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Gradual Typing (GT) [Siek&Taha’06]

♦ Enables migration between static and dynamic typing

◊ Languages and tools: TypeScript, Typed Racket, Typed Closure, C#, mypy, …

♦ Introduces a special type ★ a.k.a. the dynamic type

◊ The type check for ★ is skipped at compile time and deferred to run time

♦ Example: succ

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let succ (x:★) : ★ = x + 1

succ (42:★)   −→ (43:★)  // well-typed

succ (true:★) −→ error    // well-typed
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Gradual Typing (GT) [Siek&Taha’06]

♦ Enables migration between static and dynamic typing

◊ Languages and tools: TypeScript, Typed Racket, Typed Closure, C#, mypy, …

♦ Introduces a special type ★ a.k.a. the dynamic type

◊ The type check for ★ is skipped at compile time and deferred to run time

♦ Example: succ

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let succ (x:int) : int = x + 1

succ 42   −→ 43      // well-typed

succ true // ill-typed
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Theoretical Research on GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Dependent typing
[Lennon-Bertrand et al.’22; Eremondi et al.’22]

Security typing
[Fennell&Thiemann’13; 

Toro et al.’18; Chen&Siek’24]

Intersection / union types
[Castagna&Lanvin’17]

Parametric polymorphism
[Ahmed et al.’11,’17; Igarashi et al.’17; 

Toro et al’19, New et al.’20, Labrada et al.’22] 
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Typestate
[Wolff et al.’11]

Effects
[Schwerter et al.’14; 

Sekiyama et al.’15, New et al.’23]

Objects
[Siek&Taha’07]

Type inference
[Siek&Vachharajani’08; 

Garcia&Cimini’15; Miyazaki et al.’19]
etc.
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Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]

♦ Supports polymorphic types ∀X.T

♦ Enforces parametricity at run time

◊ Run-time errors happen if programs try to break abstraction of polymorphism

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let id★ : ★     = λx:★. x

let id∀  : ∀X.X→X = id★

id∀ [bool] true    −→ true
id∀ [int]  42 −→ 42

id∀ [★]   (42:★) −→ (42:★)

6



Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]

♦ Supports polymorphic types ∀X.T

♦ Enforces parametricity at run time

◊ Run-time errors happen if programs try to break abstraction of polymorphism
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let succ★ : ★     = λx:int. x+1

let id∀    : ∀X.X→X = succ★

id∀ [bool] true   −→ error
id∀ [int]  42  −→ error
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Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]

♦ Supports polymorphic types ∀X.T

♦ Enforces parametricity at run time

◊ Run-time errors happen if programs try to break abstraction of polymorphism

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

(* doing dynamic analysis on abstract types *)

let id∀ : ∀X.X→X =

  ΛX. λx:X. let x’ : ★ = x in 
            let y  : ★ = x’ + 1 in

   (y : X)

id∀ [bool] true   −→ error
id∀ [int]  42  −→ error
id∀ [★]   (42:★) −→ error
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Long-Term Goal

Efficient implementation of PGT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Thinking face emoji © Twitter Emoji (Licensed under CC BY 4.0)

Space-efficient impl. is possible?

What low-level instruction is

necessary to compile?

Good performance is achievable?
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Space-efficient impl. is possible?

What low-level instruction is

necessary to compile?
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Parametricity versus Space-Efficiency

Impossible to implement PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

(at least under dynamic sealing, the standard method to enforce parametricity)

In Scheme and Functional Programming Workshop 2021
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It’s possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

This work shows:
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It’s possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

This work shows:

Parametricity is enforced only if 

polymorphic values are instantiated with non-★ types
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It’s possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

This work shows:

Parametricity is enforced only if 

polymorphic values are instantiated with non-★ types

let succ★ : ★     = λx:int. x+1

let id∀    : ∀X.X→X = succ★

id∀ [int]   42     −→ error

id∀ [★]    (42:★) −→ (42:★)

id∀ [int]   42     −→ error

id∀ [★]    (42:★) −→ error

Fully parametric PGT Mostly parametric PGT
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It’s possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

This work shows:

Parametricity is enforced only if 

polymorphic values are instantiated with non-★ types

let succ★ : ★     = λx:int. x+1

let id∀    : ∀X.X→X = succ★

id∀ [int]   42     −→ error

id∀ [★]    (42:★) −→ (43:★)

id∀ [int]   42     −→ error

id∀ [★]    (42:★) −→ error

Fully parametric PGT Mostly parametric PGT
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Coercion Calculus for GT

An intermediate language where run-time type conversions are made 
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = 42 in x + 1

Surface language Coercion calculus
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let x:★ = 42 in x + 1

Surface language Coercion calculus
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let x:★ = 42 in x + 1

Surface language Coercion calculus

Converted from int to ★  

Converted from ★ to int
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Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = 42 in x + 1 let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

Converted from int to ★  

Converted from ★ to int

Compile
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Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = 42 in x + 1 let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

Compile
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Coercion Calculus for GT
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Surface language Coercion calculus

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

let x:★ = 42 in x + 1
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Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

A value of ★ tagged with 𝐢𝐧𝐭

let x:★ = 42 in x + 1
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Coercion Calculus for GT
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Coercion Calculus for GT

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

42⟨𝐢𝐧𝐭!⟩⟨𝐢𝐧𝐭? ⟩ + 1

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

A value of ★ tagged with 𝐢𝐧𝐭

Checks the tag is the same

let x:★ = 42 in x + 1
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Coercion Calculus for GT
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Surface language Coercion calculus

