(k) = A
(T Const S)

Σ | Γ ` k : A

` Σ ∅ ` Γ x : A ∈ Γ
(T Var S)

Σ | Γ ` x : A

Σ | Γ, x : Σ(A) ` M : B
(T Abs S)

Σ | Γ ` λx :A.M : Σ(A)→ B

Σ | Γ ` M1 : A→ B Σ | Γ ` M2 : A
(T App S)

Σ | Γ ` M1 M2 : B

Σ | Γ,X ` M : A
(T Tyabs S)

Σ | Γ ` ΛX .M : ∀X .A

Σ | Γ ` M : ∀X .B Σ | Γ ` A
(T Tyapp S)

Σ | Γ ` M A : B [X := Σ(A)]

` Σ ∅ ` Γ ∅ | Γ ` A
(T Blame S)

Σ | Γ ` blame p : A

Σ | Γ ` M : A Σ | Γ ` s : A⇝ B
(T Crc S)

Σ | Γ ` M 〈s〉 : B
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C Definition: Translation from λC∀mp to λS∀mp

C.1 Coercion translation |c|Γ = s

|idA|Γ = id if A is a base type or ⋆ or a type name or type variable

|idA→B |Γ = |idA|Γ → |idB |Γ
|id∀X .A|Γ = ∀X .|idA|Γ,X ,, |idA|Γ

|G !|Γ =

{
id if G = X 6∈ dom(Γ)

|idG |Γ ;G ! otherwise

|G?p |Γ =

{
id if G = X 6∈ dom(Γ)

G?p ; |idG |Γ otherwise

|α−|Γ = id

|α+|Γ = id

|⊥p
A⇝B |Γ = ⊥p

|c → d |Γ = |c|Γ → |d |Γ
|c ; d |Γ = |c|Γ # |d |Γ
|∀X .c|Γ = ∀X .|c|Γ,X ,, |c|Γ

C.2 Term translation |M |Γ = M ′

|k |Γ = k

|x |Γ = x

|λx :A.M |Γ = λx :A.|M |Γ,x :A
|M1 M2|Γ = |M1|Γ |M2|Γ

|ΛX .(M : A)|Γ = ΛX .|M |Γ,X
|M A|Γ = |M |Γ A
|M 〈c〉|Γ = |M |Γ〈|c|Γ〉
|blame p|Γ = blame p

C.3 Bisimulation Σ | Γ ` M ≈ M ′ : A

` Σ Σ ` Γ ty(k) = A
(Bs Const)

Σ | Γ ` k ≈ k : A

` Σ Σ ` Γ x : A ∈ Γ
(Bs Var)

Σ | Γ ` x ≈ x : A

Σ | Γ, x : A ` M ≈ M ′ : B ′
(Bs Abs)

Σ | Γ ` λx :A.M ≈ λx :A.M ′ : A→ B ′

Σ | Γ ` M1 ≈ M ′
1 : A→ B Σ | Γ ` M2 ≈ M ′

2 : A
(Bs App)

Σ | Γ ` M1 M2 ≈ M ′
1 M

′
2 : B

Σ | Γ,X ` M ≈ M ′ : A
(Bs Tyabs)

Σ | Γ ` ΛX .(M : A) ≈ ΛX .M ′ : ∀X .A

Σ | Γ ` M ≈ M ′ : ∀X .B Σ | Γ ` A
(Bs Tyapp)

Σ | Γ ` M A ≈ M ′ A : B [X := A]
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` Σ Σ ` Γ Σ | Γ ` A
(Bs Blame)

Σ | Γ ` blame p ≈ blame p : A

Σ | Γ ` M ≈ M ′ : B Σ | Γ `C c : B ⇝ A
(Bs Crc)

Σ | Γ ` M 〈c〉 ≈ M ′〈|c|Γ〉 : A

Σ | Γ ` M ≈ M ′ : A Σ | ∅ `C idA : A⇝ A
(Bs CrcId)

Σ | Γ ` M ≈ M ′〈|idA|∅〉 : A

Σ | Γ ` M ≈ M ′〈s〉 : A ftv(s) = ∅ Σ | ∅ `C c : A⇝ B
(Bs CrcMore)

Σ | Γ ` M 〈c〉 ≈ M ′〈s # |c|∅〉 : B
Σ | Γ ` M ≈ M ′ : B Σ | ∅ `C cI : B ⇝ A

(Bs CrcIdL)
Σ | Γ ` M 〈cI〉 ≈ M ′ : A
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D Auxiliary Lemmas

We first state various weakening and strengthening lemmas, which are common to both calculi. All of them are
proved by straightforward induction.

Lemma D.1 (Weakening Type Environment Preserves Well-formedness).

1. If Σ | Γ1,Γ2 ` A and Γ#(Γ1,Γ2), then Σ | Γ1,Γ,Γ2 ` A.

2. If Σ ` Γ1,Γ2 and Σ ` Γ1,Γ and Γ#Γ2, then Σ ` Γ1,Γ,Γ2.

Proof. Straightforward by induction on Σ | Γ1,Γ2 ` A and Γ2, respectively. Note that the second case rests
on the first case.

Lemma D.2 (Weakening Stores Preserves Well-formedness).

1. If Σ | Γ ` A and Σ′ ⊇ Σ, then Σ′ | Γ ` A.

2. If Σ ` Γ and Σ′ ⊇ Σ, then Σ′ ` Γ.

Proof. Straightforward by induction on Σ | Γ ` A and Σ ` Γ, respectively. Note that the second case rests on
the first case.

Lemma D.3 (Strengthening Type Environment Preserves Well-formedness).

1. If Σ | Γ1, x : B ,Γ2 ` A, then Σ | Γ1,Γ2 ` A.

2. If Σ ` Γ1, x : B ,Γ2, then Σ ` Γ1,Γ2.

Proof. Straightforward by induction on Σ | Γ1, x : B ,Γ2 ` A and Γ2, respectively. Note that the second case
rests on the first case.

Lemma D.4 (Types in Type Environment and Store are Well-formed).

1. If ` Σ and α := A ∈ Σ, then Σ | ∅ ` A.

2. If Σ ` Γ and x : A ∈ Γ, then Σ | Γ ` A.

Proof. Straightforward by induction on ` Σ with Lemma D.2 (1) and on Σ ` Γ with Lemma D.1 (1), respec-
tively.

Lemma D.5 (Type Substitution Preserves Well-formedness).

1. If Σ | Γ1 ` A and Σ | Γ1,X ,Γ2 ` B and , then Σ | Γ1,Γ2[X := A] ` B [X := A].

2. If Σ | Γ1 ` A and Σ ` Γ1,X ,Γ2 , then Σ ` Γ1,Γ2[X := A].

Proof. Straightforward by induction on Σ | Γ1,X ,Γ2 ` B with Lemma D.1 (1) and on Γ2 with the first case,
respectively.

Lemma D.6 (Types in Store are Well-formed). If ` Σ and α := A ∈ Σ, then Σ | ∅ ` A.

Proof. By straightforward induction on ` Σ with Lemma D.2 (1).

Lemma D.7 (Left Partitions of Well-formed Type Environment are Well-formed). If Σ ` Γ1,Γ2, then Σ ` Γ1.

Proof. By straightforward induction on Γ2.

Lemma D.8 (Type Well-formedness Tracks Free Type Variables). If Σ | Γ ` A, then ftv(A) ⊆ dom(Γ).

Proof. By straightforward induction on Σ | Γ ` A.

Lemma D.9 (Type Substitution by Type Names Preserves Type Well-formedness).

1. If ` Σ, α := B and Σ, α := B | Γ ` A, then Σ | Γ[α := B] ` A[α := B].
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2. If ` Σ, α := B and Σ, α := B ` Γ, then Σ ` Γ[α := B].

Proof. (1) Straightforward by induction on the derivation of Σ, α := B | Γ ` A with Lemma D.1 (1) and
Lemma D.4 (1).

(2) Straightforward by induction on the derivation of Σ, α := B ` Γ with Lemma D.9 (1).

Lemma D.10 (Replacing Type Names Preserves Type Well-formedness).

1. If ` Σ and Σ | Γ ` A, then ∅ | Γ ` Σ(A).

2. If ` Σ and Σ | Γ ` A, then Σ | Σ(Γ) ` A.

3. If ` Σ, then Σ | Γ ` A iff ∅ | Σ(Γ) ` Σ(A).

4. If ` Σ and Σ | Γ ` A, then Σ | Σ(Γ) ` Σ(A).

5. If ` Σ, then Σ ` Γ iff ∅ ` Σ(Γ).

Proof. (1) By lexicographic induction on the pair of the size of Σ and the derivation of Σ | Γ ` A. The cases
except that A is a type name are easy to prove.

Assume that A = α for some α. From Σ | Γ ` α, we have Σ = (Σ1, α := B,Σ2) for some B,Σ1,Σ2. Because
Σ(α) = Σ1(B), it suffices to show ∅ | Γ ` Σ1(B). Because ` Σ1, α := B,Σ2, we have ` Σ1 and Σ1 | ∅ ` B. By
the IH, ∅ | ∅ ` Σ1(B). By Lemma D.1 (1), we have ∅ | Γ ` Σ1(B).

(2) Straightforward by induction on the derivation of Σ | Γ ` A.
(3) The “only if” direction is proved by lexicographic induction on the pair of the size of Σ and the derivation

of Σ | Γ ` A with Lemma D.9 (1). The “if” direction is by induction on A.
(4) By (3) and Lemma D.2.
(5) By straightforward induction on Γ.

Corollary D.11 (Associated Types and Type Names in Stores Are Equal by Replacing Type Names ). If ` Σ
and α := A ∈ Σ, then Σ(α) = Σ(A).

Proof. Straightforward by the definition of Σ(A).

E Type Safety

E.1 λC∀
mp

Lemma E.1 (Uniqueness of Coercion Typing). If Σ | Γ ` c : A ⇝ B and Σ | Γ ` c : A′ ⇝ B ′, then A = A′

and B = B ′.

Proof. By straightforward induction on Σ | Γ ` c : A⇝ B .

Lemma E.2 (Canonical forms). If Σ | ∅ ` V : A, then one of the followings holds:

• V = k and A = ty(k) for some k .

• V = λx :A′.M and A = A′ → B for some A′,B , x ,M .

• V = ΛX .(M : A′) and A = ∀X .A′ for some X ,A′,M .

• V = V ′〈G !〉 and A = ⋆ for some G ,V ′.

• V = V ′〈α−〉 and A = α for some α,V ′.

• V = V ′〈c → d〉 and A = A′ → B for some A′,B , c, d ,V ′.

• V = V ′〈∀X .c〉 and A = ∀X .A′ for some X ,A′, c,V ′.

Proof. Straightforward by case analysis on V .
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Lemma E.3. If Σ | ∅ ` V : ∀X .An , then V = (ΛX .(M : A0))〈∀X .c〉 and Σ | ∅ ` ΛX .(M : A0) : ∀X .A0 and
Σ ` 〈∀X .c〉 : ∀X .A0 ⇝ ∀X .An for some A0, M , 〈c〉.

Proof. By straightforward induction on Σ | ∅ ` V : ∀X .A. Note that the last rule applied in the typing
derivation is either (T Tyabs C) or (T Crc C) because V is a value.

Theorem E.4 (Progress (Theorem ?? of the paper)). If Σ | ∅ ` M : A, then one of the followings holds:

• M = V for some V ,

• M = blame p for some p, or

• Σ ▷ M −→ Σ′ ▷ M ′ for some Σ′,M ′.

Proof. By induction on Σ | ∅ ` M : A with case analysis on the last rule applied in the typing derivation.

Case (T Const C), (T Abs C), (T Tyabs C): M = V for some V immediately.

Case (T Var C): Contradictory.

Case (T Blame C): Immediate.

Case (T App C): We have

M = M1 M2, Σ | ∅ ` M1 : B → A, Σ | ∅ ` M2 : B (∃B ,M1,M2) .

By the IH on Σ | ∅ ` M1 : B → A, we have three subcases:

Case M1 = V1(∃V1): By the IH on Σ | ∅ ` M2 : B , we have three further subcases:

Case M2 = V2(∃V2): By Σ | ∅ ` V1 : B → A and Lemma E.2, we consider the following three cases.

Case V1 = k1 and ty(k1) = B → A (∃k1): By the definition of ty, there exists some ι such that B = ι.
Thus, by Σ | ∅ ` V2 : ι and Lemma E.2, V2 = k2 for some k2 such that ty(k2) = ι. Then, by the
definition of δ, δ(k1, k2) is defined. Therefore, (R Delta C) implies Σ ▷ k1 k2 −→ Σ ▷ δ(k1, k2).

Case V1 = λx :A′.M ′(∃A′, x ,M ′): By (R Beta C), Σ ▷ (λx :A′.M ′)V2 −→ Σ ▷ M ′[x := V2].

Case V1 = V ′
1〈c → d〉(∃c, d ,V ′

1): By (R Wrap C), Σ ▷ (V ′
1〈c → d〉)V2 −→ Σ ▷ (V ′

1 (V2〈c〉))〈d〉.
Case M2 = blame p2(∃p2): By (R Blame C), Σ ▷ V1 (blame p2) −→ Σ ▷ blame p2.

Case Σ ▷ M2 −→ Σ2 ▷ M ′
2(∃Σ2,M

′
2): By (R Ctx C), Σ ▷ V1 M2 −→ Σ2 ▷ V1 M

′
2.

Case M1 = blame p1(∃p1): By (R Blame C), Σ ▷ (blame p1)M2 −→ Σ ▷ blame p1.

Case Σ ▷ M1 −→ Σ1 ▷ M ′
1(∃Σ1,M

′
1): By (R Ctx C), Σ ▷ M1 M2 −→ Σ1 ▷ M ′

1 M2.

Case (T Tyapp C): We have

M = M ′ A′, Σ | ∅ ` M ′ : ∀X .B , Σ | ∅ ` A′ (∃X ,A′,B ,M ′) .

By the IH, we have three subcases:

Case M ′ = V (∃V ): By Lemma E.3, there exists some A0, M
′′, 〈c〉 such that V = (ΛX .(M ′′ : A0))〈∀X .c〉

and Σ ` 〈∀X .c〉 : ∀X .A0 ⇝ ∀X .B . By case analysis on A′.

Case A′ = ⋆: By (R TybetaDyn C), Σ ▷ (ΛX .(M ′′ : A0))〈∀X .c〉 ⋆ −→ Σ ▷ (M ′′〈c〉)[X := ⋆].

Case A′ = C(∃C): By (R Tybeta C), Σ ▷ (ΛX .(M ′′ : A0))〈∀X .c〉C −→ Σ, α := C ▷ (M ′′〈c〉)[X :=
α]〈coerce+α (B [X := α])〉.

Case M ′ = blame p(∃p): By (R Blame C), Σ ▷ (blame p)A′ −→ Σ ▷ blame p.

Case Σ ▷ M ′ −→ Σ′ ▷ M ′′(∃Σ′,M ′′): By (R Ctx C), Σ ▷ M ′ A′ −→ Σ′ ▷ M ′′ A′.

Case (T Crc C): We have

M = M ′〈c〉, Σ | ∅ ` M ′ : B , Σ | ∅ ` c : B ⇝ A (∃B , c,M ′) .

By the IH, we have three subcases:
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Case M ′ = V (∃V ): We conduct case analysis on c.

Case c = idA′(∃A′): By (R Id C), Σ ▷ V 〈idA′〉 −→ Σ ▷ V .

Case c = G?p(∃p,G): From Σ | ∅ ` G?p : B ⇝ A, we have B = ⋆. Thus, Σ | ∅ ` V : ⋆ and,
by Lemma E.2, V = V ′〈H !〉 for some H ,V ′. If G = H , then, by (R Collapse C), we have Σ ▷
V ′〈G !〉〈G?p〉 −→ Σ ▷ V ′. If G 6= H , then, by (R Conflict C), Σ ▷ V ′〈H !〉〈G?p〉 −→ Σ ▷ blame p.

Case c = α+(∃α): From Σ | ∅ ` α+ : B ⇝ A, we have B = α. Thus, Σ | ∅ ` V : α and, by Lemma E.2,
V = V ′〈α−〉 for some V ′. By (R Remove C), Σ ▷ V ′〈α−〉〈α+〉 −→ Σ ▷ V ′.

Case c = c′ ; d(∃c′, d): By (R Split C), Σ ▷ V 〈c′ ; d〉 −→ Σ ▷ V 〈c′〉〈d〉.
Case c = ⊥p

A′⇝B ′(∃p,A′,B ′): By (R Fail C), Σ ▷ V 〈⊥p
A′⇝B ′〉 −→ Σ ▷ blame p.

Otherwise: V 〈c〉 is a value.

Case M ′ = blame p(∃p): By (R Blame C), Σ ▷ (blame p)〈c〉 −→ Σ ▷ blame p.

Case Σ ▷ M ′ −→ Σ′ ▷ M ′′(∃Σ′,M ′′): By (R Ctx C), Σ ▷ M ′〈c〉 −→ Σ′ ▷ M ′′〈c〉.

The proof of preservation starts with various weakening lemmas.

Lemma E.5. If Σ | Γ1,Γ2 ` c : A⇝ B and Σ ` Γ1,Γ and Γ#Γ2, then Σ | Γ1,Γ,Γ2 ` c : A⇝ B .

Proof. By straightforward induction on Σ | Γ1,Γ2 ` c : A⇝ B with Lemma D.1.

Lemma E.6. If Σ | Γ ` c : A⇝ B and Σ′ ⊇ Σ and ` Σ′, then Σ′ | Γ ` c : A⇝ B .

Proof. By straightforward induction on Σ | Γ ` c : A⇝ B with Lemma D.2.

Lemma E.7. If Σ | Γ1,Γ2 ` M : A and Σ ` Γ1,Γ and Γ#Γ2, then Σ | Γ1,Γ,Γ2 ` M : A.

Proof. By straightforward induction on Σ | Γ1,Γ2 ` M : A with Lemmas D.1 and E.5.

Lemma E.8. If Σ | Γ ` M : A and Σ′ ⊇ Σ and ` Σ′, then Σ′ | Γ ` M : A.

Proof. By straightforward induction on Σ | Γ ` M : A with Lemmas D.2 and E.6.

Lemma E.9 (Agreement (1)). If Σ | Γ ` c : A ⇝ B , then Σ ` Γ and Σ | Γ ` A and Σ | Γ ` B and
ftv(c) ⊆ dom(Γ).

Proof. By straightforward induction on Σ | Γ ` c : A⇝ B with Lemmas D.4 (1) and D.1 (1).

Lemma E.10 (Agreement (2)). If Σ | Γ ` M : A, then ` Σ and Σ ` Γ and Σ | Γ ` A.

Proof. By straightforward induction on Σ | Γ ` M : A with Lemmas D.4 (2), D.3 (1), D.5 (1), and E.9.

Lemma E.11 (Strengthening Type Environment in Coercion Typing). Σ | Γ1, x : C ,Γ2 ` c : A ⇝ B , then
Σ | Γ1,Γ2 ` c : A⇝ B .

Proof. By straightforward induction on Σ | Γ1, x : C ,Γ2 ` c : A⇝ B with Lemma D.3.

Lemma E.12 (Value Substitution). If Σ | Γ1, x : A,Γ2 ` M : B and Σ | Γ1 ` V : A, then Σ | Γ1,Γ2 `
M [x := V ] : B .

Proof. By straightforward induction on Σ | Γ1, x : A,Γ2 ` M : B with Lemmas D.3, E.7, and E.11.

Lemma E.13 (Type Name Substitution (Coercion)). If Σ | Γ1,X ,Γ2 ` c : A ⇝ B and α ∈ dom(Σ), then
Σ | Γ1,Γ2[X := α] ` c[X := α] : A[X := α]⇝ B [X := α].

Proof. By induction on Σ | Γ1,X ,Γ2 ` c : A ⇝ B with case analysis on the last rule applied in the typing
derivation.
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Case (Ct Id C): We have

c = idA′ , A = A′, B = A′, ` Σ, Σ ` Γ1,X ,Γ2, Σ | Γ1,X ,Γ2 ` A′ (∃A′) .

Since idA′ [X := α] = idA′[X :=α], it suffices to show Σ | Γ1,Γ2[X := α] ` idA′[X :=α] : A′[X := α] ⇝
A′[X := α]. Because Σ | Γ1 ` α by (Tw Name), Lemma D.5 implies Σ | Γ1,Γ2[X := α] ` A′[X := α] and
Σ ` Γ1,Γ2[X := α]. Thus, by (Ct Id C), Σ | Γ1,Γ2[X := α] ` idA′[X :=α] : A

′[X := α]⇝ A′[X := α].

Case (Ct Inj C), (Ct Proj C), (Ct Fail C): Similarly to the case for (Ct Id C).

Case (Ct Conceal C): We have

c = β−, A = C, B = β, ` Σ, Σ ` Γ1,X ,Γ2, β := C ∈ Σ (∃β,C) .

We have β−[X := α] = β− and β[X := α] = β. By Lemma D.4 (1), Σ | ∅ ` C. By Lemma D.8, ftv(C) ⊆ ∅.
Thus, C is closed and C[X := α] = C. Thus, it suffices to show Σ | Γ1,Γ2[X := α] ` β− : C ⇝ β. By
Lemma D.5 (2), Σ ` Γ1,Γ2[X := α]. By (Ct Conceal C), Σ | Γ1,Γ2[X := α] ` β− : C⇝ β.

Case (Ct Reveal C): Similarly to the case for (Ct Conceal C).

Case (Ct Arrow C), (Ct Seq C), (Ct All C): By the IH(s).

Lemma E.14 (Type Name Substitution). If Σ | Γ1,X ,Γ2 ` M : A and α ∈ dom(Σ), then Σ | Γ1,Γ2[X :=
α] ` M [X := α] : A[X := α].

Proof. By straightforward induction on Σ | Γ1,X ,Γ2 ` M : A with Lemmas D.5 and E.13.

Lemma E.15 (Dynamic Type Substitution (Coercion)). If Σ | Γ1,X ,Γ2 ` c : A ⇝ B , then Σ | Γ1,Γ2[X :=
⋆] ` c[X := ⋆] : A[X := ⋆]⇝ B [X := ⋆].

Proof. By induction on Σ | Γ1,X ,Γ2 ` c : A ⇝ B with case analysis on the last rule applied in the typing
derivation.

Case (Ct Id C): We have

c = idA′ , A = A′, B = A′, ` Σ, Σ ` Γ1,X ,Γ2, Σ | Γ1,X ,Γ2 ` A′ (∃A′) .

Since idA′ [X := ⋆] = idA′[X :=⋆], it suffices to show Σ | Γ1,Γ2[X := ⋆] ` idA′[X :=⋆] : A
′[X := ⋆]⇝ A′[X := ⋆].

Because Σ | Γ1 ` ⋆ by (Tw Star), Lemma D.5 implies Σ | Γ1,Γ2[X := ⋆] ` A′[X := ⋆] and Σ ` Γ1,Γ2[X :=
⋆]. Thus, by (Ct Id C), Σ | Γ1,Γ2[X := ⋆] ` idA′[X :=⋆] : A

′[X := ⋆]⇝ A′[X := ⋆].

Case (Ct Fail C): Similarly to the case for (Ct Id C).

Case (Ct Inj C): We have

c = G !, A = G , B = ⋆, ` Σ, Σ ` Γ1,X ,Γ2, Σ | Γ1,X ,Γ2 ` G (∃G) .

By case analysis on G .

Case G = X : Since G ![X := ⋆] = id⋆ and G [X := ⋆] = ⋆, it suffices to show Σ | Γ1,Γ2[X := ⋆] ` id⋆ : ⋆⇝ ⋆.
By (Tw Star), Σ | Γ1,Γ2[X := ⋆] ` ⋆. Because Σ | Γ1 ` ⋆ again by (Tw Star), Lemma D.5 (2) implies
Σ ` Γ1,Γ2[X := ⋆]. Thus, by (Ct Id C), Σ | Γ1,Γ2[X := ⋆] ` id⋆ : ⋆⇝ ⋆.

Case G 6= X : Since G ![X := ⋆] = G ! and G [X := ⋆] = G , it suffices to show that Σ | Γ1,Γ2[X := ⋆] `
G ! : G ⇝ ⋆. By Lemma D.5, Σ ` Γ1,Γ2[X := ⋆] and Σ | Γ1,Γ2[X := ⋆] ` G [X := ⋆](= G). Thus, by
(Ct Inj C), Σ | Γ1,Γ2[X := ⋆] ` G ! : G ⇝ ⋆.

Case (Ct Proj C): Similarly to the case for (Ct Inj C).
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Case (Ct Conceal C): We have

c = α−, A = C, B = α, ` Σ, Σ ` Γ1,X ,Γ2, α := C ∈ Σ (∃α,C) .

We have α−[X := ⋆] = α− and α[X := ⋆] = α. By Lemma D.4 (1), Σ | ∅ ` C. By Lemma D.8, ftv(C) ⊆ ∅.
Thus, C is closed and C[X := ⋆] = C. Thus, it suffices to show Σ | Γ1,Γ2[X := ⋆] ` α− : C ⇝ α. By
Lemma D.5 (2), Σ ` Γ1,Γ2[X := ⋆]. By (Ct Conceal C), Σ | Γ1,Γ2[X := ⋆] ` α− : C⇝ α.

Case (Ct Reveal C): Similarly to the case for (Ct Conceal C).

Case (Ct Arrow C), (Ct Seq C), (Ct All C): By the IH(s).

Lemma E.16 (Dynamic Type Substitution). If Σ | Γ1,X ,Γ2 ` M : A, then Σ | Γ1,Γ2[X := ⋆] ` M [X := ⋆] :
A[X := ⋆].

Proof. By straightforward induction on Σ | Γ1,X ,Γ2 ` M : A with Lemmas D.5 and E.15.

Lemma E.17 (Coercion Generation is Well Typed). Assume that ` Σ and α := B ∈ Σ and Σ ` Γ1,X ,Γ2 and
Σ | Γ1,X ,Γ2 ` A and α does not occur in type A. Then, the following holds:

• Σ | Γ1,Γ2[X := α] ` coerce+α (A[X := α]) : A[X := α]⇝ A[X := B]; and

• Σ | Γ1,Γ2[X := α] ` coerce−α (A[X := α]) : A[X := B]⇝ A[X := α].

Proof. By induction on A. Note that, because Σ | Γ1 ` α by (Tw Name), Lemma D.5 implies Σ ` Γ1,Γ2[X :=
α] and Σ | Γ1,Γ2[X := α] ` A[X := α]. We proceed by case analysis on A.

Case A = ι(∃ι): We have

coerce+α (ι[X := α]) = coerce+α (ι) = idι, coerce−α (ι[X := α]) = coerce−α (ι) = idι, ι[X := α] = ι[X := B] = ι .

It suffices to show Σ | Γ1,Γ2[X := α] ` idι : ι⇝ ι, which is implied by (Ct Id C).

Case A = ⋆: Similar to the case where A = ι.

Case A = A′ → B ′(∃A′,B ′): We have

coerce+α ((A
′ → B ′)[X := α]) = coerce+α (A

′[X := α]→ B ′[X := α]) = coerce−α (A
′[X := α])→ coerce+α (B

′[X := α]),

coerce−α ((A
′ → B ′)[X := α]) = coerce−α (A

′[X := α]→ B ′[X := α]) = coerce+α (A
′[X := α])→ coerce−α (B

′[X := α]),

(A′ → B ′)[X := α] = A′[X := α]→ B ′[X := α], (A′ → B ′)[X := B] = A′[X := B]→ B ′[X := B] .

Thus, it suffices to show

• Σ | Γ1,Γ2[X := α] ` coerce−α (A
′[X := α]) → coerce+α (B

′[X := α]) : (A′[X := α] → B ′[X := α]) ⇝
(A′[X := B]→ B ′[X := B]) and

• Σ | Γ1,Γ2[X := α] ` coerce+α (A
′[X := α]) → coerce−α (B

′[X := α]) : (A′[X := B] → B ′[X := B]) ⇝
(A′[X := α]→ B ′[X := α]).

From Σ | Γ1,X ,Γ2 ` A′ → B ′, we have Σ | Γ1,X ,Γ2 ` A′ and Σ | Γ1,X ,Γ2 ` B ′. By the IHs,

Σ | Γ1,Γ2[X := α] ` coerce+α (A
′[X := α]) : A′[X := α]⇝ A′[X := B],

Σ | Γ1,Γ2[X := α] ` coerce−α (A
′[X := α]) : A′[X := B]⇝ A′[X := α],

Σ | Γ1,Γ2[X := α] ` coerce+α (B
′[X := α]) : B ′[X := α]⇝ B ′[X := B],

Σ | Γ1,Γ2[X := α] ` coerce−α (B
′[X := α]) : B ′[X := B]⇝ B ′[X := α] .

(Ct Arrow C) finishes the case.
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Case A = ∀Y .A′(∃Y ,A′): We can assume Y 6= X without loss of generality. We have

coerce+α ((∀Y .A′)[X := α]) = coerce+α (∀Y .A′[X := α]) = ∀Y .coerce+α (A
′[X := α]),

coerce−α ((∀Y .A′)[X := α]) = coerce−α (∀Y .A′[X := α]) = ∀Y .coerce−α (A
′[X := α]),

(∀Y .A′)[X := α] = ∀Y .A′[X := α], (∀Y .A′)[X := B] = ∀Y .A′[X := B] .

Thus, it suffices to show

• Σ | Γ1,Γ2[X := α] ` ∀Y .coerce+α (A
′[X := α]) : ∀Y .A′[X := α]⇝ ∀Y .A′[X := B] and

• Σ | Γ1,Γ2[X := α] ` ∀Y .coerce−α (A
′[X := α]) : ∀Y .A′[X := B]⇝ ∀Y .A′[X := α].

Form Σ | Γ1,X ,Γ2 ` ∀Y .A′, we have Σ | Γ1,X ,Γ2,Y ` A′. By (Tew Tyvar), Σ ` Γ1,X ,Γ2,Y . By the
IH, we have

Σ | Γ1,Γ2[X := α],Y ` coerce+α (A
′[X := α]) : A′[X := α]⇝ A′[X := B],

Σ | Γ1,Γ2[X := α],Y ` coerce−α (A
′[X := α]) : A′[X := B]⇝ A′[X := α] .

(Ct All C) finishes the case.

Case A = Y (∃Y ): We have the following two subcases.

Case Y = X : We have

coerce+α (X [X := α]) = coerce+α (α) = α+, coerce−α (X [X := α]) = coerce−α (α) = α−,

X [X := α] = α, X [X := B] = B .

It suffices to show

• Σ | Γ1,Γ2[X := α] ` α+ : α⇝ B and

• Σ | Γ1,Γ2[X := α] ` α− : B⇝ α,

which follows from (Ct Conceal C) and (Ct Reveal C).

Case Y 6= X : We have

coerce+α (Y [X := α]) = coerce+α (Y ) = idY , coerce−α (Y [X := α]) = coerce−α (Y ) = idY ,

Y [X := α] = Y [X := B] = Y .

It suffices to show Σ | Γ1,Γ2[X := α] ` idY : Y ⇝ Y , which follows from (Ct Id C).

Case A = β(∃β): Since α does not occur in type A, β 6= α. We have

coerce+α (β[X := α]) = coerce+α (β) = idβ , coerce−α (β[X := α]) = coerce−α (β) = idβ ,

β[X := α] = β[X := B] = β .

It suffices to show Σ | Γ1,Γ2[X := α] ` idβ : β ⇝ β, which follows from (Ct Id C).

Lemma E.18. If Σ | ∅ ` M : A and Σ ▷ M −→ Σ′ ▷ M ′, then either

• Σ′ = Σ or

• Σ′ = Σ, α := B and Σ | ∅ ` B for some B and α 6∈ dom(Σ).

Proof. By easy induction on Σ ▷ M −→ Σ′ ▷ M ′.

Theorem E.19 (Preservation (Theorem ?? of the paper)). If Σ | ∅ ` M : A and Σ ▷ M −→ Σ′ ▷ M ′, then
Σ′ | ∅ ` M ′ : A.

Proof. By induction on the derivation of Σ ▷ M −→ Σ′ ▷ M ′ with case analysis on the last rule used.
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Case (R Delta C): We have

M = k1 k2, M ′ = δ(k1, k2), Σ′ = Σ (∃k1, k2) .

From Σ | ∅ ` k1 k2 : A, we have Σ | ∅ ` k1 : ι → A and Σ | ∅ ` k2 : ι. Then, by the assumption on δ,
Σ | ∅ ` δ(k1, k2) : A.

Case (R Beta C): We have

M = (λx :A′.M ′′)V , M ′ = M ′′[x := V ], Σ = Σ′ (∃A′, x ,M ′′,V ) .

From Σ | ∅ ` (λx :A′.M ′′)V : A, we have

Σ | ∅, x : A′ ` M ′′ : A, Σ | ∅ ` V : A′ .

Thus, by Lemma E.12, Σ | ∅ ` M ′′[x := V ] : A.

Case (R Id C): We have

M = V 〈idA′〉, M ′ = V , Σ′ = Σ (∃A′,V ) .

From Σ | ∅ ` V 〈idA′〉 : A, we have

A = A′, Σ | ∅ ` V : A .

Case (R Wrap C): We have

M = (V 〈c → d〉)V ′, M ′ = (V (V ′〈c〉))〈d〉, Σ′ = Σ (∃c, d ,V ,V ′) .

From Σ | ∅ ` (V 〈c → d〉)V ′ : A, we have

Σ | ∅ ` V : B → C , Σ | ∅ ` V ′ : D , Σ | ∅ ` c : D ⇝ B ,

Σ | ∅ ` d : C ⇝ A (∃B ,C ,D) .

Thus, Σ | ∅ ` (V (V ′〈c〉))〈d〉 : A by (T Crc C), (T App C), and (T Crc C).

Case (R Fail C): We have

M = V 〈⊥p
A′⇝B ′〉, M ′ = blame p, Σ′ = Σ (∃p,A′,B ′,V ) .

By Lemma E.10, we have ` Σ and Σ ` ∅ and Σ | ∅ ` A. By (T Blame C), Σ | ∅ ` blame p : A.

Case (R Collapse C): We have

M = V 〈G !〉〈G?p〉, M ′ = V , Σ′ = Σ (∃p,G ,V ) .

From Σ | ∅ ` V 〈G !〉〈G?p〉 : A, we have

Σ | ∅ ` V : G , Σ | ∅ ` G ! : G ⇝ ⋆, Σ | ∅ ` G?p : ⋆⇝ G , A = G .

Thus, Σ | ∅ ` V : A.

Case (R Conflict C): We have

M = V 〈G !〉〈H ?p〉, M ′ = blame p, Σ = Σ′, G 6= H (∃p,G ,V ) .

By Lemma E.10, we have ` Σ and Σ ` ∅ and Σ | ∅ ` A. Thus, by (T Blame C), Σ | ∅ ` blame p : A.
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Case (R Remove C): We have

M = V 〈α−〉〈α+〉, M ′ = V , Σ′ = Σ (∃α,V ) .

From Σ | ∅ ` V 〈α−〉〈α+〉 : A, we have

Σ | ∅ ` V : B, Σ | ∅ ` α− : B⇝ α, Σ | ∅ ` α+ : α⇝ B, A = B (∃B) ,

finishing the case.

Case (R Split C): We have

M = V 〈c ; d〉, M ′ = V 〈c〉〈d〉, Σ′ = Σ (∃c, d ,V ) .

From Σ | ∅ ` V 〈c ; d〉 : A, we have

Σ | ∅ ` V : C , Σ | ∅ ` c : C ⇝ B , Σ | ∅ ` d : B ⇝ A (∃B ,C ) .

Thus, Σ | ∅ ` V 〈c〉〈d〉 : A by using (T Crc C) twice.

Case (R TybetaDyn C): We have

M = ((ΛX .(M ′′ : A0))〈∀X .c〉) ⋆, M ′ = (M ′′〈c〉)[X := ⋆], Σ′ = Σ, (∃X ,A0, 〈c〉,M ′′) .

From Σ | ∅ ` ((ΛX .(M ′′ : A0))〈∀X .c〉) ⋆ : A, we have

Σ | ∅ ` (ΛX .(M ′′ : A0))〈∀X .c〉 : ∀X .D , A = D [X := ⋆] (∃D) .

By Lemma E.3, Σ | ∅ ` ΛX .(M ′′ : A0) : ∀X .A0 and Σ ` 〈∀X .c〉 : ∀X .A0 ⇝ ∀X .D . From Σ | ∅ `
ΛX .(M ′′ : A0) : ∀X .A0, we have Σ | ∅,X ` M ′′ : A0. By Lemma E.16, Σ | ∅ ` M ′′[X := ⋆] : A0[X := ⋆]. By
Lemma E.15, Σ ` 〈c[X := ⋆]〉 : A0[X := ⋆]⇝ D [X := ⋆]. Thus, Σ | ∅ ` M ′′[X := ⋆]〈c[X := ⋆]〉 : D [X := ⋆],
which is what we need to show.

Case (R Tybeta C): We have

M = ((ΛX .(M ′′ : A0))〈∀X .c〉)B, M ′ = (M ′′〈c〉)[X := α]〈coerce+α (An [X := α])〉,

Σ′ = Σ, α := B, Σ ` 〈∀X .c〉 : ∀X .A0 ⇝ ∀X .An , α 6∈ dom(Σ) (∃X , α,A0,B,An , 〈c〉,M ′′) .

From Σ | ∅ ` ((ΛX .(M ′′ : A0))〈∀X .c〉)B : A, we have

Σ | ∅ ` (ΛX .(M ′′ : A0))〈∀X .c〉 : ∀X .D , Σ | ∅ ` B, A = D [X := B] (∃D) .

By Lemmas E.3 and E.1, Σ | ∅ ` ΛX .(M ′′ : A0) : ∀X .A0 and An = D . Thus, it suffices to show

Σ, α := B | ∅ ` (M ′′〈c〉)[X := α]〈coerce+α (An [X := α])〉 : An [X := B] .

From Σ | ∅ ` ΛX .(M ′′ : A0) : ∀X .A0, we have Σ | ∅,X ` M ′′ : A0. By Lemma E.10, we have ` Σ and
Σ ` ∅ and Σ | ∅ ` ∀X .An . Then, because ` Σ, α := B by (Sw Binding), Lemma E.8 implies Σ, α := B |
∅,X ` M ′′ : A0. By Lemma E.14, Σ, α := B | ∅ ` M ′′[X := α] : A0[X := α]. By Lemmas E.6 and E.13,
Σ, α := B ` 〈c[X := α]〉 : A0[X := α]⇝ An [X := α]. Thus,

Σ, α := B | ∅ ` M ′′[X := α]〈c[X := α]〉 : An [X := α] .

From Σ | ∅ ` ∀X .An , we have Σ | ∅,X ` An . Because α 6∈ dom(Σ), α does not occur in An . By
Lemma D.2 (1), Σ, α := B | ∅,X ` An . By (Tew Empty) and (Tew Tyvar), Σ, α := B ` ∅,X . Therefore,
by Lemma E.17, Σ, α := B | ∅ ` coerce+α (An [X := α]) : An [X := α] ⇝ An [X := B]. By (T Crc C),
Σ, α := B | ∅ ` M ′′[X := α]〈c[X := α]〉〈coerce+α (An [X := α])〉 : An [X := B].

Case (R Blame C): Similar to the case for (R Conflict C).
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Case (R CtxE C): We have

M = E [M1], M ′ = E [M ′
1], Σ ▷ M1 −→ Σ′ ▷ M ′

1 (∃E ,M1,M
′
1) .

Case analysis on E .

Case E = □M ′′(∃M ′′): We have E [M1] = M1 M
′′. From Σ | ∅ ` M1 M

′′ : A,

Σ | ∅ ` M1 : B → A, Σ | ∅ ` M ′′ : B (∃B) .

By Lemma E.18, we consider the two cases below.

Case Σ′ = Σ: It suffices to show Σ | ∅ ` M ′
1 M

′′ : A. By the IH, Σ | ∅ ` M ′
1 : B → A. By (T App C),

Σ | ∅ ` M ′
1 M

′′ : A.

Case Σ′ = Σ, α := C(∃α,C): We have α 6∈ dom(Σ) and Σ | ∅ ` C. It suffices to show Σ, α := C | ∅ `
M ′

1 M
′′ : A. By Lemma E.10 and (Sw Binding), ` Σ, α := C. By Lemma E.8, Σ, α := C | ∅ ` M ′′ : B .

By the IH, Σ, α := C | ∅ ` M ′
1 : B → A. By (T App C), Σ, α := C | ∅ ` M ′

1 M
′′ : A.

Otherwise: The other cases follow similarly (with Lemmas D.2 (1) and E.6).

Corollary E.20 (Preservation (multi step)). If Σ | ∅ ` M : A and Σ ▷ M −→∗ Σ′ ▷ M ′, then Σ′ | ∅ ` M ′ : A.

Theorem E.21 (Type Safety (Theorem 3.2 of the paper)). If Σ | ∅ ` M : A, then one of the followings holds:

• Σ ▷ M −→∗ Σ′ ▷ V for some store Σ′ and value V such that Σ′ | ∅ ` V : A;

• Σ ▷ M −→∗ Σ′ ▷ blame p for some store Σ′ and blame label p; or

• Σ ▷ M ⇑.

Proof. By Theorem E.4 and Corollary E.20.

E.2 λS∀
mp

The proof of type safety of λS∀mp is similar to that of λC∀
mp. A main difference is the coercion composition s # t .

We first prove Lemma E.24 that states that, if s and t are well typed and the target type of s and the source
type of t agree, then s # t is well defined and well typed.

Lemma E.22 (Agreement (1)). If Σ | Γ ` s : A ⇝ B , then ` Σ and ∅ ` Γ and ∅ | Γ ` A and ∅ | Γ ` B and
ftv(s) ⊆ dom(Γ).

Proof. By straightforward induction on Σ | Γ ` s : A⇝ B with Lemma D.10(1).

Lemma E.23. For any A and Σ, Σ(A) 6= ⋆.

Proof. By induction on the size of Σ. Obvious in the cases where A is not a type name. Assume that A = α
for some α. If α ∈ dom(Σ), then Σ = Σ1, α := B,Σ2 for some B,Σ1,Σ2. By definition, Σ(α) = Σ1(B). By the
IH, Σ1(B) 6= ⋆. Therefore, Σ(α) 6= ⋆. Otherwise, if α 6∈ dom(Σ), then Σ(α) = α 6= ⋆.

Lemma E.24 (Coercion Composition is Well Typed). If Σ | Γ ` s : A ⇝ B and Σ | Γ ` t : B ⇝ C , then
s ′ = s # t and Σ | Γ ` s ′ : A⇝ C for some s ′. Moreover:

• if s = b, then either b′ = s # t for some b′, or A = ⋆;

• if s = i and t = h, then either g ′ = s # t for some g ′, or C = ⋆; and

• if s = g and t = h, then g ′ = s # t for some g ′.

Proof. By induction on the sum of the sizes of s and t with case analysis on the shape of s.
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Case s = G?p ; b(∃p,G , b): From Σ | Γ ` G?p ; b : A⇝ B ,

A = ⋆, Σ | Γ ` b : Σ(G)⇝ B .

By Lemma E.23, Σ(G) 6= ⋆. Therefore, by the IH, there exists some b′ such that b′ = b # t and Σ | Γ ` b′ :
Σ(G)⇝ C . Since s # t = (G?p ; b) # t = G?p ; (b # t) = G?p ; b′, it suffices to show Σ | Γ ` G?p ; b′ : ⋆⇝ C ,
which follows from (Ct Proj S).

Case s = ⊥p(∃p): By definition, ⊥p # t = ⊥p . It suffices to show Σ | Γ ` ⊥p : A ⇝ C . By Lemma E.22, ` Σ
and ∅ ` Γ and ∅ | Γ ` A and ∅ | Γ ` C . By (Ct Fail S), Σ | Γ ` ⊥p : A⇝ C .

Case s = g ;G !(∃G , g): From Σ | Γ ` g ;G ! : A⇝ B , we have

B = ⋆, Σ | Γ ` g : A⇝ Σ(G) .

Case analysis on the shape of t .

Case t = G?p ; b(∃p, b): From Σ | Γ ` G?p ; b : ⋆⇝ C ,

Σ | Γ ` b : Σ(G)⇝ C .

By the IH, there exists some s ′ such that s ′ = g # b and Σ | Γ ` s ′ : A ⇝ C . By definition, s # t =
(g ; G !) # (G?p ; b) = g # b = s ′. The IH also implies s ′ = b′ for some b′, or A = ⋆. For the former case,
s # t = b′, so we finish the case.

Case t = H ?p ; b(H 6= G)(∃p,H , b): We have s # t = (g ; G !) # (H ?p ; b) = ⊥p and it suffices to show Σ |
Γ ` ⊥p : A ⇝ C . By Lemma E.22, ` Σ and ∅ ` Γ and ∅ | Γ ` A and ∅ | Γ ` C . By (Ct Fail S),
Σ | Γ ` ⊥p : A⇝ C .

Case t = ⊥p(∃p): By definition, s # t = (g ; G !) # ⊥p = ⊥p . It suffices to show Σ | Γ ` ⊥p : A ⇝ C . By
Lemma E.22, ` Σ and ∅ ` Γ and ∅ | Γ ` A and ∅ | Γ ` C . Thus, by (Ct Fail S), Σ | Γ ` ⊥p : A⇝ C .

Case t = h ; H !(∃H , h): From Σ | Γ ` h ; H ! : ⋆⇝ C , we have

C = ⋆, Σ | Γ ` h : ⋆⇝ Σ(H ) .

By Lemma E.23, Σ(H ) 6= ⋆. Therefore, by the IH, there exists some g ′ such that g ′ = (g ; G !) # h and
Σ | Γ ` g ′ : A ⇝ Σ(H ). Since s # t = (g ; G !) # (h ; H !) = ((g ; G !) # h) ; H ! = g ′ ; H !, it suffices to show
Σ | Γ ` g ′ ; H ! : A⇝ ⋆, which follows from (Ct Inj S).

Case t = id: We have s # t = (g ; G !) # id = g ; G !. From Σ | Γ ` id : B ⇝ C and B = ⋆, we have C = ⋆.
Thus, it suffices to show Σ | Γ ` g ;G ! : A⇝ B , which we already have.

Case t = s ′ → t ′(∃s ′, t ′) or t = ∀X .t ′(∃X , t ′): These cases cannot happen because they contradict B = ⋆.

Case s = id: From Σ | Γ ` id : A⇝ B , we have

A = B = Σ(A′), ` Σ, ∅ ` Γ, Σ | Γ ` A′ (∃A′).

Case analysis on the shape of t .

Case t = h ; H !(∃H , h): From Σ | Γ ` h ; H ! : Σ(A′)⇝ C , we have

C = ⋆, Σ | Γ ` h : Σ(A′)⇝ Σ(H ) .

By the IH, there exists some g ′ such that g ′ = id # h and Σ | Γ ` g ′ : Σ(A′) ⇝ Σ(H ). We have
s # t = id # (h ; H !) = (id # h) ; H ! = g ′ ; H !. By (Ct Inj S), we have Σ | Γ ` g ′ ; H ! : Σ(A′)⇝ ⋆.

Case t = id: From Σ | Γ ` id : B ⇝ C , we have

C = B = Σ(B ′), Σ | Γ ` B ′ (∃B ′).

Because B = Σ(A′), we have Σ(A′) = Σ(B ′). We have s # t = id # id = id. Therefore, it suffices to show
that Σ | Γ ` id : Σ(A′)⇝ Σ(A′), which we already have.
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Otherwise: We have s # t = id # t = t and it suffices to show that Σ | Γ ` t : Σ(A′) ⇝ C , which we already
have. Furthermore, we show the following additional properties.

• We show that either b′ = t for some b′, or A = ⋆. Assume that there exists no b′ such that b′ = t .
Then, t = H ?p ; b for some H , p, and b. From Σ | Γ ` H ?p ; b : Σ(A′)⇝ C , Σ(A′) = A = ⋆.

• if t = h, then s # t = h.

Case s = s ′ → t ′(∃s ′, t ′): From Σ | Γ ` s ′ → t ′ : A⇝ B , we have

A = A′ → B ′, B = A′′ → B ′′, Σ | Γ ` s ′ : A′′ ⇝ A′, Σ | Γ ` t ′ : B ′ ⇝ B ′′ (∃A′,A′′,B ′,B ′′) .

Case analysis on the shape of t .

Case t = G?p ; b(∃p,G , b) or t = ∀X .t ′′(∃X , t ′′): These cases cannot happen since they contradict B = A′′ →
B ′′.

Case t = ⊥p(∃p): By definition, s # t = (s ′ → t ′) #⊥p = ⊥p . It suffices to show Σ | Γ ` ⊥p : (A′ → B ′)⇝ C .
By Lemma E.22, ` Σ and ∅ ` Γ and ∅ | Γ ` A′ → B ′ and ∅ | Γ ` C . Thus, by (Ct Fail S),
Σ | Γ ` ⊥p : (A′ → B ′)⇝ C .

Case t = h ; H !(∃H , h): From Σ | Γ ` h ; H ! : (A′′ → B ′′)⇝ C , we have

C = ⋆, Σ | Γ ` h : (A′′ → B ′′)⇝ Σ(H ) .

By the IH, there exists some g ′ such that g ′ = (s ′ → t ′) # h and Σ | Γ ` g ′ : A′ → B ′ ⇝ Σ(H ). We have
s #t = (s ′ → t ′)#(h ;H !) = (s ′ → t ′ #h);H ! = g ′ ;H !. By (Ct Inj S), we have Σ | Γ ` g ′ ;H ! : A′ → B ′ ⇝ ⋆.

Case t = id: From Σ | Γ ` id : A′′ → B ′′ ⇝ C , we have

A′′ → B ′′ = C .

We have s # t = (s ′ → t ′) # id = s ′ → t ′. Therefore, it suffices to show that Σ | Γ ` s ′ → t ′ : A′ → B ′ ⇝
A′′ → B ′′, which we already have.

Case t = s ′′ → t ′′(∃s ′′, t ′′): From Σ | Γ ` s ′′ → t ′′ : (A′′ → B ′′)⇝ C , we have

C = A′′′ → B ′′′, Σ | Γ ` s ′′ : A′′′ ⇝ A′′, Σ | Γ ` t ′′ : B ′′ ⇝ B ′′′ (∃A′′′,B ′′′) .

By the IHs, there exist some s ′′′ and t ′′′ such that s ′′′ = s ′′ # s ′ and Σ | Γ ` s ′′′ : A′′′ ⇝ A′ and t ′′′ = t ′ # t ′′
and Σ | Γ ` t ′′′ : B ′ ⇝ B ′′′. Since s # t = (s ′ → t ′) # (s ′′ → t ′′) = (s ′′ # s ′)→ (t ′ # t ′′) = s ′′′ → t ′′′, it suffices
to show Σ | Γ ` s ′′′ → t ′′′ : (A′ → B ′)⇝ (A′′′ → B ′′′), which follows from (Ct Arrow).

Case s = ∀X .s ′ ,, s ′′(∃X , s ′, s ′′): From Σ | Γ ` ∀X .s ′ : A⇝ B , we have

A = ∀X .A′, B = ∀X .B ′, Σ | Γ,X ` s ′ : A′ ⇝ B ′, Σ | Γ ` s ′′ : A′[X := ⋆]⇝ B ′[X := ⋆] (∃A′,B ′) .

Case analysis on the shape of t .

Case t = H ?p ; b(∃p,H , b) or t = s ′′ → t ′′(∃s ′′, t ′′): These cases cannot happen since they contradict B =
∀X .B ′.

Case t = ⊥p(∃p): By definition, s # t = (∀X .s ′) # ⊥p = ⊥p . It suffices to show Σ | Γ ` ⊥p : ∀X .A′ ⇝ C .
By Lemma E.22, ` Σ and ∅ ` Γ and ∅ | Γ ` ∀X .A′ and ∅ | Γ ` C . Thus, by (Ct Fail S), Σ | Γ ` ⊥p :
∀X .A′ ⇝ C .

Case t = h ; H !(∃h,H ): From Σ | Γ ` h ; H ! : ∀X .B ′ ⇝ C , we have

C = ⋆, Σ | Γ ` h : ∀X .B ′ ⇝ Σ(H ) .

By the IH, there exists some g ′ such that g ′ = (∀X .s ′ ,, s ′′) # h and Σ | Γ ` g ′ : ∀X .A′ ⇝ Σ(H ).
We have s # t = (∀X .s ′ ,, s ′′) # (h ; H !) = ((∀X .s ′ ,, s ′′) # h) ; H ! = g ′ ; H !. By (Ct Inj S), we have
Σ | Γ ` g ′ ; H ! : ∀X .A′ ⇝ ⋆.
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Case t = id: From Σ | Γ ` id : ∀X .B ′ ⇝ C , we have

∀X .B ′ = C .

We have s # t = (∀X .s ′ ,, s ′′) # id = ∀X .s ′ ,, s ′′. Therefore, it suffices to show that Σ | Γ ` ∀X .s ′ ,, s ′′ :
∀X .A′ ⇝ ∀X .B ′, which we already have.

Case t = ∀Y .t ′ ,, t ′′(∃Y , t ′, t ′′): From Σ | Γ ` ∀Y .t ′ : ∀X .B ′ ⇝ C , we have

Y = X , C = ∀X .C ′, Σ | Γ,X ` t ′ : B ′ ⇝ C ′,Σ | Γ ` t ′′ : B ′[X := ⋆]⇝ C ′[X := ⋆] (∃C ′) .

By the IH, there exists some s ′′′ and t ′′′ such that s ′′′ = s ′ #t ′ and Σ | Γ,X ` s ′′′ : A′ ⇝ C ′ and t ′′′ = s ′′ #t ′′
and Σ | Γ ` t ′′′ : A′[X := ⋆]⇝ C ′[X := ⋆] Since s # t = (∀X .s ′ ,, s ′′) # (∀X .t ′ ,, t ′′) = ∀X .(s ′ # t ′) ,, (s ′′ ,, t ′′) =
∀X .s ′′′ ,, t ′′′, it suffices to show Σ | Γ ` ∀X .s ′′′ ,, t ′′′ : ∀X .A′ ⇝ ∀X .C ′, which follows from (Ct All S).

Next we prove the canonical forms lemma and Progress.

Lemma E.25 (Canonical forms). If Σ | ∅ ` V : A, then one of the followings holds:

• V = k and A = ty(k) for some k ;

• V = λx :A′.M and A = Σ(A′)→ B for some A′,B , x ,M ;

• V = ΛX .M and A = ∀X .A′ for some X ,A′,M ;

• V = U 〈g ;G !〉 and A = ⋆ for some G , g ,U ;

• V = U 〈s → t〉 and A = A′ → B ′ for some A′,B ′, s, t ,U ; or

• V = U 〈∀X .s ,, t〉 and A = ∀X .A′ for some X ,A′, s, t ,U .

Proof. Straightforward by case analysis on V .

Theorem E.26 (Progress). If Σ | ∅ ` M : A, then one of the followings holds:

• M = V for some V ;

• M = blame p for some p; or

• Σ ▷ M −→ Σ′ ▷ M ′ for some Σ′,M ′.

Proof. By induction on Σ | ∅ ` M : A with case analysis on the last rule used. Most cases are similar to the
proof of Theorem E.4, using Lemma E.25.

Case (T Const S), (T Abs S), (T Tyabs S), (T Blame S): Immediate.

Case (T Var S): Cannot happen.

Case (T App S): Similar to the case of (T App C) in Theorem E.4.

Case (T Tyapp S): We have

M = M ′ A′, A = B [X := Σ(A′)], Σ | ∅ ` M ′ : ∀X .B , Σ | ∅ ` A′ (∃X ,A′,B ,M ′) .

By the IH, we have three subcases.

Case M ′ = V (∃V ): By Lemma E.25, there are four cases for V and A′.

Case V = ΛX .M ′′,A′ = B(∃M ′′,B): By (R Tybeta S), Σ ▷ (ΛX .M ′′)B −→ Σ, α := B ▷ M ′′[X := α].

Case V = U 〈∀X .s ,, t〉,A′ = B(∃s, t ,U ,B): From Σ | ∅ ` U 〈∀X .s〉 : ∀X .B , we have

Σ | ∅ ` U : ∀X .A′′, Σ | ∅ ` ∀X .s ,, t : ∀X .A′′ ⇝ ∀X .B (∃A′′) .

By Lemma E.25, U = ΛX .M ′′ for some M ′′. By (R TybetaC S), Σ ▷ (ΛX .M ′′)〈∀X .s ,, t〉B −→
Σ, α := B ▷ (M ′′〈s〉)[X := α].
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Case V = ΛX .M ′′,A′ = ⋆(∃M ′′): By (R TybetaDyn S), Σ ▷ (ΛX .M ′′) ⋆ −→ Σ ▷ M ′′[X := ⋆].

Case V = U 〈∀X .s ,, t〉,A′ = ⋆(∃s, t ,U ): By Σ | ∅ ` U 〈∀X .s ,, t〉 : ∀X .B and Lemma E.25, U = ΛX .M ′′

for some M ′′. By (R TybetaDynC S), Σ ▷ (ΛX .M ′′)〈∀X .s ,, t〉 ⋆ −→ Σ ▷ (M ′′〈t〉)[X := ⋆].

Case M ′ = blame p(∃p): By (R BlameE S), Σ ▷ (blame p)A′ −→ Σ ▷ blame p.

Case Σ ▷ M ′ −→ Σ′ ▷ M ′′(∃Σ′,M ′′): By (R CtxE S), Σ ▷ M ′ A′ −→ Σ′ ▷ M ′′ A′.

Case (T Crc S): We have

M = M ′〈s〉, Σ | ∅ ` M ′ : B , Σ | ∅ ` s : B ⇝ A (∃B , s,M ′) .

By the IH, we have three subcases.

Case M ′ = V (∃V ): Case analysis on V .

Case V = U 〈t〉(∃U , t): From Σ | ∅ ` U 〈t〉 : B , we have Σ | ∅ ` U : C and Σ | ∅ ` t : C ⇝ B for some
C . By Lemma E.24, t # s is well defined. By (R Merge S), Σ ▷ U 〈t〉〈s〉 −→ Σ ▷ U 〈t # s〉.

Case V = U (∃U ): Case analysis on s.

Case s = G?p ; b(∃p,G , b): From Σ | ∅ ` G?p ; b : B ⇝ A, we have B = ⋆. Thus, Σ | ∅ ` U : ⋆ and,
by Lemma E.25, there exist some H , h,U ′ such that U = U ′〈h ; H !〉. Contradiction.

Case s = ⊥p(∃p): By (R Fail S), Σ ▷ U 〈⊥p〉 −→ Σ ▷ blame p.

Case s = g ;G !(∃G , g): U 〈g ;G !〉 is a value.

Case s = id: By (R Id S), Σ ▷ U 〈id〉 −→ Σ ▷ U .

Case s = s ′ → t(∃s ′, t): U 〈s ′ → t〉 is a value.

Case s = ∀X .s ′ ,, s ′′(∃X , s ′, s ′′): U 〈∀X .s ′ ,, s ′′〉 is a value.

Case M ′ = blame p(∃p): By (R BlameC S), Σ ▷ (blame p)〈s〉 −→ Σ ▷ blame p.

Case Σ ▷ M ′ −→ Σ′ ▷ M ′′(∃Σ′,M ′′): We have two cases depending on −→ is
e−→ or

c−→.

Case
e−→: By (R CtxC S), Σ ▷ M ′〈s〉 −→ Σ′ ▷ M ′′〈s〉.

Case
c−→: By the definition of

c−→, it must be the case that M ′ is a coercion application of the form
M ′′′〈t〉 for some t ,M ′′′. From Σ | ∅ ` M ′′′〈t〉 : B , we have Σ | ∅ ` M ′′′ : C and Σ | ∅ ` t : C ⇝ B for
some C . By Lemma E.24, t # s is well defined. By (R Merge S), Σ ▷ M ′′′〈t〉〈s〉 −→ Σ ▷ M ′′′〈t # s〉.

The proof of preservation starts with various weakeninng lemmas.

Lemma E.27. If Σ | ∆2 ` s : A⇝ B and ∆1#∆2, then Σ | ∆1,∆2 ` s : A⇝ B .

Proof. By straightforward induction on Σ | ∆2 ` s : A⇝ B with Lemma D.1.

Lemma E.28. If ` Σ,Σ′ and Σ | Γ ` A, then Σ(A) = (Σ,Σ′)(A).

Proof. By induction on Σ′.

Case Σ′ = ∅: Obvious.

Case Σ′ = Σ′′, α := B(∃Σ′′, α,B): From ` Σ,Σ′′, α := B, we have ` Σ,Σ′′ and α 6∈ dom(Σ). Because Σ | Γ ` A,
type name α does not occur in type A. Therefore, (Σ,Σ′)(A) = (Σ,Σ′′)(A[α := B]) = (Σ,Σ′′)(A). By the
IH, (Σ,Σ′′)(A) = Σ(A).

Lemma E.29. If ` Σ and ∅ | Γ ` Σ(A), then Σ | Γ ` A.

Proof. By straightforward induction on A.

Lemma E.30. If Σ | Γ ` s : A⇝ B and ` Σ,Σ′, then Σ,Σ′ | Γ ` s : A⇝ B .

Proof. By induction on Σ | Γ ` s : A⇝ B .
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Case (Ct Id S): By Lemmas D.2 (1) and E.28 and (Ct Id S).

Case (Ct Fail S): By (Ct Fail S).

Case (Ct Inj S): We have

s = g ;G !, B = ⋆, Σ | Γ ` g : A⇝ Σ(G) (∃g ,G) .

By the IH, Σ,Σ′ | Γ ` g : A ⇝ Σ(G). By (Ct Inj S), it suffices to show that Σ(G) = (Σ,Σ′)(G). By
Lemma E.22, ` Σ and ∅ | Γ ` Σ(G). By Lemma E.29, Σ | Γ ` G . By Lemma E.28, Σ(G) = (Σ,Σ′)(G).

Case (Ct Proj S): Similar to the case of (Ct Inj S).

Case (Ct Arrow S) and (Ct All S): By the IH(s) and the corresponding coercion typing rule.

Lemma E.31. If Σ | Γ2 ` M : A and ∅ ` Γ1 and Γ1#Γ2, then Σ | Γ1,Γ2 ` M : A.

Proof. By straightforward induction on Σ | Γ2 ` M : A with Lemma D.1.

Lemma E.32 (Agreement (2)). If Σ | Γ ` M : A, then ` Σ and ∅ ` Γ and ∅ | Γ ` A.

Proof. By straightforward induction on Σ | Γ ` M : A with Lemmas D.4 (2), D.3 (1), D.10 (4), D.5 (1), E.22,
and D.1.

Lemma E.33. If Σ | Γ ` M : A and ` Σ,Σ′, then Σ,Σ′ | Γ ` M : A.

Proof. By induction on Σ | Γ ` M : A. Most cases are proven easily. We mention only the interesting cases.

Case (T Abs S): We have

M = λx :A′.M ′, A = Σ(A′)→ B , Σ | Γ, x : Σ(A′) ` M ′ : B (∃x ,A′,B ,M ′) .

By the IH, Σ,Σ′ | Γ, x : Σ(A′) ` M ′ : B . By Lemma E.32, ` Σ and ∅ ` Γ, x : Σ(A′). Therefore,
∅ | Γ ` Σ(A′). By Lemma E.29, Σ | Γ ` A′. By Lemma E.28, Σ(A′) = (Σ,Σ′)(A′). Therefore, we have
Σ,Σ′ | Γ, x : (Σ,Σ′)(A′) ` M ′ : B . Then, by (T Abs S), Σ,Σ′ | Γ ` λx :A′.M ′ : (Σ,Σ′)(A′)→ B . Because
(Σ,Σ′)(A′) = Σ(A′), we finish the case.

Case (T Tyapp S): We have

M = M ′ A′, A = B [X := Σ(A′)], Σ | Γ ` M ′ : ∀X .B , Σ | Γ ` A′ (∃X ,A′,B ,M ′) .

By the IH, Σ,Σ′ | Γ ` M ′ : ∀X .B . By Lemma D.2 (1), Σ,Σ′ | Γ ` A′. By (T Tyapp S), Σ,Σ′ | Γ ` M ′ A′ :
B [X := (Σ,Σ′)(A′)]. Because (Σ,Σ′)(A′) = Σ(A′) by Lemma E.28, we finish the case.

Case (T Crc S): By the IH, Lemma E.30, and (T Crc S).

Lemma E.34 (Value Substitution). If Σ | x : A,Γ ` M : B and Σ | ∅ ` V : A, then Σ | Γ ` M [x := V ] : B .

Proof. By straightforward induction on Σ | x : A,Γ ` M : B with Lemmas D.3, E.31.

Lemma E.35. If Σ | Γ ` A and dom(Γ) = dom(Γ′), then Σ | Γ′ ` A.

Proof. By straightforward induction on Σ | Γ ` A.

Lemma E.36. If Σ | Γ1,X ,Γ2 ` A and α ∈ dom(Σ), then Σ | Γ1,Γ2[X := Σ(α)] ` A[X := α].

Proof. By (Tw Name), Σ | Γ1 ` α. By Lemma D.5 (1), Σ | Γ1,Γ2[X := α] ` A[X := α]. By Lemma E.35,
Σ | Γ1,Γ2[X := Σ(α)] ` A[X := α].

Lemma E.37. Assume that ` Σ and α ∈ dom(Σ).
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1. If ∅ | Γ1,X ,Γ2 ` A, then ∅ | Γ1,Γ2[X := Σ(α)] ` A[X := Σ(α)].

2. If ∅ ` Γ1,X ,Γ2, then ∅ ` Γ1,Γ2[X := Σ(α)].

Proof.

1. By (Tw Name), Σ | Γ1 ` α. By Lemma D.10 (1), ∅ | Γ1 ` Σ(α). Then, by Lemma D.5 (1), we have the
conclusion.

2. By (Tw Name) and Lemmas Lemma D.10 (1) and D.5 (2).

Lemma E.38. If ` Σ, then Σ(A[X := B ]) = Σ(A)[X := Σ(B)].

Proof. By induction on Σ.

Case Σ = ∅: Obvious.

Case Σ = Σ′, α := C(∃Σ′, α,C): From ` Σ, we have ` Σ′ and Σ′ | ∅ ` C. Therefore, X 6∈ ftv(C). Then,
Σ(A[X := B ]) = (Σ′, α := C)(A[X := B ]) = Σ′(A[X := B ][α := C]) = Σ′(A[α := C][X := B [α := C]]). By
the IH, Σ′(A[α := C][X := B [α := C]]) = Σ′(A[α := C])[X := Σ′(B [α := C])] = Σ(A)[X := Σ(B)].

Lemma E.39 (Type Name Substitution (Coercion)). If Σ | Γ1,X ,Γ2 ` s : A ⇝ B and α ∈ dom(Σ), then
Σ | Γ1,Γ2[X := Σ(α)] ` s[X := α] : A[X := Σ(α)]⇝ B [X := Σ(α)].

Proof. By induction on Σ | Γ1,X ,Γ2 ` s : A⇝ B .

Case (Ct Id S): We have

s = id, A = B = Σ(A′), ` Σ, ∅ ` Γ1,X ,Γ2, Σ | Γ1,X ,Γ2 ` A′

for some A′ s.t. A′ is neither a function nor universal type. By Lemma E.36, Σ | Γ1,Γ2[X := Σ(α)] ` A′[X :=
α]. Moreover, A′[X := α] is neither a function nor universal type. By Lemma E.37 (2), ∅ ` Γ1,Γ2[X := Σ(α)].
Therefore, by (Ct Id S), Σ | Γ1,Γ2[X := Σ(α)] ` id : Σ(A′[X := α]) ⇝ Σ(A′[X := α]). By Lemma E.38,
Σ(A′[X := α]) = Σ(A′)[X := Σ(α)]. Therefore, we have Σ | Γ1,Γ2[X := Σ(α)] ` id : Σ(A′)[X := Σ(α)] ⇝
Σ(A′)[X := Σ(α)].

Case (Ct Fail S): By Lemma E.37 and (Ct Fail S).

Case (Ct Inj S): We have

s = g ;G !, B = ⋆, Σ | Γ1,X ,Γ2 ` g : A⇝ Σ(G) (∃g ,G) .

By the IH, Σ | Γ1,Γ2[X := Σ(α)] ` g [X := α] : A[X := Σ(α)] ⇝ Σ(G)[X := Σ(α)]. By (Ct Inj S), it
suffices to show that Σ(G)[X := Σ(α)] = Σ(G [X := α]), which follows from Lemmas E.22 and E.38.

Case (Ct Proj S): Similar to the case of (Ct Inj S).

Case (Ct Arrow S) and (Ct All S): By the IH(s) and the corresponding coercion typing rule.

Lemma E.40 (Type Name Substitution). If Σ | X ,Γ ` M : A and α ∈ dom(Σ), then Σ | Γ[X := Σ(α)] `
M [X := α] : A[X := Σ(α)].

Proof. By induction on Σ | X ,Γ ` M : A. Most cases are proven easily using Lemma E.37. We show only the
interesting cases.
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Case (T Abs S): We have

M = λx :A′.M ′, A = Σ(A′)→ B , Σ | X ,Γ, x : Σ(A′) ` M ′ : B (∃x ,A′,B ,M ′) .

By the IH, Σ | Γ[X := Σ(α)], x : Σ(A′)[X := Σ(α)] ` M ′[X := α] : B [X := Σ(α)]. By (T Abs S), it suffices
to show that Σ(A′)[X := Σ(α)] = Σ(A′[X := α]), which follows from Lemmas E.32 and E.38.

Case (T Tyapp S):

M = M ′ A′, A = B [Y := Σ(A′)], Σ | X ,Γ ` M ′ : ∀Y .B , Σ | X ,Γ ` A′ (∃Y ,A′,B ,M ′) .

Without loss of generality, we can suppose that Y does not occur in X ,Γ and Σ. By the IH, Σ | Γ[X :=
Σ(α)] ` M ′[X := α] : (∀Y .B)[X := Σ(α)]. By Lemma E.36, Σ | Γ[X := Σ(α)] ` A′[X := α]. By
(T Tyapp S), Σ | Γ[X := Σ(α)] ` (M ′[X := α]) (A′[X := α]) : B [X := Σ(α)][Y := Σ(A′[X := α])].
Because ` Σ by Lemma E.32, we have B [X := Σ(α)][Y := Σ(A′[X := α])] = B [X := Σ(α)][Y := Σ(A′)[X :=
Σ(α)]] = B [Y := Σ(A′)][X := Σ(α)], using Lemma E.38.

Case (T Crc S): We are given

M = M ′〈s〉, Σ | X ,Γ ` M ′ : B , Σ | X ,Γ ` s : B ⇝ A (∃M ′, s,B) .

By the IH, Σ | Γ[X := Σ(α)] ` M ′[X := α] : B [X := Σ(α)]. Lemma E.39 and rule (T Crc S) finish the
case.

Lemma E.41. If ` Σ, then ftv(A) = ftv(Σ(A)).

Proof. By induction on ` Σ.

Case Σ = ∅: Obvious.

Case Σ = Σ′, α := B (∃Σ′, α,B): Because ` Σ, we have ` Σ′ and Σ′ | ∅ ` B. Therefore, by the IH, ftv(A) =
ftv(A[α := B]) = ftv(Σ′(A[α := B])) = ftv(Σ(A)).

Lemma E.42 (Dynamic-Type Substitution (Coercion)). If Σ | Γ1,X ,Γ2 ` s : A ⇝ B , then Σ | Γ1,Γ2[X :=
⋆] ` s[X := ⋆] : A[X := ⋆]⇝ B [X := ⋆].

Proof. By induction on Σ | Γ1,X ,Γ2 ` s : A ⇝ B with case analysis on the last rule applied in the typing
derivation.

Case (Ct Id S): By Lemmas D.5 and E.38 and (Ct Id S).

Case (Ct Fail S): By Lemma D.5 and (Ct Fail S).

Case (Ct Inj S): We have

s = g ;G !, B = ⋆, Σ | Γ1,X ,Γ2 ` g : A⇝ Σ(G) (∃G , g) .

Case analysis on G .

Case G = X : Since (g ;G !)[X := ⋆] = g [X := ⋆], it suffices to show Σ | Γ1,Γ2[X := ⋆] ` g [X := ⋆] : A[X :=
⋆]⇝ ⋆, which follows from the IH.

Case G 6= X : We have G [X := ⋆] = G . Since (g ; G !)[X := ⋆] = g [X := ⋆] ; G !, it suffices to show that
Σ | Γ1,Γ2[X := ⋆] ` g [X := ⋆] ; G ! : A[X := ⋆] ⇝ ⋆. By Lemmas E.22 and E.41, X 6∈ ftv(Σ(G)).
Therefore, by the IH, Σ | Γ1,Γ2[X := ⋆] ` g [X := ⋆] : A[X := ⋆] ⇝ Σ(G). Thus, by (Ct Inj S),
Σ | Γ1,Γ2[X := ⋆] ` g [X := ⋆] ;G ! : A[X := ⋆]⇝ ⋆. Note that g [X := ⋆] = g ′ for some g ′.
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Case (Ct Proj S): We have

s = G?p ; b, A = ⋆, Σ | Γ1,X ,Γ2 ` b : Σ(G)⇝ B (∃p,G , b) .

Case analysis on G .

Case G = X : Since (G?p ; b)[X := ⋆] = b[X := ⋆], it suffices to show Σ | Γ1,Γ2[X := ⋆] ` b[X := ⋆] : ⋆ ⇝
B [X := ⋆], which follows from the IH.

Case G 6= X : We have G [X := ⋆] = G . Since (G?p ; b)[X := ⋆] = G?p ; b[X := ⋆], it suffices to show that
Σ | Γ1,Γ2[X := ⋆] ` G?p ; b[X := ⋆] : ⋆ ⇝ B [X := ⋆]. By Lemmas E.22 and E.41, X 6∈ ftv(Σ(G)).
Therefore, by the IH, Σ | Γ1,Γ2[X := ⋆] ` b[X := ⋆] : Σ(G) ⇝ B [X := ⋆]. Thus, by (Ct Proj S),
Σ | Γ1,Γ2[X := ⋆] ` G?p ; b[X := ⋆] : ⋆⇝ B [X := ⋆]. Note that b[X := ⋆] = b′ for some b′.

Case (Ct Arrow S) and (Ct All S): By the IH(s).

Lemma E.43 (Dynamic-Type Substitution). If Σ | X ,Γ ` M : A, then Σ | Γ[X := ⋆] ` M [X := ⋆] : A[X :=
⋆].

Proof. By straightforward induction on Σ | X ,Γ ` M : A with Lemmas D.5, E.32, E.38, and E.42.

Lemma E.44. If Σ | ∅ ` M : A and Σ ▷ M −→ Σ′ ▷ M ′, then either

• Σ′ = Σ or

• Σ′ = Σ, α := B and Σ | ∅ ` B for some B and α 6∈ dom(Σ).

Proof. By easy induction on Σ ▷ M −→ Σ′ ▷ M ′.

Theorem E.45 (Preservation). If Σ | ∅ ` M : A and Σ ▷ M −→ Σ′ ▷ M ′, then Σ′ | ∅ ` M ′ : A.

Proof. By induction on the derivation of Σ ▷ M −→ Σ′ ▷ M ′ with case analysis on the last rule used.

Case (R Delta S): We have

M = k1 k2, M ′ = δ(k1, k2), Σ′ = Σ (∃k1, k2) .

From Σ | ∅ ` k1 k2 : A, we have Σ | ∅ ` k1 : ι → A and Σ | ∅ ` k2 : ι. Then, by the assumption on δ,
Σ | ∅ ` δ(k1, k2) : A.

Case (R Beta S): We have

M = (λx :A′.M ′′)V , M ′ = M ′′[x := V ], Σ = Σ′ (∃A′, x ,M ′′,V ) .

From Σ | ∅ ` (λx :A′.M ′′)V : A, we have

Σ | ∅, x : Σ(A′) ` M ′′ : A, Σ | ∅ ` V : Σ(A′) .

Thus, by Lemma E.34, Σ | ∅ ` M ′′[x := V ] : A.

Case (R Id S): We have

M = U 〈id〉, M ′ = U , Σ′ = Σ (∃U ) .

From Σ | ∅ ` U 〈id〉 : A, we have Σ | ∅ ` U : A.
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Case (R Wrap S): We have

M = (U 〈s → t〉)V ′, M ′ = (U (V ′〈s〉))〈t〉, Σ′ = Σ (∃s, t ,U ,V ′) .

From Σ | ∅ ` (U 〈s → t〉)V ′ : A, we have

Σ | ∅ ` U : B → C , Σ | ∅ ` V ′ : D , Σ | ∅ ` s : D ⇝ B ,

Σ | ∅ ` t : C ⇝ A (∃B ,C ,D) .

Thus, Σ | ∅ ` (U (V ′〈s〉))〈t〉 : A by (Cct Atom S), (T Crc S), (T App S), and (T Crc S).

Case (R Fail S): We have

M = U 〈⊥p〉, M ′ = blame p, Σ′ = Σ (∃p,U ) .

By Lemma E.32, we have ` Σ and ∅ ` ∅ and ∅ | ∅ ` A. By (T Blame S), Σ | ∅ ` blame p : A.

Case (R Merge S): We have

M = M ′′〈s〉〈t〉, M ′ = M ′′〈s # t〉 (∃s, t ,M ′′) .

From Σ | ∅ ` M ′′〈s〉〈t〉 : A, we have

Σ | ∅ ` M ′′ : C , Σ | ∅ ` s : C ⇝ B , Σ | ∅ ` t : B ⇝ A (∃B ,C ) .

By Lemma E.24, Σ | ∅ ` s # t : C ⇝ A. By (Cct Atom S) and (T Crc S), Σ | ∅ ` M ′′〈s # t〉 : A.
Case (R TybetaDyn S): We have

M = (ΛX .M ′′) ⋆, M ′ = M ′′[X := ⋆], Σ′ = Σ, (∃X ,M ′′) .

From Σ | ∅ ` (ΛX .M ′′) ⋆ : A, we have

Σ | X ` M ′′ : B , A = B [X := ⋆] (∃B) .

By Lemma E.43, Σ | ∅ ` M ′′[X := ⋆] : B [X := ⋆].

Case (R TybetaDynC S): We have

M = (ΛX .M ′′)〈∀X .s ,, t〉 ⋆, M ′ = (M ′′[X := ⋆])〈t〉, Σ′ = Σ, (∃X ,M ′′, s, t) .

From Σ | ∅ ` (ΛX .M ′′)〈∀X .s ,, t〉 ⋆ : A, we have

Σ | X ` M ′′ : C , Σ | ∅ ` t : C [X := ⋆]⇝ B [X := ⋆], A = B [X := ⋆] (∃B ,C ) .

By Lemma E.43, Σ | ∅ ` M ′′[X := ⋆] : C [X := ⋆]. By (Cct Atom S) and (T Crc S), we have Σ | ∅ `
(M ′′[X := ⋆])〈t〉 : B [X := ⋆].

Case (R Tybeta S): We have

M = (ΛX .M ′′)B, M ′ = M ′′[X := α],

Σ′ = Σ, α := B, α 6∈ dom(Σ) (∃X , α,B,M ′′) .

From Σ | ∅ ` (ΛX .M ′′)B : A, we have

Σ | X ` M ′′ : C , Σ | ∅ ` B, A = C [X := Σ(B)] (∃C ) .

By Lemma E.32, ` Σ. By (Sw Binding), we have ` Σ, α := B. By Lemma E.33, Σ, α := B | X ` M ′′ : C .
By Lemma E.40, Σ, α := B | ∅ ` M ′′[X := α] : C [X := (Σ, α := B)(α)]. Because (Σ, α := B)(α) = Σ(B), we
have Σ, α := B | ∅ ` M ′′[X := α] : C [X := Σ(B)].
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Case (R TybetaC S): We have

M = (ΛX .M ′′)〈∀X .s ,, t〉B, M ′ = (M ′′〈s〉)[X := α],

Σ′ = Σ, α := B, α 6∈ dom(Σ) (∃X , α,B,M ′′, s) .

From Σ | ∅ ` (ΛX .M ′′)〈∀X .s ,, t〉B : A, we have

Σ | X ` M ′′ : D , Σ | X ` s : D ⇝ C , Σ | ∅ ` B, A = C [X := Σ(B)] (∃C ,D) .

By Lemma E.32, ` Σ. By (Sw Binding), we have ` Σ, α := B. By Lemma E.33, Σ, α := B | X ` M ′′ : D .
By Lemma E.40, Σ, α := B | ∅ ` M ′′[X := α] : D [X := (Σ, α := B)(α)]. By Lemma E.30, Σ, α := B | X `
s : D ⇝ C . By Lemma E.39, Σ, α := B | ∅ ` s[X := α] : D [X := (Σ, α := B)(α)]⇝ C [X := (Σ, α := B)(α)].
By (Cct Atom S) and (T Crc S), Σ, α := B | ∅ ` (M ′′〈s〉)[X := α] : C [X := (Σ, α := B)(α)]. Because
(Σ, α := B)(α) = Σ(B), we have Σ, α := B | ∅ ` (M ′′〈s〉)[X := α] : C [X := Σ(B)].

Case (R BlameE S) and (R BlameC S): By Lemma E.32 and (T Blame S).

Case (R CtxE S): We have

M = E [M1], M ′ = E [M ′
1], Σ ▷ M1 −→ Σ′ ▷ M ′

1 (∃E ,M1,M
′
1) .

Case analysis on E .

Case E = □M ′′(∃M ′′): We have E [M1] = M1 M
′′. From Σ | ∅ ` M1 M

′′ : A,

Σ | ∅ ` M1 : B → A, Σ | ∅ ` M ′′ : B (∃B) .

By Lemma E.44, we consider the two cases below.

Case Σ′ = Σ: It suffices to show Σ | ∅ ` M ′
1 M

′′ : A. By the IH, Σ | ∅ ` M ′
1 : B → A. By (T App S),

Σ | ∅ ` M ′
1 M

′′ : A.

Case Σ′ = Σ, α := C(∃α,C): We have α 6∈ dom(Σ) and Σ | ∅ ` C. It suffices to show Σ, α := C | ∅ `
M ′

1 M
′′ : A. By Lemma E.32 and (Sw Binding), ` Σ, α := C. By Lemma E.33, Σ, α := C | ∅ ` M ′′ :

B . By the IH, Σ, α := C | ∅ ` M ′
1 : B → A. By (T App S), Σ, α := C | ∅ ` M ′

1 M
′′ : A.

Case E = V □(∃V ): Similar to the case where E = □M ′′.

Case E = □B(∃B): We have E [M1] = M1 B . From Σ | ∅ ` M1 B : A,

Σ | ∅ ` M1 : ∀X .C , Σ | ∅ ` B , A = C [X := Σ(B)] (∃X ,C ) .

By Lemma E.44, we consider the two cases below.

Case Σ′ = Σ: By the IH and (T Tyapp S).

Case Σ′ = Σ, α := A0(∃α,A0): We have α 6∈ dom(Σ) and Σ | ∅ ` A0. It suffices to show Σ, α := A0 | ∅ `
M ′

1 B : C [X := Σ(B)]. By Lemma D.2 (1), Σ, α := A0 | ∅ ` B . By the IH, Σ, α := A0 | ∅ ` M ′
1 : ∀X .C .

By (T Tyapp S), Σ, α := A0 | ∅ ` M ′
1 B : C [X := (Σ, α := A0)(B)]. Because Σ | ∅ ` B implies that

α does not occur in B , we have (Σ, α := A0)(B) = Σ(B). Therefore, we have Σ, α := A0 | ∅ ` M ′
1 B :

C [X := Σ(B)].

Case (R CtxC S): Similar to the case of (R CtxE S), that is, by the IH and Lemmas E.44 and E.30.

Corollary E.46 (Preservation (multi step)). If Σ | ∅ ` M : A and Σ ▷ M −→∗ Σ′ ▷ M ′, then Σ′ | ∅ ` M ′ : A.

Theorem E.47 (Type Safety). If Σ | ∅ ` M : A, then one of the followings holds:

• Σ ▷ M −→∗ Σ′ ▷ V for some store Σ′ and value V such that Σ′ | ∅ ` V : A;

• Σ ▷ M −→∗ Σ′ ▷ blame p for some store Σ′ and blame label p; or

• Σ ▷ M ⇑.

Proof. By Theorem E.26 and Corollary E.46.
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F Determinacy of Reduction

F.1 λC∀
mp

We extend α-equivalence to Σ ▷ M in a straightforward manner—by considering type variables defined in Σ
bound in M . For example, α := Int ▷ 42〈α−〉 and β := Int ▷ 42〈β−〉 are α-equivalent and, thus, identified.

Theorem F.1 (Determinacy of Reduction (Theorem 3.1 of the paper)). Assume that Σ | ∅ ` M : A. If
Σ ▷ M −→ Σ1 ▷ M1 and Σ ▷ M −→ Σ2 ▷ M2, then Σ1 = Σ2 and M1 = M2.

Proof. By straightforward induction on Σ ▷ M −→ Σ1 ▷ M1. We use Lemma E.1 in the case for (R Tybeta C)
to show that the input to the coercion generation function is unique. Note that values and blame cannot be
reduced.

Corollary F.2. If Σ | ∅ ` M : A, then the reduction sequence starting from given Σ ▷ M is unique.

F.2 λS∀
mp

Theorem F.3 (Determinacy of Reduction). If Σ ▷ M −→ Σ1 ▷ M1 and Σ ▷ M −→ Σ2 ▷ M2, then Σ1 = Σ2

and M1 = M2.

Proof. By induction on Σ ▷ M −→ Σ1 ▷ M1. The cases except for (R Merge S) and (R CtxC S) are easy
to show, using the fact that values and blame cannot be reduced.

Consider the case for (R Merge S). We have M = M ′〈s〉〈t〉 for some M ′, s, and t . It is obvious that the
reduction rules except for (R Merge S) and (R CtxC S) cannot be applied to M ′〈s〉 〈t〉. If (R Merge S) is
applied to obtain both Σ1 ▷ M1 and Σ2 ▷ M2, then we finish the case. Otherwise, assume that (R Ctx S) is

applied to obtain Σ2 ▷ M2. Then, Σ ▷ M ′〈s〉 e−→ Σ′ ▷ M ′′ for some Σ′ and M ′′. Then, by the definition of
e−→, M ′〈s〉 is not a coercion application, which is a contradiction.
The case for (R CtxC S) is proven similarly.

Corollary F.4. The reduction sequence starting from given Σ ▷ M is unique.

Note that only Theorem F.1 assumes the typability of reduced term M . The semantics of λC∀
mp rests on the

coercion generation function, and to ensure its determinacy, type names chosen at run time for type application
should not occur in the reduced term M (more precisely, should not occur in the input type to the coercion
generation function). The typability of M under store Σ guarantees it.

G Properties of the Logical Relation

The statements described in this section are on λC∀
mp.

Lemma G.1 (Evaluation under Contexts).

1. If Σ1 ▷ M1 −→ Σ2 ▷ M2, then Σ1 ▷ F [M1] −→ Σ2 ▷ F [M2] for any F .

2. If Σ1 ▷ M1 −→n Σ2 ▷ M2, then Σ1 ▷ F [M1] −→n Σ2 ▷ F [M2].

3. If Σ1 ▷ M −→n Σ2 ▷ blame p, then Σ1 ▷ F [M ] −→m Σ2 ▷ blame p for some m ≥ n.

Proof.

1. Straightforward by induction on F with (R Ctx C).

2. Straightforward by induction on n, using the case (1).

3. The case (2) implies Σ1 ▷ F [M ] −→n Σ2 ▷ F [blame p]. It is easy to show that Σ2 ▷ F [blame p] −→∗ Σ2 ▷
blame p by induction on F with (R Ctx C) and (R Blame C).
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Lemma G.2 (Successive Approximation). Suppose n ≤ m.

• bbRcmcn = bbRcncm = bRcn .

• bbκcmcn = bbκcncm = bκcn .

