Logical Relations for a Manifest Contract Calculus

Taro Sekiyama

Atsushi Igarashi

Kyoto University

Manifest Contract Calculus [1]

- A typed lambda calculus with (higher-order) software contracts
- hybrid checking of software contracts
 - Static type system: refinement type {x: T | e}
 e.g. {x:int | 0 < x}
 - Dynamic checking: cast $\langle T_1 \Rightarrow T_2 \rangle^{\ell}$ e.g. $\langle \text{int} \Rightarrow \{x : \text{int} \mid x < 0\} \rangle^{\ell}$

[1] Knowles and Flanagan, 2010

Programming in Manifest Contract Calculus

```
div : int \rightarrow \{x: \text{int} \mid 0 \neq x\} \rightarrow \text{int}

div "abc" 2 (* Compiler error *)

div 6 0 (* Compiler error *)

(* Compiler doesn't know that y is non-zero *)

(\lambda(y: \text{int}). \text{div } 6 y)
```

Programming in Manifest Contract Calculus

```
div : int \rightarrow \{x: \text{int} \mid 0 \neq x\} \rightarrow \text{int}

div "abc" 2 (* Compiler error *)

div 6 0 (* Compiler error *)

(* Compiler inserts a cast *)

(fun y : int. div 6 (\langle \text{int} \Rightarrow \{x: \text{int} \mid 0 \neq x\} \rangle^{\ell} y))
```

Previous Work: Upcast Elimination

Upcast Elimination [1,2]

An upcast and an identity function are contextually equivalent

An upcast is a cast from a type to its supertype

- $\langle \{x: \text{int} \mid 0 < x\} \Rightarrow \text{int} \rangle^{\ell}$
- $\langle \{x: \text{int} \mid \text{is_square } x\} \Rightarrow \{x: \text{int} \mid 0 < x\} \rangle^{\ell}$

Upcast elimination is useful for optimization

- [1] Knowles and Flanagan, 2010
- [2] Belo et al., 2011

Previous Work: Correctness of Proofs

Previous work

- tried to prove upcast elimination by using logical relations
- didn't really prove soundness of the logical relations w.r.t contextual equivalence

	$\lambda_{ exttt{H}}^{[1]}$	$F_H^{[2]}$
$\langle T_1 \Rightarrow T_2 \rangle^\ell \simeq ext{fun x.x}$	proved	proved
\simeq \subseteq \approx	flawed	not proved
$\langle T_1 \Rightarrow T_2 \rangle^{\ell} pprox ext{fun x.x}$	not proved	not proved

≈: contextual equivalence ≃: logical relation

[1] Knowles and Flanagan, 2010 [2] Belo et al., 2011

Logical Relations for a Manifest Contract Calculus, Fixed

Taro Sekiyama

Atsushi Igarashi

Kyoto University

This Work

This work

- fixes the flaws of previous work
- introduces F_H^{fix}
 - a polymorphic manifest contract calculus with fixed-point operator
 - ullet non-termination is only *effect* in F_H^{fix}

	$\lambda_{\mathtt{H}}$	F_{H}	$F_{\rm H}^{ m fix}$
Subsumption rule	√	×	×
Polymorphic types	×	√	\checkmark
Fixed-point operator	×	×	\checkmark

Contribution

- Semi-typed contextual equivalence
- A sound logical relation w.r.t semi-typed contextual equivalence
- Proof of upcast elimination by using the logical relation above
 - We believe correctness of our proof :-)

	$\lambda_{ ext{ t H}}$	F _H	$F^{\mathtt{fix}}_{\mathtt{H}}$
$\langle T_1 \Rightarrow T_2 \rangle^{\ell} \simeq \text{fun x.x}$	proved	proved	proved
≃⊆≈	flawed	not proved	proved
$\langle T_1 \Rightarrow T_2 \rangle^{\ell} \approx \text{fun x.x}$	not proved	not proved	proved

Contents

Contents

Overview of F_H^{fix}

 $F_{\rm H}^{\text{fix}}$ is a typed lambda calculus with

- polymorphic types,
- refinement types $\{x: T \mid e\}$,
- dependent function types $x: T_1 \to T_2$,
- ullet casts $\langle T_1 \Rightarrow T_2
 angle^\ell$, and
- fixed-point operator (recursive functions)

	$\lambda_{\mathtt{H}}$	F_{H}	F_{H}^{fix}
Subsumption rule	√	×	X
Polymorphic types	×	√	√
Recursive functions	×	×	√

Types

Refinement types: $\{x: T \mid e\}$

- denote a set of values which
 - are in T
 - satisfy the contract (boolean expression) e
- e.g. $\{x: \text{int} \mid 0 < x\} = \{1, 2, 3, ...\}$

Dependent function types: $x:T_1 \to T_2$

- denote a set of functions which
 - accept values v of T_1
 - return values of $[v/x]T_2$
- e.g. x:int $\rightarrow \{y$:int $| x < y \}$

