
Space-Efficient
Polymorphic Gradual Typing,

Mostly Parametric

Atsushi Igarashi

Kyoto University

Shota Ozaki

Kyoto University

Taro Sekiyama

National Institute of Informatics
& SOKENDAI

Yudai Tanabe

Tokyo Institute of Technology

Gradual Typing (GT) [Siek&Taha’06]

♦ Enables migration between static and dynamic typing

◊ Languages and tools: TypeScript, Typed Racket, Typed Closure, C#, mypy, …

♦ Introduces a special type ★ a.k.a. the dynamic type

◊ The type check for ★ is skipped at compile time and deferred to run time

♦ Example: succ

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let succ (x:★) : ★ = x + 1

succ (42:★) −→ (43:★) // well-typed

succ (true:★) −→ error // well-typed

2

Gradual Typing (GT) [Siek&Taha’06]

♦ Enables migration between static and dynamic typing

◊ Languages and tools: TypeScript, Typed Racket, Typed Closure, C#, mypy, …

♦ Introduces a special type ★ a.k.a. the dynamic type

◊ The type check for ★ is skipped at compile time and deferred to run time

♦ Example: succ

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let succ (x:int) : int = x + 1

succ 42 −→ 43 // well-typed

succ true // ill-typed

3

Theoretical Research on GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Dependent typing
[Lennon-Bertrand et al.’22; Eremondi et al.’22]

Security typing
[Fennell&Thiemann’13;

Toro et al.’18; Chen&Siek’24]

Intersection / union types
[Castagna&Lanvin’17]

Parametric polymorphism
[Ahmed et al.’11,’17; Igarashi et al.’17;

Toro et al’19, New et al.’20, Labrada et al.’22]

4

Typestate
[Wolff et al.’11]

Effects
[Schwerter et al.’14;

Sekiyama et al.’15, New et al.’23]

Objects
[Siek&Taha’07]

Type inference
[Siek&Vachharajani’08;

Garcia&Cimini’15; Miyazaki et al.’19]
etc.

Theoretical Research on GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Typestate
[Wolff et al.’11]

Effects
[Schwerter et al.’14;

Sekiyama et al.’15, New et al.’23]

Dependent typing
[Lennon-Bertrand et al.’22; Eremondi et al.’22]

Security typing
[Fennell&Thiemann’13;

Toro et al.’18; Chen&Siek’24]

Intersection / union types
[Castagna&Lanvin’17]

Parametric polymorphism
[Ahmed et al.’11,’17; Igarashi et al.’17;

Toro et al’19, New et al.’20, Labrada et al.’22]

Objects
[Siek&Taha’07]

Type inference
[Siek&Vachharajani’08;

Garcia&Cimini’15; Miyazaki et al.’19]

5

etc.

Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]

♦ Supports polymorphic types ∀X.T

♦ Enforces parametricity at run time

◊ Run-time errors happen if programs try to break abstraction of polymorphism

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let id★ : ★ = λx:★. x

let id∀ : ∀X.X→X = id★

id∀ [bool] true −→ true
id∀ [int] 42 −→ 42

id∀ [★] (42:★) −→ (42:★)

6

Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]

♦ Supports polymorphic types ∀X.T

♦ Enforces parametricity at run time

◊ Run-time errors happen if programs try to break abstraction of polymorphism

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let succ★ : ★ = λx:int. x+1

let id∀ : ∀X.X→X = succ★

id∀ [bool] true −→ error
id∀ [int] 42 −→ error

id∀ [★] (42:★) −→ error

7

Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]

♦ Supports polymorphic types ∀X.T

♦ Enforces parametricity at run time

◊ Run-time errors happen if programs try to break abstraction of polymorphism

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

(* doing dynamic analysis on abstract types *)

let id∀ : ∀X.X→X =

 ΛX. λx:X. let x’ : ★ = x in
 let y : ★ = x’ + 1 in

 (y : X)

id∀ [bool] true −→ error
id∀ [int] 42 −→ error
id∀ [★] (42:★) −→ error

8

Long-Term Goal

Efficient implementation of PGT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Thinking face emoji © Twitter Emoji (Licensed under CC BY 4.0)

Space-efficient impl. is possible?

What low-level instruction is

necessary to compile?

Good performance is achievable?

