
Logical Relations for
a Manifest Contract Calculus

Taro Sekiyama Atsushi Igarashi

Kyoto University

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Manifest Contract Calculus [1]

A typed lambda calculus with (higher-order)
software contracts

hybrid checking of software contracts

Static type system: refinement type
{x :T | e}
e.g. {x :int | 0 < x}

Dynamic checking: cast 〈T1 ⇒ T2〉
ℓ

e.g. 〈int ⇒ {x :int | x < 0}〉ℓ

[1] Knowles and Flanagan, 2010

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Programming in Manifest Contract
Calculus

div : int → {x :int | 0 6= x} → int

div “abc” 2 (∗ Compiler error ∗)

div 6 0 (∗ Compiler error ∗)

(∗ Compiler doesn’t know that y is non-zero ∗)
(λ(y :int).div 6 y)

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Programming in Manifest Contract
Calculus

div : int → {x :int | 0 6= x} → int

div “abc” 2 (∗ Compiler error ∗)

div 6 0 (∗ Compiler error ∗)

(∗ Compiler inserts a cast ∗)
(fun y : int. div 6 (〈int ⇒ {x :int | 0 6= x}〉ℓ y))

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Previous Work: Upcast Elimination

Upcast Elimination [1,2]

An upcast and an identity function are contextually
equivalent

An upcast is a cast from a type to its supertype

〈{x :int | 0 < x} ⇒ int〉ℓ

〈{x :int | is square x} ⇒ {x :int | 0 < x}〉ℓ

Upcast elimination is useful for optimization

[1] Knowles and Flanagan, 2010
[2] Belo et al., 2011

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Previous Work: Correctness of Proofs

Previous work

tried to prove upcast elimination by using
logical relations

didn’t really prove soundness of the logical
relations w.r.t contextual equivalence

λ
[1]
H

FH
[2]

〈T1 ⇒ T2〉
ℓ ≃ fun x.x proved proved

≃⊆≈ flawed not proved
〈T1 ⇒ T2〉

ℓ ≈ fun x.x not proved not proved

≈: contextual equivalence ≃: logical relation
[1] Knowles and Flanagan, 2010 [2] Belo et al., 2011

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Logical Relations for
a Manifest Contract Calculus, Fixed

Taro Sekiyama Atsushi Igarashi

Kyoto University

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

This Work

This work

fixes the flaws of previous work

introduces Ffix
H

a polymorphic manifest contract calculus
with fixed-point operator
non-termination is only effect in Ffix

H

λH FH Ffix
H

Subsumption rule X × ×
Polymorphic types × X X

Fixed-point operator × × X

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Contribution

Semi-typed contextual equivalence

A sound logical relation w.r.t semi-typed

contextual equivalence
Proof of upcast elimination by using the logical
relation above

We believe correctness of our proof :-)

λH FH Ffix
H

〈T1 ⇒ T2〉
ℓ ≃ fun x.x proved proved proved

≃⊆≈ flawed not proved proved
〈T1 ⇒ T2〉

ℓ ≈ fun x.x not proved not proved proved

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Contents

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Contents

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Overview of FfixH

Ffix
H

is a typed lambda calculus with

polymorphic types,

refinement types {x :T | e},

dependent function types x :T1 → T2,

casts 〈T1 ⇒ T2〉
ℓ, and

fixed-point operator (recursive functions)

λH FH Ffix
H

Subsumption rule X × ×
Polymorphic types × X X

Recursive functions × × X

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Types

Refinement types: {x :T | e}
denote a set of values which

are in T

satisfy the contract (boolean expression) e

e.g. {x :int | 0 < x} = {1, 2, 3, ...}

Dependent function types: x :T1 → T2

denote a set of functions which

accept values v of T1

return values of [v/x]T2

e.g. x :int → {y :int | x < y}

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Dynamic Checking: Cast

Casts: 〈T1 ⇒ T2〉
ℓ

accept values v of T1

check whether v can behave as T2

If the checking fails, the cast is blamed
with label ℓ

e.g. 〈int ⇒ {x :int | 0 < x}〉ℓ

〈int ⇒ {x :int | 0 < x}〉ℓ 0 ∗ ⇑ℓ
〈int ⇒ {x :int | 0 < x}〉ℓ 2 ∗ 2

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Digression: Pitfall of A-Normal Form