Dynamic Checking: Cast

Casts:
$$\langle T_1 \Rightarrow T_2 \rangle^{\ell}$$

- accept values v of T_1
- ullet check whether v can behave as T_2
 - If the checking fails, the cast is blamed with label ℓ
- e.g. $\langle \text{int} \Rightarrow \{x : \text{int} \mid 0 < x\} \rangle^{\ell}$

$$\langle \text{int} \Rightarrow \{x : \text{int} \mid 0 < x\} \rangle^{\ell} \ 0 \rightsquigarrow^* \uparrow \ell$$

 $\langle \text{int} \Rightarrow \{x : \text{int} \mid 0 < x\} \rangle^{\ell} \ 2 \rightsquigarrow^* 2$

Digression: Pitfall of A-Normal Form

- At first, we gave A-normal form as syntax
 - following [3] which uses A-normal form to simplify the definition and the proof

```
• e ::= v_1 v_2
  <<no parses (char 7): let x =*** e1 i</pre>
```

- It is difficult to prove even type soundness
 - to require substitution of terms
 - A-normal form is not closed under substitution of terms

```
\Gamma \vdash e_1 : T_1 \quad \Gamma, x : T_1 \vdash e_2 : T_2
```

Contents

Review: (Typed) Contextual Equivalence

$e_1 \approx_{typed} e_2$: T

- e₁ and e₂ have the same observable result under any contexts
 - which are well-typed and accept any terms of T
- ullet e_1 and e_2 are typed at the same type T

```
(\lambda(x:\text{int}).0) \approx_{typed} (\lambda(x:\text{int}).x * 0) : \text{int} \to \text{int}

(\lambda(x:\text{int}).0) \not\approx_{typed} (\lambda(x:\text{int}).x + 2) : \text{int} \to \text{int}

(\lambda(x:\text{int}).0) \not\approx_{typed} (\lambda(x:\text{bool}).0) : \text{int} \to \text{int}
```


Problem

- Upcast elimination doesn't hold in typed contextual equivalence
 - An upcast and an identity function may have different types
 - Note lack of a subsumption rule

$$\frac{\langle T_1 \Rightarrow T_2 \rangle^{\ell} \mid \lambda(x:T_1).x \mid \lambda(x:T_2).x}{T_1 \rightarrow T_2 \mid T_1 \rightarrow T_1 \mid T_2 \rightarrow T_2}$$

• We must relax typed contextual equivalence

Semi-Typed Contextual Equivalence

```
e_1 \approx e_2 : T
```

- e₁ and e₂ have the same observable result under any well-typed contexts
- Only e_1 is typed at T
 - e2 can even be ill-typed

```
(\lambda(x:int).0) \approx (\lambda(x:int).x * 0) : int \rightarrow int

(\lambda(x:int).0) \approx (\lambda(x:int).x + 2) : int \rightarrow int

(\lambda(x:int).0) \approx (\lambda(x:bool).0) : int \rightarrow int
```

Formal Definition

Definition

Semi-typed contextual equivalence \approx is the largest set satisfying the following:

- If $\Gamma \vdash e_1 \approx e_2 : T$, then $\Gamma \vdash e_1 : T$
- If $\emptyset \vdash e_1 \approx e_2 : T$, then e_1 and e_2 have the same observable result
- Reflexivity, Transitivity, (Typed) Symmetry
- Compatibility
- Substitutivity

Compatibility and Substitutivity Rules

Choose typed terms for substitution on types

• so that the type after the substitution is well-formed

E.g.

Compatibility: term application

$$\frac{\Gamma \vdash e_{11} \approx e_{21} : (x : T_1 \to T_2) \quad \Gamma \vdash e_{12} \approx e_{22} : T_1}{\Gamma \vdash e_{11} \ e_{12} \approx e_{21} \ e_{22} : T_2 \left[\frac{e_{12}}{x} \right]}$$

Substitutivity: value substitution

$$\frac{\Gamma, x: T_1, \Gamma' \vdash e_1 \approx e_2: T_2 \quad \Gamma \vdash v_1 \approx v_2: T_1}{\Gamma, \Gamma'[v_1/x] \vdash e_1[v_1/x] \approx e_2[v_2/x]: T_2[v_1/x]}$$

Contents

Overview of Logical Relation

- $e_1 \simeq e_2 : T$
 - ≃ is defined by using
 - basic ideas of the logical relation for F_H[2]
 - T⊤-closure[3]
 - A method to give a logical relation to a lambda calculus with recursive functions
 - Only e₁ is typed
 - similarly to semi-typed contextual equivalence
- [2] Belo et al., 2011
- [3] Pitts, 2005

Define value relations for base types

```
bool: {(true,true), (false,false)}
```

int:
$$\{...,(-1,-1),(0,0),(1,1),...\}$$

- Define value relations for base types
- **②** Define term relations for base types by operation $\top\top$
 - T⊤ expands value relations to term relations

```
bool : {(true, not false),(true && true, true) ...} int: \{(1+1,2),(0*3,0+0),...\}
```


- Define value relations for base types
- **②** Define term relations for base types by operation $\top\top$
- Define value relations for complex types

$$int \rightarrow int : \{(succ, fun x.x + 1),...\}$$

- Define value relations for base types
- ② Define term relations for base types by operation ⊤⊤
- Define value relations for complex types
- Define term relations for complex types by operation TT

