Space-Efficient
Polymorphic Gradual Typing,
Mostly Parametric

Atsushi Igarashi Shota Ozaki
Kyoto University Kyoto University
Taro Sekiyama Yudai Tanabe

National gsguct)ulggl\?[glAr}formatlcs Tokyo Institute of Technology

Gradual Typing (GT) isiekaTahao6)
¢ Enables migration between static and dynamic typing

¢ Languages and tools: TypeScript, Typed Racket, Typed Closure, C#, mypy, ...

¢ Introduces a special type % a.k.a. the dynamic type
¢ The type check for % is skipped at compile time and deferred to run time

¢ Example: succ

let succ (x: %) : % =x + 1

succ (42:%) ——> (43:%) // well-typed
succ (true:%) —— error // well-typed

Gradual Typing (GT) isiekaTahao6)
¢ Enables migration between static and dynamic typing

¢ Languages and tools: TypeScript, Typed Racket, Typed Closure, C#, mypy, ...

¢ Introduces a special type % a.k.a. the dynamic type
¢ The type check for % is skipped at compile time and deferred to run time

¢ Example: succ

let succ (x:int) : int = x + 1

succ 42 —— 43 // well-typed
succ true // 1ill-typed

Theoretical Research on GT

Parametric polymorphism

[Ahmed et al.11,17; Igarashi et al.17; ObJeCtS
Toro et al'19, New et al/20, Labrada et al.22] [Siek&Taha'07]
Intersection / union types Effects
[Castagna&Lanvin'17] [Schwerter et al.14;

Sekiyama et al. 15, New et al. 23]

Dependent typing Typestate
[Lennon-Bertrand et al.'22; Eremondi et al.22] [Wolff et al’11]
Security typing Type inference
[Fennell&Thiemann'13; [Siek&Vachharajani'08; etc

Toro et al'18; Chen&Siek'24] Garcia&Cimini'15; Miyazaki et al.19]

Theoretical Research on GT

Parametric polymorphism

[Ahmed et al.11,17; Igarashi et al.17;
Toro et al'19, New et al’20, Labrada et al.22]

Intersection / union types
[Castagna&Lanvin’17]

Dependent typing

[Lennon-Bertrand et al.'22; Eremondi et al.22]

Security typing
[Fennell&Thiemann'13;
Toro et al!18; Chen&Siek'24]

Objects

[Siek&Taha'07]

Effects

[Schwerter et al.14;
Sekiyama et al. 15, New et al. 23]

Typestate

[Wolff et al/11]

Type inference

[Siek&Vachharajani'08; etC.
Garcia&Cimini'15; Miyazaki et al. 19]

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric

Polymorphic Gradual Typing (PGT) (anmed etal:11.17; others)

¢ Supports polymorphic types VX.T

¢ Enforces parametricity at run time
¢ Run-time errors happen if programs try to break abstraction of polymorphism

let id, : * = Ax: k. X
let idy, : VX.X=X = id,

idy, [bool] true —— true
idy, [int] 42 —— 42

idy [X] (42: %) — (42:%) 7

Polymorphic Gradual Typing (PGT) (anmed etal:11.17; others)

¢ Supports polymorphic types VX.T

¢ Enforces parametricity at run time
¢ Run-time errors happen if programs try to break abstraction of polymorphism

let succ, : % = Ax:int. x+1
let id, : VX. X=X = succy

idy, [bool] true —— error

idy, [int] 42 —— error

idy [X] (42: %) —— error 7

Polymorphic Gradual Typing (PGT) (anmed etal:11.17; others)

¢ Supports polymorphic types VX.T

¢ Enforces parametricity at run time
¢ Run-time errors happen if programs try to break abstraction of polymorphism

(* doing dynamic analysis on abstract types *)
let id, : VX.X2X =
AX. Ax:X. let x° : %
lety : %
(y : X)
idy, [bool] true —— error

idy [int] 42 —— error

idy, [] (42: %) —— error 7

X 1in
X’ + 1 in

Long-Term Goal

Efficient implementation of PGT

Space-efficient impl. is possible?