At first, we gave A-normal form as syntax
following [3] which uses A-normal form
to simplify the definition and the proof
e ::= v1 v2 |
<<no parses (char 7): let x =*** e1 in

· · ·
It is difficult to prove even type soundness

to require substitution of terms

A-normal form is not closed under
substitution of terms

Γ ⊢ e1 : T1 Γ, x :T1 ⊢ e2 : T2

<<no parses (char 12): G |- let x =*** e1 in

[3] Pitts, 2005
Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Contents

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Review: (Typed) Contextual Equivalence

e1 ≈typed e2 : T

e1 and e2 have the same observable result
under any contexts

which are well-typed and accept any terms
of T

e1 and e2 are typed at the same type T

(λ(x :int).0)≈typed (λ(x :int).x ∗ 0) : int → int
(λ(x :int).0) 6≈typed (λ(x :int).x + 2) : int → int

(λ(x :int).0) 6≈typed (λ(x :bool).0) : int → int

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Problem

Upcast elimination doesn’t hold in typed
contextual equivalence

An upcast and an identity function may
have different types
Note lack of a subsumption rule

〈T1 ⇒ T2〉
ℓ λ(x :T1).x λ(x :T2).x

T1 → T2 T1 → T1 T2 → T2

We must relax typed contextual equivalence

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Semi-Typed Contextual Equivalence

e1 ≈ e2 : T

e1 and e2 have the same observable result
under any well-typed contexts
Only e1 is typed at T

e2 can even be ill-typed

(λ(x :int).0)≈ (λ(x :int).x ∗ 0) : int → int
(λ(x :int).0) 6≈ (λ(x :int).x + 2) : int → int

(λ(x :int).0)≈ (λ(x :bool).0) : int → int

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Formal Definition

Definition
Semi-typed contextual equivalence ≈ is the largest
set satisfying the following:

1 If Γ ⊢ e1 ≈ e2 : T , then Γ ⊢ e1 : T
2 If ∅ ⊢ e1 ≈ e2 : T , then e1 and e2 have the

same observable result
3 Reflexivity, Transitivity, (Typed) Symmetry
4 Compatibility
5 Substitutivity

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Compatibility and Substitutivity Rules

Choose typed terms for substitution on types
so that the type after the substitution is well-formed

E.g.

Compatibility: term application

Γ ⊢ e11 ≈ e21 : (x :T1 → T2) Γ ⊢ e12 ≈ e22 : T1

Γ ⊢ e11 e12 ≈ e21 e22 : T2 [e12/x]

Substitutivity: value substitution

Γ, x :T1, Γ
′ ⊢ e1 ≈ e2 : T2 Γ ⊢ v1 ≈ v2 : T1

Γ, Γ′[v1/x] ⊢ e1 [v1/x] ≈ e2 [v2/x] : T2 [v1/x]

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Contents

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Overview of Logical Relation

e1 ≃ e2 : T
≃ is defined by using

basic ideas of the logical relation for FH[2]
⊤⊤-closure[3]

A method to give a logical relation to a
lambda calculus with recursive functions

Only e1 is typed

similarly to semi-typed contextual
equivalence

[2] Belo et al., 2011
[3] Pitts, 2005

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

How to Define Logical Relation by ⊤⊤

1 Define value relations for base types

bool: {(true,true), (false,false)}

int: {...,(-1,-1),(0,0),(1,1),...}

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

How to Define Logical Relation by ⊤⊤

1 Define value relations for base types
2 Define term relations for base types by

operation ⊤⊤

⊤⊤ expands value relations to term
relations

bool : {(true, not false),(true && true, true) ...}

int: {(1+1,2),(0∗3,0+0),...}

Value relation
⊤⊤
−−−→ Term relation

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

How to Define Logical Relation by ⊤⊤

1 Define value relations for base types
2 Define term relations for base types by

operation ⊤⊤
3 Define value relations for complex types

int → int : {(succ, fun x.x+ 1),...}

Value relation
⊤⊤
−−−→ Term relation

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

How to Define Logical Relation by ⊤⊤

1 Define value relations for base types
2 Define term relations for base types by

operation ⊤⊤
3 Define value relations for complex types
4 Define term relations for complex types by

operation ⊤⊤

Value relation
⊤⊤
−−−→ Term relation

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

How to Define Logical Relation by ⊤⊤

1 Define value relations for base types
2 Define term relations for base types by

operation ⊤⊤
3 Define value relations for complex types
4 Define term relations for complex types by

operation ⊤⊤
...