9

Long-Term Goal

Efficient implementation of PGT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Space-efficient impl. is possible?

What low-level instruction is

necessary to compile?

Good performance is achievable?

Thinking face emoji © Twitter Emoji (Licensed under CC BY 4.0)

10

Parametricity versus Space-Efficiency

Impossible to implement PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

(at least under dynamic sealing, the standard method to enforce parametricity)

In Scheme and Functional Programming Workshop 2021

11

It’s possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

This work shows:

12

It’s possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

This work shows:

Parametricity is enforced only if

polymorphic values are instantiated with non-★ types

13

It’s possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

This work shows:

Parametricity is enforced only if

polymorphic values are instantiated with non-★ types

let succ★ : ★ = λx:int. x+1

let id∀ : ∀X.X→X = succ★

id∀ [int] 42 −→ error

id∀ [★] (42:★) −→ (42:★)

id∀ [int] 42 −→ error

id∀ [★] (42:★) −→ error

Fully parametric PGT Mostly parametric PGT

14

It’s possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

This work shows:

Parametricity is enforced only if

polymorphic values are instantiated with non-★ types

let succ★ : ★ = λx:int. x+1

let id∀ : ∀X.X→X = succ★

id∀ [int] 42 −→ error

id∀ [★] (42:★) −→ (43:★)

id∀ [int] 42 −→ error

id∀ [★] (42:★) −→ error

Fully parametric PGT Mostly parametric PGT

15

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = 42 in x + 1

Surface language Coercion calculus

16

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = 42 in x + 1

Surface language Coercion calculus

17

An intermediate language where run-time type conversions are made
explicit as coercions

Converted from int to ★

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = 42 in x + 1

Surface language Coercion calculus

Converted from int to ★

Converted from ★ to int

18

An intermediate language where run-time type conversions are made
explicit as coercions

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = 42 in x + 1 let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

Converted from int to ★

Converted from ★ to int

Compile

19

An intermediate language where run-time type conversions are made
explicit as coercions

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = 42 in x + 1 let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

Compile

20

An intermediate language where run-time type conversions are made
explicit as coercions

Converted from int to ★

Converted from ★ to int

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

let x:★ = 42 in x + 1

21

An intermediate language where run-time type conversions are made
explicit as coercions

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

A value of ★ tagged with 𝐢𝐧𝐭

let x:★ = 42 in x + 1

22

An intermediate language where run-time type conversions are made
explicit as coercions

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

42⟨𝐢𝐧𝐭!⟩⟨𝐢𝐧𝐭? ⟩ + 1

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

A value of ★ tagged with 𝐢𝐧𝐭

let x:★ = 42 in x + 1

23

An intermediate language where run-time type conversions are made
explicit as coercions

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

42⟨𝐢𝐧𝐭!⟩⟨𝐢𝐧𝐭? ⟩ + 1

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

A value of ★ tagged with 𝐢𝐧𝐭

Checks the tag is the same

let x:★ = 42 in x + 1

24

An intermediate language where run-time type conversions are made
explicit as coercions

Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

42⟨𝐢𝐧𝐭!⟩⟨𝐢𝐧𝐭? ⟩ + 1 42 + 1

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

A value of ★ tagged with 𝐢𝐧𝐭

Checks the tag is the same

let x:★ = 42 in x + 1

25

An intermediate language where run-time type conversions are made
explicit as coercions

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

let x:★ = true in x + 1

26

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = true⟨𝐛𝐨𝐨𝐥!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

let x:★ = true in x + 1

27

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = true⟨𝐛𝐨𝐨𝐥!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

let x:★ = true in x + 1

true⟨𝐛𝐨𝐨𝐥!⟩⟨𝐢𝐧𝐭? ⟩ + 1

28

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = true⟨𝐛𝐨𝐨𝐥!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

let x:★ = true in x + 1

true⟨𝐛𝐨𝐨𝐥!⟩⟨𝐢𝐧𝐭? ⟩ + 1 error

29

Coercion Calculus for Parametricity Enforcement

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ : ★ = x in

 let y : ★ = x’ + 1 in

 (y : X)

Surface language

30

(ΛX.M) [A] −→ M[α/X] (where α is fresh)

Coercion Calculus for Parametricity Enforcement

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ : ★ = x in

 let y : ★ = x’ + 1 in

 (y : X)

