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Since the arrival of gradual typing, which allows partially typed code in a single program, efficient imple-

mentations of gradual typing have been an active research topic. In this paper, we study the space-efficiency

problem of gradual typing in the presence of parametric polymorphism. Based on the existing work that

showed the impossibility of a space-efficient implementation that supports fully parametric polymorphism,

this paper will show that a space-efficient implementation is, in principle, possible by slightly relaxing para-

metricity. We first develop 𝜆C∀
𝑚𝑝 , which is a coercion calculus with mostly parametric polymorphism, and

show its relaxed parametricity. Then, we present 𝜆S∀𝑚𝑝 , a space-efficient version of 𝜆C∀
𝑚𝑝 , and prove that

𝜆S∀𝑚𝑝 programs can be executed in a space-efficient manner and that translation from 𝜆C∀
𝑚𝑝 to 𝜆S∀𝑚𝑝 is type-

and semantics-preserving.
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1 INTRODUCTION
1.1 Space-Efficient Gradual Typing
Siek and Taha [2006] coined the term gradual typing as a typing discipline to mix statically and

dynamically typed portions of code in a single program. Gradual typing is supposed to make the

interlanguage migration [Tobin-Hochstadt and Felleisen 2006]—the migration from fully dynami-

cally typed programs to fully statically typed programs—smoother via partially typed programs.

Since its arrival, both theoretical and practical aspects of gradual typing have been active research

topics [Ahmed et al. 2011, 2017; Bañados Schwerter et al. 2021; Bauman et al. 2017; Garcia et al.

2016; Herman et al. 2007, 2010; Igarashi et al. 2017; Kuhlenschmidt et al. 2019; Matthews and

Ahmed 2008; Miyazaki et al. 2019; Muehlboeck and Tate 2017; New et al. 2020; Ozaki et al. 2021;

Rastogi et al. 2015; Richards et al. 2017; Siek and Taha 2007; Siek et al. 2015a, 2021, 2015b; Siek and

Wadler 2010; Takikawa et al. 2016; Toro et al. 2019; Tsuda et al. 2020; Wadler and Findler 2009; Xie
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et al. 2018] and several implementations of practical gradually typed languages, such as Typed

Racket [Flatt and PLT 2010], Typed Closure [Bonnaire-Sergeant et al. 2016], Hack [Facebook 2021],

and TypeScript [Bierman et al. 2014], have emerged.

Along with the success of gradual typing in practice, its efficient implementation has gained

much attention. It has been revealed that the efficiency of gradually typed programs is dominated

by the efficiency of type conversions that involve run-time type checking. Even in simple gradual

typing, a naive implementation of conversions for functions is unexpectedly costly in terms of

both time [Takikawa et al. 2016] and space [Herman et al. 2007, 2010]. Several attempts have been

made to address the efficient implementations [Bauman et al. 2017; Kuhlenschmidt et al. 2019;

Muehlboeck and Tate 2017; Rastogi et al. 2015; Richards et al. 2017].

The space-efficiency problem in gradual typing was recognized first by Herman et al. [2007, 2010].

They proposed a coercion calculus as an intermediate language to implement gradual typing, where

a sequence of conversions—which are called coercions [Henglein 1994] in coercion calculi—can be

normalized into a simpler conversion by a meta-level composition operation. They also proved

that coercions emerging at run time can be composed into a coercion of bounded size. This result

indicates that simple gradual typing can be implemented in a space-efficient manner, that is, the

space overhead of a gradually typed program is increased only by an expected factor, compared with

the space consumed by the fully dynamically typed version. Siek et al. [2015a, 2021] refined their

work by formalizing the notion of space-efficient coercions and proved their correctness. Specifically,

they gave formal translation from an unoptimized, non-space-efficient coercion calculus 𝜆C to an

optimized, space-efficient coercion calculus 𝜆S and proved that the translation is fully abstract.

Kuhlenschmidt et al. [2019] developed Grift, a compiler for a gradually typed language. Grift,

which uses space-efficient coercions internally, demonstrated that catastrophic slowdowns could

be avoided without introducing significant average-case overhead, although it implemented the

space-efficient semantics only partially because the full implementation would rely on somewhat

peculiar semantics. Later, Tsuda et al. [2020] proposed coercion-passing style to make it easy to

fully implement the space-efficient semantics and extended Grift. However, all the work on space

efficiency discussed here has been limited to a simply typed setting.

More recently, Ozaki et al. [2021] studied this problem in a polymorphic type system and

showed a negative result. They introduced a polymorphic extension 𝜆C∀
of 𝜆C with parametric

polymorphism—where parametricity is dynamically enforced by dynamic sealing [Morris 1973],

following Ahmed et al. [2011]—and proved that it is impossible to make 𝜆C∀
space-efficient as in

Siek et al. [2015a, 2021], because there is a program that generates a sequence of coercions that

cannot be normalized into a simpler coercion.

1.2 Our Work
This paper presents a positive result that 𝜆C∀

can be made space-efficient with mostly parametric
polymorphism. Along with their negative result, Ozaki et al. [2021] have observed that a problematic

sequence of coercions emerges when a type abstraction is applied to the fully dynamic type ★

and conjectured that forbidding ★ as a type argument might make a space-efficient version of

𝜆C∀
possible, with a comment that such a restriction would not be very practical. Our key idea is,

instead of prohibiting ★ as a type argument, to ensure parametricity only if a polymorphic value

is applied to non-dynamic types.
1
We will formally show that the language with the modified

semantics enjoys parametricity in a certain relaxed sense and can be made space-efficient.

We make the following technical contributions in this paper:

1
Non-dynamic types exclude only★ and include types where★ appear as their part, such as★→ Int.
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• We introduce a polymorphic coercion calculus 𝜆C∀
𝑚𝑝 , which is a variant of 𝜆C∀

by Ozaki et al.

[2021], with mostly parametric semantics, in which parametricity is enforced dynamically

only if the type argument to a polymorphic value is not the fully dynamic type ★. We prove

a relaxed version of parametricity and an example free theorem, together with its basic

properties, including type safety.

• We define another coercion calculus 𝜆S∀𝑚𝑝 with space-efficient coercions and show that 𝜆S∀

is space efficient.

• We give a formal translation from 𝜆C∀
𝑚𝑝 to 𝜆S∀𝑚𝑝 and prove that the translation preserves

typing and semantics. (As a byproduct, we have fixed a flaw in previous work [Siek et al.

2015a, 2021].)

The extension of space-efficient coercions to the mostly parametric polymorphism is not trivial.

First of all, in 𝜆C∀
𝑚𝑝 (as well as 𝜆C∀

), type variables can appear in coercion—in universal coercions

of the form ∀X .c for conversion between universal types, where c can refer to X for conversion

between X and ★. Thus, normalizing coercions into a simpler form has to deal with coercions with

type variables bound by ∀. However, coercions can behave differently, depending on whether the

type variable is instantiated with ★ or not during reduction. Thus, it appears difficult to compose

universal coercions before type variables are instantiated. We solve the problem by extending

the form of universal coercions to ∀X .c1 ,, c2 so that they keep two coercions: the one where the

type variable is instantiated by non-dynamic types and the other by ★. Then, component-wise

composition will work.

We note that the present work presents only theoretical results, although it is concerned about

an efficient implementation of gradually typed languages. It is left for future work to answer

empirical questions, such as whether the proposed extension of space-efficient coercions can really

be implemented efficiently (in terms of both time and space) or whether the relaxed parametricity

is practically useful.

Organization of the Paper. In Section 2, we review the work on space-efficient gradual typing.

The definition and basic properties of 𝜆C∀
𝑚𝑝 are presented in Section 3. Section 4 introduces 𝜆S∀𝑚𝑝 ,

gives a translation from 𝜆C∀
𝑚𝑝 to 𝜆S∀𝑚𝑝 , and shows that 𝜆S∀𝑚𝑝 is space-efficient and the translation

is type- and semantics-preserving. We discuss related work in Section 5 and conclude in Section 6.

This paper omits the formal definitions of some well-known notions, auxiliary lemmas, and

detailed proofs. The full definitions, lemmas, and proofs are found in the supplementary material.

2 BACKGROUND
This section reviews the problem of space efficiency in gradual typing and a solution to it. We first

briefly recall gradual typing and informally introduce the coercion calculus 𝜆C of Henglein [1994]

and Siek et al. [2015a, 2021] as an intermediate language for gradually typed languages. We then

present the space-efficiency problem, which states that coercions of unbounded size can appear at

run time, and the solution originally proposed by Herman et al. [2007, 2010] and later refined by

Siek et al. [2015a, 2021]. The essence of the solution is to normalize a sequence of coercions into a

simpler form, whose size is statically bounded by types.

2.1 Gradual Typing and the Coercion Calculus 𝜆C
The framework for gradual typing is usually presented with two languages: a surface language in

which programs are written and an intermediate language in which programs are executed. The

surface language introduces a special type (called “dynamic” and often written ★ or ?) to signify

dynamically typed portions in a program and has a type system that relaxes the usual static typing
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discipline. For example, consider a program

let x : ★ = M1 in let y : Int = M2 in x + y

in the surface language. The type system of the surface language is optimistic about the use of ★:

term M1 can be of an arbitrary type and x can be used as any type in its scope. The notion of type

consistency [Siek and Taha 2006] (or consistent subtyping [Siek and Taha 2007] if the language is

equipped with subtyping) is usually used to specify how static typing is relaxed. To compensate for

the relaxed static typing, the translation from the surface language to the intermediate language

inserts type conversions with run-time checks. For example, M1 is subject to conversion to ★

before x is bound and x is converted to Int before addition. The conversion from ★ to Int checks
dynamically whether x is really an integer and, if not, the program execution raises an exception.

We do not discuss the surface language or type consistency further, as our interest in this paper is

how dynamic checks are performed in the intermediate language.

The coercion calculus 𝜆C is an intermediate language for gradual typing. It exposes where

dynamic checking is performed by using coercions, which describe how a dynamic conversion from

one type to another is performed. For example, Int!, which is a coercion from Int to ★, is for adding
a type-tag to a raw integer to construct a tagged value—every value of the type ★ is a pair, written

V ⟨G!⟩, of a type-tag 𝐺 and a value V , such as 42⟨Int!⟩ and true⟨Bool!⟩. Conversely, Int?p, which
is a coercion from ★ to Int, is for tag-checking: It first checks that the type-tag of the input value
is the one for integers, and, if the check succeeds, removes the type-tag to return a raw integer;

or, if the check fails, an exception labeled 𝑝 will be raised. (The superscript p, called a blame label,
is used to identify which ?-coercion failed and is supposed to be useful in analyzing the cause of

a run-time error [Wadler and Findler 2009].) In general, !- and ?-coercions (called injections and
projections, respectively) are available for each kind of value (integers, Booleans, functions, etc.).

