
KYOTO UNIVERSITY

DOCTORAL THESIS

An Integrated Theory of
Type-Based Static and Dynamic Verification

Author:
Taro Sekiyama

Supervisor:
Professor Atsushi Igarashi

Department of Communications and Computer Engineering
Graduate School of Informatics

February 26, 2016

KYOTO UNIVERSITY

Abstract
Graduate School of Informatics

Department of Communications and Computer Engineering

Doctor of Informatics

An Integrated Theory of Type-Based Static and Dynamic Verification

by Taro Sekiyama

For development of reliable software, many verification methods have been studied so
far. One of the most successful approaches is type systems, which have been tied to
various kinds of programming languages from dynamically typed ones through de-
pendently typed ones. Each of dynamic, static, and dependent typing has its own pros
and cons and is not always sufficient for development of practical, reliable software.

Our goal is to introduce a full-fledged programming language where dynamically,
statically, and dependently typed code coexist and interact safely. In this thesis, we
focus on three universal features in programming: delimited control, parametric poly-
morphism, and algebraic datatypes. These features are bases of current program-
ming languages—delimited control provides control effects such as exception han-
dling; polymorphism plays a key role in type-based abstraction and reuse of program
components; algebraic datatypes are an usual tool to represent data structures. We
study how these features are incorporated with mechanisms for integrating a certified
and an uncertified worlds, based on gradual typing, which combines static and dy-
namic typing, and manifest contracts, which does static and dependent typing. We
first study delimited control in integration of static and dynamic typing; this extension
needs monitoring of capture and call of delimited continuations. We also investigate
parametric polymorphism in a combination of static and dependent typing and show
our extension is sound, in particular, parametricity does hold. Finally, an extension
with algebraic datatypes lets us compare two major approaches to giving specifica-
tions to data structures from the point of view of computational efficiency. We believe
that these extensions and insights obtained from them will contribute to achievement
of our goal.

iii

Acknowledgements
First of all, I want to thank Atsushi Igarashi for being my supervisor and a patient

collaborator. He gave me a chance to study manifest contracts, which I have worked
over in both of my master’s and doctoral courses. He also gave many fruitful, influen-
tial comments to my work—especially, the work on manifest contracts with algebraic
datatypes started with his insight to the relationship between refinements on type con-
structors and data constructors. My attitude to research has been affected deeply by
him. He was patient with my English writing, speaking, and listening skills and helped
my job hunting.

I am grateful to Akihiro Yamamoto and Yasuo Okabe for the attention of my com-
mittee. Their comments improve the quality of my thesis significantly.

Koji Nakazawa educated me about mathematics, logic, and mathematical logic. Ko-
hei Suenaga gave advice on job hunting. They also gave comments which improved
my work and presentations significantly. Kentaro Okumura kept on discussing work
and counseled me when I was in difficulty. Yuki Nishida developed an experimental
implementation to demonstrate our work. I am very grateful to all members of the
Computer Software Group at Kyoto University. I enjoyed life in the laboratory thanks
to them.

Michael Greenberg is a collaborator on manifest contracts. The discussion with
him was exciting and the content of Chapter 3 is the joint work with him. He also
improved my presentation and encouraged me in the presentation at an international
conference. Yoshiyuki Kameyama and Kenichi Asai advised and indicated a direction
of my work on logical relations for statically typed languages with shift/reset (that
work is not presented in this thesis, though). Kenichi Asai also taught me that a study
of shift/reset should be based on CPS transformation; in fact, the transformation works
as a guide to introduce the monitoring system given in Chapter 2.

Finally, I appreciate my family, who have supported me from both of financial and
mental sides since childhood. Without their helps, I would never be here.

v

List of Publications

Chapter 2 consists of:
Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi. Shifting the blame - A blame
calculus with delimited control. In Proceedings of the 13th Asian Symposium on Pro-
gramming Languages and Systems, volume 9458 of Lecture Notes in Computer Science,
pages 189–207. Springer-Verlag, 2015.

Chapter 3 consists of:
Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. Polymorphic manifest
contracts, revised and resolved. ACM Transactions on Programming Languages and Sys-
tems, 2015. Accepted with major revision.

Chapter 4 consists of:
Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest contracts for datatypes.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 195–207, 2015.

Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest contracts for algebraic
datatypes. The 16th Workshop on Programming and Programming Languages, 2014.

vii

Contents

Acknowledgements v

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Software Verification . 1
1.2 Type-Based Software Verification . 2
1.3 Integration of Static and Dynamic Verification 3

1.3.1 Gradual Typing . 4
1.3.2 Manifest Contracts . 5

1.4 This Thesis . 7
1.4.1 Gradual Typing with Delimited Control 8
1.4.2 Manifest Contracts with Parametric Polymorphism 8
1.4.3 Manifest Contracts with Algebraic Datatypes 9

1.5 Organization . 10

2 Gradual Typing with Delimited Control 11
2.1 Blame Calculus with Shift and Reset . 12

2.1.1 Blame Calculus . 12
2.1.2 Delimited-Control Operators: Shift and Reset 13
2.1.3 Blame Calculus with Shift and Reset 14

2.2 Language . 15
2.2.1 Syntax . 16
2.2.2 Semantics . 16
2.2.3 Type System . 19
2.2.4 Type Soundness . 20

2.3 Blame Theorem . 21
2.3.1 Subtyping . 21
2.3.2 Blame Theorem . 23

2.4 CPS Transformation . 24

3 Manifest Contracts with Parametric Polymorphism 27
3.1 Overview . 30

3.1.1 Manifest Contract Calculus for Hybrid Type Checking 30
3.1.2 Polymorphic Manifest Contract Calculus FH 32
3.1.3 Flaws in FH—and How We Solve Them 34

3.2 Defining FσH . 36
3.2.1 Syntax . 36
3.2.2 Operational Semantics . 39

ix

3.2.3 Static Typing . 40
3.3 Properties of FσH . 44

3.3.1 Cotermination . 44
3.3.2 Type Soundness . 45

3.4 Parametricity . 46
3.4.1 Logical Relation . 47
3.4.2 Parametricity . 49

3.5 Three Versions of FH . 51
3.5.1 FH 1.0: Belo et al.’s Work . 51
3.5.2 FH 2.0: Greenberg’s Thesis . 51
3.5.3 FσH . 54

4 Manifest Contracts with Algebraic Datatypes 55
4.1 Overview . 58

4.1.1 Casts for Datatypes . 58
4.1.2 Ideas for Translation . 60

4.2 A Manifest Contract Calculus λH
dt . 61

4.2.1 Syntax . 61
4.2.2 Type System . 63
4.2.3 Semantics . 64
4.2.4 Type Soundness . 68

Typing for Run-time Terms . 68
Well-formed Type Definition Environments 69

4.2.5 Comparison of FσH and λH
dt . 71

4.3 Translation from Refinement Types to Datatypes 71
4.3.1 Translation, Formally . 73
4.3.2 Correctness . 74
4.3.3 Efficiency Preservation . 76
4.3.4 Extension: Binary Trees . 76
4.3.5 Discussion . 77

5 Related Work 81
5.1 Integration of Static and Dynamic Typing 81
5.2 Integration of Static and Dependent Typing 83
5.3 Dependent and/or Refinement Type Systems 85
5.4 Parametricity with Dynamic Type Analysis 86
5.5 Contracts for Datatypes . 87
5.6 Systematic Derivation of Datatype Definitions 88

6 Conclusion 91
6.1 This Thesis . 91
6.2 Future Work . 92

A Proofs of Gradual Typing with Delimited Control 105
A.1 Type Soundness . 105
A.2 Blame Theorem . 114
A.3 CPS Transformation . 119

x

B Proofs of Manifest Contracts with Parametric Polymorphism 139
B.1 Properties of substitution . 139
B.2 Cotermination . 142
B.3 Type soundness . 147
B.4 Parametricity . 160

C Proofs of Manifest Contracts with Algebraic Datatypes 167
C.1 Term and Type Equivalence . 167
C.2 Cotermination . 169
C.3 Type Soundness . 184
C.4 Translation . 201

C.4.1 Static Correctness . 201
C.4.2 Dynamic Correctness . 207

xi

List of Figures

1.1 Comparison of static verification in typing styles. 3

2.1 Syntax. 16
2.2 Reduction and evaluation. 17
2.3 Compatibility rules. 18
2.4 Typing rules. 20
2.5 Subtyping rules. 22
2.6 Safety rules. 23
2.7 CPS transformation. 25

3.1 An inconsistent derivation of FH’s type conversion relation. 34
3.2 Syntax for FσH . 36
3.3 Operational semantics for FσH . 38
3.4 Typing rules for FσH. The rules marked ∗ are for “run-time” terms. 41
3.5 Type compatibility and conversion for FσH 43
3.6 The logical relation for parametricity . 47
3.7 Complexity of casts . 50
3.8 Parallel reduction (for open terms). 52
3.9 Counterexamples to substitutivity and cotermination of parallel reduc-

tion in FH . 53
3.10 Type conversion via common-subexpression reduction 54

4.1 Program syntax. 61
4.2 Typing rules for λH

dt . 63
4.3 Type compatibility for λH

dt . 64
4.4 Operational semantics for λH

dt . 65
4.5 Typing rules for run-time terms. 69
4.6 Translation. 72
4.7 Generation of base contracts and arguments to recursive calls. 72

xiii

List of Tables

3.1 The status of properties of polymorphic manifest calculi. 29

4.1 Lookup functions. 61

xv

Chapter 1

Introduction

1.1 Software Verification

Software has been used in various situations and dealt with critical things such as hu-
man life, business, privacy, and so on. In such software, it is crucial to verify that the
software behaves correctly. For example, an operating system should provide guest
users with only data offered publicly and, more technically, programs should write
and read data to and from a file via an opened file descriptor.

The most obvious way to check the behavior of a program is probably to execute
it actually and observe what it outputs and what computational resources (e.g., files,
sockets, and processes) it uses. This naive approach, however, has many defects in
verifying practical software. First, when something unexpected is observed, it is often
difficult to identify the cause of the error because software bugs and their causes often
seem to be unrelated in program texts in many cases. Worse, that approach does not
reach the goal completely, namely, a program verified by it does not always behave cor-
rectly because it checks only some execution paths of the program, not all. For example,
let us consider an (artificial) Ruby program as follows:

def f(b) =
if b then

1
else

"foo"
end

end

x = f(File.exists?("bar"))
print Math.sqrt(x)

The function f takes a Boolean value and examines its truth; if the argument is true, f
will return an integer; otherwise, it will return a string. The program queries whether
the file named "bar" exists, passes its result to function f, and prints the square root
of the value returned by f. Obviously, a run of this program would never raise errors
if the file "bar" exists since, in that case, f will return integer 1 and its square root
is also 1. This program will be aborted, however, in the case that the file does not ex-
ist, because f will return a string but Math.sqrt cannot calculate the square root of a
string value. This is the case that all execution paths in a program should be checked.
Unfortunately, we cannot expect it in general because such checks give rise to combina-
torial explosion easily and, worse, there may be infinite execution paths, in particular,
in nonterminating programs.

Alternatively, static verification has been studied and used as approaches to verify-
ing programs in a more systematic, modular, and dependable way. Static verification

1

2 Chapter 1. Introduction

techniques give program components specifications, which represent how the compo-
nents should behave, and check that the components follow the specifications with
the aid of computers before running the program. Since it does not need execution of
programs, static verification can detect errors in an early stage of development—the
early error detection reduces efforts made by programmers to find software bugs from
a large codebase. Most approaches to static verification are also exhaustive, i.e., if they
accept a program, it is guaranteed that the program never has certain errors. Forms
of specifications vary with properties we want programs to have and verification ap-
proaches.

1.2 Type-Based Software Verification

Types, which intuitively denote kinds of data, are one of the most successful specifica-
tion forms. Verification mechanisms using types are usually called type systems, which
assign types to program components and check that the components are manipulated
with only operations allowed by their types. Many programming languages such as
Java [42], C++ [56], C] [73], Standard ML [76], Haskell [68], etc. support static type sys-
tems which guarantee that programs accepted by the systems do not have some kinds
of errors—e.g., “method-not-found” errors in Java and call of nonfunctional values in
Standard ML and Haskell. The static discrimination among data makes it possible to
not only detect errors caused by applying unexpected operations at very early stages
but also optimize programs (in fact, this is the first motivation of introducing the type
system in FORTRAN [12]). Another benefit of type systems is that types are specifi-
cations (comparatively) easy to read and understand and so they work as machine-
verified documentation; this often plays an important role in maintainability of soft-
ware. Although there are these advantages in static typing, it is often too strict and re-
jects even semantically correct programs. For example, it is difficult for many statically
typed languages to deal with heterogeneous lists safely,1 though (unsafe) workarounds
to avoid the problem are provided in most languages.

Type systems have been so suited to verify programs and closely tied to various
kinds of programming languages from so-called dynamically typed ones through so-
called dependently typed ones. On one hand, dynamically typed languages, which
are also called script languages and include Python, Ruby, ECMAScript (JavaScript),
many dialects of Lisp, and so on, do not perform type checking statically and instead
defer it to run time. If a run-time check fails, then an exception will be raised to no-
tify the failure. In other words, dynamic typing reports errors only when they happen
actually, unlike static typing, which estimates errors possible to happen. For example,
an execution of the Ruby program above will be aborted by raising a run-time excep-
tion for failure of the run-time check that Math.sqrt should take floating-points as an
argument. Dynamically typed languages do not receive the advantages of static typ-
ing and their programs consume more computational resources than ones in statically
typed languages for the need to record and check kinds of data at run time, whereas
dynamically typed languages enable prototypes of software applications to be devel-
oped rapidly and exploit features, such as print of formatted string, macro, run-time
reflection, serialization/deserialization of objects, etc., difficult to deal with in static
typing since their programs are not restricted by rigid constraints imposed by static
type systems. On the other hand, dependently typed languages, such as DML [123],
Cayenne [11] F∗ [108], Coq [112], Agda [4], etc., have more powerful static type systems

1Some languages, e.g., Haskell [60], can.

Chapter 1. Introduction 3

Statically verifiable properties Easy to pass static type checking
Dynamic typing

y
xStatic typing

Dependent typing

FIGURE 1.1: Comparison of static verification in typing styles.

than usual nondependently, statically typed languages such as Java; we call such non-
dependently typed languages statically typed ones and their typing styles static typing
simply if what they mean is clear from the context. The type systems of dependently
typed languages allow types to be dependent on values in programs. For example, Coq
can give a type Vector n to denote lists of length n exactly:

Inductive Vector : int -> Type :=
nil : Vector 0

| cons : forall n : int, int -> Vector n -> Vector (n+1)

Since n is an integer to denote the length of lists, the empty list nil is given type
Vector 0 and cons constructor returns a list of Vector (n+1) when given a sublist
of Vector n. It is important to notice that Vector depends on integer values denoted
by n. This dependency makes it possible to represent more precise specifications. For
example, using Vector, Coq would provide a concatenation function of two finite lists
with the following type:

Vector m -> Vector n -> Vector (n+m)

whereas OCaml [66], a statically typed language, would provide it with the following:

int list -> int list -> int list

where int list is a type for finite lists of integers. The former type is more precise
than the latter in the sense that the former presents the length of the concatenation but
the latter does not. Use of precise specifications leads to early notice of incorrect imple-
mentations. Dependently typed languages also accept features, such as print of format-
ted strings, difficult to give types in usual statically typed languages [11]. Support for
dependent types, however, makes type checking difficult, at worst, undecidable [11].
Perhaps worse, powerful type systems require programmers to write enormous type
annotations. Figure 1.1 shows a summary of the comparison above: dynamic typing
guarantees nothing statically but enables “flexible” programming; static typing detects
certain errors statically but rejects apparently correct programs; dependent typing can
detect more errors and accept more correct programs but imposes significantly more
burdens on both programmers and type checkers.

1.3 Integration of Static and Dynamic Verification

We have seen three kinds of typing styles: dynamic typing, static typing, and depen-
dent typing. Each typing style has its own pros and cons and has been adopted by
many programming languages, including ones for research, already. It is natural that
combining these typing styles yields more powerful programming styles. Combining
static and dynamic typing, we can start with developing a prototype in a dynamically
typed language and rewrite parts where specifications become stable to a statically

4 Chapter 1. Introduction

typed one. Combining static and dependent typing, we can write only critical parts
in dependently typed languages for rigorous verification and other parts in a statically
typed language to avoid burdens due to dependent typing. In fact, there has been much
work to unify static and dynamic typing and do static and dependent typing. For ex-
ample, programming languages supporting both static and dynamic typing have been
developed actively [73, 74, 114, 18, 118, 31] and integration of static and dependent typ-
ing has been investigated over a decade [82, 37, 46, 45, 62, 64, 44, 14, 125, 43, 61, 111].

In what follows, we briefly introduce two integration mechanisms which we work
over: gradual typing, which combines static and dynamic typing, and manifest contracts,
which does static and dependent typing. Both of these mechanisms allow a certified
and an uncertified sides to interact by giving and taking values. This interaction, how-
ever, poses a challenge: how is it verified that values flown from the uncertified side
follow the specifications in the certified side? The key approach to the challenge is
dynamic verification—the values from the uncertified side is checked at run time.

1.3.1 Gradual Typing

Gradual typing [101, 113, 120] is a framework to integrate static and dynamic typing,
allowing statically typed (typed for short) and dynamically typed (untyped for short)
code to coexist. Gradually typed languages allow programmers to write an untyped
program at an early stage for rapid development, rewrite parts where specifications
become stable to statically typed ones, and obtain a fully typed program finally. For
example, let us see how the following untyped, ML-like program is rewritten to a fully
typed program:

let f g x = g (g x)
let h x = f (fun y -> y + 1) x
let x = h 1

where gray parts are untyped. Since integers are typed at int and operation (+) can
be applied to only integers, we can rewrite a few parts in the program to statically
typed ones as follows:

let f g x = g (g x)

let h x = f (fun (y:int) -> y + 1) x

let x = h 1

where white parts are statically typed. Since functions h and f take only arguments of
int and int → int, respectively, the program is rewritten as follows:

let f (g:int→int) x = g (g x)

let h (x:int) = f (fun (y:int) -> y + 1) x

let x = h 1

By continuing similar reasoning, we can obtain the fully typed program:

let f (g:int→int) (x:int) : int = g (g x)
let h (x:int) : int = f (fun (y:int) -> y + 1) x
let x : int = h 1

All of the four programs above are legitimate in gradual typing. In addition to smooth
transformation from fully untyped programs to fully typed ones, gradual typing also
enables “flexible” programming, like dynamically typed languages. For example, let
us consider the following program:

Chapter 1. Introduction 5

let x = if (f 0) then (+) else 1

let y:int = if (f 0) then x 1 2 else x

where f is supposed to be a statically typed function of int → bool. In the first
let declaration, what value is bound to x rests on the conditional expression f 0; if
f 0 evaluates to true, then function (+) is bound to x; otherwise, integer 1 is bound.
The body of the second let declaration refers to variable x appropriately, so no run-
time errors will happen. Since (+) and 1 have different types, the type of a value
of variable x cannot be determined statically in simple type systems and so statically
typed languages (with simple type systems) would reject this program. By contrast,
gradually typed languages accept it because they can suppose that the let declaration
is untyped.

The key notion for safe interaction between a typed and an untyped parts is mon-
itoring of value flows between the two parts to check at run time that values in the
untyped side satisfy the type specifications given by the typed side—in languages with
“sound” gradual typing, all run-time value flows are monitored. Perhaps interestingly,
value flows from typed parts to untyped parts also have to be monitored when higher-
order functions are supported. If it is detected that untyped values did not conform
to the specification of a typed part, “blame” [35, 113, 120, 27] (a kind of uncatchable
exceptions) will be raised to notify that something unexpected happened.

1.3.2 Manifest Contracts

Manifest contracts [37, 44, 64, 43] are a framework for integrating static and dynamic
checking of type specifications including refinement types,2 which are a kind of depen-
dent types. In manifest contracts, finer-grained specifications than simple types such as
int are expressed by using software contracts [83, 72, 35] (contracts for short). Contracts
were originally introduced to represent formal specifications between a supplier and a
client of a software component. In this thesis, we follow the style of Eiffel [72]; contracts
mean predicates described in the language used to write programs, allowing program-
mers to express more precise specifications than simple types and able to be checked
at run time since they are program expressions. For example, a contract to denote that
variable x is positive is written as x > 0. In addition to such simple specifications,
contracts can represent finer-grained ones such as preconditions, which denote what
a function requires, postconditions, which denote what a function guarantees, and in-
variants, which denote what always holds. As an example of such contracts, let us
express a specification of division function. In mathematics, given a dividend and a
nonzero divisor, division returns the quotient such that the dividend is equal to the
multiplication of the quotient and the divisor. When division function is implemented
as the form let div dividend divisor = ... in a program, the precondition
that a divisor is nonzero is expressed as divisor <> 0 and the postcondition that
the dividend is equal to the multiplication of the quotient and the divisor is expressed
as dividend = result * divisor where result is a variable to denote the quo-
tient.

Many programming languages support contract systems with run-time checking
mechanisms as libraries (such as in the C language [55]) or dedicated constructs (such
as in Eiffel [72]). The most widely accepted checking mechanism is probably asser-
tion, which takes a Boolean expression and checks its truth at run time. For example,

2Refinement types are also known as subset types.

6 Chapter 1. Introduction

OCaml [66] supports the assert construct and, given division function div, function
div’ that enforces the pre- and the post-conditions for division is written as follows:

let div’ dividend divisor =
assert (divisor <> 0);
let result = div dividend divisor in
assert (dividend = result * divisor);
result

If zero is given to div’ as a divisor, the precondition divisor <> 0 is checked at run
time and an exception is raised to notify failure of the assertion; similarly, if div does
not return a value satisfying the postcondition, an exception is also raised to notify fail-
ure of the postcondition; otherwise, div’ works in the same way as div. Eiffel [72]
succeeds in incorporating contracts into interfaces of program components and encour-
ages making pre- and post-conditions of methods and invariants of classes explicit—
this approach is called “Design by Contracts” concisely. Racket [38] has a state-of-
the-art contract system, which supports higher-order contracts [35], lazy contracts [36],
parametric contracts [48], and so on.

Unlike traditional contract systems, dubbed latent contracts by Greenberg et al. [44],
with only run-time checking mechanisms, manifest contracts take advantage of con-
tracts for both static and dynamic verification by embedding contract information into
types. The key type construct is refinement types. A refinement type {x :B | e} intuitively
represents a set of values v of base type B such that the expression [v/x]e , which is ob-
tained by substituting v for x in the Boolean expression e , evaluates to true. It is worth
noting that e , called a contract, a refinement, or a predicate, can be an arbitrary Boolean
expression and so refinement types can specify any subset of base-type constants as
long as a constraint to specify the subset can be written as a program expression. For
example, positive integers are represented as {x :int | x > 0} and prime numbers are
as {x :int | prime? x} using a user-defined primality test function prime?. Support for
dependent function types, which allow us to express input/output relationships of func-
tions, makes specification languages more expressive. In general, dependent function
types take the form x :T1 → T2, which means, when taking a value v of T1, functions of
the type return a value of [v/x]T2. For example, using type rational to denote rational
numbers, a type of division function div is represented as

dividend :rational→
divisor :{x :rational | x 6= 0} → {result :rational | dividend = result ∗ divisor}.

The second argument and the return types denote the pre- and the post-conditions of
division, respectively. Thanks to dependency of function types, the return type can
describe the relationship of inputs dividend and divisor and the output result—the first
argument dividend should be equal to the multiplication of the output and the second
argument divisor . Dependent function types give application terms precise types. For
example, the quotient (div 42 6) of dividend 42 and divisor 6 is typed at {result :rational |
42 = result ∗ 6}.

Specification checking in manifest contracts is expressed as type checking since
specifications are denoted by types with contract information. For example, when
we want to ensure that an implementation of division function satisfies the contract
for division, it is checked that the implementation can be given the above dependent
function type. Manifest contracts advocate hybrid type checking, an integration of both

Chapter 1. Introduction 7

static and dynamic type checking, which resolves whether program components sat-
isfy specified contracts statically as much as possible and defers checking to run time if
a problem instance is not resolved statically.

What plays an essential role in static type checking is subtype checking. Intuitively,
type T1 is a subtype of T2 when contract information on T1 implies that on T2. Static
subtype checking between refinement types is, thus, formalized as an implication re-
lation between the Boolean predicates on the refinement types. For example, the quo-
tient of dividend 42 and divisor 6 is typed at {result :rational | 42 = result ∗ 6} and the
predicate 42 = result ∗ 6 implies result > 0, so the quotient would be also given type
{result :rational | result > 0} statically. Static subtype checking rests on only type in-
formation and guarantees that any term of a type is regarded as one of its supertype
without run-time checks.

By contrast, dynamic type checking uses run-time values in addition to type in-
formation and checks that some run-time value satisfies contracts on types at which we
expect the value to be typed. A key mechanism for dynamic checking is type coercions,
more commonly called casts. A cast 〈T1 ⇐ T2 〉` performs a run-time check that, when
taking a value of T2, the value satisfies contracts on T1. If the check fails—i.e., the value
violates the contracts—then blame will be raised for notifying failure of the check.

The key to connect static and dynamic checking is in the typing rule for casts, which
gives a cast application 〈T1 ⇐ T2 〉` e type T1 on which we expect e to satisfy the con-
tract information. This rule is justified by the cast semantics—if the cast application
results in a value, it suggests success of the cast, namely, the target value satisfies the
contracts on T1. Even if the cast application causes blame, there are no problems be-
cause at such a time program execution will be aborted.

1.4 This Thesis

Our goal is to introduce a full-fledged programming language where dynamically,
statically, and dependently typed code coexist and interact safely. For this goal, we
study a theory to advance gradual typing and manifest contracts. Although their
key ideas have been established, it is not trivial to extend them so that static and
dynamic verification can interact cooperatively because enhancement of dynamic as-
pects often introduces an undesirable interaction between a certified and an uncer-
tified worlds and breaks foundations of static verification. For example, as pointed
out by Ahmed et al. [7], naive addition of polymorphism to gradual typing results
in violation of parametricity, a key property of statically typed lambda calculi with
polymorphism [41, 89, 90, 119]. A study of extending integration mechanisms with a
programming construct also lets us reconsider the construct from the point of view of
both certified and uncertified sides and provides new insights about it.

In this thesis, we focus on three universal features in programming: delimited con-
trol, parametric polymorphism, and algebraic datatypes. First, we study gradual typ-
ing with delimited control. Combining delimited-control operations and integration
of certified and uncertified worlds has not been studied in depth (except for Takikawa
et al. [110]). Since gradual typing seems to be more straightforward than manifest
contracts, we start with extending gradual typing with delimited control. Second, we
introduce polymorphism to manifest contracts. Polymorphism has been studied in the
context of static and dependent typing for a long time [41, 89, 13] whereas it does not
work well naively in both dynamic typing [92] and gradual typing [69, 7]. So, extend-
ing manifest contracts with polymorphism is expected to be nontrivial and, in fact, is

8 Chapter 1. Introduction

nontrivial. Finally, we extend manifest contracts with algebraic datatypes. This exten-
sion lets us compare two major approaches to giving specifications to data structures
from the point of view of computational efficiency.

In what follows, we describe overviews of our extensions briefly.

1.4.1 Gradual Typing with Delimited Control

We study integration of static and dynamic typing in the presence of delimited-control
operators. Delimited control is so powerful, a well known programming construct—
for example, various operations, such as exception handling, to manipulate call stacks
(sequences of activation frames) can be expressed by using delimited continuations.
However, control operators make it tricky to monitor the borders between typed and
untyped parts, though gradually typed languages should monitor them; in fact, as is
pointed out by Takikawa, Strickland, and Tobin-Hochstadt [110], communications be-
tween the two parts via continuations captured by control operators can be overlooked
under a standard monitoring system.

We propose an extension of a blame calculus [113, 120], a model calculus for grad-
ual typing, with Danvy and Filinski’s delimited-control operators shift and reset [25]
and give a new cast-based mechanism to monitor all communications between typed
and untyped parts. The idea of the new cast comes from Danvy and Filinski’s type
system [24] for shift/reset, where type information about contexts is considered. Using
types of contexts, our system can monitor all communications.

As a proof of correctness of our idea, we investigate two important properties. One
is Blame Theorem [113, 120], which states that values that flow from typed code never
trigger run-time type errors. The other property is soundness of continuation passing
style (CPS) transformation—investigating properties about CPS is important in study
of shift/reset because the origin and foundations of these operators come from CPS [24,
25, 57, 8]. Especially, after giving a CPS transformation for our calculus, we show that
it preserves well-typedness and, for any two source terms such that one reduces to the
other, their transformation results are equivalent in the target calculus. It turns out that
we need a few axioms about casts in addition to usual axioms, such as (call-by-value)
β-reduction, for equality in the target calculus.

1.4.2 Manifest Contracts with Parametric Polymorphism

We study manifest contracts with parametric polymorphism [41, 89, 90], which is a key
device of type-based abstraction in functional programming—for example, it is well
known that polymorphism can encode abstract datatypes (ADTs) [78]. Manifest con-
tracts are a sensible choice for combining contracts and type-based abstraction mecha-
nisms including ADTs. ADTs already use the type system to mediate access to abstrac-
tions; manifest contracts allow types to exercise a still finer grained control. We will see
an example motivating the combination of contracts and ADTs in Chapter 3.

To study combination of contracts and polymorphism, we introduce a polymorphic
manifest contract calculus FσH. Our calculus supports, in addition to polymorphism,
“general refinements,” where the underlying type T of refinement type {x :T | e} can
be arbitrary, unlike earlier manifest contracts [37, 44, 64], where T is restricted to be
base types. Thanks to support for general refinements, abstract datatypes can be im-
plemented by any type. General refinements also allow intuitive specifications to be
described by stating what a function produces when given specific arguments. For ex-
ample, let us consider a type of a root-finding algorithm, which, given a continuous

Chapter 1. Introduction 9

function f over real numbers, calculates an approximation of a real number x such
that f (x) = 0; such x is called a root of f . Naturally, as a precondition, the algorithm
requires argument function f to have a root. This precondition can be expressed as
f (a) < 0 and 0 < f (b) for some real numbers a and b—since f is continuous, it implies
the existence of a root of f . When we suppose that such a and b along with f are given
by users, the root-finding algorithm is given the dependent function type of:3

a:real→ b:real→ f :{f :real→ real | (f a) < 0 and 0 < (f b)} → {x :real | abs (f x) < ε}

where real is the type for real numbers, abs returns the absolute value of an argument,
and ε is an approximation error. Without general refinements, this type would not be
permitted because real→ real is not a base type.

We establish fundamental properties including type soundness and relational
parametricity; in fact, our calculus is the first sound polymorphic manifest contract
calculus—though some earlier work studied manifest contracts with polymorphism,
they have some metatheoretical problems. Our key observation for soundness is that
cast semantics should not be affected by substitution—to design such cast semantics,
our calculus uses delayed substitution on casts and a new type conversion relation.

1.4.3 Manifest Contracts with Algebraic Datatypes

We extend manifest contracts with algebraic datatypes. Our calculus supports two sim-
ple approaches to giving refinements to data structures: one gives refinements to type
constructors and the other to data constructors. For example, let us see what type is
given to lists of positive integers in each approach. In the former, using predicate func-
tion for all which returns whether all elements of a given list satisfy a given predicate,
a type of lists of positive integers can be described as:

{l :int list | for all (λy .y > 0) l}

where type constructor int list is refined. In the latter, such lists can be described by
defining a new datatype pos list:

type pos list = PNil | PCons : {x :int | x > 0}× pos list

where data constructors PNil and PCons, which correspond to the nil and the cons
constructors of lists, are refined.

The two approaches are complementary. The former makes it easier for a program-
mer to write types because writing program predicates on data structures is compar-
atively easy. The latter enables more efficient contract checking because we can find
what contracts hold for data structures from contract information on types of data con-
structors.

Our goal is to take the best of both approaches and transform programs using re-
finements on type constructors to ones using refinements on data constructors auto-
matically. In this thesis, as a stepping stone to the goal, we propose two mechanisms
for achieving the program transformation. First, a syntactic translation from refine-
ments on type constructors to equivalent refinements on data constructors. Using
this translation, for example, we can derive the definition of pos list from {l :int list |
for all (λy .y > 0) l} automatically. Second, dynamically checked casts between different

3The type presented here does not state that f is continuous but we can by using dependent products,
which are provided in Chapter 4.

10 Chapter 1. Introduction

but compatible datatypes such as int list and pos list. Such casts are useful when, say,
we want to apply list-processing functions to inhabitants of pos list. As technical devel-
opment, we define a manifest contract calculus λH

dt to formalize the semantics of the
casts and prove that the translation is correct. The formalization of λH

dt is slightly dif-
ferent from FσH (the calculus for manifest contracts with parametricity)—in particular,
λH
dt does not rest on delayed substitution, differently from FσH, and, in this sense, the

metatheory of λH
dt is simpler than that of FσH; we will discuss it in detail in Section 4.2.

1.5 Organization

The rest of this thesis is organized as follows. In Chapter 2, we study gradual typing
with delimited control. After seeing how delimited control in a standard monitoring
system causes overlooking interaction between typed and untyped parts, we describe
an idea to monitor such interaction. To formalize the idea, we introduce a blame cal-
culus with CPS-based delimited-control operators shift and reset; the cast semantics of
the calculus monitors capture and call of delimited continuations by considering types
of contexts. Then, we show standard properties: Type Soundness, Blame Theorem, and
soundness of our CPS transformation. Chapter 3 extends manifest contracts with para-
metric polymorphism. We start with reviewing prior work on manifest contracts—in
particular, we see that earlier polymorphic manifest contracts [14, 43] are not sound.
In Section 3.2, we introduce the first conjecture-free, sound polymorphic manifest con-
tract calculus with the help of delayed substitution and a new type conversion relation.
Finally, we show that our calculus has a crucial property, called parametricity, in poly-
morphic lambda calculi. Chapter 4 proposes a manifest contract calculus with algebraic
datatypes. The calculus supports two approaches to giving refinements data structures:
refinements on type constructors and refinements on data constructors. Section 4.3 re-
lates these two approaches via the calculus. Chapter 5 discusses work related to our
work and Chapter 6 concludes this thesis, describing future work.

This thesis is constituted by papers which have been presented or submitted
already. Chapter 2 and Chapter 4 are based on the papers presented at APLAS
2015 [99] and POPL 2015 [98], respectively. Chapter 3 is based on the one submitted to
TOPLAS [97].

We state only key lemmas and theorems in the body of the thesis; all of lemmas and
theorems and their proofs are presented in Appendix.

Chapter 2

Gradual Typing with Delimited
Control

We study gradual typing in the presence of delimited-control operators. As discussed
in Section 1.3.1, the run-time system of a gradually typed language should monitor
all flows of values between typed and untyped parts. Traditionally, casts [101, 37, 52,
102, 120, 7, 54, 105, 104] (or contracts [35, 113, 109, 27, 110]) play an important role in
such a monitoring system. A source program that contains typed and untyped parts
is compiled to an intermediate language such that casts are inserted in points where
typed and untyped code interacts. Casts are a run-time mechanism to check that a pro-
gram component satisfies a given type specification. For example, when typed code
imports a certain component from untyped code as integer, a cast is inserted to check
that it is actually an integer at run time. If it is detected that a component did not fol-
low the specification, blame (a kind of uncatchable exceptions) will be raised to notify
that something unexpected has happened. Tobin-Hochstadt and Felleisen [113] orig-
inated a blame calculus to study integration of static and dynamic typing and Wadler
and Findler [120] refined the theory of blame on its variant.

It is well known that use of delimited continuations as first-class values has many
applications—e.g., it is possible to implement various control effects such as exception
handling [106], backtracking [25], monads [34], generators [106], etc. However, control
operators make it tricky to monitor the borders between typed and untyped parts; in
fact, as is pointed out by Takikawa, Strickland, and Tobin-Hochstadt [110], communi-
cations between the two parts via continuations captured by control operators can be
overlooked under standard cast semantics.

In this chapter, we propose a blame calculus, based on Wadler and Findler [120],
with Danvy and Filinski’s delimited-control operators shift and reset [25] and give a
new cast-based mechanism to monitor all communications between typed and un-
typed parts. The idea of the new cast comes from Danvy and Filinski’s type system [24]
for shift/reset, where type information about contexts is considered. Using types of
contexts, our cast mechanism can monitor all communications.

As a proof of correctness of our idea, we investigate two important properties. One
is Blame Theorem [113, 120], which states that values that flow from typed code never
trigger run-time type errors. The other property is soundness of CPS transformation:
it preserves well-typedness and, for any two source terms such that one reduces to the
other, their transformation results are equivalent in the target calculus. It turns out that
we need a few axioms about casts in addition to usual axioms, such as (call-by-value)
β-reduction, for equality in the target calculus.

11

12 Chapter 2. Gradual Typing with Delimited Control

Outline In Section 2.1, we review the blame calculus and the control operators
shift/reset, explain why the standard cast does not work when they are naively com-
bined, and briefly describe our solution. Section 2.2 formalizes our calculus with an
operational semantics and a type system, and shows type soundness of the calculus.
Section 2.3 shows a Blame Theorem in our calculus and Section 2.4 introduces a CPS
transformation and shows its soundness.

2.1 Blame Calculus with Shift and Reset

2.1.1 Blame Calculus

The blame calculus of Wadler and Findler [120] is a kind of typed lambda calculus
for studying integration of static and dynamic typing. It is designed as an intermedi-
ate language for gradually typed languages [101], where a program at an early stage is
written in an untyped language and parts whose specifications are stable can be gradu-
ally rewritten in a typed language, resulting in a program with both typed and untyped
parts. In blame calculi, untyped parts are represented as terms of the special, dynamic
type [1, 51, 101] (denoted by ?), where any operation is statically allowed at the risk of
causing run-time errors. Blame calculi support smooth interaction between typed and
untyped parts—i.e., typed code can use an untyped component and vice versa—via a
type-directed mechanism, casts.

A cast, taking the form t : A ⇒p B , checks that term t of source type A behaves
as target type B at run time; p, called a blame label, is used to identify the cast that has
failed at run time. For example, using integer type int, cast expression 1 : int ⇒p ?
injects integer 1 to the dynamic type; conversely, t : ? ⇒p int coerces untyped term
t to int. A cast would fail if the coerced value cannot behave as the target type of the
cast. For example, cast expression (1 : int⇒p1 ?) : ?⇒p2 bool, which coerces integer
1 to the dynamic type and then its result to Boolean type bool, causes blame blame p2 at
run time since the coerced value 1 cannot behave as bool.

Using casts, in addition to fully typed and fully untyped programs, we can write
a program where typed and untyped parts are mixed. For example, suppose that we
first write an untyped program as follows:

let succ = λx . x + 1 in succ 1

where we color untyped parts gray .1 If the successor function is statically typed, we
rewrite the program so that it imports the typed successor function:

let succ = (λx . x + 1) : int→ int⇒p ? in succ 1

where we color typed parts white. When the source and target types in a cast are not
important, as is often the case, we just surround a term by a frame to indicate the
existence of some appropriate cast. So, the program above is presented as below:

let succ = λx . x + 1 in succ 1

Intuitively, a frame in programs in this style means that flows of values between the
typed and untyped parts are monitored by casts. Conversely, the absence of a frame

1Precisely speaking, even untyped programs need casts to use values of the dynamic type as functions,
integers, etc., but we omit them to avoid the clutter.