Proof. The second case is implied by the first case. Therefore, we consider only the first case in what follows.
We have the conclusion by the following:

(W ,M1,M2) ∈ bbRcmcn ⇔ (W ,M1,M2) ∈ bRcm ∧ W .n < n

⇔ (W ,M1,M2) ∈ R ∧ W .n < m ∧ W .n < n

⇔ (W ,M1,M2) ∈ R ∧ W .n < n

⇔ (W ,M1,M2) ∈ bRcn ,

and
(W ,M1,M2) ∈ bbRcncm ⇔ (W ,M1,M2) ∈ bRcn ∧ W .n < m

⇔ (W ,M1,M2) ∈ R ∧ W .n < n ∧ W .n < m

⇔ (W ,M1,M2) ∈ R ∧ W .n < n

⇔ (W ,M1,M2) ∈ bRcn .

Lemma G.3 (Worlds are Stratified). If W ∈ World and (W ′,M1,M2) ∈ W .κ(α), then W ′.n < W .n.

Proof. Because W ∈ World, we have W .κ(α) ∈ RelW .n [[W .Σ1(α),W .Σ2(α)]], which implies W .κ(α) ⊆
Atomval

W .n [[W .Σ1(α),W .Σ2(α)]]. Therefore, by definition, for any (W ′,M1,M2) ∈ W .κ(α), we have W ′ ∈
WorldW .n, which implies W ′.n < W .n.

Lemma G.4 (Idempotent Approximation). W .κ = bW .κcW .n for any W ∈ World.

Proof. By definition, dom(W .κ) = dom(bW .κcW .n). Let α ∈ dom(W .κ). By definition, it suffices to show
that W .κ(α) = bW .κ(α)cW .n. We have bW .κ(α)cW .n ⊆ W .κ(α) trivially. For showing the converse, let
(W ′,M1,M2) ∈ W .κ(α). By Lemma G.3, W ′.n < W .n. Thus, (W ′,M1,M2) ∈ bW .κ(α)cW .n.

Lemma G.5 (World Extension is Reflexive and Transitive).

• For any W ∈ World, W wW .

• For any W1,W2,W3 ∈ World, if W1 wW2 and W2 wW3, then W1 wW3.

Proof.

• Let W ∈ World. It suffices to show that W .κ w bW .κcW .n. First, we have bW .κcW .n = W .κ by
Lemma G.4. Furthermore, W .κ wW .κ holds trivially. Therefore, we have the conclusion.

• LetW1,W2,W3 ∈ World such that W1 wW2 andW2 wW3. It suffices to show that W1.κ w bW3.κcW1.n,
that is,

∀α ∈ dom(bW3.κcW1.n). W1.κ(α) = bW3.κcW1.n(α) .

Let α ∈ dom(bW3.κcW1.n). By definition, α ∈ dom(W3.κ). Since dom(W3.κ) = dom(bW3.κcW2.n),
we have α ∈ dom(bW3.κcW2.n). Since W2 w W3, we have W2.κ w bW3.κcW2.n. Thus, W2.κ(α) =
bW3.κcW2.n(α). By definition,

bW2.κcW1.n(α) = bW2.κ(α)cW1.n = bbW3.κcW2.n(α)cW1.n = bbW3.κcW2.ncW1.n(α) .

Since W1 wW2, we have W1.κ(α) = bW2.κcW1.n(α), that is, W1.κ(α) = bbW3.κcW2.ncW1.n(α).

Now, it suffices to show that bbW3.κcW2.ncW1.n(α) = bW3.κcW1.n(α), which is implied by Lemma G.2
with W1.n ≤W2.n.
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Lemma G.6 (Addition Extends Worlds). If W ∈ World and W .Σ1 | ∅ ` A1 and W .Σ2 | ∅ ` A2 and
R ∈ RelW .n [[A1,A2]] and α 6∈ dom(W .Σ1) ∪ dom(W .Σ2), then W ⊞ (α,A1,A2,R) wW .

Proof. By definition, it suffices to show the following.

• W .n ≤W .n: Obvious.

• W .Σ1, α := A1 ⊇ W .Σ1 and W .Σ2, α := A2 ⊇ W .Σ2: Obvious.

• W .κ{α 7→ R} w bW .κcW .n: Let β ∈ dom(bW .κcW .n). We show thatW .κ{α 7→ R}(β) = bW .κcW .n(β).
By definition, β ∈ dom(W .κ). Then, W ∈ World implies β ∈ dom(W .Σ1) ∩ dom(W .Σ2). Since
α 6∈ dom(W .Σ1) ∪ dom(W .Σ2), we have α 6= β. Thus, W .κ{α 7→ R}(β) = W .κ(β). By Lemma G.4,
we have the conclusion.

• W ⊞ (α,A1,A2,R) ∈ World: W ∈ World implies that there exists some n such that W ∈ Worldn . We
show that W ⊞ (α,A1,A2,R) ∈ Worldn . Let W ′ = W ⊞ (α,A1,A2,R). We have the conclusion by the
following.

– W ′.n < n: This is implied by W ∈ Worldn and W .n = W ′.n.

– ` W ′.Σ1 and ` W ′.Σ2: These are implied by W ∈ Worldn and W .Σ1 | ∅ ` A1 and W .Σ2 | ∅ ` A2

and α 6∈ dom(W .Σ1) ∪ dom(W .Σ2) and (SW Binding).

– ∀β ∈ dom(W ′.κ). W ′.κ(β) ∈ RelW ′.n [[W
′.Σ1(β),W

′.Σ2(β)]]: Let β ∈ dom(W ′.κ). By definition,
β = α or β ∈ dom(W .κ). If β = α, then W ′.κ(β) = R. Because R ∈ RelW .n [[A1,A2]] =
RelW ′.n [[W

′.Σ1(β),W
′.Σ2(β)]], we have the conclusion. Otherwise, if β 6= α and β ∈ dom(W .κ),

then W ∈ Worldn implies the conclusion

W ′.κ(β) = W .κ(β) ∈ RelW .n [[W .Σ1(β),W .Σ2(β)]] = RelW ′.n [[W
′.Σ1(β),W

′.Σ2(β)]] .

Lemma G.7 (Properties of ▶). Let W ∈ World such that ▶W is well defined.

1. ▶W ∈ World.

2. ▶W w1 W .

3. For any W ′ such that W ′ wW and ▶W ′ is well defined, ▶W ′ w ▶W .

Proof.

1. Since ▶W is well defined, there exists some n such that W .n = n+1. W ∈ World implies W ∈ Worldm
for some m. Since W .n = n + 1 < m, there exists some m0 such that m = m0 + 1. The conclusion is
implied by ▶W ∈ Worldm0 , which is shown by the following.

• (▶W ).n < m0 because (▶W ).n = n < m0; note that n + 1 < m = m0 + 1.

• ` (▶W ).Σ1 because (▶W ).Σ1 = W .Σ1 and `W .Σ1 by W ∈ Worldm .

• ` (▶W ).Σ2 because (▶W ).Σ2 = W .Σ2 and `W .Σ2 by W ∈ Worldm .

• ∀α ∈ dom((▶W ).κ). (▶W ).κ(α) ∈ Rel(▶W ).n [[(▶W ).Σ1(α), (▶W ).Σ2(α)]]: Let α ∈ dom((▶W ).κ).
By definition, it suffices to show that bW .κcW .n−1(α) ∈ RelW .n−1 [[W .Σ1(α),W .Σ2(α)]]. The con-
clusion is implied by the following.

– bW .κcW .n−1(α) ⊆ Atomval
W .n−1 [[W .Σ1(α),W .Σ2(α)]]: Let (W ′,M1,M2) ∈ bW .κcW .n−1(α).

By definition, (W ′,M1,M2) ∈ W .κ(α) and W ′.n < W .n − 1. Since W ∈ Worldm , we have
(W ′,M1,M2) ∈ W .κ(α) ⊆ Atomval

W .n [[W .Σ1(α),W .Σ2(α)]]. Since W ′.n < W .n − 1, we have
the conclusion.

– Let (W1,V1,V2) ∈ bW .κcW .n−1(α) and W2 w W1. Then, we show that (W2,V1,V2) ∈
bW .κcW .n−1(α). By definition, (W1,V1,V2) ∈ W .κ(α) and W1.n < W .n − 1. Since W ∈
Worldm , W .κ(α) satisfies monotonicity, so (W2,V1,V2) ∈ W .κ(α). Since W2.n ≤ W1.n <
W .n− 1, we have the conclusion (W2,V1,V2) ∈ bW .κcW .n−1(α).
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2. By the following.

• (▶W ).n = W .n− 1, so (▶W ).n < W .n.

• (▶W ).Σ1 = W .Σ1 and (▶W ).Σ2 = W .Σ2.

• ▶W ∈ World by the case (1).

• (▶W ).κ w bW .κc(▶W ).n by Lemma G.5 and (▶W ).κ = bW .κc(▶W ).n.

3. The conclusion is implied by the following.

• (▶W ′).n ≤ (▶W ).n: Because W ′ w W implies W ′.n ≤ W .n, we have (▶W ′).n = W ′.n − 1 ≤
W .n− 1 = (▶W ).n.

• (▶W ′).Σ1 ⊇ (▶W ).Σ1 and (▶W ′).Σ2 ⊇ (▶W ).Σ2: By definition with W ′ wW .

• (▶W ′).κ w b(▶W ).κc(▶W ′).n: Let α ∈ dom(b(▶W ).κc(▶W ′).n). Then, the conclusion is implied
by:

b(▶W ).κc(▶W ′).n(α) = b(▶W ).κ(α)c(▶W ′).n (by definition)

= bbW .κ(α)c(▶W ).nc(▶W ′).n (by definition)

= bW .κ(α)c(▶W ′).n (by Lemma G.2 with (▶W ′).n ≤ (▶W ).n)

= bbW .κ(α)cW ′.nc(▶W ′).n (by Lemma G.2 with (▶W ′).n < W ′.n)

= bW ′.κ(α)c(▶W ′).n (by W ′ wW )

= bW ′.κc(▶W ′).n(α) (by definition)

= (▶W ′).κ(α) (by definition) .

• ▶W ′ ∈ World and ▶W ∈ World: By the case (1); note that W ′ ∈ World is implied by W ′ wW .

Lemma G.8 (Monotonicity of Later Relations). If (W ,V1,V2) ∈ ▶(W .κ(α)) andW ′ wW , then (W ′,V1,V2) ∈
▶(W ′.κ(α)).

Proof. If W ′.n = 0, then we have the conclusion by the definition of ▶.
Suppose that W ′.n > 0. Then, it suffices to show that (▶W ′,V1,V2) ∈ W ′.κ(α). W ′ w W implies

0 < W ′.n ≤ W .n. Therefore, (W ,V1,V2) ∈ ▶(W .κ(α)) implies (▶W ,V1,V2) ∈ W .κ(α). W ′ w W implies
▶W ′ w ▶W by Lemma G.7 (3). W ′ w W implies W ∈ World, which further implies W .κ(α) satisfies
monotonicity. Thus, since (▶W ,V1,V2) ∈ W .κ(α) and ▶W ′ w ▶W , we have (▶W ′,V1,V2) ∈ W .κ(α).
Because (▶W ′).n < W ′.n, we have (▶W ′,V1,V2) ∈ bW .κ(α)cW ′.n. Because W ′ w W implies W ′.κ w
bW .κcW ′.n, we have the conclusion (▶W ′,V1,V2) ∈ W ′.κ(α).

Lemma G.9 (Monotonicity of Atom). If W ′ w W and (W ,V1,V2) ∈ Atomval [[A]] ρ, then (W ′,V1,V2) ∈
Atomval [[A]] ρ.

Proof. Because (W ,V1,V2) ∈ Atomval [[A]] ρ, we have W ∈ Worldn for some n, and W .Σ1 | ∅ ` V1 : ρ(A)
and W .Σ2 | ∅ ` V2 : ρ(A). Because W ′ w W , we have W ′.Σ1 ⊇ W .Σ1 and ` W ′.Σ1 and W ′.Σ2 ⊇ W .Σ2

and ` W ′.Σ2. Therefore, by Lemma E.8, W ′.Σ1 | ∅ ` V1 : ρ(A) and W ′.Σ2 | ∅ ` V2 : ρ(A). Furthermore,
W ′ wW and W ∈ Worldn implies W ′ ∈ Worldn . Therefore, we have the conclusion.

Lemma G.10 (Monotonicity). If W ′ wW and (W ,V1,V2) ∈ V [[A]] ρ, then (W ′,V1,V2) ∈ V [[A]] ρ.

Proof. By induction on W .n. Note that (W ′,V1,V2) ∈ Atomval [[A]] ρ by Lemma G.9. We proceed by case
analysis on A.

Case A = ι: Obvious.

Case A = α: By Lemma G.8.
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Case A = B → C : Let W ′′ w W ′ and V ′′
1 and V ′′

2 be values such that (W ′′,V ′′
1 ,V

′′
2 ) ∈ V [[B ]] ρ. Then, it

suffices to show that
(W ′′,V1 V

′′
1 ,V2 V

′′
2 ) ∈ E [[C ]] ρ .

W ′′ w W ′ and W ′ w W imply W ′′ w W by Lemma G.5. Because (W ,V1,V2) ∈ V [[A]] ρ = V [[B → C ]] ρ,
we have the conclusion (W ′′,V1 V

′
1,V2 V

′′
2 ) ∈ E [[C ]] ρ.

Case A = ∀X .B : By the following two cases.

• Let W ′′ wW ′ and C1,C2,R,M1,M2, α such that

– W ′′.Σ1 | ∅ ` C1,

– W ′′.Σ2 | ∅ ` C2,

– R ∈ RelW ′′.n [[C1,C2]],

– W ′′.Σ1 ▷ V1 C1 −→ W ′′.Σ1, α := C1 ▷ M1〈coerce+α (ρ(B)[X := α])〉, and
– W ′′.Σ2 ▷ V2 C2 −→ W ′′.Σ2, α := C2 ▷ M2〈coerce+α (ρ(B)[X := α])〉.

Then, we show that
(W ′′ ⊞ (α,C1,C2,R),M1,M2) ∈ ▶E [[B ]] ρ{X 7→ α} .

W ′′ wW ′ andW ′ wW implyW ′′ wW by Lemma G.5. Because (W ,V1,V2) ∈ V [[A]] ρ = V [[∀X .B ]] ρ,
we have the conclusion.

• Let W ′′ w W ′. We show that (W ′′,V1 ⋆,V2 ⋆) ∈ E [[B ]] ρ{X 7→ ⋆}, which is implied by Lemma G.5
and (W ,V1,V2) ∈ V [[∀X .B ]] ρ.

Case A = ⋆: Since (W ,V1,V2) ∈ V [[A]] ρ = V [[⋆]] ρ, there exist some G , V ′
1, and V ′

2 such that

• V1 = V ′
1〈G !〉,

• V2 = V ′
2〈G !〉, and

• (W ,V ′
1,V

′
2) ∈ ▶V [[G ]] ∅.

To prove the conclusion, it suffices to show that

(W ′,V ′
1,V

′
2) ∈ ▶V [[G ]] ∅ .

If W ′.n = 0, then the conclusion holds trivially. Otherwise, suppose that W ′.n > 0. Then, it suffices to show
that (▶W ′,V ′

1,V
′
2) ∈ V [[G ]] ∅. Because (W ,V ′

1,V
′
2) ∈ ▶V [[G ]] ∅ and 0 < W ′.n ≤ W .n by W ′ w W , we

have (▶W ,V ′
1,V

′
2) ∈ V [[G ]] ∅. W ′ w W implies ▶W ′ w ▶W by Lemma G.7 (3). Since (▶W ).n < W .n,

we have the conclusion (▶W ′,V ′
1,V

′
2) ∈ V [[G ]] ∅ by the IH.

Case A = X : By the case for A = α or that for A = ⋆.

Lemma G.11 (World Extension is Closed Under Domains of Interpretation Mappings). If W ′ w W , then
dom(W ′.κ) ⊇ dom(W .κ).

Proof. Let α ∈ dom(W .κ). By definition, α ∈ dom(bW .κcW ′.n). Because W ′ w W implies W ′.κ w
bW .κcW ′.n, we find W ′.κ(α) well defined, that is, α ∈ dom(W ′.κ).

Lemma G.12 (Substitution Monotonicity). If W ′ wW and (W , θ, ρ) ∈ G [[Γ]], then (W ′, θ, ρ) ∈ G [[Γ]].

Proof. By induction on Γ.

Case Γ = ∅: Obvious.

Case Γ = Γ′, x : A: By the IH and Lemma G.10.

Case Γ = Γ′,X : By the IH Lemma G.11.
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Lemma G.13 (Name Store Monotonicity). If W ′ wW and W ∈ S [[Σ]], then W ′ ∈ S [[Σ]].

Proof. By induction on Σ.

Case Σ = ∅: Obvious. Note that W ′ wW implies W ′ ∈ World.

Case Σ = Σ′, α := A: Because W ∈ S [[Σ]] = S [[Σ′, α := A]], we have the following:

• W ∈ S [[Σ′]],

• W .Σ1(α) = A,
• W .Σ2(α) = A, and
• W .κ(α) = bV [[A]] ∅cW .n.

The conclusion is implied by the following.

• W ′ ∈ S [[Σ′]]: By the IH.

• W ′.Σ1(α) = A: Because W ′ wW implies W ′.Σ1 ⊇ W .Σ1, and W .Σ1(α) = A, we have W ′.Σ1(α) = A.
• W ′.Σ2(α) = A: Proven similarly to the case for W ′.Σ1.

• W ′.κ(α) = bV [[A]] ∅cW ′.n: NotingW ′.κ w bW .κcW ′.n (byW ′ wW ), α ∈ dom(W .κ) = dom(bW .κcW ′.n),
and W ′.n ≤W .n (by W ′ wW ), we can prove the conclusion as follows:

W ′.κ(α) = bW .κcW ′.n(α) (by W ′.κ w bW .κcW ′.n)

= bW .κ(α)cW ′.n (by definition)

= bbV [[A]] ∅cW .ncW ′.n (by W .κ(α) = bV [[A]] ∅cW .n)

= bV [[A]] ∅cW ′.n (by Lemma G.2 and W ′.n ≤W .n) .

Lemma G.14 (Related Values are Related Terms). If (W ,V1,V2) ∈ V [[A]] ρ, then (W ,V1,V2) ∈ E [[A]] ρ.

Proof. If W .n = 0, then the conclusion holds obviously. Otherwise, if W .n > 0, then it suffices to show that
W w0 W , which is implied by Lemma G.5.

Lemma G.15 (E is Closed Under Anti-Reduction). Suppose that

• W .Σ1 ▷ M1 −→n Σ′
1 ▷ M ′

1 and

• If n < W .n, then there exist some W ′ and M ′
2 such that

– W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ M ′
2,

– W ′ wn W ,

– W ′.Σ1 = Σ′
1, and

– (W ′,M ′
1,M

′
2) ∈ E [[A]] ρ.

Then, (W ,M1,M2) ∈ Atom [[A]] ρ implies (W ,M1,M2) ∈ E [[A]] ρ.

Proof. By case analysis on the termination of W .Σ1 ▷ M1.

Case ∃m,Σ1,V1. m < W .n ∧ W .Σ1 ▷ M1 −→m Σ1 ▷ V1: In this case, we must show that there exist some
W ′′ and V2 such that

• W .Σ2 ▷ M2 −→∗ W ′′.Σ2 ▷ V2,

• W ′′ wm W ,

• W ′′.Σ1 = Σ1, and

• (W ′′,V1,V2) ∈ V [[A]] ρ.
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[TS: The following “WLOG” is okay?] Because W .Σ1 ▷ M1 −→n Σ′
1 ▷ M ′

1 and W .Σ1 ▷ M1 −→m Σ1 ▷ V1, ←−
Theorem F.1 implies that, without loss of generality, we can assume that there exists some n0 such that
m = n + n0 and Σ′

1 ▷ M ′
1 −→n0 Σ1 ▷ V1. m < W .n and m = n + n0 imply n < W .n. Thus, by the

assumption, there exists some W ′ and M ′
2 such that

• W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ M ′
2,

• W ′ wn W ,

• W ′.Σ1 = Σ′
1, and

• (W ′,M ′
1,M

′
2) ∈ E [[A]] ρ.

Because W ′ wn W implies W ′.n = W .n− n = W .n− (m − n0) = (W .n−m) + n0, and m < W .n, we have
n0 < W ′.n. Thus, because (W ′,M ′

1,M
′
2) ∈ E [[A]] ρ and W ′.Σ1 ▷ M ′

1 = Σ′
1 ▷ M ′

1 −→n0 Σ1 ▷ V1, there exist
some W ′′ and V2 such that

• W ′.Σ2 ▷ M ′
2 −→∗ W ′′.Σ2 ▷ V2,

• W ′′ wn0
W ′,

• W ′′.Σ1 = Σ1, and

• (W ′′,V1,V2) ∈ V [[A]] ρ.

Now, we have the conclusion by the following, in addition to W ′′.Σ1 = Σ1 and (W ′′,V1,V2) ∈ V [[A]] ρ,
which have been proven.

• W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ M ′
2 −→∗ W ′′.Σ2 ▷ V2.

• W ′′ wm W by Lemma G.5 with W ′′ wn0 W ′ and W ′ wn W , and m = n + n0.

Case ∃m,Σ1, p. m < W .n ∧ W .Σ1 ▷ M1 −→m Σ1 ▷ blame p: In this case, we must show that there exists some
Σ2 such that W .Σ2 ▷ M2 −→∗ Σ2 ▷ blame p. [TS: The following “WLOG” is okay?] Because W .Σ1 ▷ ←−
M1 −→n Σ′

1 ▷ M ′
1 and W .Σ1 ▷ M1 −→m Σ1 ▷ blame p, Theorem F.1 implies that, without loss of generality,

we can assume that there exists some n0 such that m = n + n0 and Σ′
1 ▷ M ′

1 −→n0 Σ1 ▷ blame p. m < W .n
and m = n + n0 imply n < W .n. Thus, by the assumption, there exists some W ′ and M ′

2 such that

• W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ M ′
2,

• W ′ wn W ,

• W ′.Σ1 = Σ′
1, and

• (W ′,M ′
1,M

′
2) ∈ E [[A]] ρ.

Because W ′ wn W implies W ′.n = (W .n − m) + n0, and m < W .n, we have n0 < W ′.n. Thus, because
(W ′,M ′

1,M
′
2) ∈ E [[A]] ρ and W ′.Σ1 ▷ M ′

1 = Σ′
1 ▷ M ′

1 −→n0 Σ1 ▷ blame p, there exists some Σ2 such that
W ′.Σ2 ▷ M ′

2 −→∗ Σ2 ▷ blame p. Since W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ M ′
2, we have the conclusion.

Otherwise: In this case, we have no proof obligation.

Lemma G.16 (Monadic Bind). Suppose that

• (W ,M1,M2) ∈ E [[A]] ρ and

• ∀W ′,V1,V2. W
′ wW ∧ (W ′,V1,V2) ∈ V [[A]] ρ =⇒ (W ′,F1[V1],F2[V2]) ∈ E [[B ]] ρ.

Then, (W ,F1[M1],F2[M2]) ∈ Atom [[B ]] ρ implies (W ,F1[M1],F2[M2]) ∈ E [[B ]] ρ.

Proof. By case analysis on the termination of W .Σ1 ▷ M1.

Case ∃n,Σ1,V1. n < W .n ∧ W .Σ1 ▷ M1 −→n Σ1 ▷ V1: Since (W ,M1,M2) ∈ E [[A]] ρ, there exist some W ′

and V2 such that

• W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ V2,
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• W ′ wn W ,

• W ′.Σ1 = Σ1, and

• (W ′,V1,V2) ∈ V [[A]] ρ.

By the assumption, we have
(W ′,F1[V1],F2[V2]) ∈ E [[B ]] ρ .

Since W .Σ1 ▷ M1 −→n Σ1 ▷ V1 = W ′.Σ1 ▷ V1, we have

W .Σ1 ▷ F1[M1] −→n W ′.Σ1 ▷ F1[V1]

by Lemma G.1 (2). Since W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ V2, we have

W .Σ2 ▷ F2[M2] −→∗ W ′.Σ2 ▷ F2[V2]

by Lemma G.1 (2). Then, by Lemma G.15, we have the conclusion.

Case ∃n,Σ1, p. n < W .n ∧ W .Σ1 ▷ M1 −→n Σ1 ▷ blame p: SinceW .Σ1 ▷ M1 −→n Σ1 ▷ blame p, Lemma G.1
(3) implies W .Σ1 ▷ F1[M1] −→m Σ1 ▷ blame p for some m ≥ n. If m ≥ W .n, then the conclusion holds
trivially by Theorem F.1. Otherwise, if m < W .n, then we must show that there exists some Σ2 such
that W .Σ2 ▷ F2[M2] −→∗ Σ2 ▷ blame p. Since (W ,M1,M2) ∈ E [[A]] ρ, there exists some Σ2 such that
W .Σ2 ▷ M2 −→∗ Σ2 ▷ blame p. By Lemma G.1 (3), we have W .Σ2 ▷ F2[M2] −→∗ Σ2 ▷ blame p. Thus, we
have the conclusion.

Otherwise: There is no n, Σ1, and M1 such that

• n < W .n,

• W .Σ1 ▷ M1 −→n Σ1 ▷ M1, and

• M1 is a value or blame.

Let n < W .n, Σ1 be a name store, and M1 be a term such that W .Σ1 ▷ M1 −→n Σ1 ▷ M1. Then,
M1 is neither a value nor blame. By Lemma G.1 (2), W .Σ1 ▷ F1[M1] −→n Σ1 ▷ F1[M1]. Since M1

is neither a value nor blame, F1[M1] is not either. Therefore, by Theorem F.1, for any Σ′ and M ′
1 such

W .Σ1 ▷ F1[M1] −→n Σ′
1 ▷ M ′

1, we find that M ′
1 is neither a value nor blame. Then, we have no proof

obligation for proving the conclusion.

Lemma G.17 (Compositionality). Suppose that X 6∈ dom(ρ).

1. V [[A]] ρ{X 7→ α⋆} = V [[A[X := α⋆]]] ρ.

2. E [[A]] ρ{X 7→ α⋆} = E [[A[X := α⋆]]] ρ.

Proof. We show that

1. ∀W ∈ World. ∀V1,V2. (W ,V1,V2) ∈ V [[A]] ρ{X 7→ α⋆} ⇐⇒ (W ,V1,V2) ∈ V [[A[X := α⋆]]] ρ and

2. ∀W ∈ World. ∀M1,M2. (W ,M1,M2) ∈ E [[A]] ρ{X 7→ α⋆} ⇐⇒ (W ,M1,M2) ∈ E [[A[X := α⋆]]] ρ.

We prove both direction of ⇐⇒ by lexicographic induction on the pair of W .n and A. To avoid repetition,
we first show the case (1) using IHs for the case (2), and then the case (2) without using IHs directly but by
assuming the case (1). Note that the proof of the case (2) can be unfolded in the proof of the case (1). Note
that Atom [[A]] ρ{X 7→ α⋆} = Atom [[A[X := α⋆]]] ρ.

1. Let W ∈ World and V1 and V2 be values. We show that

(W ,V1,V2) ∈ V [[A]] ρ{X 7→ α⋆} ⇐⇒ (W ,V1,V2) ∈ V [[A[X := α⋆]]] ρ .

We proceed by case analysis on A.
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Case A = ι: Obvious.

Case A = β: Because β[X := α⋆] = β, it suffices to show that

(W ,V1,V2) ∈ V [[β]] ρ{X 7→ α⋆} ⇐⇒ (W ,V1,V2) ∈ V [[β]] ρ ,

which holds obviously as V [[β]] ρ is determined independently of given ρ.

Case A = ⋆: Obvious because ⋆[X := α⋆] = ⋆ and V [[⋆]] ρ is determined independently of given ρ.

Case A = Y : If Y = X , then

V [[A]] ρ{X 7→ α⋆} = V [[X ]] ρ{X 7→ α⋆} = V [[α⋆]] ρ{X 7→ α⋆} = V [[α⋆]] ρ = V [[X [X := α⋆]]] ρ = V [[A[X := α⋆]]] ρ .

Note that V [[α⋆]] ρ{X 7→ α⋆} = V [[α⋆]] ρ.

If Y 6= X , then

V [[A]] ρ{X 7→ α⋆} = V [[ρ(Y )]] ρ{X 7→ α⋆} = V [[ρ(Y )]] ρ = V [[Y ]] ρ = V [[A[X := α⋆]]] ρ .

Case A = B → C : We show every case of ⇐⇒.

Case =⇒: Suppose that (W ,V1,V2) ∈ V [[B → C ]] ρ{X 7→ α⋆}. We must show that

(W ,V1,V2) ∈ V [[(B → C )[X := α⋆]]] ρ .

Let W ′ wW , and V ′
1 and V ′

2 be values such that (W ′,V ′
1,V

′
2) ∈ V [[B [X := α⋆]]] ρ. Then, it suffices

to show that
(W ′,V1 V

′
1,V2 V

′
2) ∈ E [[C [X := α⋆]]] ρ .

Because W ′.n ≤W .n by W ′ wW , the IH implies that it suffices to show that

(W ′,V1 V
′
1,V2 V

′
2) ∈ E [[C ]] ρ{X 7→ α⋆} .

Because (W ′,V ′
1,V

′
2) ∈ V [[B [X := α⋆]]] ρ, we have (W ′,V ′

1,V
′
2) ∈ V [[B ]] ρ{X 7→ α⋆} by the IH.

Since (W ,V1,V2) ∈ V [[B → C ]] ρ{X 7→ α⋆}, we have the conclusion.

Case ⇐=: Suppose that (W ,V1,V2) ∈ V [[(B → C )[X := α⋆]]] ρ. We must show that

(W ,V1,V2) ∈ V [[B → C ]] ρ{X 7→ α⋆} .

Let W ′ w W , and V ′
1 and V ′

2 be values such that (W ′,V ′
1,V

′
2) ∈ V [[B ]] ρ{X 7→ α⋆}. Then, it

suffices to show that
(W ′,V1 V

′
1,V2 V

′
2) ∈ E [[C ]] ρ{X 7→ α⋆} .

Because W ′.n ≤W .n by W ′ wW , the IH implies that it suffices to show that

(W ′,V1 V
′
1,V2 V

′
2) ∈ E [[C [X := α⋆]]] ρ .

Because (W ′,V ′
1,V

′
2) ∈ V [[B ]] ρ{X 7→ α⋆}, we have (W ′,V ′

1,V
′
2) ∈ V [[B [X := α⋆]]] ρ by the IH.

Since (W ,V1,V2) ∈ V [[(B → C )[X := α⋆]]] ρ, we have the conclusion.

Case A = ∀Y .B : Without loss of generality, we can suppose that Y 6∈ dom(ρ{X 7→ α⋆}). We show
every case of ⇐⇒.

Case =⇒: Suppose that (W ,V1,V2) ∈ V [[∀Y .B ]] ρ{X 7→ α⋆}. We must show that

(W ,V1,V2) ∈ V [[(∀Y .B)[X := α⋆]]] ρ ,

which is implied by the following two cases.

• Let W ′,C1,C2,R,M ′
1,M

′
2, β such that

– W ′ wW ,

– W ′.Σ1 | ∅ ` C1,

– W ′.Σ2 | ∅ ` C2,
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– R ∈ RelW ′.n [[C1,C2]],

– W ′.Σ1 ▷ V1 C1 −→ W ′.Σ1, β := C1 ▷ M ′
1〈coerce+β (ρ(B [X := α⋆])[Y := β])〉, and

– W ′.Σ2 ▷ V2 C2 −→ W ′.Σ2, β := C2 ▷ M ′
2〈coerce+β (ρ(B [X := α⋆])[Y := β])〉.

We show that

(W ′ ⊞ (β,C1,C2,R),M ′
1,M

′
2) ∈ ▶E [[B [X := α⋆]]] ρ{Y 7→ β} .

Suppose that (W ′ ⊞ (β,C1,C2,R)).n > 0 (i.e., W ′.n > 0). Then, it suffices to show that

(▶(W ′ ⊞ (β,C1,C2,R)),M ′
1,M

′
2) ∈ E [[B [X := α⋆]]] ρ{Y 7→ β} .

Because W ′ w W implies W ′.n ≤ W .n, we have ▶(W ′ ⊞ (β,C1,C2,R)).n = (▶W ′).n =
W ′.n− 1 ≤W .n− 1 < W .n. Thus, by the IH, it suffices to show that

(▶(W ′ ⊞ (β,C1,C2,R)),M ′
1,M

′
2) ∈ E [[B ]] ρ{X 7→ α⋆}{Y 7→ β} .

Because of (W ,V1,V2) ∈ V [[∀Y .B ]] ρ{X 7→ α⋆}, noting that ρ(B [X := α⋆]) = ρ{X 7→ α⋆}(B),
we have the conclusion.

• Let W ′ w W . We show that (W ′,V1 ⋆,V2 ⋆) ∈ E [[B [X := α⋆]]] ρ{Y 7→ ⋆}. Because W ′.n ≤
W .n by W ′ wW , the IH implies that it suffices to show that (W ′,V1 ⋆,V2 ⋆) ∈ E [[B ]] ρ{X 7→
α⋆}{Y 7→ ⋆}, which follows from (W ,V1,V2) ∈ E [[∀Y .B ]] ρ{X 7→ α⋆}.

Case ⇐=: Suppose that (W ,V1,V2) ∈ V [[(∀Y .B)[X := α⋆]]] ρ. We must show that

(W ,V1,V2) ∈ V [[∀Y .B ]] ρ{X 7→ α⋆} ,

which is implied by the following two cases.

• Let W ′,C1,C2,R,M ′
1,M

′
2, β such that

– W ′ wW ,

– W ′.Σ1 | ∅ ` C1,

– W ′.Σ2 | ∅ ` C2,

– R ∈ RelW ′.n [[C1,C2]],

– W ′.Σ1 ▷ V1 C1 −→ W ′.Σ1, β := C1 ▷ M ′
1〈coerce+β ((ρ{X 7→ α⋆}(B))[Y := β])〉, and

– W ′.Σ2 ▷ V2 C2 −→ W ′.Σ2, β := C2 ▷ M ′
2〈coerce+β ((ρ{X 7→ α⋆}(B))[Y := β])〉.

We show that

(W ′ ⊞ (β,C1,C2,R),M ′
1,M

′
2) ∈ ▶E [[B ]] ρ{X 7→ α⋆}{Y 7→ β} .

Suppose that (W ′ ⊞ (β,C1,C2,R)).n > 0 (i.e., W ′.n > 0). Then, it suffices to show that

(▶(W ′ ⊞ (β,C1,C2,R)),M ′
1,M

′
2) ∈ E [[B ]] ρ{X 7→ α⋆}{Y 7→ β} .

Because W ′ w W implies W ′.n ≤ W .n, we have ▶(W ′ ⊞ (β,C1,C2,R)).n = (▶W ′).n =
W ′.n− 1 ≤W .n− 1 < W .n. Thus, by the IH, it suffices to show that

(▶(W ′ ⊞ (β,C1,C2,R)),M ′
1,M

′
2) ∈ E [[B [X := α⋆]]] ρ{Y 7→ β} .

Because of (W ,V1,V2) ∈ V [[(∀Y .B)[X := α⋆]]] ρ, noting that ρ{X 7→ α⋆}(B) = ρ(B [X := α⋆]),
we have the conclusion.

• Let W ′ wW . We show that (W ′,V1 ⋆,V2 ⋆) ∈ E [[B ]] ρ{X 7→ α⋆}{Y 7→ ⋆}. Because W ′.n ≤
W .n by W ′ w W , the IH implies that it suffices to show that (W ′,V1 ⋆,V2 ⋆) ∈ E [[B [X :=
α⋆]]] ρ{Y 7→ ⋆}, which follows from (W ,V1,V2) ∈ E [[(∀Y .B)[X := α⋆]]] ρ.

2. Let W ∈ World and M1 and M2 be terms. We show that

(W ,M1,M2) ∈ E [[A]] ρ{X 7→ α⋆} ⇐⇒ (W ,M1,M2) ∈ E [[A[X := α⋆]]] ρ .

By case analysis on the termination of W .Σ1 ▷ M1.
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Case ∃n,Σ1,V1. n < W .n ∧ W .Σ1 ▷ M1 −→n Σ1 ▷ V1: In both directions of ⇐⇒, there exist some W ′

and V2 such that

• W .Σ2 ▷ M2 −→∗ W ′.Σ2 ▷ V2,

• W ′ wn W , and

• W ′.Σ1 = Σ1.

Thus, it suffices to show that

(W ′,V1,V2) ∈ V [[A]] ρ{X 7→ α⋆} ⇐⇒ (W ′,V1,V2) ∈ V [[A[X := α⋆]]] ρ ,

which is proven by the case (1).

Case ∃n,Σ1, p. n < W .n ∧ W .Σ1 ▷ M1 −→n Σ1 ▷ blame p: In both directions of⇐⇒, there exists some
Σ2 such that W .Σ2 ▷ M2 −→∗ Σ2 ▷ blame p. Thus, we have the conclusion.

Otherwise: No proof obligation in this case.

Definition G.1 (Loose Coercion Typing). A judgment Σ | Γ ⊩ c : A ⇝ B is derived by the same inference
rules as those for coercion typing judgment Σ | Γ ` c : A⇝ B except that the rules for Σ | Γ ⊩ c : A⇝ B do
not assume ` Σ. We call the rule corresponding to (Ct * C) (Ct0 * C).

[TS: Loose coercion typing is used in Lemma G.29 to type the coercion generated by type application, that
is, Σ, α := A0 | Γ ⊩ coerce+α (B [X := α]) : B [X := α] ⇝ B [X := A0], where Σ | ∅ ` A0 may not hold because
type names in A0 occur only in stores W .Σ1 and W .Σ2 in world W (and W .Σ1 6= W .Σ2 in general). ] ←−

Lemma G.18 (Loosely Typing Coercions). If Σ | Γ ⊩ c : A ⇝ B and Σ ⊆ Σ′ and ` Σ′, then Σ′ | Γ ` c :
A⇝ B .

Proof. Straightforward by induction on the derivation of Σ | Γ ⊩ c : A⇝ B with Lemmas D.2.

Lemma G.19 (Coercion Typed Under Type Environments in Worlds). If Σ | Γ ⊩ c : A⇝ B and W ∈ S [[Σ]]
and (W , θ, ρ) ∈ G [[Γ]], then W .Σ1 | ∅ ` ρ(c) : ρ(A)⇝ ρ(B) and W .Σ2 | ∅ ` ρ(c) : ρ(A)⇝ ρ(B).

Proof. W ∈ S [[Σ]] implies W ∈ World, W .Σ1 ⊇ Σ, and W .Σ2 ⊇ Σ. W ∈ World implies ` W .Σ1 and
`W .Σ2. Hence, Lemma G.18 with Σ | Γ ` c : A⇝ B implies

• W .Σ1 | Γ ` c : A⇝ B and

• W .Σ2 | Γ ` c : A⇝ B .

Furthermore, ∀X ∈ dom(Γ). ρ(X ) = ⋆ ∨ (∃α. ρ(X ) = α ∧ α ∈ dom(W .Σ1) ∩ dom(W .Σ2)) because:

• (W , θ, ρ) ∈ G [[Γ]] implies ∀X ∈ dom(Γ). ρ(X ) = ⋆ ∨ (∃α. α = ρ(X ) ∧ α ∈ dom(W .κ)); and

• W ∈ World implies dom(W .κ) ⊆ dom(W .Σ1) ∩ dom(W .Σ2).

Hence, by Lemmas E.11, E.13, and E.15, we have the conclusion.

Lemma G.20 (E is Closed Under Reduction). Assume that (W ,M1,M2) ∈ E [[A]] ρ and W .Σ1 ▷ M1 −→n

Σ′
1 ▷ M ′

1 and W .Σ2 ▷ M2 −→∗ Σ′
2 ▷ M ′

2. Let W ′ = (W .n − n,Σ′
1,Σ

′
2, bW .κcW .n−n). Then, (W ′,M ′

1,M
′
2) ∈

E [[A]] ρ.

Proof. We have (W ′,M ′
1,M

′
2) ∈ Atom [[A]] ρ by Corollary E.20. By case analysis on the termination of W ′.Σ1 ▷

M ′
1.

Case ∃m,Σ1,V1. m < W ′.n ∧ W ′.Σ1 ▷ M ′
1 −→m Σ1 ▷ V1: We must show that there exist some W ′′ and V2

such that

• W ′.Σ2 ▷ M ′
2 −→∗ W ′′.Σ2 ▷ V2,

• W ′′ wm W ′,

47



• W ′′.Σ1 = Σ1, and

• (W ′′,V1,V2) ∈ V [[A]] ρ.

Because m < W ′.n and W ′.n = W .n − n, we have n + m < W .n. Because (W ,M1,M2) ∈ E [[A]] ρ and
W .Σ1 ▷ M1 −→n+m Σ1 ▷ V1, there exist some W ′′ and V2 such that

• W .Σ2 ▷ M2 −→∗ W ′′.Σ2 ▷ V2,

• W ′′ wn+m W ,

• W ′′.Σ1 = Σ1,

• (W ′′,V1,V2) ∈ V [[A]] ρ.

Because W .Σ2 ▷ M2 −→∗ Σ′
2 ▷ M ′

2, Theorem F.1 implies that, without loss of generality, we can assume
that W ′.Σ2 ▷ M ′

2 = Σ′
2 ▷ M ′

2 −→∗ W ′′.Σ2 ▷ V2. Now, it suffices to show that W ′′ wm W ′, which is implied
by the following.

• W ′′.n = W ′.n−m because W ′′ wn+m W implies W ′′.n = W .n− (n +m) and W ′.n = W .n− n;

• W ′′.Σ1 ⊇ W ′.Σ1 by Lemma E.18 with W ′.Σ1 ▷ M ′
1 −→m Σ1 ▷ V1 = W ′′.Σ1 ▷ V1;

• W ′′.Σ2 ⊇ W ′.Σ2 by Lemma E.18 with W ′.Σ2 ▷ M ′
2 −→∗ W ′′.Σ2 ▷ V2;

• W ′′.κ w bW ′.κcW ′′.n because bW ′.κcW ′′.n = bbW .κcW .n−ncW .n−(n+m) = bW .κcW .n−(n+m) by Lemma G.2,
and W ′′.κ w bW .κcW .n−(n+m) by W ′′ wn+m W ;

• W ′′ ∈ World by W ′′ wn+m W ; and

• W ′ ∈ World: Because W ∈ World, we have W ∈ Worldn0
for some n0. We show W ′ ∈ Worldn0

as
follows.

– W ′.n < n0 because W ′.n = W .n− n and W ∈ Worldn0
.

– `W ′.Σ1 and `W ′.Σ2 by Lemma E.18 with `W .Σ1 and `W .Σ2.

– Let α ∈ dom(W ′.κ). We show that bW .κ(α)cW .n−n ∈ RelW .n−n [[W ′.Σ1(α),W
′.Σ2(α)]].

∗ bW .κ(α)cW .n−n ⊆ Atomval
W .n−n [[W ′.Σ1(α),W

′.Σ2(α)]]: Let (W
′′′,M ′′′

1 ,M ′′′
2 ) ∈ bW .κ(α)cW .n−n .

By definition, (W ′′′,M ′′′
1 ,M ′′′

2 ) ∈ W .κ(α) and W ′′′.n < W .n − n. Since W ∈ Worldn0
, we

have (W ′′′,M ′′′
1 ,M ′′′

2 ) ∈ W .κ(α) ⊆ Atomval
W .n [[W .Σ1(α),W .Σ2(α)]]. Since W ′′′.n < W .n − n

and W ′.Σ1 ⊇ W .Σ1 and W ′.Σ2 ⊇ W .Σ2 by Lemma E.18, we have the conclusion.

∗ Let (W ′′′
1 ,V ′′′

1 ,V ′′′
2 ) ∈ bW .κ(α)cW .n−n andW ′′′

2 wW ′′′
1 . Then, we show that (W ′′′

2 ,V ′′′
1 ,V ′′′

2 ) ∈
bW .κ(α)cW .n−n . By definition, (W ′′′

1 ,V ′′′
1 ,V ′′′

2 ) ∈ W .κ(α) and W ′′′
1 .n < W .n − n. Since

W ∈ Worldn0
, W .κ(α) satisfies monotonicity, so (W ′′′

2 ,V ′′′
1 ,V ′′′

2 ) ∈ W .κ(α). Since W ′′′
2 .n ≤

W ′′′
1 .n < W .n− n, we have the conclusion (W ′′′

2 ,V ′′′
1 ,V ′′′

2 ) ∈ bW .κ(α)cW .n−n .

Case ∃m,Σ1, p. m < W ′.n ∧ W ′.Σ1 ▷ M ′
1 −→m Σ1 ▷ blame p: We must show that there exist some Σ2 such

that W ′.Σ2 ▷ M ′
2 −→∗ Σ2 ▷ blame p. Because m < W ′.n and W ′.n = W .n − n, we have n + m < W .n.

Because (W ,M1,M2) ∈ E [[A]] ρ and W .Σ1 ▷ M1 −→n+m Σ1 ▷ blame p, there exist some Σ2 such that
W .Σ2 ▷ M2 −→∗ Σ2 ▷ blame p. Because W .Σ2 ▷ M2 −→∗ Σ′

2 ▷ M ′
2, Theorem F.1 implies that, without loss

of generality, we can assume that W ′.Σ2 ▷ M ′
2 = Σ′

2 ▷ M ′
2 −→∗ Σ2 ▷ blame p.

Otherwise: No proof obligation.

Lemma G.21 (Related Coercion Applications). If Σ | Γ ⊩ c : A⇝ B and W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]
and (W ,M1,M2) ∈ E [[A]] ρ, then (W ,M1〈ρ(c)〉,M2〈ρ(c)〉) ∈ E [[B ]] ρ.

Proof. By induction on W .n.
We first show that

(W ,M1〈ρ(c)〉,M2〈ρ(c)〉) ∈ Atom [[B ]] ρ . (1)

Because (W ,M1,M2) ∈ E [[A]] ρ, we have

• W .Σ1 | ∅ ` M1 : ρ(A) and
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• W .Σ2 | ∅ ` M2 : ρ(A).

By Lemma G.19,

• W .Σ1 | ∅ ` ρ(c) : ρ(A)⇝ ρ(B) and

• W .Σ2 | ∅ ` ρ(c) : ρ(A)⇝ ρ(B).

Then, by (T Crc C), we have

• W .Σ1 | ∅ ` M1〈ρ(c)〉 : ρ(B) and

• W .Σ2 | ∅ ` M2〈ρ(c)〉 : ρ(B).

Therefore, we have (1).
Let W ′,V1,V2 such that

• W ′ wW and

• (W ′,V1,V2) ∈ V [[A]] ρ.

By Lemma G.16 with (1), it suffices to show that

(W ′,V1〈ρ(c)〉,V2〈ρ(c)〉) ∈ E [[B ]] ρ .

We proceed by case analysis on the rule applied last to derive Σ | Γ ⊩ c : A⇝ B .

Case (Ct0 Id C): We are given c = idA and A = B . It suffices to show that

(W ′,V1〈idρ(A)〉,V2〈idρ(A)〉) ∈ E [[A]] ρ .

By (R Id C),

• W ′.Σ1 ▷ V1〈idρ(A)〉 −→ W ′.Σ1 ▷ V1 and

• W ′.Σ2 ▷ V2〈idρ(A)〉 −→ W ′.Σ2 ▷ V2.

Supposing that 1 < W ′.n, we can prove the conclusion by Lemma G.15 with the following.

• ▶W ′ w1 W ′: By Lemma G.7 (2).

• (▶W ′).Σ1 = W ′.Σ1: By definition.

• (▶W ′).Σ2 = W ′.Σ2: By definition.

• (▶W ′,V1,V2) ∈ E [[A]] ρ: By Lemma G.14, it suffices to show that (▶W ′,V1,V2) ∈ V [[A]] ρ, which is
implied by Lemma G.10 with (W ′,V1,V2) ∈ V [[A]] ρ and ▶W ′ wW ′.

Case (Ct0 Fail C): We are given c = ⊥p
A⇝B for some p. It suffices to show that

(W ′,V1〈⊥p
ρ(A)⇝ρ(B)〉,V2〈⊥p

ρ(A)⇝ρ(B)〉) ∈ E [[B ]] ρ .

By (R Fail C),

• W ′.Σ1 ▷ V1〈⊥p
ρ(A)⇝ρ(B)〉 −→ W ′.Σ1 ▷ blame p and

• W ′.Σ2 ▷ V2〈⊥p
ρ(A)⇝ρ(B)〉 −→ W ′.Σ2 ▷ blame p.

Supposing 1 < W ′.n, we can prove the conclusion by Lemma G.15 with the following.

• ▶W ′ w1 W ′ by Lemma G.7 (2).

• (▶W ′).Σ1 = W ′.Σ1.

• (▶W ′).Σ2 = W ′.Σ2.

• (▶W ′, blame p, blame p) ∈ E [[B ]] ρ: Obvious.
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Case (Ct0 Inj C): We are given c = G ! and A = G and B = ⋆ for some G . It suffices to show that

(W ′,V1〈ρ(G)!〉,V2〈ρ(G)!〉) ∈ E [[⋆]] ρ .

V1〈ρ(G)!〉 and V2〈ρ(G)!〉 are values. Thus, Lemma G.14 implies that it suffices to show that

(W ′,V1〈ρ(G)!〉,V2〈ρ(G)!〉) ∈ V [[⋆]] ρ .

By definition, it suffices to show that

(W ′,V1,V2) ∈ ▶V [[ρ(G)]] ∅ .

Suppose that 0 < W ′.n. Then, it suffices to show that

(▶W ′,V1,V2) ∈ V [[ρ(G)]] ∅ .

By Lemma G.17 (1), it suffices to show that

(▶W ′,V1,V2) ∈ V [[G ]] ρ .

Because (W ′,V1,V2) ∈ V [[A]] ρ = V [[G ]] ρ, and ▶W ′ w W ′ by Lemma G.7 (2), we have the conclusion by
Lemma G.10.

Case (Ct0 Proj C): We are given c = G?p and A = ⋆ and B = G for some G and p. It suffices to show that

(W ′,V1〈ρ(G)?p〉,V2〈ρ(G)?p〉) ∈ E [[G ]] ρ .

By case analysis on the reduction of W ′.Σ1 ▷ V1〈ρ(G)?p〉 (such reduction is always possible by Theorem E.4
(Progress)).

Case (R Collapse C): We are given V ′
1 such that

• V1 = V ′
1〈ρ(G)!〉 and

• W ′.Σ1 ▷ V1〈ρ(G)?p〉 = W ′.Σ1 ▷ V ′
1〈ρ(G)!〉〈ρ(G)?p〉 −→ W ′.Σ1 ▷ V ′

1.

Because (W ′,V1,V2) ∈ V [[A]] ρ, i.e., (W ′,V ′
1〈ρ(G)!〉,V2) ∈ V [[⋆]] ρ, there exists some V ′

2 such that

• V2 = V ′
2〈ρ(G)!〉 and

• (W ′,V ′
1,V

′
2) ∈ ▶V [[ρ(G)]] ∅.

Supposing that 1 < W ′.n, we can prove the conclusion by Lemma G.15 with the following.

• W ′.Σ1 ▷ V1〈ρ(G)?p〉 −→ W ′.Σ1 ▷ V ′
1.

• W ′.Σ2 ▷ V2〈ρ(G)?p〉 = W ′.Σ2 ▷ V ′
2〈ρ(G)!〉〈ρ(G)?p〉 −→ W ′.Σ2 ▷ V ′

2.

• ▶W ′ w1 W ′: By Lemma G.7 (2).

• (▶W ′).Σ1 = W ′.Σ1.

• (▶W ′).Σ2 = W ′.Σ2.

• (▶W ′,V ′
1,V

′
2) ∈ E [[G ]] ρ: By Lemma G.14, it suffices to show that (▶W ′,V ′

1,V
′
2) ∈ V [[G ]] ρ.

By Lemma G.17 (1), it suffices to show that (▶W ′,V ′
1,V

′
2) ∈ V [[ρ(G)]] ∅, which is implied by

(W ′,V ′
1,V

′
2) ∈ ▶V [[ρ(G)]] ∅ and 1 < W ′.n.

Case (R Conflict C): We are given V ′
1 and H such that

• V1 = V ′
1〈H !〉,

• H 6= ρ(G), and

• W ′.Σ1 ▷ V1〈ρ(G)?p〉 = W ′.Σ1 ▷ V ′
1〈H !〉〈ρ(G)?p〉 −→ W ′.Σ1 ▷ blame p.

Because (W ′,V1,V2) ∈ V [[A]] ρ, i.e., (W ′,V ′
1〈H !〉,V2) ∈ V [[⋆]] ρ, there exists some V ′

2 such that

• V2 = V ′
2〈H !〉 and

• (W ′,V ′
1,V

′
2) ∈ ▶V [[H ]] ∅.

Supposing that 1 < W ′.n, we can prove the conclusion by Lemma G.15 with the following.
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• W ′.Σ1 ▷ V1〈ρ(G)?p〉 −→ W ′.Σ1 ▷ blame p.

• W ′.Σ2 ▷ V2〈ρ(G)?p〉 = W ′.Σ2 ▷ V ′
2〈H !〉〈ρ(G)?p〉 −→ W ′.Σ2 ▷ blame p.

• ▶W ′ w1 W ′: By Lemma G.7 (2).

• (▶W ′).Σ1 = W ′.Σ1.

• (▶W ′).Σ2 = W ′.Σ2.

• (▶W ′, blame p, blame p) ∈ E [[G ]] ρ: Obvious.

Otherwise: Contradiction.

Case (Ct0 Conceal C): We are given c = α− and A = C and B = α for some C and α such that α := C ∈ Σ.
It suffices to show that

(W ′,V1〈α−〉,V2〈α−〉) ∈ E [[α]] ρ .

Because V1〈α−〉 and V2〈α−〉 are values, Lemma G.14 implies that it suffices to show that

(W ′,V1〈α−〉,V2〈α−〉) ∈ V [[α]] ρ .

By definition, it suffices to show that

(W ′,V1,V2) ∈ ▶(W ′.κ(α)) .

Suppose that 0 < W ′.n. Then, it suffices to show that

(▶W ′,V1,V2) ∈ W ′.κ(α) .

Because W ∈ S [[Σ]] and α := C ∈ Σ, we have W .κ(α) = bV [[C]] ∅cW .n. Because W ′ w W , we have
W ′.κ w bW .κcW ′.n. Because α ∈ dom(W .κ) = dom(bW .κcW ′.n), we have W ′.κ(α) = bW .κcW ′.n(α) =
bW .κ(α)cW ′.n. Thus, it suffices to show that

(▶W ′,V1,V2) ∈ W .κ(α) ∧ (▶W ′).n < W ′.n .

The second conjunct is trivial. Because W .κ(α) = bV [[C]] ∅cW .n, we can show the first by the following.

• (▶W ′,V1,V2) ∈ V [[C]] ∅: Since
– α := C ∈ Σ,

– W .Σ1 ⊇ Σ by W ∈ S [[Σ]], and
– `W .Σ1 by W ∈ World,

we have ρ(C) = C. Thus, by Lemma G.17 (1), it suffices to show that (▶W ′,V1,V2) ∈ V [[C]] ρ, which
is implied by Lemma G.10 with (W ′,V1,V2) ∈ V [[C]] ρ and ▶W ′ wW ′ obtained by Lemma G.7 (2).

• (▶W ′).n < W .n: By (▶W ′).n < W ′.n ≤W .n; the second inequation is implied by W ′ wW .

Case (Ct0 Reveal C): We are given c = α+ and A = α and B = C for some α and C such that α := C ∈ Σ.
It suffices to show that

(W ′,V1〈α+〉,V2〈α+〉) ∈ E [[C]] ρ .

Because (W ′,V1,V2) ∈ V [[A]] ρ = V [[α]] ρ, there exist some V ′
1 and V ′

2 such that

• V1 = V ′
1〈α−〉,

• V2 = V ′
2〈α−〉, and

• (W ′,V ′
1,V

′
2) ∈ ▶(W ′.κ(α)).

Thus, by (R Remove C),

• W ′.Σ1 ▷ V1〈α+〉 = W ′.Σ1 ▷ V ′
1〈α−〉〈α+〉 −→ W ′.Σ1 ▷ V ′

1 and

• W ′.Σ2 ▷ V2〈α+〉 = W ′.Σ2 ▷ V ′
2〈α−〉〈α+〉 −→ W ′.Σ2 ▷ V ′

2.

Supposing 1 < W ′.n, we can prove the conclusion by Lemma G.15 with the following.
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• ▶W ′ w1 W ′ by Lemma G.7 (2).

• (▶W ′).Σ1 = W ′.Σ1.

• (▶W ′).Σ2 = W ′.Σ2.

• (▶W ′,V ′
1,V

′
2) ∈ E [[C]] ρ: By Lemma G.14, it suffices to show that

(▶W ′,V ′
1,V

′
2) ∈ V [[C]] ρ .

Because

– α := C ∈ Σ,

– W .Σ1 ⊇ Σ by W ∈ S [[Σ]], and
– `W .Σ1 by W ∈ World,

we have ρ(C) = C. By Lemma G.17, it suffices to show that

(▶W ′,V ′
1,V

′
2) ∈ V [[C]] ∅ .

Because W ∈ S [[Σ]] and α := C ∈ Σ, we have W .κ(α) = bV [[C]] ∅cW .n. Thus, it suffices to show that

(▶W ′,V ′
1,V

′
2) ∈ W .κ(α) .

Because W ′ w W , we have W ′.κ w bW .κcW ′.n. Furthermore, α ∈ dom(W .κ) = dom(bW .κcW ′.n).
Thus, W ′.κ(α) = bW .κ(α)cW ′.n. Therefore, it suffices to show that

(▶W ′,V ′
1,V

′
2) ∈ W ′.κ(α) .

Because (W ′,V ′
1,V

′
2) ∈ ▶(W ′.κ(α)) and 1 < W ′.n, we have the conclusion (▶W ′,V ′

1,V
′
2) ∈ W ′.κ(α).

Case (Ct0 Arrow C): We are given c = d1 → d2 and A = A1 → A2 and B = B1 → B2 for some d1, d2, A1,
A2, B1, and B2. By inversion, Σ | Γ ⊩ d1 : B1 ⇝ A1 and Σ | Γ ⊩ d2 : A2 ⇝ B2. Because V1〈d1 → d2〉 and
V2〈d1 → d2〉 are values, Lemma G.14 implies that it suffices to show that

(W ′,V1〈ρ(d1 → d2)〉,V2〈ρ(d1 → d2)〉) ∈ V [[B1 → B2]] ρ .

Let W ′′ wW ′ and V ′′
1 and V ′′

2 be values such that (W ′′,V ′′
1 ,V

′′
2 ) ∈ V [[B1]] ρ. Then, it suffices to show that

(W ′′, (V1〈ρ(d1 → d2)〉)V ′′
1 ,V2〈ρ(d1 → d2)〉V ′′

2 ) ∈ E [[B2]] ρ .

By (R Wrap C),

• W ′′.Σ1 ▷ (V1〈ρ(d1 → d2)〉)V ′′
1 −→ W ′′.Σ1 ▷ (V1 (V

′′
1 〈ρ(d1)〉))〈ρ(d2)〉 and

• W ′′.Σ2 ▷ (V2〈ρ(d1 → d2)〉)V ′′
2 −→ W ′′.Σ2 ▷ (V2 (V

′′
2 〈ρ(d1)〉))〈ρ(d2)〉.

Supposing that 1 < W ′′.n, we can prove the conclusion by Lemma G.15 with the following.

• ▶W ′′ w1 W ′′ by Lemma G.7 (2).

• (▶W ′′).Σ1 = W ′′.Σ1.

• (▶W ′′).Σ2 = W ′′.Σ2.

Finally, Lemma G.15 requires us to prove that

(▶W ′′, (V1 (V
′′
1 〈ρ(d1)〉))〈ρ(d2)〉, (V2 (V

′′
2 〈ρ(d1)〉))〈ρ(d2)〉) ∈ E [[B2]] ρ .

Because ▶W ′′ w1 W ′′ by Lemma G.7 (2), and W ′′ wW ′ and W ′ wW , we have ▶W ′′ wW by Lemma G.5.
Now, we have the following.

• Σ | Γ ⊩ d1 : B1 ⇝ A1.

• ▶W ′′ ∈ S [[Σ]]: By Lemma G.13 with ▶W ′′ wW and W ∈ S [[Σ]].
• (▶W ′′, θ, ρ) ∈ G [[Γ]]: By Lemma G.12 with ▶W ′′ wW and (W , θ, ρ) ∈ G [[Γ]].
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• (▶W ′′,V ′′
1 ,V

′′
2 ) ∈ E [[B1]] ρ by Lemma G.10 with (W ′′,V ′′

1 ,V
′′
2 ) ∈ V [[B1]] ρ and ▶W ′′ w1 W ′′, and

then Lemma G.14.

Because (▶W ′′).n < W .n, the IH implies

(▶W ′′,V ′′
1 〈ρ(d1)〉,V ′′

2 〈ρ(d1)〉) ∈ E [[A1]] ρ .

Let W ′′′ w ▶W ′′ and V ′′′
1 and V ′′′

2 be values such that (W ′′′,V ′′′
1 ,V ′′′

2 ) ∈ V [[A1]] ρ. Then, Lemma G.16
implies that it suffices to show that

(W ′′′, (V1 V
′′′
1 )〈ρ(d2)〉, (V2 V

′′′
2 )〈ρ(d2)〉) ∈ E [[B2]] ρ .

Because (W ′,V1,V2) ∈ V [[A]] ρ = V [[A1 → A2]] ρ, W ′′′ w W ′ by Lemma G.5, and (W ′′′,V ′′′
1 ,V ′′′

2 ) ∈
V [[A1]] ρ, we have

(W ′′′,V1 V
′′′
1 ,V2 V

′′′
2 ) ∈ V [[A2]] ρ .

Let W ′′′′ w W ′′′ and V ′′′′
1 and V ′′′′

2 be values such that (W ′′′′,V ′′′′
1 ,V ′′′′

2 ) ∈ V [[A2]] ρ. Then, Lemma G.16
implies that it suffices to show that

(W ′′′′,V ′′′′
1 〈ρ(d2)〉,V ′′′

2 〈ρ(d2)〉) ∈ E [[B2]] ρ .

Noting W ′′′′ wW by Lemma G.5, we have the following.

• Σ | Γ ⊩ d2 : A2 ⇝ B2.

• W ′′′′ ∈ S [[Σ]] by Lemma G.13.

• (W ′′′′, θ, ρ) ∈ G [[Γ]] by Lemma G.12.

• (W ′′′′,V ′′′′
1 ,V ′′′′

2 ) ∈ E [[A2]] ρ by Lemma G.14 with (W ′′′′,V ′′′′
1 ,V ′′′′

2 ) ∈ V [[A2]] ρ.

Because W ′′′′.n < W ′′.n ≤W .n, the IH implies the conclusion.

Case (Ct0 Seq C): We are given c = c1 ; c2 for some c1 and c2. By inversion, Σ | Γ ⊩ c1 : A ⇝ C and
Σ | Γ ⊩ c2 : C ⇝ B for some C . It suffices to show that

(W ′,V1〈ρ(c1 ; c2)〉,V2〈ρ(c1 ; c2)〉) ∈ E [[B ]] ρ .

By (R Split C), we have

• W ′.Σ1 ▷ V1〈ρ(c1 ; c2)〉 −→ W ′.Σ1 ▷ V1〈ρ(c1)〉〈ρ(c2)〉 and
• W ′.Σ2 ▷ V2〈ρ(c1 ; c2)〉 −→ W ′.Σ2 ▷ V2〈ρ(c1)〉〈ρ(c2)〉.

Supposing that 1 < W ′.n, we can prove the conclusion by Lemma G.15 with the following.

• ▶W ′ w1 W ′ by Lemma G.7 (2).

• (▶W ′).Σ1 = W ′.Σ1.

• (▶W ′).Σ2 = W ′.Σ2.

Finally, Lemma G.15 requires us to prove that

(▶W ′,V1〈ρ(c1)〉〈ρ(c2)〉,V2〈ρ(c1)〉〈ρ(c2)〉) ∈ E [[B ]] ρ .

Noting ▶W ′ wW by Lemma G.5 with ▶W ′ wW ′ and W ′ wW , we have the following.

• Σ | Γ ⊩ c1 : A⇝ C .

• ▶W ′ ∈ S [[Σ]] by Lemma G.13 with W ∈ S [[Σ]].
• (▶W ′, θ, ρ) ∈ G [[Γ]] by Lemma G.12 with (W , θ, ρ) ∈ G [[Γ]].
• (▶W ′,V1,V2) ∈ E [[A]] ρ by Lemmas G.10 and G.14 with (W ′,V1,V2) ∈ V [[A]] ρ.
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Because (▶W ′).n < W .n, the IH implies that

(▶W ′,V1〈ρ(c1)〉,V2〈ρ(c1)〉) ∈ E [[C ]] ρ .

Let W ′′ w ▶W ′, and V ′
1 and V ′

2 be values such that (W ′′,V ′
1,V

′
2) ∈ V [[C ]] ρ. Then, by Lemma G.16, it

suffices to show that
(W ′′,V ′

1〈ρ(c2)〉,V ′
2〈ρ(c2)〉) ∈ E [[B ]] ρ .

Noting W ′′ wW by Lemma G.5, we have the following.

• Σ | Γ ⊩ c2 : C ⇝ B .

• W ′′ ∈ S [[Σ]] by Lemma G.13 with W ∈ S [[Σ]].
• (W ′′, θ, ρ) ∈ G [[Γ]] by Lemma G.12 with (W , θ, ρ) ∈ G [[Γ]].
• (W ′′,V ′

1,V
′
2) ∈ E [[C ]] ρ by Lemma G.14 with (W ′′,V ′

1,V
′
2) ∈ V [[C ]] ρ.

Because W ′′.n < W ′.n ≤W .n, the IH implies the conclusion.

Case (Ct0 All C): We are given c = ∀X .c0 and A = ∀X .A0 and B = ∀X .B0 for some X , c0, A0, and B0. By
inversion, Σ | Γ,X ⊩ c0 : A0 ⇝ B0. Without loss of generality, we can suppose that X 6∈ dom(ρ). It suffices
to show that

(W ′,V1〈ρ(∀X .c0)〉,V2〈ρ(∀X .c0)〉) ∈ E [[∀X .B0]] ρ .

Because V1〈ρ(∀X .c0)〉 and V2〈ρ(∀X .c0)〉 are values, Lemma G.14 implies that it suffices to show that

(W ′,V1〈ρ(∀X .c0)〉,V2〈ρ(∀X .c0)〉) ∈ V [[∀X .B0]] ρ ,

which is implied by the following two cases.

• Let W ′′,C1,C2,R,M ′′
1 ,M

′′
2 , α such that

– W ′′ wW ′,

– W ′′.Σ1 | ∅ ` C1,

– W ′′.Σ2 | ∅ ` C2,

– R ∈ RelW ′′.n [[C1,C2]],

– W ′′.Σ1 ▷ V1〈ρ(∀X .c0)〉C1 −→ W ′′.Σ1, α := C1 ▷ M ′′
1 〈coerce+α (ρ(B0)[X := α])〉, and

– W ′′.Σ2 ▷ V2〈ρ(∀X .c0)〉C2 −→ W ′′.Σ2, α := C2 ▷ M ′′
2 〈coerce+α (ρ(B0)[X := α])〉.

Furthermore, let W ′′′ = W ′′ ⊞ (α,C1,C2,R). Then, we must show that

(W ′′′,M ′′
1 ,M

′′
2 ) ∈ ▶E [[B0]] ρ{X 7→ α} .

Suppose that 0 < W ′′′.n. Then, it suffices to show that

(▶W ′′′,M ′′
1 ,M

′′
2 ) ∈ E [[B0]] ρ{X 7→ α} .

Because (W ′,V1,V2) ∈ V [[A]] ρ = V [[∀X .A0]] ρ, we have

– W ′.Σ1 | ∅ ` V1 : ∀X .ρ(A0) and

– W ′.Σ2 | ∅ ` V2 : ∀X .ρ(A0).

Thus, Lemma E.3 implies:

– V1 = (ΛX .(M ′
1 : A′

1))〈∀X .c1〉,
– W ′.Σ1 ` 〈∀X .c1〉 : ∀X .A′

1 ⇝ ∀X .ρ(A0),

– V2 = (ΛX .(M ′
2 : A′

2))〈∀X .c2〉, and
– W ′.Σ2 ` 〈∀X .c2〉 : ∀X .A′

2 ⇝ ∀X .ρ(A0)

for some M ′
1,M

′
2,A

′
1,A

′
2, 〈c1〉, 〈c2〉.

Let

– M ′′′
1 = M ′

1[X := α]〈c1[X := α]〉 and
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– M ′′′
2 = M ′

2[X := α]〈c2[X := α]〉.
In what follows, we show the conclusion by proving first that

(▶W ′′′,M ′′′
1 〈ρ{X 7→ α}(c0)〉,M ′′′

2 〈ρ{X 7→ α}(c0)〉) ∈ E [[B0]] ρ{X 7→ α} , (2)

and then that
M ′′

1 = M ′′′
1 〈ρ{X 7→ α}(c0)〉 ∧ M ′′

2 = M ′′′
2 〈ρ{X 7→ α}(c0)〉 . (3)

– We start with proving (2). We have

∗ (W ′,V1,V2) ∈ V [[A]] ρ, i.e., (W ′, (ΛX .(M ′
1 : A′

1))〈∀X .c1〉, (ΛX .(M ′
2 : A′

2))〈∀X .c2〉) ∈ V [[∀X .A0]] ρ,

∗ W ′′ wW ′,

∗ W ′′.Σ1 | ∅ ` C1,

∗ W ′′.Σ2 | ∅ ` C2, and

∗ R ∈ RelW ′′.n [[C1,C2]].

Because

∗ W ′′ wW ′ implies W ′′ ∈ World, W ′′.Σ1 ⊇ W ′.Σ1, and W ′′.Σ2 ⊇ W ′.Σ2, and

∗ W ′′ ∈ World implies `W ′′.Σ1 and `W ′′.Σ2,

we have

∗ W ′′.Σ1 ` 〈∀X .c1〉 : ∀X .A′
1 ⇝ ∀X .ρ(A0) and

∗ W ′′.Σ2 ` 〈∀X .c2〉 : ∀X .A′
2 ⇝ ∀X .ρ(A0)

by Lemma E.6. Therefore, noting that α is fresh, we have

W ′′.Σ1 ▷ V1 C1

= W ′′.Σ1 ▷ (ΛX .(M ′
1 : A′

1))〈∀X .c1〉C1

−→ W ′′.Σ1, α := C1 ▷ M ′
1[X := α]〈c1[X := α]〉〈coerce+α (ρ(A0)[X := α])〉 (by (R Tybeta C))

= W ′′.Σ1, α := C1 ▷ M ′′′
1 〈coerce+α (ρ(A0)[X := α])〉

and

W ′′.Σ2 ▷ V2 C2

= W ′′.Σ2 ▷ (ΛX .(M ′
2 : A′

2))〈∀X .c2〉C2

−→ W ′′.Σ2, α := C2 ▷ M ′
2[X := α]〈c2[X := α]〉〈coerce+α (ρ(A0)[X := α])〉 (by (R Tybeta C))

= W ′′.Σ2, α := C2 ▷ M ′′′
2 〈coerce+α (ρ(A0)[X := α])〉 .

Thus, we have
(W ′′′,M ′′′

1 ,M ′′′
2 ) ∈ ▶E [[A0]] ρ{X 7→ α} .

Because 0 < W ′′′.n, we have

(▶W ′′′,M ′′′
1 ,M ′′′

2 ) ∈ E [[A0]] ρ{X 7→ α} .

Because

∗ ▶W ′′′ wW ′′′ by Lemma G.7 (2),

∗ W ′′′ = W ′′ ⊞ (α,C1,C2,R) wW ′′ by Lemma G.6,

∗ W ′′ wW ′, and

∗ W ′ wW ,

we have ▶W ′′′ wW by Lemma G.5. Then, we have

∗ Σ | Γ,X ⊩ c0 : A0 ⇝ B0,

∗ ▶W ′′′ ∈ S [[Σ]] by Lemma G.13 with ▶W ′′′ wW and W ∈ S [[Σ]].
∗ (▶W ′′′, θ, ρ{X 7→ α}) ∈ G [[Γ,X ]] because:

· (▶W ′′′, θ, ρ) ∈ G [[Γ]] by Lemma G.12 with ▶W ′′′ wW and (W , θ, ρ) ∈ G [[Γ]], and
· α ∈ dom((▶W ′′′).κ).
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Because (▶W ′′′).n < W ′′′.n ≤W .n, the IH implies the conclusion (2)

(▶W ′′′,M ′′′
1 〈ρ{X 7→ α}(c0)〉,M ′′′

2 〈ρ{X 7→ α}(c0)〉) ∈ E [[B0]] ρ{X 7→ α} .

– We show (3). Because

∗ Σ | Γ ⊩ ∀X .c0 : ∀X .A0 ⇝ ∀X .B0,

∗ W ′ ∈ S [[Σ]] by Lemma G.13 with W ′ wW and W ∈ S [[Σ]], and
∗ (W ′, θ, ρ) ∈ G [[Γ]] by Lemma G.12 with W ′ wW and (W , θ, ρ) ∈ G [[Γ]],

we have

∗ W ′.Σ1 | ∅ ` ∀X .ρ(c0) : ∀X .ρ(A0)⇝ ∀X .ρ(B0) and

∗ W ′.Σ2 | ∅ ` ∀X .ρ(c0) : ∀X .ρ(A0)⇝ ∀X .ρ(B0)

by Lemma G.19. Then, by (Ct Cons C),

∗ W ′.Σ1 ` 〈∀X .c1〉, 〈∀X .ρ(c0)〉 : ∀X .A′
1 ⇝ ∀X .ρ(B0) and

∗ W ′.Σ2 ` 〈∀X .c2〉, 〈∀X .ρ(c0)〉 : ∀X .A′
2 ⇝ ∀X .ρ(B0).

Because

∗ W ′′ wW ′ implies W ′′ ∈ World, W ′′.Σ1 ⊇ W ′.Σ1 and W ′′.Σ2 ⊇ W ′.Σ2, and

∗ W ′′ ∈ World implies `W ′′.Σ1 and `W ′′.Σ2,

Lemma E.6 implies

∗ W ′′.Σ1 ` 〈∀X .c1〉, 〈∀X .ρ(c0)〉 : ∀X .A′
1 ⇝ ∀X .ρ(B0) and

∗ W ′′.Σ2 ` 〈∀X .c2〉, 〈∀X .ρ(c0)〉 : ∀X .A′
2 ⇝ ∀X .ρ(B0).

Therefore, noting that α is fresh, we have

W ′′.Σ1 ▷ V1〈ρ(∀X .c0)〉C1

= W ′′.Σ1 ▷ (ΛX .(M ′
1 : A′

1))〈∀X .c1〉〈∀X .ρ(c0)〉C1

−→ W ′′.Σ1, α := C1 ▷ (M ′
1〈c1〉〈ρ(c0)〉)[X := α]〈coerce+α (ρ(B0)[X := α])〉 (by (R Tybeta C))

= W ′′.Σ1, α := C1 ▷ M ′′′
1 〈ρ(c0[X := α])〉〈coerce+α (ρ(B0)[X := α])〉

and

W ′′.Σ2 ▷ V2〈ρ(∀X .c0)〉C2

= W ′′.Σ2 ▷ (ΛX .(M ′
2 : A′

2))〈∀X .c2〉〈∀X .ρ(c0)〉C2

−→ W ′′.Σ2, α := C2 ▷ (M ′
2〈c2〉〈ρ(c0)〉)[X := α]〈coerce+α (ρ(B0)[X := α])〉 (by (R Tybeta C))

= W ′′.Σ2, α := C2 ▷ M ′′′
2 〈ρ(c0[X := α])〉〈coerce+α (ρ(B0)[X := α])〉 .

Because

∗ W ′′.Σ1 ▷ V1〈ρ(∀X .c0)〉C1 −→ W ′′.Σ1, α := C1 ▷ M ′′
1 〈coerce+α (ρ(B0)[X := α])〉 and

∗ W ′′.Σ2 ▷ V2〈ρ(∀X .c0)〉C2 −→ W ′′.Σ2, α := C2 ▷ M ′′
2 〈coerce+α (ρ(B0)[X := α])〉,

Theorem F.1 implies (3).

• Let W ′′ wW ′. We show that

(W ′′,V1〈ρ(∀X .c0)〉 ⋆,V2〈ρ(∀X .c0)〉 ⋆) ∈ E [[B0]] ρ{X 7→ ⋆} .

Because (W ′,V1,V2) ∈ V [[A]] ρ = V [[∀X .A0]] ρ, we have

– W ′.Σ1 | ∅ ` V1 : ∀X .ρ(A0) and

– W ′.Σ2 | ∅ ` V2 : ∀X .ρ(A0).

Thus, by Lemma E.3,

– V1 = (ΛX .(M ′
1 : A′

1))〈∀X .c1〉,
– W ′.Σ1 ` 〈∀X .c1〉 : ∀X .A′

1 ⇝ ∀X .ρ(A0),

– V2 = (ΛX .(M ′
2 : A′

2))〈∀X .c2〉, and
– W ′.Σ2 ` 〈∀X .c2〉 : ∀X .A′

2 ⇝ ∀X .ρ(A0)
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for some M ′
1,M

′
2,A

′
1,A

′
2, 〈c1〉, 〈c2〉. By (R TybetaDyn C),

– W ′′.Σ1 ▷ V1〈ρ(∀X .c0)〉 ⋆ = W ′′.Σ1 ▷ (ΛX .(M ′
1 : A′

1))〈∀X .c1〉〈ρ(∀X .c0)〉 ⋆ −→ W ′′.Σ1 ▷ (M ′
1〈c1〉〈ρ(c0)〉)[X :=

⋆] and

– W ′′.Σ2 ▷ V2〈ρ(∀X .c0)〉 ⋆ = W ′′.Σ2 ▷ (ΛX .(M ′
2 : A′

2))〈∀X .c2〉〈ρ(∀X .c0)〉 ⋆ −→ W ′′.Σ2 ▷ (M ′
2〈c2〉〈ρ(c0)〉)[X :=

⋆].

Supposing that 1 < W ′′.n, we can prove the conclusion by Lemma G.15 with the following.

– ▶W ′′ w1 W ′′ by Lemma G.7 (2).

– (▶W ′′).Σ1 = W ′′.Σ1.

– (▶W ′′).Σ2 = W ′′.Σ2.

Finally, Lemma G.15 requires us to prove that

(▶W ′′, (M ′
1〈c1〉〈ρ(c0)〉)[X := ⋆], (M ′

2〈c2〉〈ρ(c0)〉)[X := ⋆]) ∈ E [[B0]] ρ{X 7→ ⋆} .

Because (W ′,V1,V2) ∈ V [[∀X .A0]] ρ and W ′′ w W ′, we have (W ′′,V1 ⋆,V2 ⋆) ∈ E [[A0]] ρ{X 7→ ⋆}.
Because, by (R TybetaDyn C),

– W ′′.Σ1 ▷ V1 ⋆ −→ W ′′.Σ1 ▷ (M ′
1〈c1〉)[X := ⋆] and

– W ′′.Σ2 ▷ V2 ⋆ −→ W ′′.Σ2 ▷ (M ′
2〈c2〉)[X := ⋆],

we have
(▶W ′′, (M ′

1〈c1〉)[X := ⋆], (M ′
2〈c2〉)[X := ⋆]) ∈ E [[A0]] ρ{X 7→ ⋆}

by Lemma G.20. We have ▶W ′′ wW by Lemma G.5. Therefore, we have the following:

– ▶W ′′ ∈ S [[Σ]] by Lemma G.13, and

– (▶W ′′, θ, ρ{X 7→ ⋆}) ∈ G [[Γ,X ]] by Lemma G.12.

Because Σ | Γ,X ⊩ c0 : A0 ⇝ B0 and (▶W ′′).n < W .n, the IH implies the conclusion

(▶W ′′, (M ′
1〈c1〉〈ρ(c0)〉)[X := ⋆], (M ′

2〈c2〉〈ρ(c0)〉)[X := ⋆]) ∈ E [[B0]] ρ{X 7→ ⋆} .

Lemma G.22 (Compatibility: Coercion Application). If Σ | Γ ` M1 � M2 : A and Σ | Γ ` c : A ⇝ B , then
Σ | Γ ` M1〈c〉 � M2〈c〉 : B .

Proof. We have Σ | Γ ` M1〈c〉 : B and Σ | Γ ` M2〈c〉 : B by (T Crc C).
Let W , θ, ρ such that W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]. Then, we must show that

(W , ρ(θ1(M1〈c〉)), ρ(θ2(M2〈c〉))) ∈ E [[B ]] ρ .

Because Σ | Γ ` M1 � M2 : A, we have (W , ρ(θ1(M1)), ρ(θ
2(M2))) ∈ E [[A]] ρ. Then, because Σ | Γ ` c : A⇝ B

implies Σ | Γ ⊩ c : A⇝ B , Lemma G.21 implies the conclusion.

Lemma G.23 (Compatibility: Constants). If ` Σ and Σ ` Γ and ty(k) = A, then Σ | Γ ` k � k : A.

Proof. By induction on A. Note that Σ | Γ ` k : A by (T Const C).
Let W , θ, ρ such that W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]. Then, we must show that

(W , k , k) ∈ E [[A]] ρ .

By Lemma G.14, it suffices to show that (W , k , k) ∈ V [[A]] ρ. We proceed by case analysis on A.

Case A = ι: Obvious.

Case A = ι→ A′: Let W ′ wW , and V1 and V2 be values such that (W ′,V1,V2) ∈ V [[ι]] ρ. Then, it suffices to
show that (W ′, k V1, k V2) ∈ E [[A′]] ρ. Because (W ′,V1,V2) ∈ V [[ι]] ρ, we have V1 = V2 = k ′ for some k ′.
Therefore, it suffices to show that (W ′, k k ′, k k ′) ∈ E [[A′]] ρ. By (R Delta C), W ′.Σ1 ▷ k k ′ −→ W ′.Σ1 ▷
k ′′ and W ′.Σ2 ▷ k k ′ −→ W ′.Σ2 ▷ k ′′ for some k ′′. Supposing that 1 < W ′.n, we can prove the conclusion
by Lemma G.15 with the following.
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• ▶W ′ w1 W ′ by Lemma G.7 (2).

• (▶W ′).Σ1 = W ′.Σ1 and (▶W ′).Σ2 = W ′.Σ2 by definition,

• We show that (▶W ′, k ′′, k ′′) ∈ E [[A′]] ρ. By the IH, Σ | Γ ` k ′′ � k ′′ : A′. Because ▶W ′ w W by
Lemma G.5, we have ▶W ′ ∈ S [[Σ]] by Lemma G.13 with W ∈ S [[Σ]], and (▶W ′, θ, ρ) ∈ G [[Γ]] by
Lemma G.12 with (W , θ, ρ) ∈ G [[Γ]]. Therefore, we have the conclusion.

Lemma G.24 (Compatibility: Variables). If ` Σ and Σ ` Γ and x : A ∈ Γ, then Σ | Γ ` x � x : A.

Proof. By (T Var C), Σ | Γ ` x : A.
Let W , θ, ρ such that W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]. Then, we must show that

(W , θ1(x ), θ2(x )) ∈ E [[A]] ρ .

Because (W , θ, ρ) ∈ G [[Γ]] and x : A ∈ Γ, we have the conclusion by Lemma G.17.

Lemma G.25 (Compatibility: Abstractions). If Σ | Γ, x : A ` M1 � M2 : B , then Σ | Γ ` λx :A.M1 �
λx :A.M2 : A→ B .

Proof. By (T Abs C), Σ | Γ ` λx :A.M1 : A→ B and Σ | Γ ` λx :A.M2 : A→ B .
Let W , θ, ρ such that W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]. Without loss of generality, we can suppose that

x 6∈ dom(θ). Then, we must show that

(W , ρ(θ1(λx :A.M1)), ρ(θ
2(λx :A.M2))) ∈ E [[A→ B ]] ρ .

By Lemma G.14, it suffices to show that

(W , ρ(θ1(λx :A.M1)), ρ(θ
2(λx :A.M2))) ∈ V [[A→ B ]] ρ .

Let W ′, V1, and V2 such that W ′ wW and (W ′,V1,V2) ∈ V [[A]] ρ. Then, it suffices to show that

(W ′, ρ(θ1(λx :A.M1))V1, ρ(θ
2(λx :A.M2))V2) ∈ E [[B ]] ρ .

By (R Beta C),

• W ′.Σ1 ▷ ρ(θ1(λx :A.M1))V1 −→ W ′.Σ1 ▷ ρ(θ1(M1))[x := V1] and

• W ′.Σ2 ▷ ρ(θ2(λx :A.M2))V2 −→ W ′.Σ2 ▷ ρ(θ2(M2))[x := V2].

Supposing that 1 < W ′.n, we can prove the conclusion by Lemma G.15 with the following.

• ▶W ′ w1 W ′ by Lemma G.7 (2).

• (▶W ′).Σ1 = W ′.Σ1 and (▶W ′).Σ2 = W ′.Σ2 by definition,

• We show that
(▶W ′, ρ(θ1(M1))[x := V1], ρ(θ

2(M2))[x := V2]) ∈ E [[B ]] ρ .

By Lemma G.5, ▶W ′ wW . Therefore, we have

– ▶W ′ ∈ S [[Σ]] by Lemma G.13 with W ∈ S [[Σ]] and ▶W ′ wW ,

– (▶W ′, θ, ρ) ∈ G [[Γ]] by Lemma G.12 with (W , θ, ρ) ∈ G [[Γ]] and ▶W ′ wW , and

– (▶W ′,V1,V2) ∈ V [[A]] ρ by Lemma G.10 with (W ′,V1,V2) ∈ V [[A]] ρ and ▶W ′ wW ′.

The last two imply (▶W ′, θ{x 7→ (V1,V2)}, ρ) ∈ G [[Γ, x : A]]. Because Σ | Γ, x : A ` M1 � M2 : B , we
have the conclusion

(▶W ′, ρ(θ1(M1))[x := V1], ρ(θ
2(M2))[x := V2]) ∈ E [[B ]] ρ .
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Lemma G.26 (Compatibility: Applications). If Σ | Γ ` M11 � M21 : A → B and Σ | Γ ` M12 � M22 : A,
then Σ | Γ ` M11 M12 � M21 M22 : B .

Proof. By (T App C), we have Σ | Γ ` M11 M12 : B and Σ | Γ ` M21 M22 : B .
Let W , θ, ρ such that W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]. Then, we must show that

(W , ρ(θ1(M11 M12)), ρ(θ
2(M21 M22))) ∈ E [[B ]] ρ .

Because Σ | Γ ` M11 � M21 : A → B , we have (W , ρ(θ1(M11)), ρ(θ
2(M12))) ∈ E [[A → B ]] ρ. Let W ′ w W ,

and V11 and V21 be values such that (W ′,V11,V21) ∈ V [[A→ B ]] ρ. Then, by Lemma G.16, it suffices to show
that

(W ′,V11 ρ(θ
1(M12)),V21 ρ(θ

2(M22))) ∈ E [[B ]] ρ .

Because

• Σ | Γ ` M12 � M22 : A,

• W ′ ∈ S [[Σ]] by Lemma G.13 with W ∈ S [[Σ]] and W ′ wW , and

• (W ′, θ, ρ) ∈ G [[Γ]] by Lemma G.12 with (W , θ, ρ) ∈ G [[Γ]] and W ′ wW ,

we have (W ′, ρ(θ1(M12)), ρ(θ
2(M22))) ∈ E [[A]] ρ. Let W ′′ w W ′, and V12 and V22 be values such that

(W ′′,V12,V22) ∈ V [[A]] ρ. Then, by Lemma G.16, it suffices to show that

(W ′′,V11 V12,V21 V22) ∈ E [[B ]] ρ .

Because (W ′,V11,V21) ∈ V [[A→ B ]] ρ and W ′′ wW ′ and (W ′′,V12,V22) ∈ V [[A]] ρ, we have the conclusion.

Lemma G.27 (Compatibility: Type Abstractions). If Σ | Γ,X ` M1 � M2 : A, then Σ | Γ ` ΛX .(M1 : A) �
ΛX .(M2 : A) : ∀X .A.