What low-level instruction is
necessary to compile?

Good performance is achievable?
/

Thinking face emoji © Twitter Emoji (Licensed under CC BY 4.0)

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 9

Long-Term Goal

Efficient implementation of PGT

Space-efficient impl. is possible?

What low-level instruction is
necessary to compile?

Good performance is achievable?
/

Thinking face emoji © Twitter Emoji (Licensed under CC BY 4.0)

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 10

Parametricity versus Space-Efficiency

Impossible to implement PGT space-efficiently

(at least under dynamic sealing, the standard method to enforce parametricity)

Is Space-Efficient Polymorphic Gradual Typing Possible?

SHOTA OZAKI, Graduate School of Informatics, Kyoto University, Japan
TARO SEKIYAMA, National Institute of Informatics & SOKENDAI, Japan
ATSUSHI IGARASHI, Graduate School of Informatics, Kyoto University, Japan

Gradual typing, proposed by Siek and Taha, is a way to combine static and dynamic typing in a single
programming language. Since its inception, researchers have studied techniques for efficient implementation. In
this paper, we study the problem of space-efficient gradual typing in the presence of parametric polymorphism.
We develop a polymorphic extension of the coercion calculus, an intermediate language for gradual typing.
Then, we show that it cannot be made space-efficient by following the previous approaches, due to subtle
interaction with dynamic sealing, a standard technique to ensure parametricity in polymorphic gradual typing.

In Scheme and Functional Programming Workshop 2021

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 11

This work shows:

It's possible to implement mostly parametric PGT space-efficiently

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 12

This work shows:

It's possible to implement mostly parametric PGT space-efficiently

_—/

{ Parametricity is enforced only if J

polymorphic values are instantiated with non-% types

This work shows:

It's possible to implement mostly parametric PGT space-efficiently

_—/

Parametricity is enforced only if
polymorphic values are instantiated with non-% types

let succ, : % = Ax:int. x+1
let id, : VX X=X = succy
Fully parametric PGT Mostly parametric PGT
idy, [int] 42 —— error idy, [int] 42
idy, [] (42: %) —— error idy [] (42:%) 7

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 14

This work shows:

It's possible to implement mostly parametric PGT space-efficiently

_—/

Parametricity is enforced only if
polymorphic values are instantiated with non-% types

let succ, : % = Ax:int. x+1
let id, : VX X=X = succy
Fully parametric PGT Mostly parametric PGT
idy, [int] 42 —— error idy, [int] 42 —— error
idy, [] (42: %) —— error idy [] (42: %) — (43:%) 7

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 15

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

let x:*=421nx+1j

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

let x:*=4_21nx+1j

™S~

Converted from int to % J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

Converted from % to int }

™S~

V
let x:% 4Zinx+1j

Converted from int to % J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

Converted from % to int]

let x:%

7 — J -
Compile
™S

42 in X + 1 — let x:% = 42(int!) in x(int?) + 1J

Converted from int to % }

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

~N

Converted from % to int
. J \

. L Corr.wpile . . \
let x: % =42 inx + 1 J — let x:% = 42(int!) in x(int?) + 1J
A

™S~

42 -

Converted from int to % }

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 20

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

let x: % =42 inx + 1 J g'; let x:% = 42(int!) in x(int?) + 1J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

[A value of % tagged with int }
/

:. /
let x: %k =42 inx + 1 J g'; let x:% = 42(int!) in x(int?) + 1J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