Chapter 2. Gradual Typing with Delimited Control 13

between the two parts indicates that the run-time system will overlook their commu-
nications.

What happens when a value is coerced to the dynamic type rests on the source
type of the cast. If it is a first-order type such as int, the cast simply tags the value
with its type. If it is a function type, by contrast, the cast generates a lambda ab-
straction that wraps the target function and then tags the wrapper. The wrapper, a
function over values of the dynamic type, checks, by using a cast, that a given argu-
ment has the type expected by the wrapped function and coerces the return value of
the wrapped function to the dynamic type, similarly to function contracts [35]. For ex-
ample, cast expression (λx :int. x + 1) : int → int ⇒p ? generates lambda abstraction
λy : ? . (((λx :int. x + 1) (y : ? ⇒q int)) : int ⇒p ?). Here, blame label q is the negation
of p, which we will discuss in detail below. Using the notation introduced above, it
is easy to understand that all communications between typed and untyped parts are
monitored because the program above reduces to:

let succ = λy . (λx . x + 1) y in succ 1

As advocated by Findler and Felleisen [35], there are two kinds of blame—positive
blame and negative blame, which indicate that, when a cast fails, its responsibility lies
with the term contained in the cast and the context containing the cast, respectively.
Following Wadler and Findler, we introduce an involutive operation ·̄ of negation on
blame labels: for any blame label p, p̄ is its negation and ¯̄p is the same as p. For a
cast with blame label p in a program, blame p and blame p̄ denotes positive blame and
negative blame, respectively. A key observation, so-called the Blame Theorem, in work
on blame calculi is that a cast failure is never caused by values from the more precisely
typed side in the cast—i.e., if the side of a term contained in a cast with p is more
precisely typed, a program including the cast never evaluates to blame p, while if the
side of a context containing the cast is, the program never evaluates to blame p̄.

2.1.2 Delimited-Control Operators: Shift and Reset

Shift and reset are delimited-control operators introduced by Danvy and Filinski [25].
Shift captures the current continuation, like another control operator call/cc, and reset
delimits the continuation captured by shift. The captured continuation works as if it is
a composable function, namely, unlike call/cc, control is returned to a caller when the
call to the captured continuation finishes.

As an example with shift and reset, let us consider the following program:

〈5+Sk . ((k 1+ k 2)= 13)〉

Here, the shift operator is invoked by the subterm Sk . ((k 1+ k 2)= 13) and the reset
operator 〈...〉 encloses the whole term. To evaluate a reset operator, we evaluate its
body. Evaluation of the shift operator Sk . ((k 1+ k 2)= 13) proceeds as follows. First,
it captures the continuation up to the closest reset as a function. Since the delimited
continuation in this program is 5+ [] (here, [] means a hole of the context), the captured
continuation takes the form λx . 〈5+ x 〉 (note that the body of the function is enclosed by
reset). Next, variable k is bound to the captured continuation. Finally, the body of the
closest reset operator is replaced with the body of the shift operator. Thus, the example

14 Chapter 2. Gradual Typing with Delimited Control

program reduces to:

〈(((λx . 〈5+ x 〉) 1)+ ((λx . 〈5+ x 〉) 2))= 13〉.

Since reset returns the result of its body, it evaluates to true.
Let us consider a more interesting example of function choice, a user of which

passes a tuple of integers and expects to return one of them. The caller tests the
returned integer by some Boolean expression and surrounds it by reset. Then, the
whole reset expression evaluates to the index (tagged with Some) to indicate which
integer satisfied the test, or None to indicate none of them satisfied. For example,
〈prime? (choice (141, 197))〉 will evaluate to Some 2 because the second argument 197
is a prime number. Using shift/reset, such a (two-argument version of) choice function
can be defined as follows:

choice = λ(x , y):int× int.Sk . if k x then Some 1 else if k y then Some 2 else None

It is important to observe k is bound to the predicate (in this case, λz . 〈prime? z 〉).
Since blame calculi support type-directed casts, it is crucial to consider type dis-

cipline in the presence of shift/reset. This work adopts the type system proposed by
Danvy and Filinski [24]. Their type system introduces types, called answer types, of
contexts up to the closest reset to track modification of the body of a reset operator—
we have seen above that the body of a reset operator can be modified to the body of a
shift operator at run time. In the type system, using metavariables α and β for types,
function types take the form A/α → B/β, which means that a function of this type is
one from A to B and, when applied, it modifies the answer type α to β. For example,
using a function of type (int × int)/bool → int/(int option) (int option means integers
tagged with Some and None), its user, when passing a pair of integers, expects to return
an integer value and to modify the answer type bool to int option. Conversely, to see
how functions are given such a function type, let us consider choice, which is typed at
(int× int)/bool→ int/(int option). It can be found from the type annotation that it takes
pairs of integers. The body captures a continuation and calls it with the first and second
components of the argument pair. Since a caller of choice obtains a value passed to the
continuation k , the return type is int. choice demands the answer type of a context be
bool because the captured continuation is required to return a Boolean value in condi-
tional expressions; and the shift operator modifies the answer type to int option because
the if-expression returns an int option value.

2.1.3 Blame Calculus with Shift and Reset

We extend the blame calculus with shift/reset so that all value flows between typed and
untyped parts are monitored, following the type discipline discussed above. The main
question here is how we should give the semantics of casts for function types, which
now include answer type information. The standard semantics discussed above does
not suffice because it is ignorant of answer types. In fact, it would fail to monitor value
flows that occur due to manipulation of delimited continuations, as we see below. For
example, let us consider the situation that untyped code imports typed function choice
via a cast (represented by a frame):

let f = choice in 5+ 〈succ (f (141, 197))〉

Chapter 2. Gradual Typing with Delimited Control 15

This program contains two errors: first, subterm succ (f (141, 197)) within the reset
operator returns an integer, though the shift operator in choice expects it to return a
Boolean value since the continuation captured by the shift operator is used in condi-
tional expressions; second, as found in subterm 5+ 〈. . . 〉 , the computation result of
the reset operator is expected to be an integer, though it should be an int option value
coming from the body of the shift operator in choice. However, if the cast on choice
behaved as a standard function cast we discussed in Section 2.1.1, these errors would
not be detected at run time on borders between typed and untyped parts. To see the
reason, let us reduce the program. First, since the choice is coerced to the dynamic
type, a wrapper that checks an argument and the return value is generated and then is
applied to (141, 197) :

let f = choice in 5+ 〈succ (f (141, 197))〉 7−→∗ 5+ 〈succ (choice (141, 197))〉

The check for (141, 197) succeeds and so choice is applied to (141, 197), and then the
shift operator in choice is invoked.

· · · 7−→∗ 5+ 〈succ Sk . if k 141 then Some 1 else if k 197 then Some 2 else None 〉

7−→∗ 5+ 〈 if (λx . 〈succ x 〉) 141 then Some 1 else if . . . then Some 2 else None 〉

Here, there are one gray area and one white area, both without surrounding frames.
The former means that the value flow from the captured continuation λx . 〈succ x 〉 to
typed code will not be monitored, when it should be by the cast from the dynamic type
to bool. Similarly, the latter means that the value flow from the result of the (typed) if-
expression to untyped code will not be monitored, either, when it should be by the cast
from int option to the dynamic type. The problem is that the standard function casts can
monitor calls of functions but does not capture and calls of delimited continuations.

Our cast mechanism can monitor such capture and calls of delimited continuations.
A wrapper generated by a cast from A/α → B/β to the dynamic type, when applied,
ensures that the reset expression enclosing the application returns a value of the dy-
namic type by inserting injection from β and that the continuation captured during the
call to the wrapped function returns a value of α by the cast to α. In the above example
of choice , our cast mechanism reduces the original program to a term like:

5+ 〈 if (λx . 〈succ x 〉) 141 then Some 1 else if . . . then Some 2 else None 〉

where two casts are added: one to check that the return value of the continuation has
bool and the other to inject the result of the if-expression to the dynamic type.

2.2 Language

In this section, we formally define a call-by-value blame calculus with delimited-
control operators shift and reset and show its type soundness. Our calculus is a variant
of the blame calculus by Ahmed et al. [7].

16 Chapter 2. Gradual Typing with Delimited Control

variables x , y , z , k blame labels p, q
constants c ::= true | false | ... base types ι ::= bool | ...
ground types G ,H ::= ι | ? / ? → ? / ?

types A,B , α, β, γ, δ ::= ι | ? | A/α→ B/β

values v ::= x | c | λx . t | v : G ⇒ ?

terms s, t , u ::= x | c | op(ti
i
) | λx . t | s t |

s : A⇒p B | s isG | s : G ⇒ ? | blame p |
〈s〉 | Sk . s

FIGURE 2.1: Syntax.

2.2.1 Syntax

Figure 2.1 presents the syntax, which is parameterized over base types, denoted by ι,
constants, denoted by c, and primitive operations, denoted by op, over constants. We
assume that at least Booleans are available in our calculus.

Types consist of base types, the dynamic type, and function types with answer
types. Unlike the blame calculus of Wadler and Findler, our calculus does not include
refinement types for simplicity; we believe that it is not hard to add refinement types if
refinements are restricted to be pure [8]. Ground types, denoted by G and H , classify
kinds of values. If the ground type is a base type, the values are constants of the base
type, and if it is a function type (constituted only of the dynamic type), the values are
lambda abstractions.

Values, denoted by v , consist of variables, constants, lambda abstractions, and
ground values. A lambda abstraction λx . t is standard; variable x is bound in the body
t . A ground value v : G ⇒ ? is a value of the dynamic type; the kind of v follows
ground type G .

Terms, denoted by s and t , extend those in the simply typed blame calculus with
two forms, reset expressions and shift expressions. Using the notation ti

i to denote
a sequence t1, ..., tn of terms, we allow primitive operators to take tuples of terms. A
type test s isG investigates a kind of the result of term s of the dynamic type at run
time. If the value of s matches with G , then it returns true; otherwise, it returns false. A
reset expression is written as 〈s〉 and a shift expression is as Sk . s where k is bound
in the body s . The syntax includes blame as a primitive construct despite the fact
that exceptions can be implemented by shift and reset because blame is an uncatchable
exception in a blame calculus. Note that ground values, ground terms (s : G ⇒ ?),
and blame are supposed to be “run-time” citizens that appear only during reduction
and not in a source program.

In what follows, as usual, we write s [x := v] for capture-avoiding substitution of v
for variable x in s . As shorthand, we write s : G ⇒? ⇒p A and s : A ⇒p G ⇒ ? for
(s : G ⇒ ?) : ?⇒p A and (s : A⇒p G) : G ⇒ ?, respectively.

2.2.2 Semantics

The semantics of our calculus is given in a small-step style by using two relations over
terms: reduction relation−→, which represents basic computation such as β-reduction,
and evaluation relation 7−→, in which subterms are reduced.

Chapter 2. Gradual Typing with Delimited Control 17

s −→ t Reduction rules

op(vi
i) −→ ζ (op, vi

i) R OP

(λx . s) v −→ s [x := v] R BETA

〈v〉 −→ v R RESET

〈F [Sk . s]〉 −→ 〈s [k := λx . 〈F [x]〉]〉 where x /∈ fv (F) R SHIFT

v : ι⇒p ι −→ v R BASE

v : ?⇒p ? −→ v R DYN

v : A/α→ B/β ⇒p A′/α′ → B ′/β′ −→
λx .Sk . (〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′)

R WRAP

v : A⇒p ? −→ v : A⇒p G ⇒ ? if A ∼ G and A 6= ? R GROUND

v : G ⇒?⇒p A −→ v : G ⇒p A if G ∼ A and A 6= ? R COLLAPSE

v : G ⇒?⇒p A −→ blame p if G 6∼ A R CONFLICT

(v : G ⇒ ?) isG −→ true R ISTRUE

(v : H ⇒ ?) isG −→ false if H 6= G R ISFALSE

s 7−→ t Evaluation rules

s −→ t

E [s] 7−→ E [t]
E STEP

E 6= []

E [blame p] 7−→ blame p
E ABORT

FIGURE 2.2: Reduction and evaluation.

The reduction rules, shown at the top of Figure 2.2, are standard or similar to the
previous calculi except (R WRAP), which is the key of our work. In (R OP), to reduce
a call to a primitive operator, we assume that there is a function ζ which returns an ap-
propriate value when taking an operator name and arguments to it. The rule (R SHIFT)
presents that the shift operator captures the continuation up to the closest reset opera-
tor. In the rule, the captured continuation is represented by pure evaluation contexts,
denoted by F , which are evaluation contexts [33] where the hole does not occur in
bodies of reset operators. Pure evaluation contexts are defined as follows:

F ::= [] | op(vi
i ,F , tj

j
) | F s | v F | F : A⇒p B | F : G ⇒ ? | F isG

As mentioned earlier, the body of the function representing the captured continuation
is enclosed by reset. A type test succeeds and returns true if the kind of a examined
value matches with the specified ground type (by (R ISTRUE)); otherwise, it returns
false (by (R ISFALSE)).

There are six reduction rules for cast expressions. The rules (R BASE) and (R DYN)
mean that casts between the same base type and between the dynamic type perform
no checks. We find (R DYN), which does not appear in Ahmed et al. [7], matches
well with CPS transformation; we will discuss it in Section 2.4. The rule (R GROUND),
applied when the target type is the dynamic type but the source type is not, turns a cast
expression to a ground term by inserting a cast to the ground type G that represents
the kind of the value v . The relation ∼, called compatibility, over two types is defined
by using rules in Figure 2.3. It intuitively means that a cast from A to B (and vice

18 Chapter 2. Gradual Typing with Delimited Control

A ∼ B Compatibility rules

A ∼ ?
C DYNTO

? ∼ B
C DYNFROM

ι ∼ ι
C BASE

A′ ∼ A B ∼ B ′ α′ ∼ α β ∼ β′

A/α→ B/β ∼ A′/α′ → B ′/β′
C FUN

FIGURE 2.3: Compatibility rules.

versa) can succeed; in other words, A 6∼ B means that a cast will fail. One interesting
fact about compatibility is that, for any nondynamic type A, we can find exactly one
ground type that is compatible with A: If A is a base type, then G is equal to A and, if
A is a function type, then G is ? / ? → ? / ?. As a result, G in (R GROUND) is uniquely
determined. The rules (R COLLAPSE) and (R CONFLICT) are applied when a target
value is a ground value. When the kind G of the underlying value v is not compatible
with the target type of the cast, the cast is blamed with blame label p by (R CONFLICT).
Otherwise, the underlying value is coerced from the ground type of the ground value
to the target type of the cast by (R COLLAPSE).

The reduction rule (R WRAP), applied to casts between function types, is the most
involved. The rule means that the cast expression reduces to a lambda abstraction
that wraps the target value v . Since the wrapper function works as a value of type
A′/α′ → B ′/β′, it takes a value of A′. Like function contracts [35], in the wrapper, the
argument denoted by x is coerced to argument type A of the source type to apply v
to it and the return value of v is coerced to return type B ′ of the target type. Further-
more, to call the target function in a context of answer type α, the wrapper captures
the continuation in which the wrapper is applied by using shift, applies the captured
continuation to the result of the target function, and then coerces the result of the cap-
tured continuation to α. Since the wrapper is applied in a context of answer type α′,
the captured continuation returns a value of α′. By enclosing the cast to α with reset,
a continuation captured during the call to v returns a value of α. Finally, the wrapper
coerces the result of the reset operator from β to β′ because the call to the target func-
tion modifies the answer type of the context to β, and so the reset expression returns
a value of β, and the wrapper is expected to modify the answer type to β′. The rule
(R WRAP) reverses blame labels for casts from A′ to A and from α′ to α because target
values for those casts originate from the context side.

We illustrate how (R WRAP) makes monitoring of capture and calls of continu-
ations possible, using choice in Section 2.1.3. By (R GROUND), the cast from (int ×
int)/bool → int/(int option) to the dynamic type reduces to that to ? / ? → ? / ?. By
(R WRAP), the cast generates a wrapper.

let f = choice in 5+ 〈succ (f (141, 197))〉

7−→ let f = λx .Sk ′. 〈 k ′ (choice x) 〉 in 5+ 〈succ (f (141, 197))〉

Chapter 2. Gradual Typing with Delimited Control 19

The wrapper is applied to (141, 197) , so the evaluation proceeds as follows:

· · · 7−→∗ 5+ 〈succ (Sk ′. 〈 k ′ (choice (141, 197)) 〉)〉

7−→ 5+ 〈 〈 (λx . 〈succ x 〉) (choice (141, 197)) 〉 〉

7−→∗ 5+ 〈 〈 (λx . 〈succ x 〉) (Sk . if k 141 then Some 1 else . . .) 〉 〉

7−→ 5+ 〈 〈if v 141 then Some 1 else if v 197 then Some 2 else None〉 〉

where v = λy . 〈 (λx . 〈succ x 〉) y 〉. We can observe that all borders in the last term are

monitored by casts.
Evaluation rules, presented at the bottom of Figure 2.2, are standard: (E STEP) re-

duces a subterm that is a redex in a program and (E ABORT) halts evaluation of a
program at blame when cast failure happens. To determine a redex in a program, we
use evaluation contexts [33], which are defined as follows.

E ::= [] | op(vi
i ,E , tj

j
) | E s | v E | 〈E 〉 | E : A⇒p B | E : G ⇒ ? | E isG

This definition means that terms are evaluated from left to right. Unlike pure evalua-
tion contexts, evaluation contexts include a context where the hole is put in the body
of a reset operator.

2.2.3 Type System

This section presents a type system of our calculus. It is defined as a combination of
that of Danvy and Filinski and that of Wadler and Findler. As usual, we use typing
contexts, denoted by Γ, to denote a mapping of variables to types:

Γ ::= ∅ | Γ, x :A

Typing judgments in our type system take the form Γ;α ` s : A;β, which means
that term s is typed at type A under typing context Γ and it modifies answer type α to
β when evaluated. Perhaps, it may be easier to understand what the typing judgment
means when its CPS transformation is considered. When we write [[·]] for the CPS
transformation, the typing judgment Γ;α ` s : A;β is translated into the form [[Γ]] `
[[s]] : ([[A]] → [[α]]) → [[β]] in the simply typed blame calculus (without shift/reset).
That is, type A of term s and type α are the argument type and the return type of
a continuation, respectively, and type β is the type of the whole computation result
when the continuation is passed.

Figure 2.4 shows typing rules for deriving typing judgments. Typing rules for shift
operators, reset operators, and terms from the lambda calculus are the same as Danvy
and Filinski’s type system. In (T OP), we use function ty from primitive operator
names to their (first-order) types. Typing rules for terms from the blame calculus are
changed to follow Danvy and Filinski’s type system. In (T CAST), following previous
work on the blame calculus, we restrict casts in well typed programs to be ones be-
tween compatible types. In other words, (T CAST) rules out casts that will always fail.

20 Chapter 2. Gradual Typing with Delimited Control

Γ;α ` t : A;β Typing rules

Γ;α ` c : ty (c);α
T CONST

ty (op) = ιi
i → ι Γ;αi ` ti : ιi ;αi−1

i

Γ;αn ` op(ti
i
) : ι;α0

T OP

Γ;α ` blame p : A;β
T BLAME

Γ, x :A;β ` t : B ; γ

Γ;α ` λx . t : A/β → B/γ;α
T ABS

x :A ∈ Γ

Γ;α ` x : A;α
T VAR

Γ; γ ` t : A/α→ B/β; δ Γ;β ` s : A; γ

Γ;α ` t s : B ; δ
T APP

Γ;α ` s : A;β A ∼ B

Γ;α ` (s : A⇒p B) : B ;β
T CAST

Γ;α ` s : G ;β

Γ;α ` (s : G ⇒ ?) : ?;β
T GROUND

Γ;α ` s : ?;β

Γ;α ` s isG : bool;β
T IS

Γ, k :A/γ → α/γ; δ ` s : δ;β

Γ;α ` Sk . s : A;β
T SHIFT

Γ;β ` s : β;A

Γ;α ` 〈s〉 : A;α
T RESET

FIGURE 2.4: Typing rules.

The typing rule (T BLAME) seems to allow blame to modify answer types to any type
though blame does not invoke shift operator; this causes no problems (and is necessary
for type soundness) because blame halts a program.

2.2.4 Type Soundness

We show type soundness of our calculus in the standard way: Progress and Preserva-
tion [121]. In the presence of the dynamic type, we can write a divergent term easily,
and blame is a legitimate state of program evaluation. Thus, type soundness for our
calculus means that any well typed program (a closed term enclosed by reset) evalu-
ates to a well typed value, diverges, or raises blame. In what follows, we write 7−→∗ for
the reflexive and transitive closure of 7−→.

Theorem 1 (Type Soundness). If ∅;α ` 〈s〉 : A;α, then one of the followings holds:

• there is an infinite evaluation sequence from 〈s〉;

• 〈s〉 7−→∗ blame p for some p; or

• 〈s〉 7−→∗ v for some v such that ∅;α ` v : A;α.

The outermost reset is assumed to exclude terms stuck at a shift operator without a
surrounding reset. The statement of Progress shown before Preservation, however, has
to take into account such a possibility for proof by induction to work.

Lemma 1 (Progress). If ∅;α ` s : A;β, then one of the followings holds:

• s 7−→ s ′ for some s ′;

• s is a value;

• s = blame p for some p; or

Chapter 2. Gradual Typing with Delimited Control 21

• s = F [Sk . t] for some F , k and t .

Proof. Straightforward by induction on the typing derivation.

Lemma 2 (Preservation). Suppose that ∅;α ` s : A;β.

(1) If s −→ t , then ∅;α ` t : A;β.

(2) If s 7−→ t , then ∅;α ` t : A;β.

Proof. By induction on the typing derivation with case analysis on the reduction/eval-
uation rule applied to s . In the case for (R SHIFT), we follow the proof in the previous
work on shift/reset [9].

Proof of Theorem 1. By Progress and Preservation. Note that the evaluation from 〈s〉 to
F [Sk . t] as stated in Progress does not happen since s is enclosed by reset and reset
does not appear in F .

2.3 Blame Theorem

Blame Theorem intuitively states that values from the typed code will never be sources
of cast failure at run time and, more specifically, clarifies conditions under which some
blame never happens. Following the original work [120], we formalize such conditions
using a few, different subtyping relations. Our proof is based on that in Ahmed et al.’s
work [7], which defined a safety relation for terms and showed Blame Progress and
Blame Preservation like progress and preservation for type soundness.

2.3.1 Subtyping

To state a Blame Theorem, we introduce naive subtyping <:n, which formalizes the
notion of being “more precisely typed.” Roughly speaking, type A is a naive subtype
of B when A is obtained by substituting some types for occurrences of the dynamic
type in B . For example, int <:n ? and int/int → int/int <:n ?/int → int/?. Note that
argument types are covariant here. The Blame Theorem states that if type A is a naive
subtype of type B , then the side of A is never blamed, that is, a cast s : A ⇒p B does
not cause blame p and s : B ⇒p A does not blame p̄.

To prove the Blame Theorem, we introduce positive and negative subtyping. In-
tuitively, that type A is a positive (resp. negative) subtype of B expresses that positive
(resp. negative) blame never happens for a cast from A to B . It turns out that naive sub-
typing can be expressed in terms of positive and negative subtyping, from which the
Blame Theorem easily follows. In addition, a cast from an ordinary subtype—where
argument types of function types are contravariant—to a supertype is shown not to
raise blame.

Subtyping relations—ordinary subtyping<:, naive subtyping<:n, positive subtyp-
ing<:+, and negative subtyping<:−—are reflexive relations satisfying subtyping rules
presented in Figure 2.5. The idea shared across all subtyping rules for function types
is that function type A/α → B/β is interpreted as if it takes the CPS-transformation
form A→ (B → α)→ β. In this form, A and α occur at negative positions while B and
β occur at positive positions.

We write A <: B to denote that A is a subtype of B . The rule (S DYN) means
that any (nondynamic) type is a subtype of the dynamic type if it is a subtype of the
(unique) ground type compatible to it. The premise is needed for cases that the subtype

22 Chapter 2. Gradual Typing with Delimited Control

A <: B Subtype

A <: A
S REFL

A <: G

A <: ?
S DYN

A′ <: A B <: B ′ α′ <: α β <: β′

A/α→ B/β <: A′/α′ → B ′/β′
S FUN

A <:n B Naive Subtype

A <:n A
SN REFL

A <:n ?
SN DYN

A <:n A′ B <:n B ′ α <:n α
′ β <:n β

′

A/α→ B/β <:n A′/α′ → B ′/β′
SN FUN

A <:+ B Positive Subtype

A <:+ A
S+ REFL

A <:+ ?
S+ DYN

A′ <:− A B <:+ B ′ α′ <:− α β <:+ β′

A/α→ B/β <:+ A′/α′ → B ′/β′
S+ FUN

A <:− B Negative Subtype

A <:− A
S− REFL

? <:− A
S− DYN

A <:− G

A <:− B
S− ANY

A′ <:+ A B <:− B ′ α′ <:+ α β <:− β′

A/α→ B/β <:− A′/α′ → B ′/β′
S− FUN

FIGURE 2.5: Subtyping rules.

is higher order. Function types are covariant at positive positions and contravariant at
negative positions as usual.

As mentioned before, type A is a naive subtype of B when A is obtained by putting
some types in occurrences of the dynamic type in B . The rule (SN DYN) means that the
dynamic type is least precise. In the rule (SN FUN), function types for naive subtyping
are covariant in both positive and negative positions.

The definitions of positive and negative subtyping are mutually recursive. The
rule (S+ DYN) means that positive blame never happens when any value is coerced
to the dynamic type. Similarly to ordinary subtyping, in (S+ FUN), function types
are covariant at positive positions and contravariant at negative positions. Negative
subtyping is a reversed version of positive subtyping except for addition of (S− ANY),
which is a combination of (S− DYN) and the fact that a cast from type A to the dynamic
type never gives rise to negative blame when A is a negative subtype of its ground
type. The rule (S− ANY) follows from Ahmed et al.’s work [7] and represents a relaxed
form of the system of Wadler and Findler [120]. Notice that polarity of subtyping is
reversed at negative positions.

As mentioned above, we show that naive subtyping (and ordinary subtyping) can
be expressed in terms of positive and negative subtyping.

Lemma 3. If A/α→ B/β <:− G , then A = α = ? and B <:− γ and β <:− γ for any γ.

Lemma 4. A <:n B iff A <:+ B and B <:− A.

Chapter 2. Gradual Typing with Delimited Control 23

s sf p A <:+ B

s : A⇒p B sf p
SF POS

s sf p A <:− B

s : A⇒p̄ B sf p
SF NEG

c sf p
SF CONST

∀i . ti sf p
op(ti

i
) sf p

SF OP
x sf p

SF VAR
s sf p

λx . s sf p
SF ABS

s sf p t sf p

s t sf p
SF APP

q 6= p q 6= p̄ s sf p

s : A⇒q B sf p
SF CAST

s sf p

s : G ⇒ ? sf p
SF GROUND

s sf p

s isG sf p
SF IS

q 6= p

blame q sf p
SF BLAME

s sf p

Sk . s sf p
SF SHIFT

s sf p

〈s〉 sf p
SF RESET

FIGURE 2.6: Safety rules.

Lemma 5. A <: B iff A <:+ B and A <:− B .

The proofs of the direction from left to right are straightforward by induction on
the derivations of A <:n B and A <: B . The other direction is shown by structural
induction on A with Lemma 3.

2.3.2 Blame Theorem

The proof of the Blame Theorem is similar to progress and preservation for type sound-
ness. Instead of a type system, we introduce a safety relation using positive and neg-
ative subtyping and show Blame Progress, which states that a safe term does not give
rise to blame, and Blame Preservation, which states safety is preserved by evaluation.
In this section, we focus only on whether a term gives rise to blame or not and not on
whether a term gets stuck or not.

A term s is safe for blame label p, written as s sf p, if every cast with blame label p
in s is from a type to its positive supertype and every cast with p̄ is from a type to
its negative supertype. We present inference rules for the safety relation in Figure 2.6.
From the definition, it is observed that a term safe for p does not contain blame with p;
this does not restrict a source program written by a programmer because it should not
contain any blame.

Blame Progress and Blame Preservation show that, if s sf p, term s never gives rise
to blame with label p. We write s 67−→ t and s 67−→∗ t to denote that term s does not
reduce to term t in a single step and in multiple steps, respectively.

Lemma 6 (Blame Progress). If s sf p, then s 67−→ blame p.

Proof. Straightforward by induction on the derivation of s sf p.

Lemma 7 (Blame Preservation). (1) If s sf p and s −→ t , then t sf p.

(2) If s sf p and s 7−→ t , then t sf p.

Proof. By induction on the derivation of s sf p with case analysis on the reduction/eval-
uation rule applied to s . In the case for (R FUN), we use Lemma 3 for (S− ANY).

Finally, we show the Blame Theorem—values that flow from the more precisely
typed side never cause blame—and, furthermore, that casts from one type to its super-
type never give rise to blame.

24 Chapter 2. Gradual Typing with Delimited Control

Theorem 2 (Blame Theorem and Subtype Theorem). Let s be a term with a subterm t :
A ⇒p B where cast is labeled by the only occurrence of p in s . Moreover, suppose that p̄ does
not appear in s .

(1) If A <:+ B , then s 67−→∗ blame p.

(2) If A <:− B , then s 67−→∗ blame p̄.

(3) If A <:n B , then s 67−→∗ blame p; if B <:n A, then s 67−→∗ blame p̄.

(4) If A <: B , then s 67−→∗ blame p and s 67−→∗ blame p̄.

Proof. The first and second cases are shown by Blame Progress and Blame Preservation
because s sf p in the first case and s sf p̄ in the second case. The third case (resp. the
fourth case) follows from the first and second cases and Lemma 4 (resp. Lemma 5).

2.4 CPS Transformation

The semantics of programming languages with control operators has often been estab-
lished by transformation of programs with control operators to continuation passing
style (CPS), a programming style where continuations appear in a program as argu-
ments of functions. For example, programs with Reynolds’s escape operator [88], cal-
l/cc in Scheme, shift/reset [25], and so on can be transformed to CPS form.

As a proof of correctness of our approach, we define a CPS transformation from
terms in our calculus to those in the simply typed blame calculus of Ahmed et al. [7]
and show that a well typed source term is transformed to a well typed target term
and, for any source terms such that one reduces to the other, their CPS-transformation
results are equivalent in the target calculus. The equational system is based on call-by-
value axioms [93] due to blame, which is effectful.

Before giving the CPS transformation, we modify the syntax and the reduction rule
(R GROUND) of our calculus slightly in order to transform a ground value of the form
v : ? / ? → ? / ? ⇒ ? to a value with a cast (the reason is detailed later). To assign a
blame label to the cast, the syntax is changed as follows:

v ::= ... | v : G ⇒p ? s ::= ... | s : G ⇒p ?

Blame labels in ground terms and values are given as subscripts for ease of distinction
from casts. The reduction rule (R GROUND) takes the following form:

v : A⇒p ? −→ (v : A⇒p G) : G ⇒p ? (if A ∼ G and A 6= ?) R GROUND

Our CPS transformation, which mostly follows Danvy and Filinski [25], is shown in
Figure 2.7 in three parts: transformation for types, values, and terms. We use variable
κ to denote continuations. The CPS transformation for types is standard. A function
of type A/α → B/β takes an argument of A, would pass a value of B to a continu-
ation that returns α, and results in a value of β as the computation result. The CPS
transformation for values maps values in our calculus to those in the blame calculus
without shift/reset. The definition shown in Figure 2.7 is easy to understand except for
ground values where the ground type is a function type. We might expect that the CPS-
transformation result of ground value v : G ⇒p ? can be defined as v∗ : [[G]] ⇒ ?.
However, that form would not be a valid term in the target calculus if the ground type
G is a function type, because the ground function type in the target calculus takes only

Chapter 2. Gradual Typing with Delimited Control 25

[[A]] CPS Transformation (Types)

[[ι]] = ι [[?]] = ? [[A/α→ B/β]] = [[A]]→ ([[B]]→ [[α]])→ [[β]]

v∗ CPS Transformation (Values)

x ∗ = x c∗ = c (λx . s)∗ = λx . [[s]] (v : ι⇒ ?)∗ = v∗ : ι⇒ ?

(v : ? / ? → ? / ?⇒p ?)∗ = (λx . (v∗ x) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?

[[s]] CPS Transformation (Terms)

[[v]] = λκ. κ v∗

[[op(ti
i
)]] = λκ. [[t1]] (λx1. . . . [[tn]] (λxn . κ op(xi

i)) . . .)

[[s t]] = λκ. [[s]] (λx . [[t]] (λy . x y κ))

[[〈s〉]] = λκ. κ ([[s]] (λx . x))

[[Sk . s]] = λκ. ([[s]] (λx . x)) [k := λx . λκ′. κ′ (κ x)]

[[s : A⇒p B]] = λκ. [[s]] (λx . κ (x : [[A]]⇒p [[B]]))

[[s : G ⇒ ?]] = λκ. [[s]] (λx . κ (x : G ⇒ ?)∗)

[[s is ι]] = λκ. [[s]] (λx . κ (x is ι))

[[s is (? / ? → ? / ?)]] = λκ. [[s]] (λx . κ (x is (? → ?)))

[[blame p]] = λκ. blame p

FIGURE 2.7: CPS transformation.

the form ? → ? but [[?/?→ ?/?]] = ?→ (?→ ?)→ ?. Expecting a value will be trans-
lated to a value in the target calculus, we set a ground value v : ? / ? → ? / ?⇒p ? to
be mapped to a value to which v∗ : [[G]]⇒p ? reduces, instead. (Notice the superscript on
⇒. A term v∗ : [[G]] ⇒p ? is a cast and always valid.) In the result, we omit the trivial
cast x : ?⇒p̄ ?. The CPS transformation for terms is self-explanatory. It is worth not-
ing that, for type tests, there are two cases on tested types. The case that a tested type is
a base type is trivial. The other case translates function type ? / ? → ? / ? with answer
types to the function type ? → ?, where the type of continuations is not presented,
because the simply typed blame calculus does not support type tests with higher-order
types and, more unfortunately, we cannot investigate that a value of the dynamic type
would take functions as an argument (recall [[?/? → ?/?]] = ? → (? → ?) → ?) in
general. Although this treatment of type tests with function types causes no problems
in this work, it would be problematic when we consider inverse of the CPS transfor-
mation as in completeness of axiomatization [57].

It is straightforward to show that well typed source terms are transformed to well
typed target terms. For any typing context Γ, we write [[Γ]] for the typing context ob-
tained by applying the CPS transformation to types mapped by Γ.

Theorem 3 (Preservation of Type). If Γ;α ` s : A;β, then [[Γ]] ` [[s]] : ([[A]] → [[α]]) →
[[β]].

Next, we define an equational system in the target calculus. The system consists of
axioms about casts as well as usual call-by-value axioms [93]. In what follows, we use
metavariables e, v, E, and A (and B) to denote terms, values, evaluation contexts, and

26 Chapter 2. Gradual Typing with Delimited Control

types in the target calculus, respectively, and write fv (v) and fv (E) for the sets of free
variables in v and E, respectively. In addition, let the relation =⇒ be the evaluation
relation in the target calculus.

Definition 1 (Term Equality). The relation ≈ is the least congruence that contains the fol-
lowing axioms:

e1 =⇒ e2

e1 ≈ e2

x /∈ fv (v)

λx .v x ≈ v

x /∈ fv (E)

(λx .E[x]) e ≈ E[e]

e : ?⇒p ? ≈ e e : ?⇒p ?→ ?⇒p A→ B ≈ e : ?⇒p A→ B

We think that the last two axioms about casts are reasonable. The former, which
skips the trivial cast, is found in another blame calculus [103]. This axiom is introduced
mainly to ignore redundant casts that often happen in CPS-transformation results. The
latter axiom, which collapses two casts into one, is used to show terms reduced by
(R COLLAPSE) are equivalent after CPS transformation. The latter might be unneces-
sary if our calculus was able to investigate structures of values of the dynamic type as
Abadi et al. [1], but we leave it as future work.

Now, we show that the relationship between our semantics in direct-style and the
CPS transformation.

Theorem 4 (Preservation of Equality). If s 7−→ t , then [[s]] ≈ [[t]].

Finally, we remark on (R DYN). In fact, although we first had tried to show The-
orem 4 without (R DYN), we could not. Without (R DYN), we have to show that the
transformation results of v : G ⇒q ? ⇒p ? and v : G ⇒p ? are equivalent because
the side condition A 6= ? in (R COLLAPSE) is not needed [7] and then the former would
reduce to the latter. Unfortunately, the results are not equivalent in our equational sys-
tem because the former refers to label q but the latter does not. We consider that there
is room for improvement of the CPS transformation, the equational system, and the
proof of soundness of the transformation in this thesis; it is left as future work.

Chapter 3

Manifest Contracts with Parametric
Polymorphism

This chapter studies and establishes foundations of manifest contracts with type ab-
straction based on parametric polymorphism. Parametric polymorphism, which was in-
troduced by Girard [41] and Reynolds [89, 90] independently, is a key concept to reuse
program components and a basis of abstract types [78] and program reasoning [119].
We start with seeing that manifest contracts are suited with type-based abstraction
mechanisms based on parametric polymorphism through an example with abstract
datatypes (ADTs) and then describe our contributions.

A motivating example To motivate the combination of contracts and ADTs, consider
the interface of an ADT modeling the natural numbers, written in an ML-like language:

module type NAT =
sig

type t
val zero : t
val succ : t -> t
val isZ : t -> bool
val pred : t -> t

end

It is an abstract datatype because the actual representation of t is hidden: users of NAT
interact with it through the constructors and operations provided. The zero construc-
tor represents 0; the succ constructor takes a natural and produces its successor. The
predicate isZ determines whether a given natural is zero. The pred operation takes a
natural number and returns its predecessor.

This interface, however, is not fine-grained enough to prevent misuse of partial
operations. For example, pred can be applied to zero, whereas the mathematical
natural-number predecessor operation is not defined for zero.

Using (refinement types with) contracts, we can explicitly specify the constraint that
an argument to pred is not zero:

module type NAT =
sig

type t
val zero : t
val succ : t -> t
val isZ : t -> bool
val pred : {x:t | not (isZ x)} -> t

end

27

28 Chapter 3. Manifest Contracts with Parametric Polymorphism

The type {x:t | not (isZ x)} is a refinement that denotes the set of values x such
that not (isZ x) evaluates to true. So, this new interface does not allow pred to be
applied to zero.

Polymorphic manifest contract calculus In fact, our work is not the first to combine
manifest contracts and parametric polymorphism. Gronski et al. have studied manifest
contracts in the presence of polymorphism by developing SAGE language [46], which
supports manifest contracts and polymorphism, in addition to the dynamic type [1,
51, 101] and even the so-called “Type:Type” discipline [19]. However, consequences
of combining these features, in particular, interactions between manifest contracts and
type abstraction (provided by parametric polymorphism), are not studied in depth in
Gronski et al. [46].