Given a coercion c, a term M ⟨c⟩ (called coercion application) applies coercion c to the value of

term M . Using the coercions introduced thus far, the example given at the beginning of this section

can be translated to the following term in 𝜆C:2

let x : ★ = M1 in let y : Int = M2 in (x⟨Int?p⟩) + y

where the variable x of the type★ is coerced to Int by projection Int?p before applying the addition,
which expects two Ints. If the value of 𝑥 does not come with the type-tag for integers, the program

fails before performing the addition. In general, the tag-checking step by a projection is expressed

by the following two reduction rules:

(V ⟨G!⟩)⟨G?p⟩ −→ V and (V ⟨G1!⟩)⟨G2?
p⟩ −→ blame p (G1 ≠ G2)

where blame p is a special term to denote a run-time error. For example, if M1 is 42⟨Int!⟩, then the

expression above reduces to (42⟨Int!⟩)⟨Int?p⟩ + V (V is the value of M2) and then to 42 + V . If M1

is true⟨Bool!⟩, the expression reduces to (true⟨Bool!⟩)⟨Int?p⟩ + V and then to blame p + V .
Henglein [1994] also introduced coercions for first-class functions. A function coercion, which

takes the form c → d, wraps a given function so that arguments and return values are coerced by

coercions c and d, respectively. For example, an application of the term (𝜆x :★.M)⟨Int! → Bool?p⟩
to a value V ′

reduces as follows:

((𝜆x :★.M)⟨Int! → Bool?p⟩) V ′ −→ ((𝜆x :★.M) (V ′⟨Int!⟩))⟨Bool?p⟩ .

2
This translation to 𝜆C can be performed automatically [Siek and Taha 2006; Siek et al. 2021]: we can find where coercions

are inserted from a typing derivation in the surface language.
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Here, the argument V ′
is first coerced to the dynamic type by the argument coercion Int! and then

passed to the function 𝜆x :★.M . Once a value of the dynamic type is returned, it is coerced to Bool
by Bool?p.

2.2 Space-Efficiency Problems in 𝜆C
Although 𝜆C offers an elegant formalism to implement gradual typing, a straightforward imple-

mentation would cause accumulation of coercions, causing undesirable space overhead, as first

observed by Herman et al. [2007, 2010]. For example, consider the following mutually recursive

functions 𝑒𝑣𝑒𝑛 and 𝑜𝑑𝑑 in gradual typing:

𝑒𝑣𝑒𝑛 : Int → ★
△
= 𝜆x : Int.if x = 0 then true else (𝑜𝑑𝑑 (x − 1))

𝑜𝑑𝑑 : Int → Bool
△
= 𝜆x : Int.if x = 0 then false else (𝑒𝑣𝑒𝑛 (x − 1))

The functions 𝑒𝑣𝑒𝑛 and 𝑜𝑑𝑑 return a Boolean value indicating whether an argument is even and

odd, respectively. Because these functions are written in tail-recursive form, one might expect that

a call to these functions only consumes a constant space. However, the fact that the return type of

𝑒𝑣𝑒𝑛 is specified to be ★ complicates the matter.

First, they translate to the following function definitions in 𝜆C:

𝑒𝑣𝑒𝑛C
△
= 𝜆x : Int.if x = 0 then (true⟨Bool!⟩) else ((𝑜𝑑𝑑C (x − 1))⟨Bool!⟩)

𝑜𝑑𝑑C
△
= 𝜆x : Int.if x = 0 then false else ((𝑒𝑣𝑒𝑛C (x − 1))⟨Bool?p⟩) .

Here, injections are inserted in 𝑒𝑣𝑒𝑛C because it has to return ★, whereas a projection is inserted in

𝑜𝑑𝑑C because it has to return Bool but 𝑒𝑣𝑒𝑛C returns ★. Notice that recursive calls are not at tail
positions any longer and unbounded growth of a term under reduction can occur. For instance, the

reduction of 𝑜𝑑𝑑C 4 proceeds as follows:

𝑜𝑑𝑑C 4 −→∗ (𝑒𝑣𝑒𝑛C 3)⟨Bool?p⟩
−→∗ (𝑜𝑑𝑑C 2)⟨Bool!⟩ ⟨Bool?p⟩
−→∗ (𝑒𝑣𝑒𝑛C 1)⟨Bool?p⟩ ⟨Bool!⟩ ⟨Bool?p⟩
−→∗ (𝑜𝑑𝑑C 0)⟨Bool!⟩ ⟨Bool?p⟩ ⟨Bool!⟩ ⟨Bool?p⟩
−→∗ false⟨Bool!⟩ ⟨Bool?p⟩ ⟨Bool!⟩ ⟨Bool?p⟩ −→∗ false .

As the reduction sequence indicates, each time 𝑒𝑣𝑒𝑛C and 𝑜𝑑𝑑C are called, a new coercion emerges

to convert the call result. Such coercions would have to be stored in call stacks because they must

be applied after the function call finishes and control gets back. As a result, the execution needs

a stack space that the program size cannot bound. Even worse, non-terminating programs may

consume infinite spaces for storing coercions.

Aside from coercions at tail positions, function coercions also cause accumulation of coercions

because function coercions can nest an arbitrary number of times on a function value. In fact, it is

reported that programs that intensively use wrappers for checking the behavior of functions can

exhibit catastrophic overhead [Takikawa et al. 2016].

Herman et al. solved this problem theoretically by refining the semantics of 𝜆C so that nested

coercions are normalized to simpler ones at run time. For example, we can find that application

of coercions M ⟨Bool!⟩ ⟨Bool?p⟩ is equivalent to M ⟨idBool⟩ because applying projection ⟨Bool?p⟩
to values injected by ⟨Bool!⟩ always succeeds. Also, nested function coercions M ⟨Bool?p1 →
Int!⟩ ⟨Bool! → Int?p2⟩ are equivalent to M ⟨(Bool! ; Bool?p1 ) → (Int! ; Int?p2 )⟩, which further

simplifies to M ⟨idBool → idInt⟩. They generalized this idea and defined coercion normalization.

Once we allow the reductionM ⟨c1⟩ ⟨c2⟩ −→ M ⟨c3⟩, which normalizes c1 and c2 into c3 even before

reducing M , the above example reduces as follows:
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𝑜𝑑𝑑C 4 −→∗ (𝑒𝑣𝑒𝑛C 3)⟨Bool?p⟩
−→∗ (𝑜𝑑𝑑C (3 − 1))⟨Bool!⟩ ⟨Bool?p⟩ −→ (𝑜𝑑𝑑C (3 − 1))⟨idBool⟩
−→∗ (𝑒𝑣𝑒𝑛C (2 − 1))⟨Bool?p⟩ ⟨idBool⟩ −→ (𝑒𝑣𝑒𝑛C (2 − 1))⟨Bool?p⟩
−→∗ (𝑜𝑑𝑑C (1 − 1))⟨Bool!⟩ ⟨Bool?p⟩ −→ (𝑜𝑑𝑑C (1 − 1))⟨idBool⟩
−→∗ false⟨idBool⟩ −→ false .

Because consecutively applied coercions are immediately normalized, the number of coercions

emerging during the reduction can increase only by a constant factor. Furthermore, Herman et

al. proved that the size of a normalized coercion is bounded by the height of the largest type in

the original program before the insertion of coercions. By combining the two results, a coercion

calculus with the reduction of composing coercions can be proven space-efficient.

Siek et al. [2015a, 2021] refined the result of Herman et al., who had given coercion normalization

without taking blame labels into account. Siek et al. formulated blame-aware normalization as a

meta-level operation c # d that collapses the composition of c and d into a simpler coercion. For

example, Bool! # Bool?p returns idBool and Bool?p # idBool returns Bool?p.3 They also developed a

“space-efficient” coercion calculus 𝜆S and provided a fully abstract translation from 𝜆C to 𝜆S.

2.3 Parametrically Polymorphic Gradual Typing Cannot Be Made Space-Efficient
Ozaki et al. [2021] extended 𝜆C to a parametrically polymorphic coercion calculus 𝜆C∀

by applying

the idea of dynamic sealing, which is a standard approach to achieving parametricity in gradual

typing [Ahmed et al. 2011, 2017; Igarashi et al. 2017; New et al. 2020; Toro et al. 2019] (as far as

we know, there is no polymorphic gradually typed language that satisfies parametricity without

resting on dynamic sealing). Ahmed et al. [2011] noticed that the usual type-level 𝛽-reduction

(ΛX .M) A −→ M [X := A] with type substitution [X := A] breaks parametricity. For recovering

parametricity, they introduced dynamic sealing [Abadi et al. 1995; Matthews and Ahmed 2008;

Morris 1973; Pierce and Sumii 2000], which seals the actual type parameter A with a fresh type

name 𝛼 generated at run time. The generated name 𝛼 is recorded and associated with the type A in

a name store Σ. Formally, the reduction relation with dynamic sealing is expressed as a four-place

relation Σ ⊲ M −→ Σ′ ⊲ M′
and the reduction of type applications is formulated as follows:

Σ ⊲ (ΛX .M) A −→ Σ, 𝛼 := A ⊲ M [X := 𝛼]
Ozaki et al. introduced new forms of coercions to embody parametricity ensured by dynamic

sealing in a coercion calculus. For example, they extended the type-tags in injections to involve type

variables and names. This extension allows a term ΛX .𝜆x :X .x⟨X !⟩, which takes a type parameter X
and value parameter x and then returns x coerced to★ via the coercion X !, to be typed at ∀X .X → ★.

Furthermore, its application to a type A and a value V of the type A reduces as follows:

Σ ⊲ (ΛX .𝜆x :X .x⟨X !⟩) AV −→ Σ, 𝛼 := A ⊲ (𝜆x :𝛼.x⟨𝛼!⟩) V −→ Σ, 𝛼 := A ⊲ V ⟨𝛼!⟩ (𝛼 is fresh) .

In the result, the value V is coerced to ★ via the injection ⟨𝛼!⟩. Their calculus 𝜆C∀
allows V to be

typed at the type name 𝛼 associated with its type A by the name store Σ, 𝛼 := A.4 As 𝛼 is fresh, the

context cannot know it. Therefore, after the reduction, the context cannot remove the tag 𝛼 : any

attempt to remove the tag by a projection must fail. Because this behavior is independent of the type

argument A, the use of the freshly generated type name 𝛼 makes the behavior of ΛX .𝜆x :X .x⟨X !⟩
uniform whatever type argument is passed.

While dynamic sealing is thus crucial to make polymorphic gradual typing parametric, Ozaki et

al. also discovered that it prevents 𝜆C∀
from being space-efficient. They gave a type-name-free

recursive program that, for any number n, can reduce to Σ ⊲ M ⟨𝛼1!⟩ · · · ⟨𝛼n!⟩ for some term M ,

3
Precisely speaking, Bool! and Bool?p are represented by idBool ; Bool! and Bool?p ; idBool, respectively, in Siek et al. [2021].