[A value of % tagged with int }
/

:. /
let x: %k =42 inx + 1 J g'; let x:% = 42(int!) in x{(int?) + 1J

l

42(int')(int?) + 1J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

[A value of % tagged with int }
/

:. /
let x: %k =42 inx + 1 J g'; let x:% = 42(int!) in x{(int?) + 1J

l Checks the tag is the same }
e

42(int')(int?) + 1J

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 24

Coercion Calculus for GT

An intermediate language where run-time type conversions are made

explicit as coercions

Surface language i Coercion calculus

. _ . Corr:wpile
let x:% —4_21nx+1J:;>

[A value of % tagged with int }
/

L—

let x:% = 42(int!) in x(int?) + 1J

l Checks the tag is the same }
e

42(int')(int?) + 1J —

42+1J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

let x:% = true in x + 1J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

let x:% = true in x + 1J:> let x: % =true(bool!) in x(int?) + 1J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made
explicit as coercions

Surface language i Coercion calculus

let x:% = true in x + 1J:> let x: % =true(bool!) in x(int?) + 1J

l

true(bool!)(int?) + 1J

Coercion Calculus for GT

An intermediate language where run-time type conversions are made

explicit as coercions

Surface language

let x: % = true in X + 1J:>

Coercion calculus

let x: % =true(bool!) in x(int?) + 1J

l

true(bool!)(int?) + 1J —

error J

Coercion Calculus for Parametricity Enforcement

¢ Sealing abstraction by type names a generated at type application
O Intuition: type names can be considered as fresh base types

(AX.M) [A] —— M[a/X] (where a is fresh)

¢ New coercions for type variables and names

(X!) : X=>% (X?7) : *-X (al) : A% (a?) : K-A

let idv « VX.X=-X = Surface language
AX.AX:X. let x° : % =x1n
let y : % =x"+11in

(y : X) 7

Coercion Calculus for Parametricity Enforcement

¢ Sealing abstraction by type names a generated at type application
O Intuition: type names can be considered as fresh base types

(AX.M) [A] —— M[a/X] (Wf(AisthetypeargumentT]

: . In generating a
¢ New coercions for type variables and names /

(X!) : X% (X?7) : k=X (al) : Ak (a?) : % >A

let idv « VX.X=-X = Surface language
AX.AX:X. let x° : % =x1n
let y : % =x"+11in

(y : X) 7

Coercion Calculus for Parametricity Enforcement

¢ Sealing abstraction by type names a generated at type application
O Intuition: type names can be considered as fresh base types

(AX.M) [A] —— M[a/X] (W|{ AisthetypeargumentT]

: . In generating a
¢ New coercions for type variables and names /

Z ~
(X1) : X=>% (X?7) : KX (al) : A>)k (a?) : K-A
let idy : VX.XoX = Surface language let idy : VX.XoX = Coercion calculus
AX.Ax:X. let x’ : % =xin j‘> AX. Ax:X. let x? =x(X!) in
let y : % =x"+11in let y = (x’(int?) + 1)(int!) in
(y : X) 7 y(X?) 4

Coercion Calculus for Parametricity Enforcement

¢ Sealing abstraction by type names a generated at type application
O Intuition: type names can be considered as fresh base types

(AX.M) [A]

—— M[a/X]

(X!) : X->%

(X?7) : *-X

(W|{ A is the type argument
. : L in generating a
¢ New coercions for type variables and names /

(al) : A>k (a?) : * >A

id, [int] 42

Coercion calculus

let idy : VX.XoX = Coercion calculus
AX. Ax:X. let x? =x(X!) in
let y = (x’(int?) + 1)(int!) in
y(X?) 7

Coercion Calculus for Parametricity Enforcement

¢ Sealing abstraction by type names a generated at type application
O Intuition: type names can be considered as fresh base types

(AX.M) [A]

—— M[a/X]

(X!) : X->%

(X?7) : *-X

(W|{ A is the type argument
. : L in generating a
¢ New coercions for type variables and names /

(al) : A>k (a?) : * >A

id, [int] 42

—— let x’ =42(a!) in ..