To study type abstraction for manifest contracts rigorously, Belo et al. [14] devel-
oped a polymorphic manifest contract calculus FH, an extension of System F with mani-
fest contracts, and investigated its properties, including type soundness and (syntactic)
parametricity. For FH to scale up to polymorphism, they made two technical contribu-
tions to diverge from earlier manifest calculi such as λH [37], a simply typed manifest
contract calculus. First, FH gives the semantics of casts in the presence of so-called
“general refinements,” where the underlying type T in a refinement type {x :T | e} can
be an arbitrary type (not only base types like bool and int but also function, forall, and
even refinement types), when earlier manifest calculi restrict refinements to base types.
Support for general refinements is important because it means that an abstract datatype
can be implemented by any type. SAGE also allows arbitrary types to be refined but
the semantics of casts relies on the dynamic type, which is problematic for parametric-
ity [69]. Second, Belo et al. have proposed a new, two-step, syntactic approach to for-
malizing manifest calculi. The first step is to establish fundamental properties such
as type soundness for a calculus without subsumption (and subtyping), while earlier cal-
culi [64, 44] rest on subtyping and denotational semantics of types in their construction.
Technically, they replaced subtyping with a syntactic type conversion relation, which
is required to show preservation in the presence of dependent function types. The lack
of subsumption allows for an entirely syntactic metatheory but it also amounts to the
lack of static contract checking. The second step is to give static analysis to remove
casts that never fail in order to compensate the lack of static contract checking. In fact,
Belo et al. give “post facto” subtyping and examine a property called Upcast Lemma,
which says an upcast—a cast from one type to a supertype—is logically related (thus
equivalent in a certain sense) to an identity function, as a correctness property of static
contract checking.

Unfortunately, however, the proofs of type soundness and parametricity of FH turn
out to be flawed and, worse, the properties themselves are later found to be false. In
fact, the type conversion makes an inconsistent contract system; if a cast-free closed
expression is well typed, then its type can be refined arbitrarily—e.g., integer 0 can be
given type {x :int | x = 42}! These anomalies are first recognized as a false lemma about
the type conversion relation. Greenberg [43] fixed the false lemma by changing the
conversion relation. Another key property, called cotermination and left as a conjecture
in both Belo et al. [14] and Greenberg [43], also turns out to be wrong.1 Inconsistency
and failure of type soundness and parametricity follow from counterexamples to these

1In the end of Section 4 of Belo et al. [14], the authors write “our proof of type soundness in Section 3
relies on much simpler properties of parallel reduction, which we have proved.” as if the type soundness
proof did not depend on cotermination, but this claim also turns out to be false.

Chapter 3. Manifest Contracts with Parametric Polymorphism 29

Belo et al. [14] (FH) Greenberg [43] Our work (FσH)

Lemma w.r.t. convertibility 7 X X

Cotermination 7 (conjecture) 7 (conjecture) X

Progress 7 7 X

Preservation X? X? X

Parametricity 7 7 X

Upcast Lemma X? X? ?

X· · · proved X?· · · proved with flawed premises 7· · · flawed ?· · · unknown

TABLE 3.1: The status of properties of polymorphic manifest calculi.

properties. As we will discuss in detail, the root cause of the problem can be attributed
to the fact that substitution can badly affect how casts behave.

Contributions In this chapter, we introduce a new polymorphic manifest contract
calculus FσH that resolves the technical flaws in FH. We call our calculus FσH because it
takes the FH from Belo et al. [14] and Greenberg [43] and introduces a new substitution
semantics using delayed substitutions, which we write σ. Delayed substitutions are close
to explicit substitutions [2] but only substitutions on casts are explicit (and delayed) in
FσH. Although, in some work [47, 7], delayed substitutions, also called explicit bind-
ings, have been used to represent syntactic “barriers” for type abstractions, we rather
use them to determine how casts reduce statically. Thanks to delayed substitution,
the semantics of FσH can choose cast reduction rules independently of substitution; this
property is crucial when we prove cotermination. We can finally show that type sound-
ness and parametricity all hold in FσH—without leaving any conjectures. Consistency of
the contract system of FσH is derived immediately from type soundness.

Table 3.1 summarizes the status of properties of polymorphic manifest calculi; the
columns and rows represent properties and work on polymorphic manifest contracts,
respectively. We wrote X for properties that are proved, X? for properties with proofs
that are based on false premises, 7 for properties that are flawed, and ? for proper-
ties we are unsure of. We have not investigated the Upcast Lemma in FσH because the
first step of Belo et al.’s approach—namely, establishing fundamental properties for a
manifest calculus without subsumption (hence static contract checking)—has turned
out to be trickier than we initially thought and is worth independent treatment. The
value of the Upcast Lemmas in Belo et al. [14] and Greenberg [43] is questionable, due
to the flaws on which the proofs of type soundness and parametricity rest, though the
properties themselves may still hold.

Outline The rest of this chapter is organized as follows. We start Section 3.1 with
a brief history of manifest contract calculi (both monomorphic and polymorphic) and
discuss their technical issues and our solutions. Section 3.2 defines FσH. We prove type
soundness in Section 3.3, fixing Belo et al. [14] with common-subexpression reduction
from Greenberg [43] and our novel use of delayed substitutions. We prove parametric-
ity in Section 3.4; along with the proofs of cotermination and type soundness in the
prior section, this constitutes the first conjecture-free metatheory for the combination
of System F and manifest contracts, resolving issues in prior versions of FH. Section 3.5

30 Chapter 3. Manifest Contracts with Parametric Polymorphism

compares FσH with two variants of polymorphic manifest contracts [14, 43] and presents
counterexamples to broken properties in these earlier calculi.

3.1 Overview

This section first reviews manifest contract calculi [37, 44, 64]—proposed as founda-
tions of hybrid type checking, a synthesis of static and dynamic specification checking—
and earlier polymorphic extensions [14, 43] with their technical challenges; then we
describe problems in the earlier polymorphic calculi and our solutions.

3.1.1 Manifest Contract Calculus for Hybrid Type Checking

Flanagan [37] proposed hybrid type checking, a framework to combine static and
dynamic verification techniques for modularly checking implementations against
contract-based precise interface specifications, and formalized λH as a theoretical foun-
dation to study hybrid type checking. Later work revised and refined those early
ideas [64, 44], named the core dynamic checking framework a ‘manifest contract calcu-
lus’ (or simply, manifest calculus) [44].

Hybrid type checking reduces program verification to subtype checking problems,
solving them statically as much as possible and deferring checking to run time if a
problem instance is not solved statically. We describe how these ideas are formalized
in λH below; briefly, characteristic features of manifest contract calculi (in particular,
early ones such as slightly different versions of λH) could be summarized as:

• Type-based specifications: refinement types (and dependent function types) to rep-
resent specifications;

• Static checking: subtyping to model static verification; and

• Dynamic checking: casts to model dynamic verification.

Type-based specifications In λH, specifications are expressed in terms of types, more
concretely, refinement types and dependent function types. A refinement type {x :B | e}
intuitively denotes the set of values v of base type B (e.g., int, bool, and so on) such that
[v/x]e reduces to true. In that type, e , also called a contract or a refinement, can be an
arbitrary Boolean expression, so refinement types can represent any subset of the base-
type constants as long as a constraint to specify the subset can be written as a program
expression. For example, prime numbers can be represented as {x :int | prime? x}, using
a primality test function prime?. A dependent function type x :T1→ T2 denotes func-
tions taking arguments v of domain type T1 and returning values of codomain type
[v/x]T2. Dependent functions cleanly express the relation between inputs and outputs
of a function. For example, x :int→ {y :int | y > x} denotes functions that return an
integer larger than the argument.

Manifest calculi need not have arbitrary Boolean expressions and dependent func-
tion types. For example, Ou et al. [82] restrict predicates to be pure expressions and
the blame calculus by Wadler and Findler [120] supports only non-dependent function
types. As we will discuss below, having arbitrary predicates and dependent functions
significantly complicates metatheory. We will call a manifest calculus with both of these
optional features a full manifest calculus.

Chapter 3. Manifest Contracts with Parametric Polymorphism 31

Static checking With these expressive types, program verification amounts to type
checking, in particular, checking subtyping between refinement types. For example,
to see if a prime number (of type {x :int | prime? x}) can be safely passed to a function
expecting positive numbers (of type {x :int | x > 0}) is to see if the former type is a
subtype of the latter. Informally, a refinement type {x :B | e1} is a subtype of {x :B | e2}
when e2 holds for any value of B satisfying e1. Formally, supposing that we use σ to
denote substitutions and write Γ, x :{x :B | true} ` σ to mean that σ is a closing sub-
stitution respecting (Γ, x :{x :B | true}), Flanagan gives a subtyping rule for refinement
types like:2

∀σ. (Γ, x :{x :B | true} ` σ ∧ σ(e1) −→∗ true) impliesσ(e2) −→∗ true
Γ ` {x :B | e1} <: {x :B | e2}

This formalization allows language designers to choose their favorite static checking
methods because it states what static checking verifies, rather than how a specific static
checking method works.

Dynamic checking Unlike previous work on refinement types [40, 123, 67, 82], how-
ever, the predicate language is very expressive—in fact, too expressive to be decidable.
Flanagan’s approach to undecided subtyping is to defer subtyping check at run time
by inserting casts to where subtyping cannot be decided, rather than reject a program.
More concretely, if static checking cannot decide whether the type T1 of a given expres-
sion e is a subtype of T2, then the compiler inserts a cast—written 〈T1 ⇒ T2〉l—from
T1 (called source type) to T2 (called target type) and yields 〈T1 ⇒ T2〉l e . At run time,
it is checked whether (the value of) e can behave as T2. The superscript l is called a
blame label, an abstract source location used to differentiate between different casts and
identify the source of failures; unlike the blame calculus in Chapter 2, we do not dis-
tinguish positive and negative blame in this chapter because we are not interested in a
theory of blame here.

We briefly explain how casts work in simple cases. At refinement types, casts ei-
ther return the value they are applied to, or abort program execution by raising blame,
which indicates that the supposed subtyping turns out to be false. For example, con-
sider a cast from positive integers {x :int | x > 0} to odd integers {x :int | odd x}. If we
apply cast 〈{x :int | x > 0} ⇒ {x :int | odd x}〉l to 5, we expect to get 5 back, since 5 is an
odd integer (that is, odd 5 evaluates to true). So,

〈{x :int | x > 0} ⇒ {x :int | odd x}〉l 5 −→∗ 5.

Then, 5 can be typed at {x :int | odd x}. On the other hand, suppose we apply the same
cast to 2. This cast fails, since 2 is even. When the cast fails, it will raise blame with its
label:

〈{x :int | x > 0} ⇒ {x :int | odd x}〉l 2 −→∗ ⇑l .

Casts between dependent function types are also made possible in λH by adapting
higher-order contracts by Findler and Felleisen [35].

Type soundness of λH Proving syntactic type soundness of a full calculus (such as
λH) via progress and preservation is tricky. We identify two main issues here.

2Readers familiar with the systems will recognize that we have folded the implication judgment into
the relevant subtyping rule.

32 Chapter 3. Manifest Contracts with Parametric Polymorphism

The first issue is how to allow values to be typed at refinements they satisfy.
For example, the type system should be able to give integer 2 type {x :int | true},
{x :int | even x}, or {x :int | prime? x}. Subtyping resolves it with the help of “selfified”
types [82], which are most specific types of constants—e.g., the selfified type of integer n
is {x :int | x = n}. For example, if 〈{x :int | true} ⇒ {x :int | x > 0}〉l n −→∗ n , then n can
be given type {x :int | x > 0} by using the subtyping rule above because inhabitants of
the selfified type of n are only n and the dynamic check has ensured that n > 0 holds.

The second issue is standard in a typed calculus with dependent function types: if
e1 evaluates to e2, the type system must allow terms of [e1/x]T to be typed at [e2/x]T ,
too, and vice versa to show preservation. Let us consider the case for a function ap-
plication v1 e2 −→ v1 e

′
2. Since v1 is at a function position, its type takes the form

x :T1 → T2. The return type of a function is dependent on an argument to the func-
tion, so types of v1 e2 and v1 e

′
2 would be [e2/x]T2 and [e ′2/x]T2, respectively. Since

preservation says that evaluation preserves types of well typed terms, v1 e
′
2 has to be

typed also at [e2/x]T2.
A typical solution found in dependent type theory [26, 13, 50] is to introduce a type

equivalence relation, which is congruence closed under (β or sometimes βη) reduction.
Ou et al. [82] address this issue with subtyping; they show that, for any pure expres-
sions e1 and e2, if e1 −→ e2, then [e2/x]T is a subtype of [e1/x]T . It is not clear, however,
how [e1/x]T and [e2/x]T should be related in a full manifest calculus mainly due to the
above-mentioned subtyping rule for refinement types and the fact that computation is
effectful (recall that blame is an uncatchable exception). Unfortunately, earlier work is
not fully satisfactory in this regard. In fact, both Flanagan [37] and Knowles and Flana-
gan [64] do not discuss this issue and Greenberg et al. [44] sidestep it by showing only
semantic type soundness using a logical predicate technique, which is motivated by an-
other reason—see Section 3.1.2. (Knowles and Flanagan [64] and Greenberg et al. [44]
prove, though, a closely related property that, if e1 −→ e2, then [e1/x]T and [e2/x]T
are semantic subtypes of each other.)

In short, there is no fully satisfactory proof of syntactic type soundness of a full
manifest calculus. Semantic type soundness is fine but it will be hard to extend if
more features are added to the calculus. Thus, a more syntactic proof is desirable. In
fact, Belo et al. [14] have attacked this problem of proving type soundness in a more
syntactic manner when they extend a manifest calculus to parametric polymorphism.

3.1.2 Polymorphic Manifest Contract Calculus FH

A full manifest calculus FH [14] has been developed to study type abstraction provided
by parametric polymorphism in manifest contracts. Parametric polymorphism is a cor-
nerstone of reusability in functional programming. For example, polymorphism can
encode existentials, which are crucial for defining abstract datatypes and expressing
modularity. In this context, manifest contracts are also used to specify precise interfaces
of modules by refining existentials, as we discussed in the beginning of this chapter.
This section describes key ideas in that work, namely refinement types with arbitrary
underlying types and subsumption-free formalization, and the next presents technical
flaws in the metatheory of FH.

Polymorphism and general refinements Adding polymorphism to manifest con-
tracts is not as simple as it might appear. The crux of the matter is this: we need to
be able to write {x :α | e} for refinements to interact with abstract datatypes in a useful
way. A question here is: What types can be instantiated for the type variable α? Earlier

Chapter 3. Manifest Contracts with Parametric Polymorphism 33

manifest calculi restrict refinements to base types, forbidding refinements of function
types like {f :(int→ int) | f 0 = 0}. However, this restriction is severe and limits expres-
siveness of types excessively. For example, let us consider implementing the abstract
datatype for natural numbers in the beginning of this chapter by using the Church en-
coding. Since the natural number type is ∀α.α→ (α→ α)→ α, predecessor function
pred over naturals has to be implemented as a function of type

{x :∀α.α→(α→α)→α | not (isZ x)}→(∀α.α→(α→α)→α),

in which, to restrict arguments to be nonzero, the domain type refines the Church nat-
ural number type ∀α.α→ (α→ α)→ α by substituting it for the abstract type but this
type is ill-formed because the underlying type is not a base type.

FH supports general refinements, which allow type variables α to be instantiated with
any type, that is, not only base types like bool and int but also function, forall, and even
refinement types. Introducing general refinements calls for a new semantics for casts:
how do casts evaluate? A cast 〈T1 ⇒ T2〉l evaluates in several steps (we describe it in
detail in Section 3.2). Roughly speaking, the semantics forgets refinements in T1 and
then starts checking refinements in T2 from the inside out. The cast semantics of FH
skips some refinement checks that appear to be unnecessary. For example, reflexive
casts of the form 〈T ⇒ T 〉l just disappear—this is motivated by parametricity: 〈α ⇒
α〉l should behave the same whatever the type variable α is bound to and the only
reasonable behavior seems to disappear like the identity function.

As we mentioned in the beginning of this chapter, SAGE also allows any type to
be refined; however, in SAGE, the source type in a cast is always the dynamic type.
While this makes the cast semantics much simpler, parametricity in the presence of the
dynamic type would not be straightforward [69].

Subsumption-free formulation Although subtyping plays a crucial role in manifest
calculi, it also brings a metatheoretic issue, as described by Knowles and Flanagan [64]
and Greenberg et al. [44]. The issue is that rules of the type system are not monotonic—
in particular, the subtyping rule for refinement types refers to well typedness in a neg-
ative position for well formed closing substitutions—and so it is not clear that the type
system is even well defined. Knowles and Flanagan [64] and Greenberg et al. [44] have
avoided it by giving denotational semantics (namely, logical predicates) of types and
changing the problematic subtyping rule so that it refers to the denotations instead of
well typedness. One (philosophical) problem is that soundness of the type system with
respect to the denotational semantics has to be shown before soundness with respect to
the operational semantics. Another, perhaps more serious problem is that the denota-
tional approach is expected to be hard to scale than standard syntactic methods (i.e.,
progress and preservation), when we consider other features such as polymorphism.
We discuss it in more detail in Section 5.2.

FH addresses this issue by dropping subsumption (and hence subtyping) from the
type system. Since subtyping is removed, it is easy to see that the type system is well
defined. However, removing subtyping raises the two issues for type soundness again
and, additionally, another issue about how to deal with static verification, which is
based on subtyping in the original hybrid checking framework.

34 Chapter 3. Manifest Contracts with Parametric Polymorphism

{x :T | e}

reflexive cast
42 > 0&& e −→∗ e

{x :T | ⇑l}

(〈intfalse ⇒ int5=0〉l 42) > 0&& e −→∗ ⇑l

{x :T | (〈int5=0 ⇒ int5=0〉l 42) > 0 && e} {x :T | (〈intfalse ⇒ int5=0〉l 42) > 0 && e}

[5 = 0/y]

{x :T | (〈inty ⇒ int5=0〉l 42) > 0 && e}
[false/y]

{x :T | (〈inty ⇒ int5=0〉l 42) > 0 && e}

5 = 0 −→ false

FIGURE 3.1: An inconsistent derivation of FH’s type conversion relation.

For the type soundness issues, Belo et al. introduce a special typing rule to give val-
ues any refinement they satisfy and a type conversion relation, which is based on (call-
by-value) parallel reduction.3 With the type conversion relation, [e1/x]T and [e2/x]T
are convertible if e1 −→ e2 and a typing rule that allows terms to be retyped at con-
vertible types is substituted for the subsumption rule. Using such a type system, they
claim to have “proved” type soundness in an entirely syntactic manner—via progress
and preservation—and also parametricity based on syntactic logical relations.

Although the resulting system can be formalized without resting on denotational
semantics, the lack of subsumption means that all refinements in a well typed program
will be checked at run time. As we have already mentioned in the beginning of this
chapter, Belo et al. recover static verification by introducing subtyping post facto and
examining sufficient conditions to eliminate casts.

3.1.3 Flaws in FH—and How We Solve Them

Unfortunately, as mentioned in the beginning of this chapter, a few properties required
to show type soundness and parametricity turn out to be false. We will discuss the
flawed properties with their counterexamples in detail in Section 3.5 but, in essence, the
source of anomaly is that substitutions, which affect how casts behave, badly interact
with the type conversion. As we discussed above, for preservation, two types [e1/x]T
and [e2/x]T should be convertible if e1 −→ e2. Naively allowing this, however, will
cause two refinement types {x :T | e1} and {x :T | e2} to be convertible (via {x :T | ⇑l})
for any Boolean terms e1 and e2. So, FH’s (static) contract system is inconsistent in the
sense that a well typed cast-free term can be given any refinement.

Figure 3.1 shows such a derivation (here, given (closed) expression e , we write
inte for {z :int | e} and && stands for Boolean conjunction; the relation ≡ denotes the
type conversion relation). The crux of this example is that substitution of 5 = 0 for y
yields a reflexive cast, while that of false for y yields a failing cast. Actually, the two
intermediate types are ill-formed, because 42 cannot be given type int5=0 or intfalse—the
source types of the casts. Nevertheless, we cannot exclude such nonsense terms and
have to examine properties of a type conversion relation in the untyped setting until we
prove type soundness.

FσH corrects this anomaly; in FσH,

{x :T | (〈int5=0 ⇒ int5=0〉l 42) > 0 && e} ı {x :T | (〈intfalse ⇒ int5=0〉l 42) > 0 && e},
3Belo et al. [14] do not really show a formal definition of type conversion; it appears in Greenberg [43]

and will be presented in Section 3.5.

Chapter 3. Manifest Contracts with Parametric Polymorphism 35

avoiding {x :T | e} ≡ {x :T | ⇑l}, whereas

[5 = 0/y] [false/y]
{x :T | (〈inty ⇒ int5=0〉l 42) > 0 && e} ≡ {x :T | (〈inty ⇒ int5=0〉l 42) > 0 && e}

does hold. At first, these (in)equations seem contradictory because the first type
{x :T | (〈int5=0 ⇒ int5=0〉l 42) > 0 && e} and the third [5 = 0/y]{x :T | (〈inty ⇒
int5=0〉l 42) > 0 && e} are usually syntactically equal and so are the second and fourth.
In fact, FσH distinguishes both pairs syntactically and obtains desirable type conversion,
as illustrated below.

{x :T | e} {x :T | ⇑l}
~ ~

{x :T | (〈int5=0 ⇒ int5=0〉l 42) > 0 && e} {x :T | (〈intfalse ⇒ int5=0〉l 42) > 0 && e}
∦ ∦

[5 = 0/y] [false/y]
{x :T | (〈inty ⇒ int5=0〉l 42) > 0 && e} ≡ {x :T | (〈inty ⇒ int5=0〉l 42) > 0 && e}

This is achieved by (1) changing the syntax and semantics of casts so that substitution
does not affect how casts behave and (2) devising type conversion based on the notion
we call “common subexpression reduction” (or CSR).

Delayed substitutions for casts To distinguish [5 = 0/y]〈inty ⇒ int5=0〉l and
〈int5=0 ⇒ int5=0〉l , FσH uses delayed substitutions σ, which are also used to ensure that
substitution does not interfere with how casts evaluate. First, cast expressions are aug-
mented with delayed substitutions and take the form 〈T1 ⇒ T2〉lσ. (We often omit σ
when it is empty.) Second, a substitution applied to casts is not forwarded to their tar-
get and source types immediately and instead stored as delayed substitutions—this is
the reason why σ is called “delayed.” For example, when term 5 = 0 is substituted for
y in 〈inty ⇒ int5=0〉l , the result is 〈inty ⇒ int5=0〉lσ where σ maps y to 5 = 0. Delayed
substitutions attached to casts are ignored when deciding what steps to take to check
values. Thus, 〈inty ⇒ int5=0〉lσ does not disappear, even when [5 = 0/y]inty and int5=0

are syntactically equal; instead, a check to see if 5 = 0 evaluates to true will run and the
cast will raise blame eventually.

New type conversion, common subexpression reduction The motivation for type
conversion was that we had to relate two types [e1/x]T and [e2/x]T if e1 −→ e2. Now
that delayed substitutions make explicit what substitutions are applied, we can define
type conversion so that it relates two types only if their differences are in substituted
terms, not arbitrary subexpressions at the same position. Since the substituted terms
are related by reduction, we call the new type conversion relation ≡ common subex-
pression reduction (or CSR). Consequently, CSR T1 ≡ T2 is given as congruence closed
under the following rule:

T1 ≡ T2 ∀i ∈ {1, . . . , n}.ei −→∗ e ′i
{x :T1 | [e1/x1, . . . , en/xn]e} ≡ {x :T2 | [e ′1/x1, . . . , e ′n/xn]e}

Now the two types {x :T | (〈int5=0 ⇒ int5=0〉l 42) > 0 && e} and {x :T | (〈intfalse ⇒
int5=0〉l 42) > 0 && e} are not convertible because it is not possible to “factor out” the
difference of the two types in the form of substitution [e/y]T .

36 Chapter 3. Manifest Contracts with Parametric Polymorphism

Terms, substitutions, and contexts
Ty 3 T ::= B | α | x :T1→T2 | ∀α.T | {x :T | e}

σ ∈ (TmVar
fin
⇀ Tm)× (TyVar

fin
⇀ Ty)

Γ ::= ∅ | Γ, x :T | Γ, α
Terms, values, results, and evaluation contexts
Tm 3 e ::= x | k | op (e1, ... , en) | λx :T . e | Λα. e | e1 e2 | e T |

〈T1 ⇒ T2〉lσ | ⇑l | 〈{x :T | e1}, e2, v〉l
v ::= k | λx :T . e | Λα. e | 〈T1 ⇒ T2〉lσ
r ::= v | ⇑l
E ::= [] e2 | v1 [] | []T | 〈{x :T | e}, [] , v〉l | op(v1, ... , vi−1, [] , ei+1, ... , en)

FIGURE 3.2: Syntax for FσH

3.2 Defining FσH

3.2.1 Syntax

The syntax of FσH is given in Figure 3.2. For unrefined types we have: base types B ,
which must include bool; type variables α; dependent function types x :T1→T2 where
x is bound in T2; and universal types ∀α.T , where α is bound in T . Aside from depen-
dency in function types, these are just the types of the standard polymorphic lambda
calculus. For each B , we fix a set KB of the constants in that type. We require the
typing rules for constants and the typing and evaluation rules for operations to respect
this set; we formally define requirements for constants and operations in Section 3.2.3.
We also require thatKbool = {true, false}. We also have predicate contracts, or refinement
types, written {x :T | e}. Conceptually, {x :T | e} denotes values v of type T for which
[v/x]e reduces to true. As mentioned before, refinement types in FσH are more general
than existing manifest calculi (except for SAGE [46]) in that any type (even a refinement
type) can be refined, not just base types (as in [37, 44, 45, 64, 82]).

In the syntax of terms, the first line is standard for a call-by-value polymorphic
language: variables, constants, several monomorphic first-order operations op (i.e., de-
structors of one or more base-type arguments), term and type abstractions, and term
and type applications. Note that there is no value restriction on type abstractions—as
in System F, we do not evaluate under type abstractions, so there is no issue with or-
dering of effects. The second line offers the standard constructs of a manifest contract
calculus [37, 44, 64], with a few alterations, discussed below.

As we have already discussed in the last section, casts in FσH are of the form
〈T1 ⇒ T2〉lσ, where the delayed substitution σ is formally a pair of substitutions from
term and type variables to terms and types, respectively. When a cast detects a prob-
lem, it raises blame, a label-indexed uncatchable exception written ⇑l . The label l al-
lows us to trace blame back to a specific cast. (While labels here are drawn from an
arbitrary set, in practice l will refer to a source-code location.) Finally, we use active
checks 〈{x :T | e1}, e2, v〉l to support a small-step semantics for checking casts into re-
finement types. In an active check, {x :T | e1} is the refinement being checked, e2 is the
current state of checking, and v is the value being checked. The type in the first position
of an active check is not necessary for the operational semantics, but we keep it around
as a technical aid to our syntactic proof of preservation. The value in the third position
can be any value, not just a constant according to generalization of refinement types.
If checking the refinement type succeeds, the check will return v ; if checking fails, the

Chapter 3. Manifest Contracts with Parametric Polymorphism 37

check will blame its label, raising ⇑l . Active checks and blame are not intended to oc-
cur in source programs—they are run-time devices. (In a real programming language
based on this calculus, casts will probably not appear explicitly either, but will be in-
serted by an elaboration phase. The details of this process are beyond the present scope.
Readers are referred to, e.g., Flanagan [37].)

The values in FσH are constants, term and type abstractions, and casts. We also
define results, which are either values or blame. Type soundness, stated in Theorem 7,
will show that evaluation produces a result, but not necessarily a value. We note that,
as in Chapter 2, function cast applications 〈x :T11→T12 ⇒ x :T21→T22〉l v are not seen
as values, which simplifies our inversion lemmas, and instead casts between function
types will η-expand and wrap with the casts on the domain and the codomain their
argument. This makes the notion of “function proxy” explicit: the cast semantics adds
many new closures.

To define semantics, we use evaluation contexts [33] (ranged over by E), a standard
tool to introduce small-step operational semantics. The syntax of evaluation contexts
shown in Figure 3.2 means that the semantics evaluates subterms from left to right in
the call-by-value style.

As usual, we introduce some conventional notations. We write FV(e) (resp. FV(T))
to denote free term variables in the term e (resp. the type T), which is defined as usual,
except for casts:

FV(〈T1 ⇒ T2〉lσ) = ((FV(T1) ∪ FV(T2)) \ dom(σ)) ∪ FV(σ)

where dom(σ) is the domain set of σ and FV(σ) is the set of free term variables in
terms and types that appear in the range of σ. Similarly, we use FTV(e), FTV(T),
and FTV(σ) for free type variables, and AFV(e), AFV(T), and AFV(σ) for all free
variables, namely, both free term and type variables. We say that terms and types are
closed when they have no free term and type variables.

We define application of substitutions, which is almost standard except the case
for casts, below. To preserve standard properties of substitution, such as, “applying
a substitution to a closed term yields the same term,” we consider only terms with-
out garbage bindings in delayed substitutions and assume that dom(σ) ⊆ AFV(T1) ∪
AFV(T2) holds for every cast 〈T1 ⇒ T2〉lσ. Before defining application of substitu-
tion, we introduce a few auxiliary notations. For a set S of variables, σ|S denotes the
restriction of σ to S . Formally,

σ|S = ({x 7→ σ(x) | x ∈ dom(σ) ∩ S}, {α 7→ σ(α) | α ∈ dom(σ) ∩ S}).

We denote by σ1] σ2 a delayed substitution obtained by concatenating substitutions
with disjoint domains elementwise.

Definition 2 (Substitution). Substitution in FσH is the standard capture-avoiding substitution
function with a single change, in the cast case:

σ(〈T1 ⇒ T2〉lσ1) = 〈T1 ⇒ T2〉lσ2

where σ2 = σ(σ1)] (σ|(AFV(T1)∪AFV(T2))\dom(σ1)). Here, σ(σ1) denotes the (pairwise) com-
position of σ and σ1; formally,

σ(σ1) = ({x 7→ σ(σ1(x)) | x ∈ dom(σ1)}, {α 7→ σ(σ1(α)) | α ∈ dom(σ1)}).

38 Chapter 3. Manifest Contracts with Parametric Polymorphism

Reduction rules e1 e2

op (v1, ... , vn) [[op]] (v1, ... , vn) E OP

(λx :T1. e12) v2 [v2/x]e12 E BETA

(Λα. e)T [T/α]e E TBETA

〈T ⇒ T 〉lσ v v E REFL

〈x :T11→T12 ⇒ x :T21→T22〉lσ v E FUN

λx :σ(T21). let y : σ(T11) = 〈T21 ⇒ T11〉lσ1 x in 〈[y/x]T12 ⇒ T22〉lσ2 (v y)

when x :T11→T12 6= x :T21→T22 and x 6∈ dom(σ) and
y is fresh and, for i ∈ {1, 2}, σi = σ|AFV(T1 i)∪AFV(T2 i)

〈∀α.T1 ⇒ ∀α.T2〉lσ v Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) E FORALL

when ∀α.T1 6= ∀α.T2 and α 6∈ dom(σ)

〈{x :T1 | e} ⇒ T2〉lσ v 〈T1 ⇒ T2〉lσ′ v E FORGET

when T2 6= {x :T1 | e} and T2 6= {y :{x :T1 | e} | e2}
(σ′ = σ|AFV(T1)∪AFV(T2))

〈T1 ⇒ {x :T2 | e}〉lσ v E PRECHECK

〈T2 ⇒ {x :T2 | e}〉lσ1 (〈T1 ⇒ T2〉lσ2 v)
when T1 6= T2 and T1 6= {x :T ′ | e ′}

(σ1 = σ|AFV({x :T2|e2}) and σ2 = σ|AFV(T1)∪AFV(T2))

〈T ⇒ {x :T | e}〉lσ v 〈σ({x :T | e}), σ([v/x]e), v〉l E CHECK

〈{x :T | e}, true, v〉l v E OK
〈{x :T | e}, false, v〉l ⇑l E FAIL

Evaluation rules e1 −→ e2

e1 e2

e1 −→ e2
E REDUCE

e1 −→ e2

E [e1] −→ E [e2]
E COMPAT

E [⇑l] −→ ⇑l
E BLAME

FIGURE 3.3: Operational semantics for FσH

Notice that, in the definition of σ2, the restriction on σ is required to remove garbage
bindings. We show that many properties of substitution in lambda calculi hold for our
substitution in Appendix.

Finally, we introduce several syntactic shorthands. We write T1→T2 for x :T1→T2

when x does not appear free in T2 and 〈T1 ⇒ T2〉l for 〈T1 ⇒ T2〉lσ if the domain
of σ is empty. A let expression let x : T = e1 in e2 denotes an application term of
the form (λx :T . e2) e1. We may omit the type if it is clear from the context. If σ =
({x 7→ e}, ∅), then we write [e/x]e ′, [e/x]T ′, and [e/x]σ′ for σ(e ′), σ(T ′), and σ(σ′),
respectively. Similarly, we write [T/α]e ′, [T/α]T ′, and [T/α]σ′ for σ(e ′), σ(T ′), and
σ(σ′), respectively, if σ = (∅, {α 7→ T}).

Chapter 3. Manifest Contracts with Parametric Polymorphism 39

3.2.2 Operational Semantics

The call-by-value operational semantics in Figure 3.3 is given as a small-step relation,
split into two sub-relations: one for reductions () and one for subterm reductions and
blame lifting (−→). We define these relations as over closed terms.

The latter relation is standard. The (E REDUCE) rule lifts reductions into −→;
the (E COMPAT) rule reduces subterms put in evaluation contexts; and the (E BLAME)
rule lifts blame, treating it as an uncatchable exception. The reduction relation is
more interesting. There are four different kinds of reductions: the standard lambda
calculus reductions, structural cast reductions, cast staging reductions, and checking
reductions.

The (E BETA) and (E TBETA) rules should need no explanation—these are the stan-
dard call-by-value polymorphic lambda calculus reductions. The (E OP) rule uses a
denotation function [[−]] to give meaning to the first-order operations. In Section 3.2.3,
we describe a property of [[−]] to be required for showing type soundness.

The (E REFL), (E FUN), and (E FORALL) rules reduce casts structurally. (E REFL)
eliminates a cast from a type to itself; intuitively, such a cast should always succeed
anyway. (We discuss this rule more in Section 3.4.) When a cast between function types
is applied to a value v , the (E FUN) rule produces a new lambda, wrapping v with a
contravariant cast on the domain and a covariant cast on the codomain. The extra sub-
stitution in the left-hand side of the codomain cast may seem suspicious, but in fact
the rule must be this way for type preservation to hold (see Greenberg et al. [44] for an
explanation). Just like substitution (Definition 2), (E FUN) and other cast rules restrict
the domain of each delayed substitution in the right-hand side of reduction to free vari-
ables in the source and the target types of the corresponding cast. Note that (E FUN)
uses a let expression—syntactic sugar for immediate application of a lambda—for the
domain check. This is a nicer evaluation semantics than one in the previous calculi
where the domain check can be duplicated by substitution. Avoiding this duplication
is more efficient and simplifies some of our proofs of parametricity—in particular, we
not need to show that our logical relation is closed under term substitution, i.e., two
open, logically related terms are related after replacing variables in them with logically
related terms. The (E FORALL) rule is similar to (E FUN), generating a type abstraction
with the necessary covariant cast. A seemingly trivial substitution [α/α] is necessary
for showing preservation: the value v in this rule is expected to have ∀α.T1 and then
v α is given type [α/α]T1, which is not the same as T1 in general, even though T1 and
[α/α]T1 are semantically equivalent, since substitution is delayed at casts! So, after the
reduction, the source type of the cast has to be [α/α]T1. Side conditions on (E FORALL)
and (E FUN) ensure that these rules apply only when (E REFL) does not.

The (E FORGET), (E PRECHECK), and (E CHECK) rules are cast-staging reductions,
breaking a complex cast down to a series of simpler casts and checks. All of these
rules require that the left- and right-hand sides of the cast be different—if they are the
same, then (E REFL) applies. The (E FORGET) rule strips a layer of refinement off the
left-hand side; in addition to requiring that the left- and right-hand sides are different,
the preconditions require that the right-hand side is not a refinement of the left-hand
side. The (E PRECHECK) rule breaks a cast into two parts: one that checks exactly one
level of refinement and another that checks the remaining parts. We only apply this
rule when the two sides of the cast are different and when the left-hand side is not a
refinement. The (E CHECK) rule applies when the right-hand side refines the left-hand
side; it takes the cast value and checks that it satisfies the right-hand side. (We do not
have to check the left-hand side, since that is the type we are casting from.) If the check

40 Chapter 3. Manifest Contracts with Parametric Polymorphism

succeeds, then the active check evaluates to the checked value (by (E OK)); otherwise,
it is blamed with l (by (E FAIL)).

We offer a few reduction examples, which are also put in Greenberg [43]. First, here
is a reduction using (E CHECK), (E COMPAT), (E OP), and (E OK):

〈int⇒ {x :int | x ≥ 0}〉l 5 −→ 〈{x :int | x ≥ 0}, 5 ≥ 0, 5〉l
−→ 〈{x :int | x ≥ 0}, true, 5〉l
−→ 5

A failed check will work in the same way until the last reduction, which will use
(E FAIL) rather than (E OK):

〈int⇒ {x :int | x ≥ 0}〉l (−1) −→ 〈{x :int | x ≥ 0},−1 ≥ 0,−1〉l
−→ 〈{x :int | x ≥ 0}, false,−1〉l
−→ ⇑l

Notice that the blame label comes from the cast that failed. Here is a similar reduction
that needs some staging, using (E FORGET) followed by the first reduction we gave:

〈{x :int | x = 5} ⇒ {x :int | x ≥ 0}〉l 5 −→ 〈int⇒ {x :int | x ≥ 0}〉l 5
−→ 〈{x :int | x ≥ 0}, 5 ≥ 0, 5〉l
−→∗ 5

There are two cases where we need to use (E PRECHECK). First, when nested refine-
ments are involved:

〈int⇒ {x :{y :int | y ≥ 0} | x = 5}〉l 5
−→ 〈{y :int | y ≥ 0} ⇒ {x :{y :int | y ≥ 0} | x = 5}〉l (〈int⇒ {y :int | y ≥ 0}〉l 5)
−→∗ 〈{y :int | y ≥ 0} ⇒ {x :{y :int | y ≥ 0} | x = 5}〉l 5
−→ 〈{x :{y :int | y ≥ 0} | x = 5}, 5 = 5, 5〉l
−→∗ 5

Second, when a function or universal type is cast into a refinement of a different function
or universal type:

〈bool→{x :bool | x} ⇒ {f :bool→bool | f true = f false}〉l v
−→ 〈bool→bool⇒ {f :bool→bool | f true = f false}〉l

(〈bool→{x :bool | x} ⇒ bool→bool〉l v)

(E REFL) is necessary for simple cases, like 〈int ⇒ int〉l 5 −→ 5. Hopefully, such a use-
less cast would never be written, but it could arise as a result of (E FUN) or (E FORALL).
(We also need (E REFL) in our proof of parametricity; see Section 3.4.)

The two high-level ways given by Greenberg [43] would be useful to understand
the cast semantics in FσH: one is a recursive function to unfold cast forms; the other
is a regular schema to indicate the order in which cast reduction rules are applied.
Interested readers can refer to his dissertation [43].