Proof. By (T TyAbs C), Σ | Γ ` ΛX .(M1 : A) : ∀X .A and Σ | Γ ` ΛX .(M2 : A) : ∀X .A.
Let W , θ, ρ such that W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]. Without loss of generality, we can suppose that

X 6∈ dom(ρ). Then, we must show that

(W , ρ(θ1(ΛX .(M1 : A))), ρ(θ2(ΛX .(M2 : A)))) ∈ E [[∀X .A]] ρ .

By Lemma G.14, it suffices to show that

(W , ρ(θ1(ΛX .(M1 : A))), ρ(θ2(ΛX .(M2 : A)))) ∈ V [[∀X .A]] ρ .

This is implied by the following two cases.

• Let W ′, B1, B2, R, M ′
1, M

′
2, and α such that

– W ′ wW ,

– W ′.Σ1 | ∅ ` B1,

– W ′.Σ2 | ∅ ` B2,

– R ∈ RelW ′.n [[B1,B2]],

– W ′.Σ1 ▷ ρ(θ1(ΛX .(M1 : A)))B1 −→ W ′.Σ1, α := B1 ▷ M ′
1〈coerce+α (ρ(A)[X := α])〉, and

– W ′.Σ2 ▷ ρ(θ2(ΛX .(M2 : A)))B2 −→ W ′.Σ2, α := B2 ▷ M ′
2〈coerce+α (ρ(A)[X := α])〉.

Let W ′′ = W ′ ⊞ (α,B1,B2,R). Then, it suffices to show that

(W ′′,M ′
1,M

′
2) ∈ ▶E [[A]] ρ{X 7→ α} .

By (R Tybeta C) and Theorem F.1, M ′
1 = ρ(θ1(M1))[X := α] andM ′

2 = ρ(θ2(M2))[X := α]. Therefore,
it suffices to show that

(W ′′, ρ(θ1(M1))[X := α], ρ(θ2(M2))[X := α]) ∈ ▶E [[A]] ρ{X 7→ α} .

Suppose that 0 < W ′′.n. Then, it suffices to show that

(▶W ′′, ρ(θ1(M1))[X := α], ρ(θ2(M2))[X := α]) ∈ E [[A]] ρ{X 7→ α} .

Because ▶W ′′ wW by Lemmas G.6, G.7 (2), and G.5, we have
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– ▶W ′′ ∈ S [[Σ]] by Lemma G.13 with W ∈ S [[Σ]] and ▶W ′′ wW and

– (▶W ′′, θ, ρ) ∈ G [[Γ]] by Lemma G.12 with (W , θ, ρ) ∈ G [[Γ]] and ▶W ′′ wW .

The last one implies (▶W ′′, θ, ρ{X 7→ α}) ∈ G [[Γ,X ]]. Because Σ | Γ,X ` M1 � M2 : A, we have the
conclusion.

• Let W ′ wW . We show that

(W ′, ρ(θ1(ΛX .(M1 : A))) ⋆, ρ(θ2(ΛX .(M2 : A))) ⋆) ∈ E [[A]] ρ{X 7→ ⋆} .

By (R TybetaDyn C),

– W ′.Σ1 ▷ ρ(θ1(ΛX .(M1 : A))) ⋆ −→ W ′.Σ1 ▷ ρ(θ1(M1))[X := ⋆] and

– W ′.Σ2 ▷ ρ(θ2(ΛX .(M2 : A))) ⋆ −→ W ′.Σ2 ▷ ρ(θ2(M2))[X := ⋆].

Supposing that 1 < W ′.n, we can prove the conclusion by Lemma G.15 with the following.

– ▶W ′ w1 W ′ by Lemma G.7 (2).

– (▶W ′).Σ1 = W ′.Σ1 and (▶W ′).Σ2 = W ′.Σ2 by definition.

– We show that

(▶W ′, ρ(θ1(M1))[X := ⋆], ρ(θ2(M2))[X := ⋆]) ∈ E [[A]] ρ{X 7→ ⋆} .

By Lemma G.5, ▶W ′ wW . Therefore, we have

∗ ▶W ′ ∈ S [[Σ]] by Lemma G.13 with W ∈ S [[Σ]] and ▶W ′ wW , and

∗ (▶W ′, θ, ρ{X 7→ ⋆}) ∈ G [[Γ,X ]] by Lemma G.12 with (W , θ, ρ) ∈ G [[Γ]] and ▶W ′ wW .

Because Σ | Γ,X ` M1 � M2 : A, we have the conclusion.

Lemma G.28 (Loosely Typing Sealing and Unsealing). Assume that α := B ∈ Σ and Σ ` Γ1,X ,Γ2 and
Σ | Γ1,X ,Γ2 ` A and α does not occur in A. Then, the following holds:

• Σ | Γ1,Γ2[X := α] ⊩ coerce+α (A[X := α]) : A[X := α]⇝ A[X := B] and

• Σ | Γ1,Γ2[X := α] ⊩ coerce−α (A[X := α]) : A[X := B]⇝ A[X := α].

Proof. The proof is almost the same as that of Lemma E.17. We proceed by induction on A. Note that
Σ | Γ1,Γ2[X := α] ` A[X := α] and Σ ` Γ1,Γ2[X := α] by Lemma D.5.

Case A = ι: By (Ct0 Id C).

Case A = X : By (Ct0 Reveal C) and (Ct0 Conceal C).

Case A = Y ∧ Y 6= X : By (Ct0 Id C)

Case A = β: Because α does not occur in A, β 6= α. Then, we have the conclusion by (Ct0 Id C).

Case A = ⋆: By (Ct0 Id C).

Case A = C1 → C2: By the IHs and (Ct0 Arrow C).

Case A = ∀X .C : By the IH and (Ct0 All C).

Lemma G.29 (Compatibility: Type Applications). If Σ | Γ ` M1 � M2 : ∀X .B and Σ | Γ ` A, then
Σ | Γ ` M1 A � M2 A : B [X := A].
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Proof. By (T Tyapp C), Σ | Γ ` M1 A : B [X := A] and Σ | Γ ` M2 A : B [X := A].
Let W , θ, ρ such that W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]. Without loss of generality, we can suppose that

X 6∈ dom(ρ). Then, we must show that

(W , ρ(θ1(M1 A)), ρ(θ
2(M2 A))) ∈ E [[B [X := A]]] ρ .

Because Σ | Γ ` M1 � M2 : ∀X .B , we have (W , ρ(θ1(M1)), ρ(θ
2(M2))) ∈ E [[∀X .B ]] ρ. Let W ′ w W , and V1

and V2 be values such that (W ′,V1,V2) ∈ V [[∀X .B ]] ρ. Then, by Lemma G.16, it suffices to show that

(W ′,V1 ρ(A),V2 ρ(A)) ∈ E [[B [X := A]]] ρ .

Because (W , θ, ρ) ∈ G [[Γ]] and Σ | Γ ` A, we have ρ(ρ(A)) = ρ(A). Therefore, by Lemma G.17 (2),

E [[B [X := A]]] ρ = E [[ρ(B)[X := ρ(A)]]] ∅ = E [[ρ(B)[X := ρ(ρ(A))]]] ∅ = E [[B [X := ρ(A)]]] ρ .

Hence, it suffices to show that

(W ′,V1 ρ(A),V2 ρ(A)) ∈ E [[B [X := ρ(A)]]] ρ .

By Lemma E.3, there exist some M ′
1, M

′
2, C1, C2, 〈c1〉, and 〈c2〉 such that

• V1 = (ΛX .(M ′
1 : C1))〈∀X .c1〉 and W ′.Σ1 ` 〈∀X .c1〉 : ∀X .C1 ⇝ ∀X .ρ(B), and

• V2 = (ΛX .(M ′
2 : C2))〈∀X .c2〉 and W ′.Σ2 ` 〈∀X .c2〉 : ∀X .C2 ⇝ ∀X .ρ(B).

By case analysis on ρ(A).

Case ρ(A) = A0: Let α 6∈ dom(W ′.Σ1) ∪ dom(W ′.Σ2). By (R Tybeta C),

• W ′.Σ1 ▷ V1 ρ(A) −→ W ′.Σ1, α := A0 ▷ M ′′
1 〈coerce+α (ρ(B)[X := α])〉 and

• W ′.Σ2 ▷ V2 ρ(A) −→ W ′.Σ2, α := A0 ▷ M ′′
2 〈coerce+α (ρ(B)[X := α])〉

where

• M ′′
1 = M ′

1[X := α]〈c1[X := α]〉 and
• M ′′

2 = M ′
2[X := α]〈c2[X := α]〉.

Suppose that 1 < W ′.n. By Lemma G.15, it suffices to show that there exists some W ′′ such that

• W ′′.Σ1 = W ′.Σ1, α := A0,

• W ′′.Σ2 = W ′.Σ2, α := A0,

• W ′′ w1 W ′, and

• (W ′′,M ′′
1 〈coerce+α (ρ(B)[X := α])〉,M ′′

2 〈coerce+α (ρ(B)[X := α])〉) ∈ E [[B [X := A0]]] ρ.

Let W ′′
0 = W ′ ⊞ (α,A0,A0, bV [[A0]] ∅cW ′.n), and W ′′ = ▶W ′′

0 . Because

• W ′ ∈ World,

• W ′.Σ1 | ∅ ` A0 and W ′.Σ2 | ∅ ` A0 by Lemmas D.2 (1) and D.5 (1), and

• bV [[A0]] ∅cW ′.n ∈ RelW ′.n [[A0,A0]] by Lemma G.10,

we have W ′′
0 w0 W ′ by Lemma G.6. Because W ′′ w1 W ′′

0 by Lemma G.7 (2), we have W ′′ w1 W ′ by
Lemma G.5.

Now, it suffices to show that

(W ′′,M ′′
1 〈coerce+α (ρ(B)[X := α])〉,M ′′

2 〈coerce+α (ρ(B)[X := α])〉) ∈ E [[B [X := A0]]] ρ .

By Lemma G.21, it suffices to show the following.

61



• We show that
coerce+α (ρ(B)[X := α]) = ρ(coerce+α (B [X := α])) .

It suffices to show that, for any Y ∈ dom(ρ), α 6= ρ(Y ). Suppose that there exists some Y ∈ dom(ρ)
such that α = ρ(Y ). Because (W , θ, ρ) ∈ G [[Γ]], we have (W ′, θ, ρ) ∈ G [[Γ]] by Lemma G.12 with
W ′ w W . Then, because Y ∈ dom(ρ) and ρ(Y ) = α, we have α ∈ dom(W ′.κ). Because W ′ ∈
World, it implies α ∈ dom(W ′.Σ1) ∩ dom(W ′.Σ2). However, it is contradictory with the assumption
α 6∈ dom(W ′.Σ1) ∪ dom(W ′.Σ2). Therefore, ∀Y ∈ dom(ρ). α 6= ρ(Y ).

• We show that
Σ, α := A0 | Γ ⊩ coerce+α (B [X := α]) : B [X := α]⇝ B [X := A0] .

Because Σ | Γ ` M1 � M2 : ∀X .B , we have Σ | Γ ` ∀X .B and Σ ` Γ by Lemma E.10. By Lemma D.2,
Σ, α := A0 | Γ ` ∀X .B and Σ, α := A0 ` Γ. By inversion of the first, Σ, α := A0 | Γ,X ` B . By
(Tew Tyvar), Σ, α := A0 ` Γ,X . Therefore, by Lemma G.28, we have the conclusion.

• We show that
W ′′ ∈ S [[Σ, α := A0]] .

Because W ′′ wW by Lemma G.5 with W ′′ wW ′ and W ′ wW , we have W ′′ ∈ S [[Σ]] by Lemma G.13
with W ∈ S [[Σ]]. By Lemma G.2, we have the conclusion.

• We show that
(W ′′, θ, ρ) ∈ G [[Γ]] ,

which is proven by Lemma G.12 with (W , θ, ρ) ∈ G [[Γ]] and W ′′ wW .

• We show that
(W ′′,M ′′

1 ,M
′′
2 ) ∈ E [[B [X := α]]] ρ .

Because W ′′ = ▶W ′′
0 , it suffices to show that

(W ′′
0 ,M

′′
1 ,M

′′
2 ) ∈ ▶E [[B [X := α]]] ρ .

Because

– (W ′,V1,V2) ∈ V [[∀X .B ]] ρ,

– W ′ wW ′ by Lemma G.5,

– W ′.Σ1 | ∅ ` A0 and W ′.Σ2 | ∅ ` A0,

– bV [[A0]] ∅cW ′.n ∈ RelW ′.n [[A0,A0]],

we have
(W ′′

0 ,M
′′
1 ,M

′′
2 ) ∈ ▶E [[B ]] ρ{X 7→ α} .

By Lemma G.17 (2), we have the conclusion.

Case ρ(A) = ⋆: By Lemma G.17 (2), it suffices to show that

(W ′,V1 ⋆,V2 ⋆) ∈ E [[B ]] ρ{X 7→ ⋆} ,

which is implied by (W ′,V1,V2) ∈ V [[∀X .B ]] ρ and W ′ wW ′ obtained by Lemma G.5.

Lemma G.30 (Compatibility: Blame). If ` Σ and Σ ` Γ and Σ | Γ ` A, then Σ | Γ ` blame p � blame p : A.

Proof. By (T Blame C), Σ | Γ ` blame p : A.
Let W , θ, ρ such that W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[Γ]]. Then, we must show that

(W , blame p, blame p) ∈ E [[A]] ρ ,

which holds by definition.

[TS: Is the title of the next theorem right?] ←−
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Theorem G.31 (Fundamental Property (Theorem 3.3 of the paper)). If Σ | Γ ` M : A, then Σ | Γ ` M ≈
M : A.

Proof. It suffices to show that Σ | Γ ` M � M : A, which is proven by induction on the typing derivation with
the compatibility lemmas (Lemmas G.23, G.24, G.25, G.26, G.27, G.29, G.30, and G.22).

Lemma G.32 (Congruence of the Logical Relation). If Σ `C CC : (Γ1 ` A1)⇒ (Γ2 ` A2) and Σ | Γ1 ` M1 ≈
M2 : A1, then Σ | Γ2 ` CC [M1] ≈ CC [M2] : A2.

Proof. By induction on the derivation of Σ `C CC : (Γ1 ` A1)⇒ (Γ2 ` A2).

Case (Ctxt Hole C): Obvious.

Case (Ctxt Abs C): We are given

CC = λx :A21.C′C , A2 = A21 → A22, Σ `C C′C : (Γ1 ` A1)⇒ (Γ2, x : A21 ` A22) (∃x ,A21,A22, C′C) .

By the IH, Σ | Γ2, x : A21 ` C′C [M1] ≈ C′C [M2] : A22. By Lemma G.25, Σ | Γ2 ` λx :A21.C′C [M1] ≈
λx :A21.C′C [M2] : A21 → A22, which is what we have to prove.

Case (Ctxt App1 C): We are given

CC = C′C M , Σ `C C′C : (Γ1 ` A1)⇒ (Γ2 ` B → A2), Σ | Γ2 ` M : B (∃C′C ,M ,B) .

By the IH, Σ | Γ2 ` C′C [M1] ≈ C′C [M2] : B → A2. By Theorem G.31, Σ | Γ2 ` M ≈ M : B . By Lemma G.26,
Σ | Γ2 ` C′C [M1]M ≈ C′C [M2]M : A2, which is what we have to prove.

Case (Ctxt App2 C): We are given

CC = M C′C , Σ | Γ2 ` M : B → A2, Σ `C C′C : (Γ1 ` A1)⇒ (Γ2 ` B) (∃C′C ,M ,B) .

By the IH, Σ | Γ2 ` C′C [M1] ≈ C′C [M2] : B . By Theorem G.31, Σ | Γ2 ` M ≈ M : B → A2. By Lemma G.26,
Σ | Γ2 ` M C′C [M1] ≈ M C′C [M2] : A2, which is what we have to prove.

Case (Ctxt Tyabs C): We are given

CC = ΛX .(C′C : A′
2), Σ `C C′C : (Γ1 ` A1)⇒ (Γ2,X ` A′

2), A2 = ∀X .A′
2 (∃X , C′C ,A′

2) .

By the IH, Σ | Γ2,X ` C′C [M1] ≈ C′C [M2] : A′
2. By Lemma G.27, Σ | Γ2 ` ΛX .(C′C [M1] : A

′
2) ≈

ΛX .(C′C [M2] : A
′
2) : ∀X .A′

2, which is what we have to prove.

Case (Ctxt Tyapp C): We are given

CC = C′C B , Σ `C C′C : (Γ1 ` A1)⇒ (Γ2 ` ∀X .C ), Σ | Γ2 ` B , A2 = C [X := B ] (∃C′C ,X ,B ,C ) .

By the IH, Σ | Γ2 ` C′C [M1] ≈ C′C [M2] : ∀X .C . By Lemma G.29, Σ | Γ2 ` C′C [M1]B ≈ C′C [M2]B : C [X := B ],
which is what we have to prove.

Case (Ctxt Crc C): We are given

CC = C′C 〈c〉, Σ `C C′C : (Γ1 ` A1)⇒ (Γ2 ` B), Σ | Γ2 ` c : B ⇝ A2 (∃C′C , c,B) .

By the IH, Σ | Γ2 ` C′C [M1] ≈ C′C [M2] : B . By Lemma G.22, Σ | Γ2 ` C′C [M1]〈c〉 ≈ C′C [M2]〈c〉 : A2, which is
what we have to prove.

Lemma G.33 (Adequacy of the Logical Relation). Assume that Σ | ∅ ` M1 ≈ M2 : A.

1. Σ ▷ M1 −→ Σ1 ▷ V1 if and only if Σ ▷ M2 −→ Σ2 ▷ V2.

2. Σ ▷ M1 −→ Σ1 ▷ blame p if and only if Σ ▷ M2 −→ Σ2 ▷ blame p.
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3. Σ ▷ M1 ⇑ if and only if Σ ▷ M2 ⇑.

Proof. Let W be a tuple (0,Σ,Σ, {α ∈ dom(Σ) 7→ bV [[Σ(α)]] ∅c0}). We first show that W ∈ World1 ⊆World.
Because 0 < 1 and ` Σ by Lemma E.10, it suffices to show that, for any α ∈ dom(Σ), bV [[Σ(α)]] ∅c0 ∈
Rel0 [[Σ(α),Σ(α)]]. By definition, bV [[Σ(α)]] ∅c0 = ∅ ∈ Rel0 [[Σ(α),Σ(α)]]. Therefore, W ∈ World.

Then, we have W ∈ S [[Σ]] and (W , ∅, ∅) ∈ G [[∅]] by definition. Because Σ | ∅ ` M1 ≈ M2 : A, we have
(W ,M1,M2) ∈ E [[A]] ∅ and (W ,M2,M1) ∈ E [[A]] ∅. By them, Theorem F.1, and Theorem E.21, we have the
conclusion.

[TS: Is the title of the next theorem right?] ←−

Theorem G.34 (Soundness w.r.t. Contextual Equivalence (Theorem 3.4 of the paper)). If Σ | Γ ` M1 ≈ M2 : A,

then Σ | Γ ` M1
ctx
= M2 : A.

Proof. By Lemmas G.32 and G.33 and Theorem E.21.

Definition G.2 (Identity Coercion Generation). Given a type A, we define coercion coerce(A) as follows:

coerce(ι)
def
= idι

coerce(⋆)
def
= id⋆

coerce(A→ B)
def
= coerce(A)→ coerce(B)

coerce(∀X .A)
def
= ∀X .coerce(A)

coerce(X )
def
= idX

coerce(α)
def
= idα .

Lemma G.35 (Identity Coercion Generation).

• If α does not occur in type A, then coerce±α (A) = coerce(A).

• For any V and A, there exist some n and V ′ such that Σ ▷ V 〈coerce(A)〉 −→n Σ ▷ V ′ for any Σ.

• If ` Σ and Σ ` Γ and Σ | Γ ` A, then Σ | Γ ` coerce(A) : A⇝ A.

Proof.

• By induction on A.

• By case analysis on A.

• By induction on A.

Lemma G.36 (Commutativity of Coercion Generation with Type Name Substitution).

• For any A, X , and α, coerce(A)[X := α] = coerce(A[X := α]).

• For any A and X , coerce(A)[X := ⋆] = coerce(A[X := ⋆]).

Proof. Straightforward by induction on A.

Lemma G.37 (Identity Coercion Produces Logically Related Values). Assume that (W ,V1,V2) ∈ V [[A]] ρ.

1. If W .Σ1 ▷ V1〈coerce(ρ(A))〉 −→∗ W .Σ1 ▷ V ′
1, then (W ,V ′

1,V2) ∈ V [[A]] ρ.

2. If W .Σ2 ▷ V2〈coerce(ρ(A))〉 −→∗ W .Σ2 ▷ V ′
2, then (W ,V1,V

′
2) ∈ V [[A]] ρ.

Proof. By induction on the size of A. Let (W ,V1,V2) ∈ V [[A]] ρ.

1. Let V ′
1 be a value such that W .Σ1 ▷ V1〈coerce(ρ(A))〉 −→∗ W .Σ1 ▷ V ′

1. By case analysis on A.
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Case A = ι (∃ι), ⋆, α (∃α), or X (∃X ): Obvious by the assumption because V1 = V ′
1.

Case ∃A1,A2. A = A1 → A2: We have V ′
1 = V1〈coerce(ρ(A1))→ coerce(ρ(A2))〉 and n = 0. We have to

show that
(W ,V1〈coerce(ρ(A1))→ coerce(ρ(A2))〉,V2) ∈ V [[A1 → A2]] ρ .

Let W ′ wW and V ′
01 and V ′

02 be values such that (W ′,V ′
01,V

′
02) ∈ V [[A1]] ρ. It suffices to show that

(W ′,V1〈coerce(ρ(A1))→ coerce(ρ(A2))〉V ′
01,V2 V

′
02) ∈ E [[A2]] ρ .

By (R Wrap C),

W ′.Σ1 ▷ V1〈coerce(ρ(A1))→ coerce(ρ(A2))〉V ′
01 −→ W ′.Σ1 ▷ (V1 (V

′
01〈coerce(ρ(A1))〉))〈coerce(ρ(A2))〉 .

By Lemma G.35, W ′.Σ1 ▷ V ′
01〈coerce(ρ(A1))〉 −→n W ′.Σ1 ▷ V ′′

1 for some n and V ′′
1 . Therefore, by

(R Ctx C),

W ′.Σ1 ▷ V1〈coerce(ρ(A1))→ coerce(ρ(A2))〉V ′
01 −→n+1 W ′.Σ1 ▷ (V1 V

′′
1 )〈coerce(ρ(A2))〉 .

Assume that n + 1 < W ′.n. Let W ′′ = (W ′.n− (n + 1),W ′.Σ1,W
′.Σ2, bW ′.κcW ′.n−(n+1)). We have

W ′′ wn+1 W ′ by Lemma G.7 (2). Therefore, by Lemma G.15, it suffices to show that

(W ′′, (V1 V
′′
1 )〈coerce(ρ(A2))〉,V2 V

′
02) ∈ E [[A2]] ρ .

Because (W ′,V ′
01,V

′
02) ∈ V [[A1]] ρ, we have (W ′,V ′′

1 ,V
′
02) ∈ V [[A1]] ρ by the IH. By Lemma G.10

with W ′′ w W ′, we have (W ′′,V ′′
1 ,V

′
02). By Lemma G.5 with W ′′ w W ′ and W ′ w W , we have

W ′′ wW . Therefore, by (W ,V1,V2) ∈ V [[A1 → A2]] ρ, we have (W
′′,V1 V

′′
1 ,V2 V

′
02) ∈ E [[A2]] ρ. Let

W ′′′ w W ′′, and V ′′′
1 and V ′′′

2 be values such that (W ′′′,V ′′′
1 ,V ′′′

2 ) ∈ V [[A2]] ρ. By Lemma G.16, it
suffices to show that

(W ′′′,V ′′′
1 〈coerce(ρ(A2))〉,V ′′′

2 ) ∈ E [[A2]] ρ .

By Lemma G.35, W ′′′.Σ1 ▷ V ′′′
1 〈coerce(ρ(A2))〉 −→m W ′′′.Σ1 ▷ V ′′′′

1 for some m and V ′′′′
1 . Let

W ′′′′ = (W ′′′.n − m,W ′′′.Σ1,W
′′′.Σ2, bW ′′′.κcW ′′′.n−m). By Lemma G.15 and the definition of the

term relation, assume that W ′′′.n > m and then it suffices to show that

(W ′′′′,V ′′′′
1 ,V ′′′

2 ) ∈ V [[A2]] ρ .

Note thatW ′′′′ wm W ′′′ andW ′′′′ w0 W ′′′′ by Lemma G.7 (2) and Lemma G.5. Because (W ′′′,V ′′′
1 ,V ′′′

2 ) ∈
V [[A2]] ρ and W ′′′.Σ1 ▷ V ′′′

1 〈coerce(ρ(A2))〉 −→m W ′′′.Σ1 ▷ V ′′′′
1 , we have (W ′′′,V ′′′′

1 ,V ′′′
2 ) ∈ V [[A2]] ρ

by the IH. Because W ′′′′ wW ′′′, we have the conclusion by Lemma G.10.

Case ∃X ,A′. A = ∀X .A′: Without loss of generality, we can assume that X 6∈ dom(ρ). We have V ′
1 =

V1〈∀X .coerce(A′)〉 and n = 0. We have to show that

(W ,V1〈∀X .coerce(ρ(A′))〉,V2) ∈ V [[∀X .A′]] ρ .

By Lemma E.3,

• V1 = (ΛX .(M1 : C1))〈∀X .c1〉 and Σ ` 〈∀X .c1〉 : ∀X .C1 ⇝ ∀X .A′, and

• V2 = (ΛX .(M2 : C2))〈∀X .c2〉 and Σ ` 〈∀X .c2〉 : ∀X .C2 ⇝ ∀X .A′

for some M1, M2, C1, C2, 〈c1〉, and 〈c2〉. We have the conclusion by the definition of the value relation
with the following.

• Let W ′, B1, B2, R, M ′
1, M

′
2, and α such that

– W ′ wW ,

– W ′.Σ1 | ∅ ` B1,

– W ′.Σ2 | ∅ ` B2,

– R ∈ RelW ′.n [[B1,B2]],

– W ′.Σ1 ▷ V1〈∀X .coerce(ρ(A′))〉B1 −→ W ′.Σ1, α := B1 ▷ M ′
1〈coerce+α (ρ(A′)[X := α])〉, and

– W ′.Σ2 ▷ V2 B2 −→ W ′.Σ2, α := B2 ▷ M ′
2〈coerce+α (ρ(A′)[X := α])〉.
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Then, we show that

(W ′ ⊞ (α,B1,B2,R),M ′
1,M

′
2) ∈ ▶E [[A′]] ρ{X 7→ α} .

By (R Tybeta C), Theorem F.1, and Lemma G.36, M ′
1 = (M1〈c1〉)[X := α]〈coerce(ρ{X 7→

α}(A′))〉 and M ′
2 = (M2〈c2〉)[X := α]. Assume that W ′.n > 0. Then, it suffices to show that

(▶(W ′ ⊞ (α,B1,B2,R)),M ′
1,M

′
2) ∈ E [[A′]] ρ{X 7→ α} .

Because

– (W ,V1,V2) ∈ V [[∀X .A′]] ρ,

– W ′.Σ1 ▷ V1 B1 −→ W ′.Σ1, α := B1 ▷ (M1〈c1〉)[X := α]〈coerce+α (ρ(A′)[X := α])〉 by (R Tybeta C),
and

– W ′.Σ2 ▷ V2 B2 −→ W ′.Σ2, α := B2 ▷ (M2〈c2〉)[X := α]〈coerce+α (ρ(A′)[X := α])〉 by (R Tybeta C),

we have

(W ′ ⊞ (α,B1,B2,R), (M1〈c1〉)[X := α], (M2〈c2〉)[X := α]) ∈ ▶E [[A′]] ρ{X 7→ α} ,

which implies

(▶(W ′ ⊞ (α,B1,B2,R)), (M1〈c1〉)[X := α], (M2〈c2〉)[X := α]) ∈ E [[A′]] ρ{X 7→ α} .

LetW ′′ w ▶(W ′⊞(α,B1,B2,R)), and V ′′
1 and V ′′

2 be values such that (W ′′,V ′′
1 ,V

′′
2 ) ∈ V [[A′]] ρ{X 7→

α}. Then, by Lemma G.16, it suffices to show that

(W ′′,V ′′
1 〈coerce(ρ{X 7→ α}(A′))〉,V ′′

2 ) ∈ E [[A′]] ρ{X 7→ α} .

By Lemma G.35, W ′′.Σ1 ▷ V ′′
1 〈coerce(ρ{X 7→ α}(A′))〉 −→n W ′′.Σ1 ▷ V ′′′

1 for some n and
V ′′′

1 . Assume that W ′′.n > n, and let W ′′′ = (W ′′.n − n,W ′′.Σ1,W
′′.Σ2, bW ′′.κcW ′′.n−n). By

Lemmas G.7 (2) and G.5, W ′′′ wn W ′′ and W ′′′ w0 W ′′′. Then, by Lemma G.15 and the definition
of the term relation, it suffices to show that

(W ′′′,V ′′′
1 ,V ′′

2 ) ∈ V [[A′]] ρ{X 7→ α} .

Because (W ′′,V ′′
1 ,V

′′
2 ) ∈ V [[A′]] ρ{X 7→ α}, we have the conclusion by the IH and Lemma G.10.

• Let W ′ wW . We show that

(W ′,V1〈∀X .coerce(ρ(A′))〉 ⋆,V2 ⋆) ∈ E [[A′]] ρ{X 7→ ⋆} .

By (R TybetaDyn C) and Lemma G.36,

– W ′.Σ1 ▷ V1〈∀X .coerce(ρ(A′))〉 ⋆ −→ W ′.Σ1 ▷ (M1〈c1〉)[X := ⋆]〈coerce(ρ(A′[X := ⋆]))〉 and
– W ′.Σ2 ▷ V2 ⋆ −→ W ′.Σ2 ▷ (M2〈c2〉)[X := ⋆].

Assume W ′.n > 1 (thus, ▶W ′ is well defined, and ▶W ′ w1 W ′ by Lemma G.7 (2)). By
Lemma G.15, it suffices to show that

(▶W ′, (M1〈c1〉)[X := ⋆]〈coerce(ρ(A′[X := ⋆]))〉, (M2〈c2〉)[X := ⋆]) ∈ E [[A′]] ρ{X 7→ ⋆} .

Because (W ,V1,V2) ∈ V [[∀X .A′]] ρ and W ′ w W , we have (W ′,V1 ⋆,V2 ⋆) ∈ E [[A′]] ρ{X 7→
⋆}. Because W ′.Σ1 ▷ V1 ⋆ −→ W ′.Σ1 ▷ (M1〈c1〉)[X := ⋆] by (R TybetaDyn C), we have
(▶W ′, (M1〈c1〉)[X := ⋆], (M2〈c2〉)[X := ⋆]) ∈ E [[A′]] ρ{X 7→ ⋆} by Lemma G.20. LetW ′′ w ▶W ′,
and V ′′

1 and V ′′
2 be values such that (W ′′,V ′′

1 ,V
′′
2 ) ∈ V [[A′]] ρ{X 7→ ⋆}. By Lemma G.16, it

suffices to show that

(W ′′,V ′′
1 〈coerce(ρ(A′[X := ⋆]))〉,V ′′

2 ) ∈ E [[A′]] ρ{X 7→ ⋆} .

By Lemma G.35, W ′′.Σ1 ▷ V ′′
1 〈coerce(ρ(A′[X := ⋆]))〉 −→n W ′′.Σ1 ▷ V ′′′

1 for some n and
V ′′′

1 . Assume that W ′′.n > n, and let W ′′′ = (W ′′.n − n,W ′′.Σ1,W
′′.Σ2, bW ′′.κcW ′′.n−n). By

Lemmas G.7 (2) and G.5, W ′′′ wn W ′′ and W ′′′ w0 W ′′′. Then, by Lemma G.15 and the definition
of the term relation, it suffices to show that

(W ′′′,V ′′′
1 ,V ′′

2 ) ∈ V [[A′]] ρ{X 7→ ⋆} .

Because (W ′′,V ′′
1 ,V

′′
2 ) ∈ V [[A′]] ρ{X 7→ ⋆}, we have the conclusion by the IH and Lemma G.10.
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2. Let V ′
2 be a value such that W .Σ2 ▷ V2〈coerce(ρ(A))〉 −→∗ W .Σ2 ▷ V ′

2. By case analysis on A.

Case A = ι (∃ι), ⋆, α (∃α), or X (∃X ): Obvious by the assumption because V2 = V ′
2.

Case ∃A1,A2. A = A1 → A2: We have V ′
2 = V2〈coerce(ρ(A1))→ coerce(ρ(A2))〉. We have to show that

(W ,V1,V2〈coerce(ρ(A1))→ coerce(ρ(A2))〉) ∈ V [[A1 → A2]] ρ .

Let W ′ wW and V ′
01 and V ′

02 be values such that (W ′,V ′
01,V

′
02) ∈ V [[A1]] ρ. It suffices to show that

(W ′,V1 V
′
01,V2〈coerce(ρ(A1))→ coerce(ρ(A2))〉V ′

02) ∈ E [[A2]] ρ .

By (R Wrap C),

W ′.Σ2 ▷ V2〈coerce(ρ(A1))→ coerce(ρ(A2))〉V ′
02 −→ W ′.Σ2 ▷ (V2 (V

′
02〈coerce(ρ(A1))〉))〈coerce(ρ(A2))〉 .

By Lemma G.35, W ′.Σ2 ▷ V ′
02〈coerce(ρ(A1))〉 −→∗ W ′.Σ2 ▷ V ′′

2 for some V ′′
2 . Therefore, by

(R Ctx C),

W ′.Σ2 ▷ V2〈coerce(ρ(A1))→ coerce(ρ(A2))〉V ′
02 −→∗ W ′.Σ2 ▷ (V2 V

′′
2 )〈coerce(ρ(A2))〉 .

Assume that 0 < W ′.n. We have W ′ w0 W ′ by Lemma G.5. Therefore, by Lemma G.15, it suffices to
show that

(W ′,V1 V
′
01, (V1 V

′′
2 )〈coerce(ρ(A2))〉) ∈ E [[A2]] ρ .

Because (W ′,V ′
01,V

′
02) ∈ V [[A1]] ρ, we have (W ′,V ′

01,V
′′
2 ) ∈ V [[A1]] ρ by the IH. By (W ,V1,V2) ∈

V [[A1 → A2]] ρ, we have (W ′,V1 V
′
01,V2 V

′′
2 ) ∈ E [[A2]] ρ. Let W ′′′ w W ′, and V ′′′

1 and V ′′′
2 be values

such that (W ′′′,V ′′′
1 ,V ′′′

2 ) ∈ V [[A2]] ρ. By Lemma G.16, it suffices to show that

(W ′′′,V ′′′
1 ,V ′′′

2 〈coerce(ρ(A2))〉) ∈ E [[A2]] ρ .

By Lemma G.35, W ′′′.Σ2 ▷ V ′′′
2 〈coerce(ρ(A2))〉 −→∗ W ′′′.Σ2 ▷ V ′′′′

2 for some V ′′′′
2 . By Lemma G.5,

W ′′′ w0 W ′′′. Therefore, by Lemma G.15 and the definition of the term relation, assume thatW ′′′.n > 0
and then it suffices to show that

(W ′′′,V ′′′
1 ,V ′′′′

2 ) ∈ V [[A2]] ρ .

Because (W ′′′,V ′′′
1 ,V ′′′

2 ) ∈ V [[A2]] ρ and W ′′′.Σ2 ▷ V ′′′
2 〈coerce(ρ(A2))〉 −→∗ W ′′′.Σ2 ▷ V ′′′′

2 , we have
the conclusion by the IH.

Case ∃X ,A′. A = ∀X .A′: Without loss of generality, we can assume that X 6∈ dom(ρ). We have V ′
2 =

V2〈∀X .coerce(A′)〉. We have to show that

(W ,V1,V2〈∀X .coerce(ρ(A′))〉) ∈ V [[∀X .A′]] ρ .

By Lemma E.3,

• V1 = (ΛX .(M1 : C1))〈∀X .c1〉 and Σ ` 〈∀X .c1〉 : ∀X .C1 ⇝ ∀X .A′, and

• V2 = (ΛX .(M2 : C2))〈∀X .c2〉 and Σ ` 〈∀X .c2〉 : ∀X .C2 ⇝ ∀X .A′

for some M1, M2, C1, C2, 〈c1〉, and 〈c2〉. We have the conclusion by the definition of the value relation
with the following.

• Let W ′, B1, B2, R, M ′
1, M

′
2, and α such that

– W ′ wW ,

– W ′.Σ1 | ∅ ` B1,

– W ′.Σ2 | ∅ ` B2,

– R ∈ RelW ′.n [[B1,B2]],

– W ′.Σ1 ▷ V1 B1 −→ W ′.Σ1, α := B1 ▷ M ′
1〈coerce+α (ρ(A′)[X := α])〉, and

– W ′.Σ2 ▷ V2〈∀X .coerce(ρ(A′))〉B2 −→ W ′.Σ2, α := B2 ▷ M ′
2〈coerce+α (ρ(A′)[X := α])〉.
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Then, we show that

(W ′ ⊞ (α,B1,B2,R),M ′
1,M

′
2) ∈ ▶E [[A′]] ρ{X 7→ α} .

By (R Tybeta C), Theorem F.1, and Lemma G.36,M ′
1 = (M1〈c1〉)[X := α] andM ′

2 = (M2〈c2〉)[X :=
α]〈coerce(ρ{X 7→ α}(A′))〉. Assume that W ′.n > 0. Then, it suffices to show that

(▶(W ′ ⊞ (α,B1,B2,R)),M ′
1,M

′
2) ∈ E [[A′]] ρ{X 7→ α} .

Because

– (W ,V1,V2) ∈ V [[∀X .A′]] ρ,

– W ′.Σ1 ▷ V1 B1 −→ W ′.Σ1, α := B1 ▷ (M1〈c1〉)[X := α]〈coerce+α (ρ(A′)[X := α])〉 by (R Tybeta C),
and

– W ′.Σ2 ▷ V2 B2 −→ W ′.Σ2, α := B2 ▷ (M2〈c2〉)[X := α]〈coerce+α (ρ(A′)[X := α])〉 by (R Tybeta C),

we have

(W ′ ⊞ (α,B1,B2,R), (M1〈c1〉)[X := α], (M2〈c2〉)[X := α]) ∈ ▶E [[A′]] ρ{X 7→ α} ,

which implies

(▶(W ′ ⊞ (α,B1,B2,R)), (M1〈c1〉)[X := α], (M2〈c2〉)[X := α]) ∈ E [[A′]] ρ{X 7→ α} .

LetW ′′ w ▶(W ′⊞(α,B1,B2,R)), and V ′′
1 and V ′′

2 be values such that (W ′′,V ′′
1 ,V

′′
2 ) ∈ V [[A′]] ρ{X 7→

α}. Then, by Lemma G.16, it suffices to show that

(W ′′,V ′′
1 ,V

′′
2 〈coerce(ρ{X 7→ α}(A′))〉) ∈ E [[A′]] ρ{X 7→ α} .

By Lemma G.35, W ′′.Σ2 ▷ V ′′
2 〈coerce(ρ{X 7→ α}(A′))〉 −→∗ W ′′.Σ2 ▷ V ′′′

2 for some V ′′′
2 . Assume

that W ′′.n > 0. By Lemma G.5, W ′′ w0 W ′′. Then, by the definition of the term relation, it
suffices to show that

(W ′′,V ′′
1 ,V

′′′
2 ) ∈ V [[A′]] ρ{X 7→ α} .

Because (W ′′,V ′′
1 ,V

′′
2 ) ∈ V [[A′]] ρ{X 7→ α}, we have the conclusion by the IH.

• Let W ′ wW . We show that

(W ′,V1 ⋆,V2〈∀X .coerce(ρ(A′))〉 ⋆) ∈ E [[A′]] ρ{X 7→ ⋆} .

By (R TybetaDyn C) and Lemma G.36,

– W ′.Σ1 ▷ V1 ⋆ −→ W ′.Σ1 ▷ (M1〈c1〉)[X := ⋆] and

– W ′.Σ2 ▷ V2〈∀X .coerce(ρ(A′))〉 ⋆ −→ W ′.Σ2 ▷ (M2〈c2〉)[X := ⋆]〈coerce(ρ(A′[X := ⋆]))〉.
Assume W ′.n > 1 (thus, ▶W ′ is well defined, and ▶W ′ w1 W ′ by Lemma G.7 (2)). By
Lemma G.15, it suffices to show that

(▶W ′, (M1〈c1〉)[X := ⋆], (M2〈c2〉)[X := ⋆]〈coerce(ρ(A′[X := ⋆]))〉) ∈ E [[A′]] ρ{X 7→ ⋆} .

Because (W ,V1,V2) ∈ V [[∀X .A′]] ρ and W ′ w W , we have (W ′,V1 ⋆,V2 ⋆) ∈ E [[A′]] ρ{X 7→
⋆}. Because W ′.Σ2 ▷ V2 ⋆ −→ W ′.Σ2 ▷ (M2〈c2〉)[X := ⋆] by (R TybetaDyn C), we have
(▶W ′, (M1〈c1〉)[X := ⋆], (M2〈c2〉)[X := ⋆]) ∈ E [[A′]] ρ{X 7→ ⋆} by Lemma G.20. LetW ′′ w ▶W ′,
and V ′′

1 and V ′′
2 be values such that (W ′′,V ′′

1 ,V
′′
2 ) ∈ V [[A′]] ρ{X 7→ ⋆}. By Lemma G.16, it

suffices to show that

(W ′′,V ′′
1 ,V

′′
2 〈coerce(ρ(A′[X := ⋆]))〉) ∈ E [[A′]] ρ{X 7→ ⋆} .

By Lemma G.35, W ′′.Σ2 ▷ V ′′
2 〈coerce(ρ(A′[X := ⋆]))〉 −→∗ W ′′.Σ2 ▷ V ′′′

2 for some V ′′′
2 . Assume

that W ′′.n > 0. By Lemma G.5, W ′′ w0 W ′′. Then, by the definition of the term relation, it
suffices to show that

(W ′′,V ′′
1 ,V

′′′
2 ) ∈ V [[A′]] ρ{X 7→ ⋆} .

Because (W ′′,V ′′
1 ,V

′′
2 ) ∈ V [[A′]] ρ{X 7→ ⋆}, we have the conclusion by the IH.
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Lemma G.38 (Identity Coercion Produces Contextually Equivalent Values). If Σ | ∅ ` V : A and Σ ▷

V 〈coerce(A)〉 −→∗ Σ ▷ V ′, then Σ | ∅ ` V
ctx
= V ′ : A.

Proof. By Theorem G.34, it suffices to show that Σ | ∅ ` V ≈ V ′ : A. Note that Σ | ∅ ` V ′ : A by
Lemmas E.10 and G.35 and Theorems E.21 and F.1. Let W ∈ S [[Σ]] and (W , θ, ρ) ∈ G [[∅]]. By definition,
ρ = ∅ and θ = ∅. Therefore, by the definition of the term relation, assume that W .n > 0 and then it
suffices to show that (W ,V ,V ′) ∈ V [[A]] ∅ and (W ,V ′,V ) ∈ V [[A]] ∅. Note that W w0 W by Lemma G.5.
By Theorem G.31, Σ | ∅ ` V ≈ V : A. Therefore, (W ,V ,V ) ∈ V [[A]] ∅. By Lemma G.37, we have the
conclusion.

Lemma G.39 (Subterm Evaluation of Terminating Term). If Σ ▷ F [M ] −→n Σ′ ▷ V , then Σ ▷ M −→m

Σ′′ ▷ V ′′ and Σ′′ ▷ F [V ′′] −→n−m Σ′ ▷ V for some m, Σ′′, and V ′′.

Proof. Straightforward by induction on n with Lemma G.1 and Theorem F.1.

Theorem G.40 (Free Theorem: K-Combinator). If Σ | ∅ ` V : ∀X .∀Y .X → Y → X and Σ | ∅ ` V1 : A and
Σ | ∅ ` V2 : B, then one of the following holds:

• Σ ▷ V ABV1 V2 −→∗ Σ′ ▷ V ′
1 and Σ′ | ∅ ` V ′

1
ctx
= V1 : A for some Σ′ and V ′

1;

• Σ ▷ V ABV1 V2 −→∗ Σ′ ▷ blame p for some Σ′ and p; or

• Σ ▷ V ABV1 V2 ⇑.

Proof. By Lemma E.10, Σ | ∅ ` A and Σ | ∅ ` B. Therefore, Σ | ∅ ` V ABV1 V2 : A. By Theorem E.21, it
suffices to consider the case that

Σ ▷ V ABV1 V2 −→n Σ′ ▷ V ′
1 (4)

for some n, Σ′, and V ′
1. Then, we have to show that

Σ′ | ∅ ` V ′
1

ctx
= V1 : A .

By Theorem G.31, Σ | ∅ ` V ≈ V : ∀X .∀Y .X → Y → X .
Let W0 = (n + 1,Σ,Σ, {α ∈ dom(Σ) 7→ bV [[Σ(α)]] ∅cn+1}). We first show that W0 ∈ Worldn+2 ⊆ World.

We have n+ 1 < n+ 2 and ` Σ by Lemma E.10. Let α ∈ dom(Σ). It suffices to show that bV [[Σ(α)]] ∅cn+1 ∈
Reln+1 [[Σ(α),Σ(α)]], which is proven by the following.

• We show that bV [[Σ(α)]] ∅cn+1 ⊆ Atomval
n+1 [[Σ(α),Σ(α)]]. By definition,

bV [[Σ(α)]] ∅cn+1 ⊆ V [[Σ(α)]] ∅ ⊆ Atomval [[Σ(α)]] ∅ =
∪
m≥0

Atomval
m [[Σ(α),Σ(α)]] ⊆

∪
m≥0

Atomm [[Σ(α),Σ(α)]] .

Therefore, for any (W ,M1,M2) ∈ bV [[Σ(α)]] ∅cn+1, we have W ∈ Worldm and W .Σ1 | ∅ ` M1 : Σ(α)
and W .Σ2 | ∅ ` M2 : Σ(α) for some m. Also, M1 and M2 are values and W .n < n + 1, which implies
W ∈ Worldn+1. Therefore, we have the conclusion.

• We show the monotonicity of bV [[Σ(α)]] ∅cn+1. Let (W1,V
′′
1 ,V

′′
2 ) ∈ bV [[Σ(α)]] ∅cn+1 and W2 w W1.

Then, we show that (W2,V
′′
1 ,V

′′
2 ) ∈ bV [[Σ(α)]] ∅cn+1. By definition, (W1,V

′′
1 ,V

′′
2 ) ∈ V [[Σ(α)]] ∅ and

W1.n < n + 1. By Lemma G.10, (W2,V
′′
1 ,V

′′
2 ) ∈ V [[Σ(α)]] ∅. Because W2 w W1, we have W2.n ≤

W1.n < n+ 1. Therefore, we have the conclusion.

BecauseW0 ∈ S [[Σ]] and (W0, ∅, ∅) ∈ G [[∅]] by definition, we have (W0,V ,V ) ∈ E [[∀X .∀Y .X → Y → X ]] ∅,
which implies (W ′

0,V ,V ) ∈ V [[∀X .∀Y .X → Y → X ]] ∅ for some W ′
0 such that W ′

0 w0 W0 and W ′
0.Σ1 =

W ′
0.Σ2 = Σ. Let V01 be a value and j be a natural number such that, for any Σ0, Σ0 ▷ V1〈coerce(A)〉 −→j Σ0 ▷

V01 (by Lemma G.35, there exist such V01 and j). Let R1 = {(W ,V01,V01) | W wW ′
0 ∧ W .n < W ′

0.n− 1}.
Then, we have the following.

• W ′
0 wW ′

0 by Lemma G.5.
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• W ′
0.Σ1 | ∅ ` A and W ′

0.Σ2 | ∅ ` A by Lemma E.10.

• R1 ∈ RelW ′
0.n

[[A,A]] by the following:

– We show that R1 ⊆ Atomval
W ′

0.n
[[A,A]]. Let (W ′,V ′′

1 ,V
′′
2 ) ∈ R1. Then, W ′ w W ′

0 and W ′.n <

W ′
0.n − 1 and V ′′

1 = V ′′
2 = V01. By W ′ w W ′

0, we have W ′ ∈ World and W ′.Σ1 ⊇ Σ and
W ′.Σ2 ⊇ Σ. Because W ′.n < W ′

0.n − 1, we have W ′ ∈ WorldW ′
0.n

. Because Σ | ∅ ` V1 : A, we
have Σ | ∅ ` V01 : A by Lemmas E.10 and G.35 and Theorems E.21 and F.1. Because `W ′.Σ1 and
` W ′.Σ2 by W ′ ∈ World, we have W ′.Σ1 | ∅ ` V01 : A and W ′.Σ2 | ∅ ` V01 : A by Lemma E.8.
Therefore, we have the conclusion.

– We show the monotonicity of R1. Let (W
′
1,V

′′
1 ,V

′′
2 ) ∈ R1 andW ′

2 wW ′
1. We show that (W ′

2,V
′′
1 ,V

′′
2 ) ∈

R1. By the definition of R1, it suffices to show that W ′
2 w W ′

0 and W ′
2.n < W ′

0.n − 1. W ′
2 w W ′

0 is
derived by Lemma G.5 with W ′

2 w W ′
1 and W ′

1 w W ′
0. W ′

2.n < W ′
0.n − 1 is derived by W ′

2 w W ′
1

and (W ′
1,V

′′
1 ,V

′′
2 ) ∈ R1 (that is, W ′

1.n < W ′
0.n− 1).

• We have Σ ▷ V A −→ Σ, α := A ▷ M1〈∀Y .α− → idY → α+〉 for some α and M1 by Lemma E.3 and
(R Tybeta C). Note that we can assume that α is fresh without loss of generality.

Therefore, by (W ′
0,V ,V ) ∈ V [[∀X .∀Y .X → Y → X ]] ∅,

(W ′
0 ⊞ (α,A,A,R1),M1,M1) ∈ ▶E [[∀Y .X → Y → X ]] ∅{X 7→ α} .

Because W ′
0.n = W0.n = n + 1 > 0, we have

(▶(W ′
0 ⊞ (α,A,A,R1)),M1,M1) ∈ E [[∀Y .X → Y → X ]] ∅{X 7→ α} . (5)

Note that W ′
0 ⊞ (α,A,A,R1) = (W ′

0.n, (Σ, α := A), (Σ, α := A),W ′
0.κ{α 7→ R1}). Because

Σ ▷ V ABV1 V2 −→ Σ, α := A ▷ M1〈∀Y .α− → idY → α+〉BV1 V2 (by Lemma G.1)

−→n−1 Σ′ ▷ V ′
1 (by Theorem F.1 with (4)) ,

Lemma G.39 implies
Σ, α := A ▷ M1 −→m Σ1 ▷ V ′ (6)

for some m, Σ1, and V ′ such that m < n = (▶(W ′
0 ⊞ (α,A,A,R1))).n. Therefore, by (5) and Theorem F.1,

there exists some W1 such that W1.Σ1 = W1.Σ2 = Σ1 and W1 wm ▶(W ′
0 ⊞ (α,A,A,R1)) and

(W1,V
′,V ′) ∈ V [[∀Y .X → Y → X ]] ∅{X 7→ α} . (7)

Let R2 = {(W ,V2,V2) |W wW1 ∧ W .n < W1.n− 1}. Then, we have the following.

• W1 wW1 by Lemma G.5.

• W1.Σ1 | ∅ ` B andW1.Σ2 | ∅ ` B by Lemma D.2 (1) with Σ | ∅ ` B. Note thatW1.Σ1 = W1.Σ2 = Σ1 ⊇ Σ,
which can be easily proven by induction on the derivation of (6).

• R2 ∈ RelW1.n [[B,B]] by the following:

– We show that R2 ⊆ Atomval
W1.n [[B,B]]. Let (W ′,V ′′

1 ,V
′′
2 ) ∈ R2. Then, W ′ w W1 and W ′.n <

W1.n− 1 and V ′′
1 = V ′′

2 = V2. By W ′ wW1, we have W
′ ∈ World and W ′.Σ1 ⊇ Σ1 and W ′.Σ2 ⊇

Σ1. Because W ′.n < W1.n − 1, we have W ′ ∈ WorldW1.n. Because Σ | ∅ ` V2 : B, and ` W ′.Σ1

and ` W ′.Σ2 (by W ′ ∈ World), and Σ1 ⊇ Σ (discussed above), we have W ′.Σ1 | ∅ ` V2 : B and
W ′.Σ2 | ∅ ` V2 : B by Lemma E.8. Therefore, we have the conclusion.

– We show the monotonicity of R2. Let (W
′
1,V

′′
1 ,V

′′
2 ) ∈ R2 andW ′

2 wW ′
1. We show that (W ′

2,V
′′
1 ,V

′′
2 ) ∈

R2. By the definition of R2, it suffices to show that W ′
2 w W1 and W ′

2.n < W1.n − 1. W ′
2 w W1 is

derived by Lemma G.5 with W ′
2 w W ′

1 and W ′
1 w W1. W ′

2.n < W1.n − 1 is derived by W ′
2 w W ′

1

and (W ′
1,V

′′
1 ,V

′′
2 ) ∈ R2 (that is, W ′

1.n < W1.n− 1).

• We have Σ1 ▷ V ′ B −→ Σ1, β := B ▷ M2〈idα → β− → idα〉 for some β and M2 by Lemma E.3 and
(R Tybeta C). Note that we can assume that β is fresh without loss of generality.
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Therefore, by (7), we have

(W1 ⊞ (β,B,B,R2),M2,M2) ∈ ▶E [[X → Y → X ]] ∅{X 7→ α}{Y 7→ β} .

Note that W1 ⊞ (β,B,B,R2) = (W1.n, (Σ1, β := B), (Σ1, β := B),W1.κ{β 7→ R2}). Because W1 wm ▶(W ′
0 ⊞

(α,A,A,R1)), we have W1.n+m = W ′
0.n− 1 = n, that is, W1.n = n −m > 0. Therefore,

(▶(W1 ⊞ (β,B,B,R2)),M2,M2) ∈ E [[X → Y → X ]] ∅{X 7→ α}{Y 7→ β} . (8)

We have

Σ ▷ V ABV1 V2 −→ Σ, α := A ▷ M1〈∀Y .α− → idY → α+〉BV1 V2

−→m Σ1 ▷ V ′〈∀Y .α− → idY → α+〉BV1 V2

(by Lemma G.1 with (6))

−→ Σ1, β := B ▷ M2〈α− → idβ → α+〉〈coerce−β (A)→ β− → coerce+β (A)〉V1 V2

(by (R Tybeta C))

−→n−(m+2) Σ′ ▷ V ′
1

(by Theorem F.1 with (4)) .

Lemma G.39 implies
Σ1, β := B ▷ M2 −→i Σ2 ▷ V ′′ (9)

for some i, Σ2, and V ′′ such that i < n − (m + 2). Therefore,

Σ ▷ V ABV1 V2 −→m+i+2 Σ2 ▷ V ′′〈α− → idβ → α+〉〈coerce−β (A)→ β− → coerce+β (A)〉V1 V2 (10)

by Lemma G.1. Because (▶(W1 ⊞ (β,B,B,R2))).n = W1.n − 1 = n − m − 1 > i, we have that, by (8) and
Theorem F.1, there exists some W2 such that W2.Σ1 = W2.Σ2 = Σ2 and W2 wi ▶(W1 ⊞ (β,B,B,R2)) and

(W2,V
′′,V ′′) ∈ V [[X → Y → X ]] ∅{X 7→ α}{Y 7→ β} . (11)

Now, we have the following.

• W2 wW2 by Lemma G.5.

• (W2,V01〈α−〉,V01〈α−〉) ∈ V [[X ]] ∅{X 7→ α}{Y 7→ β}, which is proven as follows. Because

– W2 wi ▶(W1 ⊞ (β,B,B,R2)),

– ▶(W1 ⊞ (β,B,B,R2)) w1 W1 and ▶(W ′
0 ⊞ (α,A,A,R1)) w1 W ′

0 by Lemmas G.6, G.7 (2), and G.5,
and

– W1 wm ▶(W ′
0 ⊞ (α,A,A,R1)),

we have
W2 w ▶(W ′

0 ⊞ (α,A,A,R1)) and W2 wW ′
0

by Lemma G.5. Therefore, W2.κ(α) = bR1cW2.n. Because W2.n = n − (m + i + 1) and i < n −m − 1,
we have W2.n > 0. Therefore, ▶W2 is well defined, and it suffices to show that

(▶W2,V01,V01) ∈ bR1cW2.n .

Because (▶W2).n < W2.n, it suffices to show that

(▶W2,V01,V01) ∈ R1 .

By definition, it suffices to show the following.

– ▶W2 w W ′
0, which is derived by Lemma G.5 with ▶W2 w W2 (implied by Lemma G.7 (2)) and

W2 wW ′
0.

– (▶W2).n < W ′
0.n− 1, which holds because W2.n = n − (m + i+ 1) = W ′

0.n− 1− (m + i+ 1).
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Therefore, by (11),

(W2,V
′′ (V01〈α−〉),V ′′ (V01〈α−〉)) ∈ E [[Y → X ]] ∅{X 7→ α}{Y 7→ β} . (12)

Furthermore, we have

Σ ▷ V ABV1 V2

−→m+2 Σ1, β := B ▷ M2〈α− → idβ → α+〉〈coerce−β (A)→ β− → coerce+β (A)〉V1 V2

−→i Σ2 ▷ V ′′〈α− → idβ → α+〉〈coerce−β (A)→ β− → coerce+β (A)〉V1 V2

(by Lemma G.1 with (9))

−→ Σ2 ▷ (V ′′〈α− → idβ → α+〉 (V1〈coerce−β (A)〉))〈β− → coerce+β (A)〉V2

(by (R Wrap C)/(R Ctx C))

−→j Σ2 ▷ (V ′′〈α− → idβ → α+〉V01)〈β− → coerce+β (A)〉V2

(by Lemmas G.35 and G.1)

−→ Σ2 ▷ (V ′′ (V01〈α−〉))〈idβ → α+〉〈β− → coerce+β (A)〉V2

(by (R Wrap C)/(R Ctx C))

−→n−(m+i+j+4) Σ′ ▷ V ′
1

(by Theorem F.1) .

By Lemma G.39,
Σ2 ▷ V ′′ (V01〈α−〉) −→k Σ3 ▷ V ′′′ (13)

for some k, Σ3, and V ′′ such that k < n − (m + i+ j + 4). Because W2.n = n − (m + i+ 1) > k, we have that,
by (12) and Theorem F.1, there exists some W3 such that W3.Σ1 = W3.Σ2 = Σ3 and W3 wk W2 and

(W3,V
′′′,V ′′′) ∈ V [[Y → X ]] ∅{X 7→ α}{Y 7→ β} . (14)

Now, we have the following.

• W3 wW3 by Lemma G.5.

• (W3,V2〈β−〉,V2〈β−〉) ∈ V [[Y ]] ∅{X 7→ α}{Y 7→ β}, which is proven as follows. Because

– W3 wk W2,

– W2 wi ▶(W1 ⊞ (β,B,B,R2)), and

– ▶(W1 ⊞ (β,B,B,R2)) wW1,

we have
W3 w ▶(W1 ⊞ (β,B,B,R2)) and W3 wW1

by Lemma G.5. Therefore, W3.κ(β) = bR2cW3.n. Because W3.n = W2.n− k = n − (m + i+ k + 1) and
k < n − (m + i+ j + 4), we have W3.n > 0. Therefore, ▶W3 is well defined, and it suffices to show that

(▶W3,V2,V2) ∈ bR2cW3.n .

Because (▶W3).n < W3.n, it suffices to show that

(▶W3,V2,V2) ∈ R2 .

By definition, it suffices to show the following.

– ▶W3 w W1, which is derived by Lemma G.5 with ▶W3 w W3 (implied by Lemma G.7 (2)) and
W3 wW1.

– (▶W3).n < W1.n− 1, which holds because W3.n = n − (m + i+ k + 1) ≤ n −m − 1 = W1.n− 1.
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Therefore, by (14),
(W3,V

′′′ V2〈β−〉,V ′′′ V2〈β−〉) ∈ E [[X ]] ∅{X 7→ α}{Y 7→ β} . (15)

Furthermore, we have the following.

Σ ▷ V ABV1 V2

−→m+i+j+4 Σ2 ▷ (V ′′ (V01〈α−〉))〈idβ → α+〉〈β− → coerce+β (A)〉V2

−→k Σ3 ▷ V ′′′〈idβ → α+〉〈β− → coerce+β (A)〉V2

(by Lemma G.1 with (13))

−→3 Σ3 ▷ (V ′′′ (V2〈β−〉))〈α+〉〈coerce+β (A)〉
(by (R Wrap C) and (R Id C) with (R Ctx C))

−→n−(m+i+j+k+7) Σ′ ▷ V ′
1

(by Theorem F.1 with (4)) .

By Lemma G.39,
Σ3 ▷ V ′′′ (V2〈β−〉) −→l Σ4 ▷ V ′′′′ (16)

for some l , Σ4, and V ′′′′ such that l < n− (m + i+ j+ k+7). Because W3.n = n− (m + i+ k+1) > l , we have
that, by (15) and Theorem F.1, there exists some W4 such that W4.Σ1 = W4.Σ2 = Σ4 and W4 wl W3 and

(W4,V
′′′′,V ′′′′) ∈ V [[X ]] ∅{X 7→ α}{Y 7→ β} . (17)

By definition, V ′′′′ = V ′
01〈α−〉 for some V ′

01 such that (W4,V
′
01,V

′
01) ∈ ▶(W4.κ(α)). Because W4.n =

W3.n − l = n − (m + i + k + l + 1) and l < n − (m + i + j + k + 7), we have W4.n > 0. Therefore,
(▶W4,V

′
01,V

′
01) ∈ W4.κ(α). Because

• W4 wW3,

• W3 wW2, and

• W2 w ▶(W ′
0 ⊞ (α,A,A,R1)),

we have W4 w ▶(W ′
0 ⊞ (α,A,A,R1)) by Lemma G.5. Therefore, W4.κ(α) = bR1cW4.n, so V ′

01 = V01. Now,
we have the following.

Σ ▷ V ABV1 V2

−→∗ Σ3 ▷ (V ′′′ (V2〈β−〉))〈α+〉〈coerce+β (A)〉
−→∗ Σ4 ▷ V ′′′′〈α+〉〈coerce+β (A)〉 (by Lemma G.1 with (16))

= Σ4 ▷ V01〈α−〉〈α+〉〈coerce+β (A)〉
−→ Σ4 ▷ V01〈coerce+β (A)〉 (by (R Remove C)/(R Ctx C))

−→∗ Σ′ ▷ V ′
1 (by Theorem F.1 with (4)) .

By Lemma G.35 and Theorem F.1, Σ′ = Σ4 and Σ4 ▷ V01〈coerce(A)〉 −→∗ Σ4 ▷ V ′
1.

Because Σ | ∅ ` V ABV1 V2 : A and Σ ▷ V ABV1 V2 −→∗ Σ′ ▷ V ′
1, we have Σ ⊆ Σ′ and Σ′ | ∅ ` V ′

1 : A
by Theorems E.21 and F.1. By Lemma E.10, ` Σ′. By Lemma E.8, Σ′ | ∅ ` V1 : A. By Lemma G.35,
Σ′ ▷ V1〈coerce(A)〉 −→∗ Σ′ ▷ V01. Therefore,

Σ′ | ∅ ` V1
ctx
= V01 : A

by Lemma G.38.
By the definition of the contextual equivalence, Σ′ | ∅ ` V01 : A. Because Σ | ∅ ` A, we have Σ′ | ∅ ` A

by Lemma D.2 (1). Therefore, Σ′ | ∅ ` V01〈coerce(A)〉 : A by Lemma G.35 and (T Crc C). Because Σ′ ▷
V01〈coerce(A)〉 −→∗ Σ′ ▷ V ′

1, we have

Σ′ | ∅ ` V01
ctx
= V ′

1 : A

by Lemma G.38.
Because the contextual equivalence is transitive (which can be easily proven using Theorem F.1) and sym-

metric, we have Σ′ | ∅ ` V ′
1

ctx
= V1 : A.
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H Space-efficiency

H.1 λC∀
mp

Lemma H.1 (Only Type Application Generates Coercions). If Σ ▷ M −→ Σ′ ▷ M ′ is derived without
(R Tybeta C), then, for any c′ occurring in M ′, there exists some c in M such that c′ is a sub-coercion of c.

Proof. By induction on the derivation of Σ ▷ M −→ Σ′ ▷ M ′.

Case (R Delta C), (R Fail C), (R Conflict C), (R Blame C): Obvious because there is no c′ in M ′.

Case (R Beta C), (R Id C), (R Collapse C), (R Remove C): Obvious by letting c = c′ because any c′ in
M ′ also occurs in M .

Case (R Wrap C): We are given

M = (V 〈c′′ → d ′′〉)V ′, M ′ = (V (V ′〈c′′〉))〈d ′′〉 (∃c′′, d ′′,V ,V ′) .

By case analysis on c′.

Case c′ = c′′ or c′ = d ′′: We have the conclusion by letting c = c′′ → d ′′.

Case c′ occurs in V or V ′: We have the conclusion by letting c = c′ because c′ also occurs in M .

Case (R Split C): Similarly to the case of (R Wrap C).

Case (R Ctx C): We are given

M = E [M1], M ′ = E [M ′
1], Σ ▷ M1 −→ Σ′ ▷ M ′

1 (∃E ,M1,M
′
1) .

By case analysis on c′.

Case c′ occurs in M ′
1: By the assumption, Σ ▷ M1 −→ Σ′ ▷ M ′

1 is derived without (R Tybeta C). There-
fore, by the IH, there exists some c1 in M1 such that c′ is a sub-coercion of c1. Because M1 is a subterm
of M , c1 occurs in M . Therefore, we have the conclusion by letting c = c1.

Case c′ occurs in E : Because c′ also occurs in M , we have the conclusion by letting c = c′.

Lemma H.2 (Only Type Application Generates Coercions: Multi-Step Evaluation). If Σ ▷ M −→∗ Σ′ ▷ M ′

is derived without (R Tybeta C), then, for any c′ occurring in M ′, there exists some c in M such that c′ is a
sub-coercion of c.

Proof. Straightforward by induction on the length of the reduction sequence of Σ ▷ M −→∗ Σ′ ▷ M ′ with
Lemma H.1.

Theorem H.3 (λC∀
mp Cannot Be Made Space-Efficient (Theorem ?? of the paper)). There exists a closed

well-typed term M such that, for any natural number n, there exist some store Σ and term M ′ satisfying the
following:

(1) ∅ ▷ M −→∗ Σ ▷ M ′; and

(2) there exist some types A,B and coercion sequence 〈c′〉 that appears in M ′ such that

(i) Σ ` 〈c′〉 : A⇝ B ,

(ii) size (〈c′〉) > n, and

(iii) there does not exist a coercion c such that

(a) Σ | ∅ ` 〈c〉 ctx= 〈c′〉 : A⇝ B and

(b) size(c) < size (〈c′〉).
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Proof. Let

• f
def
= λf0 : ⋆.ΛX .((λx :X .(f0〈⋆→ ⋆?p1〉 f0)〈(∀X .⋆)?p2〉〈∀X .(⋆→ ⋆?p3 ; X !→ id⋆)〉 ⋆ (x 〈X !〉)) : X → ⋆),

• V
def
= f 〈id⋆ → ((∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)!) ; ⋆→ ⋆!〉, and

• M
def
= f V ⋆ (0〈Int!〉).

First, we show that ∅ | ∅ ` M : ⋆.

• We start with showing that ∅ | ∅ ` f : ⋆→ (∀X .X → ⋆). Let Γ = ∅, f0 : ⋆,X , x : X . By (T Abs C) and
(T TyAbs C), it suffices to show that

∅ | Γ ` (f0〈⋆→ ⋆?p1〉 f0)〈(∀X .⋆)?p2〉〈∀X .(⋆→ ⋆?p3 ; X !→ id⋆)〉 ⋆ (x 〈X !〉) : ⋆ .

We have the following derivation.

,
` ∅ ∅ ` Γ x : X ∈ Γ

(T Var C)
∅ | Γ ` x : X

` ∅ ∅ ` Γ ∅ | Γ ` X
(Ct Inj C)

∅ | Γ ` X ! : X ⇝ ⋆
(T Crc C)

∅ | Γ ` x 〈X !〉 : ⋆

Therefore, by (T Tyapp C) and (T App C), it suffices to show that

∅ | Γ ` (f0〈⋆→ ⋆?p1〉 f0)〈(∀X .⋆)?p2〉〈∀X .(⋆→ ⋆?p3 ; X !→ id⋆)〉 : ∀X .(X → ⋆) .

We have the following derivations.

` ∅ ∅ ` Γ ∅ | Γ ` ∀X .⋆
(Ct Proj C)

∅ | Γ ` (∀X .⋆)?p2 : ⋆⇝ ∀X .⋆

⊢ ∅ ∅ ⊢ Γ,Y ∅ | Γ,Y ⊢ ⋆ → ⋆
(Ct Proj C)

∅ | Γ,Y ⊢ ⋆ → ⋆?p3 : ⋆⇝ ⋆ → ⋆

∅ | Γ,Y ⊢ Y ! : Y ⇝ ⋆ ∅ | Γ,Y ⊢ id⋆ : ⋆⇝ ⋆
(Ct Arrow C)

∅ | Γ,Y ⊢ Y ! → id⋆ : ⋆ → ⋆⇝ Y → ⋆
(Ct Seq C)

∅ | Γ,Y ⊢ ⋆ → ⋆?p3 ;Y ! → id⋆ : ⋆⇝ Y → ⋆
(Ct All C)

∅ | Γ ⊢ ∀X .(⋆ → ⋆?p3 ;X ! → id⋆) : ∀X .⋆⇝ ∀X .(X → ⋆)

where ∅ | Γ,Y ` Y ! : Y ⇝ ⋆ is derived by (Ct Inj C), and ∅ | Γ,Y ` id⋆ : ⋆ ⇝ ⋆ is by (Ct Id C).
Therefore, by (T Crc C), it suffices to show that

∅ | Γ ` f0〈⋆→ ⋆?p1〉 f0 : ⋆ ,

which is derived by the following derivation.

(T Var C)
∅ | Γ ` f0 : ⋆

(Ct Proj C)
∅ | Γ ` ⋆→ ⋆?p1 : ⋆⇝ ⋆→ ⋆

(T Crc C)
∅ | Γ ` f0〈⋆→ ⋆?p1〉 : ⋆→ ⋆

(T Var C)
∅ | Γ ` f0 : ⋆

(T App C)
∅ | Γ ` f0〈⋆→ ⋆?p1〉 f0 : ⋆

• Next, we show that ∅ | ∅ ` V : ⋆. Because ∅ | ∅ ` f : ⋆ → (∀X .X → ⋆), (T Crc C) implies that it
suffices to show that

∅ | ∅ ` id⋆ → ((∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)!) ; ⋆→ ⋆! : ⋆→ (∀X .X → ⋆)⇝ ⋆ .

By (Ct Seq C) and (Ct Inj C), it suffices to show that

∅ | ∅ ` id⋆ → ((∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)!) : ⋆→ (∀X .X → ⋆)⇝ ⋆→ ⋆ .

By (Ct Arrow C) and (Ct Id C), it suffices to show that

∅ | ∅ ` (∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)! : ∀X .X → ⋆⇝ ⋆ .
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By (Ct Seq C) and (Ct Inj C), it suffices to show that

∅ | ∅ ` ∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!) : ∀X .X → ⋆⇝ ∀X .⋆ .

By (Ct All C), it suffices to show that

∅ | ∅,X ` (X ?p4 → id⋆) ; ⋆→ ⋆! : X → ⋆⇝ ⋆ .

By (Ct Seq C) and (Ct Inj C), it suffices to show that

∅ | ∅,X ` X ?p4 → id⋆ : X → ⋆⇝ ⋆→ ⋆ ,

which is derived by the following.

(Ct Proj C)
∅ | ∅,X ` X ?p4 : ⋆⇝ X

(Ct Id C)
∅ | ∅,X ` id⋆ : ⋆⇝ ⋆

(Ct Arrow C)
∅ | ∅,X ` X ?p4 → id⋆ : X → ⋆⇝ ⋆→ ⋆

• Finally, we show that ∅ | ∅ ` M : ⋆, which is obvious because ∅ | ∅ ` f V : ∀X .X → ⋆.

Let

• n > 0,

• Vn
def
= 0〈Int!〉 〈α−

1 〉 〈α1!〉 · · · 〈α−
n 〉 〈αn !〉, and

• Σn
def
= ∅, α1 := ⋆, · · · , αn := ⋆, and

• F
def
= □〈(∀X .⋆)?p2〉〈∀X .(⋆→ ⋆?p3 ; X !→ id⋆)〉.

We show that
∅ ▷ M −→∗ Σn ▷ F ′[F [V 〈⋆→ ⋆?p1〉V ] ⋆Vn ]

for some F ′. We prove it by induction on n. Note that f = λf0 : ⋆.ΛX .((λx :X .F [f0〈⋆→ ⋆?p1〉 f0] ⋆ (x 〈X !〉)) : X →
⋆).

Case n = 1: By (R Beta C), (R Tybeta C), and (R Wrap C), we have the following evaluation sequence:

∅ ▷ M

= ∅ ▷ f V ⋆ (0〈Int!〉)
−→ ∅ ▷ (ΛX .((λx :X .F [V 〈⋆→ ⋆?p1〉V ] ⋆ (x 〈X !〉)) : X → ⋆)) ⋆ (0〈Int!〉)
−→ ∅, α1 := ⋆ ▷ (λx :α1.F [V 〈⋆→ ⋆?p1〉V ] ⋆ (x 〈α1!〉))〈α−

1 → id⋆〉 (0〈Int!〉)
−→ ∅, α1 := ⋆ ▷ ((λx :α1.F [V 〈⋆→ ⋆?p1〉V ] ⋆ (x 〈α1!〉)) (0〈Int!〉〈α−

1 〉))〈id⋆〉
−→ ∅, α1 := ⋆ ▷ (F [V 〈⋆→ ⋆?p1〉V ] ⋆ (0〈Int!〉〈α−

1 〉〈α1!〉))〈id⋆〉 .

Therefore, we have the conclusion for the case of n = 1 by letting F ′ = □〈id⋆〉.

Case ∃m. n = m + 1 ∧ m > 0: By the IH,

∅ ▷ M −→∗ Σm ▷ F0[F [V 〈⋆→ ⋆?p1〉V ] ⋆Vm ]

for some F0. By (R Split C), (R Collapse C), (R Wrap C), (R Id C), (R Beta C), We have

Σm ▷ V 〈⋆→ ⋆?p1〉V
−→∗ Σm ▷ f 〈id⋆ → ((∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)!)〉V
−→ Σm ▷ (f (V 〈id⋆〉))〈(∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)!〉
−→ Σm ▷ (f V )〈(∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)!〉
−→ Σm ▷ V ′〈(∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)!〉
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where
V ′ def

= ΛX .((λx :X .F [V 〈⋆→ ⋆?p1〉V ] ⋆ (x 〈X !〉)) : X → ⋆) .

Therefore, by (R Split C), (R Collapse C), (R Tybeta C), (R Wrap C), (R Id C), (R Beta C),

Σm ▷ F [V 〈⋆→ ⋆?p1〉V ] ⋆Vm

−→∗ Σm ▷ F [V ′〈(∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!)) ; (∀X .⋆)!〉] ⋆Vm (by Lemma G.1)

−→∗ Σm ▷ V ′〈(∀X .((X ?p4 → id⋆) ; ⋆→ ⋆!))〉〈∀X .(⋆→ ⋆?p3 ; X !→ id⋆)〉 ⋆Vm

−→ Σn ▷ (λx :αn .F [V 〈⋆→ ⋆?p1〉V ] ⋆ (x 〈αn !〉))〈αn?
p4 → id⋆ ; ⋆→ ⋆!〉〈⋆→ ⋆?p3 ; αn !→ id⋆〉〈α−

n → id⋆〉Vm

−→∗ Σn ▷ (λx :αn .F [V 〈⋆→ ⋆?p1〉V ] ⋆ (x 〈αn !〉))〈αn?
p4 → id⋆〉〈αn !→ id⋆〉〈α−

n → id⋆〉Vm

−→∗ Σn ▷ ((λx :αn .F [V 〈⋆→ ⋆?p1〉V ] ⋆ (x 〈αn !〉)) (Vm〈α−
n 〉〈αn !〉〈αn?

p4〉))〈id⋆〉〈id⋆〉〈id⋆〉
−→ Σn ▷ ((λx :αn .F [V 〈⋆→ ⋆?p1〉V ] ⋆ (x 〈αn !〉)) (Vm〈α−

n 〉))〈id⋆〉〈id⋆〉〈id⋆〉
−→ Σn ▷ (F [V 〈⋆→ ⋆?p1〉V ] ⋆ (Vm〈α−

n 〉〈αn !〉))〈id⋆〉〈id⋆〉〈id⋆〉
= Σn ▷ (F [V 〈⋆→ ⋆?p1〉V ] ⋆Vn)〈id⋆〉〈id⋆〉〈id⋆〉

Then, we have the conclusion by Lemma G.1 when we take F0[□〈id⋆〉〈id⋆〉〈id⋆〉] as F ′.

Therefore, it suffices to show the item (2) by taking Int as A, ⋆ as B , and 〈Int!〉, 〈α−
1 〉, 〈α1!〉, . . . , 〈α−

n 〉, 〈αn !〉
as 〈c′〉. Note that we can take 〈Int!〉 as 〈c′〉 for the case of n = 0 because 〈Int!〉 occurs in M . In what follows,
let Σ0 = ∅.

(2-i) Σn ` 〈c′〉 : Int ⇝ ⋆ because Σn | ∅ ` Int! : Int ⇝ ⋆ by (Ct Inj C), Σn | ∅ ` α−
i : ⋆ ⇝ αi by

(Ct Conceal C), and Σn | ∅ ` αi ! : αi ⇝ ⋆ by (Ct Inj C).

(2-ii) size (〈c′〉) > n because the length of 〈c′〉 is 2n+ 1, and the size of every coercion is larger than zero.

(2-iii) Let c be an arbitrary coercion such that Σn | ∅ ` 〈c〉
ctx
= 〈c′〉 : Int⇝ ⋆. Then, it suffices to show that

size(c) ≥ size (〈c′〉) .

Because Σn | ∅ ` 〈c〉
ctx
= 〈c′〉 : Int⇝ ⋆, we have

Σ | ∅ ` λx : Int.x 〈c〉 ctx= λx : Int.x 〈Int!〉〈α−
1 〉〈α1!〉 · · · 〈α−

n 〉〈αn !〉 : Int→ ⋆ .

Let CC
def
= (□ 0) 〈αn?

qn 〉 〈α+
n 〉 · · · 〈α1?

q1〉 〈α+
1 〉 〈Int?q〉. We can prove Σ ` CC : (∅ ` Int → ⋆) ⇒ (∅ ` Int)

easily. Furthermore, by (R Beta C), (R Collapse C), (R Remove C), (R Ctx C), we have

Σn ▷ CC [λx : Int.x 〈Int!〉〈α−
1 〉〈α1!〉 · · · 〈α−

n 〉〈αn !〉]
= Σn ▷ ((λx : Int.x 〈Int!〉〈α−

1 〉〈α1!〉 · · · 〈α−
n 〉〈αn !〉) 0)〈αn?

qn 〉〈α+
n 〉 · · · 〈α1?

q1〉〈α+
1 〉〈Int?q〉

−→ Σn ▷ 0〈Int!〉〈α−
1 〉〈α1!〉 · · · 〈α−

n 〉〈αn !〉〈αn?
qn 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉
−→ Σn ▷ 0〈Int!〉〈α−

1 〉〈α1!〉 · · · 〈α−
n 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉
−→ Σn ▷ 0〈Int!〉〈α−

1 〉〈α1!〉 · · · 〈α−
n−1〉〈αn−1!〉〈αn−1?

qn−1 〉〈α+
n−1〉 · · · 〈α1?

q1〉〈α+
1 〉〈Int?q〉

−→∗ Σn ▷ 0〈Int!〉〈Int?q〉
−→ Σn ▷ 0 .

Because 0 is a value, and Σ | ∅ ` λx : Int.x 〈c〉 ctx
= λx : Int.x 〈Int!〉〈α−

1 〉〈α1!〉 · · · 〈α−
n 〉〈αn !〉 : Int → ⋆, Corol-

lary F.2 implies that Σn ▷ CC [λx : Int.x 〈c〉] −→∗
C Σ′

n ▷ V ′ for some Σ′
n and V ′. Furthermore, by

(R Beta C), (R Ctx C), and Corollary F.2, we have

Σn ▷ CC [λx : Int.x 〈c〉]
= Σn ▷ ((λx : Int.x 〈c〉) 0)〈αn?

qn 〉〈α+
n 〉 · · · 〈α1?

q1〉〈α+
1 〉〈Int?q〉

−→ Σn ▷ 0〈c〉〈αn?
qn 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉
−→∗ Σ′

n ▷ V ′ .
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Therefore, 0〈c〉 also evaluates to a value, so Σn ▷ 0〈c〉 −→∗ Σ01 ▷ V01 for some Σ01 and V01. Then, by
Lemma G.1 and Corollary F.2,

Σn ▷ 0〈c〉〈αn?
qn 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉 −→∗ Σ01 ▷ V01〈αn?
qn 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉
−→∗ Σ′

n ▷ V ′ .

Therefore, the subterm V01〈αn?
qn 〉 also evaluates to a value. It indicates that V01 = V02〈αn !〉 for some

V02. Therefore,

Σn ▷ 0〈c〉 −→∗ Σ01 ▷ V02〈αn !〉 .

Because 0〈c〉 does not include type application, the derivation of Σ ▷ 0〈c〉 −→∗ Σ01 ▷ V02〈αn !〉 does not
use the rule (R Tybeta C). Therefore, Lemma H.2 implies that αn ! is a sub-coercion of c. Furthermore,
by (R Collapse C), Lemma G.1, and Corollary F.2, we have

Σn ▷ 0〈c〉〈αn?
qn 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉 −→∗ Σ01 ▷ V02〈αn !〉〈αn?
qn 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉
−→ Σ01 ▷ V02〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉
−→∗ Σ′

n ▷ V ′ .

Therefore, the subterm V2〈α+
n 〉 also evaluates to a value. Then, we can find that V02 = V03〈α−

n 〉 for some
V03, and

Σn ▷ 0〈c〉 −→∗ Σ01 ▷ V03〈α−
n 〉〈α!〉 .

Therefore, Lemma H.2 implies that α−
n is a sub-coercion of c. Furthermore, by (R Remove C), Lemma G.1,

and Corollary F.2, we have

Σn ▷ 0〈c〉〈αn?
qn 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉 −→∗ Σ01 ▷ V03〈α−
n 〉〈α+

n 〉 · · · 〈α1?
q1〉〈α+

1 〉〈Int?q〉
−→ Σ01 ▷ V03〈αn−1?

qn−1 〉〈α+
n−1〉 · · · 〈α1?

q1〉〈α+
1 〉〈Int?q〉

−→∗ Σ′
n ▷ V ′ .

Therefore, we can apply the same discussion to V03. That is, we can prove that the coercions αn !, α
−
n , . . . , α1!, α

−
1

and Int! are sub-coercions of c by induction on n. Therefore, the coercion c involves at least 2n+ 1 sub-
coercions. Then, we can easily prove that

size(c) ≥ 2(2n+ 1)− 1 .

Therefore,

size(c) ≥ 2(2n+ 1)− 1

= size (〈Int!〉, 〈α−
1 〉, 〈α1!〉, . . . , 〈α−

n 〉, 〈αn !〉).

H.2 λS∀
mp (Proof of Theorem 4.2)

height(G?p ; b) = height(b) height(⊥p) = height(id) = 1

height(g ;G !) = height(g) height(s → t) = max(height(s), height(t)) + 1

height(∀X .s ,, t) = max(height(s), height(t)) + 1

size(G?p ; b) = size(b) + 2 size(⊥p) = size(id) = 1

size(g ;G !) = size(g) + 2 size(s → t) = size(s) + size(t) + 1

size(∀X .s ,, t) = size(s) + size(t) + 1
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Lemma H.4 (Bounding Size by Height (Lemma H.4 of the paper)). For any space-efficient coercion s, the
following holds.

• size(s) ≤ 5(2height(s) − 1).

• If s is a possibly blaming coercion, then size(s) ≤ 5(2height(s) − 1)− 2.

• If s is an intermediate coercion, then size(s) ≤ 5(2height(s) − 1)− 2.

• If s is a ground coercion, then size(s) ≤ 5(2height(s) − 1)− 4.

Proof. By induction on s with case analysis on the form of s.

Case s = id(∃A): We have

size(id) = 1

height(id) = 1 .

Therefore, it suffices to show that 1 ≤ 5(21 − 1)− 4, because s is a ground coercion. Because

（the left-hand side）= 1

（the right-hand side）= 5(21 − 1)− 4

= 5− 4

= 1 ,

finishing the case.

Case s = s ′ → t ′(∃s ′, t ′): We have

size(s ′ → t ′) = size(s) + size(t) + 1

height(s ′ → t ′) = max(height(s ′), height(t ′)) + 1 .

Consider the next two cases.

Case height(s ′) ≥ height(t ′): We have max(height(s ′), height(t ′)) = height(s ′). Because s ′ → t ′ is a ground
coercion, it suffices to show that size(s ′) + size(t ′) + 1 ≤ 5(2height(s

′)+1 − 1)− 4. By the IH,

size(s ′) ≤ 5(2height(s
′) − 1)

size(t ′) ≤ 5(2height(t
′) − 1) .

Therefore,

size(s ′) + size(t ′) + 1 ≤ 5(2height(s
′) − 1) + 5(2height(t

′) − 1) + 1

≤ 2 · 5(2height(s
′) − 1) + 1

= 5(2height(s
′)+1 − 1)− 4 .

Case height(s ′) < height(t ′): Similar.

Case s = ∀X .s ′ ,, t ′(∃X , s ′, t ′): Similar to the case for s = s ′ → t ′.

Case s = g ;G !(∃g ,G): We have

size(g ;G !) = size(g) + 1

height(g ;G !) = height(g) .

Because g ;G ! is an intermediate coercion, it suffices to show that size(g) + 1 ≤ 5(2height(g) − 1)− 2. By the
IH, size(g) ≤ 5(2height(g) − 1)− 4. Therefore,

size(g) + 1 ≤ 5(2height(g) − 1)− 4 + 1

≤ 5(2height(g) − 1)− 2 .
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Case s = ⊥p(∃p): Similarl to the case s = id.

Case s = G?p ; b(∃p, b): We have

size(G?p ; b) = size(b) + 1

height(G?p ; b) = height(b) .

Therefore, it suffices to show that size(b) + 1 ≤ 5(2height(b) − 1). By the IH, size(b) ≤ 5(2height(b) − 1) − 2.
Therefore,

size(b) + 1 ≤ 5(2height(i) − 1)− 2 + 1

≤ 5(2height(i) − 1) .

Lemma H.5 (Height of Coercion). height(s) ≥ 1.

Proof. Straightforward by induction on s.

Lemma H.6 (Composition Does Not Increase Height). If s#t is well defined, then height(s#t) ≤ max(height(s), height(t)).

Proof. By induction on the sum of size(s) and size(t). We proceed by case analysis on s.

Case s = id: We have height(id) = 1. By case analysis on t .

Case t = g ;G !(∃g ,G): We have id # (g ;G !) = (id # g) ;G ! and

height(g ;G !) = height(g), height((id # g) ;G !) = height(id # g) .
Therefore, it suffices to show that height(id # g) ≤ max(height(id), height(g)), which follows from the IH.

Case t = ⊥p(∃p): We have id # ⊥p = ⊥p and height(⊥p) = 1. Therefore, it suffices to show that 1 ≤
max(1, 1) = 1, which holds trivially.

Otherwise: We have id # t = t . Therefore, it suffices to show that height(t) ≤ max(1, height(t)), which is
trivial.

Case s = s ′ → t ′(∃s ′, t ′): We have height(s ′ → t ′) = max(height(s ′), height(t ′)) + 1. By case analysis on t .