4
More precisely, 𝜆C∀

provides coercions to convert a value of the type A to the type name 𝛼 and vice versa.
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generated type names 𝛼1, · · · , 𝛼n, and name store Σ that associates each 𝛼i with ★. To make 𝜆C∀

space-efficient, we need to simplify the coercion sequence 𝛼1!, · · · , 𝛼n! in a meaning-preserving

way; otherwise, the total size of coercions appearing during the reduction can grow unboundedly,

resulting in the break of space efficiency. However, it is impossible: the only way to simplify

𝛼1!, · · · , 𝛼n! is to drop some projection 𝛼i!, but it changes the original meaning. It is notable that

associating each 𝛼i with ★ by Σ is important to typecheck M ⟨𝛼1!⟩ · · · ⟨𝛼n!⟩ because, in general, for

a term M ⟨𝛼1!⟩ ⟨𝛼2!⟩ to be well typed, 𝛼2 is required to be associated with the type ★ of M ⟨𝛼1!⟩.

3 POLYMORPHIC COERCION CALCULUS 𝜆C∀
𝑚𝑝

The proof of the impossibility of a space-efficient implementation [Ozaki et al. 2021] relies on a

sequence of coercion applications M ⟨𝛼1!⟩ · · · ⟨𝛼n!⟩ of an unbounded length with different names. It

may appear that unbounded name generation is problematic but it is not: it is possible to construct a

program that generates only one name 𝛼 and, for any n,M ⟨𝛼 !⟩ · · · ⟨𝛼 !⟩ with n coercions 𝛼 ! and prove
that ⟨𝛼!⟩ · · · ⟨𝛼!⟩ cannot be simplified into a smaller coercion (see the supplementary material).

This fact suggests that the root cause of the problem is not name generation but a type name
associated with ★. In fact, in the conclusion of their paper, Ozaki et al. [2021] have conjectured that

prohibiting★ as a type argument might make a space-efficient calculus with a comment that such a

restriction would be too severe, as passing★would play an important role when dynamically typed

and polymorphic code interact—especially when dynamically typed code accesses polymorphically

typed code through the dynamic type, as argued by Ahmed et al. [2011].

We advance the insight by Ozaki et al. [2021] one step further and argue rigorously that what

hampers space efficiency is a type name associated with ★. Our key idea is to allow ★ to be passed
but give up parametricity to some extent, rather than to disallow ★ completely. More specifically, we

change the semantics of 𝜆C∀
so that type-level 𝛽-reduction does not generate a type name if the

type argument is ★:

Σ ⊲ (ΛX .M) A −→
{
Σ ⊲ M [X := ★] (if A = ★)
Σ, 𝛼 := A ⊲ M [X := 𝛼] (otherwise)

The price we pay is the loss of parametricity. However, the loss is, we believe, slight—for a type

that includes the dynamic type as a part of it (such as ★→ ★), type names will be generated and

parametric behavior will be (dynamically) checked. We think this is a reasonable compromise as

the use of ★ as a type argument would suggest that this part of code is not yet ready to enjoy

the benefits static types could give.
5
As far as we know, the new semantics does not lose other

important properties as a gradually typed language.

This section develops 𝜆C∀
𝑚𝑝 , a “mostly parametric” version of 𝜆C∀

, and shows its basic properties

including type soundness and (a relaxed notion of) parametricity. The calculus 𝜆C∀
𝑚𝑝 is defined in

a manner similar to 𝜆C∀
except that: the type-level 𝛽-reduction in 𝜆C∀

is parametric while that in

𝜆C∀
𝑚𝑝 is not; and type variables are used to represent type names in 𝜆C∀

while type names and

variables are distinguished in 𝜆C∀
𝑚𝑝 (following Ahmed et al. [2017]). What we do not study is the

dynamic gradual guarantee (DGG) [Siek et al. 2015b]. Actually, we expect neither 𝜆C∀
nor 𝜆C∀

𝑚𝑝

5
There is a design space to reduce the loss further. For instance, consider a semantics where (ΛX .M ) A generates no type

name if A is ★ or M does not involve coercions of the form ⟨X !⟩. This semantics seems space-efficient, as a coercion ⟨𝛼 !⟩
is generated only for 𝛼 not associated with★, and it allows more programs to benefit from parametricity. However, it is

unclear whether we could receive a satisfactory payoff of implementing such a complex semantics. The present work rather

aims to establish a reasonable compromise—giving up parametricity only when★ is passed—for space efficiency, not to

explore “necessary” conditions of space-efficient polymorphic gradual typing.
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Base types 𝜄 Blame labels p, q Type variables X , Y
Types A, B,C ::= 𝜄 | ★ | A → B | ∀X .A | X | 𝛼

Ground types G,H ::= 𝜄 | ★→ ★ | ∀X .★ | X | 𝛼
Coercions c, d ::= idA | G! | G?p | 𝛼− | 𝛼+ | c → d | ∀X .c | c ; d | ⊥p

A⇝B
Terms M ::= x | U | MM | M A | M ⟨c⟩ | blame p

Uncoerced Values U ::= k | 𝜆x :A.M | ΛX .(M : A)
Values V ::= U | V ⟨𝛼−⟩ | V ⟨G!⟩ | V ⟨c → d⟩ | V ⟨∀X .c⟩
Frames E ::= □M | V □ | □A | □⟨c⟩

Type environments Γ ::= ∅ | Γ, x : A | Γ,X
Stores Σ ::= ∅ | Σ, 𝛼 := A

Fig. 1. Polymorphic Coercion Calculus 𝜆C∀
𝑚𝑝 : Syntax

enjoys this property because they are similar to GSF, a polymorphic gradually typed language

studied by Toro et al. [2019], which is proven to invalidate the DGG.

3.1 Syntax
Figure 1 presents the syntax of 𝜆C∀

𝑚𝑝 . Let 𝜄 range over base types, which include Int, Bool, and Str.
The set of types, ranged over by A, B, consists of base types 𝜄, the dynamic type ★, function types

A → B, universal types ∀X .A, type variables X , and type names 𝛼 . A universal type ∀X .A binds

the type variable X in A. The set of ground types, ranged over by G,H , consists of base types 𝜄,

the function type ★→ ★, the universal type ∀X .★, type variables, and type names. Ground types

represent type tags attached to values of the dynamic type and used for injections and projections.

The ground type ∀X .★ represents the tag for type abstractions. We use metavariables A, B, and C
to denote types that are not the dynamic type ★. Let p, q range over blame labels, which represent

program points to identify where run-time checking fails.

The set of coercions, ranged over by c, d, consists of identity coercions idA, injections G!, pro-
jections G?p, concealment 𝛼−

, revelation 𝛼+
, function coercions c → d, universal coercions ∀X .c,

sequential compositions c ; d, and failure coercions ⊥p
A⇝B. Concealment and revelation, which

correspond to static casts in Ahmed et al. [2011], conversions in Ahmed et al. [2017], and seal-

ing/unsealing operations in New et al. [2020], are conversions between 𝛼 and Σ(𝛼), the type that 𝛼
is associated with in store Σ. A universal coercion ∀X .c, which binds the type variable X in c, works
as a conversion between universal types: if c is a coercion from A to B, then ∀X .c is from ∀X .A to

∀X .B. For example, a coercion from type ∀X .★ → ★ to type ∀X .X → X is written ∀X .X ! → X?p.
There is no coercion from a universal type, say ∀X .X → X , to function types, say Int → Int or
★→ ★; such type conversion is possible only by type application. This design is (partially) based

on the separation of gradual typing and polymorphism as orthogonal issues—the policy advocated

by Xie et al. [2018] and followed by recent calculi [New et al. 2020; Toro et al. 2019]. As its name

suggests, a failure coercion represents a failure and raises blame if it is applied to a value. As we see

later, the semantics relies on the uniqueness of coercion typing; thus, a failure coercion is annotated

with source type A and target type B.
The set of terms, ranged over by M , consists of: constants k including integers, Booleans (true

and false), and first-order primitive functions; variables x; function abstractions 𝜆x :A.M ; function

applications M1 M2; type abstractions ΛX .(M : A); type applications M A; coercion applications

M ⟨c⟩; and run-time errors blame p, which are raised by the failure of a projection G?p or applica-
tion of a failure coercion ⊥p

A⇝B. As in 𝜆C∀
[Ozaki et al. 2021], the body of a type abstraction is

annotated with its type for making the semantics deterministic; we will see it in detail shortly. A
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Coercion typing Σ | Γ ⊢ c : A⇝ B

⊢ Σ Σ ⊢ Γ Σ | Γ ⊢ A
(Ct_Id_C)

Σ | Γ ⊢ idA : A⇝ A

⊢ Σ Σ ⊢ Γ Σ | Γ ⊢ G
(Ct_Inj_C)

Σ | Γ ⊢ G! : G⇝ ★

⊢ Σ Σ ⊢ Γ Σ | Γ ⊢ G
(Ct_Proj_C)

Σ | Γ ⊢ G?p : ★⇝ G

Σ | Γ ⊢ c : A′ ⇝ A
Σ | Γ ⊢ d : B⇝ B′

(Ct_Arr_C)

Σ | Γ ⊢ c → d : (A → B) ⇝ (A′ → B′)

Σ | Γ ⊢ c : A⇝ B
Σ | Γ ⊢ d : B⇝ C

(Ct_Seq_C)

Σ | Γ ⊢ c ; d : A⇝ C

⊢ Σ Σ ⊢ Γ 𝛼 := A ∈ Σ
(Ct_Conceal_C)

Σ | Γ ⊢ 𝛼−
: A⇝ 𝛼

⊢ Σ Σ ⊢ Γ 𝛼 := A ∈ Σ
(Ct_Reveal_C)

Σ | Γ ⊢ 𝛼+
: 𝛼 ⇝ A

Σ | Γ,X ⊢ c : A⇝ B
(Ct_All_C)

Σ | Γ ⊢ ∀X .c : ∀X .A⇝ ∀X .B
⊢ Σ Σ ⊢ Γ Σ | Γ ⊢ A Σ | Γ ⊢ B

(Ct_Fail_C)

Σ | Γ ⊢ ⊥p
A⇝B : A⇝ B

Term typing Σ | Γ ⊢ M : A

⊢ Σ Σ ⊢ Γ ty(k) = A
(T_Const_C)

Σ | Γ ⊢ k : A
Σ | Γ ⊢ M : A Σ | Γ ⊢ c : A⇝ B

(T_Crc_C)

Σ | Γ ⊢ M ⟨c⟩ : B

Fig. 2. Polymorphic Coercion Calculus 𝜆C∀
𝑚𝑝 : Typing

function abstraction 𝜆x :A.M binds the variable x in M , and a type abstraction ΛX .(M : A) binds
the type variable X in M and A. Values, ranged over by V , are constants, function abstractions,

type abstractions, or values with a concealment coercion V ⟨𝛼−⟩, an injection coercion V ⟨G!⟩, a
function coercion V ⟨c → d⟩, or a universal coercion V ⟨∀X .c⟩. The values of the first three forms

are also called uncoerced values, ranged over by U .