3.2.3 Static Typing

The type system comprises three mutually recursive judgments: context well formed-
ness (` Γ), type well formedness (Γ ` T), and term typing (Γ ` e : T). The rules for
contexts and types are unsurprising. The rules for terms are mostly standard. First, the

Chapter 3. Manifest Contracts with Parametric Polymorphism 41

Context well formedness ` Γ

` ∅
WF EMPTY

` Γ Γ ` T

` Γ, x :T
WF EXTENDVAR

` Γ

` Γ, α
WF EXTENDTVAR

Type well formedness Γ ` T

` Γ

Γ ` B
WF BASE

` Γ α ∈ Γ

Γ ` α
WF TVAR

Γ, α ` T

Γ ` ∀α.T
WF FORALL

Γ ` T1 Γ, x :T1 ` T2

Γ ` x :T1→T2
WF FUN

Γ ` T Γ, x :T ` e : bool

Γ ` {x :T | e}
WF REFINE

Term typing Γ ` e : T

` Γ x :T ∈ Γ

Γ ` x : T
T VAR

` Γ

Γ ` k : ty(k)
T CONST

∅ ` T ` Γ

Γ ` ⇑l : T
T BLAME∗

Γ ` T1 Γ, x :T1 ` e12 : T2

Γ ` λx :T1. e12 : x :T1→T2
T ABS

Γ ` e1 : (x :T1→T2) Γ ` e2 : T1

Γ ` e1 e2 : [e2/x]T2
T APP

` Γ ty(op) = x1 : T1 → ... → xn : Tn→T
∀i ∈ {1, . . . , n},Γ ` ei : [e1/x1, ..., ei−1/xi−1]Ti

Γ ` op (e1, ... , en) : [e1/x1, ..., en/xn]T
T OP

Γ, α ` e : T

Γ ` Λα. e : ∀α.T
T TABS

Γ ` e1 : ∀α.T Γ ` T2

Γ ` e1 T2 : [T2/α]T
T TAPP

Γ ` σ(T1) Γ ` σ(T2) T1 ‖ T2 AFV(σ) ⊆ dom(Γ)

Γ ` 〈T1 ⇒ T2〉lσ : σ(T1)→σ(T2)
T CAST

` Γ ∅ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : bool [v/x]e1 −→∗ e2

Γ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}
T CHECK∗

` Γ ∅ ` e : T ∅ ` T ′ T ≡ T ′

Γ ` e : T ′
T CONV∗

` Γ ∅ ` v : {x :T | e}
Γ ` v : T

T FORGET∗

` Γ ∅ ` v : T ∅ ` {x :T | e} [v/x]e −→∗ true
Γ ` v : {x :T | e}

T EXACT∗

FIGURE 3.4: Typing rules for FσH. The rules marked ∗ are for “run-time”
terms.

42 Chapter 3. Manifest Contracts with Parametric Polymorphism

(T CONST) and (T OP) rules use the ty function to assign well-formed, closed (possibly
dependent) monomorphic first-order types to constants and operations, respectively.
To formalize the demand to constants, we define unref(T) as T without any outer re-
finements (though refinements on, e.g., the domain of a function would be unaffected):

unref(T) =

{
unref(T ′) if T = {x :T ′ | e}
T otherwise

We require constants to belong to Kunref(ty(k)) and satisfy the predicate (if any) of ty(k)
and [[op]] to be a function that returns a value satisfying the predicate of the codomain
type of ty(op) when each argument value satisfies the predicate of the corresponding
domain type of ty(op). The (T APP) rule is dependent, to account for dependent func-
tion types. The (T CAST) rule allows casts between compatibly structured well formed
types, demanding that both source and target types after applying delayed substitution
be well-formed. Compatibility of type structures is defined in Figure 3.5; intuitively,
compatible types are identical when predicates in them are ignored. In particular, it
is critical that type variables are compatible with only (refinements of) themselves be-
cause we have no idea what type will be substituted for α. If we allow type variable
α to be compatible with another type, say, B , then the check with the cast from α to B
would not work when α is replaced with a function type or a quantified type. More-
over, this definition helps us avoid nontermination due to non-parametric operations
(e.g., Girard’s J operator); it is imperative that a term like

let δ = Λα. λx :α. 〈α⇒ ∀β.β→β〉l x α x in δ (∀β.β→β) δ

is not well typed. Note that, in (T CAST), we assign casts a non-dependent function
type and that we do not require well typedness/formedness of terms/types that ap-
pear in the range of a delayed substitution in a direct way—though well typed pro-
grams will start with and preserve well typed substitutions. Finally, it is critical that
compatibility is substitutive, i.e., that if T1 ‖ T2, then ([e/x]T1) ‖ T2 (Lemma B.3.8).

Some of the typing rules—(T CHECK), (T BLAME), (T EXACT), (T FORGET), and
(T CONV)—are “run-time only.” These rules are not needed to typecheck source pro-
grams, but we need them to guarantee preservation. (T CHECK), (T EXACT), and
(T CONV) are excluded from source programs because we do not want the typing of
source programs to rely on the evaluation relation; such an interaction is acceptable in
this setting, but disrupts the phase distinction and is ultimately incompatible with non-
termination and effects. We exclude (T BLAME) because programs should not start with
failures. Finally, we exclude (T FORGET) because we imagine that source programs
have all type changes explicitly managed by casts. The conclusions of these rules use a
context Γ, but all terms and types in premises have to be well typed and well formed
under the empty context. Even though run-time terms and their typing rules should
only ever occur in the empty context, the (T APP) rule substitutes terms into types—so
a run-time term could end up under a binder. We therefore allow the run-time typ-
ing rules to apply in any well formed context, so long as the terms they typecheck are
closed. The (T BLAME) rule allows us to give any type to blame—this is necessary for
preservation. The (T CHECK) rule types an active check, 〈{x :T | e1}, e2, v〉l . Such a
term arises when a term like 〈T ⇒ {x :T | e1}〉l v reduces by (E CHECK). The premises
of the rule are all intuitive except for [v/x]e1 −→∗ e2, which ensures that e2 is an in-
termediate state during checking [v/x]e1. The (T EXACT) rule allows us to retype a
closed value of type T at {x :T | e} if [v/x]e −→∗ true. This typing rule guarantees type

Chapter 3. Manifest Contracts with Parametric Polymorphism 43

Type compatibility T1 ‖ T2

α ‖ α
SIM VAR

B ‖ B
SIM BASE

T1 ‖ T2

{x :T1 | e} ‖ T2
SIM REFINEL

T1 ‖ T2

T1 ‖ {x :T2 | e}
SIM REFINER

T11 ‖ T21 T12 ‖ T22

x :T11→T12 ‖ x :T21→T22
SIM FUN

T1 ‖ T2

∀α.T1 ‖ ∀α.T2
SIM FORALL

Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ⊂ TmVar ∧
∀x ∈ dom(σ1). σ1(x) −→∗ σ2(x)

α ≡ α
C VAR

B ≡ B
C BASE

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C REFINE

T1 ≡ T ′1 T2 ≡ T ′2
x :T1→T2 ≡ x :T ′1→T ′2

C FUN
T ≡ T ′

∀α.T ≡ ∀α.T ′
C FORALL

T2 ≡ T1

T1 ≡ T2
C SYM

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C TRANS

FIGURE 3.5: Type compatibility and conversion for FσH

preservation for (E OK): 〈{x :T | e1}, true, v〉l −→ v . If the active check was well typed,
then we know that [v/x]e1 −→∗ true, so (T EXACT) applies. (T EXACT) is a suitably
extensional, syntactic, and subtyping-free replacement for the technique using selfified
types and subtyping [82].

Finally, the (T CONV) rule is motivated by the requirement that terms of [e1/x]T
and [e2/x]T should be able to be typed at both types if e1 −→ e2—it is necessary to
prove preservation; see also the discussion in Section 3.1.2. These types are convert-
ible in FσH and (T CONV) allows terms to be retyped at convertible types. We define a
conversion relation ≡, which we also call common-subexpression reduction, or CSR, us-
ing rules in Figure 3.5. Roughly speaking, T1 and T2 are convertible when there is a
common type T and subexpressions e1 and e2 of T1 and T2 such that T1 = [e1/x]T
and T2 = [e2/x]T and e1 −→∗ e2. The only interesting rule is (C REFINE), which says
that refinement types {x :T1 | e1} and {x :T2 | e2} are convertible when T1 and T2

are convertible and there are some substitutions σ1, σ2 and a common subexpression
e such that e1 = σ1(e) and e2 = σ2(e) and each term which appears in the range of
σ1 reduces to one of σ2. We remark that this conversion relation is different from that
given in the prior ESOP 2011 work [14]4, where their conversion relation is defined in
terms of parallel reduction. As discussed in Section 3.1.3, however, it turns out that
their conversion relation is flawed. Another remark is that Belo et al. [14] also (falsely)
claimed that symmetry of convertible relation was not necessary for type soundness

4Actually, the paper omits a formal definition, which appears in Greenberg [43].

44 Chapter 3. Manifest Contracts with Parametric Polymorphism

or parametricity, but symmetry is in fact used in the proof of preservation (Theorem 6,
when a term typed by (T APP) steps by (E REDUCE)/(E REFL)).

3.3 Properties of FσH
We show that well-typed programs do not get stuck—a well typed term evaluates to
a result, i.e., a value or a blame (if evaluation terminates at all5)—via progress and
preservation [121].

As Greenberg [43] has pointed out, the “value inversion” lemma (Lemma 13), which
says values typed at refinement types must satisfy their refinements, is a critical com-
ponent of any sound manifest contract system, especially for proving progress. The
type soundness proof in Belo et al. [14] is missing this lemma—and can never have
it, due to the flawed conversion relation. Greenberg [43] leaves a property which the
value inversion depends on as a conjecture—which turns out to be false. This value
inversion lemma is not merely a technical device to prove progress. Together with
progress and preservation, it means that if a term typed at a refinement type evaluates
to a value, then it satisfies the predicate of the type, giving a slightly stronger guarantee
about well typed programs.

Perhaps surprisingly, the value inversion lemma is not trivial due to (T CONV):
we must show that predicates of convertible refinement types are semantically equiv-
alent. The proof of this property rests on cotermination (Lemma 11), which says that
common-subexpression reduction does not change the behavior of terms. Finally, using
these properties, we show progress (Theorem 5) and preservation (Theorem 6), which
imply type soundness (Theorem 7). In this section, we only give statements of main
lemmas and theorems; proofs are in Appendix.

3.3.1 Cotermination

First, we show cotermination, which both type soundness and parametricity rest on.
We start with cotermination in the most simple situation, namely, where substitutions
map only one term variable, and then show general cases. The key observation in
proving cotermination is that the relation {([e1/x]e, [e2/x]e) | e1 −→ e2} is weak bisim-
ulation (Lemmas 8 and 9).

Lemma 8 (Weak bisimulation, left side). Suppose that e1 −→ e2. If [e1/x]e −→ e ′, then
[e2/x]e −→∗ [e2/x]e ′′ for some e ′′ such that e ′ = [e1/x]e ′′.

Lemma 9 (Weak bisimulation, right side). Suppose that e1 −→ e2. If [e2/x]e −→ e ′, then
[e1/x]e −→∗ [e1/x]e ′′ for some e ′′ such that e ′ = [e2/x]e ′′.

Lemma 10 (Cotermination, one variable). Suppose that e1 −→∗ e2.

1. If [e1/x]e −→∗ true, then [e2/x]e −→∗ true.

2. If [e2/x]e −→∗ true, then [e1/x]e −→∗ true.

Lemma 11 (Cotermination). Suppose that σ1 −→∗ σ2.

1. If σ1(e) −→∗ true, then σ2(e) −→∗ true.

2. If σ2(e) −→∗ true, then σ1(e) −→∗ true.

Proof. By induction on the size of dom(σ1) with Lemma 10.
5In fact, Fσ

H is terminating, as we will discover in Section 3.4.

Chapter 3. Manifest Contracts with Parametric Polymorphism 45

3.3.2 Type Soundness

Using cotermination, we show value inversion and then type soundness in a standard
syntactic way, starting with various substitution lemmas.

Lemma 12 (Cotermination of refinement types). If {x :T1 | e1} ≡ {x :T2 | e2} then T1 ≡
T2 and [v/x]e1 −→∗ true iff [v/x]e2 −→∗ true, for any closed value v .

Value inversion (Lemma 13) uses unrefn , which is a function to remove only the
n outermost refinements, to ensure that the value satisfies all of the predicates in its
(possibly nested) refinement type. The function unrefn is defined as follows:

unrefn(T) =

{
unrefn−1(T ′) if T = {x :T ′ | e} and n > 0

T otherwise

Lemma 13 (Value inversion). If ∅ ` v : T and unrefn(T) = {x :Tn | en} then [v/x]en −→∗
true.

Lemma 14 (Term substitutivity of conversion).
If T1 ≡ T2 and e1 −→∗ e2 then [e1/x]T1 ≡ [e2/x]T2.

Lemma 15 (Type substitutivity of conversion).
If T1 ≡ T2 then [T/α]T1 ≡ [T/α]T2.

Lemma 16 (Term weakening). If x is fresh and Γ ` T ′ then

1. Γ,Γ′ ` e : T implies Γ, x :T ′,Γ ` e : T ,

2. Γ,Γ′ ` T implies Γ, x :T ′,Γ′ ` T , and

3. ` Γ,Γ′ implies ` Γ, x :T ′,Γ′.

Lemma 17 (Type weakening). If α is fresh then

1. Γ,Γ′ ` e : T implies Γ, α,Γ ` e : T ,

2. Γ,Γ′ ` T implies Γ, α,Γ′ ` T , and

3. ` Γ,Γ′ implies` Γ, α,Γ′.

Lemma 18 (Term substitution). If Γ ` e ′ : T ′, then

1. if Γ, x :T ′,Γ′ ` e : T then Γ, [e ′/x]Γ′ ` [e ′/x]e : [e ′/x]T ,

2. if Γ, x :T ′,Γ′ ` T then Γ, [e ′/x]Γ′ ` [e ′/x]T , and

3. if ` Γ, x :T ′,Γ′ then ` Γ, [e ′/x]Γ′.

Lemma 19 (Type substitution). If Γ ` T ′ then

1. if Γ, α,Γ′ ` e : T , then Γ, [T ′/α]Γ′ ` [T ′/α]e : [T ′/α]T ,

2. if Γ, α,Γ′ ` T , then Γ, [T ′/α]Γ′ ` [T ′/α]T , and

3. if ` Γ, α,Γ′, then ` Γ, [T ′/α]Γ′.

As is standard for type systems with conversion rules, we must prove inversion
lemmas to reason about typing derivations in a syntax-directed way. We offer the state-
ment of inversion for functions here; the rest are in Section B.3.

46 Chapter 3. Manifest Contracts with Parametric Polymorphism

Lemma 20 (Lambda inversion). If Γ ` λx :T1. e12 : T , then there exists some T2 such that

1. Γ ` T1,

2. Γ, x :T1 ` e12 : T2, and

3. x :T1→T2 ≡ unref(T).

Inversion lemmas in hand, we prove a canonical forms lemma to support a proof of
progress. The canonical forms proof is “modulo” the unref function: the shape of the
values of type {x :T | e} are determined by the inner type T .

Lemma 21 (Canonical forms). If ∅ ` v : T , then:

1. If unref(T) = B then v is k ∈ KB for some k .

2. If unref(T) = x :T1→T2 then

(a) v is λx :T ′1. e12 and T ′1 ≡ T1 for some x ,T ′1, and e12, or

(b) v is 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2 for some T ′1,T
′
2, σ, and l .

3. If unref(T) = ∀α.T ′ then v is Λα. e for some e .

Theorem 5 (Progress). If ∅ ` e : T , then either

1. e −→ e ′, or

2. e is a result r , i.e., a value or blame.

The following regularity property formalizes an important property of the type sys-
tem: all contexts and types involved are well formed. This is critical for the proof of
preservation: when a term raises blame, we must show that the blame is well typed.
With regularity, we can immediately know that the original type is well formed.

Lemma 22 (Context and type well formedness). (1) If Γ ` e : T , then ` Γ and Γ ` T ; and
(2) if Γ ` T then ` Γ.

Theorem 6 (Preservation). If ∅ ` e : T and e −→ e ′, then ∅ ` e ′ : T .

Theorem 7 (Type Soundness). If ∅ ` e : T and e −→∗ e ′ and e ′ does not reduce, then e ′ is
a result. Moreover, if e ′ = v and T = {x :T ′′ | e ′′}, then [v/x]e ′′ −→∗ true.

Proof. The first half is shown by Theorems 5 and 6, and the second is by ∅ ` v : T and
Lemma 13.

3.4 Parametricity

Parametricity, which is coined by Wadler [119] and was originally called abstraction
theorem [90], is a foundation of type abstraction [77] and information hiding [85, 107]
in lambda calculi. Intuitively, it means that a polymorphic function behaves in the
same way whatever types are substituted for the quantified type variable. We prove
relational parametricity for three reasons: (1) it yields powerful reasoning techniques
such as free theorems [119], contextual equivalence [87, 5], and the upcast lemma [14];
(2) it indicates that contracts do not interfere with type abstraction, i.e., that FσH supports
polymorphism in the same way that System F does; (3) we want to correct Belo et al.

Chapter 3. Manifest Contracts with Parametric Polymorphism 47

Closed results and terms r1 ∼ r2 : T ; θ; δ e1 ' e2 : T ; θ; δ

k ∼ k : B ; θ; δ ⇐⇒k ∈ KB

v1 ∼ v2 : α; θ; δ ⇐⇒∃RT1T2, α 7→ R,T1,T2 ∈ θ ∧ v1 R v2

v1 ∼ v2 : (x :T1→T2); θ; δ ⇐⇒∀v ′1v ′2, v ′1 ∼ v ′2 : T1; θ; δ =⇒
v1 v

′
1 ' v2 v

′
2 : T2; θ; δ[(v ′1, v

′
2)/x]

v1 ∼ v2 : ∀α.T ; θ; δ ⇐⇒∀RT1T2, v1 T1 ' v2 T2 : T ; θ[α 7→ R,T1,T2]; δ

v1 ∼ v2 : {x :T | e}; θ; δ ⇐⇒v1 ∼ v2 : T ; θ; δ ∧
[v1/x]θ1(δ1(e)) −→∗ true ∧ [v2/x]θ2(δ2(e)) −→∗ true

⇑l ∼ ⇑l : T ; θ; δ

e1 ' e2 : T ; θ; δ ⇐⇒∃r1r2, e1 −→∗ r1 ∧ e2 −→∗ r2 ∧ r1 ∼ r2 : T ; θ; δ

Types T1 ' T2 : ∗; θ; δ

B ' B : ∗; θ; δ
α ' α : ∗; θ; δ

x :T11→T12 ' x :T21→T22 : ∗; θ; δ ⇐⇒T11 ' T21 : ∗; θ; δ ∧
∀v1v2, v1 ∼ v2 : T11; θ; δ =⇒

T12 ' T22 : ∗; θ; δ[(v1, v2)/x]

∀α.T1 ' ∀α.T2 : ∗; θ; δ ⇐⇒∀RT ′1T ′2, T1 ' T2 : ∗; θ[α 7→ R,T ′1,T
′
2]; δ

{x :T1 | e1} ' {x :T2 | e2} : ∗; θ; δ ⇐⇒T1 ' T2 : ∗; θ; δ ∧
∀v1v2, v1 ∼ v2 : T1; θ; δ =⇒

[v1/x]θ1(δ1(e1)) ' [v2/x]θ2(δ2(e2)) : bool; θ; δ

Open terms and types Γ ` θ; δ Γ ` e1 ' e2 : T Γ ` T1 ' T2 : ∗

Γ ` θ; δ ⇐⇒ ∀x :T ∈ Γ, θ1(δ1(x)) ' θ2(δ2(x)) : T ; θ; δ ∧
∀α ∈ Γ,∃RT1T2, α 7→ R,T1,T2 ∈ θ

Γ ` e1 ' e2 : T ⇐⇒ ∀θδ, Γ ` θ; δ =⇒ θ1(δ1(e1)) ' θ2(δ2(e2)) : T ; θ; δ

Γ ` T1 ' T2 : ∗ ⇐⇒ ∀θδ, Γ ` θ; δ =⇒ T1 ' T2 : ∗; θ; δ

FIGURE 3.6: The logical relation for parametricity

[14] and Greenberg [43]. The proof is mostly standard—we define a (syntactic) logical
relation on terms and types, where each type is interpreted as a relation on terms and
the relation at type variables is given as a parameter—except that our logical relation
includes not only well-typed terms and well-formed types but also ill-typed terms and
ill-formed types.

3.4.1 Logical Relation

We begin by defining two relations: r1 ∼ r2 : T ; θ; δ relates closed results, defined by
induction on types; e1 ' e2 : T ; θ; δ relates closed expressions which evaluate to results
in the first relation. (These results and expressions are not necessarily well typed. See
the discussion below.) The definitions are shown in Figure 3.6.6 Both relations have

6To save space, we write ⇑l ∼ ⇑l : T ; θ; δ separately instead of manually adding such a clause for each
type.

48 Chapter 3. Manifest Contracts with Parametric Polymorphism

three indices: a (possibly open) type T , a substitution θ for type variables, and a substi-
tution δ for term variables. A type substitution θ, which gives the interpretation of free
type variables in T , maps type variables α to triples (R,T1,T2) comprising a binary
relation R on closed results and two closed types T1 and T2, to be used as the concrete
substitution of α on the left- and right-hand terms. (The results in R and the two types
T1 and T2 do not have to be well typed/formed.) A term substitution δ maps from
variables to pairs of closed (not necessarily well typed) values. We write projections
δi (i = 1, 2) to denote projections from this pair. We similarly write θi (i = 1, 2) for a
substitution that maps a type variable α to Ti where θ(α) = (R,T1,T2). We also use
the following notations:

θ[α 7→ R,T1,T2] = θ ∪ {α 7→ R,T1,T2} if α 6∈ dom(θ)
δ[(v1, v2)/x] = δ ∪ {x 7→ v1, v2} if x 6∈ dom(δ)

With these definitions out of the way, the result relation is mostly straightforward.
First, ⇑l is related to itself at every type. A base type B gives the identity relation on
KB , the set of constants of type B . A type variable α simply uses the relation assumed
in the substitution θ. Related functions map related arguments to related results. Type
abstractions are related when their bodies are parametric in the interpretation of the
type variable. Finally, two values are related at a refinement type when they are related
at the underlying type and both satisfy the predicate; here, the predicate e gets closed
by applying the substitutions. We require that both values satisfy their refinements
rather than having the first satisfy the predicate iff the second does because we want
to know that values related at refinement types actually inhabit those types, i.e., actually
satisfy the predicates of the refinement. The ∼ relation on results is extended to the
relation ' on closed terms in a straightforward manner: terms are related if and only if
they both terminate at related results. Divergent terms are not related to each other—
though we will discover that divergent well typed terms do not exist in FσH. We extend
the relation to open terms, written Γ ` e1 ' e2 : T , relating open terms that are related
when closed by any “Γ-respecting” pair of substitutions θ and δ (written Γ ` θ; δ, also
defined in Figure 3.6).

To show that (well-typed) casts yield related results when applied to related inputs,
we also need a relation on types T1 ' T2 : ∗; θ; δ; we define this relation in Figure 3.6.
We can use the logical relation on results to handle the arguments of function types and
refinement types. Note that the T1 and T2 in this relation are not necessarily closed;
terms in refinement types, which should be related at bool, are closed by applying
substitutions. In the function and refinement type cases, the relation on a smaller type
is universally quantified over logically related values. There are two choices of the
type at which they should be related (for example, the second line of the function type
case could change T11 to T21). It does not really matter which side we choose, since
they are related types. We are “left-leaning.” Finally, we lift the type relation to open
types, writing Γ ` T1 ' T2 : ∗ when two types are equivalent for any Γ-respecting
substitutions.

It is worth discussing two points peculiar to this formulation: terms in the logical
relation are not necessarily well typed, and the type indices are open.

We allow any relation on terms to be used in θ; terms related at T need not be well
typed at T . The standard formulation of a logical relation is well typed throughout,
requiring that the relation R in every triple be well typed, only relating values of type
T1 to values of type T2 (e.g., Pitts [87]). We have two motivations for allowing ill
typed terms in our relation. First, functions of type x :T1→T2 must map related values

Chapter 3. Manifest Contracts with Parametric Polymorphism 49

(v1 ∼ v2 : T1) to related results... but at which type? While [v1/x]T2 and [v2/x]T2 are
related in the type relation, terms that are well typed at one type will not necessarily
be well typed at the other, whether definitions are left- or right-leaning. Second, this
parametricity relation is designed so that a certain kind of casts have no effect, as Belo
et al. [14] attempt. Ultimately, we would like to define a subtype relation T1 <: T2, and
show what we call upcast lemma that, if T1 <: T2, then 〈T1 ⇒ T2〉l ∼ λx :T1. x : T1→
T2. That is, we want a cast 〈T1 ⇒ T2〉l , of type T1→T2, to be related to the identity
λx :T1. x , of type T1 → T1. There is one small hitch: λx :T1. x has type T1 → T1, not
T1→T2! We therefore do not demand that two expressions related at T be well typed
at T , and we allow any relation to be chosen as R.

The type indices of the term relation are not necessarily closed. Instead, just as the
interpretation of free type variables in the logical relation’s type index are kept in a
substitution θ, we keep δ as a substitution for the free term variables that can appear
in type indices. Keeping this substitution separate avoids a problem in defining the
logical relation at function types. Consider a function type x :T1→T2: the logical rela-
tion says that values v1 and v2 are related at this type when they take related values to
related results, i.e., if v ′1 ∼ v ′2 : T1; θ; δ, then we should be able to find v1 v

′
1 ' v2 v

′
2 at

some type. The question here is which type index we should use. If we keep type in-
dices closed (with respect to term variables), we cannot use T2 on its own—we have to
choose a binding for x ! Knowles and Flanagan [64] deal with this problem by introduc-
ing the “wedge product” operator, which merges two types—one with v ′1 substituted
for x and the other with v ′2 for x—into one. Instead of substituting eagerly, we put
both bindings in δ and apply them when needed—the refinement type case. We think
this formulation is more uniform with regard to free term/type variables, since eager
substitution is a non-starter for type variables, anyway.

As we developed the original proof [14], we found that the (E REFL) rule 〈T ⇒
T 〉l v v is not just a convenient way to skip decomposing a trivial cast into smaller
trivial casts (when T is a polymorphic or dependent function type); (E REFL) is, in
fact, crucial to obtaining parametricity in this syntactic setting. On the one hand, the
evaluation of well-typed programs never encounters casts with uninstantiated type
variables—a key property of our evaluation relation. On the other hand, by parametric-
ity, we expect every value of type ∀α.α→ α to behave the same as the polymorphic
identity function (modulo blame). One of the values of this type is Λα. 〈α ⇒ α〉l .
Without (E REFL), however, applying this type abstraction to a compound type, say
bool→bool, and a function f of type bool→bool would return, by (E FUN), a wrapped
version of f that is syntactically different from the f we passed in—that is, the func-
tion broke parametricity! We expect the returned value should behave the same as the
input, though—the results are just syntactically different. With (E REFL), 〈T ⇒ T 〉l re-
turns the input immediately, regardless of T—just as the identity function. So, this rule
is a technical necessity, ensuring that casts containing type variables behave paramet-
rically.

3.4.2 Parametricity

Now we can set about proving parametricity. The proof of parametricity (Theorem 8)
of FσH is trickier than that of the standard polymorphic lambda calculus, due to (1)
dependent functions, (2) type convertibility, and (3) casts. Before stating parametricity,
we discuss these issues; see Appendix for the proofs of it and lemmas.

In FσH, It is not as easy as in System F to show that a well-typed term application
is logically related to itself due to dependent function types. To see the reason, let us

50 Chapter 3. Manifest Contracts with Parametric Polymorphism

Complexity of casts

cc(〈T ⇒ T 〉l) = 1
cc(〈x :T11→T12 ⇒ x :T21→T22〉l) = cc(〈[y/x]T12 ⇒ T22〉l) + cc(〈T21 ⇒ T11〉l) + 1

(y is fresh)
cc(〈∀α.T1 ⇒ ∀α.T2〉l) = cc(〈T1 ⇒ T2〉l) + 1
cc(〈{x :T1 | e} ⇒ T2〉l) = cc(〈T1 ⇒ T2〉l) + 1

(if T2 6= {x :T1 | e} and T2 6= {y :{x :T1 | e} | e ′})
cc(〈T1 ⇒ {x :T1 | e}〉l) = 1
cc(〈T1 ⇒ {x :T2 | e}〉l) = cc(〈T1 ⇒ T2〉l) + 2

(if T1 6= T2 and T1 is not a refinement type)

FIGURE 3.7: Complexity of casts

consider term application v1 v2 such that v1 and v2 are typed at x :T1 → T2 and T1,
respectively. Parametricity states that, if v1 and v2 are logically related to themselves
with θ and δ, respectively, then so is v1 v2 at [v2/x]T2. The definition of the logical
relation, however, states only that v1 v2 are logically related to T2, not [v2/x]T2, with
θ and δ[(v2, v2)/x]. Fortunately, as expected, these are equivalent: v1 v2 are logically
related to itself at [v2/x]T2 with θ and δ iff v1 v2 are logically related to itself at T2 with
θ and δ[(v2, v2)/x]. Term compositionality stated below generalizes this.

Lemma 23 (Term compositionality). If θ1(δ1(e)) −→∗ v1 and θ2(δ2(e)) −→∗ v2 then
r1 ∼ r2 : T ; θ; δ[(v1, v2)/x] iff r1 ∼ r2 : [e/x]T ; θ; δ.

For a similar reason, we show type compositionality, which is used also in other
polymorphic lambda calculi (e.g., Pitts [87]). In what follows, we write RT ,θ,δ for
{(r1, r2) | r1 ∼ r2 : T ; θ; δ}.

Lemma 24 (Type compositionality).
r1 ∼ r2 : T ; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : [T ′/α]T ; θ; δ.

For the typing rule (T CONV) with type convertibility, we have to show that terms
are logically related to themselves at convertible types.

Lemma 25 (Convertibility). If T1 ≡ T2 then r1 ∼ r2 : T1; θ; δ iff r1 ∼ r2 : T2; θ; δ.

Showing that casts are logically related to themselves is the most cumbersome case
in the proof of parametricity. We prove it by induction on a cast complexity metric, cc,
defined in Figure 3.7. The complexity of a cast is the number of steps it and its subparts
can take. This definition is carefully dependent on our definition of type compatibil-
ity and our cast reduction rules. Doing induction on this metric greatly simplifies the
proof: we show that stepping casts at related types yields either related non-casts, or
lower complexity casts between related types. Note that we omit the σ, since the eval-
uation of casts does not depend on delayed substitutions. It may be easier for the reader to
think of cc(〈T1 ⇒ T2〉l) as a three argument function—taking two types and a blame
label—rather than a single argument function taking a cast. The cc is well defined
though the case for casts between dependent function types chooses an arbitrary fresh
variable, because, for any variable y and z , cc(〈[y/x]T1 ⇒ T2〉l) = cc(〈[z/x]T1 ⇒ T2〉l)
if y and z do not occur free in T1 and T2.

Lemma 26 (Cast reflexivity). If ` Γ and T1 ‖ T2 and Γ ` σ(T1) ' σ(T1) : ∗ and Γ `
σ(T2) ' σ(T2) : ∗ and AFV(σ) ⊆ dom(Γ), then Γ ` 〈T1 ⇒ T2〉lσ ' 〈T1 ⇒ T2〉lσ :
σ(:T1→T2).

Chapter 3. Manifest Contracts with Parametric Polymorphism 51

Finally, we can prove relational parametricity—every well-typed term (under Γ) is
related to itself for any Γ-respecting substitutions.

Theorem 8 (Parametricity). (1) If Γ ` e : T then Γ ` e ' e : T ; and (2) if Γ ` T then
Γ ` T ' T : ∗.

We have that logically related programs are by definition behaviorally equivalent: if
∅ ` e1 ' e2 : B , then e1 and e2 coterminate at equal results. Ideally, logically related
terms are also contextually equivalent and vice versa, but we leave study of this prob-
lem for future work.

3.5 Three Versions of FH

We compare FσH with two prior formulations of FH without delayed substitution: Belo
et al. [14] from ESOP 2011 and Greenberg’s thesis [43]. Both of these define variants of
FH, claiming type soundness, parametricity, and upcast elimination. All of these results
depend on two properties of the FH type conversion relation: substitutivity (Lemma 14)
and cotermination (Lemma 11).

3.5.1 FH 1.0: Belo et al.’s Work

Belo et al. [14] got rid of subtyping and explicitly used the symmetric, transitive clo-
sure of parallel reductionV (Figure 3.8, quoted from Greenberg [43]) as the conversion
relation. (Parallel reduction is reflexive by definition.) The use of parallel reduction
is inspired by Greenberg et al. [44], in which type soundness of λH is proved by us-
ing cotermination and another property called substitutivity (if e1 V e2 and e ′1 V e ′2
then [e ′1/x]e1 V [e ′2/x]e2) of parallel reduction. These properties were needed also for
type soundness of FH. Unfortunately, it turns out that parallel reduction in FH is not
substitutive—the proof was wrong—and cotermination, which was left as a conjecture
([14], p. 15), does not hold, either. Figure 3.9 offers three counterexamples:7 two to
substitutivity and one to cotermination.

Why does not substitutivity hold in FH, when it did (so easily) in λH? Sources of the
trouble are that (1) the FH cast rules depend upon certain (syntactic) equalities between
types and that (2) parallel reduction is defined over open terms. As a result, substitu-
tion may change reduction rules to be applied—both counterexamples to substitutivity
in Figure 3.9 take advantage of it.

Cotermination breaks also because substitutions can affect which reduction rule
applies to a cast, which in turn can force us to perform checks under one substitution
that are not performed under another, related one (counterexample 3 in Figure 3.9).

3.5.2 FH 2.0: Greenberg’s Thesis

In his thesis, Greenberg tried to correct this problem using a fix due to Sekiyama: he
takes common-subexpression reduction (CSR) as the conversion relation [43]. We repeat
FσH’s identical definition of CSR (Figure 3.5) again here, in Figure 3.10. As we can see
from the definition, CSR is designed to be substitutive (and is substitutive). However,
cotermination still fails: we can construct ill-typed terms that do not satisfy cotermina-
tion in Greenberg’s operational semantics—they look like the term in counterexample 3

7The first two have been shown in Greenberg [43] but they are discovered by Igarashi, Greenberg, and
Sekiyama.

52 Chapter 3. Manifest Contracts with Parametric Polymorphism

Parallel term reduction e1 V e2

vi V v ′i
op (v1, ... , vn)V [[op]] (v ′1, ... , v

′
n)

EP ROP
e12 V e ′12 v2 V v ′2

(λx :T . e12) v2 V [v ′2/x]e ′12
EP RBETA

e V e ′ T2 V T ′2
(Λα. e)T2 V [T ′2/α]e ′

EP RTBETA
v V v ′

〈T ⇒ T 〉l v V v ′
EP RREFL

T2 6= {x :T1 | e} T2 6= {y :{x :T1 | e} | e2} T1 V T ′1 T2 V T ′2 v V v ′

〈{x :T1 | e} ⇒ T2〉l v V 〈T ′1 ⇒ T ′2〉l v ′
EP RFORGET

T1 6= T2 T1 6= {x :T | e} T1 V T ′1 T2 V T ′2 e V e ′ v V v ′

〈T1 ⇒ {x :T2 | e}〉l v V 〈T ′2 ⇒ {x :T ′2 | e ′}〉l (〈T ′1 ⇒ T ′2〉l v ′)
EP RPRECHECK

T V T ′ e V e ′ v V v ′

〈T ⇒ {x :T | e}〉l v V 〈{x :T ′ | e ′}, [v ′/x]e ′, v ′〉l
EP RCHECK

v V v ′

〈{x :T | e1}, true, v〉l V v ′
EP ROK

〈{x :T | e1}, false, v〉l V ⇑l
EP RFAIL

x :T11→T12 6= x :T21→T22

T11 V T ′11 T12 V T ′12 T21 V T ′21 T22 V T ′22 v V v ′

〈x :T11→T12 ⇒ x :T21→T22〉l v V
λx :T ′21. (〈[〈T ′21 ⇒ T ′11〉l x/x]T ′12 ⇒ T ′22〉l (v ′ (〈T ′21 ⇒ T ′11〉l x)))

EP RFUN

∀α.T1 6= ∀α.T2 T1 V T ′1 T2 V T ′2 v V v ′

〈∀α.T1 ⇒ ∀α.T2〉l v V Λα. (〈T ′1 ⇒ T ′2〉l (v ′ α))
EP RFORALL

e V e
EP REFL

T1 V T ′1 e12 V e ′12
λx :T1. e12 V λx :T ′1. e

′
12

EP ABS
e1 V e ′1 e2 V e ′2

e1 e2 V e ′1 e
′
2

EP APP

e V e ′

Λα. e V Λα. e ′
EP TABS

e1 V e ′1 T2 V T ′2
e1 T2 V e ′1 T

′
2

EP TAPP

ei V e ′i
op (e1, ... , en)V op (e ′1, ... , e

′
n)

EP OP
T1 V T ′1 T2 V T ′2

〈T1 ⇒ T2〉l V 〈T ′1 ⇒ T ′2〉l
EP CAST

T V T ′ e V e ′

〈T , e, k〉l V 〈T ′, e ′, k〉l
EP CHECK

E [⇑l]V ⇑l
EP BLAME

Parallel type reduction T1 V T2

T V T
EP TREFL

σ1 −→∗ σ2 T1 V T2

{x :T1 | σ1(e)}V {x :T2 | σ2(e)}
EP TREFINE

T1 V T ′1 T2 V T ′2
x :T1→T2 V x :T ′1→T ′2

EP TFUN
T V T ′

∀α.T V ∀α.T ′
EP TFORALL

FIGURE 3.8: Parallel reduction (for open terms).

Chapter 3. Manifest Contracts with Parametric Polymorphism 53

Counterexample 1: substitutivity

Let T be a type with a free variable x .

e1 = 〈T ⇒ {y :[5/x]T | true}〉l 0
e2 = 〈[5/x]T ⇒ {y :[5/x]T | true}〉l (〈T ⇒ [5/x]T 〉l 0)

e ′1 = e ′2 = 5

Observe that e ′1 V e ′2 (by (EP REFL)) and e1 V e2 (by (EP RPRECHECK)) but
[5/x]e1 = 〈[5/x]T ⇒ {y :[5/x]T | true}〉l 0V 〈{y :[5/x]T | true}, true, 0〉l by
(EP RCHECK), not [5/x]e2. Note that the definition of substitution [e ′/x]e is a
standard one, in which substitution goes down into casts.

Counterexample 2: substitutivity

Let T2 be a type with a free variable x .

e1 = 〈T1→T2 ⇒ T1→ [5/x]T2〉l v
e2 = λy :T1. 〈T2 ⇒ [5/x]T2〉l (v (〈T1 ⇒ T1〉l y))

e ′1 = e ′2 = 5

Observe that e ′1 V e ′2 (by (EP REFL)) and e1 V e2 (by (EP RFUN)). We have
[5/x]e1 = 〈T1→ [5/x]T2 ⇒ T1→ [5/x]T2〉l v V [5/x]v by (EP RREFL), not [5/x]e2.