Case t = s ′′ → t ′′(∃s ′′, t ′′): We have (s ′ → t ′) # (s ′′ → t ′′) = (s ′′ # s ′)→ (t ′ # t ′′) and
height(s ′′ → t ′′) = max(height(s ′′), height(t ′′)) + 1,

height((s ′′ # s ′)→ (t ′ # t ′′)) = max(height(s ′′ # s ′), height(t ′ # t ′′)) + 1 .

Therefore, it suffices to show that

max(height(s ′′ # s ′), height(t ′ # t ′′)) + 1 ≤ max(max(height(s ′), height(t ′)) + 1,max(height(s ′′), height(t ′′)) + 1) .

By the assumption, (s ′′ # s ′)→ (t ′ # t ′′) is well defined; and so are s ′′ # s ′ and t ′ # t ′′. Then, by the IHs,

height(s ′′ # s ′) ≤ max(height(s ′′), height(s ′)), height(t ′ # t ′′) ≤ max(height(t ′), height(t ′′)) .

Therefore,

max(height(s ′′ # s ′), height(t ′ # t ′′)) + 1 ≤ max(max(height(s ′′), height(s ′)),max(height(t ′), height(t ′′))) + 1

= max(max(height(s ′), height(t ′)),max(height(s ′′), height(t ′′))) + 1

= max(max(height(s ′), height(t ′)) + 1,max(height(s ′′), height(t ′′)) + 1) .

Case t = g ;G !(∃g ,G): Similar to the case of s = id, t = g ;G !.
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Case t = ⊥p(∃p): We have (s ′ → t ′) # ⊥p = ⊥p and height(⊥p) = 1. Therefore, it suffices to show that
1 ≤ max(height(s ′ → t ′), 1), which follows from Lemma H.5.

Case t = id: We have (s ′ → t ′) # id = s ′ → t ′ and height(id) = 1. Therefore, it suffices to show that
height(s ′ → t ′) ≤ max(height(s ′ → t ′), 1), which is trivial.

Otherwise: Contradictory because (s ′ → t ′) # t is not well defined.

Case s = ∀X .s1 ,, s2(∃X , s1, s2): We have height(∀X .s1 ,, s2) = max(height(s1), height(s2))+ 1. By case analysis
on t .

Case t = ∀Y .t1 ,, t2(∃Y , t1, t2): Because (∀X .s1 ,, s2) # (∀Y .t1 ,, t2) is well defined, Y = X . Furthermore,
(∀X .s1 ,, s2) # (∀X .t1 ,, t2) = ∀X .(s1 # t1) ,, (s2 # t2), and

height(∀X .(s1 ,, s2)) = max(height(s1), height(s2)) + 1

height(∀X .(t1 ,, t2)) = max(height(t1), height(t2)) + 1

height(∀X .(s1 # t1) ,, (s2 # t2)) = max(height(s1 # t1), height(s2 # t2)) + 1 .

Therefore, it suffices to show that

max(height(s1 # t1), height(s2 # t2)) + 1 ≤ max(height(s1), height(s2), height(t1), height(t2)) + 1) .

It follows from the IH.

Case t = g ;G !(∃g ,G): Similar to the case of s = id, t = g ;G !.

Case t = ⊥p(∃p): Similar to the case of s = s ′ → t ′, t = ⊥p .

Case t = id: Similar to the case of s = s ′ → t ′, t = id.

Otherwise: Contradictory because (∀X .s ′) # t is not well defined.

Case s = g ;G !(∃g ,G): We have height(g ;G !) = height(g). By case analysis on t .

Case t = id: We have (g ;G !) # id = g ;G ! and height(id) = 1. Therefore, it suffices to show that

height(g ;G !) ≤ max(height(g ;G !), 1) ,

which is trivial.

Case t = i ; H !(∃i ,H ): We have (g ;G !) # (i ; H !) = ((g ;G !) # i) ; H ! and

height(((g ;G !) # i) ; H !) = height((g ;G !) # i), height(i ; H !) = height(i) .

Therefore, it suffices to show that

height((g ;G !) # i) ≤ max(height(g ;G !), height(i)) .

By the assumption, ((g ;G !) # i) ; H ! is well defined, and so is (g ;G !) # i . Then, by the IH,

height((g ;G !) # i) ≤ max(height(g ;G !), height(i)) .

Case t = ⊥p(∃p): Provable similarly to the case of s = s ′ → t ′, t = ⊥p .

Case t = G?p ; t ′(∃p, t ′): We have (i ;G !) # (G?p ; t ′) = i # t ′ and height(G?p ; t ′) = height(t ′). Therefore, it
suffices to show that

height(i # t ′) ≤ max(height(i), height(t ′)) .

By the assumption, i # t ′ is well defined. Then, by the IH,

height(i # t ′) ≤ max(height(i), height(t ′)) .
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Case t = H ?p ; t ′(G 6= H )(∃p,H , t ′): We have (i ;G !) # (H ?p ; t ′) = ⊥p and

height(⊥p) = 1, height(H ?p ; t ′) = height(t ′) .

Therefore, it suffices to show that

1 ≤ max(height(i), height(t ′)) ,

which follows from Lemma H.5.

Otherwise: Contradictory because (i ;G !) # t is not well defined.

Case s = ⊥p(∃p): We have ⊥p # t = ⊥p and height(⊥p) = 1. Therefore, it suffices to show that

1 ≤ max(1, height(t)) ,

which is trivial.

Case s = G?p ; b(∃G , p, b): We have (G?p ; b) # t = G?p ; (b # t) and
height(G?p ; (b # t)) = height(b # t), height(G?p ; b) = height(b) .

Therefore, it suffices to show that

height(b # t) ≤ max(height(b), height(t)) .

By the assumption, G?p ; (b # t) is well defined, and so is b # t . Then, by the IH,

height(b # t) ≤ max(height(b), height(t)) .

Lemma H.7. height(s[X := ⋆]) ≤ height(s) and height(s[X := α]) ≤ height(s).

Proof. By straightforward induction on s.

Lemma H.8. If Σ ▷ M −→∗ Σ′ ▷ M ′, then for any s ′ that occurs in M ′, there exists some s that occurs in M
and height(s ′) ≤ height(s).

Proof. By induction on the derivation of Σ ▷ M −→ Σ′ ▷ M ′. We perform case analysis on the rule applied
last to derive Σ ▷ M −→ Σ′ ▷ M ′.

Case (R Delta S), (R Fail S), (R BlameE S), (R BlameC S): No s ′ occurs in M ′.

Case (R Beta S), (R Id S): Obvious because any s ′ in M ′ also appears in M .

Case (R Wrap S): We are given

M = (U 〈s1 → t1〉)V , M ′ = (U (V 〈s1〉))〈t1〉, Σ′ = Σ (∃s1, t1,U ,V ) .

By case analysis on s ′.

Case s ′ = s1 or s ′ = t1: Take s = s1 → t1. By definition height(s → t) = max(height(s), height(t)) + 1.

Otherwise: s ′ occurs also in M .

Case (R Merge S): We are given

M = M1〈s1〉〈t1〉, M ′ = M1〈s1 # t1〉, Σ′ = Σ (∃s1, t1,M1) .

By case analysis on s ′.

Case s ′ = s1 # t1: By Lemma H.6, height(s # t) ≤ max(height(s1), height(t1)). Take s = s1 if height(s1) >
height(t1) or t1 otherwise.
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Otherwise: s ′ also occurs in M .

Case (R TybetaDyn S), (R TybetaDynC S), (R Tybeta S), (R TybetaC S): Easily follows from Lemma H.7.

Case (R CtxE S): We are given

M = E [M1], M ′ = E [M ′
1], Σ ▷ M1 −→ Σ′ ▷ M ′

1 (∃E ,M1,M
′
1) .

By the IH, for any s ′ that occurs in M ′
1, there exists s that occurs in M1 (and M , too) and height(s ′) ≤

height(s). (Any s ′ that occurs in E also appears in M .)

Case (R CtxC S): Similar to the case of (R CtxE S).

Theorem H.9 (λS∀mp is Space-Efficient (Theorem 4.2 of the paper)). If ∅ | ∅ ` M : A and ∅ ▷ M −→∗ Σ′ ▷ M ′,
then, for any s ′ appearing in M ′, there exists some s appearing in M such that height(s ′) ≤ height(s) and
size(s ′) ≤ 5(2height(s) − 1).

Proof. By induction on the length of the evaluation sequence of ∅ ▷ M −→∗ Σ ▷ M ′. By case analysis on the
length.

Case The length is zero: Because M = M ′, s ′ appears in M . Therefore, we can let s = s ′. height(s ′) ≤
height(s ′) trivially holds. Furthermore, by Lemma H.4, size(s ′) ≤ 5(2height(s

′) − 1).

Case The length is greater than zero: We are given

∅ ▷ M −→∗ Σ′′ ▷ M ′′, Σ′′ ▷ M ′′ −→ Σ′ ▷ M ′ (∃Σ′′,M ′′) .

By the IH, for any s ′′ appearing in M ′′, there exists some s appearing in M such that height(s ′′) ≤ height(s).
By Lemma H.8 and Lemma H.4, we conclude that there exists some s appearing in M such that height(s ′) ≤
height(s) and size(s ′) ≤ 5(2height(s

′) − 1) ≤ 5(2height(s) − 1).

I Translation

I.1 Proof of Theorem 4.3

Lemma I.1 (Identity Coercion Translation Preserves Typing). If Σ | Γ `C idA : A⇝ A and ∆ = {X1, . . . ,Xn} ⊆
dom(Γ), then |idA|Γ\∆ is a well-defined ground coercion and Σ | Σ(Γ) \∆ `S |idA|Γ\∆ : Σ(A[X1 := ⋆, · · ·,Xn :=
⋆])⇝ Σ(A[X1 := ⋆, · · ·,Xn := ⋆]).

Proof. By straightforward induction on the structure of type A with Lemma D.10 (2) and Lemma D.10 (5).
We show the case where A = ∀X .B . By the IH, Σ | Σ(Γ,X )\∆ `S |idB |(Γ,X )\∆ : Σ(B [X1 := ⋆, · · ·,Xn := ⋆])⇝
Σ(B [X1 := ⋆, · · ·,Xn := ⋆]) and Σ | Σ(Γ,X ) \ (∆,X ) `S |idB |(Γ,X )\(∆,X ) : Σ(B [X1 := ⋆, · · ·,Xn := ⋆][X :=
⋆])⇝ Σ(B [X1 := ⋆, · · ·,Xn := ⋆][X := ⋆]). Since Σ(Γ,X ) \∆ = (Σ(Γ) \∆),X and Σ(Γ,X ) \ (∆,X ) = Σ(Γ \∆),
we have, by (Ct All S), Σ | Σ(Γ) \ ∆ `S ∀X .(|idB |(Γ\∆),X ,, |idB |(Γ\∆)) : Σ(∀X .B [X1 := ⋆, · · ·,Xn := ⋆]) ⇝
Σ(∀X .B [X1 := ⋆, · · ·,Xn := ⋆]).

Lemma I.2 (Strengthening).

1. If Σ | ∆1,X ,∆2 ` A and X 6∈ ftv(A), then Σ | ∆1,∆2 ` A.

2. If Σ ` ∆1,X ,∆2, then Σ ` ∆1,∆2.

3. If Σ | ∆1,X ,∆2 `C c : A⇝ B and X 6∈ ftv(c), then Σ | ∆1,∆2 `C c : A⇝ B .

Proof. 1. By induction on A.

2. By induction on ∆2.
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3. By straightforward induction on Σ | Γ1,X ,Γ2 `C c : A⇝ B .

Lemma I.3 (Coercion Translation Preserves Typing). If Σ | Γ `C c : A⇝ B and ∆ = {X1, . . . ,Xn} ⊆ dom(Γ),
then Σ | Σ(Γ) \∆ `S |c|Γ\∆ : Σ(A[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(B [X1 := ⋆, · · ·,Xn := ⋆]).

Proof. The proof is by induction on the derivation of Σ | Γ `C c : A⇝ B with case analysis on the last rule
applied.

Case (Ct Id C): By Lemma I.1.

Case (Ct Inj C): We are given

c = G !, A = G , B = ⋆, ` Σ, Σ ` Γ, Σ | Γ ` G (∃G) .

We have two cases.

Case G = X 6∈ Γ \∆: We have |G !|Γ\∆ = id. By Σ | Γ ` X , we have X ∈ Γ, and thus X ∈ ∆. It suffices
to show Σ | Σ(Γ \∆) `S id : (X [X1 := ⋆, · · ·,Xn := ⋆])⇝ ⋆, which follows from (Ct Id S).

Otherwise: We have X ∈ Γ \ ∆ and |G !|Γ\∆ = |idG |Γ\∆ ; G !. By (Ct Id C), Σ | Γ `C idG : G ⇝ G .
Therefore, by Lemma I.1, |idG |Γ\∆ is a well-defined ground coercion and Σ | Σ(Γ) \ ∆ `S |idG |Γ\∆ :
Σ(G [X1 := ⋆, · · ·,Xn := ⋆]) ⇝ Σ(G [X1 := ⋆, · · ·,Xn := ⋆]). But, G [X1 := ⋆, · · ·,Xn := ⋆] = G because G
cannot be a type variable Xi ∈ ∆. Thus, by (Ct Inj S), Σ | Σ(Γ) \ ∆ `S |idG |Γ\∆ ; G ! : Σ(G) ⇝ ⋆.
Since Σ(⋆) = ⋆, we have Σ | Σ(Γ) \∆ `S |idG |Γ\∆ ;G ! : Σ(G)⇝ Σ(⋆).

Case (Ct Proj C): Similarl to the case of (Ct Inj C).

Case (Ct Conceal C): We are given

c = α−, A = A, B = α, ` Σ, Σ ` Γ, α := A ∈ Σ (∃α) .

We have |α−|Γ\∆ = |idα|Γ\∆ = id. Then, by (Tw Name), Σ | Γ \ ∆ ` α, and so, by Lemma D.10 (2), we
have Σ | Σ(Γ \∆) ` α. Furthermore, Lemma D.10 (5) implies ∅ ` Σ(Γ \∆). Hence, by (Ct Id S), we have
Σ | Σ(Γ \ ∆) `S id : Σ(α) ⇝ Σ(α). Therefore, by Corollary D.11, Σ(α[X1 := ⋆, · · ·,Xn := ⋆]) = Σ(α) =
Σ(A) = Σ(A[X1 := ⋆, · · ·,Xn := ⋆])) (the last equality comes from ` Σ and (Sw Binding), and so we have
Σ | Σ(Γ \∆) `S id : Σ(A)⇝ Σ(α).

Case (Ct Reveal C): Provable similarly to the case of (Ct Conceal C).

Case (Ct Fail C): We are given

c = ⊥p
A⇝B , ` Σ, Σ ` Γ, Σ | Γ ` A, Σ | Γ ` B (∃p) .

By Lemma D.5 (1), we have Σ | Γ \∆ ` A[X1 := ⋆, · · ·,Xn := ⋆] and Σ | Γ \∆ ` B [X1 := ⋆, · · ·,Xn := ⋆].
Then, by Lemma D.10 (5), we have ∅ ` Σ(Γ)\∆ and, by Lemma D.10 (3), we have ∅ | Σ(Γ)\∆ ` Σ(A[X1 :=
⋆, · · ·,Xn := ⋆]) and ∅ | Σ(Γ) \ ∆ ` Σ(B [X1 := ⋆, · · ·,Xn := ⋆]). Because |⊥p

A⇝B |Γ\∆ = ⊥p , we have, by
(Ct Fail S), Σ | Σ(Γ) \∆ `S ⊥p : Σ(A[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(B [X1 := ⋆, · · ·,Xn := ⋆]).

Case (Ct Arrow C): We are given

c = c′ → d ′, A = A′ → B ′, B = A′′ → B ′′,

Σ | Γ `C c′ : A′′ ⇝ A′, Σ | Γ `C d ′ : B ′ ⇝ B ′′ (∃A′,A′′,B ′,B ′′, c′, d ′) .

We have |c′ → d ′|Γ\∆ = |c′|Γ\∆ → |d ′|Γ\∆. By the IHs,

Σ | Σ(Γ) \∆ `S |c′|Γ\∆ : Σ(A′′[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(A′[X1 := ⋆, · · ·,Xn := ⋆])

Σ | Σ(Γ) \∆ `S |d ′|Γ\∆ : Σ(B ′[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(B ′′[X1 := ⋆, · · ·,Xn := ⋆]) .

Thus, by (Ct Arrow S), Σ | Σ(Γ) \∆ `S |c′|Γ\∆ → |d ′|Γ\∆ : (Σ(A′[X1 := ⋆, · · ·,Xn := ⋆]) → Σ(B ′[X1 :=
⋆, · · ·,Xn := ⋆]))⇝ (Σ(A′′[X1 := ⋆, · · ·,Xn := ⋆])→ Σ(B ′′[X1 := ⋆, · · ·,Xn := ⋆])). By the definiton of Σ(A),
we have Σ | Σ(Γ) \∆ `S |c|Γ\∆ : Σ(A[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(B [X1 := ⋆, · · ·,Xn := ⋆]).
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Case (Ct Seq C): We are given

c = c′ ; d ′, Σ | Γ `C c′ : A⇝ C , Σ | Γ `C d ′ : C ⇝ B (∃C , c′, d ′) .

We have |c′ ; d ′|Γ\∆ = |c′|Γ\∆ # |d ′|Γ\∆. By the IH,

Σ | Σ(Γ) \∆ `S |c′|Γ\∆ : Σ(A[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(C [X1 := ⋆, · · ·,Xn := ⋆])

Σ | Σ(Γ) \∆ `S |d ′|Γ\∆ : Σ(C [X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(B [X1 := ⋆, · · ·,Xn := ⋆]) .

Therefore, by Lemma E.24, Σ | Σ(Γ) \ ∆ `S |c′|Γ\∆ # |d ′|Γ\∆ : Σ(A[X1 := ⋆, · · ·,Xn := ⋆]) ⇝ Σ(B [X1 :=
⋆, · · ·,Xn := ⋆]).

Case (Ct All C): We are given

c = ∀X .c′, A = ∀X .A′, B = ∀X .B ′, Σ | Γ,X `C c′ : A′ ⇝ B ′ (∃X ,A′,B ′, c′) .

We have |∀X .c′|Γ\∆ = ∀X .|c′|(Γ\∆),X ,, |c′|Γ\∆ = ∀X .|c′|(Γ,X )\∆ ,, |c′|(Γ,X )\(∆,X ) (because (Γ,X ) \ ∆ =
(Γ \∆),X and (Γ,X ) \ (∆,X ) = Γ \∆). By the IH,

Σ | Σ(Γ,X ) \∆ `S |c′|(Γ,X )\∆ : Σ(A′[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(B ′[X1 := ⋆, · · ·,Xn := ⋆])

Σ | Σ(Γ,X ) \ (∆,X ) `S |c′|(Γ,X )\(∆,X ) : Σ(A
′[X1 := ⋆, · · ·,Xn := ⋆][X := ⋆])⇝ Σ(B ′[X1 := ⋆, · · ·,Xn := ⋆][X := ⋆]) .

Thus, by (Ct All S), Σ | Σ(Γ) \ ∆ `S |∀X .c′|Γ\∆ : Σ(∀X .A′[X1 := ⋆, · · ·,Xn := ⋆]) ⇝ Σ(∀X .B ′[X1 :=
⋆, · · ·,Xn := ⋆]).

Theorem I.4 (Translation Preserves Typing (Theorem 4.3 of the paper)). If Σ | Γ `C M : A, then Σ |
Σ(Γ) `S |M |Γ : Σ(A).

Proof. By induction on the derivation of Σ | Γ `C M : A. We perform case analysis on the rule applied last
to derive Σ | Γ `C M : A.

Case (T Const C): We are given

M = k , ` Σ, Σ ` Γ, ty(k) = A (∃k) .

We have |k |Γ = k . By Lemma D.10 (5), ∅ ` Σ(Γ). Since A is a constant type, by A = Σ(A), ty(k) = Σ(A).
Therefore, by (T Const S), we have Σ | Σ(Γ) `S k : Σ(A).

Case (T Var C): We are given

M = x , ` Σ, Σ ` Γ, x : A ∈ Γ (∃x ) .

We have |x |Γ = x . By Lemma D.10 (5), ∅ ` Σ(Γ). By the definition of Σ(Γ), x : Σ(A) ∈ Σ(Γ). By
(T Var S), Σ | Σ(Γ) `S x : Σ(A).

Case (T Abs C): We are given

M = λx :A′.M ′, A = A′ → B , Σ | Γ, x : A′ `C M ′ : B (∃A′,B , x ,M ′) .

We have |λx :A′.M ′|Γ = λx :A′.|M ′|Γ,x :A′ . By the IH, Σ | Σ(Γ), x : Σ(A′) `S |M ′|Γ,x :A : Σ(B). By
(T Abs S), Σ | Σ(Γ) `S λx :A′.|M ′|Γ,x :A′ : Σ(A′) → Σ(B). By the definition of Σ(A → B), we have
Σ | Σ(Γ) `S λx :A′.|M ′|Γ,x :A′ : Σ(A′ → B).

Case (T App C): We are given

M = M1 M2, Σ | Γ `C M1 : B → A, Σ | Γ `C M2 : B (∃B ,M1,M2) .

We have |M1 M2|Γ = |M1|Γ |M2|Γ. By the IHs, Σ | Σ(Γ) `S |M1|Γ : Σ(B → A) and Σ | Γ `S |M2|Γ : Σ(B).
By the definition of Σ(B → A), we have Σ | Σ(Γ) `S |M1|Γ : Σ(B) → Σ(A). Therefore, by (T App S),
Σ | Σ(Γ) `S |M1|Γ |M2|Γ : Σ(A).
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Case (T Tyabs C): We are given

M = ΛX .(M ′ : A′), A = ∀X .A′, Σ | Γ,X `C M ′ : A′ (∃X ,A′,M ′) .

We have |ΛX .(M ′ : A′)|Γ = ΛX .|M ′|Γ,X . By the IH, |M ′|Γ,X is well defined, and Σ | Σ(Γ),X `S |M ′|Γ,X :
Σ(A′). Therefore, by (T Tyabs S), Σ | Σ(Γ) `S ΛX .|M ′|Γ,X : ∀X .Σ(A′). By the definition of Σ(∀X .A), we
have Σ | Σ(Γ) `S ΛX .|M ′|Γ,X : Σ(∀X .A′).

Case (T Tyapp C): We are given

M = M ′ A′, A = B [X := A′], Σ | Γ `C M ′ : ∀X .B , Σ | Γ ` A′ (∃X ,A′,B ,M ′) .

We have |M ′ A′|Γ = |M ′|Γ A′. By the IH, Σ | Σ(Γ) `S |M ′|Γ : Σ(∀X .B). By the definition of Σ(∀X .A), we
have Σ | Σ(Γ) `S |M ′|Γ : ∀X .Σ(B). Therefore, by (T Tyapp S), Σ | Σ(Γ) `S |M ′|Γ A′ : Σ(B)[X := Σ(A′)],
and so, by the definition of Σ(B [X := A′]), we have Σ | Σ(Γ) `S |M ′|Γ A′ : Σ(B [X := A′]).

Case (T Blame C): We are given

M = blame p, ` Σ, Σ ` Γ, Σ | Γ ` A (∃p) .

We have |blame p|Γ = blame p. By Lemma D.10 (5), ∅ ` Σ(Γ). By Lemma D.10 (3), ∅ | Σ(Γ) ` Σ(A).
Therefore, by (T Blame S), Σ | Σ(Γ) `S blame p : Σ(A).

Case (T Crc C): We are given

M = M ′〈c〉, Σ | Γ `C M ′ : B , Σ | Γ `C c : B ⇝ A (∃B , c,M ′) .

We have |M ′〈c〉|Γ = |M ′|Γ〈|c|Γ〉. By the IH, Σ | Σ(Γ) `S |M ′|Γ : Σ(B). By Lemma I.3, we have Σ | Σ(Γ) `S
|c|Γ : Σ(B)⇝ Σ(A). Thus, by (T Crc S), we have Σ | Σ(Γ) `S |M ′|Γ〈|c|Γ〉 : Σ(A).

I.2 Proof of Theorem 4.4

Lemma I.5 (Identity Coercions as The Left Unit). If Σ | Γ `S t : A⇝ B , then id # t = t .

Proof. By induction on the structure of type t .

Case t = ⊥p (∃p): id #⊥p = ⊥p .

Case t = id: id # id = id.

Case t = h ; H ! (∃h,H ): id # (h ; H !) = (id # h) ; H ! = h ; H !.

Otherwise: id # t = t .

Lemma I.6 (Identity Coercions as The Right Unit). s # id = s.

Proof. By induction on the structure of type s.

Case s = G?p ; b (∃G , p, b): By the IH, b # id = b. Therefore, (G?p ; b) # id = G?p ; (b # id) = G?p ; b.

Case s = ⊥p (∃p): ⊥p # id = ⊥p .

Case s = i (∃i): i # id = i .

Lemma I.7 (Composition is Associative). If Σ | Γ `S s1 : A ⇝ B and Σ | Γ `S s2 : B ⇝ C and
Σ | Γ `S s3 : C ⇝ D , then (s1 # s2) # s3 = s1 # (s2 # s3).

86



Proof. [YT: The proof implicitly requires # determinacy. Can we prove this?] By induction on the total sum ←−
of the sizes of s1, s2, and s3. First, we consider the cases where either s1, s2, or s3 is an identity coercion.

Case s1 = id: By Lemma I.5,

(id # s2) # s3 = s2 # s3,
id # (s2 # s3) = s2 # s3 .

Case s2 = id: By Lemma I.5 and Lemma I.6,

(s1 # id) # s3 = s1 # s3,
s1 # (id # s3) = s1 # s3 .

Case s3 = id: By Lemma I.6,

(s1 # s2) # id = s1 # s2,
s1 # (s2 # id) = s1 # s2 .

Next, we consider the cases where neither s1, s2, or s3 is an identity coercion. By case analysis on whether
s1 is an intermediate coercion or not.

Case s1 = G1?
p1 ; b1 (∃G1, p1, b1): Because Σ | Γ `S G1?

p1 ; b1 : A⇝ B is derived by (Ct Proj S), we have

A = ⋆, Σ | Γ `S b1 : Σ(G1)⇝ B .

Then, by the IH, (b1 # s2) # s3 = b1 # (s2 # s3). Therefore,
((G1?

p1 ; b1) # s2) # s3 = (G1?
p1 ; (b1 # s2)) # s3

= G1?
p1 ; ((b1 # s2) # s3),

(G1?
p1 ; b1) # (s2 # s3) = G1?

p1 ; (b1 # (s2 # s3))
= G1?

p1 ; ((b1 # s2) # s3) .
Case s1 = ⊥p1 (∃p1):

(⊥p1 # s2) # s3 = ⊥p1 # s3
= ⊥p1 ,

⊥p1 # (s2 # s3) = ⊥p1 .

Case s1 = i1 (∃i1): By case analysis on whether s2 is an intermediate coercion or not.

Case s2 = G2?
p2 ; b2: Because Σ | Γ `S G2?

p2 ; b2 : B ⇝ C is derived by (Ct Proj S), we have

B = ⋆, Σ | Γ `S b2 : Σ(G2)⇝ C .

Since i1 is not an identity coercion, Σ | Γ ` i1 : A⇝ ⋆ is derived by (Ct Inj S). Therefore,

i1 = g1 ;G1!, Σ | Γ `S g1 : A⇝ Σ(G1) (∃g1,G1) .

By case analysis on whether G1 = G2 or not.

Case G1 = G2: By the IH, we have (g1 # b2) # s3 = g1 # (b2 # s3). Therefore,
((g1 ;G1!) # (G1?

p2 ; b2)) # s3 = (g1 # b2) # s3
= g1 # (b2 # s3),

(g1 ;G1!) # ((G1?
p2 ; b2) # s3) = (g1 ;G1!) # (G1?

p2 ; (b2 # s3))
= g1 ; (b2 # s3) .
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Case G1 6= G2:

((g1 ;G1!) # (G2?
p2 ; b2)) # s3 = ⊥p2 # s3

= ⊥p2 ,

(g1 ;G1!) # ((G2?
p2 ; b2) # s3) = (g1 ;G1!) # (G2?

p2 ; (b2 # s3))
= ⊥p2 .

Case s2 = ⊥p2 (∃p2):

(i1 #⊥p2) # s3 = ⊥p2 # s3 = ⊥p2 ,

i1 # (⊥p2 # s3) = i1 #⊥p2 = ⊥p2 .

Case s2 = i2 (∃i2): By case analysis on whether s3 is an intermediate coercion or not.

Case s3 = G3?
p3 ; b3 (∃G3, p3, b3): Because Σ | Γ `S G3?

p3 ; b3 : C ⇝ D is derived by (Ct Proj S), we
have

C = ⋆, Σ | Γ `S b3 : Σ(G3)⇝ D .

Since i2 is not an identity coercion, Σ | Γ ` i2 : B ⇝ ⋆ is derived by (Ct Inj S). Therefore,

i2 = g2 ;G2!, Σ | Γ `S g2 : B ⇝ Σ(G1) (∃g2,G2) .

By case analysis on whether G2 = G3 or not.

Case G2 = G3: By the IH, we have (i1 # g2) # b3 = i1 # (g2 # b3). Therefore,
(i1 # (g2 ;G2!)) # (G2?

p3 ; b3) = ((i1 # g2) ;G2!) # (G2?
p3 ; b3)

= (i1 # g2) # b3 ,

i1 # ((g2 ;G2!) # (G2?
p3 ; b3)) = i1 # (g2 # b3)

= (i1 # g2) # b3 .

Case G2 6= G3:

(i1 # (g2 ;G2!)) # (G3?
p3 ; b3) = ((i1 # g2) ;G2!) # (G3?

p3 ; b3)

= ⊥p3 ,

i1 # ((g2 ;G2!) # (G3?
p3 ; b3)) = i1 #⊥p3

= ⊥p3 .

Case s3 = ⊥p3 (∃p3):

(i1 # i2) #⊥p3 = ⊥p3 ,

i1 # (i2 #⊥p3) = i1 #⊥p3 = ⊥p3 .

Case s3 = i3 (∃i3): (Proof follows in the next paragraph.)

Next, we consider the cases where s1, s2, or s3 are intermediate coercions, but neither of them is not an
identity coercion. By case analysis on whether i1 is a ground coercion or not.

Case i1 = g1 ;G1! (∃g1,G1): Since Σ | Γ `S g1 ;G1! : A⇝ B is derived by (Ct Inj S), we have

B = ⋆, Σ | Γ `S g1 : A⇝ Σ(G1) .

By case analysis on i2.

Case i2 = g2 ;G2! (∃g2,G2): Since Σ | Γ `S g2 ;G2! : ⋆⇝ C is derived by (Ct Inj S), we have

C = ⋆, Σ | Γ `S g2 : ⋆⇝ Σ(G2) .

By case analysis on i3.
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Case i3 = g3 ;G3! (∃g3,G3): Since Σ | Γ `S g3 ;G3! : ⋆⇝ D is derived by (Ct Inj S), we have

D = ⋆, Σ | Γ `S g3 : ⋆⇝ Σ(G3) .

By the IH, (g1 ;G1!) # ((g2 ;G2!) # g3) = ((g1 ;G1!) # (g2 ;G2!)) # g3. Therefore,
((g1 ;G1!) # (g2 ;G2!)) # (g3 ;G3!) = (((g1 ;G1!) # g2) ;G2!) # (g3 ;G3!)

= ((((g1 ;G1!) # g2) ;G2!) # g3) ;G3! ,

(g1 ;G1!) # ((g2 ;G2!) # (g3 ;G3!)) = (g1 ;G1!) # (((g2 ;G2!) # g3) ;G3!)

= ((g1 ;G1!) # ((g2 ;G2!) # g3)) ;G3!

= (((g1 ;G1!) # (g2 ;G2!)) # g3) ;G3!

= ((((g1 ;G1!) # g2) ;G2!) # g3) ;G3! .

Otherwise: Contradictory because C cannot be a dynamic type.

Otherwise: Contradictory because B cannot be a dynamic type.

Case i1 = g1 (∃g1): By case analysis on whether i2 is a ground coercion or not.

Case i2 = g2 ;G2! (∃g2,G2): Since Σ | Γ `S g2 ;G2! : B ⇝ C is derived by (Ct Inj S), we have

C = ⋆, Σ | Γ `S g2 : B ⇝ Σ(G2) .

By case analysis on i3.

Case i3 = g3 ;G3! (∃g3,G3): Since Σ | Γ `S g3 ;G3! : ⋆⇝ D is derived by (Ct Inj S), we have

D = ⋆, Σ | Γ `S g3 : ⋆⇝ Σ(G3) .

Therefore,

(g1 # (g2 ;G2!)) # (g3 ;G3!) = ((g1 # g2) ;G2!) # (g3 ;G3!)

= (((g1 # g2) ;G2!) # g3) ;G3! ,

g1 # ((g2 ;G2!) # (g3 ;G3!)) = g1 # (((g2 ;G2!) # g3) ;G3!)

= (g1 # ((g2 ;G2!) # g3)) ;G3!

= ((g1 # (g2 ;G2!)) # g3) ;G3!

= (((g1 # g2) ;G2!) # g3) ;G3! .

Otherwise: Contradictory because C cannot be a dynamic type.

Case i2 = g2 (∃g2): By case analysis on whether i3 is a ground coercion or not.

Case i3 = g3 ;G3! (∃g3,G3): By the IH, (g1 # g2) # g3 = g1 # (g2 # g3). Therefore,
(g1 # g2) # (g3 ;G3!) = ((g1 # g2) # g3) ;G3! ,

g1 # (g2 # (g3 ;G3!))

= g1 # ((g2 # g3) ;G3!)

= (g1 # (g2 # g3)) ;G3!

= ((g1 # g2) # g3) ;G3! .

Case i3 = g3: (Proof follows in the next paragraph.)

Finally, we consider the cases where s1, s2, and s3 are ground coercions, but neither of them is not an identity
coercion. By case analysis on g1.
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Case g1 = s ′1 → t ′1 (∃s ′1, t ′1): Since Σ | Γ `S s ′1 → t ′1 : A⇝ B is derived by (Ct Arrow S), we have

A = A1 → B1, B = A2 → B2, Σ | Γ `S s ′1 : A2 ⇝ A1, Σ | Γ `S t ′1 : B1 ⇝ B2 (∃A1,B1,A2,B2) .

By case analysis on s2.

Case g2 = s ′2 → t ′2 (∃s ′2, t ′2): Since Σ | Γ `S s ′2 → t ′2 : B ⇝ C is derived by (Ct Arrow S), we have

C = A3 → B3, Σ | Γ `S s ′2 : A3 ⇝ A2, Σ | Γ `S t ′2 : B2 ⇝ B3 (∃A3,B3) .

By case analysis on s3.

Case g3 = s ′3 → t ′3 (∃s ′3, t ′3): Since Σ | Γ `S s ′3 → t ′3 : C ⇝ D is derived by (Ct Arrow S), we have

D = A4 → B4, Σ | Γ `S s ′3 : A4 ⇝ A3, Σ | Γ `S t ′3 : B3 ⇝ B4 (∃A4,B4) .

By the IHs, (s ′3 # s ′2) # s ′1 = s ′3 # (s ′2 # s ′1) and (t ′1 # t ′2) # t ′3 = t ′1 # (t ′2 # t ′3). Therefore,
((s ′1 → t ′1) # (s ′2 → t ′2)) # (s ′3 → t ′3) = ((s ′2 # s ′1)→ (t ′1 # t ′2)) # (s ′3 → t ′3)

= (s ′3 # (s ′2 # s ′1))→ ((t ′1 # t ′2) # t ′3)
= ((s ′3 # s ′2) # s ′1)→ ((t ′1 # t ′2) # t ′3) ,

(s ′1 → t ′1) # ((s ′2 → t ′2) # (s ′3 → t ′3)) = (s ′1 → t ′1) # ((s ′3 # s ′2)→ (t ′2 # t ′3))
= ((s ′3 # s ′2) # s ′1)→ (t ′1 # (t ′2 # t ′3))
= ((s ′3 # s ′2) # s ′1)→ ((t ′1 # t ′2) # t ′3) .

Otherwise: Contradictory because C cannot be a function type.

Otherwise: Contradictory because B cannot be a funcion type.

Case g1 = ∀X .s ′1 ,, t
′
1 (∃X , s ′1, t

′
1): Since Σ | Γ `S ∀X .s ′1 ,, t

′
1 : A⇝ B is derived by (Ct All S), we have

A = ∀X .A1, B = ∀X .B1, Σ | Γ,X `S s ′1 : A1 ⇝ B1,

Σ | Γ `S t ′1 : A1[X := ⋆]⇝ B1[X := ⋆] (∃A1,B1) .

By case analysis on s2.

Case g2 = ∀Y .s ′2 ,, t
′
2 (∃Y , s ′2, t

′
2): Since Σ | Γ `S ∀X .s ′2 ,, t

′
2 : B ⇝ C is derived by (Ct All S), we have

Y = X , C = ∀X .C1, Σ | Γ,X `S s ′2 : B1 ⇝ C1,

Σ | Γ `S t ′2 : B1[X := ⋆]⇝ C1[X := ⋆] (∃C1) .

By case analysis on s3.

Case g3 = ∀Z .s ′3 ,, t
′
3 (∃Z , s ′3, t

′
3): Since Σ | Γ `S ∀X .s ′3 ,, t

′
3 : B ⇝ C is derived by (Ct All S), we have

Z = X , D = ∀X .D1, Σ | Γ,X `S s ′3 : C1 ⇝ D1,

Σ | Γ `S t ′3 : C1[X := ⋆]⇝ D1[X := ⋆] (∃D1) .

Then, by the IH, (s ′1 # s ′2) # s ′3 = s ′1 # (s ′2 # s ′3) and (t ′1 # t ′2) # t ′3 = t ′1 # (t ′2 # t ′3). Therefore,
((∀X .s ′1 ,, t

′
1) # (∀X .s ′2 ,, t

′
2)) # (∀X .s ′3 ,, t

′
3) = (∀X .(s ′1 # s ′2) ,, (t ′1 # t ′2)) # (∀X .s ′3 ,, t

′
3)

= ∀X .((s ′1 # s ′2) # s ′3) ,, ((t ′1 # t ′2) # t ′3),
(∀X .s ′1 ,, t

′
1) # ((∀X .s ′2 ,, t

′
2) # (∀X .s ′3 ,, t

′
3)) = (∀X .s ′1 ,, t

′
1) # (∀X .(s ′2 ,, t

′
2 # s ′3 ,, t ′3))

= ∀X .(s ′1 # (s ′2 # s ′3)) ,, (t ′1 # (t ′2 # t ′3))
= ∀X .((s ′1 # s ′2) # s ′3) ,, ((t ′1 # t ′2) # t ′3) .

Otherwise: Contradictory because C cannot be a polymorphic type.

Otherwise: Contradictory because B cannot be a polymorphic type.
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Lemma I.8 (coerce±α (A) Generates a No-op Coercion). coerce+α (A) and coerce−α (A) are no-op coercions.

Proof. By straightforward induction on A.

Lemma I.9 (Type Name Substitution Preserves Well-formedness). Suppose ` Σ, α := C.

1. If Σ | Γ[α := C] ` A, then Σ, α := C | Γ ` A.

2. If Σ ` Γ[α := C], then Σ, α := C ` Γ.

3. If Σ | Γ[α := C] `C c : A⇝ B , then Σ, α := C | Γ `C c : A⇝ B .

Proof. 1. By straightforward induction on Σ | Γ[α := C] ` A.

2. By straightforward induction on Σ ` Γ[α := C].

3. By straightforward induction on Σ | Γ[α := C] `C c : A⇝ B .

Lemma I.10 (Noop Coercion Exists for a Well-formed Type). If ` Σ and Σ | Γ ` A, there exist no-op coercions
cI and dI such that Σ | Γ `C cI : A⇝ Σ(A) and Σ | Γ `C dI : Σ(A)⇝ A.

Proof. By induction on Σ.

Case Σ = ∅: Since Σ(A) = A, it suffices to take cI = dI = idA.

Case Σ = Σ0, α := B: By Lemma D.9, Σ0 | Γ[α := B] ` A[α := B]. By the IH, there exist cI0 and dI0 such that

Σ0 | Γ[α := B] `C cI0 : A[α := B]⇝ Σ0(A[α := B])
Σ0 | Γ[α := B] `C dI0 : Σ0(A[α := B])⇝ A[α := B] .

By Lemma I.9 and Σ(A) = Σ0(A[α := B]),

Σ | Γ `C cI0 : A[α := B]⇝ Σ(A) Σ | Γ `C dI0 : Σ(A)⇝ A[α := B] .

We have ` Σ and α := B ∈ Σ and Σ ` Γ,X and Σ | Γ,X ` A[α := X ] (by induction on A), and, by
Lemma E.17,

Σ | Γ `C coerce+α (A) : A⇝ A[α := B] Σ | Γ `C coerce−α (A) : A[α := B]⇝ A .

Let cI be coerce+α (A);c
I
0 and dI be dI0 ;coerce

−
α (A), which are no-op coercions by Lemma I.8. By (Ct Seq C),

Σ | Γ `C coerce+α (A) ; c
I
0 : A⇝ Σ(A) Σ | Γ `C dI0 ; coerce

−
α (A) : Σ(A)⇝ A .

Lemma I.11 (No-Op Coercion Translates to Unit). Suppose Σ | Γ `C cI : A⇝ B and ∆ = {X1, . . . ,Xn} ⊆ Γ.

(1) If Σ | Σ(Γ \∆) `S t : Σ(B [X1 := ⋆, · · ·,Xn := ⋆])⇝ C , then |cI |Γ\∆ # t = t .

(2) If Σ | Σ(Γ \∆) `S s : C ⇝ Σ(A[X1 := ⋆, · · ·,Xn := ⋆]), then s # |cI |Γ\∆ = s.

Proof. We show both items simultaneously by induction on Σ | Γ `C cI : A ⇝ B with case analysis on the
last typing rule used.

Case (CT Id C): We are given cI = idA (and A = B and that A is neither a function nor universal type). If A
is Xi for some i, then |idA|Γ\∆ = id and, otherwise |idA|Γ\∆ = id. In either case, Lemma I.5 and Lemma I.6
finish the case.

Case (CT Fail C), (CT Inj C), (CT Proj C): Cannot happen because cI is a no-op coercion.
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Case (CT Conceal C): We are given cI = α− for some α. Since |α−|Γ\∆ = id, Lemma I.5 and Lemma I.6
finish the case.

Case (CT Reveal C): We are given cI = α+ for some α. Since |α+|Γ\∆ = id, Lemma I.5 and Lemma I.6
finish the case.

Case (CT Arrow C): We are given:

cI = cI1 → cI2, A = A1 → A2, B = B1 → B2,

Σ | Γ `C cI1 : B1 ⇝ A1, Σ | Γ `C cI2 : A2 ⇝ B2 (∃cI1, cI2,A1,A2,B1,B2)

We have |cI |Γ\∆ = |cI1|Γ\∆ → |cI2|Γ\∆.

(1) Assume Σ | Σ(Γ \∆) `S t : Σ(B1[X1 := ⋆, · · ·,Xn := ⋆]) → Σ(B2[X1 := ⋆, · · ·,Xn := ⋆]) ⇝ C . We will
show that |cI |Γ\∆ # t = t by case analysis on the rule applied last to derive Σ | Σ(Γ) `S t : Σ(B1[X1 :=
⋆, · · ·,Xn := ⋆])→ Σ(B2[X1 := ⋆, · · ·,Xn := ⋆])⇝ C .

Case (Ct Inj S): We are given

t = g ;G !, C = ⋆,

Σ | Σ(Γ \∆) `S g : Σ(B1[X1 := ⋆, · · ·,Xn := ⋆])→ Σ(B2[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(G) (∃G , g) .

By coercion typing rules, it must be the case that Σ(G) = ⋆→ ⋆ and g = s ′ → t ′ and Σ | Σ(Γ\∆) `S
s ′ : ⋆ ⇝ Σ(B1[X1 := ⋆, · · ·,Xn := ⋆]) and Σ | Σ(Γ \∆) `S t ′ : Σ(B2[X1 := ⋆, · · ·,Xn := ⋆]) ⇝ ⋆ for
some s ′ and t ′. By the IH, s ′ # |cI1|Γ\∆ = s ′ and |cI2|Γ\∆ # t ′ = t ′. Thus, we have

(|cI1|Γ\∆ → |cI2|Γ\∆) # ((s ′ → t ′) ;G !) = ((|cI1|Γ\∆ → |cI2|Γ\∆) # (s ′ → t ′)) ;G !

= ((s ′ # |cI1|Γ\∆)→ (|cI2|Γ\∆ # t ′)) ;G !

= (s ′ → t ′) ;G ! .

Case (Ct Fail S): We are given t = ⊥p for some p. Then, (|cI1|Γ\∆ → |cI2|Γ\∆) #⊥p = ⊥p .

Case (Ct Arrow S): We are given

t = s ′ → t ′, C = C1 → C2,

Σ | Σ(Γ \∆) `S s ′ : C1 ⇝ Σ(B1[X1 := ⋆, · · ·,Xn := ⋆]),

Σ | Γ \∆ `S t ′ : Σ(B2[X1 := ⋆, · · ·,Xn := ⋆])⇝ C2 (∃C1,C2, s
′, t ′) .

By the IH, s ′ # |cI1|Γ\∆ = s ′ and |cI2|Γ\∆ # t = t . Therefore,

(|cI1|Γ\∆ → |cI2|Γ\∆) # (s ′ → t ′) = (s ′ # |cI1|Γ\∆)→ (|cI2|Γ\∆ # t ′) = s ′ → t ′ = t .

Otherwise: Cannot happen.

(2) Assume Σ | Σ(Γ \∆) `S s : C ⇝ Σ(A1[X1 := ⋆, · · ·,Xn := ⋆])→ Σ(A2[X1 := ⋆, · · ·,Xn := ⋆]). We will
show that s # |cI |Γ\∆ = s by case analysis on the rule applied last to derive Σ | Σ(Γ \∆) `S s : C ⇝
Σ(A1[X1 := ⋆, · · ·,Xn := ⋆])→ Σ(A2[X1 := ⋆, · · ·,Xn := ⋆]).

Case (Ct Proj S): We are given

s = G?p ; b, C = ⋆,

Σ | Σ(Γ \∆) `S b : Σ(G)⇝ Σ(A1[X1 := ⋆, · · ·,Xn := ⋆])→ Σ(A2[X1 := ⋆, · · ·,Xn := ⋆]) (∃p,G , b) .

Then, b is either ⊥q for some q or b is an intermediate coercion. The former case is easy because
s # |cI |Γ\∆ = G?p ;(⊥q # |cI |Γ\∆) = G?p ;⊥q = s. In the latter case, by coercion typing rules, it must be
the case that Σ(G) = ⋆→ ⋆ and b = s ′ → t ′ and Σ | Σ(Γ\∆) `S s ′ : Σ(A1[X1 := ⋆, · · ·,Xn := ⋆])⇝ ⋆
and Σ | Σ(Γ \∆) `S t ′ : ⋆⇝ Σ(A2[X1 := ⋆, · · ·,Xn := ⋆]) for some s ′, t ′. By the IH, |cI1|Γ\∆ # s ′ = s ′

and t ′ # |cI2|Γ\∆ = t ′. Thus, we have

(G?p ; (s ′ → t ′)) # (|cI1|Γ\∆ → |cI2|Γ\∆) = G?p ; ((s ′ → t ′) # (|cI1|Γ\∆ → |cI2|Γ\∆))
= G?p ; ((|cI1|Γ\∆ # s ′)→ (t ′ # |cI2|Γ\∆))
= G?p ; (s ′ → t ′) = s .
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Case (Ct Fail S): We are given s = ⊥p for some p. Then, ⊥p # |cI |Γ\∆ = ⊥p .

Case (Ct Arrow S): We are given

s = s ′ → t ′, C = C1 → C2, Σ | Σ(Γ \∆) `S s ′ : Σ(A1[X1 := ⋆, · · ·,Xn := ⋆])⇝ C1,

Σ | Σ(Γ \∆) `S t ′ : C2 ⇝ Σ(A2[X1 := ⋆, · · ·,Xn := ⋆]) (∃C1,C2, s
′, t ′) .

By the IH, |cI1|Γ\∆ # s ′ = s ′ and t ′ # |cI2|Γ\∆ = t ′. Therefore,

(s ′ → t ′) # (|cI1|Γ\∆ → |cI2|Γ\∆) = (|cI1|Γ\∆ # s ′)→ (t ′ # |cI2|Γ\∆) = s ′ → t ′ = s .

Otherwise: Cannot happen.

Case (Ct All C): We are given

cI = ∀X .cI0, A = ∀X .A0, B = ∀X .B0, Σ | Γ,X `C cI0 : A0 ⇝ B0 (∃cI0,X ,A0,B0) .

We have |cI |Γ\∆ = ∀X .|cI0|(Γ\∆),X ,, |cI0|Γ\∆.

(1) Assume Σ | Σ(Γ \∆) `S t : ∀X .Σ(B0[X1 := ⋆, · · ·,Xn := ⋆])⇝ C . We will show that |cI | # t = t by case
analysis on the rule applied last to derive Σ | Σ(Γ \∆) `S t : ∀X .Σ(B0[X1 := ⋆, · · ·,Xn := ⋆])⇝ C .

Case (Ct Inj S): We are given

t = g ;G !, C = ⋆, Σ | Σ(Γ \∆) `S g : ∀X .Σ(B0[X1 := ⋆, · · ·,Xn := ⋆])⇝ Σ(G) (∃G , g) .

By coercion typing rules, it must be the case that

Σ(G) = ∀X .⋆, g = ∀X .t ′ ,, t ′′,

Σ | Σ(Γ \∆),X `S t ′ : Σ(B0[X1 := ⋆, · · ·,Xn := ⋆])⇝ ⋆

Σ | Σ(Γ \∆) `S t ′′ : Σ(B0[X1 := ⋆, · · ·,Xn := ⋆][X := ⋆])⇝ ⋆

for some t ′ and t ′′. By the IH, |cI0|(Γ,X )\∆ # t ′ = t ′ and |cI0|(Γ,X )\(∆,X ) # t ′′ = t ′′. Thus, we have

(|∀X .cI0|Γ\∆) # ((∀X .t ′ ,, t ′′) ;G !) = ((∀X .|cI0|(Γ\∆),X ,, |cI0|Γ\∆) # (∀X .t ′ ,, t ′′)) ;G !

= ((∀X .|cI0|(Γ,X )\∆ ,, |cI0|(Γ,X )\(∆,X )) # (∀X .t ′ ,, t ′′)) ;G !

= (∀X .((|cI0|(Γ,X )\∆ # t ′) ,, (|cI0|(Γ,X )\(∆,X ) # t ′′))) ;G !

= (∀X .t ′ ,, t ′′) ;G ! = t .

Case (Ct Fail S): We are given t = ⊥p for some p. Then, |∀X .cI0|Γ\∆ #⊥p = ⊥p .

Case (Ct All S): We are given

t = ∀X .t ′ ,, t ′′, C = ∀X .C0, Σ | Γ,X `S t ′ : Σ(B0[X1 := ⋆, · · ·,Xn := ⋆])⇝ C0,

Σ | Γ `S t ′′ : Σ(B0[X1 := ⋆, · · ·,Xn := ⋆][X := ⋆])⇝ C0[X := ⋆] (∃C0, t
′, t ′′) .

By the IH, |cI0|(Γ,X )\∆ # t ′ = t ′ and |cI0|(Γ,X )\(∆,X ) # t ′′ = t ′′. Therefore,

(|∀X .cI0|Γ\∆) # (∀X .t ′ ,, t ′′) = (∀X .|cI0|(Γ\∆),X ,, |cI0|Γ\∆) # (∀X .t ′ ,, t ′′)

= (∀X .|cI0|(Γ,X )\∆ ,, |cI0|(Γ,X )\(∆,X )) # (∀X .t ′ ,, t ′′)

= ∀X .((|cI0|(Γ,X )\∆ # t ′) ,, (|cI0|(Γ,X )\(∆,X ) # t ′′))
= ∀X .t ′ ,, t ′′ = t .

Otherwise: Cannot happen.

(2) Assume Σ | Σ(Γ \∆) `S s : C ⇝ ∀X .Σ(A0[X1 := ⋆, · · ·,Xn := ⋆]). We will show that s # |cI |Γ\∆ = s by
case analysis on the rule applied last to derive Σ | Σ(Γ\∆) `S s : C ⇝ ∀X .Σ(A0[X1 := ⋆, · · ·,Xn := ⋆]).
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Case (Ct Proj S): We are given

s = G?p ; b, C = ⋆, Σ | Σ(Γ \∆) `S b : Σ(G)⇝ ∀X .Σ(A0[X1 := ⋆, · · ·,Xn := ⋆]) (∃p,G , b) .

Then, b is either ⊥q for some q or an intermediate coercion. The former case is easy because
s # |cI0|Γ\∆ = G?p ; (⊥q # |cI0|Γ\∆) = G?p ;⊥q . In the latter case, by coercion typing rules, it must be
the case that

Σ(G) = ∀X .⋆, b = ∀X .s ′ ,, s ′′,

Σ | Σ(Γ \∆),X `S s ′ : ⋆⇝ Σ(A0[X1 := ⋆, · · ·,Xn := ⋆]),

Σ | Σ(Γ \∆) `S s ′′ : ⋆⇝ Σ(A0[X1 := ⋆, · · ·,Xn := ⋆][X := ⋆])

for some s ′ and s ′′. By the IH, s ′ # |cI0|(Γ,X )\∆ = s ′ and s ′ # |cI0|(Γ,X )\(∆,X ) = s ′′. Thus, we have

(G?p ; ∀X .s ′ ,, s ′′) # (|∀X .cI0|Γ\∆) = G?p ; ((∀X .s ′ ,, s ′′) # (∀X .|cI0|(Γ\∆),X ,, |cI0|Γ\∆))
= G?p ; ((∀X .s ′ ,, s ′′) # (∀X .|cI0|(Γ,X )\∆ ,, |cI0|(Γ,X )\(∆,X )))

= G?p ; (∀X .(s ′ # |cI0|(Γ,X )\∆) # (s ′′ ,, |cI0|(Γ,X )\(∆,X )))

= G?p ; (∀X .s ′ ,, s ′′) .

Case (Ct Fail S): We are given s = ⊥p for some p. Then, ⊥p # (|∀X .cI0|Γ\∆) = ⊥
p .

Case (Ct All S): We are given

s = ∀X .s ′ ,, s ′′, C = ∀X .C0, Σ | Γ,X `S s ′ : C0 ⇝ Σ(A0[X1 := ⋆, · · ·,Xn := ⋆]),

Σ | Γ `S s ′′ : C0[X := ⋆]⇝ Σ(A0[X1 := ⋆, · · ·,Xn := ⋆][X := ⋆]), (∃C0, s
′, s ′′) .

By the IH, s ′ # |cI0|(Γ,X )\∆ = s ′ and s ′′ # |cI0|(Γ,X )\(∆,X ) = s ′′. Therefore,

(∀X .s ′ ,, s ′′) # (|∀X .cI0|Γ\∆) = (∀X .s ′ ,, s ′′) # (∀X .|cI0|(Γ\∆),X ,, |cI0|Γ\∆)
= (∀X .s ′ ,, s ′′) # (∀X .|cI0|(Γ,X )\∆ ,, |cI0|(Γ,X )\(∆,X ))

= ∀X .(s ′ # |cI0|(Γ,X )\∆) ,, (s
′′ # |cI0|(Γ,X )\(∆,X ))

= ∀X .s ′ ,, s ′′ = s .

Otherwise: Cannot happen.

Case (Ct Seq C): We are given

cI = cI1 ; c
I
2, Σ | Γ `C cI1 : A⇝ C , Σ | Γ `C cI2 : C ⇝ B (∃cI1, cI2,C )

(1) Assume Σ | Σ(Γ \∆) `S t : B [X1 := ⋆, · · ·,Xn := ⋆]⇝ D . We will show that |cI |Γ\∆ # t = t . In fact,

|cI |Γ\∆ # t = (|cI1|Γ\∆ # |cI2|Γ\∆) # t
= |cI1|Γ\∆ # (|cI2|Γ\∆ # t) (Lemma I.7)

= |cI1|Γ\∆ # t (by the IH)

= t (by the IH).

(2) Assume Σ | Σ(Γ \∆) `S s : D ⇝ A[X1 := ⋆, · · ·,Xn := ⋆]. We will show that s # |cI |Γ\∆ = s. In fact,

s # |cI |Γ\∆ = s # (|cI1|Γ\∆ # |cI2|Γ\∆)
= (s # |cI1|Γ\∆) # |cI2|Γ\∆ (Lemma I.7)

= s # |cI1|Γ\∆ (by the IH)

= s (by the IH).
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Lemma I.12 (Determinacy of Evaluation to Values). The following holds.

(1) If Σ ▷ M −→∗
C Σ2 ▷ V and Σ ▷ M −→C Σ1 ▷ M1, then Σ1 ▷ M1 −→∗

C Σ2 ▷ V .

(2) If Σ ▷ M −→∗
S Σ2 ▷ V and Σ ▷ M −→S Σ1 ▷ M1, then Σ1 ▷ M1 −→∗

S Σ2 ▷ V .

Proof.

(1) By case analysis on the length of the evaluation sequence Σ ▷ M −→∗
C Σ2 ▷ V .

Case where the length is zero: We are given M = V , but it is contradictory with the assumption Σ ▷
M −→C Σ1 ▷ M1.

Case where the length is larger than zero: We are given

Σ ▷ M −→C Σ3 ▷ M3, Σ3 ▷ M3 −→∗
C Σ2 ▷ V (∃Σ3,M3) .

By Theorem F.1, Σ3 = Σ1 and M3 = M1. Therefore, by the assumption, Σ1 ▷ M1 −→∗
C Σ2 ▷ V .

(2) Provable similarly to the case (1).

Lemma I.13 (Determinacy of Coercion Applications Evaluated to Values (Single)). If Σ | ∅ `S M : A and
Σ | ∅ `S s : A⇝ B and Σ ▷ M −→S Σ1 ▷ M1 and Σ1 ▷ M1〈s〉 −→∗

S Σ2 ▷ V , then Σ ▷ M 〈s〉 −→∗
S Σ2 ▷ V .

Proof. By case analysis on the rule applied last to derive Σ ▷ M −→S Σ1 ▷ M1.

Case Reduction rules of
e−→S : ((R Delta S), (R Beta S), (R Wrap S), (R Tybeta S), (R TybetaC S),

(R TybetaDyn S), (R TybetaDynC S), (R BlameE S), (R CtxE S))

Because Σ ▷ M
e−→S Σ1 ▷ M1, by (R CtxC S) we have Σ ▷ M 〈s〉 −→S Σ1 ▷ M1〈s〉. Therefore,

Σ ▷ M 〈s〉 −→S Σ1 ▷ M1〈s〉 −→∗
S Σ2 ▷ V .

Case (R Id S): We are given

M = U 〈id〉, M1 = U , Σ1 = Σ (∃U ) .

Lemma I.5 implies id # s = s. Therefore, by (R Merge S),

Σ ▷ U 〈id〉〈s〉 −→S Σ ▷ U 〈id # s〉
= Σ ▷ U 〈s〉
−→∗

S Σ2 ▷ V .

Case (R Fail S): We are given

M = U 〈⊥p〉, M1 = blame p, Σ1 = Σ (∃p,U ) .

By (R BlameC S), Σ ▷ (blame p)〈s〉 −→S Σ ▷ blame p. Therefore, Lemma I.12 implies Σ ▷ blame p −→∗
S

Σ2 ▷ V , but it does not hold. Hence, there is a contradiction.

Case (R Merge S): We are given

M = M ′〈s ′〉〈t ′〉, M1 = M ′〈s ′ # t ′〉, Σ1 = Σ (∃s ′, t ′,M ′) .

The inversion of the derivation of Σ | ∅ `S M ′〈s ′〉〈t ′〉 : A implies

Σ | ∅ `S s ′ : A′ ⇝ B ′, Σ | ∅ `S t ′ : B ′ ⇝ A (∃A′,B ′) .

By (R Merge S), Σ ▷ M ′〈s ′ # t ′〉〈s〉 −→S Σ ▷ M ′〈(s ′ # t ′) # s〉. Therefore, Lemma I.12 implies Σ ▷
M ′〈(s ′ # t ′) # s〉 −→∗

S Σ2 ▷ V . Furthermore, by (R Merge S),

Σ ▷ M ′〈s ′〉〈t ′〉〈s〉 −→S Σ ▷ M ′〈s ′〉〈t ′ # s〉 −→S Σ ▷ M ′〈s ′ # (t ′ # s)〉 .
Also, Lemma I.7 implies (s ′ # t ′) # s = s ′ # (t ′ # s). Therefore,

Σ ▷ M ′〈s ′〉〈t ′〉〈s〉 −→∗
S Σ ▷ M ′〈s ′ # (t ′ # s)〉 = Σ ▷ M ′〈(s ′ # t ′) # s〉 −→∗

S Σ2 ▷ V .
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Case (R BlameC S): We are given

M = (blame p)〈s ′〉, M1 = blame p, Σ1 = Σ (∃p, s ′) .

By (R BlameC S), Σ ▷ (blame p)〈s〉 −→S Σ ▷ blame p. Therefore, Lemma I.12 implies Σ ▷ blame p −→∗
S

Σ2 ▷ V , but it does not hold. Hence, there is a contradiction.

Case (R CtxC S): We are given

M = M ′〈s ′〉, M1 = M ′
1〈s ′〉, Σ ▷ M ′ e−→S Σ1 ▷ M ′

1 (∃s ′,M ′,M ′
1) .

By (R Merge S), Σ1 ▷ M ′
1〈s ′〉〈s〉 −→S Σ1 ▷ M ′

1〈s ′ # s〉. Hence, Lemma I.12 implies Σ1 ▷ M ′
1〈s ′ # s〉 −→∗

S

Σ2 ▷ V . Furthermore, by (R Merge S), Σ ▷ M ′〈s ′〉〈s〉 −→S Σ ▷ M ′〈s ′ # s〉. Also, by (R CtxC S),
Σ ▷ M ′〈s ′ # s〉 −→S Σ1 ▷ M ′

1〈s ′ # s〉. Therefore,
Σ ▷ M ′〈s ′〉〈s〉 −→S Σ ▷ M ′〈s ′ # s〉 −→S Σ1 ▷ M ′

1〈s ′ # s〉 −→∗
S Σ2 ▷ V .

Lemma I.14 (Determinacy of Coercion Applications Evaluated to Values (Multi)). If Σ | ∅ `S M : A and
Σ | ∅ `S s : A⇝ B and Σ ▷ M −→∗

S Σ1 ▷ M1 and Σ1 ▷ M1〈s〉 −→∗
S Σ2 ▷ V , then Σ ▷ M 〈s〉 −→∗

S Σ2 ▷ V .

Proof. By induction on the length of the evaluation sequence Σ ▷ M −→∗
S Σ1 ▷ M1.

Lemma I.15 (Determinacy of Blame). The following holds.

(1) If Σ ▷ M −→∗
C Σ2 ▷ blame p and Σ ▷ M −→C Σ1 ▷ M1, then Σ1 ▷ M1 −→∗

C Σ2 ▷ blame p.

(2) If Σ ▷ M −→∗
S Σ2 ▷ blame p and Σ ▷ M −→S Σ1 ▷ M1, then Σ1 ▷ M1 −→∗

S Σ2 ▷ blame p.

Proof. Provable similarly to Lemma I.12.

Lemma I.16 (Determinacy of Coercion Applications Evaluated to Blame (Single)). If Σ | ∅ `S M : A and
Σ | ∅ `S s : A⇝ B and Σ ▷ M −→S Σ1 ▷ M1 and Σ1 ▷ M1〈s〉 −→∗

S Σ2 ▷ blame p, then Σ ▷ M 〈s〉 −→∗
S Σ2 ▷

blame p.

Proof. By case analysis on the rule applied last to derive Σ ▷ M −→S Σ1 ▷ M1.

Case (R Fail S): We are given

M = U 〈⊥p′
〉, M1 = blame p′, Σ1 = Σ (∃p′,U ) .

By (R BlameC S), Σ ▷ (blame p′)〈s〉 −→S Σ ▷ blame p′. Therefore, Lemma I.15 implies Σ ▷ blame p′ −→∗
S

Σ2 ▷ blame p. Hence, Σ = Σ2 and p′ = p. Also, ⊥p # s = ⊥p . Therefore, by (R Merge S) and (R Fail S),

Σ ▷ U 〈⊥p〉〈s〉 −→S Σ ▷ U 〈⊥p # s〉 = Σ ▷ U 〈⊥p〉 −→S Σ ▷ blame p .

Case (R BlameC S): We are given

M = (blame p′)〈s ′〉, M1 = blame p′, Σ1 = Σ (∃p′, s ′) .

By (R BlameC S), Σ ▷ (blame p′)〈s〉 −→S Σ ▷ blame p′. Therefore, Lemma I.15 implies Σ ▷ blame p′ −→∗
S

Σ2 ▷ blame p. Hence, Σ = Σ2 and p′ = p. Therefore, by (R Merge S) and (R BlameC S),

Σ ▷ (blame p)〈s ′〉〈s〉 −→S Σ ▷ (blame p)〈s ′ # s〉 −→S Σ ▷ blame p .

Otherwise: Provable similarly to Lemma I.13. The proof uses Lemma I.15.
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Lemma I.17 (Determinacy of Coercion Applications Evaluated to Blame (Multi)). If Σ | ∅ `S M : A and
Σ | ∅ `S s : A⇝ B and Σ ▷ M −→∗

S Σ1 ▷ M1 and Σ1 ▷ M1〈s〉 −→∗
S Σ2 ▷ blame p, then Σ ▷ M 〈s〉 −→∗

S Σ2 ▷
blame p.

Proof. Provable similarly to Lemma I.14. The proof uses Lemma I.16.

Lemma I.18 (Determinacy of Consecutive Coercion Applications Evaluated to Values). If Σ | ∅ `S M 〈s〉 : B
and Σ | ∅ `S t : B ⇝ C and Σ ▷ M 〈s〉 −→∗

S Σ1 ▷ M1 and Σ1 ▷ M1〈t〉 −→∗
S Σ2 ▷ V , then Σ ▷ M 〈s # t〉 −→∗

S

Σ2 ▷ V .

Proof. Lemma I.14 implies Σ ▷ M 〈s〉〈t〉 −→∗
S Σ2 ▷ V . By (R Merge S), Σ ▷ M 〈s〉〈t〉 −→S Σ ▷ M 〈s # t〉.

Therefore, Lemma I.12 implies Σ ▷ M 〈s # t〉 −→∗
S Σ2 ▷ V .

Lemma I.19 (Determinacy of Consecutive Coercion Applications Evaluated to Blame). If Σ | ∅ `S M 〈s〉 : B
and Σ | ∅ `S t : B ⇝ C and Σ ▷ M 〈s〉 −→∗

S Σ1 ▷ M1 and Σ1 ▷ M1〈t〉 −→∗
S Σ2 ▷ blame p, then Σ ▷

M 〈s # t〉 −→∗
S Σ2 ▷ blame p.

Proof. Provable similarly to Lemma I.18. The proof uses Lemma I.17.

Lemma I.20 (Evaluation of Coercion Applications). If Σ | ∅ `S M : A and Σ | ∅ `S s : A ⇝ B and
Σ ▷ M −→∗

S Σ1 ▷ M1, then one of the following holds:

(1) Σ ▷ M 〈s〉 −→∗
S Σ1 ▷ M1〈s〉;

(2) there exist some s2 and M2 such that Σ ▷ M 〈s〉 −→∗
S Σ1 ▷ M2〈s2 # s〉 and M1 = M2〈s2〉; or

(3) there exists some p such that Σ ▷ M 〈s〉 −→∗
S Σ1 ▷ M1 and M1 = blame p.

Proof. By induction on the length of the evaluation sequence Σ ▷ M −→∗
S Σ1 ▷ M1. We perform case analysis

on the length.

Case the length is zero: Because Σ = Σ1 and M = M1, we have Σ ▷ M 〈s〉 −→∗
S Σ ▷ M 〈s〉.

Case the length is larger than zero: We are given

Σ ▷ M −→∗
S Σ′ ▷ M ′, Σ′ ▷ M ′ −→S Σ1 ▷ M1 (∃Σ′,M ′) .

Corollary E.46 implies Σ′ | ∅ `S M ′ : A. By Lemma E.44 and Lemma E.30, we have Σ′ | ∅ `S s : A ⇝ B .
By case analysis on the result of the IH.

Case (1): We are given

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ M ′〈s〉 .

By case analysis on the rule applied last to derive Σ′ ▷ M ′ −→S Σ1 ▷ M1.

Case (R Delta S), (R Beta S), (R Wrap S), (R Tybeta S), (R TybetaC S), (R BlameE S), (R CtxE S):

We show the case (1). Because Σ′ ▷ M ′ e−→S Σ1 ▷ M1, the assumption and (R CtxC S) imply

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ M ′〈s〉 −→S Σ1 ▷ M1〈s〉 .

Case (R Id S): We are given

M ′ = U 〈id〉, M1 = U , Σ1 = Σ′ (∃U ) .

We show the case (1). Lemma I.5 implies id # s = s. Therefore, the assumption and (R Merge S)
imply

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ U 〈id〉〈s〉

−→S Σ′ ▷ U 〈id # s〉
= Σ′ ▷ U 〈s〉 .
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Case (R Fail S): We are given

M ′ = U 〈⊥p〉, M1 = blame p, Σ1 = Σ′ (∃p,U ) .

We show the case (3). The assumption, (R Merge S), and (R Fail S) imply

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ U 〈⊥p〉〈s〉 −→S Σ′ ▷ U 〈⊥p # s〉 = Σ′ ▷ U 〈⊥p〉 −→S Σ′ ▷ blame p .

Case (R Merge S): We are given

M ′ = M ′′〈s ′〉〈t ′〉, M1 = M ′′〈s ′ # t ′〉, Σ1 = Σ′ (∃s ′, t ′,M ′′) .

We show the case (2). By inversion of the derivation of Σ′ | ∅ `S M ′′〈s ′〉〈t ′〉 : A, we have

Σ′ | ∅ `S s ′ : A′ ⇝ B ′, Σ′ | ∅ `S t ′ : B ′ ⇝ A (∃A′,B ′) .

Therefore, Lemma I.7 implies s ′ # (t ′ # s) = (s ′ # t ′) # s. Hence, the assumption and (R Merge S) imply

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ M ′′〈s ′〉〈t ′〉〈s〉

−→S Σ′ ▷ M ′′〈s ′〉〈t ′ # s〉
−→S Σ′ ▷ M ′′〈s ′ # (t ′ # s)〉
= Σ′ ▷ M ′′〈(s ′ # t ′) # s〉 .

Case (R BlameC S): We are given

M ′ = (blame p)〈s ′〉, M1 = blame p, Σ1 = Σ (∃p, s ′) .

We show the case (3). The assumption, (R Merge S), and (R BlameC S) imply

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ (blame p)〈s ′〉〈s〉 −→S Σ′ ▷ (blame p)〈s ′ # s〉 −→S Σ′ ▷ blame p .

Case (R CtxC S): We are given

M ′ = M ′′〈s ′〉, M1 = M ′′′〈s ′〉, Σ′ ▷ M ′′ e−→S Σ1 ▷ M ′′′ (∃s ′,M ′′,M ′′′) .

We show the case (2). The assumption, (R Merge S), and (R CtxC S) imply

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ M ′′〈s ′〉〈s〉 −→S Σ′ ▷ M ′′〈s ′ # s〉 −→S Σ1 ▷ M ′′′〈s ′ # s〉 .

Case (2): We are given

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ M2〈s2 # s〉, M ′ = M2〈s2〉 (∃s2,M2) .

By case analysis on the rule applied last to derive Σ′ ▷ M2〈s2〉 −→S Σ1 ▷ M1. It suffices to consider only
the following cases.

Case (R Id S): We are given

M2 = U , s2 = id, M1 = U , Σ1 = Σ′ (∃U ) .

We show the case (1). Lemma I.5 implies id # s = s. Therefore, by the assumption,

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ U 〈id # s〉

= Σ′ ▷ U 〈s〉 .

Case (R Fail S): We are given

M2 = U , s2 = ⊥p , M1 = blame p, Σ1 = Σ′ (∃p,U ) .

We show the case (3). We have ⊥p # s = ⊥p . Therefore, the assumption and (R Fail S) imply

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ U 〈⊥p〉 −→S Σ′ ▷ blame p .
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Case (R Merge S): We are given

M2 = M ′′〈s ′〉, M1 = M ′′〈s ′ # s ′2〉, Σ1 = Σ′ (∃s ′,M ′′) .

We show the case (2). By inversion of the derivation of Σ′ | ∅ `S M ′′〈s ′〉〈s2〉 : A, we have

Σ′ | ∅ `S s ′ : A′ ⇝ C Σ′ | ∅ `S s2 : C ⇝ A (∃A′,C ) .

Therefore, Lemma I.7 implies s ′ # (s2 # s) = (s ′ # s2) # s. Hence, the assumption and (R Merge S) imply

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ M ′′〈s ′〉〈s2 # s〉 −→S Σ′ ▷ M ′′〈s ′ # (s2 # s)〉 = Σ′ ▷ M ′′〈(s ′ # s2) # s〉 .

Case (R BlameC S): We are given

M2 = blame p, M1 = blame p, Σ1 = Σ′ (∃p) .

We show the case (3). By the assumption and (R BlameC S),

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ (blame p)〈s2 # s〉 −→S Σ′ ▷ blame p .

Case (R CtxC S): We are given

M1 = M3〈s2〉, Σ′ ▷ M2
e−→S Σ1 ▷ M3 (∃M3) .

We show the case (2). By the assumption and (R CtxC S),

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ M2〈s2 # s〉 −→S Σ1 ▷ M3〈s2 # s〉 .

Case (3): We are given

Σ ▷ M 〈s〉 −→∗
S Σ′ ▷ M ′, M ′ = blame p (∃p) .

Contradictory because Σ′ ▷ blame p −→S Σ1 ▷ M1 does not hold.

Lemma I.21 (Evaluation of Application of Composed Coercions). If Σ | ∅ `S M 〈s〉 : B and Σ | ∅ `S t : B ⇝
C and Σ ▷ M 〈s〉 −→S Σ1 ▷ M1 −→∗

S Σ2 ▷ M2, then one of the following holds:

(1) Σ ▷ M 〈s # t〉 −→∗
S Σ2 ▷ M2〈t〉;

(2) there exist some D , s3, and M3 such that Σ ▷ M 〈s # t〉 −→∗
S Σ2 ▷ M3〈(s3 # s) # t〉 and M2 = M3〈s3 # s〉 and

Σ2 | ∅ `S s3 : D ⇝ A.

(3) there exists some p such that Σ ▷ M 〈s # t〉 −→∗
S Σ2 ▷ blame p and M2 = blame p.

Proof. By induction on the length of the evaluation sequence Σ1 ▷ M1 −→∗
S Σ2 ▷ M2. We perform case

analysis on the length.

Case The length is zero: We have Σ1 = Σ2 and M1 = M2. By case analysis on the rule applied last to derive
Σ ▷ M 〈s〉 −→S Σ1 ▷ M1. It suffices to consider only the following cases.

Case (R Id S): We are given

M = U , s = id, A = B , M1 = U , Σ1 = Σ (∃U ) .

We show the case (1). Lemma I.5 implies id # t = t . Furthermore, Σ ▷ U 〈t〉 −→∗
S Σ ▷ U 〈t〉 holds trivially.

Case (R Fail S): We are given

M = U , s = ⊥p , M1 = blame p, Σ1 = Σ (∃p,U ) .

We show the case (3). We have ⊥p # t = ⊥p . Furthermore, by (R Fail), Σ ▷ U 〈⊥p〉 −→S Σ ▷ blame p.

99



Case (R Merge S): We are given

M = M ′〈s ′〉, M1 = M ′〈s ′ # s〉, Σ1 = Σ (∃s ′,M ′) .

We show the case (2). By inversion of the derivation of Σ | ∅ `S M ′〈s ′〉〈s〉 : B , we have Σ | ∅ `S s ′ :
A′ ⇝ A and Σ | ∅ `S s : A ⇝ B . Therefore, Lemma I.7 implies s ′ # (s # t) = (s ′ # s) # t . Hence, by
(R Merge S),

Σ ▷ M ′〈s ′〉〈s # t〉 −→S Σ ▷ M ′〈s ′ # (s # t)〉 = Σ ▷ M ′〈(s ′ # s) # t〉 .
Case (R BlameC S): We are given

M = blame p, M1 = blame p, Σ1 = Σ (∃p) .

We show the case (3). By (R BlameC S),

Σ ▷ (blame p)〈s # t〉 −→S Σ ▷ blame p .

Case (R CtxC S): We are given

M1 = M ′〈s〉, Σ ▷ M
e−→S Σ1 ▷ M ′ (∃M ′) .

We show the case (2). Theorem E.45 implies Σ1 | ∅ `S M ′〈s〉 : B . Therefore, Lemma E.32 implies ` Σ1

and ∅ ` ∅. Hence, because Σ1 | ∅ `S M ′〈s〉 : B is derived by (T Crc S), we have Σ1 | ∅ `S s : A ⇝
B (∃A). Furthermore, since Lemma I.5 implies id # s = s, by (R CtxC S),

Σ ▷ M 〈s # t〉 −→S Σ1 ▷ M ′〈s # t〉 = Σ1 ▷ M ′〈(id # s) # t〉 .
Furthermore, M1 = M ′〈id # s〉. Therefore, it suffices to show that Σ1 | ∅ `S id : A ⇝ A. Lemma E.22
implies ∅ | ∅ ` A. Hence, by Lemma D.2 (1), Σ1 | ∅ ` A. Therefore, by (Ct Id S), Σ1 | ∅ `S id : Σ(A)⇝
Σ(A). Since A does not contain any type names, Σ(A) = A. Hence, we have Σ1 | ∅ `S id : A⇝ A.

Case The length is larger than zero: We are given

Σ1 ▷ M1 −→S Σ′ ▷ M ′, Σ′ ▷ M ′ −→∗
S Σ2 ▷ M2 (∃Σ′,M ′) .

By case analysis on the rule applied last to derive Σ ▷ M 〈s〉 −→S Σ1 ▷ M1. It suffices to consider only the
following cases.

Case (R Id S): We are given

M = U , s = id, A = B , M1 = U , Σ1 = Σ (∃U ) .

Contradictory because Σ ▷ U −→S Σ′ ▷ M ′ does not hold.

Case (R Fail S): We are given

M = U , s = ⊥p , M1 = blame p, Σ1 = Σ (∃p,U ) .

Contradictory because Σ ▷ blame p −→S Σ′ ▷ M ′ does not hold.

Case (R Merge S): We are given

M = M ′′〈s ′〉, M1 = M ′′〈s ′ # s〉, Σ1 = Σ (∃s ′,M ′′) .

By inversion of the derivation of Σ | ∅ `S M ′′〈s ′〉〈s〉 : B , we have

Σ | ∅ `S M ′′ : A′, Σ | ∅ `S s ′ : A′ ⇝ A, Σ | ∅ `S s : A⇝ B (∃A′) .

Therefore, Lemma E.24 and (T Crc S) imply Σ | ∅ `S M ′′〈s ′ # s〉 : B . Furthermore, Lemma I.7 implies
s ′ # (s # t) = (s ′ # s) # t . Therefore, by (R Merge S),

Σ ▷ M ′′〈s ′〉〈s # t〉 −→S Σ ▷ M ′′〈s ′ # (s # t)〉 = Σ ▷ M ′′〈(s ′ # s) # t〉 · · · (∗) .
By case analysis on the result of the IH.
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Case (1): We are given

Σ ▷ M ′′〈(s ′ # s) # t〉 −→∗
S Σ2 ▷ M2〈t〉 .

We show the case (1). By (∗), we have

Σ ▷ M ′′〈s ′〉〈s # t〉 −→S Σ ▷ M ′′〈(s ′ # s) # t〉 −→∗
S Σ2 ▷ M2〈t〉 .

Case (2): We are given

Σ ▷ M ′′〈(s ′ # s) # t〉 −→∗
S Σ2 ▷ M3〈(s3 # (s ′ # s)) # t〉, M2 = M3〈s3 # (s ′ # s)〉, Σ2 | ∅ `S s3 : D ⇝ A′ (∃D , s3,M3) .

We show the case (2). By Lemma E.44 and Lemma E.30, we have Σ2 | ∅ `S s ′ : A′ ⇝ A and
Σ2 | ∅ `S s : A⇝ B . Therefore, Lemma I.7 implies s3 # (s ′ # s) = (s3 # s ′) # s. Hence, by (∗), we have

Σ ▷ M ′′〈s ′〉〈s # t〉 −→S Σ ▷ M ′′〈(s ′ # s) # t〉
−→∗

S Σ2 ▷ M3〈(s3 # (s ′ # s)) # t〉
= Σ2 ▷ M3〈((s3 # s ′) # s) # t〉 .

Furthermore, M2 = M3〈(s3 # s ′) # s〉. Moreover, Lemma E.24 implies Σ2 | ∅ `S s3 # s ′ : D ⇝ A.

Case (3): We are given

Σ ▷ M ′′〈(s ′ # s) # t〉 −→∗
S Σ2 ▷ blame p, M2 = blame p (∃p) .

We show the case (3). By (∗),

Σ ▷ M ′′〈s ′〉〈s # t〉 −→S Σ ▷ M ′′〈(s ′ # s) # t〉 −→∗
S Σ2 ▷ blame p .

Case (R BlameC S): We are given

M = blame p, M1 = blame p, Σ1 = Σ (∃p) .

Contradictory because Σ ▷ blame p −→S Σ′ ▷ M ′ does not hold.

Case (R CtxC S): We are given

M1 = M ′′〈s〉, Σ ▷ M
e−→S Σ1 ▷ M ′′ (∃M ′′) .

Theorem E.45 implies Σ1 | ∅ `S M ′′〈s〉 : B . Furthermore, By Lemma E.44 and Lemma E.30, we have
Σ1 | ∅ `S t : B ⇝ C . Therefore, by the IH, one of the following holds:

(1) Σ1 ▷ M ′′〈s # t〉 −→∗
S Σ2 ▷ M2〈t〉;

(2) there exist some D , s3, and M3 such that Σ1 ▷ M ′′〈s #t〉 −→∗
S Σ2 ▷ M3〈(s3 #s)#t〉 and M2 = M3〈s3 #s〉

and Σ2 | ∅ `S s3 : D ⇝ A; or

(3) there exists some p such that Σ1 ▷ M ′′〈s # t〉 −→∗
S Σ2 ▷ blame p and M2 = blame p.

Furthermore, by (R CtxC S), Σ ▷ M 〈s # t〉 −→S Σ1 ▷ M ′′〈s # t〉. Hence, we have the conclusion.

Lemma I.22 (Typability of Bisimulation). If Σ | Γ ` M ≈ M ′ : A, then Σ | Γ `C M : A and Σ | Σ(Γ) `S
M ′ : Σ(A).

Proof. By induction on the derivation of Σ | Γ ` M ≈ M ′ : A. We perform case analysis on the rule applied
last to derive Σ | Γ ` M ≈ M ′ : A.

Case (Bs Const): We are given

M = M ′ = k , ` Σ, Σ ` Γ, ty(k) = A (∃k) .

Therefore, by (T Const C), Σ | Γ `C k : A. Furthermore, by Lemma D.10 (5), ∅ ` Σ(Γ). Moreover,
ty(k) = A = Σ(A). Therefore, by (T Const S), Σ | Σ(Γ) `S k : Σ(A).
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Case (Bs Var): We are given

M = M ′ = x , ` Σ, Σ ` Γ, x : A ∈ Γ (∃x ) .

Therefore, by (T Var C), Σ | Γ `C x : A. Furthermore, by Lemma D.10 (5), ∅ ` Σ(Γ). Moreover,
x : Σ(A) ∈ Σ(Γ). Therefore, by (T Var S), Σ | Σ(Γ) `S x : Σ(A).

Case (Bs Abs): We are given

A = A′ → B , M = λx :A′.M1, M ′ = λx :A′.M ′
1, Σ | Γ, x : A′ ` M1 ≈ M ′

1 : B (∃A′,B , x ,M1,M
′
1) .

By the IH,

Σ | Γ, x : A′ `C M1 : B , Σ | Σ(Γ), x : Σ(A′) `S M ′
1 : Σ(B) .

Therefore, by (T Abs C), Σ | Γ `C λx :A′.M1 : A′ → B . Furthermore, by (T Abs S), Σ | Σ(Γ) `S
λx : Σ(A′).M ′

1 : Σ(A′)→ Σ(B). Since Σ(A′)→ Σ(B) = Σ(A′ → B), we have the conclusion.

Case (Bs App): We are given

M = M1 M2, M ′ = M ′
1 M

′
2, Σ | Γ ` M1 ≈ M ′

1 : B → A, Σ | Γ ` M2 ≈ M ′
2 : B (∃B ,M1,M2,M

′
1,M

′
2) .

By the IHs,

Σ | Γ `C M1 : B → A, Σ | Σ(Γ) `S M ′
1 : Σ(B)→ Σ(A), Σ | Γ `C M2 : B , Σ | Σ(Γ) `S M ′

2 : Σ(B) .

Therefore, by (T App C), Σ | Γ `C M1 M2 : A. Furthermore, by (T App S), Σ | Σ(Γ) `S M ′
1 M

′
2 : Σ(A).

Case (Bs Tyabs): We are given

A = ∀X .A′, M = ΛX .(M1 : A′), M ′ = ΛX .M ′
1, Σ | Γ,X ` M1 ≈ M ′

1 : A′ (∃X ,A′,M1,M
′
1) .

By the IH,

Σ | Γ,X `C M1 : A′, Σ | Σ(Γ),X `S M ′
1 : Σ(A′) .

Therefore, by (T Tyabs C), Σ | Γ `C ΛX .(M1 : A′) : ∀X .A′. Furthermore, by (T Tyabs S), Σ | Σ(Γ) `S
ΛX .M ′

1 : ∀X .Σ(A′). Since ∀X .Σ(A′) = Σ(∀X .A′), we have the conclusion.

Case (Bs Tyapp): We are given

A = B [X := A′], M = M1 A
′, M ′ = M ′

1 A
′, Σ | Γ ` M1 ≈ M ′

1 : ∀X .B , Σ | Γ ` A′ (∃X ,A′,B ,M1,M
′
1) .

By the IH,

Σ | Γ `C M1 : ∀X .B , Σ | Σ(Γ) `S M ′
1 : ∀X .Σ(B) .

Therefore, by (T Tyapp C), Σ | Γ `C M1 A
′ : B [X := A′]. Furthermore, by (T Tyapp S), Σ | Σ(Γ) `S

M ′
1 A

′ : Σ(B)[X := Σ(A′)]. Since Σ(B)[X := Σ(A′)] = Σ(B [X := A′]), we have the conclusion.

Case (Bs Blame): We are given

M = blame p, M ′ = blame p, ` Σ, Σ ` Γ, Σ | Γ ` A (∃p) .

Therefore, by (T Blame C), Σ | Γ `C blame p : A. Furthermore, Lemma D.10 (5) and Lemma D.10 (3)
imply ∅ ` Σ(Γ) and ∅ | Σ(Γ) ` Σ(A). Hence, by (T Blame S), Σ | Σ(Γ) `S blame p : Σ(A).

Case (Bs Crc): We are given

M = M1〈c〉, M ′ = M ′
1〈|c|Γ〉, Σ | Γ ` M1 ≈ M ′

1 : B , Σ | Γ `C c : B ⇝ A (∃M1, c,M
′
1,B) .

By the IH, Σ | Γ `C M1 : B and Σ | Σ(Γ) `S M ′
1 : Σ(B). By (T Crc C), Σ | Γ `C M1〈c〉 : A. By

Lemma I.3, Σ | Σ(Γ) `S |c|Γ : Σ(B)⇝ Σ(A). Finally, (T Crc S) finihes the case.
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Case (Bs CrcId): We are given

M ′ = M ′
1〈|idA|∅〉, Σ | Γ ` M ≈ M ′

1 : A, Σ | ∅ `C idA : A⇝ A (∃M ′
1) .

By the IH,

Σ | Γ `C M : A, Σ | Σ(Γ) `S M ′
1 : Σ(A) .