Let E range over frames, which are single-level evaluation contexts [Siek et al. 2021] to express

standard left-to-right evaluation. Let Γ range over type environments. A type environment is a

sequence of (1) pairs of a variable and its type x : A and (2) type variables X . Let Σ range over stores.
A store is a sequence of pairs 𝛼 := A of a type name and a non-dynamic type. We assume that all

variables (x in Γ1, x : A, Γ2) and type variables (X in Γ1,X , Γ2) in a type environment and all type

names in a store are pair-wise distinct.

The set of free variables in a term and the sets of free type variables in a term, a coercion, and a

type are defined in a standard manner. We define 𝛼-conversion in the standard manner and identify

𝛼-equivalent types, coercions, and terms. We write M [x := V ] for capture-avoiding substitution
of V for x in M and B[X := A] for capture-avoiding type substitution of A for X in B. They are

defined straightforwardly. The only possible forms of type substitutions applied to coercions and

terms are [X := 𝛼] or [X := ★]. The latter (for coercions) needs a little ingenuity: X?p [X := ★] and
X ![X := ★] are defined to be id★. Otherwise, it is straightforward.

3.2 Type System
Figure 2 presents the type system, which consists of five judgment forms: type well-formedness

Σ | Γ ⊢ A, which means that type A is well formed under store Σ and type environment Γ; store well-
formedness ⊢ Σ, which means that store Σ is well formed; type environment well-formedness Σ ⊢ Γ,
which means that type environment Γ is well formed under Σ; coercion typing Σ | Γ ⊢ c : A⇝ B,
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which means that c is a well-formed coercion from source type A to target type B; and term typing

Σ | Γ ⊢ M : A, which means term M is given type A under store Σ and type environment Γ. We

omit the well-formedness rules because they are defined in a straightforward manner. Interested

readers are referred to the supplementary material.

The rules for coercion typing are a straightforward adaptation of previous work on coer-

cions [Henglein 1994; Siek et al. 2021]. An identity coercion idA is a coercion from A to itself.

An injection is typed as a coercion from a ground type G to ★, and, conversely, a projection G?p is
from ★ to G. Similarly, a concealment 𝛼−

converts A to 𝛼 , where 𝛼 is associated with A in Σ, and a

revelation 𝛼+
is its converse. A function coercion c → d is a coercion from a function type A → B

to a function type A′ → B′ if c coerces A′
to A and d coerces B to B′. The coercion constructor →

is contravariant in the coercion c for arguments. A composition coercion c ; d, which applies c and
d in this order, is from A to C if c coerces A to B and d coerces B to C. The typing for universal

coercions ∀X .c is not surprising; ∀X .c is from a universal type ∀X .A to a universal type ∀X .B if c
coerces A to B under a type environment augmented with X . A failure coercion ⊥p

A⇝B is given the

declared source and target types.

The rules for term typing are also straightforward; we show only a few rules that deserve remarks.

In (T_Const_C), ty is a (meta-level) function that maps a constant k to a first-order type of the

form 𝜄1 → 𝜄2 → · · · → 𝜄n (𝑛 ≥ 1). The rule (T_Crc_C) means that a term M ⟨c⟩ is of type B if M of

type A is coerced by c of A⇝ B.

3.3 Operational Semantics
Figure 3 defines the reduction relation, which involves stores and is written Σ ⊲ M −→ Σ′ ⊲ M′

. If

the stores are the same on both sides, that is Σ = Σ′
, we omit them. For example, the rule (R_Beta_C)

is understood as Σ ⊲ (𝜆x :A.M) V −→ Σ ⊲ M [x := V ].
Most rules are a straightforward adaptation of previous coercion calculi [Henglein 1994; Siek et al.

2021]. We first explain the rules except (R_TybetaDyn_C) and (R_Tybeta_C). The rule (R_Delta_C)

reduces an application of a primitive function. Here, 𝛿 is a meta-level partial function from two

constants to another and is supposed to preserve types in the sense that 𝑡𝑦 (k1) = 𝜄 → A and

𝑡𝑦 (k2) = 𝜄 imply 𝑡𝑦 (𝛿 (k1, k2)) = A. The rule (R_Beta_C) represents standard 𝛽-reduction. The rule

(R_Id_C) means that an identity coercion is an identity function. The rule (R_Wrap_C) reduces a

function application where the function is wrapped by a function coercion c → d. The coercion c is
applied to the argument and the coercion d is applied to the return value. The rules (R_Collapse_C)

and (R_Conflict_C) represent type tag checking: (R_Collapse_C) is for the case that V passes the

check because the ground types in the injection and projection are the same; they are removed after

reduction. The rule (R_Conflict_C) is for the case that V does not pass because the ground types

in the injection and projection are different; the term reduces to blame p with label p attached to

the projection. The rule (R_Remove_C) represents that a concealment is canceled by a revelation;

unlike tag checking, the type variables in the concealment and revelation are necessarily the same

in a well-typed term. The rule (R_Split_C) splits a composition coercion into two consecutively

applied coercions. The rule (R_Fail_C) means that ⊥p
A⇝B raises blame. The rule (R_Ctx_C) is

standard, which allows a subterm to reduce and the rule (R_Blame_C) pulls out a run-time error

blame p by discarding the current frame.

The rules (R_TybetaDyn_C) and (R_Tybeta_C) are to reduce an application of a type abstraction

to a type argument. In these rules, ⟨c⟩ stands for a sequence of zero or more coercion applications,

i.e., ⟨c1⟩ · · · ⟨cn⟩. Thus, the left-hand side (ΛX .(M : A0))⟨∀X .c⟩ B represents that a type abstraction

with a sequence of universal coercions is applied to type argument B. The former (R_TybetaDyn_C)

means that an application to ★ does not generate a type name and ★ is substituted for the type
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Coercion generation coerce+𝛼 (A) = c, coerce−𝛼 (A) = c

coerce±𝛼 (𝜄) = id𝜄 coerce±𝛼 (★) = id★ coerce±𝛼 (∀X .A) = ∀X .(coerce±𝛼 (A))
coerce±𝛼 (X ) = idX coerce±𝛼 (𝛼) = 𝛼± coerce±𝛼 (𝛽) = id𝛽 (if 𝛽 ≠ 𝛼)

coerce±𝛼 (A → B) = coerce∓𝛼 (A) → coerce±𝛼 (B)

Reduction Σ ⊲ M −→ Σ′ ⊲ M′

k1 k2 −→ 𝛿 (k1, k2) (R_Delta_C)

(𝜆x :A.M) V −→ M [x := V ] (R_Beta_C)

V ⟨idA⟩ −→ V (R_Id_C)

(V ⟨c → d⟩) V ′ −→ (V (V ′⟨c⟩))⟨d⟩ (R_Wrap_C)

V ⟨G!⟩ ⟨G?p⟩ −→ V (R_Collapse_C)

V ⟨G!⟩ ⟨H?
p⟩ −→ blame p (G ≠ H ) (R_Conflict_C)

V ⟨𝛼−⟩ ⟨𝛼+⟩ −→ V (R_Remove_C)

V ⟨c ; d⟩ −→ V ⟨c⟩ ⟨d⟩ (R_Split_C)

V ⟨⊥p
A⇝B⟩ −→ blame p (R_Fail_C)

(ΛX .(M : A0))⟨∀X .c⟩★ −→ (M ⟨c⟩) [X := ★] (R_TybetaDyn_C)

Σ ⊢ ⟨∀X .c⟩ : ∀X .A0 ⇝ ∀X .An
(R_Tybeta_C)

Σ ⊲ (ΛX .(M : A0))⟨∀X .c⟩ B
−→ Σ, 𝛼 := B ⊲ ((M ⟨c⟩) [X := 𝛼])⟨coerce+𝛼 (An [X := 𝛼])⟩

Σ ⊲ M −→ Σ′ ⊲ M′
(R_Ctx_C)

Σ ⊲ E[M] −→ Σ′ ⊲ E[M′] E[blame p] −→ blame p (R_Blame_C)

Fig. 3. Polymorphic Coercion Calculus 𝜆C∀
𝑚𝑝 : Operational Semantics

parameter X in the body of the type abstraction with coercions. The latter, which is the most

complex, ensures parametric behavior dynamically. First, the premise Σ ⊢ ⟨∀X .c⟩ : ∀X .A0 ⇝ ∀X .An
means that there exist some types A1, · · · ,An−1 such that Σ | ∅ ⊢ ∀X .c𝑖 : ∀X .A𝑖−1 ⇝ ∀X .A𝑖 , for all

𝑖 ∈ {1, . . . , 𝑛}. The type annotations in type abstractions and failure coercions allow the type An to

be determined uniquely. The reduction step generates a fresh type name 𝛼 , extends the store Σ
by 𝛼 := B, substitutes 𝛼 for X in the bodies of the type abstraction and all the coercions at once.

Furthermore, a coercion coerce+𝛼 (An [X := 𝛼]) is applied; it is a coercion from An [X := 𝛼], the
type of (M ⟨c⟩) [X := 𝛼], to An [X := B], the type of the original term. The two auxiliary functions

coerce+𝛼 (A) and coerce−𝛼 (A), defined at the top of Figure 3, generate—if 𝛼 := B is in Σ—coercions from
A to A[𝛼 := B] and from A[𝛼 := B] to A, respectively.6 For example, (ΛX .(M0 : ★→ ★))⟨∀X .X ! →
X?p⟩ Int 42 of type ∀X .X → X reduces as follows:

Σ ⊲ (ΛX .(M0 : ★→ ★))⟨∀X .X ! → X?p⟩ Int 42
−→ Σ, 𝛼 := Int ⊲ (M0 [X := 𝛼])⟨𝛼! → 𝛼?p⟩ ⟨𝛼− → 𝛼+⟩ 42
−→∗ Σ, 𝛼 := Int ⊲ (M0 [X := 𝛼]) (42⟨𝛼−⟩⟨𝛼!⟩)⟨𝛼?p⟩⟨𝛼+⟩ .

If (M0 [X := 𝛼]) (42⟨𝛼−⟩⟨𝛼 !⟩) returns 42⟨𝛼−⟩ ⟨𝛼 !⟩, then the reduction ends at 42 by canceling 𝛼 ! by

𝛼?p and 𝛼−
by 𝛼+

.

Remark: The whole sequence of universal coercions is processed in one step, unlike function

coercions applied to an abstraction. This behavior, which can be found elsewhere [New et al. 2020;

6
Here, we write A[𝛼 := B] for the type obtained by replacing 𝛼 in A with B.
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Toro et al. 2019], means that the bound type variables in the sequence are considered the same.

Readers are referred to Ozaki et al. [2021] for more detailed discussions on why the sequence has

to be processed at once.

3.4 Basic Properties
The calculus 𝜆C∀

𝑚𝑝 enjoys determinacy of reduction (Theorem 3.1) and type safety (Theorem 3.2).