Counterexample 3: cotermination

e = 〈{x :bool | false} ⇒ {x :bool | y}〉l true
e1 = 0 = 5
e2 = false

Observe that e1 −→ e2 (and so e1 V e2, by (EP ROP)) and cotermination says that
[e1/y]e terminates at a value iff so does [e2/x]e . Here, by (E CHECK),
[e1/y]e −→ 〈{x :bool | e1}, e1, true〉l −→∗ ⇑l but by (E REFL), [e2/x]e −→ true.

FIGURE 3.9: Counterexamples to substitutivity and cotermination of
parallel reduction in FH

54 Chapter 3. Manifest Contracts with Parametric Polymorphism

Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ⊂ TmVar ∧
∀x ∈ dom(σ1). σ1(x) −→∗ σ2(x)

α ≡ α
C VAR

B ≡ B
C BASE

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C REFINE

T1 ≡ T ′1 T2 ≡ T ′2
x :T1→T2 ≡ x :T ′1→T ′2

C FUN
T ≡ T ′

∀α.T ≡ ∀α.T ′
C FORALL

T2 ≡ T1

T1 ≡ T2
C SYM

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C TRANS

FIGURE 3.10: Type conversion via common-subexpression reduction

(Figure 3.9). The essential issue is that we can fire (E REFL) under one substitution and
force a check under another. If the term is ill typed, then we have no way of knowing
whether the argument of the cast satisfies its input type—so the check can fail where
(E REFL) succeeded. Well typed terms do not have this problem, but we need our con-
version relation to prove progress and preservation—we cannot use arguments about
typing in our proof of cotermination. In short, Greenberg’s Conjecture 3.2.1 on page 88
is false; it seems that the evaluation relation is defined in such a way that substitutions
can affect which cast reduction rules are chosen.

3.5.3 FσH
Our calculus, FσH, can see statically which cast reduction rule is chosen thanks to our
definition of substitution (Definition 2). In Lemma 11, we show that terms related by
CSR coterminate at true using FσH’s substitution semantics; this is enough to prove type
soundness and parametricity. FH tried to use entirely syntactic techniques to achieve
type soundness, avoiding the semantic techniques necessary for λH. But we failed: we
need to prove cotermination to get type soundness; our proof amounts to showing that
type conversion is a weak bisimulation. Our metatheory is, on the one hand, simpler
than that of Greenberg et al. [44], which needs cotermination and semantic type sound-
ness. On the other hand, we must use a nonstandard substitution operation, which is
a hassle.

Chapter 4

Manifest Contracts with Algebraic
Datatypes

This chapter extends manifest contracts with algebraic datatypes. The idea of in-
troducing algebraic datatypes to manifest contracts is natural because manifest con-
tracts make fine-grained specifications explicit as types and algebraic datatypes, which
are often formalized as the combination of sum types and recursive types, are com-
mon in type systems with data structures, especially, in functional programming (e.g.,
[40, 59, 15, 68, 66]); in fact, as we will see later, the manifest contract calculus given
in this chapter can represent various specifications on data structures. We also inves-
tigate representation of contracts on datatypes through our manifest contract calculus
with algebraic datatypes. In particular, we focus on a computational aspect of con-
tract checking. Since contracts were originally conceived as a mechanism to check
software properties dynamically, it was also clear that contract checking could cause
significant overhead. This overhead is specially notable when we consider contracts
on data structures because naive contract checking for datatypes can make asymptotic
time complexity worse, as pointed out by Findler et al. [36]. To see how representation
of contracts affects computational efficiency, we start with comparison of two simple,
complementary approaches to giving refinements to data structures.

Refinements on type constructors versus refinements on data constructors There are
two approaches to specifying contracts for data structures. One is to put refinements
on the type constructor for a plain data structure and the other is to put refinements
on (types for) data constructors. For example, a type slist for sorted integer lists can be
written {x :int list | sorted x} in which sorted is a familiar Boolean function that returns
whether the argument list is sorted in the former, or defined as another datatype with
refined cons of type x :int × {xs:slist | nil xs or x ≤ head xs} → slist in the latter. Here, the
argument type is a dependent product type, expressing the relationship between the
two components in the pair. However, as pointed out by Findler, Guo, and Rogers [36],
neither approach by itself is very satisfactory.

On the one hand, the former approach, which is arguably easier for ordinary pro-
grammers, may cause significant overhead in contract checking to make asymptotic
time complexity worse. To see how it happens, let us consider function insert_sort
for insertion sort. The sorting function and its auxiliary function insert can be defined
in the ML-like syntax as follows.

type slist1 = {x:int list | sorted x}

let rec insert (x:int) (l:slist1) : slist1 =
match l with
| [] -> 〈slist1⇐ int list〉`1 [x]

55

56 Chapter 4. Manifest Contracts with Algebraic Datatypes

| y::ys ->
if x <= y then 〈slist1⇐ int list〉`2 (x::l)
else 〈slist1⇐ int list〉`3

(y::(insert x (〈slist1⇐ int list〉`4 ys)))

let rec insert_sort (l:int list) : slist1 =
match l with
| [] -> []
| x::xs -> insert x (insert_sort xs)

Without gray-colored casts, insert_sort would be an ordinary insertion-sort func-
tion. However, in insert, the four subexpressions [x], x::l, y::(insert x ys)
and ys, which are given type int list, are actually expected to have type slist1 by
the context. To fill the gap1, we have to check whether these subexpressions satisfy the
contract sorted. Notice that these casts cannot be eliminated by simple subtype check-
ing because int list is obviously not a subtype of slist1. As far as we understand,
existing technologies cannot verify these casts will be successful, at least, without giv-
ing hints to the verifier. Unfortunately, leaving these casts (especially ones with `2, `3,
and `4) has an unpleasant effect: They traverse the entire lists to check sortedness, even
though the lists have already been sorted, making the asymptotic time complexity of
insert from O(m) to O(m2), where m stands for the length of the input.

On the other hand, the latter approach, which exploits refinement in argument
types of data constructors, does not have this efficiency problem (if not always). For
example, we can define sorted lists as a datatype with refined constructors:

type slist2 =
SNil

| SCons of
x:int × {xs:slist2 | nil xs or x <= head xs}

Here, nil and head are functions2 that return whether a given list is empty and the
first element of a given list, respectively, and a type of the form x :T1×T2 is a dependent
product type, which denotes pairs (v1, v2) of values such that v1 and v2 are of types T1

and T2 {v1/x}, respectively. So, SCons takes an integer x and a (sorted) list whose
head (if any) is equal to or greater than x. Using slist2, we can modify the functions
insert and insert_sort to perform less dynamic checking.

let rec insert’ (x:int) (l:slist2) : slist2 =
match l with
| SNil -> SCons (x,〈slistx ⇐ slist2〉` SNil)
| SCons (y, ys) ->

if x <= y then SCons (x,〈slistx ⇐ slist2〉` l)
else SCons

(y,〈slisty ⇐ slist2〉` (insert’ x ys))

let rec insert_sort’ (l:int list) : slist2 =
match l with
| [] -> SNil
| x::xs -> insert’ x (insert_sort’ xs)

1Actually, there are subexpressions whose expected types are int list but actual types are slist1.
We assume that slist1 can be converted to int list for free.

2Precisely speaking, these functions have to be defined together with slist2 but we omit them for
brevity.

Chapter 4. Manifest Contracts with Algebraic Datatypes 57

Here, sliste stands for {xs:slist2 | nil xs or e <= head xs}. Since the
contract in the cast 〈slistx ⇐ slist2〉` does not traverse xs, it is more efficient
than the first definition; in fact, the time complexity of insert’ remains to be O(m).
Moreover, it would be possible to eliminate the cast on l by collecting conditions (l is
equal to SCons(y, ys) and x <= y) guarding this branch [91]. (It is more difficult
to eliminate the other cast because the verifier would have to know that the head of the
list returned by the recursive call to insert’ is greater than y.)

However, this approach has complementary problems. First, we have to main-
tain the predicate function sorted and the corresponding type definition slist2
separately. Second, it may not be a trivial task to write down the specification
as data constructor refinement. For example, consider the type of lists whose el-
ements contain a given integer n . A refinement type of such lists can be written
{l:int list | member n l} using the familiar member function. One possible
datatype definition corresponding to the refinement type above would be given by
using an auxiliary datatype, parameterized over an integer n and a Boolean flag p to
represent whether n has to appear in a list.

type incl_aux 〈p:bool, n:int〉 =
LNil of {unit|not p}

| LCons of x:int × incl_aux 〈not (x=n) and p, n〉

type list_including 〈n:int〉 = incl_aux 〈true,n〉

(Notice that incl_aux〈false,n〉 is essentially int list and, if a list without n is
given type incl_aux〈p, n〉, then p must be false.) We do not think it is as easy to
come up with a datatype definition like this as the refinement type above.

Another issue is interoperability between a plain type and its refined versions: Just
as casts between slist1 and int list are allowed, we would hope that the lan-
guage supports casts between slist2 and int list, even when they have different
sets of data constructors. Such interoperability is crucial for code reuse [36]—without
it, we must reimplement many list-processing functions, such as sort, member, map,
etc., every time a refined datatype is given. As pointed out in Vazou, Rondon, and
Jhala [116], one can give one generic datatype definition, which is parameterized over
predicates on components of the datatype, and instantiate it to obtain plain and sorted
list types but, as we will show later, refined datatype definitions may naturally come
with more data constructors than the plain one, in which case parameterization would
not work (the number of constructors is the same for every instantiation).

In short, the two approaches are complementary.

Contributions Our work aims at taking the best of both approaches. First, we give
a provably correct syntactic translation from refinements on type constructors, such
as the Boolean function sorted, to equivalent type definitions where data construc-
tors are refined, namely, slist2. This translation is closely related to the work by
Atkey, Johann, and Ghani [10] and McBride [70], also concerned about systematic
generation of a new datatype; see Section 5.6 for comparison. Second, we extend
casts so that casts between similar but different datatypes (what we call compatible
types, which are declared explicitly in datatype definitions) are possible. For example,
〈slist2⇐ int list〉`(1 :: 2 :: []) yields SCons(1, SCons(2, SNil)),
whereas 〈slist2 ⇐ int list〉` (1 :: 0 :: []) raises blame `. Thanks to the
two ideas, a programmer can automatically derive a datatype definition from a familiar
Boolean function, exploit the resulting datatype for less dynamic checking as we saw in

58 Chapter 4. Manifest Contracts with Algebraic Datatypes

the example of insertion sort, and also use it, when necessary, as if it were a refinement
type using the Boolean function.

We formalize these ideas as a manifest contract calculus λH
dt and prove basic proper-

ties such as progress and preservation. λH
dt is defined by following the ideas in Chap-

ter 3—i.e., λH
dt does not have subsumption (for subtyping) and its cast semantics is

designed to be insensitive to substitutions—but it does not use delayed substitution,
unlike FσH given in Chapter 3. In Chapter 3, delayed substitution played a crucial role
to determine how casts reduce statically (in the presence of the reduction rule (E REFL)
to eliminate reflexive casts) and prove parametricity whereas it made the metatheory
of FσH more complicated than FH [14, 43]. To make the metatheory of λH

dt as simple
as possible, we do not introduce delayed substitution in this chapter. The lack of de-
layed substitution, however, raises one question: without delayed substitutions, how
can we obtain cast semantics where substitutions do not affect the behavior of casts?
We achieve it by designing cast semantics where all refinements on target types of casts
are checked regardless of what values are substituted.

Our contributions are summarized as follows:

• We propose casts between compatible datatypes to enhance interoperability
among a plain datatype and its refined versions.

• We define a manifest contract calculus λH
dt to formalize the semantics of the casts.

• We formally define a translation from refinements on type constructors to type
definitions where data constructors are refined and prove the translation is cor-
rect.

We note that this work gives type translation but does not give translation from a
program with refinement types to one with refined datatypes, so if a programmer has
a program with, for example, slist1, then he has to rewrite it to one with a datatype
like slist2 by hand. Automatic program transformation is left as future work.

Outline The rest of this chapter is organized as follows. Section 4.1 gives an overview
of our datatype mechanism and Section 4.2 formalizes λH

dt , shows its type soundness,
and compares it with FσH in detail. Section 4.3 gives a translation from refinement types
to datatypes and proves its correctness.

4.1 Overview

In this section, we informally describe our proposals of datatype definitions, casts be-
tween compatible datatypes, and translation, mainly by means of examples.

As we have seen already in the example of sorted lists, our datatype definition al-
lows the argument types of data constructors to be refined using the set comprehension
notation {x :T | e} and dependent product types x :T1×T2. We also allow parameteri-
zation over terms as in incl_aux in the previous section.

4.1.1 Casts for Datatypes

As we have discussed in the beginning of this chapter, in order to enhance interoper-
ability between refined datatypes, we allow casts between two different datatypes if
they are “compatible”; in other words, compatibility is used to disallow casts between
unrelated types (for example, the integer type and a function type). Compatibility for

Chapter 4. Manifest Contracts with Algebraic Datatypes 59

types other than datatypes means that two types are the same by ignoring refinements;
compatibility for datatypes means that there is a correspondence between the sets of
the data constructors from two datatypes and the argument types of the corresponding
constructors are also compatible. In our proposal, a correspondence between construc-
tors has to be explicitly declared. So, the type slist2 in the previous section is actually
written as follows:

type slist2 =
SNil || []

| SCons || (::) of
x:int × {xs:slist2 | nil xs or x <= head xs}

The symbol || followed by a data constructor from an existing datatype de-
clares how constructors correspond. The types int list and slist2 are com-
patible because both SNil and [] take no arguments and the argument type
x:int × {xs:slist2 | nil xs or x <= head xs} of SCons is compatible with
int × int list of (::). (Precisely speaking, compatibility is defined coinductively.)
Readers may think that explicit declaration of a correspondence of data constructors
seems cumbersome. However, we could replace these declarations by a compatibility
declaration for type names as slist2 || int list and let the system infer the cor-
respondence between data constructors. Such inference is easy for many cases, where
the argument types of data constructors are of different shapes, as in this example.

A cast for datatypes converts data constructors to the corresponding ones and puts
a new cast on components. For example, 〈slist ⇐ int list〉` (1 :: 2 :: 3 :: []) reduces to
SCons (1, SCons (2,SCons (3,SNil))) as follows:

〈slist⇐ int list〉` (1 :: 2 :: 3 :: [])
→ SCons(〈x :int×{xs:slist | nil xs or x ≤ head xs} ⇐ int× int list〉`

(1, 2 :: 3 :: []))
→ SCons(1, 〈{xs:slist | nil xs or 1 ≤ head xs} ⇐ int list〉` (2 :: 3 :: []))
→ . . .
→ SCons (1, SCons (2,SCons (3,SNil)))

In the example above, the correspondence between data constructors is bijec-
tive but we actually allow nonbijective correspondence, too. This means that a new
datatype can have two or more (or even no) data constructors corresponding to a sin-
gle data constructor from an existing type. For example, an alternative definition of
list_including is as follows:

type list_including 〈n:int〉 =
LConsEq || (::) of {x:int|x=n} × int list

| LConsNEq || (::) of
{x:int|x<>n} × list_including 〈n〉

This version of list_including has no constructors compatible to Nil because the
empty list does not include n. By contrast, there are two constructors, LConsEq and
LConsNEq, both compatible to (::). The constructor LConsEq is used to construct lists
where the head is equal to n , and LConsNEq to construct lists where the head is not
equal to n but the tail list includes n . A cast to the new version of list_including
works by choosing either LConsEq or LConsNEq, depending on the head of the input
list:

〈list including〈0〉 ⇐ int list〉` [] −→∗ ⇑`
〈list including〈0〉 ⇐ int list〉` (2 :: 0 :: 1 :: []) −→∗

LConsNEq (2, (LConsEq (0, 1 :: [])))

60 Chapter 4. Manifest Contracts with Algebraic Datatypes

This cast does not have to traverse a given list when it succeeds (notice int list in the
argument type of LConsEq and 1 :: [] in the second example above).

Although it is fairly clear how to choose an appropriate constructor in the example
above, it may not be as easy in general. In the formal semantics we give in this chapter,
we model these choices as oracles. In practice, a constructor choice function is specified
along with a datatype definition either manually or often automatically—in fact, we
will show that a constructor choice function can be systematically derived when a new
datatype is generated from our translation. More interestingly, the asymptotic time
complexity of the cast from a plain list to the generated datatype is no worse than the
cast to the original refinement type. In this sense, the translation preserves efficiency of
casts. This efficiency preservation lets us conjecture that, when a programmer rewrites
a program with the refinement type to one with the generated datatype, the asymptotic
time complexity of the latter program becomes no worse than the former. We discuss
efficiency preservation in detail in Section 4.3.3.

Allowing nonbijective correspondence between constructors simplifies our transla-
tion and makes dynamic contract checking more efficient as in the example above.

4.1.2 Ideas for Translation

We informally describe the ideas behind our translation through the example of
list including above. We start with the refinement type {x :int list |member n x}, where
member n x is a usual function, which returns whether n appears in list x:

let rec member (n:int) (l:int list) =
match l with
| [] -> false
| x::xs ->

if x = n then true
else member n xs

Through this chapter, we always suppose that some logical operations such as
&& and || are desugared to simplify our formalization, and so here we write
if x = n then true else member n xs instead of x = n || member n xs.
We examine how list including corresponds to member. For reference, the definition of
list including is shown below again:

type list_including 〈n:int〉 =
| LConsEq || (::) of {x:int|x=n} × int list
| LConsNEq || (::) of

{x:int|x<>n} × list_including 〈n〉

We expect that a value of list including 〈n〉 returns true when it is passed to member n
(modulo constructor names).

It is not difficult to observe two things. First, each constructor and its argument
type represent when the predicate returns true. In this example, there are two reasons
that member n x returns true: either (1) n is equal to the first element of x or (2) n is
not equal to the first element of x but member n is true for the tail of x. The construc-
tors LConsEq and LConsNEq and their argument types represent these conditions. Since
member n x never returns true when x is the empty list, there is no constructor in
list including. Second, a recursive call on a substructure corresponds to type-level recur-
sion: member n xs in the else-branch in member is represented by list including〈n〉
in the argument type of LConsNEq.

Chapter 4. Manifest Contracts with Algebraic Datatypes 61

Types
T ::= bool | x :T1 → T2 | x :T1×T2 | {x :T | e} | τ〈e〉

Constants, Values, Terms
c ::= true | false
v ::= c | fix f (x :T1):T2 = e | 〈T1 ⇐ T2〉` | (v1, v2) | C 〈e〉v
e ::= c | x | fix f (x :T1):T2 = e | e1 e2 | (e1, e2) | e.1 | e.2 |

C 〈e1〉e2 | match e withCi xi → ei
i |

if e1 then e2 else e3 | 〈T1 ⇐ T2〉`

Datatype definitions

ς ::= τ 〈x :T 〉 = Ci : Ti
i | τ 〈x :T 〉 = Ci ‖ Di : Ti

i

Σ ::= ∅ | Σ, ς

FIGURE 4.1: Program syntax.

TypDefOfΣ(τ) The definition of τ .
ArgTypeOfΣ(τ) The parameter name and its type of τ .
CtrsOfΣ(τ) The set of constructors that belong to τ .
TypSpecOfΣ(C) The type specification of C .
TypNameOfΣ(C) The datatype that C belongs to.
CtrArgOfΣ(C) The argument type of C .

TABLE 4.1: Lookup functions.

So, the basic idea of our translation scheme is to analyze the body of a given pred-
icate function and collect guarding conditions on branches reaching true. As men-
tioned above, recursive calls on the tail become type-level recursion. This correspon-
dence between execution paths and data constructors is also useful to derive a con-
structor choice function for a cast. For example, a cast to list including〈n〉 will choose
LConsEq when (the list being checked is not empty and) the head is equal to n , just
because LConsEq corresponds to the path guarded by x=n in the definition of member.

4.2 A Manifest Contract Calculus λH
dt

We formalize a manifest contract calculus λH
dt of datatypes with its syntax, type system,

and operational semantics, and prove its type soundness. Following Belo et al. [14], we
drop subtyping and subsumption from the core of the calculus to simplify the defini-
tion and metatheory.

In the following, we write a sequence with an overline: for example, Ci
i ∈{1,...,n}

means a sequence C1, . . . ,Cn of data constructors. We often omit the index set {1, ...,n}
when it is clear from the context or not important. Given a binary relation R, the rela-
tion R∗ denotes the reflexive and transitive closure of R.

4.2.1 Syntax

We present the program syntax of λH
dt in Figure 4.1, where there are various metavari-

ables: T ranges over types, τ names of datatypes, C and D constructors, c constants,

62 Chapter 4. Manifest Contracts with Algebraic Datatypes

x , y , z , f , etc. variables, v values, e terms, ` blame labels, Γ typing contexts, ς datatype
definitions, Σ type definition environments.

Types consist of base types (we have only Boolean here but addition of other base
types causes no problems), dependent function types, dependent product types, refine-
ment types, and datatypes. In a dependent function type x :T1 → T2 and a dependent
product type x :T1×T2, variable x is bound in T2. A refinement type {x :T | e}, in
which x is bound in e , denotes the subset of type T whose value v satisfies the Boolean
contract e , that is, e {v/x} evaluates to true. Finally, a datatype τ〈e〉 takes the form of
an application of τ to a term e . Note that, similarly to FσH, the predicate e is allowed
to be an arbitrary Boolean expression, which may diverge or raise blame, unlike some
refinement type systems [123, 122, 91, 59, 116, 117], which aim at decidable static veri-
fication. Static verification amounts to checking a given cast is in fact an upcast, where
the source type is a subtype of the target, and subtyping is not, in general, decidable
but the language is not equipped with subsumption.

Terms are basically those from the λ-calculus with Booleans, recursive functions,
products, datatypes, and casts. A term fix f (x :T1):T2 = e represents a recursive func-
tion in which variables x and f denote an argument and the function itself, respectively,
and are bound in e . We often omit type annotations. A data constructor application
C 〈e1〉e2 takes two arguments: e1 represents one for the type definition and e2 for data
constructors, respectively. A match expression match e withCi xi → ei

i is as usual and
binds each variable xi in ei .

The last form is a cast 〈T1 ⇐ T2〉`, consisting of a target type T1, a source type T2,
and a label `, and, when applied to a value v of type T2, checks that the value v can
behave as T1. The label ` is used to identify the cast when it is blamed. Unlike FσH, casts
in λH

dt do not contain delayed substitutions.
A datatype definition ς can take two forms. The form τ 〈x :T 〉 = Ci : Ti

i , where
x is bound in Ti

i , declares a datatype τ , parameterized over x of type T , with data
constructors Ci whose argument types are Ti . The other form τ 〈x :T 〉 = Ci ‖ Di : Ti

i

is the same except that it declares that Ci is compatible with Di from another datatype.
A type definition environment Σ is a sequence of datatype definitions. We assume

that datatype and constructor names declared in a type definition environment are dis-
tinct. Table 4.1 shows metafunctions to look up information on datatype definitions.
Their definitions are omitted since they are straightforward. A type specification, re-
turned by TypSpecOf and written x :T1 � T2 � τ〈x 〉, of a constructor C consists of the
datatype τ that C belongs to, the parameter x of τ and the type T1 of x , and the argu-
ment type T2 of C . In other words, τ = TypNameOfΣ(C), x :T1 = ArgTypeOfΣ(τ) and
T2 = CtrArgOfΣ(C). We omit the subscript Σ from these metafunctions for brevity if
it is clear from the context.

We use the following familiar notations. We write FV (e) to denote the set of free
variables in a term e , and e {e ′/x} capture avoiding substitution of e ′ for x in e . We
apply similar notations to values and types. We say that a term/value/type is closed
if it has no free variables, and identify α-equivalent ones. In addition, we introduce
several shorthands. A function type T1 → T2 means x :T1 → T2 where the variable
x does not occur free in T2. We write λ x :T1.e to denote fix f (x :T1):T2 = e if f does
not occur in the term e . A let-expression let x = e1 in e2 denotes (λ x :T .e2) e1 where T
is an appropriate type. Finally, a datatype τ is said to be monomorphic if the definition
of τ does not refer to a type argument variable, and then we abbreviate τ〈e〉 to τ and
C 〈e1〉e2 to C e2 when C is a data constructor of τ .

Chapter 4. Manifest Contracts with Algebraic Datatypes 63

` Γ Typing Context Well-Formedness Rules

` ∅
WC EMPTY

` Γ Γ ` T

` Γ, x :T
WC EXTENDVAR

Γ ` T Type Well-Formedness Rules

` Γ

Γ ` bool
WT BASE

Γ ` T1 Γ, x :T1 ` T2

Γ ` x : T1 → T2
WT FUN

Γ ` T1 Γ, x :T1 ` T2

Γ ` x :T1×T2
WT PROD

Γ ` T Γ, x :T ` e : bool

Γ ` {x :T | e}
WT REFINE

ArgTypeOf (τ) = x :T Γ ` e : T

Γ ` τ〈e〉
WT DATATYPE

Γ ` e : T Typing Rules

` Γ c ∈ {true, false}
Γ ` c : bool

T CONST
` Γ x :T ∈ Γ

Γ ` x : T
T VAR

Γ, f :(x :T1 → T2), x :T1 ` e : T2 f /∈ FV (T2)

Γ ` fix f (x :T1):T2 = e : x :T1 → T2
T ABS

Γ ` T1 Γ ` T2 T1 ‖ T2

Γ ` 〈T1 ⇐ T2〉` : T2 → T1
T CAST

Γ ` e1 : x :T1 → T2 Γ ` e2 : T1

Γ ` e1 e2 : T2 {e2/x}
T APP

Γ, x :T1 ` T2 Γ ` e1 : T1 Γ ` e2 : T2 {e1/x}
Γ ` (e1, e2) : x :T1×T2

T PAIR

Γ ` e : x :T1×T2

Γ ` e.1 : T1
T PROJ1

Γ ` e : x :T1×T2

Γ ` e.2 : T2 {e.1/x}
T PROJ2

Γ ` e1 : bool Γ ` e2 : T Γ ` e3 : T

Γ ` if e1 then e2 else e3 : T
T IF

TypSpecOf (C) = x :T1 � T2 � τ〈x 〉
Γ ` e1 : T1 Γ ` e2 : T2 {e1/x} Γ ` τ〈e1〉

Γ ` C 〈e1〉e2 : τ〈e1〉
T CTR

Γ ` e0 : τ〈e〉 Γ ` T

CtrsOf (τ) = Ci
i ∈{1,...,n} ArgTypeOf (τ) = y :T ′

for all i , CtrArgOf (Ci) = Ti for all i , Γ, xi :Ti {e/y} ` ei : T

Γ ` match e0 withCi xi → ei
i ∈{1,...,n}

: T
T MATCH

FIGURE 4.2: Typing rules for λH
dt .

4.2.2 Type System

This section introduces a type system for source programs in λH
dt ; later we extend the

syntax to include run-time terms to define operational semantics and give additional
typing rules for those terms. The type system consists of three judgments: context well-
formedness Σ ` Γ, type well-formedness Σ; Γ ` T , and typing Σ; Γ ` e : T . Here, a

64 Chapter 4. Manifest Contracts with Algebraic Datatypes

T1 ‖ T2 Type Compatibility

T1 ‖ T2

{x :T1 | e1} ‖ T2
C REFINEL

TypDefOf (τ1) = (type τ1 〈x :T 〉 = Ci ‖ Di : Ti
i
)

for all i , TypNameOf (Di) = τ2

τ1〈e1〉 ‖ τ2〈e2〉
C DATATYPE

FIGURE 4.3: Type compatibility for λH
dt .

typing context Γ is a sequence of variable declarations:

Γ ::= ∅ | Γ, x :T

where declared variables are pairwise distinct. We show inference rules in Figure 4.2,
where a type definition environment Σ in judgments are omitted for simplification.
Typing rules for atomic terms, such as Booleans, variables, etc. demand that types of
a typing context of a judgment be well-formed; in other rules, well-formedness of a
typing context and a type of a term is shown as a derived property.

Inference rules for context and type well-formedness judgments are standard ex-
cept for (WT DATATYPE), which requires an argument to a datatype τ to be typed at
the declared argument type.

Most of typing rules are also standard or similar to the previous work [14]. The rule
(T CAST) means that the source and target types in a cast have to be compatible. Intu-
itively, two types are compatible when a cast from one type to the other may succeed.
More formally, type compatibility, written T1 ‖ T2, is the least congruence satisfying
rules in Figure 4.3: the rule (C REFINEL) allows casts from and to refinement types;
and the rule (C DATATYPE) says that if datatypes are declared to be compatible in the
type definition, then they are compatible. The typing rule (T CTR) demands that argu-
ments e2 and e1 respect the argument types of C and the datatype that C belongs to,
respectively. The rule (T MATCH) for match expressions demands the matched term e0

to be typed at a datatype τ〈e〉. Using the metafunction CtrsOf, the rule demands that
the patterns Ci xi

i be exhaustive. Moreover, each branch ei has to be given the same
type T , which cannot contain pattern variables xi (and so is well formed under Γ).

4.2.3 Semantics

The semantics of λH
dt is given in the small-step style by using two relations over

closed terms: the reduction relation (), which represents basic computation such as
β-reduction, and the evaluation relation (−→), in which a subexpression is reduced.

The semantics is parameterized by a type definition environment and a constructor
choice function δ, which is a partial function that maps a term of the form 〈τ1〈e1〉 ⇐
τ2〈e2〉〉`C2〈e〉v to a constructor C1. We introduce this function as an oracle to decide
which constructor a given constructor is converted to by a cast between datatypes, as
discussed in Section 4.1. The constructor C1 has to not only belong to τ1 but also be
compatible with C2. We will give a more precise condition on δ later.

Precisely speaking, the two relations are parameterized by Σ and δ but we fix certain
Σ and δ in what follows and usually omit them from relations and judgments.

Chapter 4. Manifest Contracts with Algebraic Datatypes 65

e1 e2 Reduction Rules

(fix f (x :T1):T2 = e) v e {v/x , fix f (x :T1):T2 = e/f } (R BETA)
(v1, v2).1 v1 (R PROJ1)
(v1, v2).2 v2 (R PROJ2)

if true then e1 else e2 e1 (R IFTRUE)
if false then e1 else e2 e2 (R IFFALSE)

matchCj 〈e〉v withCi xi → ei
i
 ej {v/xj } (where Cj ∈ Ci

i) (R MATCH)

〈bool⇐ bool〉` v v (R BASE)
〈x :T11 → T12 ⇐ x :T21 → T22〉` v

(λ x :T11.let y = 〈T21 ⇐ T11〉` x in 〈T12 ⇐ (T22 {y/x})〉` (v y))
(where y is fresh) (R FUN)

〈x :T11×T12 ⇐ x :T21×T22〉` (v1, v2)
let x = 〈T11 ⇐ T21〉` v1 in (x , 〈T12 ⇐ (T22 {v1/x})〉` v2) (R PROD)
〈T1 ⇐ {x :T2 | e}〉` v 〈T1 ⇐ T2〉` v (R FORGET)
〈{x :T1 | e} ⇐ T2〉` v 〈〈{x :T1 | e}, 〈T1 ⇐ T2〉` v〉〉` (R PRECHECK)

(where T2 is not a refinement type)

〈τ1〈e1〉 ⇐ τ2〈e2〉〉`C2〈e〉v C1〈e1〉(〈T ′1 {e1/x1} ⇐ T ′2 {e2/x2}〉` v) (R DATATYPE)
(where τ1 6= τ2 or τ1 is not monomorphic, and

δ(〈τ1〈e1〉 ⇐ τ2〈e2〉〉`C2〈e〉v) = C1 and
ArgTypeOf (τi) = xi :Ti and CtrArgOf (Ci) = T ′i for i ∈ {1, 2})
〈τ ⇐ τ〉` v v (R DATATYPEMONO)

〈τ1〈e1〉 ⇐ τ2〈e2〉〉` v ⇑` (R DATATYPEFAIL)
(where τ1 6= τ2 or τ1 is not monomorphic, and δ(〈τ1〈e1〉 ⇐ τ2〈e2〉〉` v) is undefined)

〈〈{x :T | e}, v〉〉` 〈{x :T | e}, e {v/x}, v〉` (R CHECK)
〈{x :T | e}, true, v〉` v (R OK)
〈{x :T | e}, false, v〉` ⇑` (R FAIL)

e1 −→ e2 Evaluation Rules

e1 e2

E [e1] −→ E [e2]
E RED

E 6= []

E [⇑`] −→ ⇑`
E BLAME

FIGURE 4.4: Operational semantics for λH
dt .

Before reduction and evaluation rules, we introduce several run-time terms to ex-
press dynamic contract checking in the semantics. These run-time terms are assumed
not to appear in a source program (or datatype definitions). The syntax is extended as
below:

e ::= ... | ⇑` | 〈{x :T | e1}, e2, v〉` | 〈〈{x :T | e1}, e2〉〉`

The term ⇑` denotes a cast failure blaming `, which identifies which cast failed. An
active check 〈{x :T | e1}, e2, v〉` verifies that the value v of type T satisfies the contract
e1. The term e2 represents an intermediate state of a check, which starts by reducing
e1 {v/x}. If the check succeeds, namely e2 reduces to true, then the active check eval-
uates to v ; otherwise, if e2 reduces to false, then it is blamed with `. A waiting check

66 Chapter 4. Manifest Contracts with Algebraic Datatypes

〈〈{x :T | e1}, e2〉〉`, which appears when an application of a cast to a refinement type is
reduced, checks that the value of e2 satisfies e1. Waiting checks are introduced to de-
termine how casts behave regardless of what values are substituted. We will discuss it
in more detail at the end of this section.

Figure 4.4 shows reduction and evaluation rules. Reduction rules are standard ex-
cept for those about casts and active/waiting checks. There are six reduction rules for
casts. The rule (R BASE) means that a cast between the same base type simply be-
haves like an identity function. The rule (R FUN), which shows that casts between
function types behave like function contracts [17, 44], produces a lambda abstraction
which wraps the value v with the contravariant cast 〈T21 ⇐ T11〉` between the argu-
ment types and the covariant cast 〈T12 ⇐ T22〉` between the return types. To avoid
capture of the bound variable of T12, we take a fresh variable y and rename vari-
able x in T22 to it. Similar renaming is performed in (R PROD). The rule (R PROD)
means that elements v1 and v2 are checked by covariant casts obtained by decom-
posing the source and target types. The rules (R FORGET) and (R PRECHECK) are
applied when source and target types of a cast are refinement types, respectively:
the rule (R FORGET) peels the outermost refinement of the source type; and the rule
(R PRECHECK) means that inner refinements in the target type are first checked and
then the outermost one is. The side condition in (R PRECHECK) are needed to make the
semantics deterministic. For example, the term 〈{x :int | 0 < x + 1} ⇐ {x :int | 0 < x}〉` v
reduces to 〈〈{x :int | 0 < x + 1}, 〈int ⇐ int〉` v〉〉` by applying first (R FORGET) and then
(R PRECHECK). A waiting check turns into an active check when its second argument
becomes a value (by (R CHECK)).

There are three rules (R DATATYPE), (R DATATYPEMONO), and (R DATATYPEFAIL)
for datatype casts. The rule (R DATATYPE) is applied when the choice function δ gives
the constructor C1; then the original constructor argument v is passed to a cast between
the argument types of C2 and C1. Here, note that e1 and e2 are substituted for variables
x1 and x2 in the argument types of C1 and C2, respectively, because these types depend
on these variables. The rule (R DATATYPEMONO) is similar to (R BASE). The rule
(R DATATYPEFAIL) says that, if the choice function δ is undefined for the cast, the cast
application is blamed with `.

The last three rules (R CHECK), (R OK), and (R FAIL) follow the intuitive meaning
of active checks explained above.

Evaluation rules are also shown in Figure 4.4. Here, evaluation contexts [33], ranged
over by E , are defined as usual:

E ::= [] | E e2 | v1 E | (E , e2) | (v1,E) | E .1 | E .2 | C 〈e1〉E |
matchE withCi xi → ei

i | if E then e2 else e3 |
〈{x :T | e},E , v〉` | 〈〈{x :T | e},E 〉〉`

The rule (E RED) means that evaluation proceeds by reducing the redex indicated by an
evaluation context; the rule (E BLAME) means that a raised blame will abort program
execution.

We present a few examples of cast reduction. In the examples, we use int list, which
is declared as follows (we assume that int and unit are provided as base types):

int list 〈n:unit〉 = [] : unit | (::) : int× int list

We suppose that we have function length, which takes values of int list and returns their
length. The first example is refinement checking, which is performed through waiting

Chapter 4. Manifest Contracts with Algebraic Datatypes 67

checks:
〈{x :int list | length x > 0} ⇐ int list〉` (1 :: [])

−→ 〈〈{x :int list | length x > 0}, 〈int list⇐ int list〉` (1 :: [])〉〉`
(by (E RED)/(R PRECHECK))

−→ 〈〈{x :int list | length x > 0}, 1 :: []〉〉`
(by (E RED)/(R DATATYPEMONO))

−→ 〈{x :int list | length x > 0}, length (1 :: []) > 0, 1 :: []〉`
(by (E RED)/(R CHECK))

−→∗ 〈{x :int list | length x > 0}, true, 1 :: []〉`
−→ 1 :: [] (by (E RED)/(R OK))

Note that int list is monomorphic. Unlike FσH, λH
dt does not skip checks of “trivial”

refinements. The cast semantics of λH
dt checks all refinements in the target type of a

cast, even if it is reflexive, after forgetting refinements in the source type (in FσH reflexive
casts return target values immediately by (E REFL)):

〈{x :int list | length x > 0} ⇐ {x :int list | length x > 0}〉` (1 :: [])
−→ 〈{x :int list | length x > 0} ⇐ int list〉` (1 :: [])

(by (E RED)/(R FORGET))
−→∗ 〈{x :int list | length x > 0}, length (1 :: []) > 0, 1 :: []〉`
−→∗ 1 :: []

The cast semantics of λH
dt determines which reduction rule is chosen by examining

“kinds” of types on casts, namely, whether the types on a cast are refinement types,
dependent function types, dependent product types, or datatypes. Such kinds are not
changed by value substitutions, so the cast semantics of λH

dt is insensitive to substitu-
tions. Second is reduction of casts between dependent product types. Such casts check
the left component of a given product and then the right one because the type of the
right may depend on the left:

〈x :int list×{y :int list | length y > length x} ⇐ int list× int list〉` ([], 1 :: [])
−→ let x = 〈int list⇐ int list〉` [] in

(x , 〈{y :int list | length y > length x} ⇐ int list〉` 1 :: [])
(by (E RED)/(R PROD))

−→∗ ([], 〈{y :int list | length y > length []} ⇐ int list〉` 1 :: [])
(by (E RED)/(R DATATYPEMONO))

−→∗ ([], 〈{y :int list | length y > length []}, length (1 :: []) > length [], 1 :: []〉`)
−→∗ ([], 1 :: [])

Finally, as a reduction example of casts for (nonmonomorphic) datatypes, consider a
cast from int list to list including. The datatype list including is presented in Section 4.1.1
and can be formalized as follows:

list including 〈n:int〉 =
LConsEq ‖ (::) : {x :int | x = n}× int list

| LConsNEq ‖ (::) : {x :int | x 6= n}× list including〈n〉

Let us reduce cast application 〈list including〈2〉 ⇐ int list〉` (1 :: 2 :: []). Evaluation of
casts for datatypes rests on constructor choice functions. If the domain of a constructor
choice function δ does not contain 〈list including〈2〉 ⇐ int list〉` (1 :: 2 :: []), the evaluation
of the cast application under δ results in blame with label ` (by (R DATATYPEFAIL)).