42⟨𝐢𝐧𝐭!⟩⟨𝐢𝐧𝐭? ⟩ + 1 42 + 1

let x:★ = 42⟨𝐢𝐧𝐭!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1
Compile

A value of ★ tagged with 𝐢𝐧𝐭

Checks the tag is the same

let x:★ = 42 in x + 1
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Coercion Calculus for GT

An intermediate language where run-time type conversions are made 
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Surface language Coercion calculus

let x:★ = true in x + 1
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Coercion Calculus for GT

An intermediate language where run-time type conversions are made 
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = true⟨𝐛𝐨𝐨𝐥!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

let x:★ = true in x + 1
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Coercion Calculus for GT

An intermediate language where run-time type conversions are made 
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = true⟨𝐛𝐨𝐨𝐥!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

let x:★ = true in x + 1

true⟨𝐛𝐨𝐨𝐥!⟩⟨𝐢𝐧𝐭? ⟩ + 1
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Coercion Calculus for GT

An intermediate language where run-time type conversions are made 
explicit as coercions

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

let x:★ = true⟨𝐛𝐨𝐨𝐥!⟩ in x⟨𝐢𝐧𝐭? ⟩ + 1

Surface language Coercion calculus

let x:★ = true in x + 1

true⟨𝐛𝐨𝐨𝐥!⟩⟨𝐢𝐧𝐭? ⟩ + 1 error
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Coercion Calculus for Parametricity Enforcement

♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A

let id∀ : ∀X.X→X =

  ΛX.λx:X. let x’ : ★ = x in 

           let y : ★ = x’ + 1 in

   (y : X)

Surface language

30

(ΛX.M) [A]  −→  M[α/X]        (where α is fresh)
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♦ Sealing abstraction by type names α generated at type application

◊ Intuition: type names can be considered as fresh base types

♦ New coercions for type variables and names
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⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A
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Coercion calculus
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♦ New coercions for type variables and names
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⟨X!⟩ : X→★ ⟨X? ⟩ : ★→X ⟨α!⟩ : A→★ ⟨α? ⟩ : ★→A
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           let y   = (x’⟨𝐢𝐧𝐭? ⟩ + 1)⟨𝐢𝐧𝐭!⟩ in
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Space-Efficiency [Herman et al.’07,’10]

Any consecutively applied coercions appearing at run time can be 
compressed into a coercion whose size is bounded statically

➔ The space consumed by coercions at run time is statically predictable

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

More precisely

For any well-typed program M, there exists some n ∈ ℕ s.t. for any 
coercion sequence 𝑐𝑠 appearing during executing M, 𝑐𝑠 can be compressed 
into some coercion 𝑐 s.t. it preserves the semantics of 𝑐𝑠 and size c ≤  𝑛

∃𝑛 ∈ ℕ. M −→ M’⟨c1⟩ ⋯ ⟨c𝑛⟩  =⇒ ∃𝑐. ⟨c⟩ =ctx ⟨c1⟩ ⋯ ⟨c𝑛⟩ ∧ size 𝑐 ≤ 𝑛
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Impossibility of Space-Efficient, Fully Parametric PGT

Shown by the following facts:

1. There is a program that generates coercion sequences
⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ for arbitrary 𝑛

2. The sequence ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ cannot be compressed into 
a simpler coercion with the same semantics

3. The size of ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ is not less than 𝑛

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

[Ozaki et al.’21]
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Key Observations from The Impossibility

1. The sequence ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ is well typed only when, for every 𝛼𝑖,

◊ The program “M⟨𝛼1!⟩⟨𝛼2!⟩” is ill-typed if ⟨𝛼1!⟩ : ★→★ and ⟨𝛼2!⟩ : int→★

2. Such 𝛼𝑖 is generated by type application M [★]

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨𝛼𝑖!⟩ : ★→★
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⟨𝛼𝑖!⟩ : ★→★
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Key Observations from The Impossibility

1. The sequence ⟨𝛼1!⟩ ⋯ ⟨𝛼𝑛!⟩ is well typed only when, for every 𝛼𝑖,

◊ The program “M⟨𝛼1!⟩⟨𝛼2!⟩” is ill-typed if ⟨𝛼1!⟩ : ★→★ and ⟨𝛼2!⟩ : int→★

2. Such 𝛼𝑖 is generated by type application M [★]

➔ The impossibility is due to the type name generation at M [★]

➔ Space-efficiency is possible if M [★] generates no type name

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

⟨𝛼𝑖!⟩ : ★→★
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Summary: What We Achieved

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

• Mostly parametric semantics

• Not space-efficient

 Type safety

 Parametricity (except for ★)

• Mostly parametric semantics

• Coercion sequences are compressed 

  eagerly at run time

• New coercions for type analysis on 
  whether type arguments are ★

 Type safety

 Space-efficiency

Translation preserving

typing and semantics

43

𝜆C𝑚𝑝
∀ 𝜆S𝑚𝑝

∀



Conclusion

♦ Space-efficient PGT is possible if we give up full parametricity

♦ We show mostly parametric PGT can be made space-efficient

Future Work

♦ Implementation

◊ We plan to modify the Grift compiler [Kuhlenschmidt et al.’19] to implement 𝜆S𝑚𝑝
∀

♦ Practical evaluation

◊ Can the impl be executed efficiently in terms of both time and space?
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