Surface language

31

(ΛX.M) [A] −→ M[α/X] (where α is fresh)A is the type argument

in generating α

Coercion Calculus for Parametricity Enforcement

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ : ★ = x in

 let y : ★ = x’ + 1 in

 (y : X)

let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ = x⟨X!⟩ in

 let y = (x’⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in

 y⟨X? ⟩

Surface language Coercion calculus

32

(ΛX.M) [A] −→ M[α/X] (where α is fresh)A is the type argument

in generating α

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Coercion Calculus for Parametricity Enforcement

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

id∀ [int] 42 Coercion calculus let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ = x⟨X!⟩ in

 let y = (x’⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in

 y⟨X? ⟩

Coercion calculus

33

(ΛX.M) [A] −→ M[α/X] (where α is fresh)A is the type argument

in generating α

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Coercion Calculus for Parametricity Enforcement

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

id∀ [int] 42

−→ let x’ = 42⟨α!⟩ in …

Coercion calculus let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ = x⟨X!⟩ in

 let y = (x’⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in

 y⟨X? ⟩

Coercion calculus

34

(ΛX.M) [A] −→ M[α/X] (where α is fresh)A is the type argument

in generating α

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Coercion Calculus for Parametricity Enforcement

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

id∀ [int] 42

−→ let x’ = 42⟨α!⟩ in …

−→ let y = (42⟨α!⟩⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in …

Coercion calculus let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ = x⟨X!⟩ in

 let y = (x’⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in

 y⟨X? ⟩

Coercion calculus

35

(ΛX.M) [A] −→ M[α/X] (where α is fresh)A is the type argument

in generating α

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Coercion Calculus for Parametricity Enforcement

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

Coercion calculus let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ = x⟨X!⟩ in

 let y = (x’⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in

 y⟨X? ⟩

Coercion calculusid∀ [int] 42

−→ let x’ = 42⟨α!⟩ in …

−→ let y = (42⟨α!⟩⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in …

36

(ΛX.M) [A] −→ M[α/X] (where α is fresh)A is the type argument

in generating α

Coercion Calculus for Parametricity Enforcement

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

Coercion calculus let id∀ : ∀X.X→X =

 ΛX.λx:X. let x’ = x⟨X!⟩ in

 let y = (x’⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in

 y⟨X? ⟩

Coercion calculusid∀ [int] 42

−→ let x’ = 42⟨α!⟩ in …

−→ let y = (42⟨α!⟩⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in …

−→ error

37

(ΛX.M) [A] −→ M[α/X] (where α is fresh)A is the type argument

in generating α

Space-Efficiency [Herman et al.’07,’10]

Any consecutively applied coercions appearing at run time can be
compressed into a coercion whose size is bounded statically

➔ The space consumed by coercions at run time is statically predictable

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

More precisely

For any well-typed program M, there exists some n ∈ ℕ s.t. for any
coercion sequence 𝑐𝑠 appearing during executing M, 𝑐𝑠 can be compressed
into some coercion 𝑐 s.t. it preserves the semantics of 𝑐𝑠 and size c ≤ 𝑛

∃𝑛 ∈ ℕ. M −→ M’⟨c1⟩ ⋯ ⟨c𝑛⟩ =⇒ ∃𝑐. ⟨c⟩ =ctx ⟨c1⟩ ⋯ ⟨c𝑛⟩ ∧ size 𝑐 ≤ 𝑛

38

Impossibility of Space-Efficient, Fully Parametric PGT

Shown by the following facts:

1. There is a program that generates coercion sequences
⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ for arbitrary 𝑛

2. The sequence ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ cannot be compressed into
a simpler coercion with the same semantics

3. The size of ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ is not less than 𝑛

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

[Ozaki et al.’21]

39

Key Observations from The Impossibility

1. The sequence ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ is well typed only when, for every 𝛼𝑖,

◊ The program “M⟨𝛼1!⟩⟨𝛼2!⟩” is ill-typed if ⟨𝛼1!⟩ : ★→★ and ⟨𝛼2!⟩ : int→★

2. Such 𝛼𝑖 is generated by type application M [★]

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨𝛼𝑖!⟩ : ★→★

40

Key Observations from The Impossibility

1. The sequence ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ is well typed only when, for every 𝛼𝑖,

◊ The program “M⟨𝛼1!⟩⟨𝛼2!⟩” is ill-typed if ⟨𝛼1!⟩ : ★→★ and ⟨𝛼2!⟩ : int→★

2. Such 𝛼𝑖 is generated by type application M [★]

➔ The impossibility is due to the type name generation at M [★]