68 Chapter 4. Manifest Contracts with Algebraic Datatypes

Otherwise, since list including is not monomorphic, the reduction rule (R DATATYPE) is
applied. If δ returns LConsEq, then the evaluation proceeds as follows:

〈list including〈2〉 ⇐ int list〉` (1 :: 2 :: [])
−→ LConsEq〈2〉(〈{x :int | x = 2}× int list⇐ int× int list〉` (1, 2 :: []))
−→ LConsEq〈2〉

(let y = 〈{x :int | x = 2} ⇐ int〉` 1 in (y , 〈int list⇐ int list〉` 2 :: []))
(by (E RED)/(R PROD))

−→∗ LConsEq〈2〉
(let y = 〈{x :int | x = 2}, 1 = 2, 1〉` in (y , 〈int list⇐ int list〉` 2 :: []))

(by (E RED)/(R PRECHECK), (R BASE), and (R CHECK))
−→ LConsEq〈2〉

(let y = 〈{x :int | x = 2}, false, 1〉` in (y , 〈int list⇐ int list〉` 2 :: []))
−→ LConsEq〈2〉(let y = ⇑` in (y , 〈int list⇐ int list〉` 2 :: []))

(by (E RED)/(R FAIL))
−→ ⇑` (by (E BLAME))

Otherwise, if δ returns LConsNEq, then:

〈list including〈2〉 ⇐ int list〉` (1 :: 2 :: [])
−→ LConsNEq〈2〉(〈{x :int | x 6= 2}× list including〈2〉 ⇐ int× int list〉` (1, 2 :: []))
−→ LConsNEq〈2〉

(let y = 〈{x :int | x 6= 2} ⇐ int〉` 1 in (y , 〈list including〈2〉 ⇐ int list〉` 2 :: []))
(by (E RED)/(R PROD))

−→∗ LConsNEq〈2〉
(let y = 〈{x :int | x 6= 2}, 1 6= 2, 1〉` in (y , 〈list including〈2〉 ⇐ int list〉` 2 :: []))

(by (E RED)/(R PRECHECK), (R BASE), and (R CHECK))
−→ LConsNEq〈2〉

(let y = 〈{x :int | x = 2}, true, 1〉` in (y , 〈list including〈2〉 ⇐ int list〉` 2 :: []))
−→∗ LConsNEq〈2〉(1, 〈list including〈2〉 ⇐ int list〉` 2 :: [])

(by (E RED)/(R OK))

If δ(〈list including〈2〉 ⇐ int list〉` 2 :: []) = LConsEq, then the cast application results in
LConsNEq (1, LConsEq (2, [])); if not so, it reduces to blame ⇑`. As we can see, evaluation
results of cast applications for nonmonomorphic datatypes rest on constructor choice
functions being considered.

4.2.4 Type Soundness

We show type soundness of λH
dt . As usual, type soundness means that a well-typed

term does not go wrong and is proved via progress and preservation [121, 86]. More-
over, we will show that, if a term is given a refinement type, its value (if it exists)
satisfies the contract.

Before stating the type soundness theorem, we start with extending the type system
to run-time terms, and define well-formedness of type definition environments and
constructor choice functions.

Typing for Run-time Terms

Typing rules for run-time terms are shown in Figure 4.5. Most of them are the same
as FσH. The rule (T BLAME) means that a blame ⇑` can have any type because it is

Chapter 4. Manifest Contracts with Algebraic Datatypes 69

Γ ` e : T

` Γ ∅ ` T

Γ ` ⇑` : T
T BLAME

` Γ ∅ ` {x :T | e1} ∅ ` v : T
∅ ` e2 : bool e1 {v/x} −→∗ e2

Γ ` 〈{x :T | e1}, e2, v〉` : {x :T | e1}
T ACHECK

` Γ ∅ ` {x :T | e1} ∅ ` e2 : T

Γ ` 〈〈{x :T | e1}, e2〉〉` : {x :T | e1}
T WCHECK

` Γ ∅ ` e : T1 T1 ≡ T2 ∅ ` T2

Γ ` e : T2
T CONV

` Γ ∅ ` v : {x :T | e}
Γ ` v : T

T FORGET

` Γ ∅ ` {x :T | e} ∅ ` v : T
e {v/x} −→∗ true

Γ ` v : {x :T | e}
T EXACT

FIGURE 4.5: Typing rules for run-time terms.

an exception. In the rule (T ACHECK) for an active check 〈{x :T | e1}, e2, v〉`, the last
premise e1 {v/x} −→∗ e2 means that e2 is an intermediate state of checking, which
started from e1 {v1/x}. The rule (T WCHECK) for a waiting check is easy to understand.
The rule (T FORGET) is needed because (R FORGET) peels off the refinements in the
source type of a cast. The rule (T EXACT) allows a value which succeeds in dynamic
checking to be typed at a refinement type. The rule (T CONV) allows run-time terms to
be retyped at convertible types; see the discussion in Sections 3.1.2 and 3.2.3 for details.
Convertibility is formalized by the type equivalence (denoted by ≡) given as follows.

Definition 3 (Type Equivalence).

1. The common subexpression reduction relation V over types is defined as follows:
T1 V T2 iff there exist some T , x , e1 and e2 such that T1 = T {e1/x} and T2 =
T {e2/x} and e1 −→ e2.

2. The type equivalence ≡ is the symmetric and transitive closure ofV.

The type equivalence given here takes a different form from type convertibility in FσH,
but they denote the same notion; we think that this formalization is slightly simpler
than that of FσH.

The fact that typing contexts in premises are empty reflects that run-time terms are
closed; however, they can appear under binders as part of types (notice term substitu-
tion in the typing rules) and so weakening is needed.

Well-formed Type Definition Environments

Intuitively, a type definition environment is well formed when the parameter type is
well formed, constructor argument types are well formed, and the argument types of
compatible constructors are compatible.

Definition 4 (Well-Formed Type Definition Environments).

1. Let ς = τ 〈x :T 〉 = Ci : Ti
i ∈{1,...,n}. A type definition ς is well formed under a type

definition environment Σ if it satisfies the followings: (a) 0 < n . (b) Σ; ∅ ` T holds.
(c) For any i ∈ {1, ...,n}, Σ, ς; x :T ` Ti holds.

70 Chapter 4. Manifest Contracts with Algebraic Datatypes

2. Let ς = τ 〈x :T 〉 = Ci ‖ Di : Ti
i ∈{1,...,n}

. A type definition ς is well formed under
a type definition environment Σ if it satisfies the followings: (a) 0 < n . (b) Σ; ∅ ` T
holds. (c) For any i ∈ {1, ...,n}, Σ, ς; x :T ` Ti holds. (d) There exists some datatype
τ ′ in Σ such that constructors Di

i ∈{1,...,n} belong to it. (e) For any i ∈ {1, ...,n}, Ti is
compatible with the argument type of Di under Σ, ς , that is, Σ, ς ` Ti ‖ CtrArgOfΣ(Di)
holds.

3. A type definition environment Σ is well formed if for any Σ1, ς , and Σ2, Σ = Σ1, ς,Σ2

implies that ς is well formed under Σ1. We write ` Σ to denote that Σ is well formed.

Intuitively, a constructor choice function is well formed when it returns a construc-
tor related by ‖ in type definitions and respects term equivalence, which is defined
similarly to type equivalence.

Definition 5 (Compatible Constructors). The compatibility relation ‖ over constructors is
the least equivalence relation satisfying the following rule.

TypNameOf (Ci) = τ

TypDefOf (τ) = type τ 〈y :T 〉 = Cj ‖ Dj : Tj
j

Ci ‖ Di

The function CompatCtrsOf, which maps a datatype τ and a constructor C to the set of com-
patible constructors of τ , is defined as follows:

CompatCtrsOf (τ,C) = {D | C ‖ D and TypNameOf (D) = τ}.

Definition 6 (Term Equivalence).

1. The common subexpression reduction relation V over terms is defined as follows:
e1 V e2 iff there exist some e , x , e ′1 and e ′2 such that e1 = e {e ′1/x} and e2 = e {e ′2/x}
and e ′1 −→ e ′2.

2. The term equivalence ≡ is the symmetric and transitive closure ofV.

Definition 7 (Well-Formed Constructor Choice Functions). A constructor choice function
δ is well formed iff

1. if C1 = δ(〈τ1〈e1〉 ⇐ τ2〈e2〉〉`C2〈e〉v), then
C1 ∈ CompatCtrsOf (τ1,C2); and

2. for any e1, e2, and C , if e1 ≡ e2 and δ(e1) = C , then δ(e2) = C .

We suppose that the type definition environment and the choice function are well
formed in what follows.

Lemma 27 (Progress). If ∅ ` e : T , then

1. e −→ e ′ for some e ′,

2. e is a value, or

3. e = ⇑` for some `.

Lemma 28 (Preservation). Suppose that ∅ ` e : T .

(1) If e e ′, then ∅ ` e ′ : T .

Chapter 4. Manifest Contracts with Algebraic Datatypes 71

(2) If e −→ e ′, then ∅ ` e ′ : T .

To show the additional property mentioned above about refinement types, we need
to show cotermination; the proof is similar to the one (Lemma 11) for FσH.

Lemma 29 (Cotermination). Suppose that e1 V∗ e2.

(1) If e1 −→∗ true, then e2 −→∗ true.

(2) If e2 −→∗ true, then e1 −→∗ true.

Theorem 9 (Type Soundness). If ∅ ` e : T , then

1. e −→∗ v for some v such that ∅ ` v : T ;

2. e −→∗ ⇑` for some `; or

3. there is an infinite sequence of evaluation e −→ e1 −→ · · · .

Moreover, if T is a refinement type {x :T0 | e0} and the first case holds, then e0 {v/x} −→∗
true.

Proof. (1)–(3) follow from progress and preservation. For the additional property, it
suffices to show that if ∅ ` v : T , then v satisfies all contracts of type T . We proceed by
induction on the derivation of ∅ ` v : T . In the case of (T CONV), we use Lemma 29
and the fact that for any v ′, if v ′ V∗ true or true V∗ v ′, then v ′ = true.

4.2.5 Comparison of FσH and λH
dt

Both cast mechanisms of FσH and λH
dt are designed to prevent substitutions from af-

fecting cast reduction for avoiding flaws in FH [14, 43] (see Section 3.1.3). FσH avoids
such flaws with the help of delayed substitutions. Support for delayed substitutions,
however, would make the metatheory of a manifest contract calculus complicated—for
example, the definition of substitution in FσH is unusual in the case for casts and its cast
semantics have apparently peculiar side conditions to remove garbage bindings. λH

dt

does not need delayed substitution and instead its cast semantics determines which
cast reduction rule is chosen by examining kinds of types on casts, unlike FσH, where
choice of cast reduction rules depends on (in)equalities of types on casts. Since such
kinds are not changed by term substitutions, we can see how casts behave statically;
all refinements in the target type of a cast will be checked at run time after forgetting
refinements in the source type. Waiting checks are introduced to record what refine-
ments will be checked after forgetting refinements in the source type. The price we pay
for removing type (in)equalities from the cast semantics is that we have to prove that
reflexive casts can be eliminated. Support for elimination of reflexive casts has been
important to show parametricity in FσH, so it is not clear whether we can give a sound
polymorphic manifest contract calculus without delayed substitutions. Another differ-
ence between FσH and λH

dt appears in formalization of type convertibility, but the type
conversion relations in FσH and λH

dt denote the same notion.

4.3 Translation from Refinement Types to Datatypes

We give a translation from refinement types to datatypes and prove that the datatype
obtained by the translation has the same meaning as the refinement type in the sense

72 Chapter 4. Manifest Contracts with Algebraic Datatypes

Trans
input:
fix f (y :T , x :int list)= match x with []→ e1 | z1 :: z2 → e2

returns:
1 let τ be a fresh type name in
2 let {Ti}i ={

z1:int×{z2:T0 | e0}
(eopt, e) ∈ GenContracts (e2),
(T0, e0) = Aux(τ, eopt, e)

}
in

3 let D and Di
i be fresh constructor names, and

z be a fresh variable in
4 type τ 〈y :T 〉 = D ‖ [] : {z :unit | e1} |Di ‖ (::) : Ti

i

where
Aux(τ, eopt, e) =

let e ′ = e {fix f (y :T , x :int list)= .../f } in
match eopt with
| Some e ′′ → (τ〈e ′′〉, let z2 = 〈int list⇐ τ〈e ′′〉〉` z2 in e

′)
| None→ (int list, e ′)

FIGURE 4.6: Translation.

GenContracts (true) = {(None, true)}

GenContracts (false) = ∅

GenContracts (if f e1 z2 then e2 else e3) =
{(Some e1, e2)} ∪ {(eopt, if f e1 z2 then false else e

′
3) | (eopt, e

′
3) ∈ GenContracts (e3)}

(if FV (e1) ⊆ {y , z1})

GenContracts (if e1 then e2 else e3) =
{(eopt, if e1 then e

′
2 else false) | (eopt, e

′
2) ∈ GenContracts (e2)} ∪

{(eopt, if e1 then false else e
′
3) | (eopt, e

′
3) ∈ GenContracts (e3)}

(if a term of the form f e z2 occurs in e2 or e3)

GenContracts (match e0 withCi xi → ei
i ∈{1,...,n}

) =⋃
j ∈{1,...,n}{(eopt,match e0 withCi xi → e ′i

i ∈{1,...,n}
) |

(eopt, e
′
j) ∈ GenContracts (ej) ∧ ∀i 6= j . e ′i = false}

(if a term of the form f e z2 occurs in some ei)

GenContracts (e) = {(None, e)} (otherwise)

FIGURE 4.7: Generation of base contracts and arguments to recursive
calls.

that a cast from the refinement type to the datatype always succeeds, and vice versa.
We formalize our translation and prove its correctness using integer lists for simplicity
and conciseness but our translation scheme can be generalized to other datatypes. We
will informally discuss a more general case of binary trees later.

In this section, we assume that we have unit and int as base types and int list with []
and infix cons x :: y as constructors (the formal definition is given in Section 4.2). For
simplicity, we also assume that the input predicate function is well typed and of the

Chapter 4. Manifest Contracts with Algebraic Datatypes 73

following form:

fix f (y :T , x :int list)= match x with []→ e1 | z1 :: z2 → e2

where x /∈ FV (e1) ∪ FV (e2). We will use sorted as a running example. For expos-
itory reasons, the definition is slightly verbose; the nested if expression at the end is
essentially z1 <= y and sorted () z2.

let rec sorted (y:unit, x:int list) =
match x with
| [] -> true
| z1::z2 -> e2

sorted

where
e2

sorted =
match z2 with
| [] -> true
| y::ys -> if z1 <= y then

if sorted () z2 then true else false
else false

4.3.1 Translation, Formally

We show the translation function Trans in Figure 4.6 and the auxiliary function
GenContracts in Figure 4.7. The main function Trans takes a recursive function as an
input and returns a corresponding datatype definition (on line 4).

On line 2, information on how e2, which is the contract for (::), can evaluate to
true is gathered by the auxiliary function GenContracts. In the definition, variables f ,
y , z1, and z2 come from the input function and are fixed names. This function takes
an expression as an input and returns a set of pairs (eopt, e

′
2), each of which expresses

one execution path that returns true in e2. e ′2 is derived from e2 by substituting false
for all but one path and eopt is the first argument to a recursive call (if any) on this
path. Intuitively, conjunction of e ′2 and f eopt z2 gives one sufficient condition for e2 to
be true and disjunction of the pairs in the returned set is logically equivalent to e2. For
example, GenContracts(e2

sorted) returns a set consisting of (None, e21) where e21 is

match z2 with [] -> true | y::ys -> false

and (Some (), e22) where e22 is

match z2 with
[] -> false

| y::ys -> if z1 <= y then true else false .

(Gray bits show differences from e2
sorted.) The first expression means that a (non-

empty) list x is sorted when the tail is empty; and the second means that x is sorted
when the head z1 is equal to or smaller than the second element y and the recursive call
sorted () z2 returns true. GenContracts performs a kind of disjunctive normal form
translation and each disjunct will correspond to a data constructor in the generated
datatype.

Now let us take a look at the definition of GenContracts. The first two clauses are
trivial: if the expression is true, then it returns the trivial contract and if it is false, then
this branch should not be taken and hence the empty sequence is returned. The third
clause deals with a conditional on a recursive call f e1 z2 on the tail. In this case, it
returns Some e1, to signal there is a designated recursive call in this branch, with the

74 Chapter 4. Manifest Contracts with Algebraic Datatypes

additional condition e2 and also the condition when the recursive call returns false but
e3 is true. The following two clauses are for the other cases where the input expression
is case analysis. In this case, from each branch, GenContracts recursively collects exe-
cution paths and reconstruct conditional expressions by replacing other branches with
false. The side conditions on these clauses mean that we can stop DNF translation if
there is no recursive calls on the tail and simply return the given contract as it is, by
calling for the last clause, which deals with other forms of expressions.

The collected execution path information is further transformed into dependent
product types with the help of another auxiliary function Aux. This function takes a
pair (eopt, e) (obtained by GenContracts) together with the new datatype name τ as an
input and returns the base type and its refinement for the tail part. If there was no
recursive call on the tail in a given execution path (namely, eopt = None), then the base
type is int list and the refinement is e ′, obtained from e by replacing other recursive
occurrences of f with the function itself. Otherwise, the base type is the new datatype
applied to the first argument e ′′ to the recursive call; the refinement is essentially e ′

(except a cast back to int list). For example, for sorted, we obtain

T1 = z1:int×{z2:int list | e21}

from (None, e21) and

T2 = z1:int×{z2:τ | let z2 = 〈int list⇐ τ〉` z2 in e22}

from (Some (), e22). T1 is a type for singleton lists, which are trivially sorted and T2 is a
type for a list where the head is equal to or less than the second element and the tail is
of type τ , which is supposed to represent sorted lists.

Finally, we combine Ti to make a complete datatype definition. The translation of
sorted will be:

type sorted_t =
SNil || [] of {z:unit|true}

| SCons1 || (::) of z1:int × {z2:int list|e21}
| SCons2 || (::) of

z1:int ×
{z2:sorted_t|
let z2 = 〈int list⇐ sorted t〉` z2 in e22}

Although the datatype sorted_t certainly represents sorted lists, its type defini-
tion is different from slist2 given in the beginning of this chapter. The difference
comes from the fact that the case for (::) has a case analysis, one of whose branch has
a recursive call. While it is possible to “merge” the argument types for SCons1 and
SCons2 to make a two-constructor datatype, it is difficult in general. It is interesting
future work, however, to investigate how to generate type definitions closer to pro-
grammers’ expectation.

4.3.2 Correctness

We prove that the translation is correct in the sense that the cast from a refinement type
to the datatype obtained by the translation always succeeds and vice versa. We use
a metavariable F to denote the recursive function used to define the refinement type
in the typing judgment and the evaluation relation. We write 〈Σ, δ〉; Γ ` e : T and
〈Σ, δ〉 ` e1 −→ e2 to make a type definition environment Σ and a constructor choice
function δ explicit in the typing judgment and the evaluation relation.

Chapter 4. Manifest Contracts with Algebraic Datatypes 75

We start with defining a class of predicate functions which can be given to the trans-
lation.

Definition 8. A recursive predicate function

F = fix f (y :T , x :int list)= match x with []→ e1 | z1 :: z2 → e2

is translatable under Σ if

• (Σ, ∅); ∅ ` F : T → int list→ bool,

• (Σ, ∅); y :T ` e1 : bool, and

• (Σ, ∅); f :T → int list→ bool, y :T , z1:int, z2:int list ` e2 : bool.

We omit Σ if it is clear from the context or not important. The empty constructor
choice function in Definition 8 means that F does not contain run-time terms.

We first show that the translation Trans always generates a well-formed datatype
definition.

Theorem 10 (Translation Generates Well-Formed Datatype). Let Σ be a well-formed type
definition environment and F be a translatable function under Σ. Then, the type definition
Trans (F) is well formed under Σ.

The next theorem states that a cast from a refinement type to the generated datatype
always succeeds.

Theorem 11 (From Refinement Types to Datatypes). Let Σ be a well-formed type defini-
tion environment, F be a translatable function under Σ, and τ be the name of the datatype
Trans (F). Then, there exists some computable well-formed choice function δ such that,
for any e = 〈τ〈e0〉 ⇐ {x :int list |F e0 x}〉` v , if (Σ,Trans (F)); ∅ ` e : τ〈e0〉, then
〈(Σ,Trans (F)), δ〉 ` e −→∗ v ′ for some v ′.

Proof. By Lemma C.4.9.

It is a bit trickier to prove the converse because the first argument to a predicate
function is always evaluated whereas a parameter to a datatype is not. So, the converse
holds under the following termination condition on a datatype.

Definition 9 (Termination). Let Σ be a type definition environment and δ be a constructor
choice function. A closed term e terminates at a value under Σ and δ, written as 〈Σ, δ〉 ` e ↓,
if 〈Σ, δ〉 ` e −→∗ v for some v . We say that argument terms to datatype τ in v terminate
at values under Σ and δ, written as 〈Σ, δ〉 ` v ↓τ , if, for any E , C ∈ CtrsOf (τ), e1 and v2,
v = E [C 〈e1〉v2] implies 〈Σ, δ〉 ` e1 ↓.

Theorem 12 (From Datatypes to Refinement Types). Let Σ be a well-formed type defini-
tion environment, F be a translatable function under Σ, and τ be the name of the datatype
Trans (F). Then, there exists some computable well-formed choice function δ such that, for any
e = 〈{x :int list |F e0 x} ⇐ τ〈e0〉〉` v , if 〈(Σ,Trans (F)), δ〉; ∅ ` e : {x :int list |F e x} and
〈(Σ,Trans (F)), δ〉 ` v ↓τ , then e terminates at a value under 〈(Σ,Trans (F)), δ〉 and δ.

Proof. By Lemma C.4.12.

We expect that the termination condition would not be needed if we change the seman-
tics to evaluate argument terms to datatypes.

76 Chapter 4. Manifest Contracts with Algebraic Datatypes

4.3.3 Efficiency Preservation

In addition to correctness of the translation, we are also concerned with the following
question “When I rewrite my program so that it uses the generated datatype, is it as ef-
ficient as the original one?” To answer this question positively, we consider the asymp-
totic time complexity of a cast for successful inputs (which we simply call the complexity
of a cast), and show that the complexity of a cast from int list to its refinement is the
same as that of a cast from int list to the datatype obtained from its refinement. Here,
we consider only successful inputs because we are mainly interested in programs (or
program runs) that do not raise blame, where checks caused by casts are successful.3

This efficiency preservation is obtained from Theorem 11 and the following obser-
vation. As stated in Theorem 11, we can construct a computable choice function. In fact,
the algorithm of the choice function can be read off from the proof of Theorem 11: it re-
turns constructors of the generated datatype from the execution trace of the refinement
checking. Moreover, the orders of both the execution time of the algorithm and the size
of output constructors from the algorithm are linear in the size of the input execution
trace, which is proportional to the execution time of the refinement checking. Thus,
the asymptotic time complexities of computation of the constructors and constructor
replacement are no worse than that of the refinement checking.

From this observation, we can implement the cast from int list to the generated
datatype by (1) checking the refinement (given to the translation) and (2) the construc-
tor generation and replacement described above. Since the complexity of the second
step is the same as that of the refinement checking, the complexities of the cast from
int list to a refinement type and the generated datatype are the same.

4.3.4 Extension: Binary Trees

We informally describe how to extend the translation algorithm for lists to trees, a kind
of data structure with a data constructor which has more than one recursive part. Here,
we take binary trees as an example and show how to obtain a datatype for binary search
trees from a predicate function. Although this section deals with only binary trees, this
extension can be adapted for other data structures.

A datatype for binary trees and a recursive predicate function which returns
whether an argument binary tree is a binary search tree or not are defined as follows:

type bt = L | N of int * t * t

let rec bst (min,max:int*int) (t:bt) =
match t with
| L -> true
| N (x,l,r) -> min<=x and x<=max and

bst (min,x) l and bst (x,max) r

Let τ be a name for the new datatype.
The translation algorithm first calls GenContracts with the second branch of bst.

Observing the predicate function bst, we find that the body calls bst itself re-
cursively for different recursive parts (l and r) with different auxiliary arguments
((min,x) and (x,max)). Thus, GenContracts for binary trees looks for the first ar-
gument to each recursive call, unlike GenContracts for lists, which stops searching
for a recursive call after finding one recursive call. For our running example, taking

3We conjecture that, for inputs that lead to blame, the time complexity is also preserved by the transla-
tion but a proof is left for future work.

Chapter 4. Manifest Contracts with Algebraic Datatypes 77

the branch for constructor N, GenContracts for binary trees returns the singleton set
{(Some (min, x),Some (x ,max),min ≤ x and x ≤ max)} (where we use the operator and
instead of if expression for brevity), of which the first two optional terms denote argu-
ments for left and right subtrees, respectively.

Next, for each element in the output from GenContracts, a dependent product type
will be built. In this case, we obtain T = x :int× l :τ〈(min, x)〉× {r :τ〈(x ,max)〉 |min ≤
x and x ≤ max}. As we have seen for lists, casts from τ〈e〉 back to bt may have to be
inserted.

Finally, the translation makes a datatype definition by using these type arguments
and the contract. For bst, the corresponding datatype is given as follows:

type t 〈min:int,max:int〉 =
| SL
| SN of x:int × l:t〈min,x〉 ×

{r:t〈x,max〉|min<=x and x<=max}

4.3.5 Discussion

The translation algorithm works “well” for list-processing functions, in the sense that
there is no reference to the input predicate function in the generated datatype, if their
definitions meet the two requirements: (1) recursive calls are given the tail part of the
input list and occur linearly for each execution path; (2) free variables in arguments
to recursive calls are only the argument variable y and the head variable z1; and (3)
the given functions are written in the tail recursion form. In contrast, there can re-
main recursive calls to an input predicate function in the generated datatype when the
predicate function does not meet these requirements. This happens (1) when there is a
recursive call on lists other than the tail of the input, (2) as in the following (admittedly
quite artificial) example, when recursive calls occur twice or more in one execution
path:

let rec f () (x:int list) =
match x with
| [] -> true
| z1::z2 -> f () z2 and f () z2

(3) when e2 includes non-branching constructs as in

let rec f (y:int) (x:int list) =
match x with
| [] -> true
| z1::z2 -> let z = 5 + y in f z z2

or (4) when there is a possibly successful execution path which uses negation of results
of recursive calls as in:

let rec length_is_even () (x:int list) =
match x with
| [] -> true
| z1::z2 -> not (length_is_even () z2)

because we do not support “negation over types.” In these cases, generation of a
datatype itself succeeds but the obtained datatype is probably not what we expect be-
cause f is not eliminated. In some cases, fortunately, it is possible to transform refine-
ments so that translation works well. For example, the function length_is_even
above can be transformed to take the result in the original function as an argument:

78 Chapter 4. Manifest Contracts with Algebraic Datatypes

let rec length_is_even’ (even:bool) (x:int list) =
match x with
| [] -> even
| z1::z2 -> if length_is_even’ (not even) z2 then true else false

where the if construct is redundant but necessary for success of translation in accor-
dance with the formal algorithm in Figure 4.7. Intuitively, {x :int list | length is even x} is
equivalent to {x :int list | length is even′ true x}. The translation result of this function is:

type even_t’ (even:bool) =
| ENil || [] of {z:unit|even}
| ECons || (::) of z1:int × z2:event_t〈not even〉

(from which we remove a redundant constructor) and has no calls to the predicate
function. We would not be, however, able to transform all refinements, in particular,
for data structures with two or more recursive components in such a way. A study on
such program transformation is left as future work.

We can generalize to other data structures such as trees the requirements to elimi-
nate all references to an input predicate function from the derived datatype. Similarly
to those of lists, the requirements are imposed on execution paths in the input function.
Let f be an input predicate function and y be a parameter variable to f . Suppose that
we take an execution path in f . Since the body of f starts with deconstructing a given
data structure by pattern match, variables to denote components of the data structure
are introduced in the execution path. We call such variables z1, ..., zn and, without loss
of generality, suppose that, for any i , zi+1 is declared immediately after zi . In bst given
in Section 4.3.4, y corresponds to min and max and z1, z2, and z3 to x, l, and r. Then,
as a condition under which translation works well, we require the rest of the execution
path to take the conjunctive normal form

e1 and ... and em and f e ′1 z
′
1 and ... and f e ′n z

′
n

where: (1) z ′1, ..., z
′
n are distinct variables to denote some recursive components of the

deconstructed data structure (note that {z ′1, ..., z ′n} is a subset of {z1, ..., zn}); (2) e1, ..., em
contain, as free variables, only y and z1, ..., zn ; and, (3) for any i > 0, when z ′i = zj ,
e ′i contains only y and z1, ..., zj−1. When the input function f satisfies these require-
ments, there remain no calls to f in the derived datatype. In the case for the second
branch of the pattern match in bst, the rest of the execution path takes the form
min<=x and x<=max and bst (min,x) l and bst (x,max) r and it meets
the requirements: (1) l and r are distinct; (2) only parameter variables min and max
and variable x introduced by the pattern match occur free in min<=x and x<=max;
(3) (min,x) and (x,max) also contain only min, max, and x (note that x is declared
before l and r in the second clause of the pattern match). Since another execution
path true in bst satisfies the requirements, the datatype derived from bst has no
references to bst.

Although our translation works well for many predicates, there is a lot of room to
improve. First, the current translation algorithm could generate a datatype with too
many constructors even if some of them can be “merged.” For example, we demon-
strated that the translation generated a datatype with three constructors from predi-
cate function sorted, but we can give a datatype with only two constructors for it
as shown in Section 4.1.1. Second, our translation algorithm works only for a single
recursive Boolean function and so we cannot obtain a datatype from other forms of
refinements, for example, conjunction of two predicate function calls. This also means

Chapter 4. Manifest Contracts with Algebraic Datatypes 79

that the translation cannot deal with a predicate function that returns additional infor-
mation by using, say, an option type.

Our translation assumes an input refinement to be of a certain form. We think, how-
ever, that it is not so restrictive, because we can transform refinements before applying
our method. For example, a predicate function of the form

if e1 then (match x with []→ e11 | z1 :: z2 → e12) else e2

can be transformed to

match x with [] → if e1 then e11 else e2 |
z1 :: z2 → if e1 then e12 else e2.

Even if such transformation cannot be applied, we can always insert pattern matching
on the input list in the beginning of a predicate refinement. (It may be the case, though,
that we do not obtain an expected type definition.)

Chapter 5

Related Work

5.1 Integration of Static and Dynamic Typing

This section compares the blame calculus given in Chapter 2 with work on integration
of static and dynamic typing.

Dynamic typing in statically typed languages A theory of dynamic typing in stati-
cally typed languages was studied by Abadi et al. [1]. A motivation of their work is
to safely deal with data—e.g., binary objects stored in an external storage or flowed
from other processes—difficult to determine their types statically, rather than transfor-
mation from an untyped program to a typed one. To this end, Abadi et al.’s calculus
regards the dynamic type as a kind of infinite sum types. Run-time values, dynamic
values for short, of the dynamic type contain type information of injected values as
run-time tags. Tags in their calculus are types themselves whereas ones in our and
earlier work [120, 7, 104] on blame calculi are kinds (ground types) of types. Dynamic
values can be deconstructed into injected values by type pattern matching construct
typecase. Given a dynamic value, the typecase construct examines whether each
type pattern matches with the type tag of the dynamic value and chooses the branch
corresponding to the first pattern that matches with the tag; if there are no such pat-
terns, the else branch is chosen. Since typecase expressions merely decompose dy-
namic values and do not coerce them to concrete types, well-typed programs in Abadi
et al.’s calculus never cause run-time type errors. As the price, however, when pro-
grammers want to coerce dynamic values to concrete types, they have to decompose
dynamic values explicitly by using typecase expressions—this programming style
would make smooth transformation from untyped programs to typed ones so difficult
because programmers would make efforts to eliminate typecase expressions manu-
ally. In addition, the lack of blame makes it difficult to discuss which component is
responsible for a flow of an unexpected value, while blame calculi state it as blame
theorem.

Henglein [51] also proposed a lambda calculus with both static and dynamic typing.
In Henglein’s calculus, coercions play an important role in interaction between typed
and untyped parts. That work designed coercion insertion algorithms to obtain an
intermediate term with coercions from a source term without coercions and showed
that the algorithms insert coercions as less as possible. Coercions are similar to casts in
our work but that work does not give semantics of coercions.

81

82 Chapter 5. Related Work

Gradual typing Gradual typing, coined by Siek and Taha [101]1, is a typing style for
transforming untyped programs to typed ones “gradually”—in gradually typed cal-
culi, untyped programs can be rewritten to typed ones just by adding appropriate type
annotations. Since the seminal work by Siek and Taha, gradual typing has been stud-
ied extensively. For example, earlier work studies gradual typing with higher-order
functions [101], mutable references [101, 52, 105], objects [102], generics [54], first-class
classes [109], and so on and applies the idea of combining static and dynamic verifica-
tion to other systems [28, 95]; interested readers can refer to the survey by Siek et al.
[104]. Execution models of gradually typed calculi are given by calculi with run-time
casts (or contracts): gradually typed programs are translated to intermediate terms
where casts are inserted to inject typed values to and, conversely, draw injected values
from the dynamic world at run time. In this sense, we expect our calculus to be an
execution model of gradually typed languages with shift/reset.

Blame calculus Blame calculi are execution models of intermediate languages for
gradual typing, proposed to study responsibility for blame. Roughly speaking, there
are two kinds of blame calculi: one adopts contracts [113, 109, 27, 110] for run-time
checking and the other adopts casts [101, 52, 102, 120, 7, 54, 105, 104]. Our calculus
belongs to the latter.

The first blame calculus was proposed by Tobin-Hochstadt and Felleisen [113] to
study an interlanguage migration process from untyped programs to typed ones and
its correctness. Their goal is to establish the gradual typing version of Milner’s slo-
gan [75] for static typing (the following is quoted from their paper):

“typed modules can’t go wrong, and all run-time errors originate in un-
typed modules.”

This property is called blame theorem, named by Wadler and Findler [120]. All gradually
typed languages should satisfy blame theorem because raising run-time type errors
are a mechanism of dynamically typed languages to notify that something unexpected
happens and so statically typed components are expected never to cause such errors.
Tobin-Hochstadt and Felleisen took contracts for run-time checking and supposed that
a blame label corresponds to one module. Their blame calculus supports only positive
blame, although the succeeding work follows Findler and Felleisen’s work [35] and
supports blame of finer forms (positive and negative blame).

Wadler and Findler [120] refined Tobin-Hochstadt and Felleisen’s blame calculus
to make discussion about blame easier and investigated finer conditions under which
blame does not happen. Wadler and Findler showed that the more precisely typed side,
which need not be fully typed, never triggers run-time type errors (Tobin-Hochstadt
and Felleisen [113] supposed that a module is fully typed or fully untyped). They also
discovered that the notion of being “more precisely typed” can be formalized as naive
subtyping. Although it is based on Wadler and Findler, our calculus is not a superset
of their blame calculus because their calculus supports refinement types, which refine
base types with contracts (arbitrary Boolean expressions), whereas our calculus does
not. We believe that it is easy to introduce refinement types to our calculus when we
are concerned with pure [8] refinements because pure expressions appear to involve
no control effects. However, it is not trivial to support refinement types with impure
contracts, that is, Boolean expressions which can manipulate their contexts because
what is meant by “contexts of contracts” is unclear.

1Tobin-Hochstadt and Felleisen [113] also studied gradual typing independently of Siek and Taha.

Chapter 5. Related Work 83

Blame calculus with delimited-control operators Most closely related work is
Takikawa et al. [110]; they have also studied integration of static and dynamic typing in
the presence of control operators. They proposed a contract system for programs with
control operators in Racket [39] and showed the Blame Theorem, following Dimoulas
et al. [27].

Dimoulas, Tobin-Hochstadt, and Felleisen refined blame theorem for blame calculi
with contracts and established a proof technique for showing it. The proof of the Blame
Theorem in their work rests on complete monitoring, a property justifying both their
blame assignment and contract checking strategies. Complete monitoring intuitively
states that all value flows between modules are monitored by appropriate contracts;
especially, it says that, if a blame with label l aborts program execution, then a value
originated by the module corresponding to l violates a contract having an obligation of
monitoring values migrated from l . The blame calculus tracks where checked values
are migrated from by introducing the notion of ownership for terms and values; a mod-
ule can manipulate only values which are originated in the module itself or migrated
from other modules through contract checking. Obligations are assigned to contracts
by following so-called even-odd rule [35].

Naturally, differences between Wadler and Findler [120] and Dimoulas et al. [27]
are ones between us and Takikawa, Strickland, and Tobin-Hochstadt. We allow a single
module to have both typed and untyped parts whereas they allow it to have either. We
show that the more precisely typed (not necessarily fully typed) side does not trigger
blame by means of positive and negative subtyping whereas they show that a fully
typed module does not by means of ownership and obligation.

Takikawa, Strickland, and Tobin-Hochstadt studied Sitaram’s delimited-control op-
erators fcontrol and % [106] with prompt tags [106, 49, 30]. A fcontrol expression
with a prompt tag captures the delimited continuation up to the closest %with the same
tag. Since their calculus always needs prompt tags to manipulate delimited continua-
tions, it monitors capture and call of delimited continuations by providing new forms
of contracts for wrapping prompt tags. They also dealt with continuation marks [23]
and supported wrapper objects for them. Our work focuses on shift/reset and our cast
semantics produces a lambda abstraction as a wrapper of the target value. We also de-
fine a CPS transformation for our calculus and investigate the relationship between our
calculus and the CPS transformation; a study of CPS transformation is out of the scope
of their work. Although shift and reset can be implemented by using control operators
in their work [39], it is not very clear whether their contract system can simulate our
casts for function types with answer types naturally.

5.2 Integration of Static and Dependent Typing

This section compares our manifest calculi, FσH in Chapter 3 and λH
dt in Chapter 4, with

work on integration of static and dependent typing in greater detail. We start with
other manifest calculi and then discuss other related work; the comparison of FσH and
λH
dt is described in Section 4.2.5.

Simply typed manifest contract calculi A simply typed contract calculus λH, origi-
nated by Flanagan [37], is proposed as a theoretical foundation of hybrid type checking.
As discussed in Section 3.1, however, the metatheory of the original λH is flawed due
to support for subsumption in terms of subtyping, which demands that well typedness
of terms occur at negative positions and makes it unclear whether the type system is

84 Chapter 5. Related Work

well defined, while subtyping plays an important role in the proof of type soundness.
The manifest calculus of Gronski and Flanagan [45] has the same problem.