By Lemma I.3, Σ | ∅ `S |idA|∅ : Σ(A)⇝ Σ(A). Hence, by (T Crc S), Σ | Σ(Γ) `S M ′
1〈|idA|∅〉 : Σ(A).

Case (Bs CrcMore): We are given

M = M1〈c〉, M ′ = M ′
1〈s # |c|∅〉,

Σ | Γ ` M1 ≈ M ′
1〈s〉 : B , Σ | ∅ `C c : B ⇝ A (∃B , c, s,M1,M

′
1) .

By the IH,

Σ | Γ `C M1 : B , Σ | Σ(Γ) `S M ′
1〈s〉 : Σ(B) .

By (C Crc C), we have Σ | Γ `C M : A is derived. The judgment Σ | Σ(Γ) `S M ′
1〈s〉 : Σ(B) must

be derived by (T Crc S) and we have Σ | Σ(Γ) `S M ′
1 : C and Σ | Σ(Γ) `S s : C ⇝ Σ(B) for some

C . Since ftv(s) = ∅, we have Σ | ∅ `S s : C ⇝ Σ(B) by Lemma E.11 and Lemma I.2. By Lemma I.3,
Σ | ∅ `S |c|∅ : Σ(B) ⇝ Σ(A). By Lemma E.24, Σ | ∅ `S s # |c|∅ : C ⇝ Σ(B). Finally, by (T Crc S), we
have Σ | Σ(Γ) `S M ′ : Σ(A).

Case (Bs CrcIdL): We are given

M = M1〈cI〉, Σ | Γ ` M1 ≈ M ′ : B , Σ | Γ `C cI : B ⇝ A (∃cI ,M1,B) .

By the IH,

Σ | Γ `C M1 : B , Σ | Σ(Γ) `S M ′ : Σ(B) .

Therefore, by (T Crc C), Σ | Γ `C M1〈cI〉 : A. Furthermore, by Lemma I.48, Σ | Σ(Γ) `S M ′ : Σ(A)

Lemma I.23 (Well-Formedness of Bisimulation). If Σ | Γ ` M ≈ M ′ : A, then ` Σ, Σ ` Γ, and Σ | Γ ` A.

Proof. By Lemma I.22, Σ | Γ `C M : A. Then, by Lemma E.10, ` Σ and Σ ` Γ and Σ | Γ ` A.

Lemma I.24 (Variable Weakening of Bisimulation). If Σ | Γ1,Γ2 ` M ≈ M ′ : A and Σ | Γ1 ` B and
x 6∈ dom(Γ1,Γ2), then Σ | Γ1, x : B ,Γ2 ` M ≈ M ′ : A.

Proof. By straightforward induction on the derivation of Σ | Γ1,Γ2 ` M ≈ M ′ : A.

Lemma I.25 (Type Variable Weakening of Bisimulation). If Σ | Γ ` M ≈ M ′ : A and X 6∈ dom(Γ) is fresh,
then Σ | X ,Γ ` M ≈ M ′ : A.

Proof. By straightforward induction on the derivation of Σ | Γ ` M ≈ M ′ : A.

Lemma I.26 (Type Binding Weakening of Bisimulation). If Σ | Γ ` M ≈ M ′ : A and Σ | ∅ ` A′ and α is fresh,
then Σ, α := A′ | Γ ` M ≈ M ′ : A.

Proof. By straightforward induction on the derivation of Σ | Γ ` M ≈ M ′ : A.

Lemma I.27 (Value Substitution for Bisimulation). If Σ | Γ1, x : B ,Γ2 ` M ≈ M ′ : A and Σ | Γ1,Γ2 ` V ≈
V ′ : B , then Σ | Γ1,Γ2 ` M [x := V ] ≈ M ′[x := V ′] : A.

Proof. By induction on the derivation of Σ | Γ1, x : B ,Γ2 ` M ≈ M ′ : A. The proof is similar to Lemma E.12
except that Lemmas I.24 and I.25 are used, instead of Lemmas E.7.)
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Lemma I.28 (Distribution of Substitution on Composition). If Σ | Γ1,X ,Γ2 `S s : A ⇝ B and Σ |
Γ1,X ,Γ2 `S t : B ⇝ C and α is fresh, then (s # t)[X := α] = s[X := α] # t [X := α].

Proof. By induction on the sum of the sizes of s and t . We perform case analysis on s.

Case s = id: Lemma I.5 implies id # t = t and id # t [X := α] = t [X := α]. Therefore,

(id # t)[X := α] = t [X := α]

= id # t [X := α]

= id[X := α] # t [X := α] .

Case s = s1 → t1 (∃s1, t1): Because Σ | Γ1,X ,Γ2 `S s1 → t1 : A⇝ B is derived by (Ct Arrow S), we have

A = A1 → B1, B = A2 → B2,

Σ | Γ1,X ,Γ2 `S s1 : A2 ⇝ A1, Σ | Γ1,X ,Γ2 `S t1 : B1 ⇝ B2 (∃A1,A2,B1,B2) .

We perform case analysis on t .

Case t = s2 → t2 (∃s2, t2): Because Σ | Γ1,X ,Γ2 `S s2 → t2 : (A2 → B2)⇝ C is derived by (Ct Arrow S),
we have

C = A3 → B3, Σ | Γ1,X ,Γ2 `S s2 : A3 ⇝ A2, Σ | Γ1,X ,Γ2 `S t2 : B2 ⇝ B3 (∃A3,B3) .

Therefore, by the IHs, (s2 #s1)[X := α] = s2[X := α] #s1[X := α] and (t1 # t2)[X := α] = t1[X := α] # t2[X :=
α]. Hence,

((s1 → t1) # (s2 → t2))[X := α] = ((s2 # s1)→ (t1 # t2))[X := α]

= (s2 # s1)[X := α]→ (t1 # t2)[X := α]

= (s2[X := α] # s1[X := α])→ (t1[X := α] # t2[X := α])

= (s1[X := α]→ t1[X := α]) # (s2[X := α]→ t2[X := α])

= (s1 → t1)[X := α] # (s2 → t2)[X := α] .

Case t = g2 ;G2!(∃g2,G2): Because Σ | Γ1,X ,Γ2 `S g2 ;G2! : (A2 → B2)⇝ C is derived by (Ct Inj S), we
have Σ | Γ1,X ,Γ2 `S g2 : (A2 → B2) ⇝ Σ(G2). Therefore, by the IH, ((s1 → t1) # g2)[X := α] = (s1 →
t1)[X := α] # g2[X := α]. Hence,

((s1 → t1) # (g2 ;G2!))[X := α] = (((s1 → t1) # g2) ;G2!)[X := α]

= ((s1 → t1) # g2)[X := α] ;G2![X := α]

= ((s1 → t1)[X := α] # g2[X := α]) ;G2![X := α]

= (s1 → t1)[X := α] # (g2[X := α] ;G2![X := α])

= (s1 → t1)[X := α] # (g2 ;G2!)[X := α] .

Case t = ⊥p2 (∃p2):

((s1 → t1) #⊥p2)[X := α] = ⊥p2 [X := α]

= ⊥p2

= (s1 → t1) #⊥p2 [X := α]

= (s1 → t1)[X := α] #⊥p2 [X := α] .

Otherwise: Contradictory because Σ | Γ1,X ,Γ2 `S t : (A2 → B2)⇝ C does not hold.

Case s = ∀Y .s1 (∃Y , s1): Without loss of generality, we can assume Y 6= X . Because Σ | Γ1,X ,Γ2 `S ∀Y .s1 :
A⇝ B is derived by (Ct All S), we have

A = ∀Y .A′, B = ∀Y .B ′, Σ | Γ1,X ,Γ2,Y `S s1 : A′ ⇝ B ′ (∃A′,B ′) .

By case analysis on t .
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Case t = ∀Z .t1 (∃Z , t1): Because Σ | Γ1,X ,Γ2 `S ∀Z .t1 : ∀Y .B ′ ⇝ C is derived by (Ct All S), we have

Z = Y , C = ∀Y .C ′, Σ | Γ1,X ,Γ2,Y `S t1 : B ′ ⇝ C ′, (∃C ′) .

Therefore, by the IH, (s1 # t1)[X := α] = s1[X := α] # t1[X := α]. Hence,

((∀Y .s1) # (∀Y .t1))[X := α] = (∀Y .(s1 # t1))[X := α]

= ∀Y .(s1 # t1)[X := α]

= ∀Y .(s1[X := α] # t1[X := α])

= (∀Y .s1[X := α]) # (∀Y .t1[X := α])

= (∀Y .s1)[X := α] # (∀Y .t1)[X := α] .

Case t = g ;G ! (∃g ,G): Provable similarly to the case of s = s1 → t1.

Case t = ⊥p2 (∃p2): Provable similarly to the case of s = s1 → t1.

Otherwise: Contradictory because Σ | Γ1,X ,Γ2 `S t : ∀Y .B ′ ⇝ C does not hold.

Case s = g1 ;G1! (∃G1, g1): Because Σ | Γ1,X ,Γ2 `S g1 ;G1! : A⇝ B is derived by (Ct Inj S), we have

B = ⋆, Σ | Γ1,X ,Γ2 `S g1 : A⇝ Σ(G1) .

By case analysis on t .

Case t = id: Because Σ | Γ1,X ,Γ2 `S id : ⋆⇝ C is derived by (Ct Id S), we have C = ⋆. By Lemma I.6,
(g1 ;G1!) # id = g1 ;G1! and (g1[X := α] ;G1[X := α]!) # id = g1[X := α] ;G1[X := α]!. Therefore,

((g1 ;G1!) # id)[X := α] = (g1 ;G1!)[X := α]

= g1[X := α] ;G1[X := α]!

= (g1[X := α] ;G1[X := α]!) # id
= (g1[X := α] ;G1[X := α]!) # id[X := α] .

Case t = G1?
p2 ; t2 (∃p2, t2): Because Σ | Γ1,X ,Γ2 `S G1?

p2 ; t2 : ⋆ ⇝ C is derived by (Ct Proj S), we
have Σ | Γ1,X ,Γ2 `S t2 : Σ(G1) ⇝ C . Therefore, by the IH, (g1 # t2)[X := α] = g1[X := α] # t2[X := α].
Hence,

((g1 ;G1!) # (G1?
p2 ; t2))[X := α] = (g1 # t2)[X := α]

= g1[X := α] # t2[X := α]

= (g1[X := α] ;G1[X := α]!) # (G1[X := α]?p2 ; t2[X := α])

= (g1 ;G1!)[X := α] # (G1?
p2 ; t2)[X := α] .

Case t = H2?
p2 ; t2(H2 6= G1)(∃p2,H2, t2): Because α is fresh, we have G1 6= α and H2 6= α. Therefore,

G1[X := α] 6= H2[X := α]. Hence,

((g1 ;G1!) # (H2?
p2 ; t2))[X := α] = ⊥p2 [X := α]

= (g1[X := α] ;G1[X := α]!) # (H2[X := α]?p2 ; t2[X := α])

= (g1 ;G1!)[X := α] # (H2?
p2 ; t2)[X := α] .

Case t = ⊥p2 (∃p2): Provable similarly to the case of s = s1 → t1.

Case s = G1?
p1 ; b1 (∃G1, p1, b1): Because Σ | Γ1,X ,Γ2 `S G1?

p1 ; b1 : A⇝ B is derived by (Ct Proj S), we
have Σ | Γ1,X ,Γ2 `S b1 : Σ(G1) ⇝ B . Therefore, by the IH, (b1 # t)[X := α] = b1[X := α] # t [X := α].
Hence,

((G1?
p1 ; b1) # t)[X := α] = (G1?

p1 ; (b1 # t))[X := α]

= G1?
p1 [X := α] ; (b1 # t)[X := α]

= G1?
p1 [X := α] ; (b1[X := α] # t [X := α])

= (G1?
p1 [X := α] ; b1[X := α]) # t [X := α]

= (G1?
p1 ; b1)[X := α] # t [X := α] .

105



Case s = ⊥p1 (∃p1):

(⊥p1 # t)[X := α] = ⊥p1 [X := α]

= ⊥p1

= ⊥p1 # t [X := α]

= ⊥p1 [X := α] # t [X := α] .

Lemma I.29 (Identity Coercion Translation Simulates Dynamic Type Substitution). If ` Σ and Σ | Γ `C
idA : A⇝ A and X 6∈ dom(Γ) , then |idA[X := ⋆]|Γ = |idA|Γ.

Proof. By induction on A.

Case A = ι (∃ι): |idι[X := ⋆]|Γ = |idι[X :=⋆]|Γ = |idι|Γ.

Case A = ⋆,A = β (∃β): Provable similarly to the case of A = ι.

Case A = A′ → B ′ (∃A′,B ′): By the IHs, |idA′ [X := ⋆]|Γ = |idA′ |Γ and |idB ′ [X := ⋆]|Γ = |idB ′ |Γ. Therefore,

|idA′→B ′ [X := ⋆]|Γ = |id(A′→B ′)[X :=⋆]|Γ
= |idA′[X :=⋆]→B ′[X :=⋆]|Γ
= |idA′[X :=⋆]|Γ → |idB ′[X :=⋆]|Γ
= |idA′ [X := ⋆]|Γ → |idB ′ [X := ⋆]|Γ
= |idA′ |Γ → |idB ′ |Γ
= |idA′→B ′ |Γ .

Case A = ∀Y .A′ (∃Y ,A′): Without loss of generality, we can assume Y 6= X . Since X 6∈ dom(Γ) and Y 6= X ,
X 6∈ dom(Γ,Y ) By the IHs, |idA′ [X := ⋆]|Γ = |idA′ |Γ and |idA′ [X := ⋆]|Γ,Y = |idA′ |Γ,Y . Therefore,

|id∀Y .A′ [X := ⋆]|Γ = |id(∀Y .A′)[X :=⋆]|Γ
= |id∀Y .A′[X :=⋆]|Γ
= ∀Y .|idA′[X :=⋆]|Γ,Y ,, |idA′[X :=⋆]|Γ
= ∀Y .|idA′ |Γ,Y ,, |idA′ |Γ
= |id∀Y .A′ |Γ .

Case A = Y (∃Y ): We perform case analysis on whether Y = X or not.

Case Y = X :

|idX [X := ⋆]|Γ = |idX [X :=⋆]|Γ
= |id⋆|Γ
= id

= |idX |Γ .

Case Y 6= X :

|idY [X := ⋆]|Γ = |idY [X :=⋆]|Γ
= |idY |Γ .

Lemma I.30 (Coercion Translation Simulates Dynamic Type Substitution). If ` Σ and Σ | Γ `C c : A ⇝ B
and X 6∈ dom(Γ) , then |c[X := ⋆]|Γ = |c|Γ.
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Proof. By induction on c with case analysis on c.

Case c = idA′ (∃A′): By Lemma I.29, |idA′ [X := ⋆]|Γ = |idA′ |Γ.

Case c = G ! (∃G):

Case G = X : We are given

|X !|Γ = id, X ![X := ⋆] = id⋆ .

Therefore,

|X ![X := ⋆]|Γ = |id⋆|Γ
= id

= |X !|Γ .

Otherwise: We are given G ![X := ⋆] = G !. Therefore,

|G ![X := ⋆]|Γ = |G !|Γ .

Case c = G?p (∃p,G): Provable similarly to the case of c = G !.

Case c = α− (∃α): |α−[X := ⋆]|Γ = |α−|Γ.

Case c = α+ (∃α): Provable similarly to the case of c = α−.

Case c = c′ → d ′ (∃c′, d ′): Since Σ | Γ `C c′ → d ′ : A⇝ B is derived by (Ct Arrow S), we have

A = A1 → B1, B = A2 → B2, Σ | Γ `C c′ : A2 ⇝ A1,

Σ | Γ `C d ′ : B1 ⇝ B2 (∃A1,A2,B1,B2) .

By the IHs, |c′[X := ⋆]|Γ = |c′|Γ and |d ′[X := ⋆]|Γ = |d ′|Γ. Therefore,

|(c′ → d ′)[X := ⋆]|Γ = |c′[X := ⋆]→ d ′[X := ⋆]|Γ
= |c′[X := ⋆]|Γ → |d ′[X := ⋆]|Γ
= |c′|Γ → |d ′|Γ
= |c′ → d ′|Γ .

Case c = ∀Y .c′ (∃Y , c′): Without loss of generality, we can assume Y 6= X . Since Σ | Γ `C ∀Y .c′ : A⇝ B is
derived by (Ct All S), we have

A = ∀Y .A1, B = ∀Y .B1, Σ | Γ,Y `C c′ : A1 ⇝ B1 (∃A1,B1) .

Since X 6∈ dom(Γ) and Y 6= X , we have X 6∈ dom(Γ,Y ). By the IHs, |c′[X := ⋆]|Γ = |c′|Γ and |c′[X :=
⋆]|Γ,Y = |c′|Γ,Y . Hence,

|(∀Y .c′)[X := ⋆]|Γ = |∀Y .c′[X := ⋆]|Γ
= ∀Y .|c′[X := ⋆]|Γ,Y ,, |c′[X := ⋆]|Γ
= ∀Y .|c′|Γ,Y ,, |c′|Γ
= |∀Y .c′|Γ .

Case c = c′ ; d ′ (∃c′, d ′): Since Σ | Γ `C c′ ; d ′ : A⇝ B is derived by (Ct Seq S), we have

Σ | Γ `C c′ : A⇝ C , Σ | Γ `C d ′ : C ⇝ B (∃C ) .

By the IHs, |c′[X := ⋆]|Γ = |c′|Γ and |d ′[X := ⋆]|Γ = |d ′|Γ. Therefore,

|(c′ ; d ′)[X := ⋆]|Γ = |c′[X := ⋆] ; d ′[X := ⋆]|Γ
= |c′[X := ⋆]|Γ # |d ′[X := ⋆]|Γ
= |c′|Γ # |d ′|Γ
= |c′ ; d ′|Γ .
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Case c = ⊥p
A′⇝B ′ (∃p,A′,B ′):

|⊥p
A′⇝B ′ [X := ⋆]|Γ = |⊥p

A′[X :=⋆]⇝B ′[X :=⋆]|Γ
= ⊥p

= |⊥p
A′⇝B ′ |Γ .

Lemma I.31 (Identity Coercion Translation and Substitution). Suppose ` Σ and Σ | Γ1,X ,Γ2 `C idA : A⇝
A.

(1) If α is fresh, |idA|Γ[X := α] = |idA[X := α]|Γ1,(Γ2[X :=α]).

(2) |idA|Γ1,X ,Γ2 [X := ⋆] = |idA[X := ⋆]|Γ1,Γ2[X :=⋆].

Proof. (1) By induction on A.

Case A = ι (∃ι):

|idι|Γ1,X ,Γ2
[X := α] = id[X := α]

= id

= |idι|Γ1,(Γ2[X :=α])

= |idι[X :=α]|Γ1,(Γ2[X :=α])

= |idι[X := α]|Γ1,(Γ2[X :=α]) .

Case A = ⋆,A = β (∃β): Provable similarly to the case of A = ι.

Case A = A′ → B ′ (∃A′,B ′): By the IHs, |idA′ |Γ1,X ,Γ2
[X := α] = |idA′ [X := α]|Γ1,(Γ2[X :=α]) and |idB ′ |Γ1,X ,Γ2

[X :=
α] = |idB ′ [X := α]|Γ1,(Γ2[X :=α]). Therefore,

|idA′→B ′ |Γ1,X ,Γ2
[X := α] = (|idA′ |Γ1,X ,Γ2

→ |idB ′ |Γ1,X ,Γ2
)[X := α]

= |idA′ |Γ1,X ,Γ2
[X := α]→ |idB ′ |Γ1,X ,Γ2

[X := α]

= |idA′ [X := α]|Γ1,(Γ2[X :=α]) → |idB ′ [X := α]|Γ1,(Γ2[X :=α])

= |idA′[X :=α]|Γ1,(Γ2[X :=α]) → |idB ′[X :=α]|Γ1,(Γ2[X :=α])

= |idA′[X :=α]→B ′[X :=α]|Γ1,(Γ2[X :=α])

= |id(A′→B ′)[X :=α]|Γ1,(Γ2[X :=α])

= |idA′→B ′ [X := α]|Γ1,(Γ2[X :=α]) .

Case A = ∀Y .A′ (∃Y ,A′): Without loss of generality, we can assume Y 6= X . Since X ∈ dom(Γ1,X ,Γ2),
X ∈ dom(Γ1,X ,Γ2,Y ). By the IHs, |idA′ |Γ1,X ,Γ2 [X := α] = |idA′ [X := α]|Γ1,(Γ2[X :=α]) and |idA′ |Γ1,X ,Γ2,Y [X :=
α] = |idA′ [X := α]|Γ1,(Γ2[X :=α]),Y . Therefore,

|id∀Y .A′ |Γ1,X ,Γ2
[X := α] = (∀Y .|idA′ |Γ1,X ,Γ2,Y ,, |idA′ |Γ1,X ,Γ2

)[X := α]

= ∀Y .|idA′ |Γ1,X ,Γ2,Y [X := α] ,, |idA′ |Γ1,X ,Γ2
[X := α]

= ∀Y .|idA′ [X := α]|Γ1,(Γ2[X :=α]),Y ,, |idA′ [X := α]|Γ1,(Γ2[X :=α])

= ∀Y .|idA′[X :=α]|Γ1,(Γ2[X :=α]),Y ,, |idA′[X :=α]|Γ1,(Γ2[X :=α])

= |id∀Y .(A′[X :=α])|Γ1,(Γ2[X :=α])

= |id(∀Y .A′)[X :=α]|Γ1,(Γ2[X :=α])

= |id∀Y .A′ [X := α]|Γ1,(Γ2[X :=α]) .

Case A = Y (∃Y ): We consider the following cases.
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Case Y ∈ dom(Γ1,X ,Γ2): We have

|idY |Γ1,X ,Γ2 [X := α] = id[X := α]

= id .

We perform case analysis on whether Y = X or not.

Case Y = X :

id = |idα|Γ1,(Γ2[X :=α])

= |idX [X :=α]|Γ1,(Γ2[X :=α])

= |idX [X := α]|Γ1,(Γ2[X :=α]) .

Case Y 6= X : We are given

Y ∈ Γ1, (Γ2[X := α]), |idY |Γ1,(Γ2[X :=α]) = id .

Therefore,

id = |idY |Γ1,(Γ2[X :=α])

= |idY [X :=α]|Γ1,(Γ2[X :=α])

= |idY [X := α]|Γ1,(Γ2[X :=α]) .

Case Y 6∈ dom(Γ1,X ,Γ2): Contradictory.

(2) Provable similarly to the case (1).

Lemma I.32 (Coercion Translation and Type Substitution). Let ` Σ and Σ | Γ1,X ,Γ2 `C c : A⇝ B .

(1) If α is fresh, then |c|Γ1,X ,Γ2
[X := α] = |c[X := α]|Γ1,(Γ2[X :=α]).

(2) |c|Γ1,X ,Γ2
[X := ⋆] = |c[X := ⋆]|Γ1,(Γ2[X :=⋆]).

Proof. (1) By induction on c with case analysis on c.

Case c = idA′ (∃A′): Straightforward by Lemma I.31.

Case c = G ! (∃G):

Case G = Y and Y 6∈ (Γ1,X ,Γ2) (∃Y ): Contradictory.

Otherwise: Since Σ | Γ1,X ,Γ2 `C G ! : A⇝ B is derived by (Ct Inj C), we have

` Σ, Σ ` Γ1,X ,Γ2, Σ | Γ1,X ,Γ2 ` G .

By (Ct Id C), we have Σ | Γ1,X ,Γ2 `C idG : G ⇝ G . Therefore, by Lemma I.31,

|idG |Γ1,X ,Γ2
[X := α] = |idG [X := α]|Γ1,(Γ2[X :=α]) .

Hence,

|G !|Γ1,X ,Γ2
[X := α] = (|idG |Γ1,X ,Γ2

;G !)[X := α]

= |idG |Γ1,X ,Γ2
[X := α] ; (G ![X := α])

= |idG [X := α]|Γ1,(Γ2[X :=α]) ; (G ![X := α])

= |idG[X :=α]|Γ1,(Γ2[X :=α]) ; (G ![X := α])

= |idG[X :=α]|Γ1,(Γ2[X :=α]) ;G [X := α]!

= |G [X := α]!|Γ1,(Γ2[X :=α])

= |G ![X := α]|Γ1,(Γ2[X :=α]) .
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Case c = G?p (∃p,G): Provable similarly to the case of c = G !.

Case c = β− (∃β):

|β−|Γ1,X ,Γ2
[X := α] = id[X := α]

= id

= |β−|Γ1,(Γ2[X :=α])

= |β−[X := α]|Γ1,(Γ2[X :=α]) .

Case c = β+ (∃β): Provable similarly to the case of c = β−.

Case c = c′ → d ′ (∃c′, d ′): Because Σ | Γ `C c′ → d ′ : A⇝ B is derived by (Ct Arrow C), we have

A = A1 → B1, B = A2 → B2, Σ | Γ `C c′ : A2 ⇝ A1, Σ | Γ `C d ′ : B1 ⇝ B2 (∃A1,A2,B1,B2) .

Therefore, by the IHs, we have

|c′|Γ1,X ,Γ2 [X := α] = |c′[X := α]|Γ1,(Γ2[X :=α])

|d ′|Γ1,X ,Γ2 [X := α] = |d ′[X := α]|Γ1,(Γ2[X :=α]) .

Hence,

|c′ → d ′|Γ1,X ,Γ2
[X := α] = (|c′|Γ1,X ,Γ2

→ |d ′|Γ1,X ,Γ2
)[X := α]

= |c′|Γ1,X ,Γ2
[X := α]→ |d ′|Γ1,X ,Γ2

[X := α]

= |c′[X := α]|Γ1,(Γ2[X :=α]) → |d ′[X := α]|Γ1,(Γ2[X :=α])

= |c′[X := α]→ d ′[X := α]|Γ1,(Γ2[X :=α])

= |(c′ → d ′)[X := α]|Γ1,(Γ2[X :=α]) .

Case c = ∀Y .c′ (∃Y , c′): Without loss of generality, we can assume Y 6= X . Because Σ | Γ1,X ,Γ2 `C
∀Y .c′ : A⇝ B is derived by (Ct All C), we have

A = ∀Y .A′, B = ∀Y .B ′, Σ | Γ1,X ,Γ2,Y `C c′ : A′ ⇝ B ′ (∃A′,B ′) .

Since Y 6= X , we have (Γ2,Y )[X := α] = (Γ2[X := α]),Y . Therefore, by the IHs, we have

|c′|Γ1,X ,Γ2
[X := α] = |c′[X := α]|Γ1,(Γ2[X :=α])

|c′|Γ1,X ,Γ2,Y [X := α] = |c′[X := α]|Γ1,(Γ2[X :=α]),Y .

Hence,

|∀Y .c′|Γ1,X ,Γ2
[X := α] = (∀Y .|c′|Γ1,X ,Γ2,Y ,, |c′|Γ1,X ,Γ2

)[X := α]

= ∀Y .|c′|Γ1,X ,Γ2,Y [X := α] ,, |c′|Γ1,X ,Γ2
[X := α]

= ∀Y .|c′[X := α]|Γ1,(Γ2[X :=α]),Y ,, |c′[X := α]|Γ1,(Γ2[X :=α])

= |∀Y .c′[X := α]|Γ1,(Γ2[X :=α])

= |(∀Y .c′)[X := α]|Γ1,(Γ2[X :=α]) .

Case c = c′ ; d ′ (∃c′, d ′): Because Σ | Γ1,X ,Γ2 `C c′ ; d ′ : A⇝ B is derived by (Ct Seq C), we have

Σ | Γ1,X ,Γ2 `C c′ : A⇝ A′, Σ | Γ1,X ,Γ2 `C d ′ : A′ ⇝ B (∃A′) .

By the IHs,

|c′|Γ1,X ,Γ2
[X := α] = |c′[X := α]|Γ1,(Γ2[X :=α])

|d ′|Γ1,X ,Γ2
[X := α] = |d ′[X := α]|Γ1,(Γ2[X :=α]) .
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Furthermore, by Lemma I.3,

Σ | Σ(Γ1,X ,Γ2) `S |c′|Γ1,X ,Γ2 : Σ(A)⇝ Σ(A′), Σ | Σ(Γ1,X ,Γ2) `S |d ′|Γ1,X ,Γ2 : Σ(A′)⇝ Σ(B) .

Hence, by Lemma I.28,

(|c′|Γ1,X ,Γ2 # |d ′|Γ1,X ,Γ2)[X := α] = |c′|Γ1,X ,Γ2 [X := α] # |d ′|Γ1,X ,Γ2 [X := α] .

Therefore,

|c′ ; d ′|Γ1,X ,Γ2 [X := α] = (|c′|Γ1,X ,Γ2 # |d ′|Γ1,X ,Γ2)[X := α]

= |c′|Γ1,X ,Γ2
[X := α] # |d ′|Γ1,X ,Γ2

[X := α]

= |c′[X := α]|Γ1,(Γ2[X :=α]) # |d ′[X := α]|Γ1,(Γ2[X :=α])

= |c′[X := α] ; d ′[X := α]|Γ1,(Γ2[X :=α])

= |(c′ ; d ′)[X := α]|Γ1,(Γ2[X :=α]) .

Case c = ⊥p
A′⇝B ′ (∃p,A′,B ′):

|⊥p
A′⇝B ′ |Γ1,X ,Γ2

[X := α] = ⊥p [X := α]

= ⊥p

= |⊥p
A′[X :=α]⇝B ′[X :=α]|Γ1,(Γ2[X :=α])

= |⊥p
A′⇝B ′ [X := α]|Γ1,(Γ2[X :=α]) .

(2) We only show the interesting cases because the other cases are proved similarly as the case (1). By induction
on c with case analysis on c.

Case c = G ! (∃G):

Case G = Y (∃Y ):

Case Y 6∈ (Γ1,X ,Γ2): Contradictory.

Case Y ∈ (Γ1,X ,Γ2): Since Σ | Γ1,X ,Γ2 `C Y ! : A⇝ B is derive by (Ct Inj C),

A = G , B = ⋆, ` Σ, Σ ` Γ1,X ,Γ2, Σ | Γ1,X ,Γ2 ` Y .

By (Ct Id C), Σ | Γ1,X ,Γ2 `C idY : Y ⇝ Y . By case analysis on whether Y = X or not.

Case Y = X : By Lemma I.31, |idX |Γ1,X ,Γ2 [X := ⋆] = |idX [X := ⋆]|Γ1,(Γ2[X :=⋆]). Therefore,

|X !|Γ1,X ,Γ2
[X := ⋆] = (|idX |Γ1,X ,Γ2

; X !)[X := ⋆]

= |idX |Γ1,X ,Γ2
[X := ⋆]

= |idX [X := ⋆]|Γ1,(Γ2[X :=⋆])

= |idX [X :=⋆]|Γ1,(Γ2[X :=⋆])

= |id⋆|Γ1,(Γ2[X :=⋆])

= |X ![X := ⋆]|Γ1,(Γ2[X :=⋆]) .

Case Y 6= X : By Lemma I.31, |idY |Γ1,X ,Γ2 [X := ⋆] = |idY [X := ⋆]|Γ1,(Γ2[X :=⋆]). Furthermore,
since Y ∈ (Γ1,X ,Γ2), we have Y ∈ (Γ1, (Γ2[X := ⋆])). Therefore,

|Y !|Γ1,(Γ2[X :=⋆]) = |idY |Γ1,(Γ2[X :=⋆]) ; Y ! .

Hence,

|Y !|Γ1,X ,Γ2
[X := ⋆] = (|idY |Γ1,X ,Γ2

; Y !)[X := ⋆]

= |idY |Γ1,X ,Γ2
[X := ⋆] ; Y !

= |idY [X := ⋆]|Γ1,(Γ2[X :=⋆]) ; Y !

= |idY [X :=⋆]|Γ1,(Γ2[X :=⋆]) ; Y !

= |idY |Γ1,(Γ2[X :=⋆]) ; Y !

= |Y !|Γ1,(Γ2[X :=⋆])

= |Y ![X := ⋆]|Γ1,(Γ2[X :=⋆]) .
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Otherwise: Since G does not contain type variables, we have G [X := ⋆] = G and G ![X := ⋆] = G !.
By Lemma I.31, |idG |Γ1,X ,Γ2

[X := ⋆] = |idG [X := ⋆]|Γ1,(Γ2[X :=⋆]). Therefore,

|G !|Γ1,X ,Γ2
[X := ⋆] = (|idG |Γ1,X ,Γ2

;G !)[X := ⋆]

= |idG |Γ1,X ,Γ2
[X := ⋆] ;G !

= |idG [X := ⋆]|Γ1,(Γ2[X :=⋆]) ;G !

= |idG[X :=⋆]|Γ1,(Γ2[X :=⋆]) ;G !

= |idG |Γ1,(Γ2[X :=⋆]) ;G !

= |G !|Γ1,(Γ2[X :=⋆])

= |G ![X := ⋆]|Γ1,(Γ2[X :=⋆]) .

Case c = G?p (∃p,G): Provable similarly to the case of c = G !.

Otherwise: Provable similarly to the case (1).

Lemma I.33 (Type Substitution for Bisimulation). Let Σ | X ,Γ ` M ≈ M ′ : A.

(1) If α is fresh and Σ | ∅ ` B , then Σ, α := B | Γ[X := α] ` M [X := α] ≈ M ′[X := α] : A[X := α].

(2) Σ | Γ[X := ⋆] ` M [X := ⋆] ≈ M ′[X := ⋆] : A[X := ⋆].

Proof. By induction on the derivation of Σ | X ,Γ ` M ≈ M ′ : A. We perform case analysis on the rule applied
last to derive Σ | X ,Γ ` M ≈ M ′ : A. We show only Σ, α := B | Γ[X := α] ` M [X := α] ≈ M ′[X := α] :
A[X := α]. Σ | Γ[X := ⋆] ` M [X := ⋆] ≈ M ′[X := ⋆] : A[X := ⋆] can be similarly shown.

Case (Bs Crc): We are given

M = M1〈c〉, M ′ = M ′
1〈|c|X ,Γ〉, Σ | X ,Γ ` M1 ≈ M ′

1 : B , Σ | X ,Γ `C c : B ⇝ A (∃M1,M
′
1, c,B) .

By the IH, we have Σ | Γ[X := α] ` M1[X := α] ≈ M ′
1[X := α] : B [X := α]. By Lemma E.13, we have

Σ | Γ[X := α] `C c[X := α] : B [X := α] ⇝ A[X := α]. By Lemma I.32, we have |c[X := α]|Γ[X :=α] =
(|c|X ,Γ)[X := α]. Rule (Bs Crc) finishes the case.

Case (Bs CrcId): We are given

M ′ = M ′
1〈|idA|∅〉, Σ | X ,Γ ` M ≈ M ′

1 : A, Σ | ∅ `C idA : A⇝ A (∃M ′
1) .

We have

(M ′
1〈|idA|∅〉)[X := α] = M ′

1[X := α]〈(|idA|∅)[X := α]〉 .

By Lemma I.31, we have |idA|∅[X := α] = |idA[X := α]|∅ = |idA[X :=α]|∅. By the IH,

Σ, α := B | Γ[X := α] ` M [X := α] ≈ M ′
1[X := α] : A[X := α] .

Rule (Bs CrcId) finishes the case.

Case (Bs CrcMore): We are given

M = M1〈c〉, M ′ = M ′
1〈s # |c|∅〉,

Σ | X ,Γ ` M1 ≈ M ′
1〈s〉 : C , Σ | ∅ `C c : C ⇝ A (∃C , c, s,M1,M

′
1) .

We have

(M1〈c〉)[X := α] = M1[X := α]〈c[X := α]〉,
(M ′

1〈s # |c|∅〉)[X := α] = M ′
1[X := α]〈(s # |c|∅)[X := α]〉 .
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By the IH,

Σ, α := B | Γ[X := α] ` M1[X := α] ≈ M ′
1[X := α]〈s[X := α]〉 : C [X := α] .

By Lemma E.13, Σ | ∅ `C c[X := α] : C [X := α] ⇝ A[X := α]. Since ftv(s) = ftv(c) = ∅, we have
ftv(s[X := α]) = ∅. By Lemma I.32, |c[X := α]|∅ = |c|∅,X [X := α]. By Lemma I.28, (s # |c|∅)[X := α] =
s[X := α] # |c|∅[X := α]. Therefore,

s[X := α] # |c[X := α]|∅ = s[X := α] # |c|∅[X := α]

= (s # |c|∅)[X := α] .

Rule (Bs CrcMore) finishes the case.

Case (Bs CrcIdL): We are given

M = M1〈cI〉, Σ | X ,Γ ` M1 ≈ M ′ : D , Σ | ∅ `C cI : D ⇝ A (∃M1, c
I ,D) .

By the IH,

Σ, α := B | Γ[X := α] ` M1[X := α] ≈ M ′[X := α] : D [X := α] .

By Lemma E.6 and Lemma E.13,

Σ, α := B | ∅ `C cI [X := α] : D [X := α]⇝ A[X := α] .

Since no-op coercions are closed under type name substitution, we have, by (Bs CrcIdL),

Σ, α := B | Γ[X := α] ` (M1[X := α])〈cI [X := α]〉 ≈ M ′[X := α] : D [X := α] ,

finishing the case.

Otherwise: Similarly to Lemma E.14. The proof uses Lemmas I.24 and I.25 instead of Lemma E.7.

Lemma I.34 (Coercion Composition Preserves Bisimilarity). If Σ | ∅ ` M ≈ M ′〈s〉〈t〉 : A, then Σ | ∅ ` M ≈
M ′〈s # t〉 : A.
Proof. By induction on the derivation of Σ | ∅ ` M ≈ M ′〈s〉〈t〉 : A. We perform case analysis on the rule
applied last to derive Σ | ∅ ` M ≈ M ′〈s〉〈t〉 : A, which is either (Bs Crc), (Bs CrcId), (Bs CrcMore), or
(Bs CrcIdL).

Case (Bs Crc): We are given

M = M1〈c〉, t = |c|∅, Σ | ∅ ` M1 ≈ M ′〈s〉 : B , Σ | ∅ `C c : B ⇝ A (∃M1,M
′
1, c)

By Lemma I.22, we have Σ | ∅ `S M ′〈s〉 : Σ(B). By inversion, Σ | ∅ `S s : C ⇝ Σ(B) for some C . Thus,
ftv(s) = ∅. By (Bs CrcMore),

Σ | ∅ ` M 〈c〉 ≈ M ′〈s # |c|∅〉 : A .

Case (Bs CrcId): We are given

t = |idA|∅, Σ | ∅ ` M ≈ M ′〈s〉 : A, Σ | ∅ `C idA : A⇝ A .

By Lemma I.22, we have Σ | ∅ `S M ′〈s〉 : Σ(A). By inversion, Σ | ∅ `S s : C ⇝ Σ(A) for some C . Thus,
ftv(s) = ∅. By (Bs CrcMore),

Σ | ∅ ` M 〈idA〉 ≈ M ′〈s # |idA|∅〉 : A .
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Case (Bs CrcMore): We are given

M = M1〈c〉, t = t ′ # |c|∅, ftv(t ′) = ∅,
Σ | ∅ ` M1 ≈ M ′〈s〉〈t ′〉 : B , Σ | ∅ `C c : B ⇝ A (∃B , c, t ′,M1) .

By the IH, Σ | ∅ ` M1 ≈ M ′〈s # t ′〉 : B . By Lemma I.22, we have Σ | ∅ `S M ′〈s # t ′〉 : Σ(B). By inversion,
Σ | ∅ `S s # t ′ : C ⇝ Σ(B) for some C . Thus, ftv(s # t ′) = ∅. By (Bs CrcMore),

Σ | ∅ ` M 〈idA〉 ≈ M ′〈(s # t ′) # |c|∅〉 : A .

Lemma I.7 finishes the case.

Case (Bs CrcIdL): We are given

M = M1〈cI〉, Σ | Γ `C cI : B ⇝ A, Σ | Γ ` M1 ≈ M ′〈s〉〈t〉 : B (∃M1, c
I ,B) .

By the IH, Σ | Γ ` M1 ≈ M ′〈s # t〉 : B . Applying (Bs CrcIdL) finishes the case.

Lemma I.35 (Typing Coercions in Coercion Sequences). Let n > 0. If Σ ` ∅, 〈c1〉, . . . , 〈cn〉 : A ⇝ B ,
then there exist some A0, . . . ,An such that A0 = A and An = B and, for any i such that n ≥ i > 0,
Σ | ∅ `C ci : Ai−1 ⇝ Ai .

Proof. By induction on n.

Case n = 1: Because Σ ` ∅, 〈c1〉 : A⇝ B is derived by (Ct Cons C), we have

Σ ` ∅ : A⇝ A′, Σ | ∅ `C c1 : A′ ⇝ B (∃A′) .

Because Σ ` ∅ : A⇝ A′ is derived by (Ct Nil C), we have A = A′. Therefore, Σ | ∅ `C c1 : A⇝ B .

Case n = k + 1(k ≥ 1): Because Σ ` ∅, 〈c1〉, . . . , 〈ck 〉, 〈ck+1〉 : A⇝ B is derived by (Ct Cons C), we have

Σ ` ∅, 〈c1〉, . . . , 〈ck 〉 : A⇝ A′, Σ | ∅ `C ck+1 : A′ ⇝ B (∃A′) .

Therefore, by the IH, there exist some A0, . . . ,Ak such that A0 = A and Ak = A′ and, for any i such that
k ≥ i > 0, Σ | ∅ `C ci : Ai−1 ⇝ Ai . Therefore, we have the conclusion by letting Ak+1 = B .

Lemma I.36 (Canonical Forms of Coercion Applications). For any M and c, there exist some M ′, n > 0, and
c1, . . . , cn such that M ′ is not a coercion application and M 〈c〉 = M ′〈c1〉 · · · 〈cn〉 and cn = c.

Proof. By induction on M . We perform case analysis on M .

Case M = M ′′〈c′′〉 (∃c′′,M ′′): By the IH, there exist some M ′′′ that is not a coercion application, m > 0, and
c′1, . . . , c

′
m such thatM ′′〈c′′〉 = M ′′′〈c′1〉 · · · 〈c′m〉 and c′m = c′′. Therefore, becauseM 〈c〉 = M ′′′〈c′1〉 · · · 〈c′m〉〈c〉,

we have the conclusion by letting M ′ = M ′′′, n = m+ 1, and cm+1 = c.

Otherwise: Because M is not a coercion application, we have the conclusion by letting M ′ = M , n = 1, and
c1 = c.

Lemma I.37 (Canonical Forms of Coercion Applications with Function Coercions). If Σ | ∅ `C V 〈c → d〉 :
A→ B , then there exist some V ′ that is not a coercion application, n > 0, and c1, . . . , cn , d1, . . . , dn such that
V 〈c → d〉 = V ′〈c1 → d1〉 · · · 〈cn → dn〉 and cn = c and dn = d .

Proof. By induction on V . By inversion of the derivation of Σ | ∅ `C V 〈c → d〉 : A→ B , we have

Σ | ∅ `C V : A′ → B ′, Σ | ∅ `C c : A⇝ A′, Σ | ∅ `C d : B ′ ⇝ B (∃A′,B ′) .

By case analysis on V .
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Case V = k (∃k),V = λx :A′′.M (∃A′′, x ,M ): Obvious.

Case V = V ′〈c′ → d ′〉 (∃c′, d ′,V ′): By the IH, there exist some V ′′ that is not a coercion application, m > 0,
and c1, . . . , cm , d1, . . . , dm such that V ′〈c′ → d ′〉 = V ′′〈c1 → d1〉 · · · 〈cm → dm〉 and cm = c′ and dm = d ′.
Therefore, because V 〈c → d〉 = V ′′〈c1 → d1〉 · · · 〈cm → dm〉〈c → d〉, we have the conclusion by letting
V ′ = V ′′, n = m+ 1, cm+1 = c, and dm+1 = d .

Otherwise: Contradictory because Σ | ∅ `C V : A′ → B ′ does not hold.

Lemma I.38 (Typing Coercions in Function Coercion Sequences). Let n > 0. If Σ | ∅ `C M 〈c1 →
d1〉 · · · 〈cn → dn〉 : A → B , then there exist some A0, . . . ,An ,B0, . . . ,Bn such that An = A and Bn = B
and, for any i such that n ≥ i > 0, Σ | ∅ `C ci : Ai ⇝ Ai−1 and Σ | ∅ `C di : Bi−1 ⇝ Bi .

Proof. By induction on n

Case n = 1: By inversion of the derivation of Σ | ∅ `C M 〈c1 → d1〉 : A→ B , there exist some A0,B0 such that
Σ | ∅ `C c1 : A⇝ A0 and Σ | ∅ `C d1 : B0 ⇝ B . Therefore, we have the conclusion by letting A1 = A and
B1 = B .

Case n = k + 1(k ≥ 1): By inversion of the derivation of Σ | ∅ `C M 〈c1 → d1〉 · · · 〈ck → dk 〉〈ck+1 → dk+1〉 :
A→ B , we have

Σ | ∅ `C M 〈c1 → d1〉 · · · 〈ck → dk 〉 : A′ → B ′, Σ | ∅ `C ck+1 : A⇝ A′ Σ | ∅ `C dk+1 : B ′ ⇝ B (∃A′,B ′) .

Therefore, by the IH, there exist some A0, . . . ,Ak ,B0, . . . ,Bk such that Ak = A′ and Bk = B ′ and, for any i
such that k ≥ i > 0, Σ | ∅ `C ci : Ai ⇝ Ai−1 and Σ | ∅ `C di : Bi−1 ⇝ Bi . Hence, we have the conclusion
by letting Ak+1 = A and Bk+1 = B .

Lemma I.39 (Bisimulation and Composition). If neither M nor M ′ is a coercion application and Σ | ∅ `
M 〈c1〉 · · · 〈cn〉 ≈ M ′〈s〉 : An+1 (for n > 0), then there exist a nonnegative integer i and A1, . . .An such that:

• Σ | ∅ ` M ≈ M ′ : A1, whose derivation is a subderivation of Σ | ∅ ` M 〈c1〉 · · · 〈cn〉 ≈ M ′〈s〉 : An+1;

• Σ | ∅ `C c1 : A1 ⇝ A2, . . . , Σ | ∅ `C cn : An ⇝ An+1;

• i ≤ n

• the first i coercions c1, . . . , ci are no-op; and

• s = |idAi+1
|∅ # |ci+1|∅ # · · · # |cn |∅.

Proof. By induction on n with case analysis on the rule last applied to derive Σ | ∅ ` M 〈c1〉 · · · 〈cn〉 ≈ M ′〈s〉 :
An+1, which is either (Bs CrcId), (Bs CrcMore), or (Bs CrcIdL).

Case (Bs Crc): We are given

Σ | ∅ ` M 〈c1〉 · · · 〈cn−1〉 ≈ M ′ : An , s = |cn |∅ .

Since M ′ is not a coercion application, it must be the case that Σ | ∅ ` M 〈c1〉 · · · 〈cn−1〉 ≈ M ′ : An is derived
by a sequence of applications of (Bs CrcIdL). Thus, taking i = n− 1, we have

• Σ | ∅ ` M ≈ M ′ : A1, whose derivation is a subderivation of Σ | ∅ ` M 〈c1〉 · · · 〈cn〉 ≈ M ′〈s〉 : An+1;

• Σ | ∅ `C c1 : A1 ⇝ A2, . . . , Σ | ∅ `C cn : An ⇝ An+1;

• c1, . . . , cn−1 are no-op; and

• s = |idAi+1
|∅ # |cn |∅.
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Case (Bs CrcId): We are given

s = |idAn+1 |∅, Σ | ∅ ` M 〈c1〉 · · · 〈cn〉 ≈ M ′ : An+1, Σ | ∅ `C idAn+1 : An+1 ⇝ An+1 .

Since M ′ is not a coercion application, it must be the case that Σ | ∅ ` M 〈c1〉 · · · 〈cn〉 ≈ M ′ : An+1 is derived
by applying (Bs CrcIdL) n times, we have for all j ∈ [1 . . . n]

cj = cIj , Σ | ∅ ` M ≈ M ′ : A1, Σ | ∅ `C cIj : Aj ⇝ Aj+1 (∃A1, . . . ,An , c
I
1, . . . , c

I
n) .

Taking i = n finishes the case. (Here, |idAi+1
|∅ # |ci+1|∅ # · · · # |cn |∅ means |idAi+1

|∅.)

Case (Bs CrcMore): We are given

s = s ′ # |cn |∅, Σ | ∅ ` M 〈c1〉 · · · 〈cn−1〉 ≈ M ′〈s ′〉 : An , Σ | ∅ `C cn : An ⇝ An+1 (∃An , s
′) .

By the IH, for some nonnegative i, A1, . . . , An−1, we have

• Σ | ∅ ` M ≈ M ′ : A1, whose derivation is a subderivation of Σ | ∅ ` M 〈c1〉 · · · 〈cn−1〉 ≈ M ′〈s ′〉 : An ;

• Σ | ∅ ` c1 : A1 ⇝ A2, . . . , Σ | ∅ ` cn−1 : An−1 ⇝ An ;

• i ≤ n− 1

• the first i coercions c1, . . . , ci are no-op; and

• s ′ = |idAi+1
|∅ # |ci+1|∅ # · · · # |cn−1|∅.

It is immediate that s = s ′ # |cn |∅ = |idAi+1 |∅ # |ci+1|∅ # · · · # |cn |∅, finishing the case.

Case (Bs CrcIdL): We are given

cn = cI , Σ | ∅ ` M 〈c1〉 · · · 〈cn−1〉 ≈ M ′〈s〉 : An , Σ | ∅ `C cn : An ⇝ An+1 (∃An , c
I) .

By the IH, for some nonnegative i, A1, . . . , An−1, we have

• Σ | ∅ ` M ≈ M ′ : A1, whose derivation is a subderivation of Σ | ∅ ` M 〈c1〉 · · · 〈cn−1〉 ≈ M ′〈s〉 : An ;

• Σ | ∅ ` c1 : A1 ⇝ A2, . . . , Σ | ∅ ` cn−1 : An−1 ⇝ An ;

• i ≤ n− 1

• the first i coercions c1, . . . , ci are no-op; and

• s = |idAi+1 |∅ # |ci+1|∅ # · · · # |cn−1|∅.

By Lemma I.11, (|idAi+1
|∅ # |ci+1|∅ # · · · # |cn−1|∅) # |cn |∅ = |idAi+1

|∅ # |ci+1|∅ # · · · # |cn−1|∅ = s, finishing the case.

Lemma I.40 (Uncoerced Values are Bisimilar to Values). If Σ | Γ ` M ≈ U : A, then there exists some V
that is not a coercion application, nonnegative integer n, A0, . . . ,An and cI1, . . . , c

I
n such that

M = V 〈cI1〉 · · · 〈cIn〉, Σ | Γ `C cIi : Ai−1 ⇝ Ai (1 ≤ i ≤ n), An = A, Σ | Γ ` V ≈ U : A0 .

Furthermore,

1. If U = k for some k , then V = k and A0 = ty(k).

2. If U = λx :B0.M
′
1 for some x , B0 and M ′

1, then

V = λx :B0.M1, A0 = B0 → C0, Σ | Γ ` M1 ≈ M ′
1 : C0 (∃M1) .

3. If U = ΛX .M ′
1 for some X and M ′

1, then

V = ΛX .(M1 : B0), A0 = ∀X .B0, Σ | Γ,X ` M1 ≈ M ′
1 : B0 (∃M1,B0) .

116



Proof. Straightforward if M is not a coercion application. If M is a coercion application, by Lemma I.36, there
exists some term M1 such that M1 is not a coercion application and

M = M1〈cI1〉 · · · 〈cIn〉 (∃cI1, . . . , cIn) .

Since Σ | Γ ` M1〈cI1〉 · · · 〈cIn〉 ≈ U : A is derived by (Bs CrcIdL), we heve

An = A, Σ | Γ ` M1 ≈ U : A0, Σ | Γ `C cIi : Ai−1 ⇝ Ai (1 ≤ i ≤ n) (∃A0, . . .An) .

Furthermore,

Case U = k (∃k): Since M1 is not a cercion application, Σ | Γ ` M1 ≈ k : A0 is derived by (Bs Const).
Therefore, we have M1 = k and A0 = ty(k).

Case U = λx :B0.M
′
2 (∃B0, x ,M

′
2): Since M1 is not a coercion application, Σ | Γ ` M1 ≈ λx :B0.M

′
2 : A0 is

derived by (Bs Abs). Therefore, we have

M1 = λx :B0.M2, A0 = B0 → C0, Σ | Γ ` M2 ≈ M ′
2 : C0 (∃M2,C0) .

Case U = ΛX .M ′
2 (∃X ,M ′

2): Since M1 is not a coercion application, Σ | Γ ` M1 ≈ ΛX .M ′
2 : A0 is derived by

(Bs Tyabs). Therefore, we have

M1 = ΛX .(M2 : B0), A0 = ∀X .B0, Σ | Γ,X ` M2 ≈ M ′
2 : B0 (∃M2,B0) .

Definition I.1 (Value Coercions). We define value coercions vc, which are a subset of coercions in λC∀
mp, and

space-efficient value coercion vs, which are a subset of space-efficient coercions in λS∀mp, as follows.

vc ::= G ! | α− | c → d | ∀X .c

vs ::= i

Definition I.2 (No-op Value Coercions). We define No-op value coercions vcI , which are a subset of value
coercions in λC∀

mp as follows.

vcI ::= G ! | α− | cI → dI | ∀X .cI

Lemma I.41 (Ground Coercion Composition). If Σ | ∅ `S g1 : A ⇝ B and Σ | ∅ `S g2 : B ⇝ C , then there
exists some g3 such that g3 = g1 # g2 and Σ | ∅ `S g3 : A⇝ C .

Proof. First, we consider the cases where either g1 or g2 is an identity coercion.

Case g1 = id: By Lemma I.5, id # g2 = g2.

Case g2 = id: By Lemma I.6, g1 # id = g1.

Next, we consider the cases where neither g1 nor g2 is an identity coercion. By case analysis on g2.

Case g2 = s2 → t2 (∃s2, t2): Because Σ | ∅ `S s2 → t2 : B ⇝ C is derived by (Ct Arrow S), we have

B = B1 → B2, C = C1 → C2, Σ | ∅ `S s2 : C1 ⇝ B1,

Σ | ∅ `S t2 : B2 ⇝ C2 (∃B1,B2,C1,C2) .

By case analysis on g1.

Case g1 = s1 → t1 (∃g1,G1): Because Σ | ∅ `S s1 → t1 : A⇝ B is derived by (Ct Arrow S), we have

A = A1 → A2, Σ | ∅ `S s1 : B1 ⇝ A1, Σ | ∅ `S t1 : A2 ⇝ B2 (∃A1,A2)

Therefore, by Lemma E.24, there exists some s such that s = s2 # s1 and Σ | ∅ `S s : C1 ⇝ A1. Similarly,
by Lemma E.24, there exists some t such that t = t1 # t2 and Σ | ∅ `S t : A2 ⇝ C2. Hence,

(s1 → t1) # (s2 → t2) = (s2 # s1)→ (t1 # t2)
= s → t .

Furthermore, by (Ct Arrow S), Σ | ∅ `S s → t : (A1 → A2)⇝ (C1 → C2).
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Otherwise: Contradictory because B cannot be a function type for all space-efficient value coercions except
id.

Case g2 = ∀X .s2 ,, t2 (∃X , s2, t2): Because Σ | ∅ `S ∀X .s2 : B ⇝ C is derived by (Ct All S), we have

B = ∀X .B1, C = ∀X .C1, Σ | ∅,X `S s2 : B1 ⇝ C1,

Σ | ∅,X `S t2 : B1[X := ⋆]⇝ C1[X := ⋆] (∃B1,C1) .

By case analysis on g1.

Case g1 = ∀Y .s1 ,, t1 (∃Y1, s1, t1): Because Σ | ∅ `S ∀Y .s1 ,, t1 : A⇝ (∀X .B1) is derived by (Ct All S), we
have

Y = X , A = ∀X .A1, Σ | ∅ `S s1 : A1 ⇝ B1,

Σ | ∅ `S t1 : A1[X := ⋆]⇝ B1[X := ⋆] (∃A1)

Therefore, by Lemma E.24, there exists some s such that s = s1 # s2 and Σ | ∅ `S s : A1 ⇝ C1. Similarly,
by Lemma E.24, there exists some t such that t = t1 # t2 and Σ | ∅ `S t : A1[X := ⋆] ⇝ C1[X := ⋆].
Hence,

(∀X .s1 ,, t1) # (∀X .s2 ,, t2) = ∀X .(s1 # s2) ,, (t1 # t2)
= ∀X .s ,, t .

Furthermore, by (Ct Arrow S), Σ | ∅ `S ∀X .s ,, t : ∀X .A1 ⇝ ∀X .C1.

Otherwise: Contradictory because B cannot be a polymorphic type for all space-efficient value coercions
except id.

Lemma I.42 (Space-efficient Value Coercion Composition). If Σ | ∅ `S vs1 : A⇝ B and Σ | ∅ `S vs2 : B ⇝
C , then there exists some vs3 such that vs3 = vs1 # vs2 and Σ | ∅ `S vs3 : A⇝ C .

Proof. If both vs1 and vs2 is a ground coercion, straightforward by Lemma I.41. We consider the cases where
neither vs1 or vs2 is a ground coercion. By case analysis on vs2.

Case vs2 = g2 ;G2! (∃g2,G2): Because Σ | ∅ `S g2 ;G2! : B ⇝ C is derived by (Ct Inj S), we have

C = ⋆, Σ | ∅ `S g2 : B ⇝ Σ(G2) .

By case analysis on vs1.

Case vs1 = g1 ;G1! (∃g1,G1): Because Σ | ∅ `S g1 ;G1! : A⇝ B is derived by (Ct Inj S), we have

B = ⋆, Σ | ∅ `S g1 : A⇝ Σ(G1) .

Since B = ⋆, g2 = id (otherwise B cannot be a dynamic type, which is contradiction). Since Σ | ∅ `S id :
⋆ ⇝ Σ(G2) is derived by (Ct Id S), we have ⋆ = Σ(G2). There is contradiction because G2 6= ⋆ and for
any A in α := A ∈ Σ is not a dynamic type.

Case vs1 = g1 (∃g1): By Lemma I.41, there exists a ground coercion g3 such that g3 = g1 # g2 and Σ | ∅ `C
g3 : A⇝ Σ(G2). Therefore,

g1 # (g2 ;G2!) = (g1 # g2) ;G2!

= g3 ;G2! .

By (Ct Inj S), Σ | ∅ `C g3 ;G2! : A⇝ ⋆.
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Case vs2 = s2 → t2 (∃s2, t2): Since vs2 is a ground coercion, vs1 = g1 ; G1! (∃g1,G1). Because Σ | ∅ `S s2 →
t2 : B ⇝ C is derived by (Ct Arrow S), we have

B = B1 → B2, C = C1 → C2, Σ | ∅ `S s2 : C1 ⇝ B1,

Σ | ∅ `S t2 : B2 ⇝ C2 (∃B1,B2,C1,C2) .

Since Σ | ∅ `S g1 ; G1! : A ⇝ B is derived by (Ct Inj S), however, contradictory because B cannot be a
dynamic type.

Case vs2 = ∀X .s2 ,, t2 (∃X , s2, t2): Since vs2 is a ground coercion, vs1 = g1 ; G1! (∃g1,G1). Because Σ | ∅ `S
∀X .s2 : B ⇝ C is derived by (Ct All S), we have

B = ∀X .B1, C = ∀X .C1, Σ | ∅,X `S s2 : B1 ⇝ C1,

Σ | ∅,X `S t2 : B1[X := ⋆]⇝ C1[X := ⋆] (∃B1,C1) .

Since Σ | ∅ `S g1 ; G1! : A ⇝ B is derived by (Ct Inj S), however, contradictory because B cannot be a
dynamic type.

Lemma I.43 (Value Coercions are Translated to Space-Efficient Value Coercions). If Σ | ∅ `C vc : A ⇝ B ,
then |vc|∅ is a space-efficient value coercion and Σ | ∅ `S |vc|∅ : Σ(A)⇝ Σ(B).

Proof. By Lemma I.3, there exists some |vc|∅ such that Σ | ∅ `S |vc|∅ : Σ(A) ⇝ Σ(B). Therefore, it suffices
to show that |vc|∅ is a space-efficient value coercion. By case analysis on vc.

Case vc = G ! (∃G):

Case G = X (∃X ): |G !|∅ = id. id is a space-efficient value coercion.

Case G is not type variable: |G !|∅ = |idG |∅ ;G !.

Case G = ι (∃ι): |idι|∅ ; ι! = id ; ι!. id ; ι! is a space-efficient value coercion.

Case G = X (∃X ): |idX |∅ ; X ! = id ; X !. id ; X ! is a space-efficient value coercion.

Case G = α (∃α): |idα|∅ ; α! = id ; α!. id ; α! is a space-efficient value coercion.

Case G = ⋆→ ⋆: |id⋆→⋆|∅ ; (⋆→ ⋆)! = (|id⋆|∅ → |id⋆|∅) ; (⋆→ ⋆)! = (id→ id) ; (⋆→ ⋆)!. (id→ id) ; (⋆→ ⋆)!
is a space-efficient value coercion.

Case G = ∀X .⋆ (∃X ): |id∀X .⋆|∅ ; (∀X .⋆)! = (∀X .|id⋆|∅) ; (∀X .⋆)! = (∀X .id) ; (∀X .⋆)!. (∀X .id) ; (∀X .⋆)! is a
space-efficient value coercion.

Case vc = α− (∃α): |α−|∅ = id, and id is a space-efficient value coercion.

Case vc = c → d (∃c, d): |c → d |∅ = |c|∅ → |d |∅, and |c|∅ → |d |∅ is a space-efficient value coercion.

Case vc = ∀X .c (∃X , c): |∀X .c|∅ = ∀X .|c|X ,, |c|∅, and ∀X .|c|X ,, |c|∅ is a space-efficient value coercion.

Lemma I.44 (Value Coercion Composition, Consecutively Applied). Let n > 0. For any i such that n ≥ i > 0,
if Σ | ∅ `S vsi : Ai−1 ⇝ Ai , then there exists some vs such that vs = vs1 # · · · # vsn and Σ | ∅ `S vs : A0 ⇝ An .

Proof. By induction on n.

Case n = 1: Obvious.

Case n = k + 1(k ≥ 1): By the IH,

vs ′ = vs1 # · · · # vsk , Σ | ∅ `S vs ′ : A0 ⇝ Ak (∃vs ′) .

Therefore, by Lemma I.42, there exists some vs such that vs = vs ′ # vsk+1 and Σ | ∅ `S vs : A0 ⇝ Ak+1.
Hence,

vs = vs ′ # vsk+1

= vs1 # · · · # vsk # vsk+1 ,

so we have the conclusion.
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Lemma I.45 (Replacement of Coercion Arguments). Let n > 0. If neither M1 nor M ′
1 is a coercion application,

and Σ | ∅ ` M1〈c1〉 · · · 〈cn〉 ≈ M ′
1〈s〉 : An+1, Σ | ∅ ` ci : Ai ⇝ Ai+1 (for 1 ≤ i ≤ n), Σ | ∅ ` M1 ≈ M ′

1 : A1 and
Σ | ∅ ` M2 ≈ M ′

2 : A1, then Σ | ∅ ` M2〈c1〉 · · · 〈cn〉 ≈ M ′
2〈s〉 : An+1.

Proof. By induction on n.

Case n = 1: By case analysis on the rule applied last to derive Σ | ∅ ` M1〈c1〉 ≈ M ′
1〈s〉 : A2, which is either of

(Bs CrcId), (Bs CrcIdL), (Bs Crc), or (Bs CrcMore).

Case (Bs CrcId): We are given

s = |idA2
|∅, Σ | ∅ `C idA2

: A2 ⇝ A2, Σ | ∅ ` M1〈c1〉 ≈ M ′
1 : A2 .

Since M ′
1 is not a coercion application, Σ | ∅ ` M1〈c1〉 ≈ M ′

1 : An+1 is derived by (Bs CrcIdL). Therefore,
we have

c1 = cI1, Σ | ∅ ` M1 ≈ M ′
1 : A1, Σ | ∅ ` cI1 : A1 ⇝ A2 (∃cI1) .

Hence, by (Bs CrcIdL) and (Bs CrdId), we have Σ | ∅ ` M2〈cI1〉 ≈ M ′
2〈|idA2 |∅〉 : A2.

Case (Bs CrcIdL): Similary to the case (Bs CrcId).

Case (Bs Crc): We are given

s = |c1|∅, Σ | ∅ ` M1 ≈ M ′
1 : A1, Σ | ∅ `C c1 : A1 ⇝ A2 .

Hence, by (Bs Crc), we have Σ | ∅ ` M2〈c1〉 ≈ M ′
2〈|c1|∅〉 : A2.

Case (Bs CrcMore): We are given

s = s ′ # |c1|∅, Σ | ∅ ` M1 ≈ M ′
1〈s ′〉 : A1, Σ | ∅ `C c1 : A1 ⇝ A2 (∃s ′) .

Because M1 is not a coercion application, Σ | ∅ ` M1 ≈ M ′
1〈s ′〉 : A1 is derived by (Bs CrcId). Therefore,

we have s ′ = |idA1 |∅. Hence, Σ | ∅ ` M2〈c1〉 ≈ M ′
2〈|idA1 |∅ # |c1|∅〉 : A2 is derived as follows.

Σ | ∅ ` M2 ≈ M ′
2 : A1

(Bs CrcId)
Σ | ∅ ` M2 ≈ M ′

2〈|idA1
|∅〉 : A1 Σ | ∅ `C c1 : A1 ⇝ A2

(Bs CrcMore)
Σ | ∅ ` M2〈c1〉 ≈ M ′

2〈|idA1
|∅ # |c1|∅〉 : A2

Case n = k + 1(k ≥ 1): By case analysis on the rule applied last to derive Σ | ∅ ` M1〈c1〉 · · · 〈ck 〉 〈ck+1〉 ≈
M ′

1〈s〉 : Ak+1, which is either of (Bs CrcId), (Bs CrcIdL), (Bs Crc), or (Bs CrcMore).

Case (Bs CrcId): We are given

s = |idAk+1
|∅, Σ | ∅ ` M1〈c1〉 · · · 〈ck 〉 〈ck+1〉 ≈ M ′

1 : Ak+1 .

Since M ′
1 is not a coercion application, Σ | ∅ ` M1〈c1〉 · · · 〈ck 〉 〈ck+1〉 ≈ M ′

1 : Ak+1 is derived by apply-
ing (Bs CrcIdL) k+1 times. Therefore, there exists cIi (1 ≤ i ≤ ks) such that ci = cIi . Hence, by
(Bs CrcIdL) and (Bs CrcId), we have Σ | ∅ ` M2〈c1〉 · · · 〈ck 〉 〈ck+1〉 ≈ M ′

2〈s〉 : Ak+1.

Case (Bs CrcIdL): Similary to the case (Bs CrcId).

Case (Bs Crc): We are given

s = |ck+1|∅, Σ | ∅ ` M1〈c1〉 · · · 〈ck 〉 ≈ M ′
1 : Ak .

By the IH, Σ | ∅ ` M2〈c1〉 · · · 〈ck 〉 ≈ M ′
2 : Ak . Therefore, by (Bs Crc), Σ | ∅ ` M2〈c1〉 · · · 〈ck 〉 〈ck+1〉 ≈

M ′
2〈|ck+1|∅〉 : Ak+1.
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Case (Bs CrcMore): We are given

s = s ′ # |ck+1|∅, Σ | ∅ ` M1〈c1〉 · · · 〈ck 〉 ≈ M ′
1〈s ′〉 : Ak (∃s ′) .

By the IH, Σ | ∅ ` M2〈c1〉 · · · 〈ck 〉 ≈ M ′
2〈s ′〉 : Ak . Therefore, by (Bs CrcMore), Σ | ∅ ` M2〈c1〉 · · · 〈ck 〉 〈ck+1〉 ≈

M ′
2〈s ′ # |ck+1|∅〉 : Ak+1.

Lemma I.46 (Intermediate Coercion Composition Determines the Left Coercions). If s # t = i , then there
exists some j such that s = j .

Proof. Staraightforward because the contrapositive holds trivially.

Lemma I.47 (No-op Coercion Types are not Dynamic Types). If Σ | ∅ `C cI : A⇝ B , then A and B are non
dynamic types.

Proof. Straightforward by induction on the derivation of Σ | ∅ `C cI : A⇝ B .

Lemma I.48 (No-op Coercion Types are Same Under Σ). If Σ | Γ `C cI : A⇝ B , then Σ(B) = Σ(A).

Proof. Straightforward by induction on the derivation of Σ | Γ `C cI : A⇝ B .

Lemma I.49 (Space-efficient Value Coercion Composition and Identity Coercion). If Σ | ∅ `S vs1 : A ⇝ B
and Σ | ∅ `S vs2 : B ⇝ C and vs1 # vs2 = id, then vs1 = id and vs2 = id.

Proof. (1) Suppose that vs1 6= id. By case analysis on vs1.

Case vs1 = g1 ;G1! (∃g1,G1): Since Σ | ∅ `S g1 ;G1! : A⇝ B is derived by (Ct Inj S), we have B = ⋆.
By case analysis on the rule applied last to derive Σ | ∅ `S vs2 : ⋆⇝ C .

Case (Ct Id S): Contradictory because vs1 # vs2 = (g1 ;G1!) # id = g1 ;G1! 6= id.

Case (Ct Inj S): We are given

vs2 = g2 ;G2!, Σ | ∅ ` g2 : ⋆⇝ Σ(G2) (∃g2,G2) .

Since B = ⋆, Σ | ∅ ` g2 : ⋆ ⇝ Σ(G2) is derived by (Ct Id S), ⋆ = Σ(G2). There is contradiction
because G2 6= ⋆ and for any A in α := A ∈ Σ is not a dynamic type.

Otherwise: Contradictory because B cannot be a dynamic type.

Case vs1 = s1 → t1 (∃s1, t1): Since Σ | ∅ `S s1 → t1 : A⇝ B is derived by (Ct Arrow S), we have B is
a function type. By case analysis on the rule applied last to derive Σ | ∅ `S vs2 : B ⇝ C .

Case (Ct Id S): Contradictory because vs1 # vs2 = (s1 → t1) # id = s1 → t1 6= id.

Case (Ct Inj S): Contradictory because vs1 # vs2 = (s1 → t1) # (g2 ;G2!) = ((s1 → t1) # g2) ;G2! 6= id.

Case (Ct Arrow S): We are given vs2 = s2 → t2 (∃s2, t2). Contradictory because vs1 # vs2 = (s1 →
t1) # (s2 → t2) = (s2 # s1)→ (t1 # t2) 6= id.

Otherwise: Contradictory because B cannot be a function type.

Case vs1 = ∀X .s1 ,, t1 (∃X , s1, t1): Since Σ | ∅ `S ∀X .s1 ,, t1 : A⇝ B is derived by (Ct All S), we have
B = ∀X .B1 (∃B1). By case analysis on the rule applied last to derive Σ | ∅ `S vs2 : B ⇝ C .

Case (Ct Id S): Contradictory because vs1 # vs2 = (∀X .s1 ,, t1) # id = ∀X .s1 ,, t1 6= id.

Case (Ct Inj S): Contradictory because vs1 #vs2 = (∀X .s1 ,, t1) # (g2 ;G2!) = ((∀X .s1 ,, t1) #g2) ;G2! 6= id.

Case (Ct All S): We are given vs2 = ∀X .s2 ,, t2 (∃s2, t2). Contradictory because vs1 # vs2 = (∀X .s1 ,,
t1) # (∀X .s2 ,, t2) = ∀X .(s1 # s2) ,, (t1 # t2) 6= id.

Otherwise: Contradictory because B cannot be a polymorphic type.

(2) Suppose that vs2 6= id. By case analysis on vs1.

Case vs1 = id: Contradictory because id = vs1 # vs2 = id # vs2 = vs2.
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Case vs1 = g1 ;G1! (∃g1,G1): Since Σ | ∅ `S g1 ;G1! : A⇝ B is derived by (Ct Inj S), we have B = ⋆.
By case analysis on the rule applied last to derive Σ | ∅ `S vs2 : ⋆⇝ C .

Case (Ct Inj S): We are given

vs2 = g2 ;G2!, Σ | ∅ ` g2 : ⋆⇝ Σ(G2) (∃g2,G2) .

Since B = ⋆, Σ | ∅ ` g2 : ⋆ ⇝ Σ(G2) is derived by (Ct Id S), ⋆ = Σ(G2). There is contradiction
because G2 6= ⋆ and for any A in α := A ∈ Σ is not a dynamic type.

Otherwise: Contradictory because B cannot be a dynamic type.

Case vs1 = s1 → t1 (∃s1, t1): Since Σ | ∅ `S s1 → t1 : A⇝ B is derived by (Ct Arrow S), we have B is
a function type. By case analysis on the rule applied last to derive Σ | ∅ `S vs2 : B ⇝ C .

Case (Ct Inj S): Contradictory because vs1 # vs2 = (s1 → t1) # (g2 ;G2!) = ((s1 → t1) # g2) ;G2! 6= id.

Case (Ct Arrow S): We are given vs2 = s2 → t2 (∃s2, t2). Contradictory because vs1 # vs2 = (s1 →
t1) # (s2 → t2) = (s2 # s1)→ (t1 # t2) 6= id.

Otherwise: Contradictory because B cannot be a function type.

Case vs1 = ∀X .s1 ,, t1 (∃X , s1, t1): Since Σ | ∅ `S ∀X .s1 ,, t1 : A⇝ B is derived by (Ct All S), we have
B = ∀X .B1 (∃B1). By case analysis on the rule applied last to derive Σ | ∅ `S vs2 : B ⇝ C .

Case (Ct Inj S): Contradictory because vs1 #vs2 = (∀X .s1 ,, t1) # (g2 ;G2!) = ((∀X .s1 ,, t1) #g2) ;G2! 6= id.

Case (Ct All S): We are given vs2 = ∀X .s2 ,, t2 (∃s2, t2). Contradictory because vs1 # vs2 = (∀X .s1 ,,
t1) # (∀X .s2 ,, t2) = ∀X .(s1 # s2) ,, (t1 # t2) 6= id.

Otherwise: Contradictory because B cannot be a polymorphic type.

Lemma I.50 (Intermediate Coercions are Bisimilar to Values). If Σ | ∅ ` V ≈ M ′〈s〉 : A, then there exists
some i such that s = i .

Proof. By induction on the derivation of Σ | ∅ ` V ≈ M ′〈s〉 : A. We perform case analysis on the rule applied
last to derive Σ | ∅ ` V ≈ M ′〈s〉 : A, which is either (Bs CrcId), (Bs Crc), (Bs CrcMore) or (Bs CrcIdL).

Case (Bs CrcId): We are given s = |idA|∅. By the definition of the translation, |idA|∅ is a ground coercion,
that is, intermediate coercion, so we have the conclusion.

Case (Bs Crc): Since V1〈c〉 is a value, we are given

V = V1〈vc〉, s = |vc|∅, Σ | ∅ ` V1 ≈ M ′ : B , Σ | ∅ `C c : B ⇝ A (∃B , vc,V1) .

Moreover, by Lemma I.43,

s = vs = |vc|∅, Σ | ∅ `S vs : Σ(B)⇝ Σ(A) (∃vs) .

Since vs is an intermediate coercion, we finish the case.

Case (Bs CrcMore): We are given

V = V1〈c〉, s = s ′ # |c|∅, Σ | ∅ ` V1 ≈ M ′〈s ′〉 : B , Σ | ∅ `C c : B ⇝ A (∃B , c, s ′,V1) .

By the IH, there exists some i ′ such that s ′ = i ′. Furthermore, Lemma I.22 implies Σ | ∅ `S M ′〈i ′〉 : Σ(B).
Because this judgment is derived by (T Crc S), we have Σ | ∅ `S i ′ : C ⇝ Σ(B) (∃C ). Moreover, by
Lemma I.3, Σ | ∅ `S |c|∅ : Σ(B)⇝ Σ(A). By case analysis on c.

Case c = G ! (∃G): Since Σ | ∅ `C c : B ⇝ A, G is not a type variable and |G !|∅ = |idG |∅ ;G !. Therefore,

s = i ′ # |G !|∅
= i ′ # (|idG |∅ ;G !)

= (i ′ # |idG |∅) ;G ! .
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Case c = α− (∃α): Similar to the case of c = G !.

Case c = c′ → d ′ (∃c′, d ′): Because Σ | ∅ `C c′ → d ′ : B ⇝ A is derived by (Ct Arrow C), there exist
some A′,B ′ such that B = A′ → B ′. Because Σ | ∅ `S i ′ : C ⇝ (Σ(A′) → Σ(B ′)) is derived by
(Ct Arrow S), there exist some s ′′, t ′′ such that i ′ = s ′′ → t ′′. Therefore,

s = (s ′′ → t ′′) # |c′ → d ′|∅
= (s ′′ → t ′′) # (|c′|∅ → |d ′|∅)
= (|c′|∅ # s ′′)→ (t ′′ # |d ′|∅) .

Case c = ∀X .c′ (∃X , c′): Similarl to the case of c = c′ → d ′.

Otherwise: Contradictory with the assumption that V1〈c〉 is a value.

Case (Bs CrcIdL): We are given

V = V1〈cI〉, Σ | ∅ ` V1 ≈ M ′〈s〉 : B , Σ | ∅ `C cI : B ⇝ A (∃B , cI ,V1) .

By the IH, there exists some i ′ such that s = i ′. We conclude the case by (Bs CrcIdL).

Lemma I.51 (Coercion Reduction Preserves Bisimilarity (Single Coercion)). If Σ | ∅ ` V 〈c〉 ≈ U 〈s〉 : A, then
either of the following holds:

(1) there exists some V1 such that Σ ▷ V 〈c〉 −→∗
C Σ ▷ V1 and Σ | ∅ ` V1 ≈ U 〈s〉 : A; or

(2) there exists some p such that Σ ▷ V 〈c〉 −→∗
C Σ ▷ blame p and s = ⊥p .

Proof. By induction on c. We perform case analysis on the last rule to derive Σ | ∅ ` V 〈c〉 ≈ U 〈s〉 : A.

Case (Bs Crc): We are given

s = |c|∅, Σ | ∅ ` V ≈ U : B , Σ | ∅ `C c : B ⇝ A (∃B) .

By case analysis on c.

Case c = idA′ (∃A′): By (R Id C), Σ ▷ V 〈idA′〉 −→C Σ ▷ V . Because Σ | ∅ `C idA′ : B ⇝ A is derived by
(Ct Id C), we have A′ = B = A. Therefore, it suffices to show that

Σ | ∅ ` V ≈ U 〈|idA|∅〉 : A ,

which is given by (Bs CrcId).

Case c = G ! (∃G), c = α− (∃α), c = c′ → d ′ (∃c′, d ′), c = ∀X .c′ (∃X , c′): Because V 〈c〉 is a value, we have
the conclusion by letting V1 = V 〈c〉.

Case c = G?p (∃p,G): Lemma I.22 implies Σ | ∅ `C V 〈G?p〉 : A. By inversion of the derivation of this
judgment, we have A = G and Σ | ∅ `C V : ⋆. Therefore, Lemma E.2 implies that there exist some H ,V1

such that V = V1〈H !〉. Now, we have Σ | ∅ ` V1〈H !〉 ≈ U : B . However, there is contradiction because
there are no rules to derive Σ | ∅ ` V1〈H !〉 ≈ U : B .

Case c = α+ (∃α): We are given |α+|∅ = id. Lemma I.22 implies Σ | ∅ `C V 〈α+〉 : A. By inversion of the
derivation of this judgment, we have A = A (∃A), B = α and Σ | ∅ `C V : α. Therefore, Lemma E.2
implies that there exist some V1 such that V = V1〈α−〉. Furthermore, since Σ | ∅ ` V1〈α−〉 ≈ U : α is
derived by (Bs CrcIdL), we have

Σ | ∅ ` V1 ≈ U : B, Σ | ∅ `C α− : B⇝ α (∃B) .

Since Σ | ∅ `C α− : B ⇝ α is derived by (Ct Conceal C), we have B = A. Furthermore, by
(R Remove C),

V 〈c〉 = V1〈α−〉 〈α+〉
−→∗

C V1 .

Therefore, it suffices to show that Σ | ∅ ` V1 ≈ U 〈id〉 : A, which is given by (Bs CrcId).
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Case c = c1 ; c2 (∃c1, c2): We are given |c1 ; c2|∅ = |c1|∅ # |c2|∅. By (R Split C), Σ ▷ V 〈c1 ; c2〉 −→C Σ ▷
V 〈c1〉〈c2〉. Because Σ | ∅ `C c1 ; c2 : B ⇝ A is derived by (Ct Seq C), we have

Σ | ∅ `C c1 : B ⇝ B ′, Σ | ∅ `C c2 : B ′ ⇝ A (∃B ′) .

Therefore, by Lemma I.3, we have Σ | ∅ `S |c1|∅ : Σ(B) ⇝ Σ(B ′) and Σ | ∅ `S |c2|∅ : Σ(B ′) ⇝ Σ(A).
Furthermore, by applying (Bs Crc) and (Bs CrcMore) to Σ | ∅ ` V ≈ U : B ,

Σ | ∅ ` V 〈c1〉 〈c2〉 ≈ U 〈|c1|∅ # |c2|∅〉 : A .

Case c = ⊥p
A′⇝B ′ (∃p,A′,B ′): By (R Fail C), Σ ▷ V 〈⊥p

A′⇝B ′〉 −→C Σ ▷ blame p. Therefore, it suffices to
show that s = ⊥p , which is given by

s = |⊥p
A′⇝B ′ |∅

= ⊥p .

Case (Bs CrcMore): We are given

s = s ′ # |c|∅, Σ | ∅ ` V ≈ U 〈s ′〉 : B , Σ | ∅ `C c : B ⇝ A (∃B , s ′) .

Therefore, Lemma I.22 implies Σ | ∅ `S U 〈s ′〉 : Σ(B). Because this judgment is derived by (T Crc S), we
have Σ | ∅ `S s ′ : C ⇝ Σ(B) (∃C ). By case analysis on c.

Case c = idA′ (∃A′): By (R Id C), Σ ▷ V 〈idA′〉 −→C Σ ▷ V . Because Σ | ∅ `C idA′ : B ⇝ A is derived by
(Ct Id C), we have A′ = B = A. Therefore, it suffices to show that

Σ | ∅ ` V ≈ U 〈s ′ # |idA|∅〉 : A .

Now, we have Σ | ∅ `S s ′ : C ⇝ Σ(A), so by Lemma I.11, s ′ # |idA|∅ = s ′. Therefore, it suffices to show
that

Σ | ∅ ` V ≈ U 〈s ′〉 : A ,

which holds already.

Case c = G ! (∃G), c = α− (∃α), c = c′ → d ′ (∃c′, d ′), c = ∀X .c′ (∃X , c′): Because V 〈c〉 is a value, we have
the conclusion by letting V1 = V 〈c〉.

Case c = G?p (∃p,G): Lemma I.22 implies Σ | ∅ `C V 〈G?p〉 : A. By inversion of the derivation of this
judgment, we have A = G and Σ | ∅ `C V : ⋆. Therefore, Lemma E.2 implies that there exist some H ,V1

such that V = V1〈H !〉. Now, we have Σ | ∅ ` V1〈H !〉 ≈ U 〈s ′〉 : B . We perform case analysis on the last
rule to derive Σ | ∅ ` V1〈H !〉 ≈ U 〈s ′〉 : B .

Case (Bs Crc): We are given

s ′ = |H !|∅, Σ | ∅ ` V1 ≈ U : B ′, Σ | ∅ `C H ! : B ′ ⇝ B (∃B ′) .

Because Σ | ∅ `C H ! : B ′ ⇝ B is derived by (Ct Inj C), we have B ′ = H and B = ⋆. Furthermore,
by Lemma I.3, Σ | ∅ `S |H !|∅ : Σ(H ) ⇝ Σ(⋆) and Σ | ∅ `S |G?p |∅ : Σ(⋆) ⇝ Σ(G). By case analysis
on whether H = G or not.

Case H = G : By (R Collapse C), Σ ▷ V1〈G !〉〈G?p〉 −→C Σ ▷ V1. Therefore, it suffices to show
that

Σ | ∅ ` V1 ≈ U 〈|G !| # |G?p |〉 : G .

Lemma I.23 implies ` Σ and Σ ` ∅ and Σ | ∅ ` G . Therefore, by (Ct Id C), Σ | ∅ `C idG :
G ⇝ G . Hence, by Lemma I.3, Σ | ∅ `S |idG |∅ : Σ(G) ⇝ Σ(G). Furthermore, by Lemma I.11,
|idG |∅ # |idG |∅ = |idG |∅. By Lemma I.11, |idG |∅ # |idG |∅ = |idG |∅. Since Σ | ∅ `C G?p : ⋆ ⇝ G , G is
not a type variable. Thus, |G !|∅ = |idG |∅ ;G ! and |G?p |∅ = G?p ; |idG |∅. Therefore,

|G !|∅ # |G?p |∅ = (|idG |∅ ;G !) # (G?p ; |idG |∅)
= |idG |∅ # |idG |∅
= |idG |∅ .

Hence, it suffices to show that Σ | ∅ ` V1 ≈ U 〈|idG |∅〉 : G , which is given by (Bs CrcId).
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Case H 6= G : By (R Conflict C), Σ ▷ V1〈H !〉〈G?p〉 −→C Σ ▷ blame p. Therefore, it suffices to show
that s = ⊥p . Therefore,

s = |H !|∅ # |G?p |∅ .

Since Σ | ∅ `C G?p : ⋆ ⇝ G and Σ | ∅ `C H ! : H ⇝ ⋆, G and H are not type variables. Thus,
|H !|∅ = |idH |∅ ; H ! and |G?p |∅ = G?p ; |idG |∅. Hence,

|H !|∅ # |G?p |∅ = (|idH |∅ ; H !) # (G?p ; |idG |∅)
= ⊥p .

Case (Bs CrcMore): We are given

s ′ = s ′′ # |H !|∅, Σ | ∅ ` V1 ≈ U 〈s ′′〉 : B ′, Σ | ∅ `C H ! : B ′ ⇝ B (∃B ′, s ′′) .

Because Σ | ∅ `C H ! : B ′ ⇝ B is derived by (Ct Inj C), we have B ′ = H . Therefore, Lemma I.22
implies Σ | ∅ `S U 〈s ′′〉 : Σ(H ). Because this judgment is derived by (T Crc S), we have Σ |
∅ `S s ′′ : C ⇝ Σ(H ) (∃C ). Furthermore, by Lemma I.3, Σ | ∅ `S |H !|∅ : Σ(H ) ⇝ Σ(B) and
Σ | ∅ `S |G?p |∅ : Σ(B)⇝ Σ(G). Therefore, by Lemma I.7

(s ′′ # |H !|∅) # |G?p |∅ = s ′′ # (|H !|∅ # |G?p |∅) .

By case analysis on whether H = G .

Case H = G : By (R Collapse C), Σ ▷ V1〈G !〉〈G?p〉 −→C Σ ▷ V1. Therefore, it suffices to show
that

Σ | ∅ ` V1 ≈ U 〈(s ′′ # |G !|) # |G?p |〉 : G .

Lemma I.23 implies ` Σ and Σ ` ∅ and Σ | ∅ ` G . Therefore, by (Ct Id C), Σ | ∅ `C idG :
G ⇝ G . Hence, by Lemma I.3, Σ | ∅ `S |idG |∅ : Σ(G) ⇝ Σ(G). Furthermore, by Lemma I.11,
|idG |∅ # |idG |∅ = |idG |∅ and s ′′ # |idG |∅ = s ′′. Therefore,

(s ′′ # |G !|∅) # |G?p |∅ = s ′′ # (|G !|∅ # |G?p |∅)

We perform a case analysis on whether G = X (∃X ) or not.

Case G = X (∃X ):

s ′′ # (|X !|∅ # |X ?p |∅) = s ′′ # (id # id)
= s ′′ # id
= s ′′ .