To show the determinacy of reduction, we extend 𝛼-equivalence to Σ ⊲ M in a straightforward

manner—by considering type names defined in Σ bound in M . For example, 𝛼 := Int ⊲ 42⟨𝛼−⟩ and
𝛽 := Int ⊲ 42⟨𝛽−⟩ are 𝛼-equivalent and, thus, identified.
Theorem 3.1 (Determinacy of Reduction). If Σ ⊲ M −→ Σ1 ⊲ M1 and Σ ⊲ M −→ Σ2 ⊲ M2,

then Σ1 = Σ2 and M1 = M2.

Type safety follows from progress and preservation [Wright and Felleisen 1994]. We write −→∗

for the reflexive transitive closure of −→, and Σ ⊲ M ⇑ if and only if there is an infinite reduction

sequence starting from Σ ⊲ M .

Theorem 3.2 (Type safety). If Σ | ∅ ⊢ M : A, then one of the followings holds: (1) Σ ⊲ M −→∗

Σ′ ⊲ V for some store Σ′ and value V such that Σ′ | ∅ ⊢ V : A; (2) Σ ⊲ M −→∗ Σ′ ⊲ blame p for
some store Σ′ and blame label p; or (3) Σ ⊲ M ⇑.

3.5 Parametricity
The calculus 𝜆C∀

𝑚𝑝 is mostly parametric in that, given a polymorphic value V , type applications V A
and V B behave in the sameway if neitherA nor B is★ (or, trivially, both are★). In other words, if, say,

A ≠ ★ and B = ★, V A and V B may behave differently because V A prevents V from inspecting the

actual type A by dynamic sealing while V ★ does not. For instance, we can find such non-parametric

behavior when V = ΛX .0⟨Int!⟩⟨X?p⟩ because then ∅ ⊲ V A −→ 𝛼 := A ⊲ 0⟨Int!⟩⟨𝛼?p⟩ −→ blame p
while ∅ ⊲ V ★ −→ ∅ ⊲ 0⟨Int!⟩⟨id★⟩ −→ 0⟨Int!⟩.

To state this “mostly parametric” nature of 𝜆C∀
𝑚𝑝 formally, we give a step-indexed Kripke logical

relation. Due to the space limitation, the paper only explains the crux of the logical relation; see

the supplementary material for details. Our logical relation is defined in a way similar to that for a

polymorphic blame calculus given by Ahmed et al. [2017] except for the treatment of polymorphic

values. Ahmed et al.’s logical relation relates closed values V1 and V2 at a polymorphic type ∀X .A if,

for any types B1 and B2, (the one-step reduction results of) type applications V1 B1 and V2 B2 are
related at the type A under an arbitrary relational interpretation for the bound type variable X .
By contrast, our logical relation relates V1 and V2 at ∀X .A if either of the following holds: for any

non-dynamic types B1 and B2, (the one-step reduction results of) type applications V1 B1 and V2 B2
are related at the type A under any relational interpretation for X ; or V1★ and V2★ are related at the

type A[X := ★]. Note that the relational interpretation in relating V1★ and V2★ is not arbitrary (in

fact, it is fixed to the value relation of the type★ implicitly). This is because some polymorphic values

can distinguish between different interpretations. For instance, let V = ΛX .𝜆x :X .x⟨X !⟩⟨Int?p⟩.
Then, V ★ (0⟨Int!⟩) −→∗

0 while V ★ (true⟨Bool!⟩) −→∗ blame p. Therefore, the value V can

distinguish between the interpretations 0⟨Int!⟩ and true⟨Bool!⟩ for the type variable X .
We extend the logical relation over closed terms to open terms, written as Σ | Γ ⊢ M1 ≈ M2 : A,

and prove that the fundamental property and the soundness with respect to contextual equivalence

Σ | Γ ⊢ M1

ctx

= M2 : A (see the supplementary material for the formal definition).

Theorem 3.3 (Fundamental Property). If Σ | Γ ⊢ M : A, then Σ | Γ ⊢ M ≈ M : A.

Theorem 3.4 (Soundness w.r.t. Contextual Eqivalence). If Σ | Γ ⊢ M1 ≈ M2 : A, then
Σ | Γ ⊢ M1

ctx

= M2 : A.
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The logical relation is also useful as a tool to reason about the behavior of programs. Although

no usual free theorem [Wadler 1989] is available in 𝜆C∀
𝑚𝑝 because the behavior of polymorphic

values may depend on type arguments there, we can derive theorems that predict how polymorphic

values behave when they are applied to non-dynamic types. For example, the following theorem

states that any closed value of type ∀X .∀Y .X → Y → X behaves as the K combinator, raises blame,

or diverges. It can be proven using the logical relation, as Ahmed et al. [2017] did.

Theorem 3.5 (Free Theorem: K-Combinator). If Σ | ∅ ⊢ V : ∀X .∀Y .X → Y → X and
Σ | ∅ ⊢ V1 : A and Σ | ∅ ⊢ V2 : B, then one of the following holds: (1) Σ ⊲ V ABV1 V2 −→∗ Σ′ ⊲ V ′

1

and Σ′ | ∅ ⊢ V ′
1

ctx

= V1 : A for some Σ′ and V ′
1
; (2) Σ ⊲ V ABV1 V2 −→∗ Σ′ ⊲ blame p for some Σ′

and p; or (3) Σ ⊲ V ABV1 V2 ⇑.

4 SPACE-EFFICIENT POLYMORPHIC COERCION CALCULUS 𝜆S∀𝑚𝑝

This section presents yet another coercion calculus 𝜆S∀𝑚𝑝 . It works as a space-efficient implementa-

tion of 𝜆C∀
𝑚𝑝 by eagerly normalizing a sequence of consecutively applied coercions into a canonical

form. As we detail later, concealment and revelation make it complicated to discuss space efficiency

formally; thus, they are implicit in 𝜆S∀𝑚𝑝 , as in some of the early calculi for polymorphic gradual

typing [Ahmed et al. 2011; Igarashi et al. 2017]. We also state that 𝜆S∀𝑚𝑝 implements 𝜆C∀
𝑚𝑝 correctly

by providing a type- and semantics-preserving translation from 𝜆C∀
𝑚𝑝 to 𝜆S∀𝑚𝑝 .

4.1 Space-Efficient Coercions for Mostly Parametric Polymorphism
𝜆S∀𝑚𝑝 inherits space-efficient coercions, ranged over by s and t, from 𝜆S [Siek et al. 2015a, 2021].

Space-efficient coercions can be specified by the following regular schema (regular expression

constructors are displayed in red):

( G1?
p
; )? ( ⊥p | (g ( ;G2! )?)) .

A space-efficient coercion starts with an optional projection coercion G1?
p
, followed by either a

failure coercion ⊥p
or a ground coercion g—an identity coercion, a function coercion, or a universal

coercion—followed by an optional injection coercion G2!.

One fundamental property of space-efficient coercions is that the composition of two space-

efficient coercions s and t (where the target type of first is the source of the other) can always be

expressed by another space-efficient coercion. To express such a composed coercion, we introduce

(a meta-level function) s # t. For example, let s = idInt ; Int! : Int⇝ ★, which adds the injection tag

Int! to an integer, and t = Int?p ; idInt : ★⇝ Int, which checks if the value has Int! and removes it.

Then, s # t = idInt, by canceling tagging followed by untagging. However, we have s # t′ = ⊥p
for

t′ = Bool?p ; idBool, because the tags added by s and checked by t′ do not match. In general,

(g1 ;G2!) # (H1?
q
; g2) =

{
g1 # g2 (if G2 = H1)
⊥q (if G2 ≠ H1)

holds in the simply-typed setting, where G and H are concrete types.

Polymorphic typing, however, complicates this meta-level composition because injection and

projection can involve type variables. The question here is what the composition of, say, ∀X .idX ;X !
(from ∀X .X to ∀X .★) and ∀X .Int?p ; idInt (from ∀X .★ to ∀X .Int) should be. In fact, the answer depends

on how these variables are instantiated at run time. Since, in 𝜆C∀
𝑚𝑝 , a type variable is instantiated

with either a fresh type name or ★, there are two cases:

(1) In the case where X is instantiated with ★, the first coercion behaves as the identity coercion

id★ and the composition will be Int?p ; idInt;
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(2) In the case where X is instantiated with a type name 𝛼 , the composition will be ⊥p
because

𝛼 and Int cannot be the same.

It is unknown, however, which case will happen at run time and, thus, we have to keep both

versions in a single coercion.

To keep different versions that arise after type substitution, we extend the syntax of the universal

coercions to ∀X .s ,, t.7 The coercion s represents the behavior where X is instantiated with a type

name and the second the behavior where X is with ★. For example, ∀X .idX ; X ! and ∀X .Int?p ; idInt
are actually written ∀X .((idX ; X !) ,, (id★)) and ∀X .((Int?p ; idInt) ,, (Int?p ; idInt)), respectively, and
we can compose them as follows.

(∀X .((idX ; X !) ,, (id★))) # (∀X .((Int?p ; idInt) ,, (Int?p ; idInt)))
= ∀X .((idX ; X !) # (Int?p ; idInt)) ,, (id★ # (Int?p ; idInt))
= ∀X .(⊥p ,, (Int?p ; idInt))

If X is instantiated with a type name later, ⊥p
will be chosen; otherwise, Int?p ; idInt will be chosen.

The extension relies on the fact that only a type name or ★ is substituted for a type variable and

different type variables cannot be instantiated with the same type name. If the semantics were

based on type substitution [X := A] of arbitrary types to discard mostly parametric semantics, we

might have to list all the possible behaviors in a universal coercion, which can be infinite.

We admit that the extended syntax for universal coercions is a little naive in terms of their

sizes because each universal quantifier always involves two coercions of similar forms. In fact, as

we will see, the translation of 𝜆C∀
𝑚𝑝 coercions into 𝜆S∀𝑚𝑝 ones can cause an exponential blow-up

of the size of a coercion, although the blow-up is statically bounded by the number of (nested)

universal coercions appearing in 𝜆C∀
𝑚𝑝 programs and unbounded growth during reduction will be

prevented. An alternative design is to associate a type variable with s ,, t to express which type

variable controls the choice between two coercions, making it possible to push “„” towards leaves:

For example, ∀X .(Int! → X !) ,, (Int! → id★) could be represented as ∀X .Int! → (X ! X,, id★), where
X ! X,, id★ means either X !—if X is instantiated with a type name—or id★—if X is instantiated with★.

Although exponential blow-ups can be avoided in many cases, the worst-case complexity is not

clear. Moreover, we expect that this alternative would complicate the coercion composition s # t.
Detailed investigation for better alternatives is left for future work.

4.2 Syntax and Type System
The top of Figure 4 gives the syntax of 𝜆S∀𝑚𝑝 . It shows the same constructors as those in 𝜆C∀

𝑚𝑝 in

gray.