- Define value relations for base types
- **②** Define term relations for base types by operation $\top\top$
- Define value relations for complex types

Value relation Term relation

Relations for Closed Terms

- Value relation: $T(\theta, \delta)^{\text{val}}$
- Term relation: $T(\theta, \delta)^{tm}$

Here,

- ullet θ is a valuation for type variables in T
 - $\theta = \{\alpha \mapsto (r, T_1, T_2), ...\}$ r is a term relation and an interpretation of α
 - Notation: $\theta_i = \{(\alpha \mapsto T_i), ...\}$
- \bullet δ is a valuation for variables in T
 - $\delta = \{x \mapsto (v_1, v_2), ...\}$
 - Notation: $\delta_i = \{(x \mapsto v_i), ...\}$

Value/Term Relation: Base Types

Base type: B

Value Relation

$$(v_1, v_2) \in B(\theta, \delta)^{\mathsf{val}}$$
 iff $v_1 = v_2$ and v_1 is a constant of B

Term Relation

$$B(\theta, \delta)^{\mathsf{tm}} = (B(\theta, \delta)^{\mathsf{val}})^{\top \top}$$

Value/Term Relation: Dependent Function Types

Value Relation

$$(v_1, v_2) \in (x: T_1 \to T_2)(\theta, \delta)^{\text{val}}$$
 iff for any $(v_1', v_2') \in T_1(\theta, \delta)^{\text{tm}}$, $(v_1 v_1', v_2 v_2') \in T_2(\theta, \delta \{x \mapsto v_1', v_2' \})^{\text{tm}}$

Term Relation

$$(x:T_1 \to T_2)(\theta,\delta)^{\mathsf{tm}} = ((x:T_1 \to T_2)(\theta,\delta)^{\mathsf{val}})^{\top\top}$$

Value/Term Relation: Refinement Types

Value Relation

$$(v_1,v_2) \in \{x:T \mid e\}(heta,\delta)^{\mathsf{val}}$$
 iff

- $(\mathbf{v}_1, \mathbf{v}_2) \in T(\theta, \delta)^{\mathsf{tm}}$
- $\theta_1(\delta_1([v_1/x]e)) \rightsquigarrow^* \text{true}$
- $\theta_2(\delta_2([v_2/x]e)) \rightsquigarrow^* \text{true}$

Term Relation

$$\{x:T\mid e\}(\theta,\delta)^{\mathsf{tm}}=(\{x:T\mid e\}(\theta,\delta)^{\mathsf{val}})^{\top\top}$$

Logical Relation for Open Terms

Definition (Logical Relation for Open Terms)

- $\Gamma \vdash e_1 \simeq e_2 : T \textit{ iff }$
 - \bullet $\Gamma \vdash e_1 : T$
 - $m{egin{aligned} igotaleq (heta_1(\delta_1(e_1)), heta_2(\delta_2(e_2))) \in & T(heta, \delta)^{\mathsf{tm}} \ & \textit{where} \ \Gamma \vdash heta; \delta \end{aligned}}$
 - e_1 and e_2 are related for well-formed substitution θ and δ

Properties of Logical Relation

Theorem (Soundness)

If
$$\Gamma \vdash e_1 \simeq e_2 : T$$
, then $\Gamma \vdash e_1 \approx e_2 : T$

ullet Prove that \simeq satisfies the properties defining pprox

Theorem (Completeness w.r.t Typed Terms)

```
If \Gamma \vdash e_1 \approx e_2 : T and \Gamma \vdash e_2 : T,
then \Gamma \vdash e_1 \simeq e_2 : T
```

An orthodox method doesn't go through

Soundness: Overview of Proof

We must prove that for soundness

the logical relation satisfies

- reflexivity, transitivity, typed symmetry
- compatibility
- substitutivity

Note that

- it suffices to prove only compatibility and substitutivity in [3]
- all the properties are proved in this work
- [3] Pitts, 2005

Contents

Upcast Elimination

Upcast Elimination

An upcast and an identity function are contextually equivalent

Lemma

If
$$\Gamma \vdash T_1 <: T_2$$
, then $\Gamma \vdash \langle T_1 \Rightarrow T_2 \rangle^{\ell} \simeq (\lambda(x:T_1).x) : T_1 \to T_2$

Corollary

If
$$\Gamma \vdash T_1 <: T_2$$
, then $\Gamma \vdash \langle T_1 \Rightarrow T_2 \rangle^{\ell} \approx (\lambda(x:T_1).x) : T_1 \rightarrow T_2$

Contents

Conclusion

- A sound logical relation w.r.t semi-typed contextual equivalence
- Proof of upcast elimination

Technically,

- T⊤-closure works in manifest contract calculus with non-termination
 - The proofs of the properties are troublesome
- "Semi-typedness" doesn't complicate the proof of soundness
 - affects the proof of completeness

Future Work

- Unrestricted completeness
 - removal of "typedness" assumption
- Correctness of other optimizations
- Effects other than non-termination