Case G 6= X (∃X ): By Lemma I.11, |idG |∅ # |idG |∅ = |idG |∅ and s ′′ # |idG |∅ = s ′′. Therefore,

s ′′ # (|G !|∅ # |G?p |∅) = s ′′ # ((|idG |∅ ;G !) # (G?p ; |idG |∅))
= s ′′ # (|idG |∅ # |idG |∅)
= s ′′ # |idG |∅
= s ′′ .

Hence, it suffices to show that Σ | ∅ ` V1 ≈ U 〈s ′′〉 : G , which holds already.

Case H 6= G : By (R Conflict C), Σ ▷ V1〈H !〉〈G?p〉 −→C Σ ▷ blame p. Therefore, it suffices to show
that s = ⊥p . Lemma I.50 implies that there exists some i such that s ′′ = i . Therefore,

s = (s ′′ # |H !|∅) # |G?p |∅
= s ′′ # (|H !|∅ # |G?p |∅)
= i # (|H !|∅ # |G?p |∅)
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Assume that there exists a type variable X such that G = X . Thus, |X ?p |∅ = id. Hence, Σ | ∅ `S
id : Σ(B) ⇝ Σ(X ). However, it is contradictory because it cannot be derived any rules. Therefore,
G is not a type variable. Also, H is not a type variable. Hence,

i # (|H !|∅ # |G?p |∅) = i # ((|idH |∅ ; H !) # (G?p ; |idG |∅))
= i #⊥p

= ⊥p .

Case (Bs CrcId) and (Bs CrcIdL): Contradictory because H ! is not a no-op coercion.

Case c = α+ (∃α): Since Σ | ∅ `C α+ : B ⇝ A is derived by (Ct Reveal C), we have

B = α, A = A α := A ∈ Σ (∃A) .

Lemma I.22 implies Σ | ∅ `C V 〈α+〉 : A. Since Σ | ∅ `C V 〈α+〉 : A is derived by (T Crc C), we have

Σ | ∅ `C V : α .

Therefore, Lemma E.2 implies that there exist some V1 such that V = V1〈α−〉. By (R Remove C),

V 〈c〉 = V1〈α−〉 〈α+〉
−→∗

C V1 .

Moreover, since

s = s ′ # |c|∅
= s ′ # |α+|∅
= s ′ # id
= s ′ ,

it suffices to show that Σ | ∅ ` V1 ≈ U 〈s ′〉 : A. Now, we have Σ | ∅ ` V1〈α−〉 ≈ U 〈s ′〉 : α. We perform
case analysis on the last rule to derive Σ | ∅ ` V1〈α−〉 ≈ U 〈s ′〉 : α, which is either of (Bs CrcId),
(Bs CrcIdL), (Bs Crc), or (Bs CrcMore).

Case (Bs CrcId): We are given

s ′ = |idα|∅, Σ | ∅ ` V1〈α−〉 ≈ U : α, Σ | ∅ `C idα : α⇝ α .

Since Σ | ∅ ` V1〈α−〉 ≈ U : α is derived by (Bs CrcIdL) and (Ct Conceal C), we have

Σ | ∅ ` V1 ≈ U : A, Σ | ∅ `C α− : A⇝ α .

Therefore, it suffices to show that Σ | ∅ ` V1 ≈ U 〈|idα|∅〉 : A, which is given by (Bs CrcId).

Case (Bs CrcIdL): We are given

Σ | ∅ ` V1 ≈ U 〈s ′〉 : C , Σ | ∅ `C α− : C ⇝ α .

Since Σ | ∅ `C α− : C ⇝ α is derived by (Ct Conceal C), we have C = A.
Case (Bs Crc): We are given

s ′ = |α−|∅ = id, Σ | ∅ ` V1 ≈ U : B ′, Σ | ∅ `C α− : B ′ ⇝ α (∃B ′) .

Because Σ | ∅ `C α− : B ′ ⇝ α is derived by (Ct Conceal C), we have B ′ = A. Here, we have

s = s ′ = id

= |idA|∅ .

It suffices to show that Σ | ∅ ` V1 ≈ U 〈|idA|∅〉 : A. By Lemma I.23, ` Σ and Σ ` ∅ and Σ | ∅ ` A.
Therefore, by (Ct Id C), Σ | ∅ `C idA : A⇝ A. Hence, by (Bs CrcId), we finish the case.
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Case (Bs CrcMore): We are given

s ′ = s ′′ # |α−|∅, Σ | ∅ ` V1 ≈ U 〈s ′′〉 : B ′, Σ | ∅ `C α− : B ′ ⇝ α (∃B ′, s ′′) .

Because Σ | ∅ `C α− : B ′ ⇝ α is derived by (Ct Conceal C), we have B ′ = A. Furthermore,

s = s ′ = s ′′ # |α−|∅
= s ′′ # id
= s ′′ .

Therefore, it suffices to show that Σ | ∅ ` V1 ≈ U 〈s ′′〉 : A, which already holds.

Case c = c1 ; c2 (∃c1, c2): We are given |c1;c2|∅ = |c1;c2|∅ = |c1|∅#|c2|∅. By (R Split C), Σ ▷ V 〈c1;c2〉 −→C

Σ ▷ V 〈c1〉〈c2〉. Because Σ | ∅ `C c1 ; c2 : B ⇝ A is derived by (Ct Seq C), we have

Σ | ∅ `C c1 : B ⇝ B ′, Σ | ∅ `C c2 : B ′ ⇝ A (∃B ′) .

Therefore, by Lemma I.3, we have Σ | ∅ `S |c1|∅ : Σ(B) ⇝ Σ(B ′) and Σ | ∅ `S |c2|∅ : Σ(B ′) ⇝ Σ(A).
Therefore, by Lemma I.7,

(s ′ # |c1|∅) # |c2|∅ = s ′ # (|c1|∅ # |c2|∅) .
Furthermore, by applying (Bs CrcMore) to Σ | ∅ ` V ≈ U 〈s ′〉 : B ,

Σ | ∅ ` V 〈c1〉 ≈ U 〈s ′ # |c1|∅〉 : B ′ .

Then, we can apply the IH. We perform case analysis on the result.

Case (1): We are given

Σ ▷ V 〈c1〉 −→∗
C Σ ▷ V1, Σ | ∅ ` V1 ≈ U 〈s ′ # |c1|∅〉 : B ′ (∃V1) .

By applying (R Ctx C) repeatedly, Σ ▷ V 〈c1〉〈c2〉 −→∗
C Σ ▷ V1〈c2〉. Furthermore, by (Bs CrcMore),

Σ | ∅ ` V1〈c2〉 ≈ U 〈(s ′ # |c1|∅) # |c2|∅〉 : A .

Therefore, we can apply the IH. By case analysis on the result.

Case (1): We are given

Σ ▷ V1〈c2〉 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ U 〈(s ′ # |c1|∅) # |c2|∅〉 : A (∃V2) .

Therefore,

Σ ▷ V 〈c1 ; c2〉 −→C Σ ▷ V 〈c1〉〈c2〉 −→∗
C Σ ▷ V1〈c2〉 −→∗

C Σ ▷ V2 .

Furthermore, because Σ | ∅ ` V2 ≈ U 〈(s ′ # |c1|∅) # |c2|∅〉 : A and (s ′ # |c1|∅) # |c2|∅ = s ′ # (|c1|∅ # |c2|∅),
we have

Σ | ∅ ` V2 ≈ U 〈s ′ # (|c1|∅ # |c2|∅)〉 : A .

Case (2): We are given

Σ ▷ V1〈c2〉 −→∗
C Σ ▷ blame p2, (s ′ # |c1|∅) # |c2|∅ = ⊥p2 (∃p2) .

Therefore,

Σ ▷ V 〈c1 ; c2〉 −→C Σ ▷ V 〈c1〉〈c2〉 −→∗
C Σ ▷ V1〈c2〉 −→∗

C Σ ▷ blame p2 .

Furthermore,

s = s ′ # (|c1|∅ # |c2|∅)
= (s ′ # |c1|∅) # |c2|∅
= ⊥p2 .
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Case (2): We are given

Σ ▷ V 〈c1〉 −→∗
C Σ ▷ blame p1, s ′ # |c1|∅ = ⊥p1 (∃p1) .

Therefore, by (R Ctx C) and (R Blame),

Σ ▷ V 〈c1 ; c2〉 −→C Σ ▷ V 〈c1〉〈c2〉 −→∗
C Σ ▷ (blame p1)〈c2〉 −→∗

C Σ ▷ blame p1 .

Furthermore,

s = s ′ # (|c1|∅ # |c2|∅)
= (s ′ # |c1|∅) # |c2|∅
= ⊥p1 # |c2|∅
= ⊥p1 .

Case c = ⊥p
A′⇝B ′ (∃p,A′,B ′): By (R Fail C), Σ ▷ V 〈⊥p

A′⇝B ′〉 −→C Σ ▷ blame p. Therefore, it suffices to
show that s = ⊥p . By Lemma I.50, there exists some i such that s ′ = i . Therefore,

s = s ′ # |⊥p
A′⇝B ′ |

= s ′ #⊥p

= i #⊥p

= ⊥p .

Case (Bs CrcId): We are given

s = |idA|∅, Σ | ∅ ` V 〈c〉 ≈ U : A .

By inversion of the derivation of Σ | ∅ ` V 〈c〉 ≈ U : A, we have

c = cI , Σ | ∅ ` V ≈ U : B , Σ | ∅ ` cI : B ⇝ A (∃cI ,B) .

By Lemma I.56, there exists a value V2 such that Σ ▷ V 〈cI〉 −→∗
C Σ ▷ V2 and Σ | ∅ ` V2 ≈ U : A.

Case (Bs CrcIdL): We are given

c = cI , Σ | ∅ ` V ≈ U 〈s〉 : B , Σ | ∅ `C cI : B ⇝ A (∃cI ,B) .

By Lemma I.56, there exists a value V2 such that Σ ▷ V 〈cI〉 −→∗
C Σ ▷ V2 and Σ | ∅ ` V2 ≈ U 〈s〉 : A.

Lemma I.52 (Coercion Reduction Preserves Bisimilarity). Let n > 0. If Σ | ∅ ` V 〈c1〉 · · · 〈cn〉 ≈ U 〈s〉 : A,
then either of the following holds:

(1) there exists some V1 such that Σ ▷ V 〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ V1 and Σ | ∅ ` V1 ≈ U 〈s〉 : A.

(2) there exists some p such that Σ ▷ V 〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ blame p and s = ⊥p .

Proof. By induction on n.

Case n = 1: By Lemma I.51.

Case n = k + 1(k ≥ 1): We perform case analysis on the last rule to derive Σ | ∅ ` V 〈c1〉 · · · 〈ck 〉 〈ck+1〉 ≈ U 〈s〉 :
A.

Case (Bs Crc): We are given

s = |ck+1|∅, Σ | ∅ ` V 〈c1〉 · · · 〈ck 〉 ≈ U : B , Σ | ∅ `C ck+1 : B ⇝ A (∃B) .
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By Lemma I.40, we have

Σ | ∅ ` V ≈ U : A0, ci = cIi , Ak = B ,

Σ | ∅ `C cIi : Ai−1 ⇝ Ai (∃V1,A0, . . . ,Ak , c
I
1, . . . , c

I
k ) .

Therefore, by Lemma I.56,

Σ ▷ V 〈cI1〉 −→∗
C Σ ▷ V1, Σ | ∅ ` V1 ≈ U : A1 (∃V1).

By (Bs CrcIdL), Σ | ∅ ` V1〈cI2〉 ≈ U : A2. Similarly, by applying Lemma I.56 and (Bs CrcIdL)
repeatedly, there exists Vk such that

Σ ▷ V 〈cI1〉 · · · 〈cIk 〉 −→∗
C Σ ▷ Vk , Σ | ∅ ` Vk ≈ U : Ak .

By (Bs Crc),

Σ | ∅ ` Vk 〈ck+1〉 ≈ U 〈|ck+1|∅〉 : A .

Therefore, by Lemma I.51, it suffices to consider the following two cases.

Case (1) in Lemma I.51: We are given

Σ ▷ Vk 〈ck+1〉 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ U 〈|ck+1|∅〉 : A (∃V2) .

Therefore,

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈ck+1〉 −→∗
C Σ ▷ Vk 〈ck+1〉

−→∗
C Σ ▷ V2 .

Hence, it suffices to show that Σ | ∅ ` V2 ≈ U 〈|ck+1|∅〉 : A, which holds already.

Case (2) in Lemma I.51: We are given

Σ ▷ Vk 〈ck+1〉 −→∗
C Σ ▷ blame p, |ck+1|∅ = ⊥p (∃p) .

Hence,

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈ck+1〉 −→∗
C Σ ▷ Vk 〈ck+1〉

−→∗
C Σ ▷ blame p .

Furthermore,

s = |ck+1|∅
= ⊥p .

Case (Bs CrcMore): We are given

s = s ′ # |ck+1|∅, Σ | ∅ ` V 〈c1〉 · · · 〈ck 〉 ≈ U 〈s ′〉 : B , Σ | ∅ `C ck+1 : B ⇝ A (∃B , s ′) .

Therefore, we can apply the IH, and perform case analysis on the result.

Case (1): We are given

Σ ▷ V 〈c1〉 · · · 〈ck 〉 −→∗
C Σ ▷ V1, Σ | ∅ ` V1 ≈ U 〈s ′〉 : B (∃V1) .

Therefore, by applying (R Ctx C) repeatedly, we have

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈ck+1〉 −→∗
C Σ ▷ V1〈ck+1〉 .

By (Bs CrcMore),

Σ | ∅ ` V1〈ck+1〉 ≈ U 〈s ′ # |ck+1|∅〉 : A .

Therefore, by Lemma I.51, it suffices to consider the following two cases.
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Case (1) in Lemma I.51: We are given

Σ ▷ V1〈ck+1〉 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ U 〈s ′ # |ck+1|∅〉 : A (∃V2) .

Therefore,

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈ck+1〉 −→∗
C Σ ▷ V1〈ck+1〉

−→∗
C Σ ▷ V2 .

Hence, it suffices to show that Σ | ∅ ` V2 ≈ U 〈s ′ # |ck+1|∅〉 : A, which holds already.

Case (2) in Lemma I.51: We are given

Σ ▷ V1〈ck+1〉 −→∗
C Σ ▷ blame p, s ′ # |ck+1|∅ = ⊥p (∃p) .

Hence,

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈ck+1〉 −→∗
C Σ ▷ V1〈ck+1〉

−→∗
C Σ ▷ blame p .

Furthermore,

s = s ′ # |ck+1|∅
= ⊥p .

Case (2): We are given

Σ ▷ V 〈c1〉 · · · 〈ck 〉 −→∗
C Σ ▷ blame p, s ′ = ⊥p (∃p) .

Therefore, by (R Ctx C) and (R Blame C),

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈ck+1〉 −→∗
C Σ ▷ (blame p)〈ck+1〉

−→C Σ ▷ blame p .

Furthermore,

s = s ′ # |ck+1|∅
= ⊥p # |ck+1|∅
= ⊥p .

Case (Bs CrcId): We are given

s = |idA|∅, Σ | ∅ ` V 〈c1〉 · · · 〈ck 〉 ≈ U : A, Σ | ∅ `C ck+1 : B ⇝ A .

By inversion of the derivation of Σ | ∅ ` V 〈c1〉 · · · 〈ck 〉 ≈ U : A, we have for all 0 ≤ i ≤ k

ci = cIi , Σ | ∅ ` V ≈ U : A1, Σ | ∅ `C ci : Ai ⇝ Ai+1, Ak+1 = A (∃cI1, ..., cIk ,A1, ...,Ak+1) .

By applying Lemma I.56 repeatedly, there exists a value V2 such that Σ ▷ V 〈cI1〉 · · · 〈cIk 〉 −→∗
C Σ ▷ V2

and Σ | ∅ ` V2 ≈ U : A.

Case (Bs CrcIdL): We are given

ck+1 = cIk+1, Σ | ∅ ` V 〈c1〉 · · · 〈ck 〉 ≈ U 〈s〉 : B , Σ | ∅ `C cIk+1 : B ⇝ A .

Therefore, we can apply the IH, and perform case analysis on the result.
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Case (1): We are given

Σ ▷ V 〈c1〉 · · · 〈ck 〉 −→∗
C Σ ▷ V1, Σ | ∅ ` V1 ≈ U 〈s〉 : B (∃V1) .

Therefore, by applying (R Ctx C) repeatedly, we have

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈cIk+1〉 −→∗
C Σ ▷ V1〈cIk+1〉 .

By (Bs CrcIdL),

Σ | ∅ ` V1〈cIk+1〉 ≈ U 〈s〉 : A .

Therefore, by Lemma I.51, it suffices to consider the following two cases.

Case (1) in Lemma I.51: We are given

Σ ▷ V1〈cIk+1〉 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ U 〈s〉 : A (∃V2) .

Therefore,

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈cIk+1〉 −→∗
C Σ ▷ V1〈cIk+1〉

−→∗
C Σ ▷ V2 .

Hence, it suffices to show that Σ | ∅ ` V2 ≈ U 〈s〉 : A, which holds already.

Case (2) in Lemma I.51: We are given

Σ ▷ V1〈cIk+1〉 −→∗
C Σ ▷ blame p, s = ⊥p (∃p) .

Hence,

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈cIk+1〉 −→∗
C Σ ▷ V1〈cIk+1〉

−→∗
C Σ ▷ blame p .

Furthermore, we already have s = ⊥p .

Case (2): We are given

Σ ▷ V 〈c1〉 · · · 〈ck 〉 −→∗
C Σ ▷ blame p, s = ⊥p (∃p) .

Therefore, by (R Ctx C) and (R Blame C),

Σ ▷ V 〈c1〉 · · · 〈ck 〉〈ck+1〉 −→∗
C Σ ▷ (blame p)〈ck+1〉

−→C Σ ▷ blame p .

Furthermore, we already have s = ⊥p .

Lemma I.53 (Coercion Reduction Preserves Bisimilarity (for Function Coercions)). Let n > 0. If V1 is not a
coercion application, and Σ | ∅ ` V1〈c1 → d1〉 · · · 〈cn → dn〉 ≈ U ′

1〈s〉 : A′ → B ′ and Σ | ∅ ` V2 ≈ U ′
2〈s ′〉 : A′,

then either of the following holds:

(1) there exists someM3, A1, and A2 such that Σ ▷ (V1〈c1 → d1〉 · · · 〈cn → dn〉)V2 −→∗
C Σ ▷ (V1 M3)〈d1〉 · · · 〈dn〉

and Σ | ∅ ` M3 ≈ U ′
2〈s ′ # |cn |∅ # · · · # |c1|∅〉 : A1 and Σ | ∅ `C c1 : A2 ⇝ A1; or

(2) there exists some p such that Σ ▷ (V1〈c1 → d1〉 · · · 〈cn → dn〉)V2 −→∗
C Σ ▷ blame p and s ′ # |cn |∅ # · · · #

|c1|∅ = ⊥p .

Proof. By induction on n.

Case n = 1: By (R Wrap C), Σ ▷ (V1〈c1 → d1〉)V2 −→C Σ ▷ (V1 (V2〈c1〉))〈d1〉. Therefore, it suffices
to show that Σ | ∅ ` V2〈c1〉 ≈ U ′

2〈s ′ # |c1|∅〉 : A. We perform case analysis on the last rule to derive
Σ | ∅ ` V1〈c1 → d1〉 ≈ U ′

1〈s〉 : A′ → B ′.
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Case (Bs Crc): We are given

s = |c1 → d1|∅, Σ | ∅ ` V1 ≈ U ′
1 : C ′ Σ | ∅ `C c1 → d1 : C ′ ⇝ (A′ → B ′) (∃C ′) .

Because Σ | ∅ `C c1 → d1 : C ′ ⇝ (A′ → B ′) is derived by (Ct Arrow C), we have

C ′ = A→ B , Σ | ∅ `C c1 : A′ ⇝ A, Σ | ∅ `C d1 : B ⇝ B ′ (∃A,B) .

Therefore, by (Bs CrcMore), Σ | ∅ ` V2〈c1〉 ≈ U ′
2〈s ′ # |c1|∅〉 : A.

Case (Bs CrcMore): We are given

s = s0 # |c1 → d1|∅, Σ | ∅ ` V1 ≈ U ′
1〈s0〉 : C ′ Σ | ∅ `C c1 → d1 : C ′ ⇝ (A′ → B ′) (∃C ′, s0) .

Because Σ | ∅ `C c1 → d1 : C ′ ⇝ (A′ → B ′) is derived by (Ct Arrow C), we have

C ′ = A→ B , Σ | ∅ `C c1 : A′ ⇝ A, Σ | ∅ `C d1 : B ⇝ B ′ (∃A,B) .

Therefore, by (Bs CrcMore), Σ | ∅ ` V2〈c1〉 ≈ U ′
2〈s ′ # |c1|∅〉 : A.

Case (Bs CrcId): We are given

s = |idA′→B ′ |∅, Σ | ∅ ` V1〈c1 → d1〉 ≈ U ′
1 : A′ → B ′,

Σ | ∅ `C idA′→B ′ : (A′ → B ′)⇝ (A′ → B ′) .

Because Σ | ∅ ` V1〈c1 → d1〉 ≈ U ′
1 : A′ → B ′ is derived by (Bs CrcIdL), we have

c1 = cI1, , d1 = dI1, Σ | ∅ ` V1 ≈ U ′
1 : C ′, Σ | ∅ `C cI1 → dI1 : C ′ ⇝ (A′ → B ′) (∃C ′, cI1, d

I
1) .

Because Σ | ∅ `C cI1 → dI1 : C ′ ⇝ (A′ → B ′) is derived by (Ct Arrow C), we have

C ′ = A→ B , Σ | ∅ `C cI1 : A′ ⇝ A, Σ | ∅ `C dI1 : B ⇝ B ′ (∃A,B) .

Therefore, by (Bs CrcMore), Σ | ∅ ` V2〈cI1〉 ≈ U ′
2〈s ′ # |cI1|∅〉 : A.

Case (Bs CrcIdL): Similarly to the case (Bs CrcId).

Case n = k + 1(k ≥ 1): We perform case analysis on the last rule to derive Σ | ∅ ` V1〈c1 → d1〉 · · · 〈ck →
dk 〉 〈ck+1 → dk+1〉 ≈ U ′

1〈s〉 : A′ → B ′.

Case (Bs Crc): We are given

s = |ck+1 → dk+1|∅, Σ | ∅ ` V1〈c1 → d1〉 · · · 〈ck → dk 〉 ≈ U ′
1 : C ′

Σ | ∅ `C ck+1 → dk+1 : C ′ ⇝ (A′ → B ′) (∃C ′) .

Because Σ | ∅ `C ck+1 → dk+1 : C ′ ⇝ (A′ → B ′) is derived by (Ct Arrow C), we have

C ′ = A′′ → B ′′, Σ | ∅ `C ck+1 : A′ ⇝ A′′, Σ | ∅ `C dk+1 : B ′′ ⇝ B ′ (∃A′′,B ′′) .

Therefore, by (Bs CrcMore), Σ | ∅ ` V2〈ck+1〉 ≈ U ′
2〈s ′ # |ck+1|∅〉 : A′′. Hence, by Lemma I.51, we

consider the following two cases.

Case (1) in Lemma I.51: We are given

Σ ▷ V2〈ck+1〉 −→∗
C Σ ▷ V3, Σ | ∅ ` V3 ≈ U ′

2〈s ′ # |ck+1|∅〉 : A′′ (∃V3) .

By the IH, we consider the following two cases.

Case (1): We are given

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉)V3 −→∗
C Σ ▷ (V1 M4)〈d1〉 · · · 〈dk 〉,

Σ | ∅ ` M4 ≈ U ′
2〈(s ′ # |ck+1|∅) # |ck |∅ # · · · # |c1|∅〉 : A (∃M4) .
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By (R Wrap C) and (R Ctx C),

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉〈ck+1 → dk+1〉)V2 −→C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉) (V2〈ck+1〉))〈dk+1〉
−→∗

C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉)V3)〈dk+1〉
−→∗

C Σ ▷ (V1 M4)〈d1〉 · · · 〈dk 〉〈dk+1〉 .

Therefore, it suffices to show that Σ | ∅ ` M4 ≈ U ′
2〈s ′ # |ck+1|∅ # |ck |∅ # · · · # |c1|∅〉 : A, which holds

already.

Case (2): We are given

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉)V3 −→∗
C Σ ▷ blame p, (s ′ # |ck+1|∅) # |ck |∅ # · · · # |c1|∅ = ⊥p (∃p) .

By (R Wrap C), (R Ctx C), and (R Blame C),

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉〈ck+1 → dk+1〉)V2 −→C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉) (V2〈ck+1〉))〈dk+1〉
−→∗

C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉)V3)〈dk+1〉
−→∗

C Σ ▷ (blame p)〈dk+1〉
−→C Σ ▷ blame p .

Therefore, it suffices to show that s ′ # |ck+1|∅ # |ck |∅ # · · · # |c1|∅ = ⊥p , which holds already.

Case (2) in Lemma I.51: We are given

Σ ▷ V2〈ck+1〉 −→∗
C Σ ▷ blame p, s ′ # |ck+1|∅ = ⊥p (∃p) .

By (R Wrap C), (R Ctx C), and (R Blame C),

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉〈ck+1 → dk+1〉)V2 −→C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉) (V2〈ck+1〉))〈dk+1〉
−→∗

C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉) (blame p))〈dk+1〉
−→∗

C Σ ▷ (blame p)〈dk+1〉
−→C Σ ▷ blame p .

Furthermore, since

s ′ # |ck+1|∅ # |ck |∅ # · · · # |c1|∅ = ⊥p # |ck |∅ # · · · # |c1|∅
= ⊥p ,

we finish the case.

Case (Bs CrcMore): We are given

s = s0 # |ck+1 → dk+1|∅, Σ | ∅ ` V1〈c1 → d1〉 · · · 〈ck → dk 〉 ≈ U ′
1〈s0〉 : C ′

Σ | ∅ `C ck+1 → dk+1 : C ′ ⇝ (A′ → B ′) (∃C ′, s0) .

Because Σ | ∅ `C ck+1 → dk+1 : C ′ ⇝ (A′ → B ′) is derived by (Ct Arrow C), we have

C ′ = A′′ → B ′′, Σ | ∅ `C ck+1 : A′ ⇝ A′′, Σ | ∅ `C dk+1 : B ′′ ⇝ B ′ (∃A′′,B ′′) .

Therefore, by (Bs CrcMore), Σ | ∅ ` V2〈ck+1〉 ≈ U ′
2〈s ′ # |ck+1|∅〉 : A′′. Hence, by Lemma I.51, we

consider the following two cases.

Case (1) in Lemma I.51: We are given

Σ ▷ V2〈ck+1〉 −→∗
C Σ ▷ V3, Σ | ∅ ` V3 ≈ U ′

2〈s ′ # |ck+1|∅〉 : A′′ (∃V3) .

By the IH, we consider the following two cases.
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Case (1): We are given

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉)V3 −→∗
C Σ ▷ (V1 M4)〈d1〉 · · · 〈dk 〉,

Σ | ∅ ` M4 ≈ U ′
2〈(s ′ # |ck+1|∅) # |ck |∅ # · · · # |c1|∅〉 : A (∃M4) .

By (R Wrap C) and (R Ctx C),

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉〈ck+1 → dk+1〉)V2 −→C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉) (V2〈ck+1〉))〈dk+1〉
−→∗

C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉)V3)〈dk+1〉
−→∗

C Σ ▷ (V1 M4)〈d1〉 · · · 〈dk 〉〈dk+1〉 .

Therefore, it suffices to show that Σ | ∅ ` M4 ≈ U ′
2〈s ′ # |ck+1|∅ # |ck |∅ # · · · # |c1|∅〉 : A, which holds

already.

Case (2): We are given

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉)V3 −→∗
C Σ ▷ blame p, (s ′ # |ck+1|∅) # |ck |∅ # · · · # |c1|∅ = ⊥p (∃p) .

By (R Wrap C), (R Ctx C), and (R Blame C),

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉〈ck+1 → dk+1〉)V2 −→C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉) (V2〈ck+1〉))〈dk+1〉
−→∗

C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉)V3)〈dk+1〉
−→∗

C Σ ▷ (blame p)〈dk+1〉
−→C Σ ▷ blame p .

Therefore, it suffices to show that s ′ # |ck+1|∅ # |ck |∅ # · · · # |c1|∅ = ⊥p , which holds already.

Case (2) in Lemma I.51: We are given

Σ ▷ V2〈ck+1〉 −→∗
C Σ ▷ blame p, s ′ # |ck+1|∅ = ⊥p (∃p) .

By (R Wrap C), (R Ctx C), and (R Blame C),

Σ ▷ (V1〈c1 → d1〉 · · · 〈ck → dk 〉〈ck+1 → dk+1〉)V2 −→C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉) (V2〈ck+1〉))〈dk+1〉
−→∗

C Σ ▷ ((V1〈c1 → d1〉 · · · 〈ck → dk 〉) (blame p))〈dk+1〉
−→∗

C Σ ▷ (blame p)〈dk+1〉
−→C Σ ▷ blame p .

Furthermore, since

s ′ # |ck+1|∅ # |ck |∅ # · · · # |c1|∅ = ⊥p # |ck |∅ # · · · # |c1|∅
= ⊥p ,

we finish the case.

Case (Bs CrcId): We are given

s = |idA′→B ′ |∅, Σ | ∅ ` V1〈c1 → d1〉 · · · 〈ck+1 → dk+1〉 ≈ U ′
1 : A′ → B ′ .

Because Σ | ∅ ` V1〈c1 → d1〉 · · · 〈ck+1 → dk+1〉 ≈ U ′
1 : A′ → B ′ is derived by (Bs CrcIdL), we have

ci = cIi , di = dIi , Σ | ∅ `C ci : A
′
i+1 ⇝ A′

i , Σ | ∅ `C di : B
′
i ⇝ B ′

i+1

A′
k+2 = A′, B ′

k+2 = B ′ (∃cIi , dIi ,A′′
i ,B

′′
i ) (1 ≤ ∀i ≤ k+1) .

Therefore, by (Bs CrcMore), Σ | ∅ ` V2〈cIk+1〉 ≈ U ′
2〈s ′ # |cIk+1|∅〉 : A′

k+1. Hence, similarly to the case
(Bs CrcMore).
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Case (Bs CrcIdL): We are given

ck+1 = cIk+1, dk+1 = dIk+1, Σ | ∅ ` V1〈c1 → d1〉 · · · 〈ck → dk 〉 ≈ U ′
1〈s〉 : C ′

Σ | ∅ `C cIk+1 → dIk+1 : C ′ ⇝ (A′ → B ′) (∃cIk+1, d
I
k+1,C

′) .

Because Σ | ∅ `C cIk+1 → dIk+1 : C ′ ⇝ (A′ → B ′) is derived by (Ct Arrow C), we have

C ′ = A→ B , Σ | ∅ `C cIk+1 : A′ ⇝ A, Σ | ∅ `C dIk+1 : B ⇝ B ′ (∃A,B) .

Hence, by the IH, we consider the cases similarly to the case (Bs CrcMore).

Lemma I.54 (Inversion of Bisimilar Identity Coercion Applications). If Σ | ∅ ` V 〈vc1〉 · · · 〈vcn〉 ≈ U 〈id〉 : A
and V is not a coercion application, then Σ | ∅ ` V 〈vc1〉 · · · 〈vcn〉 ≈ U : A.

Proof. By induction on the derivation of Σ | ∅ ` V 〈vc1〉 · · · 〈vcn〉 ≈ U 〈id〉 : A.

Case n = 0: Since V and U are not coercion aplications, Σ | ∅ ` V ≈ U 〈id〉 : A is derived by (Bs CrcId).
Therefore, we have

|idA|∅ = id, Σ | ∅ ` V ≈ U : B , Σ | ∅ `C idA : B ⇝ A (∃B) .

Hence, it suffices to show that B = A. Since Σ | ∅ `C idA : B ⇝ A is derived by (Ct Id C), we have B = A.

Case n > 0: We perform case analysis on the last rule to derive Σ | ∅ ` V 〈vc1〉 · · · 〈vcn〉 ≈ U 〈id〉 : A, which is
either (Bs CrcId), (Bs CrcIdL), (Bs Crc), or (Bs CrcMore).

Case (Bs CrcId): We are given

Σ | ∅ ` V 〈vc1〉 · · · 〈vcn〉 ≈ U : B , Σ | ∅ `C idA : B ⇝ A .

It suffices to show that B = A. Since Σ | ∅ `C idA : B ⇝ A is derived by (Ct Id C), we have B = A.

Case (Bs CrcIdL): We are given vcn ia a no-op coercion and

vcn = vcIn , Σ | ∅ ` V 〈vc1〉 · · · 〈vcn−1〉 ≈ U 〈id〉 : B , Σ | ∅ `C vcIn : B ⇝ A (∃vcIn ,B) .

Therefore, by the IH, we have Σ | ∅ ` V 〈vc1〉 · · · 〈vcn−1〉 ≈ U : B . Hence, by (Bs CrcIdL), we have
Σ | ∅ ` V 〈vc1〉 · · · 〈vcn−1〉 〈vcIn〉 ≈ U : A.

Case (Bs Crc): We are given

|vcn |∅ = id, Σ | ∅ ` V 〈vc1〉 · · · 〈vcn−1〉 ≈ U : B , Σ | ∅ `C vcn : B ⇝ A (∃B) .

We perform case analysis on vcn .

Case vcn = G ! (∃G): Since Σ | ∅ `C G ! : B ⇝ A, G ! does not contain any free type variables. Therefore,
there is contradiction because |vcn |∅ = |G !|∅ = |idG |∅ ;G ! 6= id.

Case vcn = c → d (∃c, d): There is a contradiction because |vcn |∅ = |c → d |∅ = |c|∅ → |d |∅ 6= id.

Case vcn = ∀X .c (∃X , c): There is a contradiction because |vcn |∅ = |∀X .c|∅ = ∀X .|c|∅ 6= id.

Case vcn = β− (∃β): By (Bs CrcIdL), we have Σ | ∅ ` V 〈vc1〉 · · · 〈vcn−1〉 〈β−〉 ≈ U : β.

Case (Bs CrcMore): We are given

s # |vcn |∅ = id, Σ | ∅ ` V 〈vc1〉 · · · 〈vcn−1〉 ≈ U 〈s〉 : B ,

Σ | ∅ `C vcn : B ⇝ A (∃B , s) .

By Lemma I.50, there exists some intermediate coercion i such that s = i . By Lemma I.22, Σ | ∅ `S
U 〈i〉 : Σ(B). Since Σ | ∅ `S U 〈i〉 : Σ(B) is derived by (T Crc S), we have Σ | ∅ `S i : C ⇝ Σ(B) (∃C ).
We perform case analysis on vcn .
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Case vcn = G ! (∃G): Since Σ | ∅ `C G ! : B ⇝ A, G ! does not contain any free type variables. By
Lemma I.11, i # |idG |∅ = i . Therefore,

i # |vcn |∅ = i # |G !|∅
= i # (|idG |∅ ;G !)

= (i # |idG |∅) ;G !

= i ;G !

There is contradiction because i ;G ! 6= id.

Case vcn = c → d (∃c, d): Since Σ | ∅ `C c → d : B ⇝ A is derived by (Ct Arrow C), we have

B = B1 → B2, A = A1 → A2, Σ ` ∅, Σ | ∅ ` G .

By the definition, Σ(B1 → B2) = Σ(B1)→ Σ(B2). We perform case analysis on i .

Case i = g2 ;G2! (∃g2,G2), i = ∀X .s2 (∃s2): Contradictory because the return type of i cannot be a
function type.

Case i = s1 → s2 (∃s1, s2):

s # |c → d |∅ = (s1 → s2) # |c → d |∅
= (s1 → s2) # (|c|∅ → |d |∅)
= (|c|∅ # s1)→ (s2 # |d |∅) .

However, there is a contradiction because (|c|∅ # s1)→ (s2 # |d |∅) 6= id.

Case i = id:

s # |c → d |∅ = id # |c → d |∅
= |c → d |∅
= |c|∅ → |d |∅ .

However, there is a contradiction because |c|∅ → |d |∅ 6= id.

Case vcn = ∀X .c (∃X , c): Similary to the case vcn = c → d .

Case vcn = β− (∃β): We are given id = s # |β−|∅ = s # id and s # id = s by Lemma I.6. By the IH, we have
Σ | ∅ ` V 〈vc1〉 · · · 〈vcn−1〉 ≈ U : B . Hence, by (Bs CrcIdL), we have Σ | ∅ ` V 〈vc1〉 · · · 〈vcn−1〉 〈β−〉 ≈
U : A.

Lemma I.55 (Inversion of Bisimilar Coercion Applications). If Σ | ∅ ` V 〈G !〉 ≈ U 〈id ; G !〉 : ⋆ and Σ(A′) =
Σ(G), then Σ | ∅ ` V ≈ U : G .

Proof. By Lemma I.36, there exist some V1 that is not a coercion application, n > 0, c1, . . . , cn such that
V 〈G !〉 = V1〈c1〉 · · · 〈cn〉 and cn = G !. Furthermore, because V1〈c1〉 · · · 〈cn〉 is a value, there exist some
vc1, . . . , vcn such that, for any i such that n ≥ i > 0, ci = vci . Therefore,

Σ | ∅ ` V1〈vc1〉 · · · 〈vcn−1〉 〈G !〉 ≈ U 〈id ;G !〉 : ⋆ .

By case analysis on n.

Case n = 1: We have V = V1. By case analysis on the last rule to derive Σ | ∅ ` V 〈G !〉 ≈ U 〈id ;G !〉 : ⋆.

Case (Bs CrcId): Contradictory because there is no identity corcion idA such that |idA|∅ = id ;G !.

Case (Bs CrcIdL): Contradictory because G ! is not a no-op coercion.

Case (Bs Crc): We are given

|G !|∅ = id ;G !, Σ | ∅ ` V ≈ U : B , Σ | ∅ `C G ! : B ⇝ ⋆ (∃B) .

Since Σ | ∅ `C G ! : B ⇝ ⋆ is derived by (Ct Inj C), B = G .
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Case (Bs CrcMore): There exist some A, s such that Σ | ∅ ` V ≈ U 〈s〉 : A. Because V is not a coercion
application, Σ | ∅ ` V ≈ U 〈s〉 : A is derived by (Bs CrcId). Hence, Σ | ∅ ` V ≈ U : G .

Case n > 1: By case analysis on the last rule to derive Σ | ∅ ` V1〈vc1〉 · · · 〈vcn−1〉 〈G !〉 ≈ U 〈id ;G !〉 : ⋆.

Case (Bs CrcId): Contradictory because there is no identity corcion idA such that |idA|∅ = id ;G !.

Case (Bs CrcIdL): Contradictory because G ! is not a no-op coercion.

Case (Bs Crc): We are given

id ;G ! = |G !|∅, Σ | ∅ ` V1〈vc1〉 · · · 〈vcn−1〉 ≈ U : A, Σ | ∅ `C G ! : A⇝ ⋆ (∃A) .

Because Σ | ∅ `C G ! : A⇝ ⋆ is derived by (Ct Inj C), we have A = G .

Case (Bs CrcMore): We are given

id ;G ! = s # |G !|∅, Σ | ∅ ` V1〈vc1〉 · · · 〈vcn−1〉 ≈ U 〈s〉 : A, Σ | ∅ `C G ! : A⇝ ⋆ (∃A, s) .

By Lemma I.46, there exists some i such that s = i . Because Σ | ∅ `C G ! : A ⇝ ⋆ is derived by
(Ct Inj C), we have A = G . Therefore, by Lemma I.22, we have Σ | ∅ `S U 〈i〉 : Σ(G). Because this
judgment is derived by (T Crc S), we have Σ | ∅ `S i : B ⇝ Σ(G) (∃B). Hence, by Lemma I.11, we
have i # |idA′ |∅ = i . Therefore, we have

id ;G ! = s # |G !|∅
= i # |G !|∅
= i # (|idG |∅ ;G !)

= (i # |idG |∅) ;G !

= i ;G ! .

Therefore, s = i = id. Hence, by Σ | ∅ ` V1〈vc1〉 · · · 〈vcn−1〉 ≈ U 〈id〉 : G and Lemma I.39, for all
1 ≤ i ≤ n− 1 there exists some Ai such that

Σ | ∅ ` V1 ≈ U : A1, Σ | ∅ `C vci : Ai ⇝ Ai+1, An = G .

Furthermore, there exists some j such that 0 ≤ j ≤ n− 1 and

vci = cIi (1 ≤ ∀i ≤ j), id = |idAj+1 |∅ # |vcj+1|∅ # · · · # |vcn |∅ (∃cI1, . . . , cIj ) .

Therefore, by Lemma I.43, for all 1 ≤ i ≤ n− 1

vsi = |vci |∅, Σ | ∅ `S vsi : Σ(Ai)⇝ Σ(Ai+1) (∃vs1, . . . , vsn−1) .

Hence, by Lemma I.44, there exists some vs such that vs = vsj+1 # · · · # vsn . Therefore,
id = |idAi+1

|∅ # |vcj+1|∅ # · · · # |vcn |∅
= |idAi+1

|∅ # (vsj+1 # · · · # vsn)
= |idAi+1

|∅ # vs
= vs .

Furthermore, V1 is not a cercion aplication, by Lemma I.54, we have Σ | ∅ ` V1〈vc1〉 · · · 〈vcn−1〉 ≈ U : G .

Lemma I.56 (No-op coercion Preserves Bisimularity for Values). If Σ | ∅ ` V ≈ V ′ : A and Σ | ∅ `C cI :
A⇝ B , then there exists a value V1 such that Σ ▷ V 〈cI〉 −→∗

C Σ ▷ V1 and Σ | ∅ ` V1 ≈ V ′ : B .

Proof. By induction on cI . By case analysis on cI .

Case cI = idA: We are given B = A. By Σ ▷ V 〈idA〉 −→C Σ ▷ V , it suffices to show that Σ | ∅ ` V ≈ V ′ : A,
which has been assumed.
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Case cI = α+ (∃α): We are given

A = α, B = B, Σ | ∅ `C α+ : α⇝ B (∃B) .

By Lemma I.22, Σ | ∅ `C V : α. By Lemma E.2, it must be the case that Σ | ∅ `C V : α is derived by
(T Crc C) and (Ct Conceal C); we are given

V = V2〈α−〉, Σ | ∅ ` α− : B⇝ α, Σ | ∅ ` V2 : B, Σ | ∅ ` V2〈α−〉 ≈ V ′ : α (∃V2) .

We perform case analysis on V ′.

Case V ′ = U ′
1 (∃U ′

1): It must be the case that Σ | ∅ ` V2〈α−〉 ≈ U ′
1 : α is derived by (Bs CrcIdL); we are

given

Σ | ∅ ` V2 ≈ U ′
1 : B .

Since Σ ▷ V2〈α−〉〈α+〉 −→C Σ ▷ V2, it suffices to show that Σ | ∅ ` V2 ≈ U ′
1 : B, which has been shown.

Case V ′ = U ′
1〈s〉 (∃U ′

1, s): We perform case analysis on the rule applied last to derive Σ | ∅ ` V2〈α−〉 ≈
U ′

1〈s〉 : α, which is either (Bs CrcId), (Bs CrcIdL), (Bs Crc), or (Bs CrcMore).

Case (Bs CrcId): We are given

s = |idα|∅, Σ | ∅ ` V2〈α−〉 ≈ U ′
1 : α .

Since Σ | ∅ ` V2〈α−〉 ≈ U ′
1 : α is derived by (Bs CrcIdL), we are given

Σ | ∅ ` V2 ≈ U ′
1 : B .

Therefore, since Σ ▷ V2〈α−〉〈α+〉 −→C Σ ▷ V2, it suffices to show that Σ | ∅ ` V2 ≈ U ′
1〈s〉 : B, which

is given by (Bs CrcId).

Case (Bs CrcIdL): We are given

Σ | ∅ ` V2 ≈ U ′
1〈s〉 : B .

Therefore, since Σ ▷ V2〈α−〉〈α+〉 −→C Σ ▷ V2, it suffices to show that Σ | ∅ ` V2 ≈ U ′
1〈s〉 : B, which

has been shown.

Case (Bs Crc): We are given

s = |α−|∅, Σ | ∅ ` V2 ≈ U ′
1 : B .

s = |α−|∅ = id. Therefore, since Σ ▷ V2〈α−〉〈α+〉 −→C Σ ▷ V2, it suffices to show that Σ | ∅ ` V2 ≈
U ′

1〈s〉 : B, which is given by (Bs CrcId).

Case (Bs CrcMore): We are given

s = s ′ # |α−|∅, Σ | ∅ ` V2 ≈ U ′
1〈s ′〉 : B (∃s ′).

By Lemma I.11, s = s ′ # |α−|∅ = s ′. Therefore, since Σ ▷ V2〈α−〉〈α+〉 −→C Σ ▷ V2, it suffices to show
that Σ | ∅ ` V2 ≈ U ′

1〈s ′〉 : B, which has been shown.

Case cI = cI1 ; c
I
2 (∃cI1, cI2): We are given

Σ | ∅ ` cI1 : A⇝ C , Σ | ∅ ` cI2 : C ⇝ B (∃C ) .

We have Σ ▷ V 〈cI1 ; cI2〉 −→C Σ ▷ V 〈cI1〉〈cI2〉. Furthermore, by (T Crc C), Σ | ∅ ` V 〈cI1〉 : C . Hence, by
the IH, there exists a value V2 such that Σ ▷ V 〈cI1〉 −→C Σ ▷ V2 and Σ | ∅ ` V2 ≈ V ′ : C . Therefore,
by Lemma I.22, Σ | ∅ ` V2 : C . By (T Crc C), Σ | ∅ ` V2〈cI2〉 : B . Moreover, by the IH, there
exists a value V3 such that Σ ▷ V2〈cI2〉 −→C Σ ▷ V3 and Σ | ∅ ` V3 ≈ V ′ : B . Therefore, we have
Σ ▷ V 〈cI1 ; cI2〉 −→∗

C Σ ▷ V3 and Σ | ∅ ` V3 ≈ V ′ : B .
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Case cI = α−, cI = cI1 → cI2, and cI = ∀X .cI1: Since V 〈cI〉 is a value, it suffices to show that Σ | ∅ ` V 〈cI〉 ≈
V ′ : B , which is given by (Bs CrcIdL).

Lemma I.57 (Bisimulation and Composition (Value on the Left)). If Σ | ∅ ` V 〈vc1〉 · · · 〈vcn〉 ≈ U ′〈s〉 : An for
some n > 0, then there exist a nonnegative integer n, j and V1, A0, . . .An such that:

• Σ | ∅ ` V ≈ U ′ : A0, whose derivation is a subderivation of Σ | ∅ ` V 〈vc1〉 · · · 〈vcn〉 ≈ U ′〈s〉 : An ;

• Σ | ∅ `C vci : Ai−1 ⇝ Ai (1 ≤ i ≤ n) ;

• j ≤ n

• the first j coercions vc1, . . . , vcj are no-op value ceorcions; and

• s = |idAj+1
|∅ # |vcj+1|∅ # · · · # |vcn |∅.

Furthermore,

1. If A = Bn → Cn for some Bn , Cn , then there exists Bi and Ci for i ∈ [0..n], and ci and di for i ∈ [1..n]
such that

A0 = B0 → C0, Ai = Bi → Ci , vci = ci → di ,

Σ | Γ ` ci : Bi ⇝ Bi−1, Σ | Γ ` di : Ci−1 ⇝ Ci (1 ≤ i ≤ n) .

2. If A = ∀X .Bn for some X , Bn , then there exists Bi for i ∈ [0..n] and ci for i ∈ [1..n] such that

A0 = ∀X .B0, Ai = ∀X .Bi , vci = ∀X .ci , Σ | Γ,X `C ci : Bi−1 ⇝ Bi (1 ≤ i ≤ n) .

Proof. By Lemma I.39, we have

• Σ | ∅ ` V ≈ U ′ : A0, whose derivation is a subderivation of Σ | ∅ ` V 〈vc1〉 · · · 〈vcn〉 ≈ U ′〈s〉 : An ;

• Σ | ∅ `C vci : Ai−1 ⇝ Ai (1 ≤ i ≤ n) and An = A;

• j ≤ n

• the first j coercions vc1, . . . , vcj are no-op value ceorcions; and

• s = |idAj+1 |∅ # |vcj+1|∅ # · · · # |vcn |∅.
Furthermore,

Case A = Bn → Cn (∃Bn ,Cn): Since Σ | ∅ `C vcn : An−1 ⇝ (Bn → Cn) is derived by (Ct Arrow C), we
have

vcn = cn → dn , An−1 = Bn−1 → Cn−1,

Σ | ∅ `C cn : Bn ⇝ Bn−1, Σ | ∅ `C dn : Cn−1 ⇝ Cn (∃cn , dn ,Bn−1,Cn−1) .

Similarly, since Σ | ∅ `C vci : Ai−1 ⇝ (Bi → Ci) is derived by (Ct Arrow C), we have

vci = ci → di , Ai = Bi → Ci ,

Σ | ∅ `C ci : Bi ⇝ Bi−1, Σ | ∅ `C di : Ci−1 ⇝ Ci (∃ci , di ,Bi ,Ci) (1 ≤ i ≤ n) .

Case A = ∀X .Bn (∃Bn): Since Σ | ∅ `C vcn : An−1 ⇝ ∀X .Bn is derived by (Ct All C), we have

vcn = ∀X .cn , An−1 = ∀X .Bn−1, Σ | ∅ `C cn : Bn−1 ⇝ Bn (∃cn ,Bn−1) .

Similarly, since Σ | ∅ `C vci : Ai−1 ⇝ ∀X .Bi is derived by (Ct All C), we have

vci = ∀X .ci , Ai = ∀X .Bi , Σ | ∅ `C ci : Bi−1 ⇝ Bi (∃ci ,Bi) (1 ≤ i ≤ n) .
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Lemma I.58 (Uncoerced Values are Bisimilar to Values (Value on the Left)). If Σ | Γ ` V ≈ U : A, then there
exists V1 that is not a coercion application, a nonnegative integer n, Ai for 0 ∈ [0..n] and vcIi for 0 ∈ [1..n] such
that

V = V1〈vcI1〉 · · · 〈vcIn〉, An = A, Σ | Γ ` V1 ≈ U : A0, Σ | Γ `C vcIi : Ai−1 ⇝ Ai (1 ≤ i ≤ n) .

Furthermore,

1. If A = ι for some ι, then we have

n = 0, A = ty(k) .

2. If A = Bn → Cn for some Bn , Cn , then there exists Bi and Ci for i ∈ [0..n], and cIi and dIi for i ∈ [1..n]
such that

A0 = B0 → C0,

Ai = Bi → Ci , vcIi = cIi → dIi , Σ | Γ ` cIi : Bi ⇝ Bi−1, Σ | Γ ` dIi : Ci−1 ⇝ Ci (1 ≤ i ≤ n) .

3. If A = ∀X .Bn for some X , Bn , then there exists Bi for i ∈ [0..n] and cIi for i ∈ [1..n] such that

A0 = ∀X .B0,

Ai = ∀X .Bi , vcIi = ∀X .cIi , Σ | Γ,X `C cIi : Bi−1 ⇝ Bi (1 ≤ i ≤ n) .

Proof. By Lemma I.40, there exists some term V1 such that V1 is not a coercion application and

V = V1〈cI1〉 · · · 〈cIn〉, An = A, Σ | Γ ` V1 ≈ U : A0,

Σ | Γ `C cIi : Ai−1 ⇝ Ai (1 ≤ i ≤ n) (∃A0, . . . ,An , c
I
1, . . . , c

I
n) .

Furthermore, V = V1〈cI1〉 · · · 〈cIn〉 is a value, there exists vcIi such that cIi = vcIi (i ∈ [1..n]). Moreover,

Case A = ι = ty(A) (∃ι): By Lemma I.40, we have

A0 = ty(k), Σ | Γ ` k ≈ k ′ : ι .

If we suppose n > 0, then there is a contradiction because there is no rule to derive Σ | Γ `C vcIn : An−1 ⇝ ι.
Hence, n = 0.

Case A = Bn → Cn (∃Bn ,Cn): By Lemma I.40, we have

A0 = B0 → C0, Σ | Γ ` M2 ≈ M ′
2 : C0 (∃M2,C0) .

Since Σ | Γ `C vcIn : An−1 ⇝ (Bn → Cn) is derived by (Ct Arrow C), we have

An−1 = Bn−1 → Cn−1, vcIn = cIn → dIn ,

Σ | Γ `C cIn : Bn ⇝ Bn−1, Σ | Γ `C dIn : Cn−1 ⇝ Cn (∃Bn−1,Cn−1, c
I
n , d

I
n) .

Similarly, since Σ | Γ `C vcIi : Ai−1 ⇝ (Bi → Ci) is derived by (Ct Arrow C) for i ∈ [1..n], there exists
Bi and Ci for i ∈ [0..n] and cIi and dIi for i ∈ [1..n] such that

Ai = Bi → Ci , vcIi = cIi → dIi , Σ | Γ ` cIi : Bi ⇝ Bi−1, Σ | Γ ` dIi : Ci−1 ⇝ Ci (1 ≤ i ≤ n) .

Case A = ∀X .Bn (∃X ,Bn): By Lemma I.40, we have

A0 = ∀X .B0 (∃B0) .

Since Σ | Γ `C vcIn : An−1 ⇝ ∀X .Bn is derived by (Ct All C), we have

An−1 = ∀X .Bn−1, vcIn = ∀X .cIn , Σ | Γ,X `C cIn : Bn−1 ⇝ Bn (∃Bn−1, c
I
n) .

Similarly, since Σ | Γ `C vcIi : Ai−1 ⇝ ∀X .Bi is derived by (Ct All C) for i ∈ [1..n], there exists Bi for
i ∈ [0..n] and cIi for i ∈ [1..n] such that

Ai = ∀X .Bi , vcIi = ∀X .cIi , Σ | X ,Γ `C cIi : Bi−1 ⇝ Bi (1 ≤ i ≤ n) .
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Lemma I.59 (Bisimulation up to Reduction (Lemma 4.6 of the paper)). Suppose that Σ | ∅ ` M ≈ M ′ : A.

(1) If Σ ▷ M −→C Σ1 ▷ M1, then there exists some Σ2,M2,M
′
2 such that Σ1 ▷ M1 −→∗

C Σ2 ▷ M2 and
Σ ▷ M ′ −→∗

S Σ2 ▷ M ′
2 and Σ2 | ∅ ` M2 ≈ M ′

2 : A.

(2) If Σ ▷ M ′ −→S Σ1 ▷ M ′
1, then there exist some Σ2,M2,M

′
2 such that Σ1 ▷ M ′

1 −→∗
S Σ2 ▷ M ′

2 and
Σ ▷ M −→∗

C Σ2 ▷ M2 and Σ2 | ∅ ` M2 ≈ M ′
2 : A.

(3) If M = V , then there exists some V ′ such that Σ ▷ M ′ −→∗
S Σ ▷ V ′ and Σ | ∅ ` V ≈ V ′ : A.

(4) If M ′ = V ′, then there exists some V such that Σ ▷ M −→∗
C Σ ▷ V and Σ | ∅ ` V ≈ V ′ : A.

(5) If M = blame p, then Σ ▷ M ′ −→∗
S Σ ▷ blame p.

(6) If M ′ = blame p, then Σ ▷ M −→∗
C Σ ▷ blame p.

Proof. We prove the cases (3), (5), (1), (4), (6), (2) in order.

(3) By induction on the derivation of Σ | ∅ ` V ≈ M ′ : A. We perform case analysis on the rule applied last
to derive Σ | ∅ ` V ≈ M ′ : A.

Case (Bs Const), (Bs Abs), (Bs Tyabs): Because M ′ is a value, we have the conclusion by letting
V ′ = M ′.

Case (Bs Crc): We are given

V = V1〈c〉, M ′ = M ′
1〈|c|∅〉, Σ | ∅ ` V1 ≈ M ′

1 : B , Σ | ∅ `C c : B ⇝ A (∃B , c,M ′
1,V1) .

Furthermore, since V1〈c〉 is a value, there exists a value coercion vc such that c = vc. By the IH,

Σ ▷ M ′
1 −→∗

S Σ ▷ V ′
1, Σ | ∅ ` V1 ≈ V ′

1 : B (∃V ′
1) .

We perform case analysis on whether V ′
1 is coercion application or not.

Case V ′
1 = U ′

1 (∃U ′
1): By (Bs Crc),

Σ | ∅ ` V1〈vc〉 ≈ U ′
1〈|vc|∅〉 : A .

By case analysis on vc.

Case vc = G ! (∃G): Since Σ | ∅ `C G ! : B ⇝ A, G ! does not contain any free type variables.
Therefore, we have |G !|∅ = |idG |∅ ;G !. Since Σ ▷ M ′

1 −→∗
S Σ ▷ U ′

1 and U ′
1〈|idG |∅ ;G !〉 is a value,

by Lemma I.14, we have

Σ ▷ M ′
1〈(|idG |∅ ;G !)〉 −→∗

S Σ ▷ U ′
1〈|idG |∅ ;G !〉 .

Therefore, it suffices to show that Σ | ∅ ` V1〈G !〉 ≈ U ′
1〈|idG |∅ ;G !〉 : A, which has been shown.

Case vc = α− (∃α): Because Σ | ∅ `C α− : B ⇝ A is derived by (Ct Conceal C), we have

A = α, B = B, α := B ∈ Σ (∃B)

Also, we have |α−|∅ = id. Hence, by (R Id S), we have Σ ▷ U ′
1〈id〉 −→∗

S Σ ▷ U ′
1. Since U ′

1 is a
value, by Lemma I.14, we have

Σ ▷ M ′〈|α−|∅〉 = Σ ▷ M ′〈id〉
−→∗

S Σ ▷ U ′
1 .

Therefore, it suffices to show that Σ | ∅ ` V1〈α−〉 ≈ U ′
1 : A, which is given by (Bs CrcIdL).

Case vc = c′ → d ′ (∃c′, d ′): We have |c′ → d ′|∅ = |c′|∅ → |d ′|∅. Because U ′
1〈|c′|∅ → |d ′|∅〉 is a value,

we can prove this case similarly to the case of c = G !.
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Case vc = ∀X .c′ (∃X , c′): We have |∀X .c′|∅ = ∀X .|c′|∅,X ,, |c′|∅. Because U ′
1〈∀X .|c′|∅,X ,, |c′|∅〉 is a

value, we can prove this case similarly to the case of c = G !.

Case V ′
1 = U ′

1〈t〉 (∃t ,U ′
1): By Lemma I.22, Σ | ∅ `S U ′

1〈t〉 : Σ(B). Since Σ | ∅ `S U ′
1〈t〉 : Σ(B) is

derived by (T Crc S), we have

Σ | ∅ `S t : A′ ⇝ Σ(B) (∃A′) .

By Lemma I.43, |vc|∅ is a space-efficient value coercion. Also, since U ′
1〈t〉 is a value, t is a space-

efficient value coercion and t 6= id. Therefore, by Lemma I.42, t # |vc|∅ is a space-efficient value
coercion. We perform case analysis whether t # |vc|∅ = id or not.

Case t # |vc|∅ = id: By Lemma I.49, t = id and |vc|∅ = id. However, there is contradiction because
t 6= id.

Case t # |vc|∅ 6= id: By the definition of space-efficient value coercions, U ′
1〈t # |vc|∅〉 is a value. By

(R Merge S), Σ ▷ U ′
1〈t〉〈|vc|∅〉 −→S Σ ▷ U ′

1〈t # |vc|∅〉. Therefore, Lemma I.18 implies

Σ ▷ M1〈s # |vc|∅〉 −→∗
S Σ ▷ U ′

1〈t # |vc|∅〉 .
Hence, it suffices to show that Σ | ∅ ` V1〈vc〉 ≈ U ′

1〈t #|vc|∅〉 : A, which is given by (Bs CrcMore).

Case (Bs CrcId): We are given

M ′ = M ′
1〈|idA|∅〉, Σ | ∅ ` V ≈ M ′

1 : A, Σ | ∅ `C idA : A⇝ A (∃M ′
1) .

By the IH,

Σ ▷ M ′
1 −→∗

S Σ ▷ V ′
1, Σ | ∅ ` V ≈ V ′

1 : A (∃V ′
1) .

Lemma I.22 implies Σ | ∅ `S M ′
1 : Σ(A) and Σ | ∅ `S M ′

1〈|idA|∅〉 : Σ(A). Because this judgment is
derived by (T Crc S), we have

Σ | ∅ `S |idA|∅ : Σ(A)⇝ Σ(A) .

By case analysis on V ′
1.

Case V ′
1 = U ′

1 (∃U ′
1): By case analysis on A:

Case A = A′ → B ′ (∃A′,B ′): We have |idA′→B ′ |∅ = |idA′→B ′ |∅ = |idA′ |∅ → |idB ′ |∅. Furthermore,
U ′

1〈|idA′ |∅ → |idB ′ |∅〉 is a value. Therefore, Lemma I.14 implies

Σ ▷ M ′
1〈|idA′ |∅ → |idB ′ |∅〉 −→∗

S Σ ▷ U ′
1〈|idA′ |∅ → |idB ′ |∅〉 .

Moreover, by (Bs CrcId),

Σ | ∅ ` V ≈ U ′
1〈|idA′ |∅ → |idB ′ |∅〉 : A′ → B ′ .

Case A = ∀X .A′ (∃X ,A′): |id∀X .A′ |∅ = |id∀X .A′ |∅ = ∀X .|idA′ |∅,X ,, |idA′ |∅, and U ′
1〈∀X .|idA′ |∅,X ,,

|idA′ |∅〉 is a value. Therefore, this case is provable similarly to the case of A = A′ → B ′.

Otherwise: Since Σ | ∅ `C idA : A ⇝ A, A does not have any free type variables. Therefore, we
have |idA|∅ = id. By (R Id S), Σ ▷ U ′

1〈id〉 −→S Σ ▷ U ′
1. Therefore, Lemma I.14 implies

Σ ▷ M ′
1〈id〉 −→∗

S Σ ▷ U ′
1 .

Hence, it suffices to show that Σ | ∅ ` V ≈ U ′
1 : A, which has been shown.

Case V ′
1 = U ′

1〈s〉 (∃s,U ′
1): By Lemma I.22 and Corollary E.46, Σ | ∅ `S U ′

1〈s〉 : Σ(A). Because this
judgment is derived by (T Crc S), we have Σ | ∅ `S s : A′ ⇝ Σ(A) (∃A′). Therefore, Lemma I.11
implies s # |idA|∅ = s. Therefore, by Lemma I.14

Σ ▷ M ′
1〈|idA|∅〉 −→∗

S Σ ▷ U ′
1〈s # |idA|∅〉 = Σ ▷ U ′

1〈s〉

(note that U ′
1〈s〉 is a value). Hence, it suffices to show that Σ | ∅ ` V ≈ U ′

1〈s〉 : A, which has been
shown.
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Case (Bs CrcMore): We are given

V = V1〈c〉, M ′ = M ′
1〈s # |c|∅〉, Σ | ∅ ` V1 ≈ M ′

1〈s〉 : B , Σ | ∅ `C c : B ⇝ A (∃B , c, s,M ′
1,V1) .

Furthermore, since V1〈c〉 is a value, there exists a value coercion vc such that c = vc. By the IH,

Σ ▷ M ′
1〈s〉 −→∗

S Σ ▷ V ′
1, Σ | ∅ ` V1 ≈ V ′

1 : B (∃V ′
1) .

We also have, by Lemma I.22, Σ | ∅ `C V1 : B and Σ | ∅ `S M ′
1〈s〉 : Σ(B). By Lemma E.10, we have

` Σ, Σ ` ∅, and Σ | ∅ ` B . Therefore, by (Ct Id C), we have Σ | ∅ `C idB : B ⇝ B .

Σ | ∅ `S |vc|∅ : Σ(B)⇝ Σ(A) .

Moreover, Corollary E.46 implies Σ | ∅ `S V ′
1 : Σ(B). By case analysis on V ′

1.

Case V ′
1 = U ′

1 (∃U ′
1): By (Bs CrcId), Σ | ∅ ` V1 ≈ U ′

1〈|idB |∅〉 : B . Lemma I.11 implies |idB |∅ #|vc|∅ =
|vc|∅. Therefore, by (Bs CrcMore),

Σ | ∅ ` V1〈vc〉 ≈ U ′
1〈|vc|∅〉 : A .

By case analysis on vc.

Case vc = G ! (∃G): Since Σ | ∅ `C G ! : B ⇝ A, G ! does not contain any free type variables.
Therefore, we have |G !|∅ = |idG |∅ ;G !. Because U ′

1〈|idG |∅ ;G !〉 is a value, Lemma I.18 implies

Σ ▷ M ′
1〈s # (|idB |∅ ;G !)〉 −→∗

S Σ ▷ U ′
1〈|idG |∅ ;G !〉 .

Therefore, it suffices to show that Σ | ∅ ` V1〈G !〉 ≈ U ′
1〈|idG |∅ ;G !〉 : A, which has been shown.

Case vc = α− (∃α): Because Σ | ∅ `C α− : B ⇝ A is derived by (Ct Conceal C), we have

A = α, B = B, α := B ∈ Σ (∃B)

Also, Σ | ∅ `S M ′
1〈s〉 : Σ(B) is derived by (t Crc S), we have

Σ | ∅ `S M ′
1 : A′

1, Σ | ∅ `S s : A⇝ Σ(B) (A′
1) .

By Lemma I.11, s # |α−|∅ = s. Therefore,

Σ ▷ M ′〈s # |α−|∅〉 = Σ ▷ M ′〈s〉
−→∗

S Σ ▷ U ′
1 .

Therefore, it suffices to show that Σ | ∅ ` V1〈α−〉 ≈ U ′
1 : A, which is given by (Bs CrcIdL).

Case vc = c′ → d ′ (∃c′, d ′): We have |c′ → d ′|∅ = |c′|∅ → |d ′|∅. Because U ′
1〈|c′|∅ → |d ′|∅〉 is a value,

we can prove this case similarly to the case of c = G !.

Case vc = ∀X .c′ (∃X , c′): We have |∀X .c′|∅ = ∀X .|c′|∅,X ,, |c′|∅. Because U ′
1〈∀X .|c′|∅,X ,, |c′|∅〉 is a

value, we can prove this case similarly to the case of c = G !.

Case V ′
1 = U ′

1〈t〉 (∃t ,U ′
1): Because Σ | ∅ `S U ′

1〈t〉 : Σ(B) is derived by (T Crc S), we have

Σ | ∅ `S t : A′ ⇝ Σ(B) (∃A′) .

By Lemma I.43 implies that |vc|∅ is a space-efficient value coercion. Also, because U ′
1〈t〉 is a value,

t is a space-efficient value coercion and t 6= id. Therefore, Lemma I.42 implies that t # |vc|∅ is a
space-efficient value coercion. We perform case analysis whether t # |vc|∅ = id or not.

Case t # |vc|∅ = id: By Lemma I.49, t = id and |vc|∅ = id. However, there is contradiction because
t 6= id.

Case t # |vc|∅ 6= id: By the definition of space-efficient value coercions, U ′
1〈t # |vc|∅〉 is a value. By

(R Merge S), Σ ▷ U ′
1〈t〉〈|vc|∅〉 −→S Σ ▷ U ′

1〈t # |vc|∅〉. Therefore, Lemma I.18 implies

Σ ▷ M1〈s # |vc|∅〉 −→∗
S Σ ▷ U ′

1〈t # |vc|∅〉 .
Hence, it suffices to show that Σ | ∅ ` V1〈vc〉 ≈ U ′

1〈t #|vc|∅〉 : A, which is given by (Bs CrcMore).
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Case (Bs CrcIdL): We are given

V = V1〈cI〉, Σ | ∅ ` V1 ≈ M ′ : B , Σ | ∅ `C cI : B ⇝ A (∃B , cI ,V1) .

By the IH,

Σ ▷ M ′ −→∗
S Σ ▷ V ′

1, Σ | ∅ ` V1 ≈ V ′
1 : B (∃V ′

1) .

By (Bs CrcIdL), we have

Σ | ∅ ` V1〈cI〉 ≈ V ′
1 : A .

Therefore, we conclude the case by letting V ′ = V ′
1.

Case (Bs Var), (Bs App), (Bs Tyapp), (Bs Blame): Contradictory because M is a value.

(5) By induction on the derivation of Σ | ∅ ` blame p ≈ M ′ : A. We perform case analysis on the rule applied
last to derive Σ | ∅ ` blame p ≈ M ′ : A, which is either of (Bs Blame) or (Bs CrcId).

Case (Bs Blame): We have M ′ = blame p. Hence, Σ ▷ blame p −→∗
S Σ ▷ blame p.

Case (Bs CrcId): We are given

M ′ = M ′
1〈|idA|∅〉, Σ | ∅ `C idA : A⇝ A, Σ | ∅ ` blame p ≈ M ′

1 : A (∃M ′
1) .

By the IH, Σ ▷ M ′
1 −→∗

S Σ ▷ blame p. By (R BlameC S),

Σ ▷ (blame p)〈|idA|∅〉 −→∗
S Σ ▷ blame p .

Lemma I.23 implies ` Σ, Σ ` ∅, and Σ | ∅ ` A. Therefore, by (Ct Id C), Σ | ∅ `C idA : A ⇝ A.
Hence, by Lemma I.3, we have Σ | ∅ `S |idA|∅ : Σ(A) ⇝ Σ(A). Therefore, by Lemma I.17, we have
Σ ▷ M ′

1〈|idA|∅〉 −→∗
S Σ ▷ blame p.

(1) By induction on the derivation of Σ | ∅ ` M ≈ M ′ : A. We perform case analysis on the rule applied last
to derive Σ | ∅ ` M ≈ M ′ : A.

Case (Bs Const), (Bs Var), (Bs Abs), (Bs Tyabs), (Bs Blame): Contradictory because Σ ▷ M −→C

Σ1 ▷ M1 cannot be derived.

Case (Bs App): We are given

M = M2 M3, M ′ = M ′
2 M

′
3, Σ | ∅ ` M2 ≈ M ′

2 : B → A,

Σ | ∅ ` M3 ≈ M ′
3 : B (∃B ,M2,M3,M

′
2,M

′
3) .

Lemma I.22 implies Σ | ∅ `C M2 M3 : A and Σ | ∅ `S M ′
2 M

′
3 : Σ(A). Therefore, Theorem E.19 implies

Σ | ∅ `C M1 : A. We perform case analysis on the rule applied last to derive Σ ▷ M2 M3 −→C Σ1 ▷ M1,
which is one of the following rules.

Case (R Delta C): We are given

M2 = k2, M3 = k3, M1 = δ(k2, k3), Σ1 = Σ (∃k2, k3) .

Because k2 is a value, by the case (3),

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` k2 ≈ V ′

2 : B → A (∃V ′
2) .

Similarly, by the case (3),

Σ ▷ M ′
3 −→∗

S Σ ▷ V ′
3, Σ | ∅ ` k3 ≈ V ′

3 : B (∃V ′
3) .

Therefore, by applying (R CtxE S) repeatedly, we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3 · · · (∗) .
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Lemma I.22 implies Σ | ∅ `C k2 : B → A. Because this judgment is derived by (T Const C), we
have ty(k2) = B → A. By the definition of ty, there exists some ι such that B = ι. Furthermore,
since M1 = δ(k2, k3), we have Σ | ∅ `C δ(k2, k3) : A. Because Σ | ∅ `C δ(k2, k3) : A is derived by
(T Const C), we have ty(δ(k2, k3)) = A. Therefore, by (Bs Const), Σ | ∅ ` δ(k2, k3) ≈ δ(k2, k3) :
A. We perform case analysis on the rule applied last to derive Σ | ∅ ` k3 ≈ V ′

3 : ι, which is either of
(Bs Const) or (Bs CrcId).

Case (Bs Const): We have

V ′
3 = k3, ` Σ, Σ ` ∅ .

By case analysis on the rule applied last to derive Σ | ∅ ` k2 ≈ V ′
2 : ι → A, which is either of

(Bs Const) or (Bs CrcId).

Case (Bs Const): We have V ′
2 = k2. Therefore, by (∗) and (R Delta S),

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3 −→S Σ ▷ δ(k2, k3) .

Hence, it suffices to show that Σ | ∅ ` δ(k2, k3) ≈ δ(k2, k3) : A. Now, we have Σ | ∅ `C δ(k2, k3) :
A. Because Σ | ∅ `C δ(k2, k3) : A is derived by (T Const C), we have ty(δ(k2, k3)) = A.
Therefore, by (Bs Const), Σ | ∅ ` δ(k2, k3) ≈ δ(k2, k3) : A.

Case (Bs CrcId): We are given

V ′
2 = U ′

2〈|idι→A|∅〉, Σ | ∅ ` k2 ≈ U ′
2 : ι→ A .

Because Σ | ∅ ` k2 ≈ U ′
2 : ι→ A is derived by (Bs Const), we have U ′

2 = k2. Furthermore,

|idι→A|∅ = |idι→A|∅
= |idι|∅ → |idA|∅
= id→ |idA|∅ .

Therefore, by (∗), (R Wrap S), (R Id S), and (R Delta S),

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ (k2〈id→ |idA|∅〉) k3
−→S Σ ▷ (k2 (k3〈id〉))〈|idA|∅〉
−→S Σ ▷ (k2 k3)〈|idA|∅〉
−→S Σ ▷ δ(k2, k3)〈|idA|∅〉 .

Hence, since |idA|∅ = |idA|∅, it suffices to show that Σ | ∅ ` δ(k2, k3) ≈ δ(k2, k3)〈|idA|∅〉 :
A. Now, we have Σ | ∅ `C δ(k2, k3) : A. Because Σ | ∅ `C δ(k2, k3) : A is derived by
(T Const C), we have ty(δ(k2, k3)) = A. Therefore, by (Bs Const), Σ | ∅ ` δ(k2, k3) ≈
δ(k2, k3) : A. Hence, by (Bs CrcId), Σ | ∅ ` δ(k2, k3) ≈ δ(k2, k3)〈|idA|∅〉 : A.

Case (Bs CrcId): We are given

V ′
3 = U ′

3〈|idι|∅〉, Σ | ∅ ` k3 ≈ U ′
3 : ι (∃U ′

3) .

We have |idι|∅ = |idι|∅ = id. Therefore, U ′
3〈id〉 is not a value, so there is a contradiction.

Case (R Beta C): We are given

M2 = λx :B ′.M4, M3 = V3, M1 = M4[x := V3], Σ1 = Σ (∃B ′, x ,M4,V3) .

Because λx :B ′.M4 is a value, the case (3) implies

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` λx :B ′.M4 ≈ V ′

2 : B → A (∃V ′
2) .

Similarly, the case (3) implies

Σ ▷ M ′
3 −→∗

S Σ ▷ V ′
3, Σ | ∅ ` V3 ≈ V ′

3 : B (∃V ′
3) .
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Therefore, by applying (R CtxE S) repeatedly, we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3 · · · (∗) .

Lemma I.22 implies Σ | ∅ `C λx :B ′.M4 : B → A. Because this judgment is derived by (T Abs C),
we have B ′ = B . We perform case analysis on the rule applied last to derive Σ | ∅ ` λx :B .M4 ≈
V ′

2 : B → A, which is either of (Bs Abs) or (Bs CrcId).

Case (Bs Abs): We are given

V ′
2 = λx :B .M ′

4, Σ | ∅, x : B ` M4 ≈ M ′
4 : A (∃M ′

4) .

Therefore, by (∗) and (R Beta S),

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ (λx :B .M ′
4)V

′
3 −→S Σ ▷ M ′

4[x := V ′
3] .

Hence, it suffices to show that Σ | ∅ ` M4[x := V3] ≈ M ′
4[x := V ′

3] : A, which is given by
Lemma I.27.

Case (Bs CrcId): We are given

V ′
2 = U ′

2〈|idB→A|∅〉, Σ | ∅ ` λx :B .M4 ≈ U ′
2 : B → A (∃U ′

2) .

Because Σ | ∅ ` λx :B .M4 ≈ U ′
2 : B → A is derived by (Bs Abs), we have

U ′
2 = λx :B .M ′

4, Σ | ∅, x : B ` M4 ≈ M ′
4 : A (∃M ′

4) .

Furthermore, by (Bs CrcId), Σ | ∅ ` V3 ≈ V ′
3〈|idB |∅〉 : B . Therefore, by the case (3), we have

Σ ▷ V ′
3〈|idB |∅〉 −→∗

S Σ ▷ V ′′
3 , Σ | ∅ ` V3 ≈ V ′′

3 : B (∃V ′′
3 ) .

Hence, since |idB→A|∅ = |idB→A|∅ and |idA|∅ = |idA|∅, by (∗), (R Wrap S), (R CtxE S),
(R CtxC S), and (R Beta S), we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ (U ′
2〈|idB→A|∅〉)V ′

3

= Σ ▷ (U ′
2〈|idB |∅ → |idA|∅〉)V ′

3

−→S Σ ▷ ((λx :B .M ′
4) (V

′
3〈|idB |∅〉))〈|idA|∅〉

−→∗
S Σ ▷ ((λx :B .M ′

4)V
′′
3 )〈|idA|∅〉

−→S Σ ▷ (M ′
4[x := V ′′

3 ])〈|idA|∅〉 .

Therefore, it suffices to show that Σ | ∅ ` M4[x := V3] ≈ (M ′
4[x := V ′′

3 ])〈|idA|∅〉 : A. By
Lemma I.27, we have Σ | ∅ ` M4[x := V3] ≈ M ′

4[x := V ′′
3 ] : A. Therefore, by (Bs CrcId),

Σ | ∅ ` M4[x := V3] ≈ (M ′
4[x := V ′′

3 ])〈|idA|∅〉 : A.
Case (R Wrap C): We are given

M2 = V2〈c → d〉, M3 = V3, M1 = (V2 (V3〈c〉))〈d〉, Σ1 = Σ (∃c, d ,V2,V3) .

Because V2〈c → d〉 is a value, by the case (3) we have

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2〈c → d〉 ≈ V ′

2 : B → A (∃V ′
2) .

Similarly, by the case (3), we have

Σ ▷ M ′
3 −→∗

S Σ ▷ V ′
3, Σ | ∅ ` V3 ≈ V ′

3 : B (∃V ′
3) .

Therefore, by applying (R CtxE S) repeatedly, we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3 .
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By Lemma I.22, we have Σ | ∅ `C V2〈c → d〉 : B → A. Therefore, by Lemma I.37, there exist some
V4 that is not a coercion application, n > 0, and c1, . . . , cn , d1, . . . , dn such that

V2〈c → d〉 = V4〈c1 → d1〉 · · · 〈cn → dn〉, cn = c, dn = d .

Moreover, by Lemma I.38, we have

An+1 = A, Bn+1 = B , Σ | ∅ `C ci : Bi+1 ⇝ Bi ,

Σ | ∅ `C di : Ai ⇝ Ai+1 (∃Ai ,Bi) (1 ≤ ∀i ≤ n) .

We perform case analysis on whether V ′
2 is a coercion application or not.

Case V ′
2 = U ′

2〈s〉 (∃U ′
2, s): By Lemma I.39, we have

Σ | ∅ `C ci → di : Ci ⇝ Ci+1 (1 ≤ i ≤ n), Σ | ∅ ` V4 ≈ U ′
2 : C1,

s = |idCj+1 |∅ # |cj+1 → dj+1|∅ # · · · # |cn → dn |∅ (∃C1, ...,Cn+1) ,

and there exists nonnegative integer j (1 ≤ j < n) such that

ci = cIi , di = dIi (∃cI1, ..., cIj , dI1, ..., dIj ) (1 ≤ i ≤ j) .

Furthermore, Σ | ∅ `C ci → di : Ci ⇝ Ci+1 is derived by (Ct Arrow C), we have Ci = Bi →
Ai . Hence, by Lemma I.3, we have

Σ | ∅ `S |ci |∅ : Σ(Bi+1)⇝ Σ(Bi), Σ | ∅ `S |di |∅ : Σ(Ai)⇝ Σ(Ai+1) (1 ≤ ∀i ≤ n) .

Moreover, we have

|cj+1 → dj+1|∅ # · · · # |cn → dn |∅ = |cj+1 → dj+1|∅ # · · · # |cn → dn |∅
= (|cj+1|∅ → |dj+1|∅) # · · · # (|cn |∅ → |dn |∅)
= (|cj+1|∅ → |dj+1|∅) # · · · # (|cn |∅ → |dn |∅)
= (|cn |∅ # · · · # |cj+1|∅)→ (|dj+1|∅ # · · · # |dn |∅) .

Furthermore, by applying Lemma I.11 repeatedly, we have

|cj+1|∅ = |cj+1|∅ # |cIj |∅ # · · · # |cI1|∅, |dj+1|∅ = |dI1|∅ # · · · # |dIj |∅ # |dj+1|∅ .

Hence,

s = |idBj+1→Aj+1
|∅ # |cj+1 → dj+1|∅ # · · · # |cn → dn |∅

= |cj+1 → dj+1|∅ # · · · # |cn → dn |∅
= (|cj+1|∅ → |dj+1|∅) # · · · # (|cn |∅ → |dn |∅)
= (|cn |∅ # · · · # |cj+1|∅)→ (|dj+1|∅ # · · · # |dn |∅)
= (|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅) .

By case analysis on V ′
3.

Case V ′
3 = U ′

3 (∃U ′
3): By (Bs CrcId), Σ | ∅ ` V3 ≈ U ′

3〈|idB |∅〉 : B . Furthermore, now,

Σ | ∅ ` V4〈c1 → d1〉 · · · 〈cn → dn〉 ≈ U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉 : B → A .

Therefore, by Lemma I.53, we consider the following two cases.

Case (1) in Lemma I.53: We are given

Σ ▷ M2 M3 = Σ ▷ (V4〈c1 → d1〉 · · · 〈cn → dn〉)V3

−→∗
C Σ ▷ (V4 M5)〈d1〉 · · · 〈dn〉 ,
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and

Σ | ∅ ` M5 ≈ U ′
3〈|idB |∅ # |cn |∅ # · · · # |c1|∅〉 : B1 (∃M5) .

Furthermore, by (R Wrap S), we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ (U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉)U ′

3

−→S Σ ▷ (U ′
2 (U

′
3〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉 .

Therefore, it suffices to show that

Σ | ∅ ` (V4 M5)〈d1〉 · · · 〈dn〉 ≈ (U ′
2 (U

′
3〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉 : A .

By Lemma I.23, ` Σ and Σ ` ∅ and Σ | ∅ ` B . By (Ct Id C), Σ | ∅ `C idB : B ⇝ B . By
Lemma I.11, we have |idB |∅ # |cn |∅ = |cn |∅. Therefore,

Σ | ∅ ` M5 ≈ U ′
3〈|cn |∅ # · · · # |c1|∅〉 : B1 .

By (Bs App),

Σ | ∅ ` V4 M5 ≈ U ′
2 (U

′
3〈|cn |∅ # · · · # |c1|∅〉) : A1 .

By Lemma I.23, Σ | ∅ ` A1. By (Ct Id C), Σ | ∅ `C idA1 : A1 ⇝ A1. By (Bs CrcId) and
(Bs CrcMore) repeatedly,

Σ | ∅ ` (V4 M5)〈d1〉 · · · 〈dn〉 ≈ (U ′
2 (U

′
3〈|cn |∅ # · · · # |c1|∅〉))〈|idA1

|∅ # |d1|∅ # · · · # |dn |∅〉 : A .

By Lemma I.11, we have |idA1
|∅ # |d1|∅ # · · · # |dn |∅ = |d1|∅ # · · · # |dn |∅. Therefore, we finish

the case.

Case (2) in Lemma I.53: We are given

Σ ▷ M2 M3 = Σ ▷ (V4〈c1 → d1〉 · · · 〈cn → dn〉)V3

−→∗
C Σ ▷ blame p ,

and

|idB |∅ # |cn |∅ # · · · # |c1|∅ = ⊥p (∃p) .

By Lemma I.23, ` Σ and Σ ` ∅ and Σ | ∅ ` B . By (Ct Id C), Σ | ∅ `C idB : B ⇝ B . By
Lemma I.11 and Lemma I.7, |idB |∅ # |cn |∅ # · · · # |c1|∅ = |cn |∅ # · · · # |c1|∅. Therefore, we have

|cn |∅ # · · · # |c1|∅ = ⊥p .

Hence, by (R Wrap S), (R Fail S), (R CtxE S), (R CtxC S), (R BlameE S), (R BlameC S),
we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ (U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉)U ′

3

−→S Σ ▷ (U ′
2 (U

′
3〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

= Σ ▷ (U ′
2 (U

′
3〈⊥

p〉))〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ (U ′

2 (blame p))〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ (blame p)〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ blame p .

Therefore, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have
` Σ and Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.
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Case V ′
3 = U ′

3〈t〉 (∃t ,U ′
3): By Lemma I.22, we have Σ | ∅ `S U ′

3〈t〉 : Σ(B). Since this judgment
is derived by (T Crc S), we have Σ | ∅ `S t : C ′ ⇝ Σ(B) (∃C ′). Therefore, Lemma I.7
implies t # (|cn |∅ # · · · # |c1|∅) = t # |cn |∅ # · · · # |c1|∅. Here, we have

Σ | ∅ ` V4〈c1 → d1〉 · · · 〈cn → dn〉 ≈ U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉 : B → A,

Σ | ∅ ` V3 ≈ U ′
3〈t〉 : B .

Therefore, by Lemma I.53, we consider the following two cases.

Case (1) in Lemma I.53: We are given

Σ ▷ M2 M3 = Σ ▷ (V4〈c1 → d1〉 · · · 〈cn → dn〉)V3

−→∗
C Σ ▷ (V4 M5)〈d1〉 · · · 〈dn〉 (∃M5) ,

and

Σ | ∅ ` M5 ≈ U ′
3〈t # |cn |∅ # · · · # |c1|∅〉 : B1 .

Hence, by (R Wrap S), (R Merge S), (R CtxE S), (R CtxC S), (R BlameE S), (R BlameC S),
we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ (U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉) (U ′

3〈t〉)
−→S Σ ▷ (U ′

2 (U
′
3〈t〉〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

−→S Σ ▷ (U ′
2 (U

′
3〈t # (|cn |∅ # · · · # |c1|∅)〉))〈|d1|∅ # · · · # |dn |∅〉

= Σ ▷ (U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉 .

Therefore, it suffices to show that

Σ | ∅ ` (V4 M5)〈d1〉 · · · 〈dn〉 ≈ (U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉 : A .

By (Bs App),

Σ | ∅ ` V4 M5 ≈ U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉) : A1 .

By Lemma E.9, ` Σ and Σ ` ∅ and Σ | ∅ ` A1. By (Ct Id C), Σ | ∅ `C idA1 : A1 ⇝ A1.
By (Bs CrcId) and (Bs CrcMore) repeatedly,

Σ | ∅ ` (V4 M5)〈d1〉 · · · 〈dn〉 ≈ (U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉))〈|idA1 |∅ # |d1|∅ # · · · # |dn |∅〉 : A .

Furthermore, by Lemma I.11 and Lemma I.7, we have |idA1
|∅#|d1|∅#· · ·#|dn |∅ = |d1|∅#· · ·#|dn |∅.

Therefore, we finish the case.

Case (2) in Lemma I.53: We are given

Σ ▷ M2 M3 = Σ ▷ (V4〈c1 → d1〉 · · · 〈cn → dn〉)V3

−→∗
C Σ ▷ blame p ,

and

t # |cn |∅ # · · · # |c1|∅ = ⊥p (∃p) .

Furthermore, by (R Wrap S), (R Merge S) (R Fail S), (R CtxE S), (R CtxC S),
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(R BlameE S), (R BlameC S), we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ (U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉) (U ′

3〈t〉)
−→S Σ ▷ (U ′

2 (U
′
3〈t〉〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

−→S Σ ▷ (U ′
2 (U

′
3〈t # (|cn |∅ # · · · # |c1|∅)〉))〈|d1|∅ # · · · # |dn |∅〉

= Σ ▷ (U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

= Σ ▷ (U ′
2 (U

′
3〈⊥

p〉))〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ (U ′

2 (blame p))〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ (blame p)〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ blame p .