𝜆S∀𝑚𝑝 removes type annotations from failure coercions (and also type abstractions), as the se-

mantics does not use coercion generation functions any longer. Similarly, identity coercions omit

type information for simplicity. We use b and i for coercions following the regular schemata

⊥p | (g ( ;G2! )?) and g ( ;G2! )? and call them possibly blaming and intermediate coercion, respec-

tively. As we mentioned earlier, we remove concealment and revelation. In ∀X .s ,, t, the type variable
X is bound (only) in s.

Terms are defined similarly to 𝜆C∀
𝑚𝑝 , except that a coercion application always involves a space-

efficient coercion. Values are uncoerced values possibly with a single coercion which takes one

of the following forms: g ; G!, s → t, and ∀X .s ,, t, which are non-identity intermediate coercions.

Since 𝜆S∀𝑚𝑝 normalizes a sequence of consecutively applied coercions eagerly, a value is wrapped

by at most one coercion and the hole in a frame never appears under coercion applications.

7
The operator symbol “„” is derived from the merge operator [Huang and d. S. Oliveira 2020; Reynolds 1988] for intersection

types.
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Syntax
Space-efficient coercions s, t ::= G?p ; b | b

Possibly blaming coercions b ::= ⊥p | i
Intermediate coercions i, j ::= g ; G! | g

Ground coercions g, h ::= id | s → t | ∀X .s ,, t
Terms M ::= x | U | MM | M A | M ⟨s⟩ | blame p

Uncoerced values U ::= k | 𝜆x :A.M | ΛX .M
Values V ::= U | U ⟨g ; G!⟩ | U ⟨s → t⟩ | U ⟨∀X .s ,, t⟩
Frames E ::= □M | V □ | □A

Type environments Γ ::= ∅ | Γ, x : A | Γ,X
Stores Σ ::= ∅ | Σ, 𝛼 := A

Coercion typing Σ | Γ ⊢ s : A⇝ B

⊢ Σ ∅ ⊢ Γ Σ | Γ ⊢ A
(Ct_Id_S)

Σ | Γ ⊢ id : Σ(A) ⇝ Σ(A)
(A is neither a function nor a universal type)

Σ | Γ ⊢ g : A⇝ Σ(G) Σ | Γ ⊢ G
(Ct_Inj_S)

Σ | Γ ⊢ g ; G! : A⇝ ★

Σ | Γ,X ⊢ s : A⇝ B Σ | Γ ⊢ t : A[X := ★] ⇝ B[X := ★]
(Ct_All_S)

Σ | Γ ⊢ ∀X .s ,, t : ∀X .A⇝ ∀X .B

Term typing Σ | Γ ⊢ M : A

Σ | Γ, x : Σ(A) ⊢ M : B
(T_Abs_S)

Σ | Γ ⊢ 𝜆x :A.M : Σ(A) → B
Σ | Γ ⊢ M1 : A → B Σ | Γ ⊢ M2 : A

(T_App_S)

Σ | Γ ⊢ M1 M2 : B

Fig. 4. 𝜆S∀𝑚𝑝 : Syntax and Typing Rules (excerpt)

We extend type substitution as follows (only the interesting cases are shown):

(G?p ; b) [X := ★] =

{
b[X := ★] (if G = X )
G?p ; (b[X := ★]) (if G ≠ X )

(g ; G!) [X := ★] =

{
g[X := ★] (if G = X )
(g[X := ★]) ; G! (if G ≠ X ) .

The type system of 𝜆S∀𝑚𝑝 is slightly different from that of 𝜆C∀
𝑚𝑝 . To dispense with concealment

and revelation coercions, we identify a type name 𝛼 and the type to which it is bound (Σ(𝛼), defined
below), as in Ahmed et al. [2011]; Igarashi et al. [2017]. For example, under Σ = 𝛼 := Int, term
𝜆x :𝛼.x + 1 is well typed and given type Int → Int, despite that the variable x, which is declared to

have type 𝛼 , is directly passed to where an Int is expected. We show a few representative typing

rules at the bottom of Figure 4. In what follows, Σ(A) denotes the name-free type obtained by

replacing type names in Awith the corresponding types associated by store Σ. Formally, it is defined

as follows:

∅(A) = A (Σ, 𝛼 := B) (A) = Σ(A[𝛼 := B]) .

We also write Σ(Γ) for the type environment obtained by mapping every binding x : A in type

environment Γ to x : Σ(A).
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Reduction Σ ⊲ M −→ Σ′ ⊲ M′

k1 k2 −→ 𝛿 (k1, k2) (R_Delta_S)

(𝜆x :A.M) V −→ M [x := V ] (R_Beta_S)

U ⟨id⟩ −→ U (R_Id_S)

(U ⟨s → t⟩) V −→ (U (V ⟨s⟩))⟨t⟩ (R_Wrap_S)

U ⟨⊥p⟩ −→ blame p (R_Fail_S)

M ⟨s⟩ ⟨t⟩ −→ M ⟨s # t⟩ (R_Merge_S)

(ΛX .M)★ −→ M [X := ★] (R_TybetaDyn_S)

(ΛX .M)⟨∀X .s ,, t⟩★ −→ (M ⟨t⟩) [X := ★] (R_TybetaDynC_S)

Σ ⊲ (ΛX .M) A −→ Σ, 𝛼 := A ⊲ M [X := 𝛼] (R_Tybeta_S)

where 𝛼 ∉ dom(Σ)
Σ ⊲ (ΛX .M)⟨∀X .s ,, t⟩A −→ Σ, 𝛼 := A ⊲ (M ⟨s⟩) [X := 𝛼] (R_TybetaC_S)

where 𝛼 ∉ dom(Σ)
E[blame p] −→ blame p (R_BlameE_S)

(blame p)⟨s⟩ −→ blame p (R_BlameC_S)

Σ ⊲ M −→ Σ′ ⊲ M′
(R_CtxE_S)

Σ ⊲ E[M] −→ Σ′ ⊲ E[M′]

Σ ⊲ M −→ Σ′ ⊲ M′
(R_CtxC_S)

Σ ⊲ M ⟨s⟩ −→ Σ′ ⊲ M′⟨s⟩
(M is not a coercion application.)

Fig. 5. 𝜆S∀𝑚𝑝 : Operational Semantics

The typing for space-efficient coercions is mostly straightforward. The only interesting rule is

(Ct_All_S) for universal coercions: The second coercion t, which represents the case where X is★,

is required to be from A[X := ★] to B[X := ★]. The typing judgment for terms takes the same form

Σ | Γ ⊢ M : A as 𝜆C∀
𝑚𝑝 but type names do not appear in Γ nor A (while they do appear in M). A

similar convention is applied to coercion typing judgments as well.

4.3 Operational Semantics
The semantics of 𝜆S∀𝑚𝑝 is defined by the four-place reduction relation Σ1 ⊲ M1 −→ Σ2 ⊲ M2,

which means that the one-step reduction of term M1 with store Σ1 produces term M2 and store Σ2.

Formally, they are the smallest relations satisfying the reduction rules in Figure 5.

Most of the reduction rules are the same as those of 𝜆C∀
𝑚𝑝 (Figure 3) except for the syntactic

difference explained in Section 4.2. The reduction rules for type applications assume that the value

applied to a type is a type abstraction possibly with a single universal coercion because nested

coercion applications are not values in 𝜆S∀𝑚𝑝 . Note that, unlike 𝜆C
∀
𝑚𝑝 , coercion generation is not

needed because concealment and revelation are implicit in 𝜆S∀𝑚𝑝 .

The new reduction rule is (R_Merge_S), which normalizes the composition s ; t of consecutively
applied coercions s and t into a single coercion s # t. It does not require coerced terms to be values

because coercions are normalized before they reduce. The coercion normalization is implemented

by the meta-level composition operation s # t, which is defined below.

Definition 4.1 (Coercion Composition). For space-efficient coercions s and t, a space-efficient

coercion s # t is defined as follows.
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(G?p ; b) # t = G?p ; (b # t)
⊥p # t = ⊥p

i # ⊥p′ = ⊥p′

i # (h ; H !) = (i # h) ; H !

i # id = i

(g ; G!) # (G?p ; b) = g # b
(g ; G!) # (H?

p
; b) = ⊥p

(if G ≠ H )

id # t = t (if t ≠ ⊥p′ ∧ t ≠ (h ; H !) ∧ t ≠ id)
(s → t) # (s′ → t′) = (s′ # s) → (t # t′)

(∀X .s1 ,, s2) # (∀X .t1 ,, t2) = ∀X .(s1 # t1) ,, (s2 # t2)
s # t is undefined otherwise.

The normalization of s # t proceeds as follows. (Here, we assume that the target type of s and the

source type of t agree.) First, the projection in s must remain in the resulting coercion, because it is

the first check to be performed when the coercion is applied. If s is of the form G?p ; ⊥q
, applying

the composition of s and t fails at either the projection G?p or blame q, whatever t is. Thus, s # t
results in s. If s is an intermediate coercion i, there are four cases depending on the form of t:

(1) if t is a failure ⊥p
, the composition i # t is ⊥p

because i does not raise blame immediately;

(2) if t is an intermediate coercion ending with an injection H !, the intermediate coercion on the

left is pushed through the formal composition, leaving H ! as it is;

(3) if t is an identity coercion, i is naturally the result of composition; and

(4) otherwise, t is H?
p
; b, t1 → t2, or ∀X .t0; and we proceed with case analysis on i.

(a) If i is an identity, the composition returns t;
(b) If i is g ;G!, then t must be H?

p
; b and the composition results in either g # b (if G and H are

equal) or ⊥p
(otherwise), corresponding to (R_Collapse_C) and (R_Conflict_C) of 𝜆C∀

𝑚𝑝 ;

(c) If i is a function coercion, t must also be a function coercion and the composition is

recursively called (the order of composition is reversed for coercions for arguments).

(d) If i is a universal coercion, t must also be universal and the composition is recursively

called.

Because frames in 𝜆S∀𝑚𝑝 are restricted, blame lifting and subterm reduction are split into four rules.

(R_BlameE_S) and (R_BlameC_S) mean that blame is lifted, no matter whether it is surrounded by

an ordinary frame or a coercion application. The direct subterm of a coercion application is reduced

by (R_CtxC_S), if it is not a (nested) coercion application. Otherwise, a subterm is reduced by

(R_CtxE_S). The reduction of a nested coercion application starts with normalizing the sequence

of the applied coercions, and then proceeds to the reduction of the coerced term.

Example. We illustrate an example of reduction in 𝜆S∀𝑚𝑝 . Here, we add type annotations to id (as

in 𝜆C∀
𝑚𝑝 ), so that their source/target types are obvious.