Knowles and Flanagan [64] and Greenberg, Pierce, and Weirich [44] have revised
the original λH to resolve the flaw; we write Knowles and Flanagan’s λH KF and Green-
berg et al.’s λH GPW. To avoid the circularity, they give another source of “well-typed”
values: hence, the denotations of types. Both KF and GPW define syntactic term mod-
els of types to use as a source of values in subtyping, though the specifics differ. After
adding subtyping and denotational semantics, the type systems of both KF and GPW
are well defined clearly. Moreover, as a key property of their calculi, they proved se-
mantic soundness theorems (we write [[T]] for the denotations of type T):

Γ ` e : T and Γ ` σ implies σ(e) ∈ [[σ(T)]]

in particular
∅ ` e : T implies e ∈ [[T]].

This theorem is sufficient for soundness of GPW whereas insufficient for KF—this dif-
ference comes from the difference of definitions of [[−]]—and so Knowles and Flanagan
have proved syntactic type soundness later.

Although these calculi have been proven to be sound, the situation in KF and GPW
is somewhat unsatisfying. We set out to prove syntactic type soundness and ended
up proving semantic type soundness along the way. While not a serious burden for a
language as small as λH, having to use semantic techniques throughout makes adding
some features—polymorphism, state and other effects, concurrency—difficult. For ex-
ample, a semantic proof of type soundness for FσH would be very close to a proof of
parametricity—must we prove parametricity while proving type soundness? To avoid
such a sad situation, Belo et al. propose a syntactic construction of manifest calculi but
there are technical flaws in their calculus; see the discussion in Section 3.1.3.

The metatheories of FσH and λH
dt are entirely syntactic and correct. Similarly to FH,

they solve the problem by avoiding subtyping—which is what forced the circularity
and denotational semantics in the first place—and introducing (T EXACT), (T CONV),
and convertibility ≡ instead. The (T EXACT) rule

` Γ ∅ ` v : T ∅ ` {x :T | e} [v/x]e −→∗ true
Γ ` v : {x :T | e}

(T EXACT)

needs some care to avoid vicious circularity: it is crucial to stipulate v and {x :T | e}
be closed. If we “bit the bullet” and allowed nonempty contexts there, then we would
need to apply a closing substitution to [v/x]e before checking if it reduces to true but it
would lead to the same circularity as subtyping we discussed above. As for (T CONV)
and convertibility, convertibility is much simpler than GPW and Belo et al. [14]. It does
not, unfortunately, completely simplify the proof: we must prove that our conversion
relation is a weak bisimulation to establish cotermination (Lemma 11) before proving
type soundness.

SAGE language Gronski et al. [46] develop SAGE language, which supports sub-
sumption for subtyping, casts, general refinements, polymorphism, recursive func-
tions, recursive types, the dynamic type, the Type:Type discipline. SAGE avoids the
circularity of Flanagan’s λH, changing formalization of subtyping: in SAGE, {x :T | e1}
is a subtype of {x :T | e2} if a theorem prover can prove the implication from e1 to
e2. Since the theorem prover is independent of SAGE, the type system is well defined.

Chapter 5. Related Work 85

Naturally, the metatheory of SAGE rests on the theorem prover. SAGE states axioms
strong enough to show type soundness—for example, it requires the prover to be able
to show [e1/x]e evaluates to true iff [e2/x]e does when e1 −→ e2, which works similarly
to cotermination in FσH and λH

dt . Although Gronski et al. have shown type soundness of
SAGE, they do not deal with parametricity, while we show it in FσH. In fact, it is difficult
to show parametricity in calculi with recursive functions [87], recursive types [5], the
dynamic type [69], and/or Type:Type. In addition, axiomatization of theorem provers
could bring us to an unsatisfactory situation. For example, the axiom system of Gronski
et al. is inconsistent, though fixed by Knowles [61].

Dependent types with dynamic typing Ou et al. [82] study integration of certified
and uncertified program fragments—all refinements in certified parts are checked stat-
ically whereas all those in uncertified parts are checked at run time. They model static
checking as subtyping checking and dynamic checking as compilation to predicate
checking with if-expressions. Their calculus deal with the issues of preservation by
supporting a special typing rule to assign “selfified” types to terms and subsumption
for subtyping. Unlike manifest calculi, they restrict refinements (and so also arguments
to dependent functions) to be syntactically pure in order to make static checking decid-
able. They also axiomatize requirements on theorem provers, like Gronski et al. [46].

Static analysis using path information Much work on static program analysis
(e.g., [53, 84, 124, 20, 80, 91, 59, 63, 22]) employs path information of conditional
expressions—for example, when if-expressions are verified, the conditional expres-
sions are supposed to hold in then-expressions whereas they are not to hold in else-
expressions. In a sense, such information can be thought as “dynamic” because it is
a result of an analysis of what values are examined at run time. Although FσH and
λH
dt do not keep track of path information directly, we can simulate by encoding an

if-expression (if e1 then e2 else e3) in source programs as syntax sugar of:

if e1 then (let x = 〈bool⇒ {y :bool | e1}〉l true in e2)
else (let x = 〈bool⇒ {y :bool | not e1}〉l true in e3)

where x and y are fresh. Under this encoding, e2 and e3 are typed under a binding that
x is given type {y :bool | e1} and {y :bool | not e1}, respectively. This corresponds to a
path-sensitive typing rule for if-expressions, found, e.g., in Rondon et al. [91]:

Γ ` e1 : bool Γ, e1 ` e2 : T Γ, not e1 ` e3 : T

Γ ` if e1 then e2 else e3 : T

(A Boolean expression e in a context intuitively means “if e is true.”) Such path infor-
mation would be useful if we consider static verification for manifest contracts.

5.3 Dependent and/or Refinement Type Systems

Manifest contracts embed contract information into types as refinement types. The
term “refinement types” seems to have many related but subtly different meanings in
the literature. We use this term for types to denote subsets in some way or another.
Refinement types are intensively studied in the context of static program verification.

In Freeman and Pfenning [40], datatypes can be refined by giving data constructors
appropriate types. For example, one may give [] a special type null and cons a special

86 Chapter 5. Related Work

type int → null → singleton list, which means that, if cons takes an element and the
empty list, then it yields a singleton list. Here, null and singleton list are atomic type
names. They did not allow refinement types to take arbitrary contracts to make type
checking and type inference decidable. On the other hand, they combined refinement
types with intersection types to express overloaded functionality of a single construc-
tor.

Xi and Pfenning [123, 122] have designed and developed practical programming
languages which support a restricted form of dependent types. Kawaguchi et al. [59]
and Vazou et al. [116] have devised type inference algorithms for statically typed
lambda calculi with refinement types and recursive refinements, which provides re-
cursive types with refinements, and have implemented it for OCaml and Haskell, re-
spectively. The refinements used there are derived from decidable languages such as
(extensions of) Presburger arithmetic because their main focus is static verification. Our
type system allows arbitrary Boolean predicates.

Our datatypes studied in Chapter 4 resemble inductive datatypes found in interactive
proof assistants such as Coq [112] or Agda [4]. Aside from compatibility relation and
casts, one difference between our datatypes and inductive datatypes in such systems is
that we treat a formal argument 〈x〉 to a datatype to be parametric whereas inductive
types can restrict it by specifying result datatypes of data constructors. For example, in
Coq, a type Vector of finite lists can be written as follows:

Inductive Vector : int -> Type :=
nil : Vector 0

| cons : forall n : int, int -> Vector n -> Vector (n+1)

where parameters to Vector denote lengths of finite lists. Here, each data constructor
restricts a parameter given to its result datatype: the parameter in nil is 0 because
nil means the empty list; the parameter in cons is n+1, given a tail part of length n,
because a list constructed by cons has one additional element. Our calculus λH

dt does
not allow such datatypes. However, since an formal argument to a datatype can appear
in a refinement, conditions on an actual argument can be enforced and so we do not lose
much expressiveness. For example, in our calculus, Vector above can be represented
as follows:

type vector 〈n:int〉 =
Nil of {unit|n = 0}

| Cons of {int |n > 0} × vector 〈n-1〉

5.4 Parametricity with Dynamic Type Analysis

Parametricity (or called abstraction theorem) [90, 119] is the essence of the notions of
“abstract types” [77] and “information hiding” [85, 107], meaning intuitively that all
instances of polymorphic values behave in the same way. Parametricity have been
studied well for a long time in the context of static typing [90, 119, 87, 5, 6, 29], but
it is not easy to achieve parametricity in languages, including manifest calculi, with
run-time type analysis because the behavior of a polymorphic function examining run-
time instances of type variables can be different whatever types are substituted for the
the type variables; for example, Abadi et al.’s polymorphic calculus with the dynamic
type [1, 3] does not parametricity because it allows instances of type variables to be
analyzed by injecting their inhabitants to the dynamic type.

Chapter 5. Related Work 87

A lot of work have dealt with parametricity in such languages. The common key
idea is to use dynamic sealing [79, 85, 107] to prevent run-time instances of type vari-
ables from being analyzed. Rossberg [92], who attacked the problem for the first time
as far as we know, introduced run-time generation of type names in order to refuse
run-time analysis of abstract types but did not show parametricity. Neis et al. [81]
have shown that parametricity holds if type variables are guarded by dynamically
generated type names. In order to bring the notion of parametricity to dynamically
typed languages, Guha et al. [48] gave so called parametric contracts, which make val-
ues “abstract”, that is, the contracts prevent type analysis of values migrated through
them, though they did not prove parametricity. Matthews and Ahmed [69] have stud-
ied parametricity for a multi-language which combines a polymorphic and an untyped
lambda calculus and used dynamic sealing to prevent observing what types are sub-
stituted for type variables; their proof of parametricity, unfortunately, has a flaw [81].
Ahmed et al. [7] introduced a polymorphic blame calculus where type substitutions
form syntactic “barriers”, which can seem to be dynamic sealing with scope. They did
not prove parametricity, either. The notions of dynamic sealing in the style of Matthews
and Ahmed [69] and syntactic barriers in Ahmed et al. [7] inspired the delayed substi-
tution in FσH.

FσH has parametricity. Although casts are a kind of run-time type analysis, FσH rejects
dynamic analysis of what types are instantiated for type variables by means of compat-
ibility and delayed substitutions. Compatibility restricts the target type of a cast from
a type variable to be (refinements of) the type variable itself. Thus, well-typed terms
cannot examine whether type variables are replaced with, say, base types. Delayed
substitution guarantees that a cast for a type variable behaves in the same way what-
ever types are substituted for the type variable. Delayed substitutions at casts work
as dynamic sealing, though they do not equip unsealing operation like Matthews and
Ahmed [69].

5.5 Contracts for Datatypes

There has been much work about lambda calculi with higher-order contracts since
the seminal work by Findler and Felleisen [35], but little of them considers algebraic
datatypes in detail and compare the two approaches to datatypes with contracts—
in particular, as far as we know, there is no work on conversion between compati-
ble datatypes. One notable exception is Findler et al. [36], who compare the two ap-
proaches to datatypes and introduce lazy contract checking in an eager language. Lazy
contract checking delays contract checking for arguments to data constructor until they
are used. As they already point out, one drawback of lazy contract checking is that it
is not suitable for checking, where relationship between elements in a data structure
is important. For example, if we take the head of an arbitrary list, which is subject to
sortedness checking, it simply returns its head discarding the tail without verifying the
tail is sorted. Chitil [21] also made a similar observation in the work on lazy contracts
in a lazy language.

Knowles et al. [65] developed Sage, a programming language based on a manifest
contract calculus with first-class types and dynamic type. Sage can deal with datatypes
with refined constructors by Church-encoding, but does not formalize them in its core
calculus. In particular, Knowles et al. did not clarify how casts between datatypes
work. Dminor [15], proposed by Bierman et al., is a first-order functional programming
language with refinement types, type-test and semantic subtyping. The combination of

88 Chapter 5. Related Work

these features is as powerful as various types such as algebraic datatypes, intersection
types, and union types can be encoded. Unlike our calculus, Dminor does not deal
with higher-order functions and dynamic checking with type conversion.

Xu [125] developed a hybrid contract checker for OCaml. In the static checking
phase, the checker performs symbolic simplification of program components wrapped
by contracts, with the help of context information, to remove blames. If a blame re-
mains in the simplified programs, the compiler reports errors, or it issues warnings
and leaves contract checking to run time. Although the checker supports variant types
(i.e., datatypes where constructors have no refinements), it does not take care of re-
lationship between elements in data structures nicely. For example, it seems that it
cannot prove statically that the tail of a sorted list is also sorted unless programmers
give axioms about sorted lists.

In a different line of work, Miranda [115], a statically typed functional program-
ming language, provides datatypes with laws, which are rules to reconstruct data struc-
tures according to certain specifications. For example, we suppose that a datatype inte-
ger has three constructors Zero, Succ integer and Pred integer, and then a law converts
Succ (Pred x) to x . More interestingly, Miranda can control application of laws by
giving them conditional expressions. Using laws with conditionals, we can define lists
which are sorted automatically. Both Miranda and our calculus provide a mechanism
to convert data structures, but the purposes are different: in our work, type conversion
is used only to check contracts, and so does not change “structures”.

5.6 Systematic Derivation of Datatype Definitions

As mentioned in the beginning of Chapter 4, there is closely related work on systematic
derivation of (indexed) datatype definitions.

McBride [70] propose the notion of ornaments, which provide a mechanism to ex-
tend and to refine datatypes in a dependently-typed programming language. For ex-
ample, the definition of lists can be derived from that of natural numbers by adding an
element type; and the definition of lists indexed by their lengths can be derived. As far
as we understand, he does not consider deriving new type definitions by changing the
number of data constructors, as is the case for our work. Also, it is not clear whether
partial refinements (the case where an index cannot be assigned to some values of the
original datatype) can be dealt with in this framework. Partial refinements are impor-
tant in our setting because our refinement types are for excluding some values in the
underlying types.

Atkey et al. [10] developed a derivation technique of inductive types from (partial)
refinements from a category-theoretic point of view. Their approach is more general
than our work in the sense that it can take recursive functions which are written in the
fold form (more generally, paramorphism style [71], where recursive subcomponents
of an argument can be referred to in the body of a recursive function) and return val-
ues other than Booleans. For example, it derives an inductive type for finite lists from
the refinement type {x :int list | length x = n}. Our derivation algorithm, given in Sec-
tion 4.3.1, cannot translate recursive functions which return nonBoolean values because
it takes only predicate functions. It is possible in some cases, however, to transform a
refinement using a recursive function which returns nonBoolean values to a predicate
function by adding a parameter to denote the result of the original function and em-
bedding refinement information into the function body (we also discussed a similar
technique in Section 4.3.5). For example, given the function length defined as:

Chapter 5. Related Work 89

let rec length (x:int list) =
match x with
| [] -> 0
| z1::z2 -> 1 + length z2

the refinement type {x :int list | length x = n} is transformed to {x :int list | length′ n x}
where:

let rec length’ (n:int) (x:int list) =
match x with
| [] -> n = 0
| z1::z2 -> length (n-1) z2

and then we can derive a datatype from length’ (unfortunately, it is unclear what
recursive functions can be transformed in such a way, though). In fact, Atkey et al.’s
derivation mechanism seems to work in a similar manner: it derives an inductive type
like the following from the refinement type {x :int list | length x = n}:
type vector 〈n:int〉 =
| LNil of { z:unit | 0 = n }
| LCons of z1:int × n’:int × { z2:vector〈n’〉 | n’+1 = n }

where argument n means the result of length and the cons constructor takes an ad-
ditional integer n’, which denotes the result of the recursive call on the tail part. Al-
though their approach is more generic, they have not studied the dynamic aspect of re-
sult inductive types. Inductive types derived by their approach are not always compat-
ible with the original datatype in the sense introduced in Chapter 4—e.g., the inductive
type vector above is not compatible with integer lists because the cons constructor in
vector takes three arguments whereas the one in integer lists does two—whereas our
translation always generates a compatible datatype, which enables dynamic conver-
sion from and to the original datatype. In addition, their approach always derives an
inductive type each constructor of which corresponds to one constructor in the origi-
nal datatype exactly whereas our translation can generate a datatype with zero or more
constructors corresponding to one in the original datatype, such as list including in Sec-
tion 4.1.1. Such datatypes would be useful to efficient dynamic checking.

A similar idea to our translation is found in Kawaguchi et al. [59], who develop a
refinement type system for static verification of programs dealing with datatypes. They
allow programmers to write special terminating functions called measures, which will
be used as hints to the verifier by indexing a datatype with the measure information.

Chapter 6

Conclusion

6.1 This Thesis

This thesis has studied unifying the typing spectrum from dynamic and static typing
to dependent typing. These typing styles are complementary—dependent typing has
the most powerful static type systems, followed in order by static and dynamic typ-
ing whereas dynamic typing allows programs to pass static type checking most easily,
followed by static and dependent typing. A challenge of the unification is to establish
safe interaction between components in different typing styles, that is, values flown
from an uncertified side do not invalidate properties in a certified side. This safety
of interaction can be achieved by monitoring the behavior of components at run time.
In this thesis, casts, a common tool to monitor value flows between components, play
an important role in dynamic checking. We have extended two existing unification
mechanisms based on casts—gradual typing, which combines static and dynamic typ-
ing, and manifest contracts, which does static and dependent typing—with practical
programming features.

Chapter 2 has focused on integration of static and dynamic type checking in the
presence of delimited-control operators shift/reset. We have proposed a new cast-
based mechanism, which monitors all communications between typed and untyped
code through delimited continuations and is inspired by Danvy and Filinski’s type
system. To justify the design of the cast semantics, we have defined a simply typed
blame calculus with shift/reset and shown the Type Soundness, the Blame Theorem,
and soundness of the CPS transformation. We have found additional axioms for the
equational system in the target language in proving the soundness.

In Chapter 3, we have proposed FσH to combine parametric polymorphism and man-
ifest contracts. We offer the first conjecture-free, completely correct operational seman-
tics for general refinements, where refinements can apply to any type, not just base
types. The cast semantics in FσH is designed to be insensitive to substitution, resting on
delayed substitution and a new type conversion relation.

Chapter 4 has proposed datatypes for manifest contracts with the mechanism of
casts between different but compatible datatypes, and proved type soundness of a
manifest contract calculus λH

dt with datatypes. To study a relationship of refinement
types and datatypes, we have given a formal translation from a refinement on lists to a
datatype definition with refined constructors and proved the translation is correct. We
have also found that the translation preserves the efficiency of casts.

91

92 Chapter 6. Conclusion

6.2 Future Work

This thesis has advanced a theory for integrating different, complementary typing
styles. We have not, however, reached our goal, development of a full-fledged lan-
guage with dynamic, static, and dependent typing, yet. In fact, there are many chal-
lenges in theory and practice for achieving it—especially, design and implementation
of the language. It is possible, unfortunately, that approaches in dynamic, static, or de-
pendent typing cannot be applied to the language easily. An example of the difficulties
is reduction of the time when programmers take to write type annotations. A natural
solution in static and dynamic typing is use of type inference but support for dynamic
typing would make the problem difficult to solve: does absence of type annotations in
program components expect inferring their types or giving the dynamic type to them?
Perhaps, in general, there may be no answers which all people agree on—the compo-
nents are expected to have static types sometimes and the dynamic type at other times.
So, we need a design not to “shoot yourself in the foot.” Another, critical problem is ef-
ficiency of interaction between different typing styles. In particular, run-time checking
of refinement types would cause significant run-time overhead. One idea to relax this
problem would be to use results of dynamic checking for static checking as in SAGE

language [46] but we need a deep study on it. Finally, a study of languages with all
typing styles is left as future work.

Apart from design and implementation of the language, there are also many direc-
tions of future work, which we discuss in what follows.

Blame calculus First, development of a surface language for gradual typing with
shift/reset is left as future work (our blame calculus is designed as an intermediate lan-
guage of gradual typing). Such a language should satisfy criteria of gradual typing,
advocated by, say, Siek et al. [104]. Second is an extension of our blame calculus with
refinement types. Effects in refinements are obviously problematic. One possible solu-
tion would be to restrict refinements to be pure but it is interesting to investigate how
such purity restriction can be relaxed. Third is to apply succeeding work about blame
calculi, such as space-efficiency [52] and parametricity [7], to our calculus. In particu-
lar, an extension with parametricity would be challenging because it is not clear how
control operators and the ν-operator in that work interact with each other. Fourth, we
would like to develop a contract system corresponding to our calculus and to inspect
more detailed relationship to the contract system of Takikawa et al. It is also interesting
for such a contract system to consider dependency of function types with answer types.
Finally, it is an interesting direction to extend blame calculi with other control operators
such as control/prompt [32, 39] and a family of shift/reset in the CPS hierarchy [25].
In this work, we choose shift/reset because their type system and CPS transformation
are well studied. In fact, CPS transformation for shift/reset has served as a guide to
designing our cast mechanism. Given recent studies on relationship of control/prompt
to their CPS transformation [100, 16, 30] and a type system for control/prompt [58], we
leave an extension of blame calculi with control/prompt as interesting future work.

Manifest contracts We have proposed two variants of manifest contracts: FσH, where
refinements on casts would not be checked at run time if it is obvious from type infor-
mation on casts that values satisfy refinements, and λH

dt , where all refinements (in the
target type on a cast) will be checked at run time. The latter does not need delayed
substitution and so its metatheory is simpler than the former. Then, a natural question

Chapter 6. Conclusion 93

is raised: can we have a sound, parametrically polymorphic manifest contract calculus
without delayed substitution? Another question in polymorphic manifest contracts is
about upcast elimination [64, 14], which says that removing upcasts—casts from a type
to its supertype—does not change the behavior of a program in a certain sense and
is a key theoretical property for static contract checking. We are working on a com-
plete account of another polymorphic manifest contract calculus [96] with recursion,
a parametricity relation that has a clear relationship to contextual equivalence, upcast
elimination, and no delayed substitutions.

It is interesting to investigate static contract checking using datatypes in λH
dt . We

think that bisimulation techniques [94] would be tractable to show upcast elimination
in λH

dt . We expect refining constructor argument types is useful also for static check-
ing [59]. A proof that a generalized version of the translation given in Section 4.3 is
correct also remains as future work (although we do have translation). It is worth in-
vestigating intersection types (or even Boolean operations) in this setting so that prop-
erties on data structures can be easily combined. In addition, it is left as interesting
future work to extend λH

dt with casts between “isomorphic” datatypes, such as lists
with cons and ones with “snoc.”

Finally, extensions of manifest contracts with computational effects such as states
and control operators, concurrency, and probability are open challenges.

Bibliography

[1] Martı́n Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon D. Plotkin. Dy-
namic typing in a statically-typed language. In Proceedings of the 16th ACM Sym-
posium on Principles of Programming Languages, pages 213–227, 1989.

[2] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Ex-
plicit substitutions. Journal of Functional Programming, 1(4):375–416, 1991.

[3] Martı́n Abadi, Luca Cardelli, Benjamin C. Pierce, and Didier Rémy. Dynamic
typing in polymorphic languages. Journal of Functional Programming, 5(1):111–
130, 1995.

[4] Agda Development Team. The Agda Wiki. URL http://wiki.portal.
chalmers.se/agda/pmwiki.php. Accessed on 2016-01-15.

[5] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quanti-
fied types. In Proceedings of the 15th European Symposium on Programming, volume
3924 of Lecture Notes in Computer Science, pages 69–83. Springer-Verlag, 2006.

[6] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent represen-
tation independence. In Proceedings of the 36th ACM Symposium on Principles of
Programming Languages, pages 340–353, 2009.

[7] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame
for all. In Proceedings of the 38th ACM Symposium on Principles of Programming
Languages, pages 201–214, 2011.

[8] Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations.
In Proceedings of the 5th Asian Symposium on Programming Languages and Systems,
volume 4807 of Lecture Notes in Computer Science, pages 239–254, 2007.

[9] Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations.
CS-TR-07-10, Department of Computer Science, University of Tsukuba, 2007.

[10] Robert Atkey, Patricia Johann, and Neil Ghani. Refining inductive types. Logical
Methods in Computer Science, 8(2:9):1–30, 2012.

[11] Lennart Augustsson. Cayenne - a language with dependent types. In Proceedings
of the 3rd ACM International Conference on Functional Programming, pages 239–250,
1998.

[12] John W. Backus. The history of FORTRAN I, II, and III. IEEE Annals of the History
of Computing, 20(4):68–78, 1998.

[13] Hendrik Pieter Barendregt. Lambda calculi with types. In S. Abramsky, Dov M.
Gabbay, and S. E. Maibaum, editors, Handbook of Logic in Computer Science (Vol.
2), pages 117–309. Oxford University Press, Inc., 1992.

95

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

96 BIBLIOGRAPHY

[14] João Filipe Belo, Michael Greenberg, Atsushi Igarashi, and Benjamin C. Pierce.
Polymorphic contracts. In Proceedings of the 20th European Symposium on Program-
ming, volume 6602 of Lecture Notes in Computer Science, pages 18–37. Springer-
Verlag, 2011.

[15] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Langworthy.
Semantic subtyping with an SMT solver. In Proceedings of the 15th ACM Interna-
tional Conference on Functional Programming, pages 105–116, 2010.

[16] Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-
passing style for dynamic delimited continuations. Research Series RS-06-15,
BRICS, DAIMI, 2006.

[17] Matthias Blume and David A. McAllester. Sound and complete models of con-
tracts. Journal of Functional Programming, 16(4–5):375–414, 2006.

[18] Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. Practical
optional types for Clojure. Unpublished draft.

[19] Luca Cardelli. A polymorphic λ-calculus with Type:Type. Technical Report 10,
DEC Systems Research Center, Palo Alto, CA, 1986.

[20] James Cheney and Ralf Hinze. First-class phantom types. Technical report, Cor-
nell University, 2003.

[21] Olaf Chitil. A semantics for lazy assertions. In Proceedings of the ACM 2011 Work-
shop on Partial Evaluation and Program Manipulation, pages 141–150, 2011.

[22] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript. In
Proceedings of the 27th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 587–606, 2012.

[23] John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an algebraic
stepper. In Proceedings of the 10th European Symposium on Programming, volume
2028 of Lecture Notes in Computer Science, pages 320–334. Springer-Verlag, 2001.

[24] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts.
89/12, DIKU, University of Copenhagen, 1989.

[25] Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional
Programming, pages 151–160, 1990.

[26] Nicolaas G. de Bruijin. A survey of the project Automath. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism, pages 579–606. Academic Press, 1980.

[27] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. Complete
monitors for behavioral contracts. In Proceedings of the 21st European Symposium
on Programming, volume 7211 of Lecture Notes in Computer Science, pages 214–233.
Springer-Verlag, 2012.

[28] Tim Disney and Cormac Flanagan. Gradual information flow typing. In Interna-
tional Workshop on Scripts to Programs, 2011.

BIBLIOGRAPHY 97

[29] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations. In Proceedings of the 24th IEEE Symposium on Logic in Computer Science,
pages 71–80, 2009.

[30] R. Kent Dybvig, Simon L. Peyton Jones, and Amr Sabry. A monadic framework
for delimited continuations. Journal of Functional Programming, 17(6):687–730,
2007.

[31] Facebook. Hack. URL http://hacklang.org/. Accessed on 2016-01-15.

[32] Matthias Felleisen. The theory and practice of first-class prompts. In Proceedings
of the 15th ACM Symposium on Principles of Programming Languages, pages 180–190,
1988.

[33] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories
of sequential control and state. Theoretical Computer Science, 103(2):235–271, 1992.

[34] Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM Symposium
on Principles of Programming Languages, pages 446–457, 1994.

[35] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order func-
tions. In Proceedings of the 7th ACM International Conference on Functional Program-
ming, pages 48–59, 2002.

[36] Robert Bruce Findler, Shu-yu Guo, and Anne Rogers. Lazy contract checking
for immutable data structures. In Proceedings of the 19th International Symposium
on Implementation and Application of Functional Languages, volume 5083 of Lecture
Notes in Computer Science, pages 111–128. Springer-Verlag, 2008.

[37] Cormac Flanagan. Hybrid type checking. In Proceedings of the 33rd ACM Sympo-
sium on Principles of Programming Languages, pages 245–256, 2006.

[38] Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT
Design Inc., 2010. URL http://racket-lang.org/tr1/.

[39] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen. Adding
delimited and composable control to a production programming environment.
In Proceedings of the 12th ACM International Conference on Functional Programming,
pages 165–176, 2007.

[40] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the
ACM 1991 Conference on Programming Language Design and Implementation, pages
268–277, 1991.

[41] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[42] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The Java
Language Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition,
2014. ISBN 978-0-13-390069-9.

[43] Michael Greenberg. Manifest Contracts. PhD thesis, University of Pennsylvania,
2013.

http://hacklang.org/
http://racket-lang.org/tr1/

98 BIBLIOGRAPHY

[44] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made
manifest. In Proceedings of the 37th ACM Symposium on Principles of Programming
Languages, pages 353–364, 2010.

[45] Jessica Gronski and Cormac Flanagan. Unifying hybrid types and contracts. In
Proceedings of the 8th Symposium on Trends in Functional Programming, pages 54–70,
2007.

[46] Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cor-
mac Flanagan. Sage: Hybrid checking for flexible specifications. In Scheme and
Functional Programming Workshop, pages 93–104, 2006.

[47] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type abstraction.
ACM Transactions on Programming Languages and Systems, 22(6):1037–1080, 2000.

[48] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishnamurthi.
Relationally-parametric polymorphic contracts. In Proceedings of the 3rd Dynamic
Language Symposium, pages 29–40, 2007.

[49] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions
and control in ML-like languages. In Proceedings of the 7th ACM International
Conference on Functional Programming Languages and Computer Architecture, pages
12–23, 1995.

[50] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143–184, 1993.

[51] Fritz Henglein. Dynamic typing. In Proceedings of the 4th European Symposium
on Programming, volume 582 of Lecture Notes in Computer Science, pages 233–253.
Springer-Verlag, 1992.

[52] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typ-
ing. In Proceedings of the 8th Symposium on Trends in Functional Programming, pages
1–18, 2007.

[53] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

[54] Lintaro Ina and Atsushi Igarashi. Gradual typing for generics. In Proceedings of
the 26th ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 609–624, 2011.

[55] ISO. Information technology - programming languages - C. Standard ISO/IEC
9899-2012, International Organization for Standardization, Geneva, Switzerland,
2012.

[56] ISO. Information technology – programming languages – C++. Standard
ISO/IEC 14882:2014, International Organization for Standardization, Geneva,
Switzerland, 2014.

[57] Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete axiom-
atization of delimited continuations. In Proceedings of the 8th ACM International
Conference on Functional Programming, pages 177–188, 2003.

BIBLIOGRAPHY 99

[58] Yukiyoshi Kameyama and Takuo Yonezawa. Typed dynamic control operators
for delimited continuations. In Proceedings of the 9th International Symposium on
Functional and Logic Programming, volume 4989 of Lecture Notes in Computer Sci-
ence, pages 239–254, 2008.

[59] Ming Kawaguchi, Patrick M. Rondon, and Ranjit Jhala. Type-based data struc-
ture verification. In Proceedings of the ACM 2009 Conference on Programming Lan-
guage Design and Implementation, pages 304–315, 2009.

[60] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous
collections. In Proceedings of the ACM 2004 Workshop on Haskell, pages 96–107,
2004.

[61] Kenneth Knowles. Executable Refinement Types. PhD thesis, University of Califor-
nia, Santa Cruz, 2014.

[62] Kenneth Knowles and Cormac Flanagan. Type reconstruction for general refine-
ment types. In Proceedings of the 16th European Symposium on Programming, vol-
ume 4421 of Lecture Notes in Computer Science, pages 505–519. Springer-Verlag,
2007.

[63] Kenneth Knowles and Cormac Flanagan. Compositional reasoning and decid-
able checking for dependent contract types. In Proceedings of the 3rd ACM Work-
shop on Programming Languages meets Program Verification, pages 27–38, 2009.

[64] Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Transac-
tions on Programming Languages and Systems, 32(2:6):1–34, 2010.

[65] Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N. Freund, and Cormac
Flanagan. Sage: Unified hybrid checking for first-class types, general refinement
types, and dynamic (extended report). Technical report, UCSC, 2007.

[66] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The OCaml system (release 4.02): Documentation and
user’s manual. Institut National de Recherche en Informatique et en Au-
tomatique, 2014. URL http://caml.inria.fr/distrib/ocaml-4.02/
ocaml-4.02-refman.pdf. Accessed on 2016-01-15.

[67] Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory of
type refinements. In Proceedings of the 8th ACM International Conference on Func-
tional Programming, pages 213–225, 2003.

[68] Simon Marlow, editor. Haskell 2010 Language Report. 2010.

[69] Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-time
sealing or, theorems for low, low prices! In Proceedings of the 17th European Sym-
posium on Programming, volume 4960 of Lecture Notes in Computer Science, pages
16–31. Springer-Verlag, 2008.

[70] Conor McBride. Ornamental algebras, algebraic ornaments. Journal of Functional
Programming, 2014. To appear.

[71] Lambert G. L. T. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):
413–424, 1992.

http://caml.inria.fr/distrib/ocaml-4.02/ocaml-4.02-refman.pdf
http://caml.inria.fr/distrib/ocaml-4.02/ocaml-4.02-refman.pdf

100 BIBLIOGRAPHY

[72] Bertrand Meyer. Object-Oriented Software Construction, 1st Edition. Prentice-Hall,
1988. ISBN 0-13-629031-0.

[73] Microsoft Corporation. C] language specification, . URL https://msdn.
microsoft.com/en-us/library/ms228593.aspx. Accessed on 2016-01-
15.

[74] Microsoft Corporation. TypeScript language specification, . URL http:
//www.typescriptlang.org/Content/TypeScript%20Language%
20Specification.pdf. Accessed on 2016-01-15.

[75] Robin Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17(3):348–375, 1978.

[76] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
The MIT Press, 1997. ISBN 0262631814.

[77] John C. Mitchell. Representation independence and data abstraction. In ACM
Symposium on Principles of Programming Languages, pages 263–276, 1986. doi: 10.
1145/512644.512669.

[78] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
In Proceedings of the 12th ACM Symposium on Principles of Programming Languages,
pages 37–51, 1985.

[79] James H. Morris Jr. Types are not sets. In Proceedings of the 1st ACM Symposium
on Principles of Programming Languages, pages 120–124, 1973.

[80] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and
separation in Hoare type theory. In Proceedings of the 11th ACM International Con-
ference on Functional Programming, pages 62–73, 2006.

[81] Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametric-
ity. In Proceedings of the 14th ACM International Conference on Functional Program-
ming, pages 135–148, 2009.

[82] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typ-
ing with dependent types. In Proceedings of the 3rd International Conference on
Theoretical Computer Science, pages 437–450, 2004.

[83] David Lorge Parnas. A technique for software module specification with exam-
ples. Communications of the ACM, 15(5):330–336, 1972.

[84] Christine Paulin-Mohring. Inductive definitions in the system Coq - rules and
properties. In Proceedings of the 1st International Conference on Typed Lambda Calculi
and Applications, volume 664 of Lecture Notes in Computer Science, pages 328–345.
Springer-Verlag, 1993.

[85] Benjamin Pierce and Eijiro Sumii. Relating cryptography and polymorphism,
2000.

[86] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002. ISBN
0-262-16209-1.

[87] Andrew M. Pitts. Parametric polymorphism and operational equivalence. Math-
ematical Structures in Computer Science, 10(3):321–359, 2000.

https://msdn.microsoft.com/en-us/library/ms228593.aspx
https://msdn.microsoft.com/en-us/library/ms228593.aspx
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf

BIBLIOGRAPHY 101

[88] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of the ACM 1972 Annual Conference, pages 717–740, 1972.

[89] John C. Reynolds. Towards a theory of type structure. In Colloque sur la Program-
mation, pages 408–423, 1974.

[90] John C. Reynolds. Types, abstraction, and parametric polymorphism. In IFIP
Congress, pages 513–523, 1983.

[91] Patrick M. Rondon, Ming Kawaguchi, , and Ranjit Jhala. Liquid types. In Pro-
ceedings of the ACM 2008 Conference on Programming Language Design and Imple-
mentation, pages 159–169, 2008.

[92] Andreas Rossberg. Generativity and dynamic opacity for abstract types. In Pro-
ceedings of the 5th ACM International Conference on Principles and Practice of Declar-
ative Programming, pages 241–252, 2003.

[93] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-
passing style. Lisp and Symbolic Computation, 6(3-4):289–360, 1993.

[94] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimu-
lations for higher-order languages. ACM Transactions on Programming Languages
and Systems, 33(1:5):1–69, 2011.

[95] Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. A theory of gradual
effect systems. In Proceedings of the 19th ACM International Conference on Functional
Programming, pages 283–295, 2014.

[96] Taro Sekiyama and Atsushi Igarashi. Logical relations for a manifest contract
calculus, fixed. http://hope2012.mpi-sws.org/, September 2012. Talk ab-
stract and slides.

[97] Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. Polymorphic manifest
contracts, revised and resolved. ACM Transactions on Programming Languages and
Systems, 2015. Accepted with major revision.

[98] Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest contracts for
datatypes. In Proceedings of the 42nd ACM Symposium on Principles of Program-
ming Languages, pages 195–207, 2015.

[99] Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi. Shifting the blame - A blame
calculus with delimited control. In Proceedings of the 13th Asian Symposium on
Programming Languages and Systems, volume 9458 of Lecture Notes in Computer
Science, pages 189–207. Springer-Verlag, 2015.

[100] Chung-chieh Shan. Shift to control. In Scheme and Functional Programming Work-
shop, pages 99–107, 2004.

[101] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, pages 81–92, 2006.

[102] Jeremy G. Siek and Walid Taha. Gradual typing for objects. In Proceedings of the
21st European Conference on Object-Oriented Programming, volume 4609 of Lecture
Notes in Computer Science, pages 2–27. Springer-Verlag, 2007.

http://hope2012.mpi-sws.org/

102 BIBLIOGRAPHY

[103] Jeremy G. Siek and Philip Wadler. Threesomes, with and without blame. In
Proceedings of the 37th ACM Symposium on Principles of Programming Languages,
pages 365–376, 2010.

[104] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland.
Refined criteria for gradual typing. In Proceedings of the 1st Summit on Advances
in Programming Languages, pages 274–293, 2015.

[105] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and
Ronald Garcia. Monotonic references for efficient gradual typing. In Proceedings
of the 24th European Symposium on Programming, volume 9032 of Lecture Notes in
Computer Science, pages 432–456. Springer-Verlag, 2015.

[106] Dorai Sitaram. Handling control. In Proceedings of the ACM 1993 Conference on
Programming Language Design and Implementation, pages 147–155, 1993.

[107] Eijiro Sumii and Benjamin C. Pierce. Logical relations for encryption. Journal of
Computer Security, 11(4):521–554, 2003.

[108] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhar-
gavan, and Jean Yang. Secure distributed programming with value-dependent
types. In Proceedings of the 16th ACM International Conference on Functional Pro-
gramming, pages 266–278, 2011.

[109] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-
Hochstadt, and Matthias Felleisen. Gradual typing for first-class classes. In
Proceedings of the 27th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 793–810, 2012.

[110] Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt. Constrain-
ing delimited control with contracts. In Proceedings of the 22nd European Sym-
posium on Programming, volume 7792 of Lecture Notes in Computer Science, pages
229–248. Springer-Verlag, 2013.

[111] Éric Tanter and Nicolas Tabareau. Gradual certified programming in Coq. In
Proceedings of the 11th Dynamic Language Symposium, pages 26–40, 2015.