Therefore, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have
` Σ and Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case V ′
2 = U ′

2 (∃U ′
2): By Lemma I.58, we have

Σ | ∅ `C cIi : Bi+1 ⇝ Bi , Σ | ∅ `C dIi : Ai ⇝ Ai (1 ≤ i ≤ n),

Σ | ∅ ` V4 ≈ U ′
2 : B1 → A1 (∃cI1, ..., cIn , dI1, ..., dIn ,B1, ...,Bn+1,C1, ...,Cn+1) ,

By Lemma I.56, we have

Σ ▷ V3〈cIn〉 −→∗
C Σ ▷ V ′′

3 , Σ | ∅ ` V ′′
3 ≈ V ′

3 : Bn

Therefore, by (R Ctx C),

Σ ▷ M2 M3 = Σ ▷ (V4〈cI1 → dI1〉 · · · 〈cIn → dIn〉)V3

−→∗
C Σ ▷ ((V4〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉) (V3〈cIn〉))〈dIn〉

−→∗
C Σ ▷ ((V4〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉)V ′′

3 )〈dIn〉 .

Similarly, by applying (R Ctx C) repeatedly, there exists V ′′′
3 such that

Σ ▷ M2 M3 −→∗
C Σ ▷ ((V4〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉)V ′′

3 )〈dIn〉
−→∗

C Σ ▷ (V4 V
′′′
3 )〈dI1〉 · · · 〈dIn〉 ,

and

Σ | ∅ ` V ′′′
3 ≈ V ′

3 : B1 .

Furthermore, we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ U ′
2 V

′
3 .

Therefore, it suffices to show that

Σ | ∅ ` (V4 V
′′′
3 )〈dI1〉 · · · 〈dIn〉 ≈ U ′

2 V
′
3 : A .

By (Bs App),

Σ | ∅ ` V4 V
′′′
3 ≈ U ′

2 V
′
3 : A1 .

By applying (Bs CrcIdL) repeatedly, we finish the case by

Σ | ∅ ` (V4 V
′′′
3 )〈dI1〉 · · · 〈dIn〉 ≈ U ′

2 V
′
3 : A .
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Case (R Blame C): We are given

M2 M3 = E [blame p], M1 = blame p, Σ1 = Σ (∃p,E ) .

Because M2 M3 = E [blame p], it suffices to consider the following two cases.

Case E = □M3 and M2 = blame p: Since Σ | ∅ ` blame p ≈ M ′
2 : B → A, by the case (5), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ blame p .

Therefore, by (R CtxE S) and (R BlameE S),

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ (blame p)M ′
3

−→S Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and
Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case E = V2□ and M2 = V2 and M3 = blame p (∃V2): Since Σ | ∅ ` V2 ≈ M ′
2 : B → A, by the

case (3), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2 (∃V ′

2) .

Furthermore, since Σ | ∅ ` blame p ≈ M ′
3 : B , by applying the case (5), we have

Σ ▷ M ′
3 −→∗

S Σ ▷ blame p .

Therefore, by (R CtxE S) and (R BlameE S),

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 M

′
3

−→∗
S Σ ▷ V ′

2 (blame p)

−→S Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and
Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R Ctx C): We are given

M2 M3 = E [M4], M1 = E [M5], Σ ▷ M4 −→C Σ1 ▷ M5 (∃E ,M4,M5) .

Because M2 M3 = E [M4], it suffices to consider the following two cases.

Case E = □M3 and M2 = M4: We have now Σ | ∅ ` M2 ≈ M ′
2 : B → A and Σ ▷ M2 −→C Σ1 ▷ M5.

Therefore, by the IH, we have

Σ1 ▷ M5 −→∗
C Σ2 ▷ M6, Σ ▷ M ′

2 −→∗
S Σ2 ▷ M ′

6, Σ2 | ∅ ` M6 ≈ M ′
6 : B → A (∃Σ2,M6,M

′
6) .

Hence, by applying (R Ctx C) repeatedly, we have

Σ ▷ M2 M3 −→C Σ1 ▷ M5 M3

−→∗
C Σ2 ▷ M6 M3 .

Furthermore, by applying (R CtxE S) repeatedly, we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ2 ▷ M ′
6 M

′
3 .

Therefore, it suffices to show that Σ2 | ∅ ` M6 M3 ≈ M ′
6 M

′
3 : A. By Lemma E.44 and Lemma I.26,

we have Σ2 | ∅ ` M3 ≈ M ′
3 : B . Hence, by (Bs App), Σ2 | ∅ ` M6 M3 ≈ M ′

6 M
′
3 : A.
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Case E = V2□ and M2 = V2 and M3 = M4 (∃V2): Since Σ | ∅ ` V2 ≈ M ′
2 : B → A, by the case

(3), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2 ≈ V ′

2 : B → A (∃V ′
2) .

Furthermore, since Σ | ∅ ` M3 ≈ M ′
3 : B and Σ ▷ M3 −→C Σ1 ▷ M5, by the IH, we have

Σ1 ▷ M5 −→∗
C Σ2 ▷ M6, Σ ▷ M ′

3 −→∗
S Σ2 ▷ M ′

6, Σ2 | ∅ ` M6 ≈ M ′
6 : B (∃Σ2,M6,M

′
6) .

Therefore, by applying (R Ctx C) repeatedly, we have

Σ ▷ V2 M3 −→C Σ1 ▷ V2 M5

−→∗
C Σ2 ▷ V2 M6 .

Furthermore, by applying (R CtxE S) repeatedly, we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 M

′
3

−→∗
S Σ2 ▷ V ′

2 M
′
6 .

Therefore, it suffices to show that Σ2 | ∅ ` V2 M6 ≈ V ′
2 M

′
6 : A. By Lemma E.44 and Lemma I.26,

we have Σ2 | ∅ ` V2 ≈ V ′
2 : B → A. Therefore, by (Bs App), Σ2 | ∅ ` V2 M6 ≈ V ′

2 M
′
6 : A.

Case (Bs Tyapp): We are given

A = C [X := B ], M = M2 B , M ′ = M ′
2 B , Σ | ∅ ` M2 ≈ M ′

2 : ∀X .C , Σ | ∅ ` B (∃X ,B ,C ,M2,M
′
2) .

By case analysis on the rule applied last to derive Σ ▷ M2 B −→C Σ1 ▷ M1, which is one of the
following three rules.

Case (R Tybeta C): We are given

B = B, M2 = (ΛY .(M3 : A′))〈∀Y .c〉, M1 = M3[Y := α]〈c[Y := α]〉〈coerce+α (D [Y := α])〉,

Σ ` 〈∀Y .c〉 : ∀Y .A′ ⇝ ∀Y .D , Σ1 = Σ, α := B (∃α,Y ,A′,D , 〈c〉,M3) .

Lemma I.22 implies Σ | ∅ `C (ΛY .(M3 : A′))〈∀Y .c〉 : ∀X .C . Therefore, Lemma E.3 implies Y = X
and D = C . Since (ΛX .(M3 : A′))〈∀X .c〉 is a value, so by the case (3), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` (ΛX .(M3 : A′))〈∀X .c〉 ≈ V ′

2 : ∀X .C (∃V ′
2) .

Therefore, Lemma I.22 implies Σ | ∅ `S V ′
2 : Σ(∀X .C ). Hence, by Lemma E.25, we consider the

following two cases.

Case V ′
2 = ΛX .M ′

3 (∃M ′
3): By (R CtxE S) and (R Tybeta S),

Σ ▷ M ′
2 B −→∗

S Σ ▷ V ′
2 B

= Σ ▷ (ΛX .M ′
3)B

−→S Σ, α := B ▷ M ′
3[X := α] .

Therefore, it suffices to show that

Σ, α := B | ∅ `

M3[X := α]〈c[X := α]〉 〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]

: C [X := B] (∗) .

Because Σ | ∅ ` (ΛX .(M3 : A′))〈∀X .c〉 ≈ ΛX .M ′
3 : ∀X .C is derived by (Bs CrcIdL) and

(Bs TyAbs), we have

〈c〉 = 〈cI〉, Σ | ∅,X ` M3 ≈ M ′
3 : C (∃〈cI〉) .
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Therefore, 〈c[X := α]〉 = 〈cI [X := α]〉 is also a sequence of no-op coercions. Furthermore, by
Lemma I.8, coerce+α (C [Y := α]) is a no-op coercion. Moreover, by Lemma I.33, we have Σ, α :=
B | ∅ ` M3[X := α] ≈ M ′

3[X := α] : C [X := α]. Furthermore, Lemma I.23 implies ` Σ and Σ ` ∅
and Σ | ∅ ` ∀X .C . Because Σ | ∅ ` ∀X .C is derived by (Tw Poly), we have Σ | ∅,X ` C .
Therefore, Lemma E.17 implies

Σ, α := B | ∅ `C coerce+α (C [X := α]) : C [X := α]⇝ C [X := B] .

Hence, we have (∗) by applying (Bs CrcIdL) repeatedly.

Case V ′
2 = U ′

2〈∀X .s ,, t〉 (∃s, t ,U ′
2): Because Σ | ∅ `S U ′

2〈∀X .s,,t〉 : Σ(∀X .C ) is derived by (T Crc S),
we have

Σ | ∅ `S U ′
2 : C ′, Σ | ∅ `S ∀X .s ,, t : C ′ ⇝ ∀X .C (∃C ′).

Since Σ | ∅ `S ∀X .s ,, t : C ′ ⇝ ∀X .C is derived by (Ct All S), we have C ′ = ∀X .C ′′ (∃C ′′).
Therefore, by Lemma E.25, there exists someM ′

3 such that U ′
2 = ΛX .M ′

3. Hence, by (R CtxE S)
and (R TybetaC S),

Σ ▷ M ′
2 B −→∗

S Σ ▷ V ′
2 B

= Σ ▷ (U ′
2〈∀X .s ,, t〉)B

= Σ ▷ ((ΛX .M ′
3)〈∀X .s ,, t〉)B

−→S Σ, α := B ▷ (M ′
3〈s〉)[X := α]

= Σ, α := B ▷ M ′
3[X := α]〈s[X := α]〉 .

Therefore, it suffices to show that

Σ, α := B | ∅ `

M3[X := α]〈c[X := α]〉 〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]〈s[X := α]〉
: C [X := B] .

By case analysis on 〈∀X .c〉.
Case 〈∀X .c〉 = ∅: Because Σ | ∅ ` ΛX .(M3 : A′) ≈ (ΛX .M ′

3)〈∀X .s ,, t〉 : ∀X .C is derived by
(Bs CrcId), we have

∀X .s ,, t = |id∀X .C |∅, Σ | ∅ ` ΛX .(M3 : A′) ≈ ΛX .M ′
3 : ∀X .C .

Therefore,

∀X .s ,, t = |id∀X .C |∅
= ∀X .|idC |∅,X ,, |idC |∅ .

Hence, s = |idC |∅,X and t = |idC |∅. Furthermore, because Σ | ∅ ` ΛX .(M3 : A′) ≈ ΛX .M ′
3 :

∀X .C is derived by (Bs Tyabs), we have

A′ = C , Σ | ∅,X ` M3 ≈ M ′
3 : A′ .

Moreover, because 〈∀X .c〉 = ∅, we have 〈c[X := α]〉 = ∅. Therefore, it suffices to show that

Σ, α := B | ∅ `
M3[X := α]〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]〈s[X := α]〉
: C [X := B] .
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Because Σ | ∅,X ` M3 ≈ M ′
3 : C and Σ | ∅ ` B, Lemma I.33 implies

Σ, α := B | ∅ ` M3[X := α] ≈ M ′
3[X := α] : C [X := α] .

By (Bs CrcId),

Σ, α := B | ∅ ` M3[X := α] ≈ M ′
3[X := α]〈|idC [X :=α]|∅〉 : C [X := α] .

Furthermore, Lemma I.23 implies ` Σ and Σ ` ∅ and Σ | ∅ ` ∀X .C and Σ ` ∅,X . Moreover,
because Σ | ∅ ` ∀X .C is derived by (Tw Poly), we have Σ | ∅,X ` C . Therefore, Lemma E.17
implies

Σ, α := B | ∅ `C coerce+α (C [X := α]) : C [X := α]⇝ C [X := B] .

Hence, by (Bs CrcMore),

Σ, α := B | ∅ `
M3[X := α]〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]〈|idC [X :=α]|∅ # |coerce+α (C [X := α])|∅〉
: C [X := B] .

Therefore, it suffices to show that

|idC [X :=α]|∅ # |coerce+α (C [X := α])|∅ = s[X := α] .

By Lemma I.8, Lemma I.10, Lemma I.11 and Lemma I.32,

|idC [X :=α]|∅ # |coerce+α (C [X := α])|∅ = |idC [X :=α]|∅ # |cI |∅ (∃cI)
= |idC [X :=α]|∅
= |idC [X := α]|∅
= |idC |∅,X [X := α]

= s[X := α] .

Case 〈∀X .c〉 6= ∅: Let n > 0 such that 〈∀X .c〉 = ∅, 〈∀X .c1〉, . . . , 〈∀X .cn〉. Then, because Σ `
∅, 〈∀X .c1〉, . . . , 〈∀X .cn〉 : ∀X .A′ ⇝ ∀X .C , Lemma I.35 implies

A0 = ∀X .A′, An = ∀X .C , Σ | ∅ `C ∀X .ci : Ai−1 ⇝ Ai (∃A0, . . . ,An)(1 ≤ ∀i ≤ n) .

Each Σ | ∅ `C ∀X .ci : Ai−1 ⇝ Ai is derived by (Ct All C), we have

B0 = A′, Bn = C , Ai = ∀X .Bi , Σ | ∅,X `C ci : Bi−1 ⇝ Bi (∃B0, . . . ,Bn)(1 ≤ ∀i ≤ n) .

Furthermore, (ΛX .(M3 : A′))〈∀X .c〉 = (ΛX .(M3 : A′))〈∀X .c1〉 · · · 〈∀X .cn〉. Therefore,

Σ | ∅ ` (ΛX .(M3 : A′))〈∀X .c1〉 · · · 〈∀X .cn〉 ≈ (ΛX .M ′
3)〈∀X .s ,, t〉 : ∀X .C .

Hence, Lemma I.39 implies that there exists nonnegative j (1 ≤ j ≤ n) such that

∀X .s ,, t = |idAj+1 |∅ # |∀X .cj+1|∅ # · · · # |∀X .cn |∅, Σ | ∅ ` ΛX .(M3 : A′) ≈ ΛX .M ′
3 : C0,

Σ | ∅ `C ∀X .ci : Ci−1 ⇝ Ci , Cn = ∀X .C (∃C0, . . . ,Cn) .

Therefore, because Σ | ∅ `C ∀X .ci : Ci−1 ⇝ Ci is derived by (Ct All C), we have Ai =
Ci = ∀X .Bi . Moreover, by Lemma I.11, because

∀X .s ,, t = |idAj+1 |∅ # (|∀X .cj+1|∅ # · · · # |∀X .cn |∅)
= |∀X .cj+1|∅ # · · · # |∀X .cn |∅
= (∀X .|cj+1|∅,X ,, |cj+1|∅) # · · · # (∀X .|cn |∅,X ,, |cn |∅)
= ∀X .(|cj+1|∅,X # · · · # |cn |∅,X ) ,, (|cj+1|∅ # · · · # |cn |∅) ,
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we have

s = |cj+1|∅,X # · · · # |cn |∅,X , t = |cj+1|∅ # · · · # |cn |∅ .

Therefore, it suffices to show that

Σ, α := B | ∅ `
M3[X := α]〈c1[X := α]〉 · · · 〈cn [X := α]〉 〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]〈(|cj+1|∅,X # · · · # |cn |∅,X )[X := α]〉
: C [X := B] .

Now, Σ | ∅,X `C ci : Bi−1 ⇝ Bi (1 ≤ ∀i ≤ n). Therefore, Lemma I.3 implies

Σ | ∅,X `S |ci |∅,X : Σ(Bi−1)⇝ Σ(Bi) (1 ≤ ∀i ≤ n) .

Hence, by Lemmas I.28 and Lemma I.32,

(|cj+1|∅,X # · · · # |cn |∅,X )[X := α] = |cj+1|∅,X [X := α] # · · · # |cn |∅,X [X := α]

= |cj+1[X := α]|∅ # · · · # |cn [X := α]|∅ .

Therefore, it suffices to show that

Σ, α := B | ∅ `
M3[X := α]〈c1[X := α]〉 · · · 〈cn [X := α]〉 〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]〈|cj+1[X := α]|∅ # · · · # |cn [X := α]|∅〉
: C [X := B] .

Because Σ | ∅ ` ΛX .(M3 : A′) ≈ ΛX .M ′
3 : ∀X .A′ is derived by (Bs Tyabs), we have Σ | ∅,X `

M3 ≈ M ′
3 : A′. Therefore, Lemma I.33 implies

Σ, α := B | ∅ ` M3[X := α] ≈ M ′
3[X := α] : A′[X := α] .

Hence, by (Bs CrcId),

Σ, α := B | ∅ ` M3[X := α] ≈ M ′
3[X := α]〈|idA′[X :=α]|∅〉 : A′[X := α] .

Furthermore, by Lemma E.13, we have

Σ, α := B | ∅ `C ci [X := α] : Bi−1[X := α]⇝ Bi [X := α] (1 ≤ ∀i ≤ n) .

Hence, note that B0 = A′, by (Bs CrcMore),

Σ, α := B | ∅ `
M3[X := α]〈c1[X := α]〉
≈
M ′

3[X := α]〈|idA′[X :=α]|∅ # |c1[X := α]|∅〉
: B1[X := α] .

Furthermore, Lemma I.3 implies

Σ, α := B | ∅ `S |c1[X := α]|∅ : Σ(A′[X := α])⇝ Σ(B1[X := α]) .

Therefore, Lemma I.11 implies

|idA′[X :=α]|∅ # |c1[X := α]|∅ = |c1[X := α]|∅ .
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Hence,

Σ, α := B | ∅ `
M3[X := α]〈c1[X := α]〉 ≈ M ′

3[X := α]〈|c1[X := α]|∅〉 : B1[X := α] .

Therefore, note that Bn = C , by applying (Bs CrcMore) repeatedly, we have

Σ, α := B | ∅ `
M3[X := α]〈c1[X := α]〉 · · · 〈cn [X := α]〉
≈
M ′

3[X := α]〈|c1[X := α]|∅ # · · · # |cn [X := α]|∅〉
: C [X := α] .

Furthermore, Lemma I.23 implies ` Σ and Σ ` ∅ and Σ | ∅ ` ∀X .C . Because Σ | ∅ ` ∀X .C is
derived by (Tw Poly), we have Σ | ∅,X ` C . Therefore, by Lemma E.17, we have

Σ, α := B | ∅ `C coerce+α (C [X := α]) : C [X := α]⇝ C [X := B] .

Hence, by Lemma I.8, coerce+α (C [X := α]) is a no-op coercion. Therefore, by (Bs CrcIdL),

Σ, α := B | ∅ `
M3[X := α]〈c1[X := α]〉 · · · 〈cn [X := α]〉 〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]〈|c1[X := α]|∅ # · · · # |cn [X := α]|∅〉
: C [X := B] .

Case (R TybetaDyn C): We are given

B = ⋆, M2 = (ΛY .(M3 : A′))〈∀Y .c〉, M1 = (M3〈c〉)[Y := ⋆],

Σ1 = Σ (∃Y ,A′, 〈c〉,M3) .

Lemma I.22 implies Σ | ∅ `C (ΛY .(M3 : A′))〈∀Y .c〉 : ∀X .C . Therefore, Lemma E.3 implies Y = X .
Since (ΛX .(M3 : A′))〈∀X .c〉 is a value, so by the case (3), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` (ΛX .(M3 : A′))〈∀X .c〉 ≈ V ′

2 : ∀X .C (∃V ′
2) .

Therefore, Lemma I.22 implies Σ | ∅ `S V ′
2 : Σ(∀X .C ). Hence, by Lemma E.25, we consider the

following two cases.

Case V ′
2 = ΛX .M ′

3 (∃M ′
3): By (R CtxE S) and (R TybetaDyn S),

Σ ▷ M ′
2 ⋆ −→∗

S Σ ▷ V ′
2 ⋆

= Σ ▷ (ΛX .M ′
3) ⋆

−→S Σ ▷ M ′
3[X := ⋆] .

Therefore, since (M3〈c〉)[X := ⋆] = M3[X := ⋆]〈c[X := ⋆]〉, it suffices to show that

Σ | ∅ ` M3[X := ⋆]〈c[X := ⋆]〉 ≈ M ′
3[X := ⋆] : C [X := ⋆] (∗) .

Because Σ | ∅ ` (ΛX .(M3 : A′))〈∀X .c〉 ≈ ΛX .M ′
3 : ∀X .C is derived by (Bs CrcIdL) and

(Bs TyAbs), we have

〈c〉 = 〈cI〉, Σ | ∅ `C ∀X .cIi : Ci ⇝ Ci+1, Cn+1 = C

Σ | ∅,X ` M3 ≈ M ′
3 : C1, (∃〈cI〉,Ci) (n ≥ i ≥ 1) .

Therefore, 〈c[X := ⋆]〉 = 〈cI [X := ⋆]〉 is also a sequence of no-op coercions. Moreover, by Lemma I.33,
we have Σ | ∅ ` M3[X := ⋆] ≈ M ′

3[X := ⋆] : C1[X := ⋆]. Hence, we have (∗) by applying
(Bs CrcIdL) repeatedly.
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Case V ′
2 = U ′

2〈∀X .s ,, t〉 (∃s, t ,U ′
2): Because Σ | ∅ `S U ′

2〈∀X .s ,,t〉 : ∀X .C is derived by (T Crc S),
we have Σ | ∅ `S U ′

2 : ∀X .C ′ (∃C ′). Therefore, by Lemma E.25, there exists some M ′
3 such that

U ′
2 = ΛX .M ′

3. Hence, by (R CtxE S) and (R TybetaDynC S),

Σ ▷ M ′
2 ⋆ −→∗

S Σ ▷ V ′
2 ⋆

= Σ ▷ (U ′
2〈∀X .s ,, t〉) ⋆

= Σ ▷ ((ΛX .M ′
3)〈∀X .s ,, t〉) ⋆

−→S Σ ▷ M ′
3[X := ⋆]〈t〉 .

Therefore, since (M3〈c〉)[X := ⋆] = M3[X := ⋆]〈c[X := ⋆]〉, it suffices to show that

Σ | ∅ ` M3[X := ⋆]〈c[X := ⋆]〉 ≈ M ′
3[X := ⋆]〈t〉 : C [X := ⋆]

By case analysis on 〈∀X .c〉.
Case 〈∀X .c〉 = ∅: Because Σ | ∅ ` ΛX .(M3 : A′) ≈ (ΛX .M ′

3)〈∀X .s ,, t〉 : ∀X .C is derived by
(Bs CrcId), we have

∀X .s ,, t = |id∀X .C |∅, Σ | ∅ ` ΛX .(M3 : A′) ≈ ΛX .M ′
3 : ∀X .C .

Furthermore,

∀X .s ,, t = |id∀X .C |∅
= ∀X .|idC |∅,X ,, |idC |∅

.

Therefore, we have s = |idC |∅,X and t = |idC |∅. Furthermore, because Σ | ∅ ` ΛX .(M3 : A′) ≈
ΛX .M ′

3 : ∀X .C is derived by (Bs Tyabs), we have

A′ = C , Σ | ∅,X ` M3 ≈ M ′
3 : C .

Moreover, because 〈∀X .c〉 = ∅, we have 〈c[X := ⋆]〉 = ∅. Therefore, it suffices to show that

Σ | ∅ ` M3[X := ⋆] ≈ M ′
3[X := ⋆]〈|idC |∅〉 : C [X := ⋆] .

Because Σ | ∅,X ` M3 ≈ M ′
3 : C , Lemma I.33 implies

Σ | ∅ ` M3[X := ⋆] ≈ M ′
3[X := ⋆] : C [X := ⋆] .

By (Bs CrcId),

Σ | ∅ ` M3[X := ⋆] ≈ M ′
3[X := ⋆]〈|idC [X :=⋆]|∅〉 : C [X := ⋆] .

Also, since |idC [X :=⋆]|∅ = |idC [X := ⋆]|∅ = |idC |∅ by Lemma I.30, we finish the case.

Case 〈∀X .c〉 6= ∅: Let n > 0 such that 〈∀X .c〉 = ∅, 〈∀X .c1〉, . . . , 〈∀X .cn〉. Then, because Σ `
∅, 〈∀X .c1〉, . . . , 〈∀X .cn〉 : ∀X .A′ ⇝ ∀X .C , Lemma I.35 implies

A0 = ∀X .A′, An = ∀X .C , Σ | ∅ `C ∀X .ci : Ai−1 ⇝ Ai (∃A0, . . . ,An)(1 ≤ ∀i ≤ n) .

Each Σ | ∅ `C ∀X .ci : Ai−1 ⇝ Ai is derived by (Ct All C), we have

B0 = A′, Bn = C , Ai = ∀X .Bi , Σ | ∅,X `C ci : Bi−1 ⇝ Bi (∃B0, . . . ,Bn)(1 ≤ ∀i ≤ n) .

Furthermore, (ΛX .(M3 : A′))〈∀X .c〉 = (ΛX .(M3 : A′))〈∀X .c1〉 · · · 〈∀X .cn〉. Therefore,

Σ | ∅ ` (ΛX .(M3 : A′))〈∀X .c1〉 · · · 〈∀X .cn〉 ≈ (ΛX .M ′
3)〈∀X .s〉 : ∀X .C .
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Hence, Lemma I.39 implies that there exists nonnegative j (1 ≤ j ≤ n) such that

∀X .s ,, t = |idAj+1 |∅ # |∀X .cj+1|∅ # · · · # |∀X .cn |∅, Σ | ∅ ` ΛX .(M3 : A′) ≈ ΛX .M ′
3 : ∀X .C ′,

Σ | ∅ `C ∀X .cn : C ′ ⇝ ∀X .C (∃C ′) .

Moreover, by Lemma I.11, because

∀X .s ,, t = |idAj+1
|∅ # (|∀X .cj+1|∅ # · · · # |∀X .cn |∅)

= |∀X .cj+1|∅ # · · · # |∀X .cn |∅
= (∀X .|cj+1|∅,X ,, |cj+1|∅) # · · · # (∀X .|cn |∅,X ,, |cn |∅)
= ∀X .(|cj+1|∅,X # · · · # |cn |∅,X ) ,, (|cj+1|∅ # · · · # |cn |∅) ,

we have

s = |cj+1|∅,X # · · · # |cn |∅,X , t = |cj+1|∅ # · · · # |cn |∅ .

Therefore, it suffices to show that

Σ | ∅ `
M3[X := ⋆]〈c1[X := ⋆]〉 · · · 〈cn [X := ⋆]〉
≈
M ′

3[X := ⋆]〈|cj+1|∅ # · · · # |cn |∅〉
: C [X := ⋆] .

Now, Σ | ∅,X `C ci : Bi−1 ⇝ Bi (1 ≤ ∀i ≤ n). Therefore, by Lemma I.3, we have

Σ | ∅ `S |ci |∅ : Σ(Bi−1[X := ⋆])⇝ Σ(Bi [X := ⋆]) (1 ≤ ∀i ≤ n) .

Hence, by Lemma I.30,

|c1|∅ # · · · # |cn |∅ = |c1[X := ⋆]|∅ # · · · # |cn [X := ⋆]|∅ .

Therefore, it suffices to show that

Σ | ∅ `
M3[X := ⋆]〈c1[X := ⋆]〉 · · · 〈cn [X := ⋆]〉
≈
M ′

3[X := ⋆]〈|c1[X := ⋆]|∅ # · · · # |cn [X := ⋆]|∅〉
: C [X := ⋆] .

Because Σ | ∅ ` ΛX .(M3 : A′) ≈ ΛX .M ′
3 : ∀X .C ′ is derived by (Bs Tyabs), we have

A′ = C ′, Σ | ∅,X ` M3 ≈ M ′
3 : C ′ .

Therefore, Lemma I.33 implies

Σ | ∅ ` M3[X := ⋆] ≈ M ′
3[X := ⋆] : C ′[X := ⋆] .

Hence, by (Bs CrcId),

Σ | ∅ ` M3[X := ⋆] ≈ M ′
3[X := ⋆]〈|idC ′[X :=⋆]|∅〉 : C ′[X := ⋆] .

Therefore, Lemma E.15 implies

Σ | ∅ `C ci [X := ⋆] : Bi−1[X := ⋆]⇝ Bi [X := ⋆] (1 ≤ ∀i ≤ n) .
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Hence, note that B0 = A′ = C ′, by (Bs CrcMore),

Σ | ∅ `
M3[X := ⋆]〈c1[X := ⋆]〉
≈
M ′

3[X := ⋆]〈|idC ′[X :=⋆]|∅ # |c1[X := ⋆]|∅〉
: B1[X := ⋆] .

Furthermore, Lemma I.3 implies

Σ | ∅ `S |c1[X := ⋆]|∅ : Σ(C ′[X := ⋆])⇝ Σ(B1[X := ⋆]) .

Therefore, Lemma I.11 implies

|idC ′[X :=⋆]|∅ # |c1[X := ⋆]|∅ = |c1[X := ⋆]|∅ .

Hence,

Σ | ∅ ` M3[X := ⋆]〈c1[X := ⋆]〉 ≈ M ′
3[X := ⋆]〈|c1[X := ⋆]|∅〉 : B1[X := ⋆] .

Therefore, note that Bn = C , by applying (Bs CrcMore) repeatedly, we have

Σ | ∅ `
M3[X := ⋆]〈c1[X := ⋆]〉 · · · 〈cn [X := ⋆]〉
≈
M ′

3[X := ⋆]〈|c1[X := ⋆]|∅ # · · · # |cn [X := ⋆]|∅〉
: C [X := ⋆] .

Case (R Blame C): We are given

M2 = blame p, M1 = blame p, Σ1 = Σ (∃p) .

Because Σ | ∅ ` blame p ≈ M ′
2 : ∀X .C , the case (5) implies

Σ ▷ M ′
2 −→∗

S Σ ▷ blame p .

Therefore, by (R CtxE S) and (R BlameE S),

Σ ▷ M ′
2 B −→∗

S Σ ▷ (blame p)B

−→S Σ ▷ blame p .

Therefore, it suffices to show that Σ | ∅ ` blame p ≈ blame p : C [X := B ]. Lemma I.23 implies ` Σ
and Σ ` ∅ and Σ | ∅ ` C [X := B ]. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : C [X :=
B ].

Case (R Ctx C): We are given

M1 = M3 B , Σ ▷ M2 −→C Σ1 ▷ M3 (∃M3) .

Therefore, because Σ | ∅ ` M2 ≈ M ′
2 : ∀X .C and Σ ▷ M2 −→C Σ1 ▷ M3, the IH implies

Σ1 ▷ M3 −→∗
C Σ2 ▷ M4, Σ ▷ M ′

2 −→∗
S Σ2 ▷ M ′

4, Σ2 | ∅ ` M4 ≈ M ′
4 : ∀X .C (∃Σ2,M4,M

′
4) .

Therefore, by applying (R Ctx C) repeatedly, we have

Σ ▷ M2 B −→C Σ1 ▷ M3 B

−→∗
C Σ2 ▷ M4 B .

Furthermore, by applying (R CtxE S), we have

Σ ▷ M ′
2 B −→∗

S Σ2 ▷ M ′
4 B .

Therefore, it suffices to show that Σ2 | ∅ ` M4 B ≈ M ′
4 B : C [X := B ]. Since Σ ⊆ Σ2, by Lemma D.2,

we have Σ2 | ∅ ` B . Hence, by (Bs Tyapp), Σ2 | ∅ ` M4 B ≈ M ′
4 B : C [X := B ].
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Case (Bs Crc): We are given

M = M2〈c〉, M ′ = M ′
2〈|c|∅〉, Σ | ∅ ` M2 ≈ M ′

2 : B , Σ | ∅ `C c : B ⇝ A (∃B , c,M2,M
′
2) .

By Lemma I.3, Σ | ∅ `S |c|∅ : Σ(B) ⇝ Σ(A). We perform case analysis on the rule applied last to
derive Σ ▷ M2〈c〉 −→C Σ1 ▷ M1, which is one of the following rules.

Case (R Id C): We are given

M2 = M1 = V2, c = idA′ , Σ1 = Σ (∃A′,V2) .

Since Σ | ∅ `C idA′ : B ⇝ A is derived by (Ct Id C), we have A′ = B = A. By (Bs CrcId),
Σ | ∅ ` V2 ≈ M ′

2〈|idA|∅〉 : A. Hence, by the case (3), we have

Σ ▷ M ′
2〈|idA|∅〉 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2 ≈ V ′

2 : A (∃V ′
2) .

Therefore,

Σ ▷ M ′
2〈|c|∅〉 = Σ ▷ M ′

2〈|idA|∅〉
−→∗

S Σ ▷ V ′
2 .

Hence, it suffices to show that Σ | ∅ ` V2 ≈ V ′
2 : A, which holds already.

Case (R Fail C): We are given

M2 = V2, c = ⊥p
B ′⇝A′ , M1 = blame p, Σ1 = Σ (∃p,A′,B ′,V2) .

Therefore, because Σ | ∅ ` V2 ≈ M ′
2 : B , by the case (3), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2 ≈ V ′

2 : B (∃V ′
2) .

Furthermore, by (R Fail S),

Σ ▷ V ′
2〈|⊥

p
B ′⇝A′ |∅〉 = Σ ▷ V ′

2〈⊥
p〉

−→S Σ ▷ blame p .

Hence, by Lemma I.17, we have

Σ ▷ M ′
2〈|⊥

p
B ′⇝A′ |∅〉 −→∗

S Σ ▷ blame p .

Therefore, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and
Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R Collapse C): We are given

M2 = V2〈G !〉, c = G?p , M1 = V2, Σ1 = Σ (∃p,G ,V2) .

Since Σ | ∅ `C G?p : B ⇝ A is derived by (Ct Proj C), we have B = ⋆ and A = G . Therefore,
since Σ | ∅ ` V2〈G !〉 ≈ M ′

2 : ⋆ and V2〈G1!〉 is a value, by the case (3), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2〈G !〉 ≈ V ′

2 : ⋆ (∃V ′
2) .

Since Σ(⋆) = ⋆, by Lemma I.22, we have Σ | ∅ `S V ′
2 : ⋆. Therefore, by Lemma E.25, we have

V ′
2 = U ′

2〈h ; H !〉 (∃H , h,U ′
2) .

Hence, Σ | ∅ ` V2〈G !〉 ≈ U ′
2〈h ; H !〉 : ⋆. We perform case analysis on the last rule to derive

Σ | ∅ ` V2〈G !〉 ≈ U ′
2〈h ; H !〉 : ⋆, which is either of (Bs CrcId), (Bs CrcIdL), (Bs Crc), or

(Bs CrcMore).

Case (Bs CrcId): Contradictory because there is no identity coercion idA such that |idA|∅ = h ;H !.

Case (Bs CrcIdL): Contradictory because G ! is not a no-op coercion.
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Case (Bs Crc): We are given

h ; H ! = |G !|∅, Σ | ∅ ` V2 ≈ U ′
2 : D , Σ | ∅ `C G ! : D ⇝ ⋆ (∃D) .

Since Σ | ∅ `C G ! : D ⇝ ⋆ is derived by (Ct Inj C), we have

D = G , ` Σ, Σ ` ∅, Σ | ∅ ` G .

Also, G does not include any free type variables. Therefore,

h ; H ! = |G !|∅ = |idG |∅ # G !, |G?p |∅ = G?p ; |idG |∅ .

Hence, H = G and h = |idG |∅. Furthermore, by Lemma I.11, |idG |∅ # |idG |∅ = |idG |∅. Therefore,

(h ; H !) # |G?p |∅ = (|idG |∅ ;G !) # |G?p |∅
= (|idG |∅ ;G !) # (G?p ; |idG |∅)
= |idG |∅ # |idG |∅
= |idG |∅ .

Therefore, by (R Merge S), we have

Σ ▷ V ′
2〈|G?p |∅〉 = Σ ▷ U ′

2〈h ; H !〉〈|G?p |∅〉
−→S Σ ▷ U ′

2〈(h ; H !) # |G?p |∅〉
= Σ ▷ U ′

2〈|idG |∅〉 .

Also, by Lemma I.23 and B = ⋆, Σ | ∅ `S M ′
2 : Σ(⋆). By (Ct Proj C), we have Σ | ∅ `C G?p :

⋆⇝ G . By Lemma I.3, we have Σ | ∅ `S |G?p |∅ : Σ(⋆)⇝ Σ(G). Therefore, by Lemma I.14,

Σ ▷ M ′
2〈|G?p |∅〉 −→∗

S Σ ▷ U ′
2〈|idG |∅〉 .

Hence, it suffices to show that Σ | ∅ ` V2 ≈ U ′
2〈|idG |∅〉 : G , which holds by (Bs CrcId).

Case (Bs CrcMore): We are given

h ; H ! = s ′ # |G !|∅, Σ | ∅ ` V2 ≈ U ′
2〈s ′〉 : D , Σ | ∅ `C G ! : D ⇝ ⋆ (∃s ′,D) .

Since Σ | ∅ `C G ! : D ⇝ ⋆ is derived by (Ct Inj C), we have D = G . Furthermore, by
Lemma I.46, there exists an intermediate coercion j such that s ′ = j . Hence, by Lemma I.22, we
have Σ | ∅ `S U ′

2〈j 〉 : Σ(G). Since this judgment is derived (T Crc S), we have Σ | ∅ `S j :
D ′ ⇝ Σ(G) (∃D ′). Therefore, by Lemma I.11, we have j # |idG |∅ = j . Therefore,

h ; H ! = s ′ # |G !|∅
= j # |G !|∅
= j # |G !|∅
= j # (|idG |∅ ;G !)

= (j # |idG |∅) ;G !

= (j # |idG |∅) ;G !

= j ;G ! .

Hence, H = G and h = j . Furthermore,

(h ;G !) # |G?p |∅ = (h ;G !) # |G?p |∅
= (h ;G !) # (G?p ; |idG |∅)
= h # |idG |∅
= h # |idG |∅
= h .
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Therefore, by (R Merge S), we have

Σ ▷ V ′
2〈|G?p |∅〉 = Σ ▷ U ′

2〈h ;G !〉〈|G?p |∅〉
= Σ ▷ U ′

2〈h ;G !〉〈|G?p |∅〉
= Σ ▷ U ′

2〈h ;G !〉〈G?p ; |idG |∅〉
= Σ ▷ U ′

2〈h ;G !〉〈G?p ; |idG |∅〉
−→S Σ ▷ U ′

2〈(h ;G !) # (G?p ; |idG |∅)〉
−→S Σ ▷ U ′

2〈h # |idG |∅〉
= Σ ▷ U ′

2〈h〉 .

By case analysis on h.

Case h = id: We have Σ | ∅ `S id : D ′ ⇝ Σ(G). Since this judgment is derived by (Ct Id S),
we have D ′ = Σ(G). Therefore, by (R Id S) and what have been proven, we have

Σ ▷ V ′
2〈|G?p |∅〉 −→S Σ ▷ U ′

2〈h〉
= Σ ▷ U ′

2〈id〉
−→S Σ ▷ U ′

2 .

Therefore, by Lemma I.18, we have

Σ ▷ M ′
2〈|c|∅〉 = Σ ▷ M ′

2〈|G?p |∅〉
−→∗

S Σ ▷ U ′
2 .

It suffices to show that Σ | ∅ ` V2 ≈ U ′
2 : G . Since Σ | ∅ ` V2〈G !〉 ≈ U ′

2〈id ; G !〉 : ⋆, by
Lemma I.55, we have Σ | ∅ ` V2 ≈ U ′

2 : G .

Otherwise: U ′
2〈h〉 is a value. Therefore, by Lemma I.18, we have

Σ ▷ M ′
2〈|c|∅〉 = Σ ▷ M ′

2〈|G?p |∅〉
−→∗

S Σ ▷ U ′
2〈h〉 .

Hence, it suffices to show that Σ | ∅ ` V2 ≈ U ′
2〈h〉 : G , which already holds.

Case (R Conflict C): We are given

M2 = V2〈G !〉, c = H ?p , M1 = blame p, G 6= H , Σ1 = Σ (∃p,G ,H ,V2) .

Because Σ | ∅ `C H ?p : B ⇝ A is derived by (Ct Proj C), we have B = ⋆ and A = H . Therefore,
Σ | ∅ ` V2〈G !〉 ≈ M ′

2 : ⋆, so by the case (3), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2〈G !〉 ≈ V ′

2 : ⋆ (∃V ′
2) .

By Lemma I.22 and Σ(⋆) = ⋆, we have Σ | ∅ `S V ′
2 : ⋆. Therefore, by Lemma E.25, we have

V ′
2 = U ′

2〈h2 ; H2!〉 (∃h2,H2,U
′
2) .

We perform case analysis on whether H2 = H or not.

Case H2 = H : We perform case analysis on the last rule to derive Σ | ∅ ` V2〈G !〉 ≈ U ′
2〈h2 ;H2!〉 : ⋆,

which is either of , which is either of (Bs CrcId), (Bs CrcIdL), (Bs Crc), or (Bs CrcMore).

Case (Bs CrcId): Contradictory because there is no identity coercion idA such that |idA|∅ =
h ; H !.

Case (Bs CrcIdL): Contradictory because G ! is not a no-op coercion.

Case (Bs Crc): We are given

h2 ; H2! = |G !|∅, Σ | ∅ ` V2 ≈ U ′
2 : D , Σ | ∅ `C G ! : D ⇝ ⋆ (∃D) .
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Since Σ | ∅ `C G ! : D ⇝ ⋆ is derived by (Ct Inj C), we have D = G . Also, G does not
include any type variables. Therefore, |G !|∅ = |idG |∅ # G !. Hence, by Lemma I.22, we have
Σ | ∅ `S U ′

2 : Σ(G). Therefore,

h2 ; H2! = |G !|∅
= |idG |∅ # G ! .

Hence, H = H2 = G , which is contradictory to G 6= H .

Case (Bs CrcMore): We are given

h2 ; H2! = s ′ # |G !|∅, Σ | ∅ ` V2 ≈ U ′
2〈s ′〉 : D , Σ | ∅ `C G ! : D ⇝ ⋆ (∃s ′,D) .

Since Σ | ∅ `C G ! : D ⇝ ⋆ is derived by (Ct Inj C), we have D = G . Furthermore, by
Lemma I.46, there exists an intermediate coercion j such that s ′ = j . Hence, by Lemma I.22,
we have Σ | ∅ `S U ′

2〈j 〉 : Σ(G). Since this judgment is derived (T Crc S), we have Σ | ∅ `S
j : D ′ ⇝ Σ(G) (∃D ′). Therefore, by Lemma I.11, we have j # |idG |∅ = j . Therefore,

h2 ; H2! = s ′ # |G !|∅
= j # |G !|∅
= j # |G !|∅
= j # (|idG |∅ ;G !)

= (j # |idG |∅) ;G !

= (j # |idG |∅) ;G !

= j ;G ! .

Hence, H = H2 = G , which is contradictory to G 6= H .

Case H2 6= H : We are given

(h2 ; H2!) # |H ?p |∅ = (h2 ; H2!) # (H ?p ; |idH |∅)
= ⊥p .

Therefore, by (R Merge S) and (R Fail S),

Σ ▷ U ′
2〈h2 ; H2!〉〈|H ?p |∅〉 −→S Σ ▷ U ′

2〈⊥
p〉

−→S Σ ▷ blame p .

Hence,

Σ | ∅ `S M ′
2 : Σ(⋆), Σ | ∅ `S |H ?p |∅ : Σ(⋆)⇝ Σ(G),

Σ ▷ M ′
2 −→∗

S Σ ▷ U ′
2〈h2 ; H2!〉, Σ ▷ U ′

2〈h2 ; H2!〉〈|H ?p |∅〉 −→∗
S Σ ▷ blame p .

Therefore, by Lemma I.19, we have

Σ ▷ M ′
2〈|c|∅〉 = Σ ▷ M ′

2〈|H ?p |∅〉
−→∗

S Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and
Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R Remove C): We are given

M2 = V2〈α−〉, c = α+, M1 = V2, Σ1 = Σ (∃p, α,V2) .

Since Σ | ∅ `C α+ : B ⇝ A is derived by (Ct Reveal C), we have

B = α, A = A, α := A ∈ Σ (∃A) .
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Furthermore, we have |α+|∅ = id. By (Bs CrcId), Σ | ∅ ` V2〈α−〉 ≈ M ′
2〈|idα|∅〉 : α. Since

|idα|∅ = id, we have Σ | ∅ ` V2〈α−〉 ≈ M ′
2〈id〉 : α. Therefore, since V2〈α−〉 is a value, by the case

(3),

M ′
2〈|α+|∅〉 = M ′

2〈id〉 −→∗
S V ′

2, Σ | ∅ ` V2〈α−〉 ≈ V ′
2 : α (∃V ′

2) .

Therefore, it suffices to show that Σ | ∅ ` V2 ≈ V ′
2 : A. We perform case analysis on whether V ′

2 is
a coercion application or not.

Case V ′
2 = U ′

2 (∃U ′
2): Since Σ | ∅ ` V2〈α−〉 ≈ U ′

2 : α is derived by (Bs CrcIdL), we have Σ | ∅ `
V2 ≈ U ′

2 : A.
Case V ′

2 = U ′
2〈t〉 (∃U ′

2, t): By Lemma I.36 and V2 is a value, we have V2 = V4〈vc1〉 · · · 〈vcn−1〉 and
vcn = α− for some V4, vc1, . . . , vcn . By Lemma I.57, there exists nonnegative integer j ≤ n such
that

An = A, An−1 = A, Σ | ∅ ` V4 ≈ U ′
2 : A0,

Σ | ∅ ` vci : Ai−1 ⇝ Ai , (∃A0, . . . ,An) ,

and

t = |idAj+1
|∅ # |vcj+1|∅ # · · · # |vcn+1|∅, vci = vcIi (∃vcI1, . . . , vcIj ) (1 ≤ i ≤ j) .

By Lemma I.11, we have

t = |idAj+1
|∅ # |vcj+1|∅ # · · · # |vcn |∅

= |idAj+1
|∅ # |vcj+1|∅ # · · · # |vcn−1|∅ # |α−|∅

= |vcj+1|∅ # · · · # |vcn−1|∅
= |idA0

|∅ # |vcI1|∅ # · · · # |vcIj |∅ # |vcj+1|∅ # · · · # |vcn−1|∅
= |idA0 |∅ # |vc1|∅ # · · · # |vcn−1|∅ .

By Lemma E.9, ` Σ and Σ ` ∅ and Σ | ∅ ` A0. By (Ct Id C), Σ | ∅ `C idA0
: A0 ⇝ A0.

Therefore, it suffices to show that Σ | ∅ ` V4〈vc1〉 · · · 〈vcn−1〉 ≈ U ′
2〈|idA0

|∅ #|vc1|∅ #· · ·#|vcn−1|∅〉 : A,
which is given by applying (Bs CrcId) and (Bs CrcMore) n− 1 times.

Case (R Split C): We are given

M2 = V2, c = c1 ; c2, M1 = V2〈c1〉〈c2〉, Σ1 = Σ (∃c1, c2,V2) .

Therefore, it suffices to show that

Σ | ∅ ` V2〈c1〉 〈c2〉 ≈ M ′
2〈|c1 ; c2|∅〉 : A .

Because Σ | ∅ `C c1 ; c2 : B ⇝ A is derived by (Ct Seq C), we have

Σ | ∅ `C c1 : B ⇝ D , Σ | ∅ `C c2 : D ⇝ A (∃D) .

Therefore, because Σ | ∅ ` V2 ≈ M ′
2 : B , by applying (Bs CrcMore) twice, we have

Σ | ∅ ` V2〈c1〉 〈c2〉 ≈ M ′
2〈(|c1|∅) # |c2|∅〉 : A .

Hence, it suffices to show that

|c1 ; c2|∅ = (|c1|∅) # |c2|∅ .

By Lemma I.3, we have

Σ | ∅ `S |c1|∅ : Σ(B)⇝ Σ(D), Σ | ∅ `S |c2|∅ : Σ(D)⇝ Σ(A) .

Hence, by Lemma I.7, we have

(|c1|∅) # |c2|∅ = (|c1|∅ # |c2|∅) .
Therefore,

|c1 ; c2|∅ = (|c1|∅ # |c2|∅)
= (|c1|∅) # |c2|∅ .
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Case (R Blame C): We are given

M2 = blame p, M1 = blame p (∃p) .

Therefore, because Σ | ∅ ` blame p ≈ M ′
2 : B , by the case (5), we have

Σ ▷ M ′
2 −→∗

S Σ ▷ blame p .

By case analysis on the length of the evaluation sequence Σ ▷ M ′
2 −→∗

S Σ ▷ blame p.

Case the length is zero: We are given M ′
2 = blame p, but it is contradictory.

Case the length is larger than zero: We are given

Σ ▷ M ′
2 −→S Σ′ ▷ M ′

3, Σ′ ▷ M ′
3 −→∗

S Σ ▷ blame p (∃Σ′,M ′
3) .

By Lemma I.21, we consider the following three cases.

Case (1) in Lemma I.21: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ ▷ (blame p)〈|c|∅〉 .

Therefore, by (R BlameC),

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ ▷ (blame p)〈|c|∅〉
−→S Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ
and Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (2) in Lemma I.21: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ ▷ M ′
4〈(s ′ # s) # |c|∅〉,

blame p = M ′
4〈s ′ # s〉, Σ | ∅ `S s ′ : D ⇝ C (∃D , s ′,M ′

4) .

However, blame p = M ′
4〈s ′ # s〉 does not hold, so there is a contradiction.

Case (3) in Lemma I.21: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ ▷ blame p′, blame p = blame p′ (∃p′) .

Because blame p = blame p′, we have p = p′. Therefore, it suffices to show that Σ | ∅ `
blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and Σ ` ∅ and Σ | ∅ ` A. Therefore, by
(Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R Ctx C): We are given

M1 = M3〈c〉, Σ ▷ M2 −→C Σ1 ▷ M3 (∃M3) .

Therefore, by the IH, we have

Σ1 ▷ M3 −→∗
C Σ2 ▷ M4, Σ ▷ M ′

2 −→∗
S Σ2 ▷ M ′

4, Σ2 | ∅ ` M4 ≈ M ′
4 : B (∃Σ2,M4,M

′
4) .

Hence, by (R Ctx C),

Σ ▷ M2〈c〉 −→C Σ1 ▷ M3〈c〉
−→∗

C Σ2 ▷ M4〈c〉 .

Furthermore, by Lemma I.22, we have Σ | ∅ `C M2〈c〉 : A. We perform case analysis on the length
of the evaluation sequence Σ ▷ M ′

2 −→∗
S Σ2 ▷ M ′

4.

Case the length is zero: We have Σ = Σ2 and M ′
2 = M ′

4. Furthermore, we have Σ | ∅ ` M4 ≈ M ′
2 :

B . Therefore, by (Bs CrcMore),

Σ | ∅ ` M4〈c〉 ≈ M ′
2〈|c|∅〉 : A .
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Case the length is larger than zero: We are given

Σ ▷ M ′
2 −→S Σ′ ▷ M ′

5, Σ′ ▷ M ′
5 −→∗

S Σ2 ▷ M ′
4 (∃Σ′,M ′

5) .

Therefore, by Lemma I.21, we consider the following three cases.

Case (1) in Lemma I.21: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ2 ▷ M ′
4〈|c|∅〉 .

Therefore, it suffices to show that

Σ2 | ∅ ` M4〈c〉 ≈ M ′
4〈|c|∅〉 : A .

Now, we have Σ2 | ∅ ` M4 ≈ M ′
4 : B . By Lemma I.23, ` Σ and Σ ` ∅ and Σ | ∅ ` B . By

(Ct Id C), Σ | ∅ `C idB : B ⇝ B . Therefore, by (Bs CrcId),

Σ2 | ∅ ` M4 ≈ M ′
4〈|idB |∅〉 : B .

Hence, by (Bs CrcMore), Σ2 | ∅ ` M4〈c〉 ≈ M ′
4〈|idB |∅ # |c|∅〉 : A. Therefore, it suffices to

show that |idB |∅ # |c|∅ = |c|∅, which is given by Lemma I.11.

Case (2) in Lemma I.21: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ2 ▷ M ′
6〈(s ′ # s) # |c|∅〉, M ′

4 = M ′
6〈s ′ # s〉,

Σ2 | ∅ `S s ′ : D ⇝ C (∃D , s ′,M ′
6) .

Therefore, it suffices to show that

Σ2 | ∅ ` M4〈c〉 ≈ M ′
6〈(s ′ # s) # |c|∅〉 : A .

Because Σ2 | ∅ ` M4 ≈ M ′
6〈s ′ # s〉 : B , by (Bs CrcMore), we have

Σ2 | ∅ ` M4〈c〉 ≈ M ′
6〈(s ′ # s) # |c|∅〉 : A .

Case (3) in Lemma I.21: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ2 ▷ blame p, M ′
4 = blame p (∃p) .

Therefore, Σ2 | ∅ ` M4 ≈ blame p : B . Since Σ2 | ∅ ` M4 ≈ blame p : B is derived by the
combination of (Bs CrcIdL) and (Bs Blame), there exists n ≥ 0 and cI1, . . . , c

I
n such that

M4 = (blame p)〈cI1〉 · · · 〈cIn〉, An+1 = B , Σ2 | ∅ ` cIi : Ai ⇝ Ai+1,

Σ2 | ∅ ` cIi : Ai ⇝ Ai+1, ` Σ2, Σ2 ` ∅, Σ2 | ∅ ` A1 (∃A1, . . . ,An+1) .

Therefore, by (R Blame C), (R Ctx C) and what have been proven, we have

Σ ▷ M2〈c〉 −→∗
C Σ2 ▷ M4〈c〉

= Σ2 ▷ (blame p)〈cI1〉 · · · 〈cIn〉〈c〉
−→C Σ2 ▷ (blame p)〈cI2〉 · · · 〈cIn〉〈c〉
−→C . . .

−→C Σ2 ▷ (blame p)〈c〉
−→C Σ2 ▷ blame p .

Furthermore, by Lemma I.22, we have Σ2 | ∅ `C (blame p)〈cI1〉 · · · 〈cIn〉〈c〉 : A. Therefore, by
Theorem E.19, we have B = Ai = A (1 ≤ i ≤ n+ 1). Hence, it suffices to show that

Σ2 | ∅ ` blame p ≈ blame p : A .

Therefore, by Lemma I.23, we have ` Σ2 and Σ2 ` ∅ and Σ2 | ∅ ` A. Hence, by (Bs Blame),
Σ2 | ∅ ` blame p ≈ blame p : A.
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Case (Bs CrcId): We are given

M ′ = M ′
1〈|idA|∅〉, Σ | ∅ ` M ≈ M ′

1 : A (∃M ′
1) .

By the IH,

Σ1 ▷ M1 −→∗
C Σ2 ▷ M2, Σ ▷ M ′

1 −→∗
S Σ2 ▷ M ′

2, Σ2 | ∅ ` M2 ≈ M ′
2 : A (∃Σ2,M2,M

′
2) .

Furthermore, by Lemma I.22, we have

Σ | ∅ `S M ′
1 : Σ(A) .

Moreover, by Lemma I.23, we have ` Σ and Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Ct Id C),
Σ | ∅ `C idA : A⇝ A. Hence, by Lemma I.3, we have

Σ | ∅ `S |idA|∅ : Σ(A)⇝ Σ(A) .

Therefore, by Lemma I.20, we consider the following three cases.

Case (1) in Lemma I.20: We are given

Σ ▷ M ′
1〈|idA|∅〉 −→∗

S Σ2 ▷ M ′
2〈|idA|∅〉 .

Therefore, it suffices to show that

Σ2 | ∅ ` M2 ≈ M ′
2〈|idA|∅〉 : A .

Now, we have Σ2 | ∅ ` M2 ≈ M ′
2 : A, so, by (Bs CrcId), we have

Σ2 | ∅ ` M2 ≈ M ′
2〈|idA|∅〉 : A .

Case (2) in Lemma I.20: We are given

Σ ▷ M ′
1〈|idA|∅〉 −→∗

S Σ2 ▷ M ′
3〈s # |idA|∅〉, M ′

2 = M ′
3〈s〉 (∃s,M ′

3) .

Therefore, it suffices to show that

Σ2 | ∅ ` M2 ≈ M ′
3〈s # |idA|∅〉 : A .

Now, we have Σ2 | ∅ ` M2 ≈ M ′
3〈s〉 : A, so by Lemma I.22, we have Σ2 | ∅ `S M ′

3〈s〉 : Σ(A).
Because this judgment is derived by (T Crc S), we have Σ2 | ∅ `S s : B ⇝ Σ(A) (∃B). Therefore,
by Lemma Lemma I.11,

s # |idA|∅ = s # |idA|∅
= s .

Therefore, it suffices to show that Σ2 | ∅ ` M2 ≈ M ′
3〈s〉 : A, which holds already.

Case (3) in Lemma I.20: We are given

Σ ▷ M ′
1〈|idA|∅〉 −→∗

S Σ2 ▷ M ′
2 .

Therefore, it suffices to show that

Σ2 | ∅ ` M2 ≈ M ′
2 : A ,

which holds already.
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Case (Bs CrcMore): We are given

M = M2〈c〉, M ′ = M ′
2〈s # |c|∅〉,

Σ | ∅ ` M2 ≈ M ′
2〈s〉 : B , Σ | ∅ `C c : B ⇝ A (∃B , c, s,M2,M

′
2) .

By Lemma I.22, we have

Σ | ∅ `S M ′
2〈s〉 : Σ(B) .

Since this judgment is derived by (T Crc S), we have

Σ | ∅ `S s : C ⇝ Σ(B) (∃C ) .

By Lemma I.3, we have

Σ | ∅ `S |c|∅ : Σ(B)⇝ Σ(A) .

We perform case analysis on the rule applied last to derive Σ ▷ M2〈c〉 −→C Σ1 ▷ M1, which is one of
the following rules.

Case (R Id C): We are given

M2 = V2, c = idA′ , M1 = V2, Σ1 = Σ (∃A′,V2) .

Therefore, Σ | ∅ `C idA′ : B ⇝ A. Because this judgment is derived by (Ct Id C), we have
A′ = B = A. Therefore, since Σ | ∅ `S s : C ⇝ Σ(A), so by Lemma I.11, we have s # |idA|∅ = s.
Furthermore, since Σ | ∅ ` V2 ≈ M ′

2〈s〉 : A, by the case (3), we have

Σ ▷ M ′
2〈s〉 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2 ≈ V ′

2 : A (∃V ′
2) .

Therefore,

Σ ▷ M ′
2〈s # |c|∅〉 = Σ ▷ M ′

2〈s # |idA|∅〉
= Σ ▷ M ′

2〈s〉
−→∗

S Σ ▷ V ′
2 .

Hence, it suffices to show that Σ | ∅ ` V2 ≈ V ′
2 : A, which holds already.

Case (R Fail C): We are given

M2 = V2, c = ⊥p
B ′⇝A′ , M1 = blame p, Σ1 = Σ (∃p,A′,B ′,V2) .

Therefore, because Σ | ∅ ` V2 ≈ M ′
2〈s〉 : B , by the case (3), we have

Σ ▷ M ′
2〈s〉 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2 ≈ V ′

2 : B (∃V ′
2) .

Furthermore, by (R Fail S),

Σ ▷ V ′
2〈|⊥

p
B ′⇝A′ |∅〉 = Σ ▷ V ′

2〈|⊥
p
B ′⇝A′ |∅〉

= Σ ▷ V ′
2〈⊥

p〉
−→S Σ ▷ blame p .

Hence, by Lemma I.19, we have

Σ ▷ M ′
2〈s # |⊥p

B ′⇝A′ |∅〉 −→∗
S Σ ▷ blame p .

Therefore, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and
Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.
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Case (R Collapse C): We are given

M2 = V2〈G !〉, c = G?p , M1 = V2, Σ1 = Σ (∃p,G ,V2) .

Since Σ | ∅ `C G?p : B ⇝ A is derived by (Ct Proj C), we have B = ⋆ and A = G . Therefore,
Σ | ∅ ` V2〈G !〉 ≈ M ′

2〈s〉 : ⋆, so by the case (3), we have

Σ ▷ M ′
2〈s〉 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2〈G !〉 ≈ V ′

2 : ⋆ (∃V ′
2) .

By Lemma I.22 and Σ(⋆) = ⋆, we have Σ | ∅ `S V ′
2 : ⋆. Therefore, by Lemma E.25, we have

V ′
2 = U ′

2〈h ; H !〉 (∃H , h,U ′
2) .

Hence, Σ | ∅ ` V2〈G !〉 ≈ U ′
2〈h ; H !〉 : ⋆. We perform case analysis on the last rule to derive

Σ | ∅ ` V2〈G !〉 ≈ U ′
2〈h ; H !〉 : ⋆, which is either of (Bs CrcId), (Bs CrcIdL), (Bs Crc), or

(Bs CrcMore).

Case (Bs CrcId): Contradictory because there is no identity coercion idA such that |idA|∅ = h ;H !.

Case (Bs CrcIdL): Contradictory because G ! is not a no-op coercion.

Case (Bs Crc): We are given

h ; H ! = |G !|∅, Σ | ∅ ` V2 ≈ U ′
2 : D , Σ | ∅ `C G ! : D ⇝ ⋆ (∃D) .

Since Σ | ∅ `C G ! : D ⇝ ⋆ is derived by (Ct Inj C), we have D = G . Also, G does not include
any free type variables. Therefore,

h ; H ! = |G !|∅
= |idG |∅ ;G ! .

Hence, H = G and h = |idG |∅. Furthermore, by Lemma I.11, |idG |∅ # |idG |∅ = |idG |∅. Therefore,

(h ;G !) # |G?p |∅ = (|idG |∅ ;G !) # |G?p |∅
= (|idG |∅ ;G !) # (G?p ; |idG |∅)
= |idG |∅ # |idG |∅
= |idG |∅ .

Therefore, by (R Merge S), we have

Σ ▷ V ′
2〈|G?p |∅〉 = Σ ▷ U ′

2〈h ;G !〉〈|G?p |∅〉
−→S Σ ▷ U ′

2〈(h ;G !) # |G?p |∅〉
= Σ ▷ U ′

2〈|idG |∅〉 .

Hence, by Lemma I.14,

Σ ▷ M ′
2〈|G?p |∅〉 −→S Σ ▷ U ′

2〈|idG |∅〉 .

Therefore, it suffices to show that Σ | ∅ ` V2 ≈ U ′
2〈|idG |∅〉 : G , which is given by (Bs CrcId).

Case (Bs CrcMore): We are given

h ; H ! = s ′ # |G !|∅, Σ | ∅ ` V2 ≈ U ′
2〈s ′〉 : D , Σ | ∅ `C G ! : D ⇝ ⋆ (∃s ′,D) .

Since Σ | ∅ `C G ! : D ⇝ ⋆ is derived by (Ct Inj C), we have D = G . Furthermore, by
Lemma I.46, there exists an intermediate coercion j such that s ′ = j . Hence, by Lemma I.22, we
have Σ | ∅ `S U ′

2〈j 〉 : Σ(G). Since this judgment is derived (T Crc S), we have Σ | ∅ `S j :
D ′ ⇝ Σ(G) (∃D ′). Therefore, by Lemma I.11, we have j # |idG |∅ = j . Therefore,

h ; H ! = s ′ # |G !|∅
= j # |G !|∅
= j # |G !|∅
= j # (|idG |∅ ;G !)

= (j # |idG |∅) ;G !

= (j # |idG |∅) ;G !

= j ;G ! .
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Hence, H = G and h = j . Furthermore,

(h ;G !) # |G?p |∅ = (h ;G !) # |G?p |∅
= (h ;G !) # (G?p ; |idG |∅)
= h # |idG |∅
= h # |idG |∅
= h .

Therefore, by (R Merge S), we have

Σ ▷ V ′
2〈|G?p |∅〉 = Σ ▷ U ′

2〈h ;G !〉〈|G?p |∅〉
= Σ ▷ U ′

2〈h ;G !〉〈|G?p |∅〉
= Σ ▷ U ′

2〈h ;G !〉〈G?p ; |idG |∅〉
= Σ ▷ U ′

2〈h ;G !〉〈G?p ; |idG |∅〉
−→S Σ ▷ U ′

2〈(h ;G !) # (G?p ; |idG |∅)〉
−→S Σ ▷ U ′

2〈h # |idG |∅〉
= Σ ▷ U ′

2〈h〉 .

By case analysis on h.

Case h = id: We have Σ | ∅ `S id : D ′ ⇝ Σ(G). Since this judgment is derived by (Ct Id S),
we have D ′ = Σ(G). Therefore, by (R Id S) and what have been proven, we have

Σ ▷ V ′
2〈|G?p |∅〉 −→S Σ ▷ U ′

2〈h〉
= Σ ▷ U ′

2〈id〉
−→S Σ ▷ U ′

2 .

Therefore, by Lemma I.18, we have

Σ ▷ M ′
2〈s # |c|∅〉 = Σ ▷ M ′

2〈s # |G?p |∅〉
−→∗

S Σ ▷ U ′
2 .

It suffices to show that Σ | ∅ ` V2 ≈ U ′
2 : G . Since Σ | ∅ ` V2〈G !〉 ≈ U ′

2〈id ; G !〉 : ⋆, by
Lemma I.55, we have Σ | ∅ ` V2 ≈ U ′

2 : G .

Otherwise: U ′
2〈h〉 is a value. Therefore, by Lemma I.18, we have

Σ ▷ M ′
2〈s # |c|∅〉 = Σ ▷ M ′

2〈s # |G?p |∅〉
−→∗

S Σ ▷ U ′
2〈h〉 .

Hence, it suffices to show that Σ | ∅ ` V2 ≈ U ′
2〈h〉 : G , which already holds.

Case (R Conflict C): We are given

M2 = V2〈G !〉, c = H ?p , M1 = blame p, G 6= H , Σ1 = Σ (∃p,G ,H ,V2) .

Because Σ | ∅ `C H ?p : B ⇝ A is derived by (Ct Proj C), we have B = ⋆ and A = H . Therefore,
Σ | ∅ ` V2〈G !〉 ≈ M ′

2〈s〉 : ⋆, so by the case (3), we have

Σ ▷ M ′
2〈s〉 −→∗

S Σ ▷ V ′
2, Σ | ∅ ` V2〈G !〉 ≈ V ′

2 : ⋆ (∃V ′
2) .

By Lemma I.22 and Σ(⋆) = ⋆, we have Σ | ∅ `S V ′
2 : ⋆. Therefore, by Lemma E.25, we have

V ′
2 = U ′

2〈h2 ; H2!〉 (∃h2,H2,U
′
2) .

We perform case analysis on whether H2 = H or not.

Case H2 = H : We perform case analysis on the last rule to derive Σ | ∅ ` V2〈G !〉 ≈ U ′
2〈h2 ;H2!〉 : ⋆,

which is either of , which is either of (Bs CrcId), (Bs CrcIdL), (Bs Crc), or (Bs CrcMore).
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Case (Bs CrcId): Contradictory because there is no identity coercion idA such that |idA|∅ =
h ; H !.

Case (Bs CrcIdL): Contradictory because G ! is not a no-op coercion.

Case (Bs Crc): We are given

h2 ; H2! = |G !|∅, Σ | ∅ ` V2 ≈ U ′
2 : D , Σ | ∅ `C G ! : D ⇝ ⋆ (∃D) .

Since Σ | ∅ `C G ! : D ⇝ ⋆ is derived by (Ct Inj C), we have D = G . Also, G does not
include any free type variables. Therefore, we have |G !|∅ = |idG |∅ ;G !. Therefore,

h2 ; H2! = |G !|∅
= |idG |∅ ;G ! .

Hence, H = H2 = G , which is contradictory to G 6= H .

Case (Bs CrcMore): We are given

h2 ; H2! = s ′ # |G !|∅, Σ | ∅ ` V2 ≈ U ′
2〈s ′〉 : D , Σ | ∅ `C G ! : D ⇝ ⋆ (∃s ′,D) .

Since Σ | ∅ `C G ! : D ⇝ ⋆ is derived by (Ct Inj C), we have D = G . Furthermore, by
Lemma I.46, there exists an intermediate coercion j such that s ′ = j . Hence, by Lemma I.22,
we have Σ | ∅ `S U ′

2〈j 〉 : Σ(G). Since this judgment is derived (T Crc S), we have Σ | ∅ `S
j : D ′ ⇝ Σ(G) (∃D ′). Therefore, by Lemma I.11, we have j # |idG |∅ = j . Therefore,

h2 ; H2! = s ′ # |G !|∅
= j # |G !|∅
= j # |G !|∅
= j # (|idG |∅ ;G !)

= (j # |idG |∅) ;G !

= (j # |idG |∅) ;G !

= j ;G ! .

Hence, H = H2 = G , which is contradictory to G 6= H .

Case H2 6= H : We are given

(h2 ; H2!) # |H ?p |∅ = (h2 ; H2!) # (H ?p ; |idH |∅)
= ⊥p .

Therefore, by (R Merge S) and (R Fail S),

Σ ▷ U ′
2〈h2 ; H2!〉〈|H ?p |∅〉 −→S Σ ▷ U ′

2〈⊥
p〉

−→S Σ ▷ blame p .

Hence,

Σ | ∅ `S M ′
2〈s〉 : Σ(⋆), Σ | ∅ `S |H ?p |∅ : Σ(⋆)⇝ Σ(G),

Σ ▷ M ′
2〈s〉 −→∗

S Σ ▷ U ′
2〈h2 ; H2!〉, Σ ▷ U ′

2〈h2 ; H2!〉〈|H ?p |∅〉 −→∗
S Σ ▷ blame p .

Therefore, by Lemma I.19, we have

Σ ▷ M ′
2〈s # |c|∅〉 = Σ ▷ M ′

2〈s # |H ?p |∅〉
−→∗

S Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and
Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.
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Case (R Remove C): We are given

M2 = V2〈α−〉, c = α+, M1 = V2, Σ1 = Σ (∃p, α,V2) .

Since Σ | ∅ `C α+ : B ⇝ A is derived by (Ct Reveal C), we have

B = α, A = A, α := A ∈ Σ (∃A) .

By Lemma I.50, s = i (∃i). Therefore, we have

s # |α+|∅ = s # |α+|∅
= s # id
= i # id
= i .

Here, we have Σ | ∅ ` V2〈α−〉 ≈ M ′
2〈i〉 : α. Then, by the case (3),

M ′
2〈s # |α+|∅〉 = M ′

2〈i〉 −→∗
S V ′

2, Σ | ∅ ` V2〈α−〉 ≈ V ′
2 : α (∃V ′

2) .

Therefore, it suffices to show that Σ | ∅ ` V2 ≈ V ′
2 : A. We perform case analysis on whether V ′

2 is
a coercion application or not.

Case V ′
2 = U ′

2 (∃U ′
2): Since Σ | ∅ ` V2〈α−〉 ≈ U ′

2 : α is derived by (Bs CrcIdL), we have Σ | ∅ `
V2 ≈ U ′

2 : A.
Case V ′

2 = U ′
2〈t〉 (∃U ′

2, t): By Lemma I.36 and V2 is a value, we have V2 = V4〈vc1〉 · · · 〈vcn−1〉 and
vcn = α− for some V4, vc1, . . . , vcn . By Lemma I.57, there exists nonnegative integer j ≤ n such
that

An = A, An−1 = A, Σ | ∅ ` V4 ≈ U ′
2 : A0,

Σ | ∅ ` vci : Ai−1 ⇝ Ai , (∃A0, . . . ,An) ,

and

t = |idAj+1 |∅ # |vcj+1|∅ # · · · # |vcn+1|∅, vci = vcIi (∃vcI1, . . . , vcIj ) (1 ≤ i ≤ j) .

By Lemma I.11, we have

t = |idAj+1
|∅ # |vcj+1|∅ # · · · # |vcn |∅

= |idAj+1 |∅ # |vcj+1|∅ # · · · # |vcn−1|∅ # |α−|∅
= |vcj+1|∅ # · · · # |vcn−1|∅
= |idA0

|∅ # |vcI1|∅ # · · · # |vcIj |∅ # |vcj+1|∅ # · · · # |vcn−1|∅
= |idA0 |∅ # |vc1|∅ # · · · # |vcn−1|∅ .

By Lemma E.9, ` Σ and Σ ` ∅ and Σ | ∅ ` A0. By (Ct Id C), Σ | ∅ `C idA0
: A0 ⇝ A0.

Therefore, it suffices to show that Σ | ∅ ` V4〈vc1〉 · · · 〈vcn−1〉 ≈ U ′
2〈|idA0

|∅ #|vc1|∅ #· · ·#|vcn−1|∅〉 : A,
which is given by applying (Bs CrcId) and (Bs CrcMore) n− 1 times.

Case (R Split C): We are given

M2 = V2, c = c1 ; c2, M1 = V2〈c1〉〈c2〉, Σ1 = Σ (∃c1, c2,V2) .

Therefore, it suffices to show that

Σ | ∅ ` V2〈c1〉 〈c2〉 ≈ M ′
2〈s # |c1 ; c2|∅〉 : A .

Because Σ | ∅ `C c1 ; c2 : B ⇝ A is derived by (Ct Seq C), we have

Σ | ∅ `C c1 : B ⇝ D , Σ | ∅ `C c2 : D ⇝ A (∃D) .
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Therefore, because Σ | ∅ ` V2 ≈ M ′
2〈s〉 : B , by applying (Bs CrcMore) twice, we have

Σ | ∅ ` V2〈c1〉 〈c2〉 ≈ M ′
2〈(s # |c1|∅) # |c2|∅〉 : A .

Hence, it suffices to show that

s # |c1 ; c2|∅ = (s # |c1|∅) # |c2|∅ .

By Lemma I.3, we have

Σ | ∅ `S |c1|∅ : Σ(B)⇝ Σ(D), Σ | ∅ `S |c2|∅ : Σ(D)⇝ Σ(A) .

Hence, by Lemma I.7, we have

(s # |c1|∅) # |c2|∅ = s # (|c1|∅ # |c2|∅) .
Therefore,

s # |c1 ; c2|∅ = s # (|c1|∅ # |c2|∅)
= (s # |c1|∅) # |c2|∅ .

Case (R Blame C): We are given

M2 = blame p, M1 = blame p (∃p) .

Therefore, because Σ | ∅ ` blame p ≈ M ′
2〈s〉 : B , by the case (5), we have

Σ ▷ M ′
2〈s〉 −→∗

S Σ ▷ blame p .

By case analysis on the length of the evaluation sequence Σ ▷ M ′
2〈s〉 −→∗

S Σ ▷ blame p.

Case the length is zero: We are given M ′
2〈s〉 = blame p, but it is contradictory.

Case the length is larger than zero: We are given

Σ ▷ M ′
2〈s〉 −→S Σ′ ▷ M ′

3, Σ′ ▷ M ′
3 −→∗

S Σ ▷ blame p (∃Σ′,M ′
3) .

By Lemma I.21, we consider the following three cases.

Case (1) in Lemma I.21: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ ▷ (blame p)〈|c|∅〉 .

Therefore, by (R BlameC),

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ ▷ (blame p)〈|c|∅〉
−→S Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ
and Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (2) in Lemma I.21: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ ▷ M ′
4〈(s ′ # s) # |c|∅〉,

blame p = M ′
4〈s ′ # s〉, Σ | ∅ `S s ′ : D ⇝ C (∃D , s ′,M ′

4) .

However, blame p = M ′
4〈s ′ # s〉 does not hold, so there is a contradiction.

Case (3) in Lemma I.21: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ ▷ blame p′, blame p = blame p′ (∃p′) .

Because blame p = blame p′, we have p = p′. Therefore, it suffices to show that Σ | ∅ `
blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and Σ ` ∅ and Σ | ∅ ` A. Therefore, by
(Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.
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Case (R Ctx C): We are given

M1 = M3〈c〉, Σ ▷ M2 −→C Σ1 ▷ M3 (∃M3) .

Therefore, by the IH, we have

Σ1 ▷ M3 −→∗
C Σ2 ▷ M4, Σ ▷ M ′

2〈s〉 −→∗
S Σ2 ▷ M ′

4, Σ2 | ∅ ` M4 ≈ M ′
4 : B (∃Σ2,M4,M

′
4) .

Hence, by (R Ctx C),

Σ ▷ M2〈c〉 −→C Σ1 ▷ M3〈c〉
−→∗

C Σ2 ▷ M4〈c〉 .

Furthermore, by Lemma I.22, we have Σ | ∅ `C M2〈c〉 : A. We perform case analysis on the length
of the evaluation sequence Σ ▷ M ′

2〈s〉 −→∗
S Σ2 ▷ M ′

4.

Case the length is zero: We have Σ = Σ2 and M ′
2〈s〉 = M ′

4. Furthermore, we have Σ | ∅ ` M4 ≈
M ′

2〈s〉 : B . Therefore, by (Bs CrcMore),

Σ | ∅ ` M4〈c〉 ≈ M ′
2〈s # |c|∅〉 : A .

Case the length is larger than zero: We are given

Σ ▷ M ′
2〈s〉 −→S Σ′ ▷ M ′

5, Σ′ ▷ M ′
5 −→∗

S Σ2 ▷ M ′
4 (∃Σ′,M ′

5) .

Therefore, by Lemma I.21, we consider the following three cases.

Case (1) in Lemma I.21: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ2 ▷ M ′
4〈|c|∅〉 .

Therefore, it suffices to show that

Σ2 | ∅ ` M4〈c〉 ≈ M ′
4〈|c|∅〉 : A .

Now, we have Σ2 | ∅ ` M4 ≈ M ′
4 : B . By Lemma I.23, ` Σ and Σ ` ∅ and Σ | ∅ ` B . By

(Ct Id C), Σ | ∅ `C idB : B ⇝ B . Therefore, by (Bs CrcId),

Σ2 | ∅ ` M4 ≈ M ′
4〈|idB |∅〉 : B .

Hence, by (Bs CrcMore), Σ2 | ∅ ` M4〈c〉 ≈ M ′
4〈|idB |∅ # |c|∅〉 : A. Therefore, it suffices to

show that |idB |∅ # |c|∅ = |c|∅, which is given by Lemma I.11.

Case (2) in Lemma I.21: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ2 ▷ M ′
6〈(s ′ # s) # |c|∅〉, M ′

4 = M ′
6〈s ′ # s〉,

Σ2 | ∅ `S s ′ : D ⇝ C (∃D , s ′,M ′
6) .

Therefore, it suffices to show that

Σ2 | ∅ ` M4〈c〉 ≈ M ′
6〈(s ′ # s) # |c|∅〉 : A .

Because Σ2 | ∅ ` M4 ≈ M ′
6〈s ′ # s〉 : B , by (Bs CrcMore), we have

Σ2 | ∅ ` M4〈c〉 ≈ M ′
6〈(s ′ # s) # |c|∅〉 : A .

Case (3) in Lemma I.21: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ2 ▷ blame p, M ′
4 = blame p (∃p) .
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Therefore, Σ2 | ∅ ` M4 ≈ blame p : B . Since Σ2 | ∅ ` M4 ≈ blame p : B is derived by the
combination of (Bs CrcIdL) and (Bs Blame), there exists n ≥ 0 and cI1, . . . , c

I
n such that

M4 = (blame p)〈cI1〉 · · · 〈cIn〉, An+1 = B , Σ2 | ∅ ` cIi : Ai ⇝ Ai+1,

Σ2 | ∅ ` cIi : Ai ⇝ Ai+1, ` Σ2, Σ2 ` ∅, Σ2 | ∅ ` A1 (∃A1, . . . ,An+1) .

Therefore, by (R Blame C), (R Ctx C) and what have been proven, we have

Σ ▷ M2〈c〉 −→∗
C Σ2 ▷ M4〈c〉

= Σ2 ▷ (blame p)〈cI1〉 · · · 〈cIn〉〈c〉
−→C Σ2 ▷ (blame p)〈cI2〉 · · · 〈cIn〉〈c〉
−→C . . .

−→C Σ2 ▷ (blame p)〈c〉
−→C Σ2 ▷ blame p .

Furthermore, by Lemma I.22, we have Σ2 | ∅ `C (blame p)〈cI1〉 · · · 〈cIn〉〈c〉 : A. Therefore, by
Theorem E.19, we have B = Ai = A (1 ≤ i ≤ n+ 1). Hence, it suffices to show that

Σ2 | ∅ ` blame p ≈ blame p : A .

Therefore, by Lemma I.23, we have ` Σ2 and Σ2 ` ∅ and Σ2 | ∅ ` A. Hence, by (Bs Blame),
Σ2 | ∅ ` blame p ≈ blame p : A.

Case (Bs CrcIdL): We are given

M = M2〈cI〉, Σ | ∅ ` M2 ≈ M ′ : B , Σ | ∅ `C cI : B ⇝ A (∃B , cI ,M2) .

We perform case analysis on the rule applied last to derive Σ ▷ M2〈cI〉 −→C Σ1 ▷ M1, which is one of
the following rules.

Case (R Id C): We are given

M2 = V2, cI = idA′ , M1 = V2, Σ1 = Σ (∃A′,V2) .

Since Σ | ∅ `C idA′ : B ⇝ A is derived by (Ct Id C), we have A′ = B = A. Therefore, by
Lemma I.56, Σ ▷ V2〈idA′〉 −→∗

C Σ ▷ V2 and Σ | ∅ ` V2 ≈ M ′ : A.

Case (R Remove C): We are given

M2 = V2〈α−〉, cI = α+, M1 = V2, Σ1 = Σ (∃α,V2) .

Since Σ | ∅ ` α+ : B ⇝ A is derived by (Ct Reveal C), we have

B = α, A = A, α := A ∈ Σ (∃A) .

By Lemma I.36, there exists a non-cercion application value V3 and coercions c1, · · · , cn such that
V2〈α−〉 = V3〈c1〉 · · · 〈cn−1〉〈α−〉 (cn = α−) and V2 = V3〈c1〉 · · · 〈cn−1〉. Therefore, it suffices to
show that Σ | ∅ ` V3〈c1〉 · · · 〈cn−1〉 ≈ M ′ : A. We perform case analysis on M ′.

Case M ′ = M ′
2〈s〉 (∃s): By Lemma I.39, there exists nonnegative j (1 ≤ j ≤ n) such that

ci = cIi (1 ≤ i ≤ j), cn = α−, An+1 = α, Σ | ∅ ` V3 ≈ M ′
2 : A1, Σ | ∅ `C ci : Ai ⇝ Ai+1,

s = |idAj
|∅ # |cj+1|∅ # · · · # |cn |∅ (∃A1, . . . ,An+1, c

I
1, . . . , c

I
j ) .

Since Σ | ∅ `C α− : An ⇝ α is derived by (Ct Conceal C) and α := A ∈ Σ, we have An = A.
By applying (Bs CrcIdL) j times, (Bs CrcId), and (Bs CrcMore) n− j − 1 times, we have

Σ | ∅ ` V3〈cI1〉, . . . , 〈cIj 〉 〈cj+1〉, . . . , 〈cn−1〉 ≈ M ′
2〈|idAj

|∅ # |cj+1|∅ # · · · # |cn−1|∅〉 : A .
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Furthermore, since cn = α− is a no-op coercion, by Lemma I.11, we have

s = |idAj
|∅ # |cj+1|∅ # · · · # |cn |∅

= |idAj
|∅ # |cj+1|∅ # · · · # |α−|∅

= |idAj
|∅ # |cj+1|∅ # · · · # |cn−1|∅

Therefore, we have Σ | ∅ ` V3〈cI1〉, . . . , 〈cIj 〉 〈cj+1〉, . . . , 〈cn−1〉 ≈ M ′
2〈s〉 : A.

Otherwise: Since Σ | ∅ ` V3〈c1〉, . . . , 〈cn−1〉 〈α−〉 ≈ M ′ : α is derived by (Bs CrcIdL), we have

Σ | ∅ ` V3〈c1〉, . . . , 〈cn−1〉 ≈ M ′ : C , Σ | ∅ `C α− : C ⇝ α (∃C ) .

Since Σ | ∅ `C α− : C ⇝ α is derived by (Ct Conceal C) and α := A ∈ Σ, we have
C = A = A.

Case (R Split C): We are given

M2 = V2, cI = cI1 ; c
I
2, M1 = V2〈cI1〉〈cI2〉, Σ1 = Σ (∃cI1, cI2,V2) .

Furthermore, Σ | ∅ `C cI1 ; c
I
2 : B ⇝ A is derived by (Ct Seq C), we have

Σ | ∅ `C cI1 : B ⇝ C , Σ | ∅ `C cI2 : C ⇝ A (∃C ) .

Therefore, it suffices to show that Σ | ∅ ` V2〈cI1〉 〈cI2〉 ≈ M ′ : A, which is given by applying
(Bs CrcIdL) twice.

Case (R Blame C): We are given

M2 = blame p, M1 = blame p (∃p) .

Therefore, because Σ | ∅ ` blame p ≈ M ′ : B , by the case (5), we have

Σ ▷ M ′ −→∗
S Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have ` Σ and
Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R Ctx C): We are given

M1 = M3〈cI〉, Σ ▷ M2 −→C Σ1 ▷ M3 (∃M3) .

Therefore, by the IH, we have

Σ1 ▷ M3 −→∗
C Σ2 ▷ M4, Σ ▷ M ′ −→∗

S Σ2 ▷ M ′
4, Σ2 | ∅ ` M4 ≈ M ′

4 : B (∃Σ2,M4,M
′
4) .

Hence, by (R Ctx C),

Σ ▷ M2〈cI〉 −→C Σ1 ▷ M3〈cI〉
−→∗

C Σ2 ▷ M4〈cI〉 .

Therefore, it suffices to show that Σ | ∅ ` M4〈cI〉 ≈ M ′
4 : A, which is given by (Bs CrcIdL).

(4) By induction on the derivation of Σ | ∅ ` M ≈ V ′ : A with case analysis on the last rule used.

Case (Bs Const), (Bs Abs), (Bs Tyabs): Because M is a value, we have the conclusion by letting V =
M .

Case (Bs CrcId): We are given

V ′ = U ′
1〈|idA|∅〉, Σ | ∅ ` M ≈ U ′

1 : A Σ | ∅ `C idA : A⇝ A (∃U ′
1) .

By the IH,

Σ ▷ M −→∗
C Σ ▷ V1, Σ | ∅ ` V1 ≈ U ′

1 : A (∃V1) .

By (Bs CrcId), Σ | ∅ ` V1 ≈ U ′
1〈|idA|∅〉 : A.
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Case (Bs Crc): We are given

M = M1〈c〉, V ′ = U ′
1〈|c|∅〉, Σ | ∅ ` M1 ≈ U ′

1 : B , Σ | ∅ `C c : B ⇝ A (∃B , c,M1,U
′
1) .

By Lemma I.36, there exist some M2 that is not a coercion application, n > 0, and c1, . . . cn such
that M1〈c〉 = M2〈c1〉 · · · 〈cn〉 and cn = c. Since U ′

1 is a value, there exists cI1, . . . , c
I
n−1 such that

ci = cIi (1 ≤ i ≤ n− 1). Furthermore, by Lemma I.40, we have

M2 = V2, An+1 = A, Σ | ∅ ` ci : Ai ⇝ Ai+1 (1 ≤ i ≤ n), Σ | ∅ ` V2 ≈ U ′
1 : A1 (∃A1, ...,An+1) .

By Lemma I.52, we consider the following two cases.

Case (1): where

Σ ▷ V2〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ V3, Σ | ∅ ` V3 ≈ U ′

1〈|c|∅〉 : A (∃V3) .

Then,

Σ ▷ M1〈c〉 = Σ ▷ V2〈c1〉 · · · 〈cn〉
−→∗

C Σ ▷ V3 .

It suffices to show that Σ | ∅ ` V3 ≈ U ′
1〈|c|∅〉 : A, which holds already.

Case (2): where

Σ ▷ V2〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ blame p, |c|∅ = ⊥p (∃p) .

It means that

V ′ = U ′
1〈|c|∅〉

= U ′
1〈⊥

p〉 .

However, it is contradictory because U ′
1〈⊥

p〉 is not a value.

Case (Bs CrcMore): We are given

M = M1〈c〉, V ′ = U ′
1〈s # |c|∅〉, Σ | ∅ ` M1 ≈ U ′

1〈s〉 : B , Σ | ∅ `C c : B ⇝ A (∃B , c, s,M1,U
′
1) .