Consider space-efficient coercions

s1 = ∀X .(idX → (idX ; X !)) ,, (id★ → id★)
s2 = ∀X .(idX → (Int?p ; idInt)) ,, (id★ → (Int?p ; idInt)) ,

which correspond to 𝜆C∀
𝑚𝑝 coercions ∀X .idX → (idX ;X !) and ∀X .idX → (Int?p ; idInt), respectively,

and V = ΛX .𝜆x :X .x. Let V1 be a term of type A. Since

(∀X .(idX → (idX ; X !)) ,, (id★ → id★))
# (∀X .(idX → (Int?p ; idInt)) ,, (id★ → (Int?p ; idInt)))

= ∀X .( (idX → (idX ; X !)) # (idX → (Int?p ; idInt))
,, ((id★ → id★) # (id★ → (Int?p ; idInt))))

= ∀X .((idX → ⊥p) ,, (id★ → Int?p ; idInt)) ,
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the term V ⟨s1⟩ ⟨s2⟩ AV1 (under the empty store) reduces as follows:

∅ ⊲ V ⟨s1⟩⟨s2⟩ AV1 −→ ∅ ⊲ V ⟨s1 # s2⟩ AV1

= ∅ ⊲ V ⟨∀X .(idX → ⊥p) ,, (id★ → (Int?p ; idInt))⟩ AV1

(if A = ★) ↙
∅ ⊲ (𝜆x :★.x)⟨id★ → (Int?p ; idInt)⟩ V1

−→ ∅ ⊲ ((𝜆x :★.x) (V1⟨id★⟩))⟨Int?p ; idInt⟩
−→ ∅ ⊲ ((𝜆x :★.x) V1)⟨Int?p ; idInt⟩
−→ ∅ ⊲ V1⟨Int?p ; idInt⟩

−→∗

{
∅ ⊲ k (if ∃𝑘.V1 = k⟨idInt ; Int!⟩)
∅ ⊲ blame p (otherwise)

↘ (if ∃A.A = A)
𝛼 := A ⊲ (𝜆x :𝛼.x)⟨id𝛼 → ⊥p⟩ V1

−→ 𝛼 := A ⊲ ((𝜆x :𝛼.x) (V1⟨id𝛼 ⟩))⟨⊥p⟩
−→ 𝛼 := A ⊲ ((𝜆x :𝛼.x) V1)⟨⊥p⟩
−→ 𝛼 := A ⊲ V1⟨⊥p⟩
−→ 𝛼 := A ⊲ blame p .

If V1 is an integer cast to ★ and A is ★, it returns the integer; otherwise, it raises blame p. Notably,
the coercion s1 # s2 is smaller than the sum of the sizes of s1 and s2.

4.4 Basic Properties
𝜆S∀𝑚𝑝 satisfies the same basic properties, namely determinacy of reduction and type safety, as 𝜆C∀

𝑚𝑝 .

We omit their statements for brevity; interested readers are referred to the supplementary material.

4.5 Space Efficiency
Following Herman et al. [2007, 2010], we can show that 𝜆S∀𝑚𝑝 is space-efficient in the sense that the

size of every coercion emerging at run time is bounded by a certain constant derived from the initial

term. A key property of space-efficient coercions to prove this property is that the composition

operator s # t does not produce a coercion larger than s and t. The theorem can be proved by

combining this property with the fact that coercions that emerge during reduction are the result of

either composition or substitution of a type name or ★ for a type variable.

We first formally define the functions size(s) and height(s) to denote the size and height of a

space-efficient coercion s, respectively, and state the theorem.

size(G?p ; b) = size(b) + 2 height(G?p ; b) = height(b)
size(⊥p) = size(id) = 1 height(⊥p) = height(id) = 1

size(g ; G!) = size(g) + 2 height(g ; G!) = height(g)
size(s → t) = size(s) + size(t) + 1 height(s → t) = max(height(s), height(t)) + 1

size(∀X .s ,, t) = size(s) + size(t) + 1 height(∀X .s ,, t) = max(height(s), height(t)) + 1

Theorem 4.2 (𝜆S∀𝑚𝑝 is Space-Efficient). If ∅ | ∅ ⊢ M : A and ∅ ⊲ M −→∗ Σ′ ⊲ M′, then for any
s′ appearing inM′, there exists some space-efficient coercion s inM such that size(s′) ≤ 5(2height(s)−1).

Proof. The theorem follows from the following two lemmas and the fact that the size of a

space-efficient coercion s is bounded by its height as size(s) ≤ 5(2height(s) − 1):
(1) If s # t is well defined, then height(s # t) ≤ max(height(s), height(t)),
(2) If Σ ⊲ M −→∗ Σ′ ⊲ M′

, then for any s′ that occurs in M′
, there exists some s that occurs in

M and height(s′) ≤ height(s).
The former is proved by induction on the sum of size(s) and size(t) and the latter is by induction

on the derivation of Σ ⊲ M −→∗ Σ′ ⊲ M′
. □
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Coercion translation |c |Γ = s

|idA |Γ = id (if A is 𝜄, ★, X , or 𝛼)
|idA→B |Γ = |idA |Γ → |idB |Γ
|id∀X .A |Γ = ∀X .|idA |Γ,X ,, |idA |Γ

|G!|Γ =

{
id if G = X ∉ dom(Γ)
|idG |Γ ; G! otherwise

|G?p |Γ =

{
id if G = X ∉ dom(Γ)
G?p ; |idG |Γ otherwise

|𝛼− |Γ = id
|𝛼+ |Γ = id

|⊥p
A⇝B |Γ = ⊥p

|c → d |Γ = |c |Γ → |d |Γ
|c ; d |Γ = |c |Γ # |d |Γ
|∀X .c |Γ = ∀X .|c |Γ,X ,, |c |Γ

Term translation |M |Γ = M′

|k |Γ = k |M1 M2 |Γ = |M1 |Γ |M2 |Γ |M ⟨c⟩|Γ = |M |Γ ⟨|c |Γ⟩
|x |Γ = x |ΛX .(M : A) |Γ = ΛX .|M |Γ,X |blame p |Γ = blame p

|𝜆x :A.M |Γ = 𝜆x :A.|M |Γ,x:A |M A|Γ = |M |Γ A

Fig. 6. Translation from 𝜆C∀
𝑚𝑝 to 𝜆S∀𝑚𝑝 .

The removal of concealment and revelation coercions simplifies the technical development a lot:

If we had concealment and revelation coercions, the reduction from (ΛX .M)⟨s⟩ A would generate a

coercion involving 𝛼−
and 𝛼+

, whose size is not related to the size of coercions in the initial term.

Thus, we would have to investigate the size of types of subterms during reduction, which would be

complicated in the presence of type substitution.

4.6 Translation from 𝜆C∀
𝑚𝑝 to 𝜆S∀𝑚𝑝

This section defines a translation from 𝜆C∀
𝑚𝑝 to 𝜆S∀𝑚𝑝 and proves that it is type- and semantics-

preserving.

The translation |c |Γ for coercions is parameterized by a type environment Γ. It is defined similarly

to Siek et al. [2021], except the cases involving type variables and names. Type variables that appear

free in c but are not declared in Γ represent ones assumed to be bound to the dynamic type. Thus,

X !, and X?p translate to id (from ★ to ★) if X ∉ dom(Γ). The translation of a universal coercion

∀X .c combines |c |Δ,X and |c |Δ. Concealments and revelations are translated to identity coercions.

For example, if c0 = Y ! → X ! and c = ∀X .∀Y .c0, we have (again, we add type annotations to id)

|c |∅ = ∀X .( |∀Y .c0 |X ,, |∀Y .c0 |∅)
= ∀X .((∀Y .|c0 |X ,Y ,, |c0 |X ) ,, (∀Y .|c0 |Y ,, |c0 |∅))
= ∀X .((∀Y .(idY ; Y ! → idX ; X !) ,, (id★ → idX ; X !)) ,, (∀Y .(idY ; Y ! → id★) ,, (id★ → id★))) .

Term translation is straightforward; it just translates all coercions in the given term.

We state that the translation preserves typing and semantics in the following theorems. In what

follows, metavariables for terms and values in 𝜆C∀
𝑚𝑝 are subscripted by 𝑐 and those in 𝜆S∀𝑚𝑝 are by

s. Similarly for reduction and typing judgments.

Theorem 4.3 (Translation Preserves Typing). If Σ | Γ ⊢𝐶 M𝑐 : A, then Σ | Σ(Γ) ⊢𝑆 |M𝑐 |Γ :
Σ(A).

Theorem 4.4 (Correctness of Translation). Suppose Σ | ∅ ⊢𝐶 M𝑐 : A.
(1) If Σ ⊲ M𝑐 −→∗

𝐶
Σ′ ⊲ V𝑐 , then there exists some V𝑠 such that Σ ⊲ |M𝑐 |∅ −→∗

𝑆
Σ′ ⊲ V𝑠 .

Furthermore, if A = 𝜄, then there exists some k such that V𝑐 = V𝑠 = k.
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(2) If Σ ⊲ |M𝑐 |∅ −→∗
𝑆

Σ′ ⊲ V𝑠 , then there exists some V𝑐 such that Σ ⊲ M𝑐 −→∗
𝐶

Σ′ ⊲ V𝑐 .
Furthermore, if A = 𝜄, then there exists some k such that V𝑐 = V𝑠 = k.

(3) Σ ⊲ M𝑐 −→∗
𝐶

Σ′ ⊲ blame p iff Σ ⊲ |M𝑐 |∅ −→∗
𝑆
Σ′ ⊲ blame p.

(4) Σ ⊲ M𝑐 ⇑ iff Σ ⊲ |M𝑐 |∅ ⇑.

To show the latter theorem, we define a relation Σ | Γ ⊢ M𝑐 ≈ M𝑠 : A. Intuitively, it means that

the behavior of termM𝑐 under 𝜆C
∀
𝑚𝑝 ’s semantics is equivalent to that ofM𝑠 under 𝜆S

∀
𝑚𝑝 ’s semantics.

Formally, it is the smallest relation that satisfies the following rules and is compatible with respect

to term constructors except for coercion applications.