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨𝛼𝑖!⟩ : ★→★

41

Key Observations from The Impossibility

1. The sequence ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ is well typed only when, for every 𝛼𝑖,

◊ The program “M⟨𝛼1!⟩⟨𝛼2!⟩” is ill-typed if ⟨𝛼1!⟩ : ★→★ and ⟨𝛼2!⟩ : int→★

2. Such 𝛼𝑖 is generated by type application M [★]

➔ The impossibility is due to the type name generation at M [★]

➔ Space-efficiency is possible if M [★] generates no type name

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨𝛼𝑖!⟩ : ★→★

42

Summary: What We Achieved

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

• Mostly parametric semantics

• Not space-efficient

 Type safety

 Parametricity (except for ★)

• Mostly parametric semantics

• Coercion sequences are compressed

 eagerly at run time

• New coercions for type analysis on
 whether type arguments are ★

 Type safety

 Space-efficiency

Translation preserving

typing and semantics

43

𝜆C𝑚𝑝
∀ 𝜆S𝑚𝑝

∀

Conclusion

♦ Space-efficient PGT is possible if we give up full parametricity

♦ We show mostly parametric PGT can be made space-efficient

Future Work

♦ Implementation

◊ We plan to modify the Grift compiler [Kuhlenschmidt et al.’19] to implement 𝜆S𝑚𝑝
∀

♦ Practical evaluation

◊ Can the impl be executed efficiently in terms of both time and space?

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 44

	Slide 1: Space-Efficient Polymorphic Gradual Typing, Mostly Parametric
	Slide 2: Gradual Typing (GT) [Siek&Taha’06]
	Slide 3: Gradual Typing (GT) [Siek&Taha’06]
	Slide 4: Theoretical Research on GT
	Slide 5: Theoretical Research on GT
	Slide 6: Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]
	Slide 7: Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]
	Slide 8: Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]
	Slide 9: Long-Term Goal
	Slide 10: Long-Term Goal
	Slide 11: Parametricity versus Space-Efficiency
	Slide 12: It’s possible to implement mostly parametric PGT space-efficiently
	Slide 13: It’s possible to implement mostly parametric PGT space-efficiently
	Slide 14: It’s possible to implement mostly parametric PGT space-efficiently
	Slide 15: It’s possible to implement mostly parametric PGT space-efficiently
	Slide 16: Coercion Calculus for GT
	Slide 17: Coercion Calculus for GT
	Slide 18: Coercion Calculus for GT
	Slide 19: Coercion Calculus for GT
	Slide 20: Coercion Calculus for GT
	Slide 21: Coercion Calculus for GT
	Slide 22: Coercion Calculus for GT
	Slide 23: Coercion Calculus for GT
	Slide 24: Coercion Calculus for GT
	Slide 25: Coercion Calculus for GT
	Slide 26: Coercion Calculus for GT
	Slide 27: Coercion Calculus for GT
	Slide 28: Coercion Calculus for GT
	Slide 29: Coercion Calculus for GT
	Slide 30: Coercion Calculus for Parametricity Enforcement
	Slide 31: Coercion Calculus for Parametricity Enforcement
	Slide 32: Coercion Calculus for Parametricity Enforcement
	Slide 33: Coercion Calculus for Parametricity Enforcement
	Slide 34: Coercion Calculus for Parametricity Enforcement
	Slide 35: Coercion Calculus for Parametricity Enforcement
	Slide 36: Coercion Calculus for Parametricity Enforcement
	Slide 37: Coercion Calculus for Parametricity Enforcement
	Slide 38: Space-Efficiency [Herman et al.’07,’10]
	Slide 39: Impossibility of Space-Efficient, Fully Parametric PGT
	Slide 40: Key Observations from The Impossibility
	Slide 41: Key Observations from The Impossibility
	Slide 42: Key Observations from The Impossibility
	Slide 43: Summary: What We Achieved
	Slide 44: Conclusion