By Lemma I.36, there exist some M2 that is not a coercion application, n > 0, and c1, . . . cn such that
M1〈c〉 = M2〈c1〉 · · · 〈cn〉 and cn = c. By Lemma I.39,

Σ | ∅ ` M2 ≈ U ′
1 : A1, Σ | ∅ ` ci : Ai ⇝ Ai+1 (1 ≤ i ≤ n), An+1 = A, (∃A1, ...,An+1)

and, for some k ≤ n, c1, . . . , ck are no-op and s = |idAk+1
|∅ # |ck+1|∅ # · · · # |cn |∅. By Lemma I.40, there

exists a vlaue V2 such that M2 = V2. By Lemma I.52, we consider the following two cases.

Case (1): where

Σ ▷ V2〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ V3, Σ | ∅ ` V3 ≈ U ′

1〈s # |c|∅〉 : A (∃V3) .

Then,

Σ ▷ M1〈c〉 = Σ ▷ V2〈c1〉 · · · 〈cn〉
−→∗

C Σ ▷ V3 .

It suffices to show that Σ | ∅ ` V3 ≈ U ′
1〈s # |c|∅〉 : A, which holds already.

Case (2): where

Σ ▷ V2〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ blame p, s # |c|∅ = ⊥p (∃p) .

It means that

V ′ = U ′
1〈s # |c|∅〉

= U ′
1〈⊥

p〉 .

However, it is contradictory because U ′
1〈⊥

p〉 is not a value.
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Case (Bs CrcIdL): We are given

M = M1〈cI〉, Σ | ∅ ` M1 ≈ V ′ : B , Σ | ∅ `C cI : B ⇝ A (∃M1, c
I ,B) .

By the IH, there exists V1 such that Σ ▷ M1 −→∗
C Σ ▷ V1 and Σ | ∅ ` V1 ≈ V ′ : B . Therefore, by

(R Ctx C), we have Σ ▷ M1〈cI〉 −→∗
C Σ ▷ V1〈cI〉. Moreover, by Lemma I.56, there exists a value V2

such that Σ ▷ V1〈cI〉 −→∗
C Σ ▷ V2 and Σ | ∅ ` V2 ≈ V ′ : A.

Case (Bs Var), (Bs App), (Bs Tyapp), (Bs Blame): Cannot happen because the RHS is a value.

(6) By induction on the derivation of Σ | ∅ ` M ≈ blame p : A. We perform case analysis on the rule applied
last to derive Σ | ∅ ` M ≈ blame p : A, which is either of (Bs Blame) or (Bs CrcIdL).

Case (Bs Blame): We have M = blame p. Hence, Σ ▷ blame p −→∗
C Σ ▷ blame p.

Case (Bs CrcIdL): We are given

M = M1〈cI〉, Σ | ∅ `C cI : B ⇝ A, Σ | ∅ ` M1 ≈ blame p : B (∃M1, c
I ,B) .

By the IH, Σ ▷ M1 −→∗
C Σ ▷ blame p. By (R Blame C), Σ ▷ (blame p)〈cI〉 −→∗

C Σ ▷ blame p.

(2) By induction on the depth of the derivation of Σ | ∅ ` M ≈ M ′ : A. We perform case analysis on the rule
applied last to derive Σ | ∅ ` M ≈ M ′ : A.

Case (Bs Const), (Bs Var), (Bs Abs), (Bs Tyabs), (Bs Blame): Contradictory with Σ ▷ M ′ −→S

Σ1 ▷ M ′
1.

Case (Bs App): We are given

M = M2 M3, M ′ = M ′
2 M

′
3, Σ | ∅ ` M2 ≈ M ′

2 : B → A, Σ | ∅ ` M3 ≈ M ′
3 : B (∃B ,M2,M3,M

′
2,M

′
3) .

By case analysis on the rule applied last to derive Σ ▷ M ′
2 M

′
3 −→S Σ1 ▷ M ′

1, which is one of the
following rules.

Case (R Delta S): We are given

M ′
2 = k2, M ′

3 = k3, M ′
1 = δ(k2, k3), Σ1 = Σ (∃k2, k3) .

By the case (4), we have

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ k2 : B → A

Σ ▷ M3 −→∗
C Σ ▷ V3, Σ | ∅ ` V3 ≈ k3 : B .

We perform case analysis on whether V2 is a coercion application or not.

Case V2 is not a coercion application: Since Σ | ∅ ` V2 ≈ k2 : B → A is derived by (Bs Const),
we have

V2 = k2, ` Σ, Σ ` ∅, ty(k2) = B → A .

By the definition of ty, B is a base type. Therefore, by Lemma I.58, V3 is not a coercion application
and

V3 = k3, ty(k3) = B .

Therefore, by (R Ctx C) and (R Delta C),

Σ ▷ M2 M3 −→∗
C Σ ▷ M2 V3

−→∗
C Σ ▷ V2 V3

= Σ ▷ k2 k3

−→C Σ ▷ δ(k2, k3) .

Hence, it suffices to show that Σ | ∅ ` δ(k2, k3) ≈ δ(k2, k3) : A. By (Bs App) and Lemma I.22,
we have Σ | ∅ `C k2 k3 : A. Therefore, by the assumption on δ, Σ | ∅ `C δ(k2, k3) : A. Because
this judgment is derived by (T Const C), we have ty(δ(k2, k3)) = A. Hence, by (Bs Const),
Σ | ∅ ` δ(k2, k3) ≈ δ(k2, k3) : A.
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Case V2 is a coercion application: By Lemma I.58, there eixsts V4 that is not a coercion application
such that

V2 = V4〈cI1 → dI1〉 · · · 〈cIn → dIn〉, Σ | ∅ ` V4 ≈ k2 : B0 → C0, B = Bn , A = Cn ,

Σ | ∅ `C cIi : Bi ⇝ Bi−1, Σ | ∅ `C dIi : Ci−1 ⇝ Ci

(∃cI1 . . . cIn , dI1 . . . dIn ,B0 . . .Bn ,C0 . . .Cn) .

Since Σ | ∅ ` V4 ≈ k2 : B0 → C0 is derived by (Bs Const), we have V4 = k2, and B0 and C0

are base types. Furthermore, by Lemma I.56, we have

Σ ▷ V3〈cIn〉 −→∗
C Σ ▷ V ′

3, Σ | ∅ ` V ′
3 ≈ k3 : Bn−1 (∃V ′

3) .

Therefore, by applying (R Wrap C), (R Ctx C), we have

Σ ▷ M2 M3 −→∗
C Σ ▷ (k2〈cI1 → dI1〉 · · · 〈cIn → dIn〉)V3

−→∗
C Σ ▷ ((k2〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉) (V3〈cIn〉))〈dIn〉

−→∗
C Σ ▷ ((k2〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉) (V ′

3))〈dIn〉 .

Similarly, by Lemma I.56 and applying (R Wrap C), (R Ctx C) repeatedly, we have

Σ | ∅ ` V ′′
3 ≈ k3 : B0 ,

and

Σ ▷ M2 M3 −→∗
C Σ ▷ ((k2〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉) (V ′

3))〈dIn〉
−→∗

C Σ ▷ (k2 V
′′
3 )〈dIn〉 · · · 〈dI1〉 .

Since B0 is a base type, by Lemma I.58, V ′′
3 is not a coercion application. Therefore, since

Σ | ∅ ` V ′′
3 ≈ k3 : B0 is derived (Bs Const), we have V ′′

3 = k3. Thus,

Σ ▷ (k2 V
′′
3 )〈dIn〉 · · · 〈dI1〉 = Σ ▷ (k2 k3)〈dIn〉 · · · 〈dI1〉

−→C Σ ▷ δ(k2, k3)〈dIn〉 · · · 〈dI1〉 .

Hence, it suffices to show that Σ | ∅ ` δ(k2, k3)〈dIn〉 · · · 〈dI1〉 ≈ δ(k2, k3) : A. By (Bs App) and
Lemma I.22, we have Σ | ∅ `C k2 k3 : C0. Therefore, by the assumption on δ, Σ | ∅ `C
δ(k2, k3) : C0. Because this judgment is derived by (T Const C), we have ty(δ(k2, k3)) = C0.
Hence, by (Bs Const), Σ | ∅ ` δ(k2, k3) ≈ δ(k2, k3) : C0. By (Bs Const) and (Bs CrcIdL),
Σ | ∅ ` δ(k2, k3)〈dIn〉 · · · 〈dI1〉 ≈ δ(k2, k3) : A.

Case (R Beta S): We are given

M ′
2 = λx :A′.M ′

4, M ′
3 = V ′

3, M ′
1 = M ′

4[x := V ′
3], Σ1 = Σ (∃A′, x ,M ′

4,V
′
3) .

By the case (4), we have

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ λx :A′.M ′

4 : B → A .

By Lemma I.58, there exists V4 that is not a coercion application such that

V2 = V4〈cI1 → dI1〉 · · · 〈cIn → dIn〉, Bn = B , Cn = A, Σ | ∅ ` V4 ≈ λx :A′.M ′
4 : B0 → C0,

Σ | ∅ `C cI : Bi ⇝ Bi−1, Σ | ∅ `C dI : Ci−1 ⇝ Ci (∃cI1 . . . cIn , dI1 . . . dIn ,B0 . . .Bn ,C0 . . .Cn) .

Furthermore, Σ | ∅ ` V4 ≈ λx :A′.M ′
4 : B0 → C0 is derived by (Bs Abs), we have

B0 = A′, V4 = λx :B0.M4, Σ | ∅, x : B0 ` M4 ≈ M ′
4 : C0 (∃M4) .

Similarly, by the case (4), we have

Σ ▷ M3 −→C Σ ▷ V3, Σ | ∅ ` V3 ≈ V ′
3 : B .
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Furthermore, by Lemma I.56, we have

Σ ▷ V3〈cIn〉 −→∗
C Σ ▷ V ′′

3 , Σ | ∅ ` V ′′
3 ≈ k3 : Bn−1 (∃V ′′

3 ) .

Therefore, by (R Ctx C) and (R Wrap C),

Σ ▷ M2 M3 −→∗
C Σ ▷ V2 V3

= Σ ▷ ((λx :B0.M4)〈cI1 → dI1〉 · · · 〈cIn → dIn〉)V3

−→∗
C Σ ▷ (((λx :B0.M4)〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉) (V3〈cIn〉))〈dIn〉

−→∗
C Σ ▷ (((λx :B0.M4)〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉)V ′′

3 )〈dIn〉 .

Similarly, by Lemma I.56 and applying (R Wrap C), (R Ctx C) repeatedly, we have

Σ | ∅ ` V ′′′
3 ≈ V ′

3 : B0 ,

and

Σ ▷ M2 M3 −→∗
C Σ ▷ (((λx :B0.M4)〈cI1 → dI1〉 · · · 〈cIn−1 → dIn−1〉)V ′

3)〈dIn〉
−→∗

C Σ ▷ ((λx :B0.M4)V
′′′
3 )〈dIn〉 · · · 〈dI1〉

−→∗
C Σ ▷ (M4[x := V ′′′

3 ])〈dIn〉 · · · 〈dI1〉 .

Hence, it suffices to show that Σ | ∅ ` (M4[x := V ′′′
3 ])〈dIn〉 · · · 〈dI1〉 ≈ M ′

4[x := V ′
3] : A By Lemma I.27,

Σ | ∅ ` M4[x := V ′′′
3 ] ≈ M ′

4[x := V ′
3] : C0. By applying (Bs CrcIdL) repeatedly, we have

Σ | ∅ ` M4[x := V ′′′
3 ]〈dIn〉 · · · 〈dI1〉 ≈ M ′

4[x := V ′
3] : A.

Case (R Wrap S): We are given

M ′
2 = U ′

2〈s → t〉, M ′
3 = V ′

3, M ′
1 = (U ′

2 (V
′
3〈s〉))〈t〉, Σ1 = Σ (∃s, t ,U ′

2,V
′
3) .

Since M ′
2(= U ′

2〈s → t〉) and V ′
3 are values, by the case (4),

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ U ′

2〈s → t〉 : B → A (∃V2) ,

and

Σ ▷ M3 −→∗
C Σ ▷ V3, Σ | ∅ ` V3 ≈ V ′

3 : B (∃V3) .

By applying (R Ctx C) repeatedly, we have

Σ ▷ M2 M3 −→∗
C Σ ▷ V2 M3

−→∗
C Σ ▷ V2 V3 .

We perform case analysis on whether V2 is a coercion application or not.

Case V2 is not a coercion application: Since Σ | ∅ ` V2 ≈ U ′
2〈s → t〉 : B → A is derive by

(Bs CrcId), we have

|idB→A|∅ = s → t , Σ | ∅ `C idB→A : (B → A)⇝ (B → A), Σ | ∅ ` V2 ≈ U ′
2 : (B → A) .

Furthermore, since

s → t = |idB→A|∅
= |idB→A|∅
= |idB |∅ → |idA|∅
= |idB |∅ → |idA|∅ ,

we have

s = |idB |∅, t = |idA|∅ .
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Therefore, it suffices to show that Σ | ∅ ` V2 V3 ≈ (U ′
2 (V

′
3〈|idB |∅〉))〈|idA|∅〉 : A. By Lemma I.23,

we have ` Σ, Σ ` ∅, Σ | ∅ ` A, Σ | ∅ ` B . By (Ct Id C), we have

Σ | ∅ `C idA : A⇝ A, Σ | ∅ `C idB : B ⇝ B .

Hence, Σ | ∅ ` V2 V3 ≈ (U ′
2 (V

′
3〈|idB |∅〉))〈|idA|∅〉 : A is derived as follows:

Σ | ∅ ` V2 ≈ U ′
2 : B → A

Σ | ∅ ` V3 ≈ V ′
3 : B

(Bs CrcId)
Σ | ∅ ` V3 ≈ V ′

3〈|idB |∅〉 : B (Bs App)
Σ | ∅ ` V2 V3 ≈ U ′

2 (V
′
3〈|idB |∅〉) : A (Bs CrcId)

Σ | ∅ ` V2 V3 ≈ (U ′
2 (V

′
3〈|idB |∅〉))〈|idA|∅〉 : A

Case V2 is a coercion application: By Lemma I.36 and V2 is a value, V2 = V4〈vc1〉 · · · 〈vcn〉 for some
V4, vc1, . . . , vcn , and n > 0. By Lemma I.57, we have

Bn = B , Cn = A, vci = ci → di , Σ | ∅ ` V4 ≈ U ′
2 : B0 → C0,

Σ | ∅ `C ci : Bi ⇝ Bi−1, Σ | ∅ `C di : Ci−1 ⇝ Ci (∃c1, . . . , cn , d1, . . . , dn ,B0, . . . ,Bn ,C0, . . . ,Cn) ,

and there exists nonegative integer j such that

j ≤ n, ci → di = cIi → dIi (1 ≤ i ≤ j),

s → t = |idAj+1 |∅ # |cj+1 → dj+1|∅ # · · · # |cn → dn |∅ (∃cI1, . . . , cIj , dI1, . . . , dIj ) .

By Lemma E.9, ` Σ and Σ ` ∅ and Σ | ∅ ` B0 and Σ | ∅ ` C0. By (Ct Id C), Σ | ∅ `C idB0
:

B0 ⇝ B0 and Σ | ∅ `C idC0
: C0 ⇝ C0. Furthermore, by Lemma I.11, we have

s → t = |idAj+1
|∅ # |cj+1 → dj+1|∅ # · · · # |cn → dn |∅

= |cj+1 → dj+1|∅ # · · · # |cn → dn |∅
= |cI1 → dI1|∅ # · · · # |cIj → dIj |∅ # · · · # |cj+1 → dj+1|∅ # · · · # |cn → dn |∅
= |c1 → d1|∅ # · · · # |cn → dn |∅
= |c1 → d1|∅ # · · · # |cn → dn |∅
= (|c1|∅ → |d1|∅) # · · · # (|cn |∅ → |dn |∅)
= (|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)
= (|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅) .

Therefore,

s = |cn |∅ # · · · # |c1|∅, t = |d1|∅ # · · · # |dn |∅ .

We perform case analysis on V ′
3 is coercion application or not.

Case V ′
3 = U ′

3 (∃U ′
3): By Lemma I.23, ` Σ and Σ ` ∅ and Σ | ∅ ` B . By (Ct Id C), Σ | ∅ `C

idB : B ⇝ B . By (Bs CrcId), Σ | ∅ ` V3 ≈ U ′
3〈|idB |∅〉 : B . Now, we have

Σ | ∅ ` V4〈c1 → d1〉 · · · 〈cn → dn〉 ≈ U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉 : B → A,

Σ | ∅ ` V3 ≈ U ′
3〈|idB |∅〉 : B .

Therefore, by Lemma I.53, we consider the following two cases.

Case (1) in Lemma I.53: We are given

Σ ▷ M2 M3 −→∗
C Σ ▷ V2 V3

= Σ ▷ (V4〈c1 → d1〉 · · · 〈cn → dn〉)V3

−→∗
C Σ ▷ (V4 M5)〈d1〉 · · · 〈dn〉 (∃M5) ,

and

Σ | ∅ ` M5 ≈ U ′
3〈|idB |∅ # |cn |∅ # · · · # |c1|∅〉 : B0 .
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Hence, it suffices to show that

Σ | ∅ `
(V4 M5)〈d1〉 · · · 〈dn〉
≈
(U ′

2 (U
′
3〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

: A .

By (Bs App),

Σ | ∅ ` V4 M5 ≈ U ′
2 (U

′
3〈|idB |∅ # |cn |∅ # · · · # |c1|∅〉) : C0 .

By (Bs CrcId) and applying (Bs CrcMore) repeatedly, we have

Σ | ∅ `
(V4 M5)〈d1〉 · · · 〈dn〉
≈
(U ′

2 (U
′
3〈|idB |∅ # |cn |∅ # · · · # |c1|∅〉))〈|idC0 |∅ # |d1|∅ # · · · # |dn |∅〉

: A .

Therefore, by Lemma I.11, we conclude the case by

|idB |∅ # |cn |∅ # · · · # |c1|∅ = |cn |∅ # · · · # |c1|∅, |idC0
|∅ # |d1|∅ # · · · # |dn |∅ = |d1|∅ # · · · # |dn |∅ .

Case (2) in Lemma I.53: We are given

Σ ▷ M2 M3 −→∗
C Σ ▷ V2 V3

= Σ ▷ (V4〈c1 → d1〉 · · · 〈cn → dn〉)V3

−→∗
C Σ ▷ blame p (∃p) ,

and

|idB |∅ # |cn |∅ # · · · # |c1|∅ = ⊥p .

By Lemma E.9, ` Σ and Σ ` ∅ and Σ | ∅ ` B . By (Ct Id C), Σ | ∅ `C idB : B ⇝ B . By
Lemma I.11 and Lemma I.7, |idB |∅ # |cn |∅ # · · · # |c1|∅ = |cn |∅ # · · · # |c1|∅. Therefore, we have

|cn |∅ # · · · # |c1|∅ = ⊥p .

Hence, by (R Wrap S), (R Fail S), (R CtxE S), (R CtxC S), (R BlameE S), (R BlameC S),
we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ (U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉)U ′

3

−→S Σ ▷ (U ′
2 (U

′
3〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

= Σ ▷ (U ′
2 (U

′
3〈⊥

p〉))〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ (U ′

2 (blame p))〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ (blame p)〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ blame p .

Therefore, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have
` Σ and Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case V ′
3 = U ′

3〈t〉 (∃U ′
3, t): By Lemma I.53, we consider the following two cases.
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Case (1) in Lemma I.53: We are given

Σ ▷ M2 M3 = Σ ▷ (V4〈c1 → d1〉 · · · 〈cn → dn〉)V3

−→∗
C Σ ▷ (V4 M5)〈d1〉 · · · 〈dn〉 (∃M5) ,

and

Σ | ∅ ` M5 ≈ U ′
3〈t # |cn |∅ # · · · # |c1|∅〉 : B0 .

Hence, by (R Wrap S), (R Merge S), (R CtxE S), (R CtxC S), (R BlameE S), (R BlameC S),
we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ (U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉) (U ′

3〈t〉)
−→S Σ ▷ (U ′

2 (U
′
3〈t〉〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

−→S Σ ▷ (U ′
2 (U

′
3〈t # (|cn |∅ # · · · # |c1|∅)〉))〈|d1|∅ # · · · # |dn |∅〉

= Σ ▷ (U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉 .

Therefore, it suffices to show that

Σ | ∅ ` (V4 M5)〈d1〉 · · · 〈dn〉 ≈ (U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉 : A .

By (Bs App),

Σ | ∅ ` V4 M5 ≈ U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉) : C0 .

By Lemma I.23, ` Σ and Σ ` ∅ and Σ | ∅ ` C0. By (Ct Id C), Σ | ∅ `C idC0 : C0 ⇝ C0.
By (Bs CrcId) and (Bs CrcMore) repeatedly,

Σ | ∅ ` (V4 M5)〈d1〉 · · · 〈dn〉 ≈ (U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉))〈|idC0

|∅ # |d1|∅ # · · · # |dn |∅〉 : A .

Furthermore, by Lemma I.11 and Lemma I.7, we have |idC0
|∅#|d1|∅#· · ·#|dn |∅ = |d1|∅#· · ·#|dn |∅.

Therefore, we finish the case.

Case (2) in Lemma I.53: We are given

Σ ▷ M2 M3 = Σ ▷ (V4〈c1 → d1〉 · · · 〈cn → dn〉)V3

−→∗
C Σ ▷ blame p ,

and

t # |cn |∅ # · · · # |c1|∅ = ⊥p (∃p) .

Furthermore, by (R Wrap S), (R Merge S) (R Fail S), (R CtxE S), (R CtxC S),
(R BlameE S), (R BlameC S), we have

Σ ▷ M ′
2 M

′
3 −→∗

S Σ ▷ V ′
2 V

′
3

= Σ ▷ (U ′
2〈(|cn |∅ # · · · # |c1|∅)→ (|d1|∅ # · · · # |dn |∅)〉) (U ′

3〈t〉)
−→S Σ ▷ (U ′

2 (U
′
3〈t〉〈|cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

−→S Σ ▷ (U ′
2 (U

′
3〈t # (|cn |∅ # · · · # |c1|∅)〉))〈|d1|∅ # · · · # |dn |∅〉

= Σ ▷ (U ′
2 (U

′
3〈t # |cn |∅ # · · · # |c1|∅〉))〈|d1|∅ # · · · # |dn |∅〉

= Σ ▷ (U ′
2 (U

′
3〈⊥

p〉))〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ (U ′

2 (blame p))〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ (blame p)〈|d1|∅ # · · · # |dn |∅〉
−→S Σ ▷ blame p .

Therefore, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, we have
` Σ and Σ ` ∅ and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.
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Case (R BlameE S): We are given

M ′
2 M

′
3 = E [blame p], M ′

1 = blame p (∃p,E ) .

Because M ′
2 M

′
3 = E [blame p], we consider the following two cases.

Case E = □M ′
3 and M ′

2 = blame p: Since Σ | ∅ ` M2 ≈ blame p : B → A, by the case (6), we have
Σ ▷ M2 −→∗

C Σ ▷ blame p. By (R Ctx C) and (R Blame C),

Σ ▷ M2 M3 −→∗
C Σ ▷ (blame p)M3

−→C Σ ▷ blame p .

Thus, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, ` Σ and Σ ` ∅ and
Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case E = V ′
2□ and M ′

2 = V ′
2 and M ′

3 = blame p (∃V ′
2): Since Σ | ∅ ` M3 ≈ blame p : B , by the

case (6), Σ ▷ M3 −→∗
C Σ ▷ blame p. By the case (4), there exists a value V2 such that

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ V ′

2 : B → A .

By (R Ctx C) and (R Blame C),

Σ ▷ M2 M3 −→∗
C Σ ▷ V2 M3

−→∗
C Σ ▷ V2 (blame p)

−→C Σ ▷ blame p .

Thus, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23, ` Σ and Σ ` ∅ and
Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R CtxE S): We are given

M ′
2 M

′
3 = E [M ′

4], M ′
1 = E [M ′

5], Σ ▷ M ′
4 −→S Σ1 ▷ M ′

5 (∃E ,M ′
4,M

′
5) .

Because M ′
2 M

′
3 = E [M ′

4], we consider the following two cases.

Case E = □M ′
3 and M ′

2 = M ′
4: By Σ | ∅ ` M2 ≈ M ′

2 : B → A and Σ ▷ M ′
2 −→S Σ1 ▷ M ′

5 and the
IH,

Σ1 ▷ M ′
5 −→∗

S Σ2 ▷ M ′
6, Σ ▷ M2 −→∗

C Σ2 ▷ M6, Σ2 | ∅ ` M6 ≈ M ′
6 : B → A (∃Σ2,M6,M

′
6) .

By applying (R CtxE S) repeatedly, we have

Σ ▷ M ′
2 M

′
3 −→S Σ1 ▷ M ′

5 M
′
3

−→∗
S Σ2 ▷ M ′

6 M
′
3 .

Similarly, by applying (R Ctx C) repeatedly, we have

Σ ▷ M2 M3 −→∗
C Σ2 ▷ M6 M3 .

Therefore, it suffices to show that Σ2 | ∅ ` M6 M3 ≈ M ′
6 M

′
3 : A. By Lemma I.26, Σ2 | ∅ ` M3 ≈

M ′
3 : B . Finally, by (Bs App), Σ2 | ∅ ` M6 M3 ≈ M ′

6 M
′
3 : A.

Case E = V ′
2□ and M ′

2 = V ′
2 and M ′

3 = M ′
4 (∃V ′

2): Because Σ | ∅ ` M2 ≈ V ′
2 : B → A, by the

case (4), there exists some V2 such that

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ V ′

2 : B → A .

By the IH (applied to Σ | ∅ ` M3 ≈ M ′
3 : B and Σ ▷ M ′

3 −→S Σ1 ▷ M ′
5),

Σ1 ▷ M ′
5 −→∗

S Σ2 ▷ M ′
6, Σ ▷ M3 −→∗

C Σ2 ▷ M6, Σ2 | ∅ ` M6 ≈ M ′
6 : B (∃Σ2,M6,M

′
6) .
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By applying (R CtxE S) repeatedly, we have

Σ ▷ M ′
2 M

′
3 = Σ ▷ V ′

2 M
′
3

−→S Σ1 ▷ V ′
2 M

′
5

−→∗
S Σ2 ▷ V ′

2 M
′
6 .

Furthermore, by applying (R Ctx C) repeatedly, we have

Σ ▷ M2 M3 −→∗
C Σ ▷ V2 M3

−→∗
C Σ2 ▷ V2 M6 .

Therefore, it suffices to show that Σ2 | ∅ ` V2 M6 ≈ V ′
2 M

′
6 : A. By Lemma I.26, Σ2 | ∅ ` V2 ≈

V ′
2 : B → A. Finally, by (Bs App), Σ2 | ∅ ` V2 M6 ≈ V ′

2 M
′
6 : A.

Case (Bs Tyapp): We are given

A = C [X := B ], M = M2 B , M ′ = M ′
2 B , Σ | ∅ ` M2 ≈ M ′

2 : ∀X .C , Σ | ∅ ` B (∃X ,B ,C ,M2,M3) .

By case analysis on the rule applied last to derive Σ ▷ M ′
2 B −→S Σ1 ▷ M ′

1, which is one of the
following rules.

Case (R Tybeta S): We are given

M ′
2 = ΛY .M ′

3, B = B, M ′
1 = M ′

3[Y := α], Σ′ = Σ, α := B (∃Y ,M ′
3,B, α) .

Then, since ΛY .M ′
3 is a value, by the case (4), we have

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ ΛY .M ′

3 : ∀X .C (∃V2) .

By Lemma I.58,

V2 = V3〈∀X .cI1〉 · · · 〈∀X .cIn〉, Cn = C ,

Σ | ∅ ` V3 ≈ ΛY .M ′
3 : ∀X .C0, Σ | ∅,X `C cIi : Ci−1 ⇝ Ci

(V3,C0, . . . ,Cn , c
I
0, . . . , c

I
j ) .

Furthermore, since Σ | ∅ ` V3 ≈ ΛY .M ′
3 : ∀X .C is dericed by (Bs Tyabs), we have

X = Y , V3 = ΛX .(M3 : C0), Σ | ∅,X ` M3 ≈ M ′
3 : C0 (∃M3) .

Therefore, by (R Ctx C) and (R Tybeta C),

Σ ▷ M2 B −→∗
C Σ ▷ V2 B

= Σ ▷ (ΛX .(M3 : C0)〈∀X .cI1〉 · · · 〈∀X .cIn〉)B

= Σ ▷ (ΛX .(M3 : C0)〈∀X .cI〉)B

−→C Σ, α := B ▷ (M3〈cI〉)[X := α]〈coerce+α (C [X := α])〉
= Σ, α := B ▷ (M3〈cI1〉 · · · 〈cIn〉)[X := α]〈coerce+α (C [X := α])〉

Hence, it suffices to show that

Σ, α := B | ∅ `
(M3〈cI1〉 · · · 〈cIn〉)[X := α]〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]

: C [X := B] .
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By Lemma I.23, we have ` Σ and Σ ` ∅ and Σ | ∅ ` ∀X .C . Therefore, by (Tew Tyvar), Σ ` ∅,X .
Furthermore, because Σ | ∅ ` ∀X .C is derived by (Tw Poly), we have Σ | ∅,X ` C . Therefore, by
Lemma E.17, we have

Σ | ∅ `C coerce+α (C [X := α]) : C [X := α]⇝ C [X := B] .

Moreover, by Lemma I.8, coerce+α (C [X := α]) is a no-op coercion. Now, we have Σ | ∅,X `
M3 ≈ M ′

3 : C0. By Lemma I.26, Σ, α := B | ∅,X ` M3 ≈ M ′
3 : C0. By Lemma I.33, Σ, α :=

B | ∅ ` M3[X := α] ≈ M ′
3[X := α] : C0[X := α]. By Lemma E.13 and Lemma E.6, we have

Σ, α := B | ∅ `C cIi [X := α] : Ci−1[X := α] ⇝ Ci [X := α]. By applying (Bs CrcIdL) repeatedly,
we have

Σ, α := B | ∅ `
M3[X := α]〈cI1[X := α]〉 · · · 〈cIn [X := α]〉
≈
M ′

3[X := α]

: C [X := α] .

By (Bs CrcIdL) again, we have

Σ, α := B | ∅ `
(M3[X := α]〈cI1[X := α]〉 · · · 〈cIn [X := α]〉)〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]

: C [X := B] .

Since M3[X := α]〈cI1[X := α]〉 · · · 〈cIn [X := α]〉 = (M3〈cI1〉 · · · 〈cIn〉)[X := α], we finish the case.

Case (R TybetaDyn S): We are given

M ′
2 = ΛY .M ′

3, B = ⋆, M ′
1 = M ′

3[Y := ⋆] (∃Y ,M ′
3) .

Then, since ΛY .M ′
3 is a value, by the case (4), we have

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ ΛY .M ′

3 : ∀X .C (∃V2) .

By Lemma I.58,

V2 = V3〈∀X .cI1〉 · · · 〈∀X .cIn〉, Cn = C ,

Σ | ∅ ` V3 ≈ ΛY .M ′
3 : ∀X .C0, Σ | ∅,X `C cIi : Ci−1 ⇝ Ci

(∃V3,C0, . . . ,Cn , c
I
0, . . . , c

I
j )

Furthermore, since Σ | ∅ ` V3 ≈ ΛY .M ′
3 : ∀X .C is dericed by (Bs Tyabs), we have

X = Y , V3 = ΛX .(M3 : C0), Σ | ∅,X ` M3 ≈ M ′
3 : C0 (∃M3) .

Therefore, by (R Ctx C) and (R TybetaDyn C),

Σ ▷ M2 ⋆ −→∗
C Σ ▷ V2 ⋆

= Σ ▷ (ΛX .(M3 : C0)〈∀X .cI1〉 · · · 〈∀X .cIn〉) ⋆

= Σ ▷ (ΛX .(M3 : C0)〈∀X .cI〉) ⋆

−→C Σ ▷ (M3〈cI〉)[X := ⋆]

= Σ ▷ (M3〈cI1〉 · · · 〈cIn〉)[X := ⋆]
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Hence, it suffices to show that

Σ | ∅ ` (M3〈cI1〉 · · · 〈cIn〉)[X := ⋆] ≈ M ′
3[X := ⋆] : C [X := ⋆] .

Now, we have Σ | ∅,X ` M3 ≈ M ′
3 : C0. By applying (Bs CrcIdL) repeatedly, we have

Σ | ∅,X ` M3〈cI1〉 · · · 〈cIn〉 ≈ M ′
3 : C .

By Lemma I.33, we finish the case by getting

Σ | ∅ ` (M3〈cI1〉 · · · 〈cIn〉)[X := ⋆] ≈ M ′
3[X := ⋆] : C [X := ⋆] .

Case (R TybetaC S): We are given

M ′
2 = (ΛY .M ′

3)〈∀Y .s ,, t〉, B = B,
M ′

1 = (M ′
3〈s〉)[Y := α], Σ′ = Σ, α := B (∃Y ,M ′

3, s, t ,B, α) .

Then, since (ΛY .M ′
3)〈∀Y .s ,, t〉 is a value, by the case (4), we have

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ (ΛY .M ′

3)〈∀Y .s ,, t〉 : ∀X .C (∃V2) .

By Lemma I.36, we have V2 = V3〈vc1〉 · · · 〈vcn〉 (∃V3). By Lemma I.39, we have

Σ | ∅ ` V3 ≈ ΛY .M ′
3 : A0, Σ | ∅ `C vci : Ai−1 ⇝ Ai , An = ∀X .C , j ≤ n,

vci = vcIi (1 ≤ i ≤ j), ∀Y .s ,, t = |idAj+1
|∅ # |vcj+1|∅ # · · · # |vcn |∅

(∃A0, . . . ,An , j , vc
I
0, . . . , vc

I
j )

Furthermore, Σ | ∅ `C vcn : An−1 ⇝ ∀X .C is derived by (Ct All C), we have

An−1 = ∀X .Cn−1, Cn = C , vcn = ∀X .cn ,

vci = vcIi = ∀X .cIi (1 ≤ i ≤ j), Σ | ∅,X `C cn : Cn−1 ⇝ C .

Similarly, Σ | ∅ `C vci : Ai−1 ⇝ ∀X .Ci is derived by (Ct All C), we have

Ai = ∀X .Ci , Cn = C , vci = ∀X .ci ,

Σ | ∅,X `C ci : Ci−1 ⇝ Ci (∃C0, . . . ,Cn , c1, . . . , cn) (1 ≤ i ≤ n) .

Therefore, Σ | ∅ ` V3 ≈ ΛY .M ′
3 : ∀X .C0 is derived by (Bs Tyabs), we have

Y = X , V3 = ΛX .(M3 : C0), Σ | ∅,X ` M3 ≈ M ′
3 : C0 (∃M3) .

Moreover, by Lemma I.11, we have

∀Y .s ,, t = |id∀X .Cj+1 |∅ # |∀X .cj+1|∅ # · · · # |∀X .cn |∅
= |∀X .cj+1|∅ # · · · # |∀X .cn |∅
= (∀X .|cj+1|∅,X ,, |cj+1|∅) # · · · # (∀X .|cn |∅,X ,, |cn |∅)
= ∀X .(|cj+1|∅,X # · · · # |cn |∅,X ) ,, (|cj+1|∅ ,, |cn |∅)
= ∀X .(|c1|∅,X # · · · # |cn |∅,X ) ,, (|c1|∅ ,, |cn |∅) .

Therefore, Y = X , s = |cj+1|∅,X # · · · # |cn |∅,X , and t = |cj+1|∅ ,, |cn |∅. Furthermore, by applying

(Ct Cons C) repeatedly, we have Σ ` 〈∀X .ci〉 : ∀X .C0 ⇝ ∀X .C . Therefore, by (R Ctx C) and
(R Tybeta C),

Σ ▷ M2 B −→∗
C Σ ▷ V2 B

= Σ ▷ (ΛX .(M3 : C0)〈∀X .c1〉 · · · 〈∀X .cn〉)B

= Σ ▷ (ΛX .(M3 : C0)〈∀X .c〉)B

−→C Σ, α := B ▷ (M3〈c〉)[X := α]〈coerce+α (C [X := α])〉
= Σ, α := B ▷ (M3〈c1〉 · · · 〈cn〉)[X := α]〈coerce+α (C [X := α])〉
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Hence, it suffices to show that

Σ, α := B | ∅ `
(M3〈c1〉 · · · 〈cn〉)[X := α]〈coerce+α (C [X := α])〉
≈
(M ′

3〈|c1|∅,X # · · · # |cn |∅,X 〉)[X := α]

: C [X := B] .

By Lemma I.23, we have ` Σ and Σ ` ∅ and Σ | ∅ ` ∀X .C . Therefore, by (Tew Tyvar), Σ ` ∅,X .
Furthermore, because Σ | ∅ ` ∀X .C is derived by (Tw Poly), we have Σ | ∅,X ` C . Therefore, by
Lemma E.17, we have

Σ | ∅ `C coerce+α (C [X := α]) : C [X := α]⇝ C [X := B] .

Moreover, by Lemma I.8, coerce+α (C [X := α]) is a no-op coercion. Now, we have Σ | ∅,X ` M3 ≈
M ′

3 : C0. By Lemma I.26, Σ, α := B | ∅,X ` M3 ≈ M ′
3 : C0. By Lemma I.33, Σ, α := B | ∅ `

M3[X := α] ≈ M ′
3[X := α] : C0[X := α]. By (Bs CrcId), Σ, α := B | ∅ ` M3[X := α] ≈ M ′

3[X :=
α]〈|idC0[X :=α]|∅〉 : C0[X := α]. By Lemma E.13 and Lemma E.6, we have Σ, α := B | ∅ `C ci [X :=
α] : Ci−1[X := α]⇝ Ci [X := α]. By applying (Bs CrcMore) repeatedly, we have

Σ, α := B | ∅ `
M3[X := α]〈c1[X := α]〉 · · · 〈cn [X := α]〉
≈
M ′

3[X := α]〈|idC0[X :=α]|∅ # |c1[X := α]|∅ # · · · # |cn [X := α]|∅〉
: C [X := α] .

By (Bs CrcIdL), we have

Σ, α := B | ∅ `
(M3[X := α]〈c1[X := α]〉 · · · 〈cn [X := α]〉)〈coerce+α (C [X := α])〉
≈
M ′

3[X := α]〈|idC0[X :=α]|∅ # |c1[X := α]|∅ # · · · # |cn [X := α]|∅〉
: C [X := B] .

By Lemma I.32 and Lemma I.28, we have

|idC0[X :=α]|∅ # |c1[X := α]|∅ # · · · # |cn [X := α]|∅
= |idC0

[X := α]|∅ # |c1[X := α]|∅ # · · · # |cn [X := α]|∅
= |idC0

|∅,X [X := α] # |c1|∅,X [X := α] # · · · # |cn |∅,X [X := α]

= (|idC0
|∅,X # |c1|∅,X # · · · # |cn |∅,X )[X := α] .

Therefore, since

(M ′
3〈|idC0

|∅,X # |c1|∅,X # · · · # |cn |∅,X 〉)[X := α]

= M ′
3[X := α]〈(|idC0

|∅,X # |c1|∅,X # · · · # |cn |∅,X )[X := α]〉
= M ′

3[X := α]〈|idC0[X :=α]|∅ # |c1[X := α]|∅ # · · · # |cn [X := α]|∅〉 ,

and M3[X := α]〈c1[X := α]〉 · · · 〈cn [X := α]〉 = (M3〈c1〉 · · · 〈cn〉)[X := α], we finish the case.

Case (R TybetaDynC S): We are given

M ′
2 = (ΛY .M ′

3)〈∀Y .s ,, t〉, B = ⋆, M ′
1 = M ′

3[Y := ⋆]〈t〉 (∃Y ,M ′
3, s, t) .

Then, since (ΛY .M ′
3)〈∀Y .s ,, t〉 is a value, by the case (4), we have

Σ ▷ M2 −→∗
C Σ ▷ V2, Σ | ∅ ` V2 ≈ (ΛY .M ′

3)〈∀Y .s ,, t〉 : ∀X .C (∃V2) .
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By Lemma I.36, we have V2 = V3〈vc1〉 · · · 〈vcn〉 (∃V3). By Lemma I.39, we have

Σ | ∅ ` V3 ≈ ΛY .M ′
3 : A0, Σ | ∅ `C vci : Ai−1 ⇝ Ai , An = ∀X .C , j ≤ n,

vci = vcIi (1 ≤ i ≤ j), ∀Y .s ,, t = |idAj+1
|∅ # |vcj+1|∅ # · · · # |vcn |∅

(∃A0, . . . ,An , j , vc
I
0, . . . , vc

I
j )

Furthermore, Σ | ∅ `C vcn : An−1 ⇝ ∀X .C is derived by (Ct All C), we have

An−1 = ∀X .Cn−1, Cn = C , vcn = ∀X .cn ,

vci = vcIi = ∀X .cIi (1 ≤ i ≤ j), Σ | ∅,X `C cn : Cn−1 ⇝ C .

Similarly, Σ | ∅ `C vci : Ai−1 ⇝ ∀X .Ci is derived by (Ct All C), we have

Ai = ∀X .Ci , Cn = C , vci = ∀X .ci ,

Σ | ∅,X `C ci : Ci−1 ⇝ Ci (∃C0, . . . ,Cn , c1, . . . , cn) (1 ≤ i ≤ n) .

Therefore, Σ | ∅ ` V3 ≈ ΛY .M ′
3 : ∀X .C0 is derived by (Bs Tyabs), we have

Y = X , V3 = ΛX .(M3 : C0), Σ | ∅,X ` M3 ≈ M ′
3 : C0 (∃M3) .

Moreover, by Lemma I.11, we have

∀Y .s ,, t = |id∀X .Cj+1
|∅ # |∀X .cj+1|∅ # · · · # |∀X .cn |∅

= |∀X .cj+1|∅ # · · · # |∀X .cn |∅
= (∀X .|cj+1|∅,X ,, |cj+1|∅) # · · · # (∀X .|cn |∅,X ,, |cn |∅)
= ∀X .(|cj+1|∅,X # · · · # |cn |∅,X ) ,, (|cj+1|∅ ,, |cn |∅)
= ∀X .(|c1|∅,X # · · · # |cn |∅,X ) ,, (|c1|∅ ,, |cn |∅) .

Therefore, Y = X , s = |cj+1|∅,X # · · · # |cn |∅,X , and t = |cj+1|∅ ,, |cn |∅. Therefore, by (R Ctx C)
and (R TybetaDyn C),

Σ ▷ M2 ⋆ −→∗
C Σ ▷ V2 ⋆

= Σ ▷ (ΛX .(M3 : C0)〈∀X .c1〉 · · · 〈∀X .cn〉) ⋆

= Σ ▷ (ΛX .(M3 : C0)〈∀X .c〉) ⋆

−→C Σ ▷ (M3〈c〉)[X := ⋆]

= Σ ▷ (M3〈c1〉 · · · 〈cn〉)[X := ⋆]

Hence, it suffices to show that

Σ | ∅ `
(M3〈c1〉 · · · 〈cn〉)[X := ⋆]

≈
M ′

3[X := ⋆]〈|c1|∅ # · · · # |cn |∅〉
: C [X := ⋆] .

Now, we have Σ | ∅,X ` M3 ≈ M ′
3 : C0. By Lemma I.33, Σ | ∅ ` M3[X := ⋆] ≈ M ′

3[X := ⋆] : C0[X :=
⋆]. By (Bs CrcId), Σ | ∅ ` M3[X := ⋆] ≈ M ′

3[X := ⋆]〈|idC0[X :=⋆]|∅〉 : C0[X := ⋆]. By Lemma E.15,
we have Σ | ∅ `C ci [X := ⋆] : Ci−1[X := ⋆]⇝ Ci [X := ⋆]. By applying (Bs CrcMore) repeatedly,
we have

Σ, α := ⋆ | ∅ `
M3[X := ⋆]〈c1[X := ⋆]〉 · · · 〈cn [X := ⋆]〉
≈
M ′

3[X := ⋆]〈|idC0[X :=⋆]|∅ # |c1[X := ⋆]|∅ # · · · # |cn [X := ⋆]|∅〉
: C [X := ⋆] .
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By Lemma I.30, we have

|idC0[X :=⋆]|∅ # |c1[X := ⋆]|∅ # · · · # |cn [X := ⋆]|∅
= |idC0 [X := ⋆]|∅ # |c1[X := ⋆]|∅ # · · · # |cn [X := ⋆]|∅
= |idC0 |∅ # |c1|∅ # · · · # |cn |∅ .

Therefore, since

M ′
3[X := ⋆]〈|c1|∅ # · · · # |cn |∅〉

= M ′
3[X := ⋆]〈|idC0

|∅ # |c1|∅ # · · · # |cn |∅〉
= M ′

3[X := ⋆]〈|idC0[X :=⋆]|∅ # |c1[X := ⋆]|∅ # · · · # |cn [X := ⋆]|∅〉 ,

and M3[X := ⋆]〈c1[X := ⋆]〉 · · · 〈cn [X := ⋆]〉 = (M3〈c1〉 · · · 〈cn〉)[X := ⋆], we finish the case.

Case (R BlameE S): We are given

M ′
2 = blame p, M ′

1 = blame p, Σ1 = Σ (∃p) .

Because Σ | ∅ ` M2 ≈ blame p : ∀X .C , by the case (6), we have

M2 −→∗
C blame p .

Therefore, by (R Blame C),

Σ ▷ M2 B = Σ ▷ (blame p)B

−→C Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : C [X := B ]. Lemma I.23 implies ` Σ,
Σ ` ∅, and Σ | ∅ ` C [X := B ]. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : C [X := B ].

Case (R CtxE S): We are given

M ′
1 = M ′

3 B , Σ ▷ M ′
2 −→S Σ1 ▷ M ′

3 (∃M ′
3) .

Therefore, by the IH, we have

Σ1 ▷ M ′
3 −→∗

S Σ2 ▷ M ′
4, Σ ▷ M2 −→∗

C Σ2 ▷ M4, Σ2 | ∅ ` M4 ≈ M ′
4 : ∀X .C (∃Σ2,M4,M

′
4) .

Hence, by applying (R CtxE S) repeatedly, we have

Σ ▷ M ′
2 B −→S Σ1 ▷ M ′

3 B

−→∗
S Σ2 ▷ M ′

4 B .

Furthermore, by applying (R Ctx C) repeatedly, we have

Σ ▷ M2 B −→∗
C Σ2 ▷ M4 B .

Therefore, it suffices to show that Σ2 | ∅ ` M4 B ≈ M ′
4 B : C [X := B ]. By Lemma E.8, we have

Σ2 | ∅ ` B . Hence, by (Bs Tyapp), Σ2 | ∅ ` M4 B ≈ M ′
4 B : C [X := B ].

Case (Bs CrcId): We are given

M ′ = M ′
2〈|idA|∅〉, Σ | ∅ ` M ≈ M ′

2 : A Σ | ∅ `C idA : A⇝ A (∃M ′
2) .

By case analysis on the rule applied last to derive Σ ▷ M ′
2〈|idA|∅〉 −→S Σ1 ▷ M ′

1, which is one of the
following rules.

Case (R Id S): We are given

M ′
2 = U ′

2, |idA|∅ = id, M ′
1 = U ′

2, Σ1 = Σ (∃U ′
2,A

′) .

By the case (4),

Σ ▷ M −→∗
C Σ ▷ V , Σ | ∅ ` V ≈ U ′

2 : A (∃V ) .

finishing the case.
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Case (R Fail S): Cannot happen since |idA|∅ cannot be a failure coercion ⊥p .

Case (R Merge S): We are given

M ′
2 = M ′

3〈s〉, M ′
1 = M ′

3〈s # |idA|∅〉, Σ1 = Σ (∃s,M ′
3) .

By Lemma I.22, we have Σ | ∅ `S M ′
3〈s〉 : Σ(A). This judgment must be derived by (T Crc S)

and we have Σ | ∅ `S s : B ⇝ Σ(A) for some B . By Lemma I.11, we have s # |idA|∅ = s. Hence,
M ′

1 = M ′
3〈s〉. Therefore, it suffices to show that Σ | ∅ ` M ≈ M ′

3〈s〉 : A, which holds already.

Case (R BlameC S): We are given

M ′
2 = blame p, M ′

1 = blame p, Σ1 = Σ (∃p) .

Since Σ | ∅ ` M ≈ blame p : A, by the case (6), Σ ▷ M −→∗
C Σ ▷ blame p. Hence, it suffices to show

that Σ | ∅ ` blame p ≈ blame p : A. By Lemma I.23 implies ` Σ and Σ ` ∅ and Σ | ∅ ` A. Therefore,
by (Bs Blame), Σ2 | ∅ ` blame p ≈ blame p : A.

Case (R CtxC S): We are given

M ′
1 = M ′

3〈|idA|∅〉, Σ ▷ M ′
2 −→S Σ1 ▷ M ′

3 (∃M ′
3) .

By the IH,

Σ1 ▷ M ′
3 −→∗

S Σ2 ▷ M ′
4, Σ ▷ M −→∗

C Σ2 ▷ M4, Σ2 | ∅ ` M4 ≈ M ′
4 : A (∃Σ2,M4,M

′
4) .

By Lemma I.22, Σ | ∅ `S M ′
2 : Σ(A). By Theorem E.45, Σ1 | ∅ `S M ′

3 : Σ(A). By Lemma I.3,
Σ1 | ∅ `S |idA|∅ : Σ(A)⇝ Σ(A). By Lemma I.20, we consider the following three cases.

Case Σ1 ▷ M ′
3〈|idA|∅〉 −→∗

S Σ2 ▷ M ′
4〈|idA|∅〉: We have

Σ ▷ M ′
2〈|idA|∅〉 −→S Σ1 ▷ M ′

3〈|idA|∅〉
−→∗

S Σ2 ▷ M ′
4〈|idA|∅〉 .

Thus, it suffices to show that

Σ2 | ∅ ` M4 ≈ M ′
4〈|idA|∅〉 : A .

The rule (Bs CrcId) finishes the case.

Case Σ ▷ M ′
3〈|idA|∅〉 −→∗

S Σ2 ▷ M ′
5〈s # |idA|∅〉, M ′

4 = M ′
5〈s〉 (∃B , s,M ′

5): We have

Σ ▷ M ′
2〈|idA|∅〉 −→S Σ1 ▷ M ′

3〈|idA|∅〉
−→∗

S Σ2 ▷ M ′
5〈s # |idA|∅〉 .

Thus, it suffices to show that

Σ2 | ∅ ` M4 ≈ M ′
5〈s # |idA|∅〉 : A .

The rule (Bs CrcMore) finishes the case.

Case Σ ▷ M ′
3〈|idA|∅〉 −→∗

S Σ2 ▷ M ′
4, M ′

4 = blame p (∃p): We have

Σ ▷ M ′
2〈|idA|∅〉 −→S Σ1 ▷ M ′

3〈|idA|∅〉
−→∗

S Σ2 ▷ blame p .

It suffices to show that Σ2 | ∅ ` M4 ≈ blame p : A, which holds already because M ′
4 = blame p.

Case (Bs Crc): We are given

M = M2〈c〉, M ′ = M ′
2〈|c|∅〉, Σ | ∅ ` M2 ≈ M ′

2 : B , Σ | ∅ `C c : B ⇝ A (∃B , c,M2,M
′
2) .

By case analysis on the rule applied last to derive Σ ▷ M ′
2〈|c|∅〉 −→S Σ1 ▷ M ′

1, which is one of the
following rules.
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Case (R Id S): We are given

M ′
2 = U ′

2, |c|∅ = id, M ′
1 = U ′

2, Σ1 = Σ (∃U ′
2) .

By Lemma I.36, there exist some M3 that is not a coercion application, n > 0, and c1, . . . , cn such
that M2〈c〉 = M3〈c1〉 · · · 〈cn〉 and cn = c. Hence, by Lemma I.40, there exists some V3 such that
M3 = V3. By Lemma I.52, since we have

Σ | ∅ ` V3〈c1〉 · · · 〈cn〉 ≈ U ′
2〈id〉 : A ,

we consider the following two cases.

Case (1) in Lemma I.52: We are given

Σ ▷ V3〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ V4, Σ | ∅ ` V4 ≈ U ′

2〈id〉 : A (∃V4) .

Therefore,

Σ ▷ M2〈c〉 = Σ ▷ V3〈c1〉 · · · 〈cn〉
−→∗

C Σ ▷ V4 .

Hence, it suffices to show that

Σ | ∅ ` V4 ≈ U ′
2 : A .

By case analysis on V4.

Case V4 = V5〈c′〉 (∃c′,V5): By Lemma I.36, there exist some V6 that is not a coercion appli-
cation, m > 0, and c′1, . . . , c

′
m such that V5〈c′〉 = V6〈c′1〉 · · · 〈c′m〉 and c′m = c′. Because

V6〈c′1〉 · · · 〈c′m〉 is a value, we have

vci = c′i (∃vc1, . . . , vcm)(1 ≤ i ≤ m) .

Therefore,

Σ | ∅ ` V6〈vc1〉 · · · 〈vcm〉 ≈ U ′
2〈id〉 : A .

Then, by Lemma I.39, there exists j ≤ m such that id = |idAj
|∅ # |vcj |∅ # · · · # |vcm |∅ and

Am = A, Σ | ∅ `C vci : Ai−1 ⇝ Ai (∃A0, . . .Am)(1 ≤ ∀i ≤ m) .

Therefore, Lemma I.43 implies

vsi = |vci |∅, Σ | ∅ `S vsi : Σ(Ai−1)⇝ Σ(Ai) (∃vs1, . . . , vsm)(1 ≤ ∀i ≤ m) .

Hence, by Lemma I.44, there exists some vs such that vs = vsj # · · · # vsm and Σ | ∅ `S vs :
Σ(A0)⇝ Σ(A). Therefore, by Lemma I.11, we have

id = |idAj |∅ # |vcj |∅ # · · · # |vcm |∅
= |vcj |∅ # · · · # |vcm |∅
= vsj # · · · # vsm
= vs .

Therefore, by Lemma I.54, we have Σ | ∅ ` V6〈vc′1〉 · · · 〈vc′m〉 ≈ U2 : α.

Otherwise: Since V4 is not a coercion application, Σ | ∅ ` V4 ≈ U ′
2〈|idA|∅〉 : A is derived by

(Bs CrcId). Therefore, we have Σ | ∅ ` V4 ≈ U ′
2 : A.

Case (2) in Lemma I.52: We are given

Σ ▷ V3〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ blame p, id = ⊥p (∃p) .

Since id 6= ⊥p , there is a contradiction.
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Case (R Fail S): We are given

M ′
2 = U ′

2, |c|∅ = ⊥p , M ′
1 = blame p, Σ1 = Σ (∃p,U ′

2) .

By Lemma I.36, there exist some M3 that is not a coercion application, n > 0, and c1, . . . , cn such
that M2〈c〉 = M3〈c1〉 · · · 〈cn〉 and cn = c. Hence, by Lemma I.40, there exists some V3 such that
M3 = V3 and Σ | ∅ ` V3 ≈ U ′

2 : C . By Lemma I.52, we consider the following two cases.

Case (1) in Lemma I.52: We are given

Σ ▷ V3〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ V4, Σ | ∅ ` V4 ≈ U ′

2〈⊥
p〉 : A (∃V4) .

By Lemma I.50, there exists some i such that ⊥p = i . However, this is contradictory because ⊥p

is not an intermediate coercion.

Case (2) in Lemma I.52: We are given

Σ ▷ V3〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ blame p (∃p) .

Therefore,

Σ ▷ M2〈c〉 = Σ ▷ V3〈c1〉 · · · 〈cn〉
−→∗

C Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. Lemma I.23 implies ` Σ and Σ ` ∅
and Σ | ∅ ` A. Hence, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R Merge S): We are given

M ′
2 = M ′

3〈s ′〉, M ′
1 = M ′

3〈s ′ # (|c|∅)〉, Σ1 = Σ (∃s ′,M ′
3) .

Then, it suffices to show that

Σ | ∅ ` M2〈c〉 ≈ M ′
3〈s ′ # (|c|∅)〉 : A ,

which is given by (Bs CrcMore).

Case (R BlameC S): We are given

M ′
2 = blame p, M ′

1 = blame p, Σ1 = Σ (∃p) .

By Lemma I.36, there exist someM3 that is not a coercion application, n > 0, and c1, . . . , cn such that
M2〈c〉 = M3〈c1〉 · · · 〈cn〉 and cn = c. Therefore, Lemma I.39 implies Σ | ∅ ` M3 ≈ blame p : C (∃C ).
Since M3 is not a coercion application, Σ | ∅ ` M3 ≈ blame p : C is derived by (Bs Blame), so we
have M3 = blame p. Therefore, by applying (R Blame C) repeatedly, we have

Σ ▷ M2〈c〉 = Σ ▷ M3〈c1〉 · · · 〈cn〉
= Σ ▷ (blame p)〈c1〉 · · · 〈cn〉
−→∗

C Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. Lemma I.23 implies ` Σ and Σ ` ∅
and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R CtxC S): We are given

M ′
1 = M ′

3〈|c|∅〉, Σ ▷ M ′
2

e−→S Σ1 ▷ M ′
3, Σ1 = Σ (∃M ′

3) .

By Lemma I.36, there exist some M3 that is not a coercion application, n > 0, and c1, . . . , cn such
that M2〈c〉 = M3〈c1〉 · · · 〈cn〉 and cn = c. Furthermore, because Σ ▷ M ′

2
e−→S Σ1 ▷ M ′

3, M
′
2 is not

a coercion application. Therefore, because Σ | ∅ ` M3〈c1〉 · · · 〈cn〉 ≈ M ′
2〈|c|∅〉 : A, by Lemma I.39,

there exists j ≤ n such that

|c|∅ = |idAj+1
|∅ # |cj+1|∅ # · · · # |cn |∅, Σ | ∅ ` M3 ≈ M ′

2 : C (∃C ) .
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Moreover, the derivation Σ | ∅ ` M3 ≈ M ′
2 : C is a sub derivation of the derivation Σ | ∅ `

M3〈c1〉 · · · 〈cn〉 ≈ M ′
2〈|c|∅〉 : A. Therefore, by the IH,

Σ ▷ M3 −→∗
C Σ2 ▷ M4, Σ1 ▷ M ′

3 −→∗
S Σ2 ▷ M ′

4, Σ2 | ∅ ` M4 ≈ M ′
4 : C (∃Σ2,M4,M

′
4) .

Hence, by applying (R Ctx C) repeatedly, we have

Σ ▷ M2〈c〉 = Σ ▷ M3〈c1〉 · · · 〈cn〉
−→∗

C Σ2 ▷ M4〈c1〉 · · · 〈cn〉 .

Also, Σ ▷ M ′
2 −→∗

S Σ2 ▷ M ′
4. Furthermore, Lemma I.22 implies Σ | ∅ `S M ′

2〈|c|∅〉 : Σ(A). Because
this judgment is derived by (T Crc S), we have Σ | ∅ `S M ′

2 : D and Σ | ∅ `S |c|∅ : D ⇝ A (∃D).
Therefore, Lemma I.20, we consider the following three cases.

Case (1) in Lemma I.20: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ2 ▷ M ′
4〈|c|∅〉 .

Therefore, it suffices to show that

Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′
4〈|c|∅〉 : A .

By Lemma E.44 and Lemma I.26, Σ2 | ∅ ` M3〈c1〉 · · · 〈cn〉 ≈ M ′
2〈|c|∅〉 : A. Hence, by Lemma I.45,

Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′
4〈|c|∅〉 : A.

Case (2) in Lemma I.20: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ2 ▷ M ′
5〈t # |c|∅〉, M ′

4 = M ′
5〈t〉 (∃t ,M ′

5) .

Therefore, it suffices to show that

Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′
5〈t # |c|∅〉 : A .

By Lemma E.44 and Lemma I.26, Σ2 | ∅ ` M3〈c1〉 · · · 〈cn〉 ≈ M ′
2〈|c|∅〉 : A. Here, we have

Σ2 | ∅ ` M4 ≈ M ′
5〈t〉 : C . By Lemma I.45, Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′

5〈t〉〈|c|∅〉 : A. Therefore,
Lemma I.34 implies Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′

5〈t # |c|∅〉 : A.
Case (3) in Lemma I.20: We are given

Σ ▷ M ′
2〈|c|∅〉 −→∗

S Σ2 ▷ M ′
4, M ′

4 = blame p (∃p) .

Therefore, Σ2 | ∅ ` M4 ≈ blame p : C , so by the case (6), we have

Σ ▷ M4 −→∗
C Σ ▷ blame p .

Hence, by applying (R Ctx C) and (R Blame C), we have

Σ ▷ M2〈c〉 −→∗
C Σ2 ▷ M4〈c1〉 · · · 〈cn〉

−→∗
C Σ2 ▷ (blame p)〈c1〉 · · · 〈cn〉

−→∗
C Σ2 ▷ blame p .

Therefore, it suffices to show that Σ2 | ∅ ` blame p ≈ blame p : A. By Lemma E.44 and
Lemma I.26, Σ2 | ∅ ` M3〈c1〉 · · · 〈cn〉 ≈ M ′

2〈|c|∅〉 : A. By Lemma I.23, ` Σ2 and Σ2 ` ∅ and
Σ2 | ∅ ` A. Hence, by (Bs Blame), Σ2 | ∅ ` blame p ≈ blame p : A.

Case (Bs CrcMore): We are given

M = M2〈c〉, M ′ = M ′
2〈s # |c|∅〉, Σ | ∅ ` M2 ≈ M ′

2〈s〉 : B ,

Σ | ∅ `C c : B ⇝ A (∃B , c, s,M2,M
′
2) .

By case analysis on the rule applied last to derive Σ ▷ M ′
2〈s # |c|∅〉 −→S Σ1 ▷ M ′

1, which is one of the
following rules.
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Case (R Id S): We are given

M ′
2 = U ′

2, s # |c|∅ = id, M ′
1 = U ′

2, Σ1 = Σ (∃U ′
2) .

By Lemma I.36, there exist some M3 that is not a coercion application, n > 0, and c1, . . . , cn such
that M2〈c〉 = M3〈c1〉 · · · 〈cn〉 and cn = c. Hence, by Lemma I.40, there exists some V3 such that
M3 = V3 and Σ | ∅ ` V3 ≈ U ′

2 : C (∃C ). Therefore,

Σ | ∅ ` V3〈c1〉 · · · 〈cn〉 ≈ U ′
2〈id〉 : A .

Hence, by Lemma I.52, we consider the following two cases.

Case (1) in Lemma I.52: We are given

Σ ▷ V3〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ V4, Σ | ∅ ` V4 ≈ U ′

2〈id〉 : A (∃V4) .

Therefore,

Σ ▷ M2〈c〉 = Σ ▷ M3〈c1〉 · · · 〈cn〉
= Σ ▷ V3〈c1〉 · · · 〈cn〉
−→∗

C Σ ▷ V4 .

Hence, it suffices to show that

Σ | ∅ ` V4 ≈ U ′
2 : A .

By case analysis on V4.

Case V4 = V5〈c′〉 (∃c′,V5): By Lemma I.36, there exist some V6 that is not a coercion appli-
cation, m > 0, and c′1, . . . , c

′
m such that V5〈c′〉 = V6〈c′1〉 · · · 〈c′m〉 and c′m = c′. Because

V6〈c′1〉 · · · 〈c′m〉 is a value, we have

vci = c′i (∃vc1, . . . , vcm)(1 ≤ ∀i ≤ m) .

Therefore,

Σ | ∅ ` V6〈vc1〉 · · · 〈vcm〉 ≈ U ′
2〈id〉 : A .

Then, by Lemma I.39, there exists j ≤ m such that id = |idAj
|∅ # |vcj |∅ # · · · # |vcm |∅ and

Am = A, Σ | ∅ `C vci : Ai−1 ⇝ Ai (∃A0, . . .Am)(1 ≤ ∀i ≤ m) .

Therefore, Lemma I.43 implies

vsi = |vci |∅, Σ | ∅ `S vsi : Σ(Ai−1)⇝ Σ(Ai) (∃vs1, . . . , vsm)(1 ≤ ∀i ≤ m) .

Hence, by Lemma I.44, there exists some vs such that vs = vsj # · · · # vsm and Σ | ∅ `S vs :
Σ(A0)⇝ Σ(A). Therefore, by Lemma I.11, we have

id = |idAj
|∅ # |vcj |∅ # · · · # |vcm |∅

= |vcj |∅ # · · · # |vcm |∅
= vsj # · · · # vsm
= vs .

Hence, by Lemma I.54, we have Σ | ∅ ` V6〈vc′1〉 · · · 〈vc′m〉 ≈ U2 : α.

Otherwise: Because Σ | ∅ ` V4 ≈ U ′
2〈|idA|∅〉 : A is derived by (Bs CrcId), we have Σ | ∅ ` V4 ≈

U ′
2 : A.

Case (2) in Lemma I.52: We are given

Σ ▷ V3〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ blame p, id = ⊥p (∃p) .

Because id 6= ⊥p , there is a contradiction.
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Case (R Fail S): We are given

M ′
2 = U ′

2, s # |c|∅ = ⊥p , M ′
1 = blame p, Σ1 = Σ (∃p,U ′

2) .

By Lemma I.36, there exist some M3 that is not a coercion application, n > 0, and c1, . . . , cn such
that M2〈c〉 = M3〈c1〉 · · · 〈cn〉 and cn = c. Hence, by Lemma I.40, there exists some V3 such that
M3 = V3 and Σ | ∅ ` V3 ≈ U ′

2 : C . By Lemma I.52, we consider the following two cases.

Case (1) in Lemma I.52: We are given

Σ ▷ V3〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ V4, Σ | ∅ ` V4 ≈ U ′

2〈⊥
p〉 : A (∃V4) .

By Lemma I.50, there exists some i such that ⊥p = i . However, this is contradictory because ⊥p

is not an intermediate coercion.

Case (2) in Lemma I.52: We are given

Σ ▷ V3〈c1〉 · · · 〈cn〉 −→∗
C Σ ▷ blame p (∃p) .

Therefore,

Σ ▷ M2〈c〉 = Σ ▷ M3〈c1〉 · · · 〈cn〉
= Σ ▷ V3〈c1〉 · · · 〈cn〉
−→∗

C Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. Lemma I.23 implies ` Σ and Σ ` ∅
and Σ | ∅ ` A. Hence, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.

Case (R Merge S): We are given

M ′
2 = M ′

3〈s ′〉, M ′
1 = M ′

3〈s ′ # (s # |c|∅)〉, Σ1 = Σ (∃s ′,M ′
3) .

Then, it suffices to show that

Σ | ∅ ` M2〈c〉 ≈ M ′
3〈s ′ # (s # |c|∅)〉 : A .

Now, we have Σ | ∅ ` M2 ≈ M ′
3〈s ′〉〈s〉 : B . Therefore, Lemma I.34 implies Σ | ∅ ` M2 ≈ M ′

3〈s ′#s〉 : B .
Hence, by (Bs CrcMore),

Σ | ∅ ` M2〈c〉 ≈ M ′
3〈(s ′ # s) # |c|∅〉 : A .

Therefore, it suffices to show that

(s ′ # s) # |c|∅ = s ′ # (s # |c|∅) .
Lemma I.22 implies Σ | ∅ `S M ′

3〈s ′〉〈s〉 : Σ(B). By inversion of its derivation, we have Σ | ∅ `S s ′ :
D ⇝ C and Σ | ∅ `S s : C ⇝ B (∃D ,C ). Furthermore, Lemma I.3 implies Σ | ∅ `S |c|∅ : Σ(B)⇝
Σ(A). Therefore, Lemma I.7 implies (s ′ # s) # |c|∅ = s ′ # (s # |c|∅).

Case (R BlameC S): We are given

M ′
2 = blame p, M ′

1 = blame p, Σ1 = Σ (∃p) .

By Lemma I.36, there exist someM3 that is not a coercion application, n > 0, and c1, . . . , cn such that
M2〈c〉 = M3〈c1〉 · · · 〈cn〉 and cn = c. Therefore, Lemma I.39 implies Σ | ∅ ` M3 ≈ blame p : C (∃C ).
Since M3 is not a coercion application, Σ | ∅ ` M3 ≈ blame p : C is derived by (Bs Blame), so we
have M3 = blame p. Therefore, by applying (R Blame C) repeatedly, we have

Σ ▷ M2〈c〉 = Σ ▷ M3〈c1〉 · · · 〈cn〉
= Σ ▷ (blame p)〈c1〉 · · · 〈cn〉
−→∗

C Σ ▷ blame p .

Hence, it suffices to show that Σ | ∅ ` blame p ≈ blame p : A. Lemma I.23 implies ` Σ and Σ ` ∅
and Σ | ∅ ` A. Therefore, by (Bs Blame), Σ | ∅ ` blame p ≈ blame p : A.
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Case (R CtxC S): We are given

M ′
1 = M ′

3〈s # |c|∅〉, Σ ▷ M ′
2

e−→S Σ1 ▷ M ′
3, Σ1 = Σ (∃M ′

3) .

By Lemma I.36, there exist some M3 that is not a coercion application, n > 0, and c1, . . . , cn such
that M2〈c〉 = M3〈c1〉 · · · 〈cn〉 and cn = c. Furthermore, because Σ ▷ M ′

2
e−→S Σ1 ▷ M ′

3, M
′
2 is not a

coercion application. Therefore, because Σ | ∅ ` M3〈c1〉 · · · 〈cn〉 ≈ M ′
2〈s # |c|∅〉 : A, by Lemma I.39,

there exists j ≤ n such that

s # |c|∅ = |idAj+1
|∅ # |cj+1|∅ # · · · # |cn |∅, Σ | ∅ ` M3 ≈ M ′

2 : C (∃C ) .

Moreover, the derivation Σ | ∅ ` M3 ≈ M ′
2 : C is a sub derivation of the derivation Σ | ∅ `

M3〈c1〉 · · · 〈cn〉 ≈ M ′
2〈s # |c|∅〉 : A. Therefore, by the IH,

Σ1 ▷ M ′
3 −→∗

S Σ2 ▷ M ′
4, Σ ▷ M3 −→∗

C Σ2 ▷ M4, Σ2 | ∅ ` M4 ≈ M ′
4 : C (∃Σ2,M4,M

′
4) .

Hence, by applying (R Ctx C) repeatedly, we have

Σ ▷ M2〈c〉 = Σ ▷ M3〈c1〉 · · · 〈cn〉
−→∗

C Σ2 ▷ M4〈c1〉 · · · 〈cn〉 .

Also, Σ ▷ M ′
2 −→∗

S Σ2 ▷ M ′
4. Furthermore, Lemma I.22 implies Σ | ∅ `S M ′

2〈s #|c|∅〉 : Σ(A). Because
this judgment is derived by (T Crc S), we have Σ | ∅ `S M ′

2 : D and Σ | ∅ `S s #|c|∅ : D ⇝ A (∃D).
Therefore, Lemma I.20, we consider the following three cases.

Case (1) in Lemma I.20: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ2 ▷ M ′
4〈s # |c|∅〉 .

Therefore, it suffices to show that

Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′
4〈s # |c|∅〉 : A .

By Lemma E.44 and Lemma I.26, Σ2 | ∅ ` M3〈c1〉 · · · 〈cn〉 ≈ M ′
2〈s # |c|∅〉 : A. Hence, by

Lemma I.45, Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′
4〈s # |c|∅〉 : A.

Case (2) in Lemma I.20: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ2 ▷ M ′
5〈t # (s # |c|∅)〉, M ′

4 = M ′
5〈t〉 (∃t ,M ′

5) .

Therefore, it suffices to show that

Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′
5〈t # (s # |c|∅)〉 : A .

By Lemma E.44 and Lemma I.26, Σ2 | ∅ ` M3〈c1〉 · · · 〈cn〉 ≈ M ′
2〈s # |c|∅〉 : A. Furthermore,

Σ2 | ∅ ` M4 ≈ M ′
5〈t〉 : C . Hence, Lemma I.45 implies Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′

5〈t〉〈s # |c|∅〉 : A.
Therefore, Lemma I.34 implies Σ2 | ∅ ` M4〈c1〉 · · · 〈cn〉 ≈ M ′

5〈t # (s # |c|∅)〉 : A.
Case (3) in Lemma I.20: We are given

Σ ▷ M ′
2〈s # |c|∅〉 −→∗

S Σ2 ▷ M ′
4, M ′

4 = blame p (∃p) .

Therefore, Σ2 | ∅ ` M4 ≈ blame p : C , so by the case (6), we have

Σ ▷ M4 −→∗
C Σ ▷ blame p .

Hence, by applying (R Ctx C) and (R Blame C), we have

Σ ▷ M2〈c〉 −→∗
C Σ2 ▷ M4〈c1〉 · · · 〈cn〉

−→∗
C Σ2 ▷ (blame p)〈c1〉 · · · 〈cn〉

−→∗
C Σ2 ▷ blame p .

Therefore, it suffices to show that Σ2 | ∅ ` blame p ≈ blame p : A. By Lemma E.44 and
Lemma I.26, Σ2 | ∅ ` M3〈c1〉 · · · 〈cn〉 ≈ M ′

2〈s # |c|∅〉 : A. Hence, Lemma I.23 implies ` Σ2

and Σ2 ` ∅ and Σ2 | ∅ ` A. Therefore, by (Bs Blame), Σ2 | ∅ ` blame p ≈ blame p : A.
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Case (Bs CrcIdL): We are given

M = M2〈cI〉, Σ | ∅ ` M2 ≈ M ′ : B , Σ | ∅ `C cI : B ⇝ A (∃M2, c
I ,B) .

By the IH, we have

Σ ▷ M ′
1 −→∗

S Σ3 ▷ M ′
3, Σ ▷ M2 −→∗

C Σ3 ▷ M3, Σ3 | ∅ ` M3 ≈ M ′
3 : B (∃M3,M

′
3,Σ3) .

By (R Ctx C), we have Σ ▷ M2〈cI〉 −→∗
C Σ3 ▷ M3〈cI〉. Therefore, it suffices to show that Σ | ∅ `

M3〈cI〉 ≈ M ′
3 : A, which is given by (Bs CrcIdL).

Lemma I.60 (Bisimulation Preserves Behavior). Suppose that Σ | ∅ ` M ≈ M ′ : A.

(1) If Σ ▷ M −→∗
C Σ′ ▷ V , then there exists some V ′ such that Σ ▷ M ′ −→∗

S Σ′ ▷ V ′. Furthermore, if
A = ι, then there exists some k such that V = V ′ = k .

(2) If Σ ▷ M ′ −→∗
S Σ′ ▷ V ′, then there exists some V such that Σ ▷ M −→∗

C Σ′ ▷ V . Furthermore, if A = ι,
then there exists some k such that V = V ′ = k .

(3) Σ ▷ M −→∗
C Σ′ ▷ blame p iff Σ ▷ M ′ −→∗

S Σ′ ▷ blame p.

(4) Σ ▷ M ⇑ iff Σ ▷ M ′ ⇑.

Proof.

(1) By induction on the length of the evaluation sequence Σ ▷ M −→∗
C Σ′ ▷ V . By case analysis on the

length.

Case The length is zero: We have Σ = Σ′ and M = V . Therefore, Lemma I.59 implies

Σ ▷ M ′ −→∗
S Σ ▷ V ′, Σ | ∅ ` V ≈ V ′ : A (∃V ′) .

Furthermore, assume A = ι. Then, Lemma I.22 implies Σ | ∅ `S V ′ : Σ(ι). Hence, Lemma E.25
implies that there exists some k such that V ′ = k . By Lemma I.58, V is not a coercion application.
Therefore, since Σ | ∅ ` V ≈ k : ι is derived by (Bs Const), we have V = k .

Case The length is larger than zero: We are given

Σ ▷ M −→C Σ1 ▷ M1, Σ1 ▷ M1 −→∗
C Σ′ ▷ V (∃Σ1,M1) .

Lemma I.59 implies

Σ1 ▷ M1 −→∗
C Σ2 ▷ M2, Σ ▷ M ′ −→∗

S Σ2 ▷ M ′
2, Σ2 | ∅ ` M2 ≈ M ′

2 : A (∃Σ2,M2,M
′
2) .

Therefore, by applying Lemma I.12 repeatedly, we have

Σ1 ▷ M1 −→∗
C Σ2 ▷ M2 −→∗

C Σ′ ▷ V .

Then, by the IH, there exists some V ′ such that Σ2 ▷ M ′
2 −→∗

S Σ′ ▷ V ′. Therefore,

Σ ▷ M ′ −→∗
S Σ2 ▷ M ′

2 −→∗
S Σ′ ▷ V ′ .

Furthermore, if A = ι, then the IH implies that there exists some k such that V = V ′ = k .

(2) Provable similarly to the case (1).

(3) Each direction is provable similarly to the case (1).

(4) Consider each direction.
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• (=⇒)
Lemma I.22 implies Σ | ∅ `S M ′ : Σ(A). Therefore, by Theorem E.47, we consider the following
three cases.

Case There exist some Σ′,V ′ such that Σ ▷ M ′ −→∗
S Σ′ ▷ V ′: By the case (2), there exists some V

such that Σ ▷ M −→∗
C Σ′ ▷ V . However, by Corollary F.2, it is contradictory with Σ ▷ M ⇑.

Case There exist some Σ′, p such that Σ ▷ M ′ −→∗
S Σ′ ▷ blame p: By the case (3), Σ ▷ M −→∗

C

Σ′ ▷ blame p. However, by Corollary F.2, it is contradictory with Σ ▷ M ⇑.
Case Σ ▷ M ′ ⇑: Obvious.

• (⇐=)
Provable similarly to the case of (=⇒).

Lemma I.61 (Relating Terms in λC∀
mp and λS∀mp via Translation (Lemma 4.5 of the paper)). If Σ | Γ `C M : A,

then Σ | Γ ` M ≈ |M |Γ : A.

Proof. By induction on the derivation of Σ | Γ `C M : A. We perform case analysis on the rule applied last
to derive Σ | Γ `C M : A.

Case (T Const C): We are given

M = k , ` Σ, Σ ` Γ, ty(k) = A (∃k) .

We have |k |Γ = k . Therefore, by (Bs Const), Σ | Γ ` k ≈ k : A.

Case (T Var C), (T Blame C): Provable similarly to the case of (T Const C).

Case (T Abs C): We are given

A = A1 → A2, M = λx :A1.M2, Σ | Γ, x : A1 `C M2 : A2 (∃A1,A2, x ,M2) .

We have |λx :A1.M2|Γ = λx :A1.|M2|Γ,x :A1
. By the IH, Σ | Γ, x : A1 ` M2 ≈ |M2|Γ,x :A1

: A2. Therefore, by
(Bs Abs), Σ | Γ ` λx :A1.M2 ≈ λx :A1.|M2|Γ,x :A1

: A1 → A2.

Case (T App C), (T Tyabs C), (T Tyapp C): By the IH(s), similarly to the case of (T Abs C).

Case (T Crc C): We are given

M = M1〈c〉, Σ | Γ `C M1 : B , Σ | Γ `C c : B ⇝ A (∃c,M1,B) .

We have |M1〈c〉|Γ = |M1|Γ〈|c|Γ〉. By the IH, Σ | Γ ` M1 ≈ |M1|Γ : B . Then, we have the following derivation.

Σ | Γ ` M1 ≈ |M1|Γ : B Σ | Γ `C c : B ⇝ A
(Bs Crc)

Σ | Γ ` M1〈c〉 ≈ |M1|Γ〈|c|Γ〉 : A

Theorem I.62 (Correctness of Translation (Theorem 4.4 of the paper)). Suppose Σ | ∅ `C M : A.

(1) If Σ ▷ M −→∗
C Σ′ ▷ V , then there exists some V ′ such that Σ ▷ |M |∅ −→∗

S Σ′ ▷ V ′. Furthermore, if
A = ι, then there exists some k such that V = V ′ = k .

(2) If Σ ▷ |M |∅ −→∗
S Σ′ ▷ V ′, then there exists some V such that Σ ▷ M −→∗

C Σ′ ▷ V . Furthermore, if
A = ι, then there exists some k such that V = V ′ = k .

(3) Σ ▷ M −→∗
C Σ′ ▷ blame p iff Σ ▷ |M |∅ −→∗

S Σ′ ▷ blame p.

(4) Σ ▷ M ⇑ iff Σ ▷ |M |∅ ⇑.

Proof. Follows from Lemma I.61 and Lemma I.60.
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J A counterexample to Proposition 19 (Bisimulation, λC to λS) in
“Blame and coercion: Together again for the first time” [Siek et
al., JFP’21]

The syntax, semantics, and type system mentioned in this section are those of λC and λS in “Blame and
coercion: Together again for the first time” [Siek et al., JFP’21]. The relation ≈ found in this section is also
defined there.

Let

f
def
= λx : Int.x ,

M
def
= ((f 〈idInt → idInt〉) (0〈⊥IntpBool〉))〈idInt〉 ,

M0
def
= ((f 〈idInt → idInt〉) (blame p))〈idInt〉 ,

M ′ def
= (f 〈⊥IntpBool → idInt〉) 0 .

We show that: (1) M ≈ M ′; (2) M −→C M0; and (3) for any M ′
0 such that M ′ −→∗

S M ′
0, M0 6≈ M ′

0. Note
that it is easy to check that the closed terms M and M ′ are of Int. Below, the rules (i), (ii), and (iii) are for
the bisimulation relation ≈ in [Siek et al., JFP’21].

(1) We show that M ≈ M ′. First, we can prove f 〈idInt → idInt〉 ≈ f 〈idInt → idInt〉 and 0〈⊥IntpBool〉 ≈ 0〈⊥IntpBool〉
as follows.

...
f ≈ f

...
` f : Int→ Int |idInt→Int|CS = idInt → idInt

(i)
f ≈ f 〈idInt → idInt〉 |idInt → idInt|CS = idInt → idInt

(ii)
f 〈idInt → idInt〉 ≈ f 〈idInt → idInt〉

0 ≈ 0 ` 0 : Int |idInt|CS = idInt
(i)

0 ≈ 0〈idInt〉 |⊥IntpBool|CS = ⊥IntpBool

(ii)
0〈⊥IntpBool〉 ≈ 0〈⊥IntpBool〉

Then, we can derive M ≈ M ′, i.e., ((f 〈idInt → idInt〉) (0〈⊥IntpBool〉))〈idInt〉 ≈ (f 〈⊥IntpBool → idInt〉) 0.

...
f 〈idInt → idInt〉 ≈ f 〈idInt → idInt〉

...

0〈⊥IntpBool〉 ≈ 0〈⊥IntpBool〉
(f 〈idInt → idInt〉) (0〈⊥IntpBool〉) ≈ (f 〈idInt → idInt〉) (0〈⊥IntpBool〉) |idInt|CS = idInt

(iii)
((f 〈idInt → idInt〉) (0〈⊥IntpBool〉))〈idInt〉 ≈ (f 〈⊥IntpBool → idInt〉) 0

Note (idInt → idInt) # (⊥IntpBool → idInt) = ⊥IntpBool → idInt in the above application of (iii).

(2) M −→C M0, i.e., ((f 〈idInt → idInt〉) (0〈⊥IntpBool〉))〈idInt〉 −→C ((f 〈idInt → idInt〉) (blame p))〈idInt〉 by the
following evaluation derivation.

0〈⊥IntpBool〉 −→C blame p

(f 〈idInt → idInt〉) (0〈⊥IntpBool〉) −→C ((f 〈idInt → idInt〉) (blame p))

((f 〈idInt → idInt〉) (0〈⊥IntpBool〉))〈idInt〉 −→C ((f 〈idInt → idInt〉) (blame p))〈idInt〉

(3) We show that, for any M ′
0 such that M ′ −→∗

S M ′
0, M0 6≈ M ′

0. Because

M ′ = (f 〈⊥IntpBool → idInt〉) 0 −→S (f (0〈⊥IntpBool〉))〈idInt〉
−→S (f (blame p))〈idInt〉
−→S (blame p)〈idInt〉
−→S blame p ,

200

https://doi.org/10.1017/S0956796821000101
https://doi.org/10.1017/S0956796821000101
https://doi.org/10.1017/S0956796821000101


we show that, for any

{ (f 〈⊥IntpBool → idInt〉) 0,
(f (0〈⊥IntpBool〉))〈idInt〉,

M ′
0 ∈ (f (blame p))〈idInt〉,

(blame p)〈idInt〉,
blame p } ,

M0 6≈ M ′
0. Note that M0 = ((f 〈idInt → idInt〉) (blame p))〈idInt〉.

Case I. M ′
0 = (f 〈⊥IntpBool → idInt〉) 0: We show that

((f 〈idInt → idInt〉) (blame p))〈idInt〉 6≈ (f 〈⊥IntpBool → idInt〉) 0 .

Assume ((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ (f 〈⊥IntpBool → idInt〉) 0. It can be derived only by the
rule (iii). Then, by inversion,

(f 〈idInt → idInt〉) (blame p) ≈ (f 〈t〉) (0〈s〉)

for some coercions t and s such that t # (s → idInt) = ⊥IntpBool → idInt. Furthermore, by inversion, it
implies blame p ≈ 0〈s〉. It must be the case that blame p ≈ 0〈s〉 is derived by the rule (i) because only
the term on the right-hand side is a coercion application. Then, its inversion implies blame p ≈ 0,
but it does not hold. Therefore, there is a contradiction.

Case II. M ′
0 = (f (0〈⊥IntpBool〉))〈idInt〉: We show that

((f 〈idInt → idInt〉) (blame p))〈idInt〉 6≈ (f (0〈⊥IntpBool〉))〈idInt〉 .

Assume ((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ (f (0〈⊥IntpBool〉))〈idInt〉. By case analysis on which rule
is applied to derive the assumed bisimilarity.

The rule (i) is applied: We are given the following derivation.

((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ f (0〈⊥IntpBool〉)
((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ (f (0〈⊥IntpBool〉))〈idInt〉

However, the premise judgment cannot be derived in ≈ (the rule (iii) cannot be applied because
it requires the function part on the right-hand side be a coercion application).

The rule (ii) is applied: We are given the following derivation for some coercion s and t .

(f 〈idInt → idInt〉) (blame p) ≈ (f (0〈⊥IntpBool〉))〈s〉 |idInt|CS = t s # t = idInt

((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ (f (0〈⊥IntpBool〉))〈idInt〉
The premise judgment (f 〈idInt → idInt〉) (blame p) ≈ (f (0〈⊥IntpBool〉))〈s〉 can be derived only by
the rule (i) because only the term on the right-hand side is a coercion application. Then, its
inversion implies

(f 〈idInt → idInt〉) (blame p) ≈ f (0〈⊥IntpBool〉)

and then
blame p ≈ 0〈⊥IntpBool〉 .

However, this judgment cannot be derived as discussed in Case I.

The rule (iii) is applied: This case needn’t be considered because the term on the right-hand side
is not a function application.

Case III. M ′
0 = (f (blame p))〈idInt〉: We show that

((f 〈idInt → idInt〉) (blame p))〈idInt〉 6≈ (f (blame p))〈idInt〉 .

Assume ((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ (f (blame p))〈idInt〉. By case analysis on which rule is
applied to derive the assumed bisimilarity.

The rule (i) is applied: This case needn’t be considered for a reason similar to Case II.
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The rule (ii) is applied: By a reasoning similar to Case II/(ii), f 〈idInt → idInt〉 ≈ f , but it cannot
be derived.

The rule (iii) is applied: This case needn’t be considered because the term on the right-hand side
is not a function application.

Case IV. M ′
0 = (blame p)〈idInt〉: We show that

((f 〈idInt → idInt〉) (blame p))〈idInt〉 6≈ (blame p)〈idInt〉 .

Assume ((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ (blame p)〈idInt〉. By case analysis on which rule is applied
to derive the assumed bisimilarity.

The rule (i) is applied: We are given the following derivation.

((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ blame p

((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ (blame p)〈idInt〉
However, the premise judgment cannot be derived because, for any M1, if M1 ≈ blame p, then
M1 = blame p.

The rule (ii) is applied: We are given the following derivation for some coercion s and t .

(f 〈idInt → idInt〉) (blame p) ≈ (blame p)〈s〉 |idInt|CS = t s # t = idInt

((f 〈idInt → idInt〉) (blame p))〈idInt〉 ≈ (blame p)〈idInt〉
The premise judgment (f 〈idInt → idInt〉) (blame p) ≈ (blame p)〈s〉 can be derived only by the rule
(i). Then, its inversion implies

(f 〈idInt → idInt〉) (blame p) ≈ blame p .

However, it does not hold.

The rule (iii) is applied: This case needn’t be considered because the term on the right-hand side
is not a function application.

Case V. M ′
0 = blame p: M0 6≈ blame p clearly.
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