Σ | Γ ⊢ M𝑐 ≈ M𝑠 : B Σ | Γ ⊢𝐶 c : B⇝ A
Σ | Γ ⊢ M𝑐 ⟨c⟩ ≈ M𝑠 ⟨|c |Γ⟩ : A

Σ | Γ ⊢ M𝑐 ≈ M𝑠 : A Σ | ∅ ⊢𝐶 idA : A⇝ A
Σ | Γ ⊢ M𝑐 ≈ M𝑠 ⟨|idA |∅⟩ : A

ftv(s) = ∅
Σ | Γ ⊢ M𝑐 ≈ M𝑠 ⟨s⟩ : A Σ | ∅ ⊢𝐶 c : A⇝ B

Σ | Γ ⊢ M𝑐 ⟨c⟩ ≈ M𝑠 ⟨s # |c |∅⟩ : B
Σ | Γ ⊢ M𝑐 ≈ M𝑠 : B Σ | ∅ ⊢𝐶 𝑐𝐼 : B⇝ A

Σ | Γ ⊢ M𝑐 ⟨𝑐𝐼 ⟩ ≈ M𝑠 : A
The first rule is for congruence (except that the 𝜆C∀

𝑚𝑝 coercion is related to its translation). The

second and third rules allow a nested coercion applicationM𝑐 ⟨c1⟩ · · · ⟨cn⟩ in 𝜆C∀
𝑚𝑝 to be related to a

𝜆S∀𝑚𝑝 term |M𝑐 |∅ ⟨|c1 |∅ # · · · # |cn |∅⟩, in which the coercion sequence ⟨c1⟩ · · · ⟨cn⟩ is normalized into a

single coercion. (Note that |idA |∅ is the identity element of #.) Themetavariable 𝑐𝐼 used in the last rule

ranges over the set of no-op coercions, defined by: 𝑐𝐼 , 𝑑𝐼 ::= idA | 𝛼− | 𝛼+ | 𝑐𝐼 → 𝑑𝐼 | ∀X .𝑐𝐼 | 𝑐𝐼 ; 𝑑𝐼 .
As its name suggests, no-op coercions do nothing significant because they are constructed from

identity, concealments, and revelations. They are translated to coercions constructed only from

the identity and, thus, in 𝜆S∀𝑚𝑝 , (the translation of) a no-op coercion disappears earlier than in

𝜆C∀
𝑚𝑝 : for example, 42⟨𝛼−⟩, which is a 𝜆C∀

𝑚𝑝 value, is translated to 42⟨id⟩, which further reduces to

42. Thus, the last rule allows the translation of no-op coercions not to appear in 𝜆S∀𝑚𝑝 . Here, the

coercions in the last three rules have to be typed under the empty type environment, because the

coercion composition and early removal of no-op coercions take place only at the top-level.

Below are the key properties of the relation ≈, from which the theorem above easily follows.

Lemma 4.5 (Relating Terms in 𝜆C∀
𝑚𝑝 to Their Translations). If Σ | Γ ⊢𝐶 M𝑐 : A, then

Σ | Γ ⊢ M𝑐 ≈ |M𝑐 |Γ : A.

Lemma 4.6 (Bisimulation up to Reduction). Suppose that Σ | ∅ ⊢ M𝑐 ≈ M𝑠 : A.
(1) If Σ ⊲ M𝑐 −→𝐶 Σ′ ⊲ M′

𝑐 , then Σ′ ⊲ M′
𝑐 −→∗

𝐶
Σ′′ ⊲ M′′

𝑐 and Σ ⊲ M𝑠 −→∗
𝑆

Σ′′ ⊲ M′′
𝑠 and

Σ′′ | ∅ ⊢ M′′
𝑐 ≈ M′′

𝑠 : A for some Σ′′, M′′
𝑐 , and M

′′
𝑠 .

(2) If Σ ⊲ M𝑠 −→𝑆 Σ′ ⊲ M′
𝑠 , then Σ′ ⊲ M′

𝑠 −→∗
𝑆

Σ′′ ⊲ M′′
𝑠 and Σ ⊲ M𝑐 −→∗

𝐶
Σ′′ ⊲ M′′

𝑐 and
Σ′′ | ∅ ⊢ M′′

𝑐 ≈ M′′
𝑠 : A for some Σ′′, M′′

𝑐 , and M
′′
𝑠 .

(3) If M𝑐 = V𝑐 , then Σ ⊲ M𝑠 −→∗
𝑆
Σ ⊲ V𝑠 and Σ | ∅ ⊢ V𝑐 ≈ V𝑠 : A for some V𝑠 .

(4) If M𝑠 = V𝑠 , then Σ ⊲ M𝑐 −→∗
𝐶

Σ ⊲ V𝑐 and Σ | ∅ ⊢ V𝑐 ≈ V𝑠 : A for some V𝑐 .
(5) If M𝑐 = blame p, then Σ ⊲ M𝑠 −→∗

𝑆
Σ ⊲ blame p.

(6) If M𝑠 = blame p, then Σ ⊲ M𝑐 −→∗
𝐶

Σ ⊲ blame p.

Comparison with Siek et al. [2021]. Siek et al. even proved full abstraction of the translation from

a simply typed coercion calculus 𝜆C to a simply typed, space-efficient coercion calculus 𝜆S by

providing a relationM𝑐 ≈ M𝑠 to relate termsM𝑐 in 𝜆C to their translation resultsM𝑠 in 𝜆S. However,

their technical developments for full abstraction and ours differ in two points. First, whereas we

proved that the relation ≈ is a bisimulation up to reduction [Sangiorgi et al. 2007], Siek et al. showed

that their relation ≈ is a weak bisimulation, which implies that, if M𝑐 ≈ M𝑠 and M𝑐 −→𝐶 M′
𝑐 ,

then M𝑠 −→∗
𝑆
M′

𝑠 for some M′
𝑠 such that M′

𝑐 ≈ M′
𝑠 (Proposition 19 in their paper). We first tried to
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show that a straightforward extension of Siek et al.’s relation is a weak bisimulation, but in the

course of it, we discovered that Siek et al.’s relation is not a weak bisimulation actually; we provide

a counterexample in Section J of the supplementary material. Second, Siek et al.’s relation ≈ is

defined with an extra inference rule, named (iii) in Figure 8 of their paper, that decomposes function

coercions, but our relation is defined without such a rule. We can dispense with (iii) because we

focus on a bisimulation up to reduction, not a weak bisimulation.

Unfortunately, full abstraction would not hold in our setting. For full abstraction to hold, every

space-efficient coercion has to have a counterpart in 𝜆C∀
—in other words, the translation has to be

surjective—but it is not the case. An example is ∀X .((∀Y .(⊥p ,, X !)) ,, (∀Y .(Y?p ,, ⊥p))). We may

be able to exclude such a coercion from 𝜆S∀𝑚𝑝 by requiring every space-efficient coercion is in the

image of the translation but we have not found good (syntactic) characterization of the image.

5 RELATEDWORK
Polymorphic Gradual Typing. Polymorphic gradual typing has been studied first by Ahmed et al.

[2011]. They force polymorphic values to behave independently of type parameters using dynamic

sealing [Abadi et al. 1995; Matthews and Ahmed 2008; Morris 1973; Pierce and Sumii 2000], albeit

no formal treatment of parametricity. Since their pioneering work, polymorphic gradual typing

has been gaining attention [Ahmed et al. 2011, 2017; Igarashi et al. 2017; Miyazaki et al. 2019;

New et al. 2020; Ozaki et al. 2021; Toro et al. 2019; Xie et al. 2018], especially to its theoretical

aspects such as parametricity and dynamic gradual guarantee [Siek et al. 2015b]. Among them, all

the calculi with parametricity employ dynamic sealing, that is, the run-time generation of fresh

type names. Therefore, although the ingredients to incorporate dynamic sealing are varying, the

parametric calculi in the prior works on polymorphic gradual typing do not seem implementable

space-efficiently due to the problem of accumulating an unbounded number of type conversions

involving dynamically generated type names. The polymorphic cast calculus of Miyazaki et al.

[2019] does not support dynamic sealing, so it might be made space-efficient but pays the cost of

the complete loss of parametricity. Our work shows that it is overpaying: a polymorphic gradually

typed language can be made space-efficient if it is “mostly” parametric.

Space-Efficient Gradual Typing. Herman et al. [2007, 2010] were the first to address the space-

efficiency problem in gradual typing and gave a space-efficient coercion calculus that eagerly

combines and normalizes two adjacent coercions into their composition. However, the computation

of the normalization is ambiguous since the normalization is defined as an equational system.

Siek et al. [2015a, 2021] addressed this issue by proposing a coercion calculus 𝜆S that restricts

coercions to be a kind of canonical forms called space-efficient coercions and gives the composition

on space-efficient coercions in a computational manner. Our calculus 𝜆S∀𝑚𝑝 extends their idea to

polymorphic gradual typing. Siek and Wadler [2010] introduced a space-efficient cast calculus

with another cast form called threesomes, but it is proven to be isomorphic to 𝜆S [Siek et al. 2021].

Bañados Schwerter et al. [2021] addressed space efficiency in GTFL≲ [Garcia et al. 2016], a gradually

typed language with records and subtyping. They showed that the run-time language of GTFL≲

can be made space-efficient if the composition of run-time checks, called evidence, in the language

associative and bounded, and provided new representations of evidence that meet these conditions.

As far as we know, all the previous works for space-efficient gradual typing have focused only on a

simply typed setting (with subtyping) except for Ozaki et al. [2021], who discovered and formalized

the problem of dynamic sealing and space-efficiency, but did not consider alternatives to make

polymorphic gradually typed languages space-efficient.

Although the work discussed above is concerned about theoretical aspects of space-efficient

gradual typing, there is some work on its real implementation. As we mentioned in the introduction,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 211. Publication date: June 2024.



211:22 Atsushi Igarashi, Shota Ozaki, Taro Sekiyama, and Yudai Tanabe

Kuhlenschmidt et al. [2019] implemented the Grift compiler for a gradually typed 𝜆-calculus (with

mutable arrays and recursive types), by using space-efficient coercions. The Grift compiler does

not fully benefit from space-efficient coercions in that coercions at tail positions do not normalize.

Later, Tsuda et al. [2020] proposed an implementation technique to normalize coercions at tail

positions by using coercion passing translation, proved its correctness formally, and extended Grift.

Coercions on Polymorphic Types. Breazu-Tannen et al. [1991]; Mitchell [1984] study coercions to

give the semantics of subtyping; Luo [1999]; Swamy et al. [2009] study them for more general type

conversion. Along this line of work, Cretin and Rémy [2012] propose a sophisticated language of

coercions and unify previous work [Breazu-Tannen et al. 1991; Mitchell 1988; Rémy and Yakobowski

2010] on coercions for parametric polymorphism. Our setting does not need such sophistication,

though, mainly due to the separation of gradual typing and polymorphism. The issue of space

efficiency is not studied.

6 CONCLUSION
We have shown that polymorphic gradual typing can be made space-efficient by mostly parametric

polymorphism—limiting parametricity to type arguments that are not the dynamic type—at least,

theoretically. We have formalized a polymorphic coercion calculus 𝜆C∀
𝑚𝑝 with dynamic sealing to

enforce parametricity, another calculus 𝜆S∀𝑚𝑝 with space-efficient coercions, and a type-preserving

translation from the former to the latter and shown that the latter is space-efficient (in the sense of

Herman et al. [2007, 2010]) and the translation is semantics-preserving.

As we noted in the introduction, our work presented here focuses on the theory of space-efficient

coercions. Although we suppose that our design is a simple but reasonable compromise for the

design of programming languages with polymorphic gradual typing—because passing ★ as a type

argument can be seen as a sign that that part of code is not yet ready to enjoy the benefits of static

typing, including parametricity—it is left for future work to support such a claim by empirical study.

If our restriction turns out to be too severe, it will be interesting work to develop a sophisticated

static or dynamic analysis to detect the use of ★ that does not cause coercions of an unbounded

size.

It is also left for future work to implement 𝜆S∀𝑚𝑝 . We expect that the coercion-passing-style

implementation [Tsuda et al. 2020] can be adapted to the polymorphic setting straightforwardly.
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