Value relation
⊤⊤
−−−→ Term relation

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Relations for Closed Terms

Value relation: T (θ, δ)val

Term relation: T (θ, δ)tm

Here,
θ is a valuation for type variables in T

θ = {α 7→ (r ,T1,T2), ...}
r is a term relation and an interpretation of α

Notation: θi = {(α 7→ Ti), ...}
δ is a valuation for variables in T

δ = {x 7→ (v1, v2), ...}
Notation: δi = {(x 7→ vi), ...}

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Value/Term Relation: Base Types

Base type: B

Value Relation

(v1, v2) ∈ B(θ, δ)val iff
v1 = v2 and v1 is a constant of B

Term Relation

B(θ, δ)tm = (B(θ, δ)val)⊤⊤

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Value/Term Relation:
Dependent Function Types

Value Relation

(v1, v2) ∈ (x :T1 → T2)(θ, δ)
val iff

for any (v ′
1
, v ′

2
) ∈ T1(θ, δ)

tm,
(v1 v

′
1
, v2 v

′
2
) ∈ T2(θ, δ{ x 7→ v ′

1
, v ′

2
})tm

Term Relation

(x :T1 → T2)(θ, δ)
tm = ((x :T1 → T2)(θ, δ)

val)⊤⊤

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Value/Term Relation: Refinement Types

Value Relation

(v1, v2) ∈ {x :T | e}(θ, δ)val iff

(v1, v2) ∈ T (θ, δ)tm

θ1(δ1([v1/x]e))
∗ true

θ2(δ2([v2/x]e))
∗ true

Term Relation

{x :T | e}(θ, δ)tm = ({x :T | e}(θ, δ)val)⊤⊤

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Logical Relation for Open Terms

Definition (Logical Relation for Open Terms)

Γ ⊢ e1 ≃ e2 : T iff

1 Γ ⊢ e1 : T
2 (θ1(δ1(e1)), θ2(δ2(e2))) ∈ T (θ, δ)tm

where Γ ⊢ θ; δ

e1 and e2 are related for well-formed
substitution θ and δ

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Properties of Logical Relation

Theorem (Soundness)

If Γ ⊢ e1 ≃ e2 : T, then Γ ⊢ e1 ≈ e2 : T

Prove that ≃ satisfies the properties defining ≈

Theorem (Completeness w.r.t Typed Terms)

If Γ ⊢ e1 ≈ e2 : T and Γ ⊢ e2 : T,

then Γ ⊢ e1 ≃ e2 : T

An orthodox method doesn’t go through

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Soundness: Overview of Proof

We must prove that for soundness

the logical relation satisfies

reflexivity, transitivity, typed symmetry

compatibility

substitutivity

Note that

it suffices to prove only compatibility and
substitutivity in [3]

all the properties are proved in this work

[3] Pitts, 2005

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Contents

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Upcast Elimination

Upcast Elimination

An upcast and an identity function are contextually
equivalent

Lemma
If Γ ⊢ T1 <: T2, then
Γ ⊢ 〈T1 ⇒ T2〉

ℓ ≃ (λ(x :T1).x) : T1 → T2

Corollary

If Γ ⊢ T1 <: T2, then
Γ ⊢ 〈T1 ⇒ T2〉

ℓ ≈ (λ(x :T1).x) : T1 → T2

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Contents

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Conclusion

A sound logical relation w.r.t semi-typed
contextual equivalence

Proof of upcast elimination

Technically,
⊤⊤-closure works in manifest contract calculus
with non-termination

The proofs of the properties are
troublesome

“Semi-typedness” doesn’t complicate the proof
of soundness

affects the proof of completeness

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

Future Work

Unrestricted completeness

removal of “typedness” assumption

Correctness of other optimizations

Effects other than non-termination

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

	A Manifest Contract Calculus: FfixH
	Semi-Typed Contextual Equivalence
	Logical Relation
	Upcast Elimination
	Discussion