Coercion calculus

let idy : VX.XoX = Coercion calculus
AX. Ax:X. let x? =x(X!) in
let y = (x’(int?) + 1)(int!) in
y(X?) 7

Coercion Calculus for Parametricity Enforcement

¢ Sealing abstraction by type names a generated at type application
O Intuition: type names can be considered as fresh base types

(AX.M) [A]

—— M[a/X]

(X!) : X->%

(X?7) : *-X

(W|{ A is the type argument
. : L in generating a
¢ New coercions for type variables and names /

(al) : A>k (a?) : * >A

id, [int] 42

—— let x’ =42(a!) in ..

Coercion calculus

—— let y = (42(a!)(int?) + 1) (int!) in ..

4

let idy : VX.XoX = Coercion calculus
AX. Ax:X. let x? =x(X!) in
let y = (x’(int?) + 1)(int!) in
y(X?) 7

Coercion Calculus for Parametricity Enforcement

¢ Sealing abstraction by type names a generated at type application
O Intuition: type names can be considered as fresh base types

(AX.M) [A]

—— M[a/X]

(X!) : X=>%

(X?7) : *-X

(W|{ A is the type argument
. : L in generating a
¢ New coercions for type variables and names /

(al) : A>k (a?) : * >A

id, [int] 42

—— let x’ =42(a!) in ..

Coercion calculus

—— let y = (42(a!)(int?) + 1)(int!) in ..

4

let idy : VX. X=X = Coercion calculus

AX. Ax:X. let x? =x(X!) in

let y = (x’(int?) + 1)(int!) in

y{X?)

4

Coercion Calculus for Parametricity Enforcement

¢ Sealing abstraction by type names a generated at type application
O Intuition: type names can be considered as fresh base types

(AX.M) [A]

—— M[a/X]

¢ New coercions for type variables and names /

(X!) : X=>%

(X?7) : *-X

id, [int] 42

—— let x’ =42(a!) in ..
—— let y = (42(a!)(int?) + 1)(int!) in ..

—— error

Coercion calculus

In generating a

(W|{ A is the type argument
L l

(al) : A>k (a?) : * >A

4

let id, : VX.X=X =
AX. Ax:X. let x? =x(X!) in

let y = (x’(int?) + 1)(int!) in

y{X?)

Coercion calculus

4

Space-Efficiency erman et al-07/101

Any consecutively applied coercions appearing at run time can be
compressed into a coercion whose size is bounded statically

=» The space consumed by coercions at run time is statically predictable

e mm mm e e

More precisely

For any well-typed program M, there exists some n € N s.t. for any
coercion sequence cs appearing during executing M, cs can be compressed
info some coercion c s.t. it preserves the semantics of cs and size(c) < n

In € N.M ——> M’ (c{) -+ (c;) == Tc. (c) =x {C1) - {c,,) Asize(c) <n

N e m e e e e e e E e e e e e M e Em m M e M e M e Em m E e M m M m M e Em m Em m M e M M m Ee e M m M m E e M m Em e E e M m M e M e M m e m M e M e e m e e e e Em e e e e e e e =

Space-Efficient Polymorphic Gradual Typing, Mostly Parametric 38

Impossibility of Space-Efficient, Fully Parametric PGT

[Ozaki et al."21]
Shown by the following facts:

1. There is a program that generates coercion sequences
(ay!) - (a,!) for arbitrary n

2. The sequence (a,!) - {(a,!) cannot be compressed into
a simpler coercion with the same semantics

3. The size of (a;!) - (a,!) is not less than n

Key Observations from The Impossibility

1. The sequence (a;!) - (a,,!) is well typed only when, for every «;,
(C(i!> : XX
O The program "M{a;!){a,!)" is ill-typed if (a;!) : *->% and (a,!) : int>%

2. Such «; is generated by type application M [%]

Key Observations from The Impossibility

1. The sequence (a;!) - (a,,!) is well typed only when, for every «;,
(C(i!> : XX
O The program "M{a;!){a,!)" is ill-typed if (a;!) : *->% and (a,!) : int>%

2. Such «; is generated by type application M [%]

=» The impossibility i1s due to the type name generation at M [%]

Key Observations from The Impossibility

1. The sequence (a;!) - (a,,!) is well typed only when, for every «;,
(C(i!> : XX
O The program "M{a;!){a,!)" is ill-typed if (a;!) : *->% and (a,!) : int>%

2. Such «; is generated by type application M [%]
=» The impossibility i1s due to the type name generation at M [%]

=» Space-efficiency is possible if M [X] generates no type name

Summary: What We Achieved

Translation preserving
typing and semantics

ACY,, > ASY,

» Mostly parametric semantics * Mostly parametric semantics

* Not space-efficient » Coercion sequences are compressed
L1 Type safety eagerly at run time

L Parametricity (except for %) * New coercions for type analysis on

whether type arguments are %

L Type safety
L« Space-efficiency

Conclusion

¢ Space-efficient PGT is possible if we give up full parametricity

¢ We show mostly parametric PGT can be made space-efficient

Future Work

¢ Implementation

O We plan to modify the Grift compiler [kuhlenschmidt et al:19] to implement ASy,,,

¢ Practical evaluation
¢ Can the impl be executed efficiently in terms of both time and space?

	Slide 1: Space-Efficient Polymorphic Gradual Typing, Mostly Parametric
	Slide 2: Gradual Typing (GT) [Siek&Taha’06]
	Slide 3: Gradual Typing (GT) [Siek&Taha’06]
	Slide 4: Theoretical Research on GT
	Slide 5: Theoretical Research on GT
	Slide 6: Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]
	Slide 7: Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]
	Slide 8: Polymorphic Gradual Typing (PGT) [Ahmed et al.’11,’17; others]
	Slide 9: Long-Term Goal
	Slide 10: Long-Term Goal
	Slide 11: Parametricity versus Space-Efficiency
	Slide 12: It’s possible to implement mostly parametric PGT space-efficiently
	Slide 13: It’s possible to implement mostly parametric PGT space-efficiently
	Slide 14: It’s possible to implement mostly parametric PGT space-efficiently
	Slide 15: It’s possible to implement mostly parametric PGT space-efficiently
	Slide 16: Coercion Calculus for GT
	Slide 17: Coercion Calculus for GT
	Slide 18: Coercion Calculus for GT
	Slide 19: Coercion Calculus for GT
	Slide 20: Coercion Calculus for GT
	Slide 21: Coercion Calculus for GT
	Slide 22: Coercion Calculus for GT
	Slide 23: Coercion Calculus for GT
	Slide 24: Coercion Calculus for GT
	Slide 25: Coercion Calculus for GT
	Slide 26: Coercion Calculus for GT
	Slide 27: Coercion Calculus for GT
	Slide 28: Coercion Calculus for GT
	Slide 29: Coercion Calculus for GT
	Slide 30: Coercion Calculus for Parametricity Enforcement
	Slide 31: Coercion Calculus for Parametricity Enforcement
	Slide 32: Coercion Calculus for Parametricity Enforcement
	Slide 33: Coercion Calculus for Parametricity Enforcement
	Slide 34: Coercion Calculus for Parametricity Enforcement
	Slide 35: Coercion Calculus for Parametricity Enforcement
	Slide 36: Coercion Calculus for Parametricity Enforcement
	Slide 37: Coercion Calculus for Parametricity Enforcement
	Slide 38: Space-Efficiency [Herman et al.’07,’10]
	Slide 39: Impossibility of Space-Efficient, Fully Parametric PGT
	Slide 40: Key Observations from The Impossibility
	Slide 41: Key Observations from The Impossibility
	Slide 42: Key Observations from The Impossibility
	Slide 43: Summary: What We Achieved
	Slide 44: Conclusion