[112] The Coq Development Team. The Coq proof assistant. URL http://coq.
inria.fr/. Accessed on 2016-01-15.

[113] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From
scripts to programs. In Proceedings of the 2nd Dynamic Language Symposium, pages
964–974, 2006.

[114] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of
typed scheme. In Proceedings of the 35th ACM Symposium on Principles of Program-
ming Languages, pages 395–406, 2008.

[115] David A. Turner. Miranda: A non-strict functional language with polymorphic
types. In Proceedings of the 2nd International Conference on Functional Programming
Languages and Computer Architecture, volume 201 of Lecture Notes in Computer Sci-
ence, pages 1–16. Springer-Verlag, 1985.

http://coq.inria.fr/
http://coq.inria.fr/

BIBLIOGRAPHY 103

[116] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. Abstract refinement types.
In Proceedings of the 22nd European Symposium on Programming, volume 7792 of
Lecture Notes in Computer Science, pages 209–228. Springer-Verlag, 2013.

[117] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton
Jones. Refinement types for Haskell. In Proceedings of the 19th ACM International
Conference on Functional Programming, pages 269–282, 2014.

[118] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design
and evaluation of gradual typing for Python. In Proceedings of the 10th Dynamic
Language Symposium, pages 45–56, 2014.

[119] Philip Wadler. Theorems for free! In 4th ACM International Conference on Func-
tional Programming Languages and Computer Architecture, pages 347–359, 1989.

[120] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed.
In Proceedings of the 18th European Symposium on Programming, volume 5502 of
Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, 2009.

[121] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 1994.

[122] Hongwei Xi. Dependent ML: An approach to practical programming with de-
pendent types. Journal of Functional Programming, 17(2):215–286, 2007.

[123] Hongwei Xi and Frank Pfenning. Dependent types in practical programming.
In Proceedings of the 26th ACM Symposium on Principles of Programming Languages,
pages 214–227, 1999.

[124] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype con-
structors. In Proceedings of the 30th ACM Symposium on Principles of Programming
Languages, pages 224–235, 2003.

[125] Dana N. Xu. Hybrid contract checking via symbolic simplification. In Proceedings
of the ACM 2012 Workshop on Partial Evaluation and Program Manipulation, pages
107–116, 2012.

Appendix A

Proofs of Gradual Typing with
Delimited Control

This chapter gives the proofs of properties stated in Chapter 2. Section A.1 proves
Progress (Lemma 1) and Preservation (Lemma 2), which imply Type Soundness (The-
orem 1). Section A.2 presents the proof of Blame Theorem and Subtype Theorem (The-
orem 2). Finally, in Section A.3, we show soundness of our CPS transformation, that is,
that the transformation preserves well-typedness (Theorem 3) and term equality (The-
orem 4).

As discussed in Section 2.4, ground terms and values have blame labels as sub-
scripts; we omit the labels if they are not important or clear from the context. We write
Kι to denote the set of constants of ι.

A.1 Type Soundness

We prove type soundness (Theorem 1) in a usual syntactic manner, that is, via progress
(Lemma 1) and preservation (Lemma 2). We start with showing standard lem-
mas: weakening lemma (Lemma A.1.1), substitution lemma (Lemma A.1.5), inver-
sion lemmas (Lemmas A.1.6—A.1.11), and canonical forms lemma (Lemma A.1.12).
Lemma A.1.13 shows that, for any nondynamic type A, there exists a unique ground
type G compatible with A. Using these lemmas, we show progress (Lemma 1).

Lemma A.1.1 (Weakening). If Γ;α ` s : A;β and x is a fresh variable, then Γ, x :B ;α ` s :
A;β for any type B .

Proof. Straightforward by induction on the typing derivation.

Lemma A.1.2 (Strenghtening). If Γ, x :A;α ` s : B ;β and x /∈ fv (s), then Γ;α ` s :
B ;β.

Proof. Straightforward by induction on the typing derivation.

Lemma A.1.3. If Γ;α ` v : A;β, then α = β.

Proof. Straightforward by induction on the typing derivation.

Lemma A.1.4. If Γ;α ` v : A;β, then Γ; γ ` v : A; γ for any type γ.

Proof. Straightforward by induction on the typing derivation.

Lemma A.1.5 (Substitution). If Γ;α ` v : A;α and Γ, x :A;β ` s : B ; γ, then Γ;β `
s [x := v] : B ; γ.

105

106 Appendix A. Proofs of Gradual Typing with Delimited Control

Proof. Straightforward by induction on the typing derivation of s . Note that, in the case
for (T VAR), we have Γ;β ` v : A;β by Lemma A.1.3.

Lemma A.1.6 (Lambda Inversion). If Γ;α ` λx . s : A/γ → B/δ;β, then Γ, x :A; γ ` s :
B ; δ.

Proof. By case analysis on the typing rule applied last.

Lemma A.1.7 (Ground Inversion). If Γ;α ` v : G ⇒ ? : ?;β, then Γ;α ` v : G ;β.

Proof. By case analysis on the typing rule applied last.

Lemma A.1.8 (Shift Inversion). If Γ;α ` Sk . s : A;β, then Γ, k :A/γ → α/γ; δ ` s : δ;β
for some γ and δ.

Proof. By case analysis on the typing rule applied last.

Lemma A.1.9 (Application Inversion). If Γ;α ` s t : B ; δ, then Γ; γ ` s : A/α→ B/β; δ
and Γ;β ` t : A; γ for some A, β, γ, and δ.

Proof. By case analysis on the typing rule applied last.

Lemma A.1.10 (Reset Inversion). If Γ;α ` 〈s〉 : A;β, then Γ; γ ` s : γ;A for some γ, and
α = β.

Proof. By case analysis on the typing rule applied last.

Lemma A.1.11 (Variable Inversion). If Γ;α ` x : A;β, then x :A ∈ Γ.

Proof. By case analysis on the typing rule applied last.

Lemma A.1.12 (Canonical Forms). Suppose that ∅;α ` v : A;β.

(1) If A = ι, then v = c ∈ Kι.

(2) If A = A′/α′ → B ′/β′, then v = λx . s for some s and s .

(3) If A = ?, then v = v ′ : G ⇒ ? for some v ′ and G .

Proof. By case analysis on the typing rule applied last to v .

Lemma A.1.13 (Unique Ground Type). For any type A 6= ?, there exists an unique ground
type G such that A ∼ G .

Proof. Straightforward by case analysis on A.

Lemma 1 (Progress). If ∅;α ` s : A;β, then one of the followings holds:

• s 7−→ s ′ for some s ′;

• s is a value;

• s = blame p for some p; or

• s = F [Sk . t] for some F , k and t .

Proof. By induction on the typing derivation.

Case (T CONST), (T ABS), (T BLAME), (T SHIFT): Obvious.

Appendix A. Proofs of Gradual Typing with Delimited Control 107

Case (T VAR): Contradictory.

Case (T OP): We are given ∅;α ` op(ti
i ∈{1,...,n}

) : A;β for some op and ti
i . By in-

version, we have ty (op) = ιi
i → A and ∅; γi ` ti : ιi ; γi−1 where α = γn

and β = γ0. If all terms ti
i are values, then we finish by Lemma A.1.12 (1) and

(R OP). Otherwise, suppose that t1, ..., tj−1 are values and tj is not for some j . By
case analysis on tj with the IH.

Case tj 7−→ u : By (E STEP) or (E ABORT).
Case tj = blame p: By (E ABORT).
Case tj = F [Sk . u]: We finish.

Case (T APP): We are given ∅;α ` t u : A;β for some t and u . By inversion, we have
∅; γ ` t : B/α → A/β′;β and ∅;β′ ` u : B ; γ for some B , β′, and γ. If t or u is
not a value, then we finish similarly to the case for (T OP). Otherwise, suppose
that t and u are values. By Lemma A.1.12 (2), t = λx . t ′ for some x and t ′. Thus,
we finish by (R BETA).

Case (T CAST): We are given ∅;α ` t : B ⇒p A : A;β for some t and B . By inversion,
we have ∅;α ` t : B ;β and B ∼ A. If t is not a value, then we finish similarly
to the case for (T OP). Otherwise, if t is a value, we proceed by case analysis on
B ∼ A.

Case (C DYNTO): We are given A = ?. If B = ?, then we finish by (R DYN).
Otherwise, we finish by Lemma A.1.13 and (R GROUND).

Case (C DYNFROM): If A = ?, then we finish by (R DYN). Otherwise, by
Lemma A.1.12 (3), and (R COLLAPSE) or (R CONFLICT).

Case (C BASE): By (R BASE).
Case (C FUN): By (R WRAP).

Case (T GROUND): We are given ∅;α ` t : G ⇒ ? : ?;β for some t and G . By
inversion, we have ∅;α ` t : G ;β. If t is not a value, then we finish similarly to
the case for (T OP). Otherwise, if t is a value, then so is t : G ⇒ ?.

Case (T IS): We are given ∅;α ` t isG : bool;β for some t and G . By inversion, we
have ∅;α ` t : ?;β. If t is not a value, then we finish similarly to the case for
(T OP). Otherwise, if t is a value, then t = v : H ⇒ ? for some v and H by
Lemma A.1.12 (3). We finish by (R ISTRUE) or (R ISFALSE).

Case (T RESET): We are given ∅;α ` 〈t〉 : A;α for some t . By inversion, we have
∅; γ ` t : γ;A for some γ. If t takes a step or is blamed, then we finish similarly
to the case for (T OP). If t is a value, then we finish by (R RESET). Otherwise, we
finish by (R SHIFT).

Next, we show preservation (Lemma 2). Our proof in the case for (R SHIFT) follows
Asai and Kameyama [9], which shows preservation of a polymorphic lambda calculus
with shift/reset by introducing a “decomposed” version of the reduction rule for shift.
Their proof rests on the facts that a reduction by shift can be decomposed into reduc-
tions in the decomposed version and reductions in it preserve well-typedness. We
show these in Lemmas A.1.17 and A.1.15, respectively, and then prove preservation.
We give decomposed reduction� of shift reduction in Definition 10.

108 Appendix A. Proofs of Gradual Typing with Delimited Control

Lemma A.1.14. Let x be a variable and F be a pure evaluation context such that x /∈ fv (F).
If Γ, x :A;α ` F [x] : B ;β and Γ;β ` s : A; γ, then Γ;α ` F [s] : B ; γ.

Proof. By induction on the typing derivation of F [x].

Case (T CONST), (T ABS), (T BLAME), (T SHIFT), and (T RESET): Contradictory.

Case (T VAR): By Lemma A.1.3.

Case (T OP): We are given Γ, x :A;α ` op(vi
i ,F ′[x], tj

j
) : B ;β for some op, vi i , F ′, and

tj
j . By inversion and Lemma A.1.3, we have ty (op) = ιi

i → ι′ → ι′′j
j → B and

Γ, x :A;β ` vi : ιi ;β
i and Γ, x :A; γ0 ` F ′[x] : ι′;β and Γ, x :A; γ′j ` tj : ι′′j ; γ′j−1

j

and γ′n = α (where we assume that tj
j

= t1, ..., tn).

By the IH, Γ; γ0 ` F ′[s] : ι′; γ. By Lemmas A.1.2 and A.1.4, Γ; γ ` vi : ιi ; γ
i and

Γ; γ′j ` tj : ι′′j ; γ′j−1

j
. Thus, by (T OP), we finish.

Case (T APP): By case analysis on F .

Case F = F ′ t : By inversion, we have Γ, x :A; γ′ ` F ′[x] : A′/α → B/β′;β and
Γ, x :A;β′ ` t : A′; γ′ for some A′, β′, and γ′. By the IH, Lemma A.1.2, and
(T APP), we finish.

Case F = v F ′: By inversion, we have Γ, x :A; γ′ ` v : A′/α → B/β′;β and
Γ, x :A;β′ ` F ′[x] : A′; γ′ for some A′, β′, and γ′. By the IH, Lemmas A.1.2
and A.1.4, and (T APP), we finish.

Case (T CAST), (T GROUND), and (T IS): By the IH.

Definition 10. The relation� is the least contextual relation that contains the following rules:

op(vi
i ,Sk . s, tj j) � Sk ′. s [k := λx . 〈k ′ op(vi

i , x , tj
j
)〉]

(Sk . s) t � Sk ′. s [k := λx . 〈k ′ (x t)〉]
v (Sk . s) � Sk ′. s [k := λx . 〈k ′ (v x)〉]
(Sk . s) : A⇒p B � Sk ′. s [k := λx . 〈k ′ (x : A⇒p B)〉]
(Sk . s) : G ⇒ ? � Sk ′. s [k := λx . 〈k ′ (x : G ⇒ ?)〉]
(Sk . s) isG � Sk ′. s [k := λx . 〈k ′ (x isG)〉]
〈Sk . s〉 � 〈s [k := λx . 〈x 〉]〉
〈(λx . 〈F [x]〉) s〉 � 〈F [s]〉

where x is a fresh variable. We write�∗ to denote the transitive closure of�.

Lemma A.1.15. If Γ;α ` s : A;β and s � t , then Γ;α ` t : A;β.

Proof. By induction on the typing derivation. We mention only the cases where rules
in Definition 10 are applied.

Case (T OP): We are given op(vi
i ,Sk . t , tj j) � Sk ′. t [k := λx . 〈k ′ op(vi

i , x , tj
j
)〉]. By

inversion and Lemma A.1.3, we have ty (op) = ιi
i → ι′ → ι′′j

j → A and

Γ;β ` vi : ιi ;β
i and Γ; γ0 ` Sk . t : ι′;β and Γ; γj ` tj : ι′′j ; γj−1

j
and γn = α

(note that here we assume that tj
j

= t0, ..., tn).

Appendix A. Proofs of Gradual Typing with Delimited Control 109

By Lemmas A.1.4 and A.1.1, Γ, x :ι′; γ0 ` vi : ιi ; γ0
i , and by (T VAR), Γ, x :ι′; γ0 `

x : ι′; γ0. Thus, by Lemma A.1.1 and (T OP), Γ, x :ι′;α ` op(vi
i , x , tj

j
) : A; γ0. By

Lemma A.1.1, (T VAR), and (T APP),

Γ, k ′:A/α→ α/α, x :ι′;α ` k ′ op(vi
i , x , tj

j
) : α; γ0.

Here, by Lemma A.1.8, Γ, k :ι′/γ′ → γ0/γ
′; δ′ ` t : δ′;β for some γ′ and δ′. Since,

by (T RESET) and (T ABS), Γ, k ′:A/α → α/α;α ` λx . 〈k ′ op(vi
i , x , tj

j
)〉 : ι′/γ′ →

γ0/γ
′;α, we have

Γ, k ′:A/α→ α/α; δ′ ` t [k := λx . 〈k ′ op(vi
i , x , tj

j
)〉] : δ′;β

by Lemmas A.1.1 and A.1.5. By (T SHIFT), Γ;α ` Sk ′. t [k :=

λx . 〈k ′ op(vi
i , x , tj

j
)〉] : A;β.

Case (T APP): By case analysis on the rule applied.

Case (Sk . t) u � Sk ′. t [k := λx . 〈k ′ (x u)〉]: By inversion, we have Γ; γ ` Sk . t :
B/α→ A/β′;β and Γ;β′ ` u : B ; γ for some B , β′, and γ.
By Lemma A.1.1, (T VAR), and (T APP), Γ, x :B/α → A/β′;α ` x u : B ; γ.
Again, by Lemma A.1.1, (T VAR), and (T APP),

Γ, k ′:A/α→ α/α, x :B/α→ A/β′;α ` k ′ (x u) : α; γ.

Here, by Lemma A.1.8, Γ, k :(B/α → A/β′)/γ′ → γ/γ′; δ′ ` t : δ′;β for
some γ′ and δ′. Since, by (T RESET) and (T ABS), Γ, k ′:A/α → α/α;α `
λx . 〈k ′ (x u)〉 : (B/α→ A/β′)/γ′ → γ/γ′;α, we have

Γ, k ′:A/α→ α/α; δ′ ` t [k := λx . 〈k ′ (x u)〉] : δ′;β

by Lemmas A.1.1 and A.1.5. By (T SHIFT), Γ;α ` Sk ′. t [k := λx . 〈k ′ (x u)〉] :
A;β.

Case v (Sk . t) � Sk ′. t [k := λx . 〈k ′ (v x)〉]: By inversion and Lemma A.1.3, we
have Γ;β ` v : B/α→ A/β′;β and Γ;β′ ` Sk . t : B ;β for some B and β′.
By Lemma A.1.1, (T VAR), and (T APP), Γ, x :B ;α ` v x : A;β′. Again, by
Lemma A.1.1, (T VAR), and (T APP),

Γ, k ′:A/α→ α/α, x :B ;α ` k ′ (v x) : α;β′.

Here, by Lemma A.1.8, Γ, k :B/γ′ → β′/γ′; δ′ ` t : δ′;β for some γ′ and
δ′. Since, by (T RESET) and (T ABS), Γ, k ′:A/α → α/α;α ` λx . 〈k ′ (v x)〉 :
B/γ′ → β′/γ′;α, we have

Γ, k ′:A/α→ α/α; δ′ ` t [k := λx . 〈k ′ (v x)〉] : δ′;β

by Lemmas A.1.1 and A.1.5. By (T SHIFT), Γ;α ` Sk ′. t [k := λx . 〈k ′ (v x)〉] :
A;β.

Case (T CAST): We are given (Sk . t) : B ⇒p A � Sk ′. t [k := λx . 〈k ′ (x : B ⇒p A)〉].
By inversion, we have Γ;α ` Sk . t : B ;β.

110 Appendix A. Proofs of Gradual Typing with Delimited Control

By (T VAR), and (T CAST), Γ, x :B ;α ` x : B ⇒p A : A;α. By Lemma A.1.1,
(T VAR), and (T APP),

Γ, k ′:A/α→ α/α, x :B ;α ` k ′ (x : B ⇒p A) : α;α.

Here, by Lemma A.1.8, Γ, k :B/γ′ → α/γ′; δ′ ` t : δ′;β for some γ′ and δ′. Since,
by (T RESET) and (T ABS), Γ, k ′:A/α → α/α;α ` λx . 〈k ′ (x : B ⇒p A)〉 :
B/γ′ → α/γ′;α, we have

Γ, k ′:A/α→ α/α; δ′ ` t [k := λx . 〈k ′ (x : B ⇒p A)〉] : δ′;β

by Lemmas A.1.1 and A.1.5. By (T SHIFT), Γ;α ` Sk ′. t [k := λx . 〈k ′ (x : B ⇒p

A)〉] : A;β.

Case (T GROUND): We are given (Sk . t) : G ⇒ ? � Sk ′. t [k := λx . 〈k ′ (x : G ⇒ ?)〉].
By inversion, we have Γ;α ` Sk . t : G ;β. Note that A = ?.

By (T VAR), and (T CAST), Γ, x :G ;α ` x : G ⇒ ? : ?;α. By Lemma A.1.1,
(T VAR), and (T APP),

Γ, k ′: ? /α→ α/α, x :G ;α ` k ′ (x : G ⇒ ?) : α;α.

Here, by Lemma A.1.8, Γ, k :G/γ′ → α/γ′; δ′ ` t : δ′;β for some γ′ and δ′. Since,
by (T RESET) and (T ABS), Γ, k ′: ? /α→ α/α;α ` λx . 〈k ′ (x : G ⇒ ?)〉 : G/γ′ →
α/γ′;α, we have

Γ, k ′: ? /α→ α/α; δ′ ` t [k := λx . 〈k ′ (x : G ⇒ ?)〉] : δ′;β

by Lemmas A.1.1 and A.1.5. By (T SHIFT), Γ;α ` Sk ′. t [k := λx . 〈k ′ (x : G ⇒
?)〉] : ?;β.

Case (T IS): We are given (Sk . t) isG � Sk ′. t [k := λx . 〈k ′ (x isG)〉]. By inversion, we
have Γ;α ` Sk . t : ?;β. Note that A = bool.

By (T VAR), and (T CAST), Γ, x :?;α ` x isG : bool;α. By Lemma A.1.1, (T VAR),
and (T APP),

Γ, k ′:bool/α→ α/α, x :G ;α ` k ′ (x isG) : α;α.

Here, by Lemma A.1.8, Γ, k : ? /γ′ → α/γ′; δ′ ` t : δ′;β for some γ′ and δ′. Since,
by (T RESET) and (T ABS), Γ, k ′:bool/α → α/α;α ` λx . 〈k ′ (x isG)〉 : ?/γ′ →
α/γ′;α, we have

Γ, k ′:bool/α→ α/α; δ′ ` t [k := λx . 〈k ′ (x isG)〉] : δ′;β

by Lemmas A.1.1 and A.1.5. By (T SHIFT), Γ;α ` Sk ′. t [k := λx . 〈k ′ (x isG)〉] :
bool;β.

Case (T RESET): By case analysis on the rule applied.

Case 〈Sk . t〉 � 〈t [k := λx . 〈x 〉]〉: By inversion, we have Γ; γ ` Sk . t : γ;A for
some γ. By Lemma A.1.8, Γ, k :γ/γ′ → γ/γ′; δ′ ` t : δ′;A for some γ′, δ′.
Since Γ;α ` λx . 〈x 〉 : γ/γ′ → γ/γ′;α by (T VAR) and (T ABS), we have

Γ; δ′ ` t [k := λx . 〈x 〉] : δ′;A

Appendix A. Proofs of Gradual Typing with Delimited Control 111

by Lemma A.1.5. By (T RESET), Γ;α ` 〈t [k := λx . 〈x 〉]〉 : A;β.
Case 〈(λx . 〈F [x]〉) t〉 � 〈F [t]〉: By inversion, we have Γ; γ ` (λx . 〈F [x]〉) t : γ;A

for some γ, and α = β. By Lemma A.1.9, Γ; γ′ ` λx . 〈F [x]〉 : B ′/γ →
γ/β′;A and Γ;β′ ` t : B ′; γ′ for some B ′, β′, and γ′. By Lemma A.1.3,
γ′ = A. By Lemmas A.1.6 and A.1.10, β′ = γ and Γ, x :B ′; γ′′ ` F [x] :
γ′′; γ for some γ′′. Since Γ; γ ` t : B ′;A, we have Γ; γ′′ ` F [t] : γ′′;A by
Lemma A.1.14. By (T RESET), Γ;α ` 〈F [t]〉 : A;β (note that α = β).

Lemma A.1.16. If F 6= [], then F [Sk . s]�∗ Sk ′. s [k := λx . 〈k ′ F [x]〉] where x /∈ fv (F).

Proof. By structural induction on F .

Case F = []: Contradictory.

Case F = op(vi
i ,F ′, tj

j
): If F ′ = [], then obvious; otherwise,

op(vi
i ,F ′[Sk . s], tj

j
) �∗ op(vi

i ,Sk ′. s [k := λx . 〈k ′ F ′[x]〉], tj j) (by the IH)

� Sk ′′. s [k := λx . 〈(λy . 〈k ′′ op(vi
i , y , tj

j
)〉)F ′[x]〉]

�∗ Sk ′′. s [k := λx . 〈k ′′ op(vi
i ,F ′[x], tj

j
)〉].

Case F = F ′ t : If F ′ = [], then obvious; otherwise,

F ′[Sk . s] t �∗ (Sk ′. s [k := λx . 〈k ′ F ′[x]〉]) t (by the IH)
� Sk ′′. s [k := λx . 〈(λy . 〈k ′′ (y t)〉)F ′[x]〉]
� Sk ′′. s [k := λx . 〈k ′′ (F ′[x] t)〉].

Case F = v F ′: If F ′ = [], then obvious; otherwise,

v F ′[Sk . s] �∗ v (Sk ′. s [k := λx . 〈k ′ F ′[x]〉]) (by the IH)
� Sk ′′. s [k := λx . 〈(λy . 〈k ′′ (v y)〉)F ′[x]〉]
� Sk ′′. s [k := λx . 〈k ′′ (v F ′[x])〉].

Case F = F ′ : A⇒p B : If F ′ = [], then obvious; otherwise,

F ′[Sk . s] : A⇒p B �∗ (Sk ′. s [k := λx . 〈k ′ F ′[x]〉]) : A⇒p B (by the IH)
� Sk ′′. s [k := λx . 〈(λy . 〈k ′′ (y : A⇒p B)〉)F ′[x]〉]
� Sk ′′. s [k := λx . 〈k ′′ (F ′[x] : A⇒p B)〉].

Case F = F ′ : G ⇒ ?: If F ′ = [], then obvious; otherwise,

F ′[Sk . s] : G ⇒ ? �∗ (Sk ′. s [k := λx . 〈k ′ F ′[x]〉]) : G ⇒ ? (by the IH)
� Sk ′′. s [k := λx . 〈(λy . 〈k ′′ (y : G ⇒ ?)〉)F ′[x]〉]
� Sk ′′. s [k := λx . 〈k ′′ (F ′[x] : G ⇒ ?)〉].

Case F = F ′ isG : If F ′ = [], then obvious; otherwise,

F ′[Sk . s] isG �∗ (Sk ′. s [k := λx . 〈k ′ F ′[x]〉]) isG (by the IH)
� Sk ′′. s [k := λx . 〈(λy . 〈k ′′ (y isG)〉)F ′[x]〉]
� Sk ′′. s [k := λx . 〈k ′′ (F ′[x] isG)〉].

112 Appendix A. Proofs of Gradual Typing with Delimited Control

Lemma A.1.17. 〈F [Sk . s]〉�∗ 〈s [k := λx . 〈F [x]〉]〉.

Proof. If F = [], 〈Sk . s〉 � 〈s [k := λx . 〈x 〉]〉, and so we finish. Otherwise, if F 6= [],
then

〈F [Sk . s]〉 �∗ 〈Sk ′. s [k := λx . 〈k ′ F [x]〉]〉 (by Lemma A.1.16)
� 〈s [k := λx . 〈(λy . 〈y〉)F [x]〉]〉
� 〈s [k := λx . 〈F [x]〉]〉.

Lemma A.1.18. If A/α→ B/β ∼ A′/α′ → B ′/β′, then A′ ∼ A and B ∼ B ′ and α′ ∼ α
and β ∼ β′.

Proof. Straightforward by case analysis on the compatibility rule applied last.

Lemma 2 (Preservation). Suppose that ∅;α ` s : A;β.

(1) If s −→ t , then ∅;α ` t : A;β.

(2) If s 7−→ t , then ∅;α ` t : A;β.

Proof.

(1) By case analysis on the typing rule applied to s .

Case (T CONST), (T VAR), (T ABS), (T GROUND), (T BLAME), (T SHIFT): Contra-
dictory.

Case (T OP): We are given ∅;α ` op(ti
i
) : A;β for some op and ti

i . The only
reduction rule applicable to op(ti

i
) is (R OP). By Lemma A.1.3 and the as-

sumption on ζ, we finish.

Case (T APP): We are given ∅;α ` t u : A;β for some t and u . By inversion, we
have ∅; γ ` t : B/α → A/β′;β and ∅;β′ ` u : B ; γ for some β′ and γ. The
only reduction rule applicable to t u is (R BETA), so t = λx . t ′ for some x
and t ′, and u is a value. By Lemma A.1.3, β = γ = β′. By Lemma A.1.6,
x :B ;α ` t : A;β. By Lemma A.1.5, ∅;α ` t [x := u] : A;β.

Case (T CAST): We are given ∅;α ` t : B ⇒p A : A;β for some t , p and B .
By inversion, we have ∅;α ` t : B ;β and B ∼ A. By case analysis on the
reduction rule applicable to t : B ⇒p A.

Case (R BASE) and (R DYN): We are given v : A ⇒p A −→ v where v = t
and B = A. Since ∅;α ` v : A;β, we finish.

Case (R WRAP): We are given

v : A′/α′ → B ′/β′ ⇒p A′′/α′′ → B ′′/β′′ −→
λx .Sk . (〈(k ((v (x : A′′ ⇒p̄ A′)) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′〉 : β′ ⇒p β′′)

where v = t and B = A′/α′ → B ′/β′ and A = A′′/α′′ → B ′′/β′′. Since
B ∼ A, we have A′′ ∼ A′ and B ′ ∼ B ′′ and α′′ ∼ α′ and β′ ∼ β′′ by
Lemma A.1.18.

Appendix A. Proofs of Gradual Typing with Delimited Control 113

Since α = β by Lemma A.1.3, we have

x :A′′;α′ ` v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′ : B ′′;β′.

by Lemma A.1.1, (T VAR), (T CAST), and (T APP). By Lemma A.1.1,
(T VAR), and (T APP),

x :A′′, k :B ′′/α′ → α′′/α′;α′ ` k (v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′) : α′′;β′.

By (T CAST) and (T RESET),

x :A′′, k :B ′′/α′ → α′′/α′;β′′ `
〈(k (v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′〉 : β′;β′′.

By (T CAST) and (T SHIFT),

x :A′′;α′′ `
Sk . (〈(k (v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′〉 : β′ ⇒p β′′) :

B ′′;β′′.

By (T ABS),

∅;α `
λx .Sk . (〈(k (v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′〉 : β′ ⇒p β′′) :

A′′/α′′ → B ′′/β′′;β

(note that α = β).
Case (R GROUND): We are given v : B ⇒p ? −→ v : B ⇒p G ⇒ ? where

t = v and A = ? and B ∼ G . By (T CAST) and (T GROUND), we
finish.

Case (R COLLAPSE): We are given v : G ⇒? ⇒p A −→ v : G ⇒p A where
t = v : G ⇒ ? and B = ? and G ∼ A and A 6= ?. By Lemma A.1.7,
∅;α ` v : G ;β. Thus, we finish by (T CAST).

Case (R CONFLICT): We are given v : G ⇒ ? ⇒p A −→ blame p. We finish
by (T BLAME).

Case (T IS): We are given ∅;α ` t isG : bool;β for some t and G . By inversion,
we have ∅;α ` t : ?;β. By case analysis on the reduction rule applicable to
t isG .

Case (R ISTRUE): We are given (v : G ⇒ ?) isG −→ true. By Lemma A.1.3
and (T CONST), we finish.

Case (R ISFALSE): We are given (v : H ⇒ ?) isG −→ false. By Lemma A.1.3
and (T CONST), we finish.

Case (T RESET): We are given ∅;α ` 〈t〉 : A;α for some t . By inversion, we have
∅; γ ` t : γ;A for some γ. By case analysis on the reduction rule applicable
to 〈t〉.

Case (R RESET): We are given 〈v〉 −→ v where t = v . By Lemma A.1.3,
A = γ, so ∅;A ` t : A;A. By Lemma A.1.4, we finish.

Case (R SHIFT): We are given 〈F [Sk . u]〉 −→ 〈u [k := λx . 〈F [x]〉]〉 where t =
F [Sk . u] and x /∈ fv (F). By Lemmas A.1.17 and A.1.15.

(2) By case analysis on the evaluation rule applied.

114 Appendix A. Proofs of Gradual Typing with Delimited Control

Case (E STEP): Straightforward by induction on the typing derivation of Γ;α `
s : A;β with case (1).

Case (E ABORT): By (T BLAME).

A.2 Blame Theorem

In this section, we show Blame Theorem and Subtype Theorem (Theorem 2). We start
with showing that naive and ordinal subtyping are characterized by using both positive
and negative subtyping (Lemmas 4 and 5, respectively). Then, after proving Blame
Progress (Lemma 6) and Blame Preservation (Lemma 7), we show Blame Theorem and
Subtype Theorem.

Lemma 3. If A/α→ B/β <:− G , then A = α = ? and B <:− γ and β <:− γ for any γ.

Proof. By induction on the derivation of A/α→ B/β <:− G .

Case (S− REFL): Obvious.

Case (S− DYN): Contradictory.

Case (S− ANY): By the IH.

Case (S− FUN): We are given G = ? / ? → ? / ?. By inversion, we have ? <:+ A and
B <:− ? and ? <:+ α and β <:− ?. From (S+ REFL) and (S+ DYN), A = ? and
α = ?. From (S− REFL), (S− DYN), and (S− ANY), B = ? or B <:− G ′ for some
G ′, and β = ? or β <:− G ′′ for some G ′′. Thus, (S− DYN) or (S− ANY), we finish.

Lemma A.2.1. If A <:n B , then

(1) A <:+ B and

(2) B <:− A.

Proof. By induction on the derivation of A <:n B .

Case (SN REFL): By (S+ REFL) and (S− REFL).

Case (SN DYN): By (S+ DYN) and (S− DYN).

Case (SN FUN): We are given A′/α′ → B ′/β′ <:n A′′/α′′ → B ′′/β′′. By inversion, we
have A′ <:n A′′ and B ′ <:n B ′′ and α′ <:n α

′′ and β′ <:n β
′′. By the IHs,

– A′ <:+ A′′ and A′′ <:− A′,

– B ′ <:+ B ′′ and B ′′ <:− B ′,

– α′ <:+ α′′ and α′′ <:− α′, and

– β′ <:+ β′′ and β′′ <:− β′.

Thus, by (S+ FUN) and (S− FUN), we finish.

Lemma A.2.2. If A <:+ B and B <:− A, then A <:n B .

Proof. By induction on the structure of A with case analysis on the rule applied last to
derive A <:+ B .

Appendix A. Proofs of Gradual Typing with Delimited Control 115

Case (S+ REFL): By (SN REFL).

Case (S+ DYN): By (SN DYN).

Case (S+ FUN): We are given A′/α′ → B ′/β′ <:+ A′′/α′′ → B ′′/β′′. By inversion, we
have A′′ <:− A′ and B ′ <:+ B ′′ and α′′ <:− α′ and β′ <:+ β′′. By case analysis on
the rule applied last to derive A′′/α′′ → B ′′/β′′ <:− A′/α′ → B ′/β′.

Case (S− REFL): By (S+ REFL) and (S− REFL), A′ <:+ A′′ and B ′′ <:− B ′ and
α′ <:+ α′′ and β′′ <:− β′. Thus, by the IHs, A′ <:n A′′ and B ′ <:n B ′′ and
α′ <:n α

′′ and β′ <:n β
′′. Thus, by (SN FUN), we finish.

Case (S− DYN): Contradictory.

Case (S− ANY): By inversion, we have A′′/α′′ → B ′′/β′′ <:− G for some G . By
Lemma 3, A′′ = α′′ = ? and B ′ <:− B ′′ and β′ <:− β′′. By (S+ DYN),
A′ <:+ A′′ and α′ <:+ α′′. Thus, we finish by the IHs and (SN FUN).

Case (S− FUN): By the IHs and (SN FUN).

Lemma 4. A <:n B iff A <:+ B and B <:− A.

Proof. By Lemmas A.2.1 and A.2.2.

Lemma A.2.3. If A <: B , then A <:+ B and A <:− B .

Proof. By induction on the derivation of A <: B .

Case (S REFL): By (S+ REFL) and (S− REFL).

Case (S DYN): We are given A <: ?. By inversion, A <: G . By the IH, A <:− G . Thus,
by (S− ANY), A <:− ?. By (S+ DYN), A <:+ ?.

Case (S FUN): By the IHs, (S+ FUN), and (S− FUN).

Lemma A.2.4. If A <:+ B and A <:− B , then A <: B .

Proof. By induction on the structure of A with case analysis on the rule applied last to
derive A <:+ B .

Case (S+ REFL): By (S REFL).

Case (S+ DYN): We are given A <:+ ?. Since A <:− ?, A = ? from (S− REFL) and
(S− DYN), or A <:− G for some G from (S− ANY). If A = ?, then we finish by
(S REFL). Otherwise, if A <:− G for some G , by case analysis on A.

Case A = ?: By (S REFL).

Case A = ι: Since ι <: ι by (S REFL), we finish by (S DYN).

Case A = A′/α′ → B ′/β′: By Lemma 3, A′ = α′ = ? and B ′ <:− ? and β′ <:− ?.
Since B ′ <:+ ? and β′ <:+ ? by (S+ DYN), we have B ′ <: ? and β′ <: ? by
the IHs. Since ? <: A′ and ? <: α′ by (S REFL), we have A′/α′ → B ′/β′ <:
?/?→ ?/? by (S FUN), and so A′/α′ → B ′/β′ <: ? by (S DYN).

Case (S+ FUN): We are given A′/α′ → B ′/β′ <:+ A′′/α′′ → B ′′/β′′ for some A′, B ′,
α′, β′, A′′, B ′′, α′′, and β′′. By inversion, we have A′′ <:− A′ and B ′ <:+ B ′′

and α′′ <:− α′ and β′ <:+ β′′. By case analysis on the rule applied last to derive
A′/α′ → B ′/β′ <:− A′′/α′′ → B ′′/β′′.

116 Appendix A. Proofs of Gradual Typing with Delimited Control

Case (S− REFL): By (S REFL).

Case (S− DYN): Contradictory.

Case (S− ANY): By inversion, we have A′/α′ → B ′/β′ <:− G for some G . By
Lemma 3, A′ = α′ = ? and B ′ <:− B ′′ and β′ <:− β′′. By the IHs, B ′ <: B ′′

and β′ <: β′′. Since A′′ <:+ A′ and α′′ <:+ α′ by (S+ DYN), we have A′′ <: A′

and α′′ <: α′ by the IHs. Thus, we finish by (S FUN).

Case (S− FUN): By the IHs and (S FUN).

Lemma 5. A <: B iff A <:+ B and A <:− B .

Proof. By Lemmas A.2.3 and A.2.4.

Lemma 6 (Blame Progress). If s sf p, then s 67−→ blame p.

Proof. By induction on the derivation of s sf p.

Case (SF POS): We are given t : A ⇒p B sf p for some t , A, and B . By inversion, we
have t sf p and A <:+ B . By case analysis on t .

Case t 7−→ u : By the IH, and (E STEP) or (E ABORT).

Case t = blame q : Obviously q 6= p, so we finish by (E ABORT).

Case t = v : The reduction rule that implies blame p is only (R CONFLICT), so we
consider only it. In that case, we are given A = ? and t = v ′ : G ⇒ ? for
some v ′ and G such that G 6∼ B . Since ? <:+ B , B = ? from (S+ REFL) and
(S+ DYN). Here, G 6∼ ? contradicts from the fact that α ∼ ? for any type α.

Case otherwise: t : A⇒p B does not takes a step.

Case (SF NEG): We are given t : A ⇒p̄ B sf p for some t , A, and B . By inversion, we
have t sf p and A <:− B . By case analysis on t .

Case t 7−→ u : By the IH, and (E STEP) or (E ABORT).

Case t = blame q : Obviously q 6= p, so we finish.

Case t = v : There are no reduction rules that imply blame p.

Case otherwise: t : A⇒p B does not takes a step.

Case (SF CONST), (SF VAR), and (SF ABS), (SF BLAME), (SF SHIFT): Obvious.

Case (SF OP): By the IHs and (SF CONST).

Case (SF APP): By the IHs.

Case (SF CAST), (SF GROUND), (SF IS): By the IH.

Case (SF RESET): By the IH.

Lemma A.2.5 (Substitution of Safety Value). If t sf p and v sf p, then t [x := v] sf p.

Proof. Straightforward by induction on the derivation of t sf p.

Lemma A.2.6. If F [Sk . s] sf p, then F [x] sf p for any x .

Proof. Straightforward by induction on the derivation of F [Sk . s] sf p.

Lemma 7 (Blame Preservation). (1) If s sf p and s −→ t , then t sf p.

Appendix A. Proofs of Gradual Typing with Delimited Control 117

(2) If s sf p and s 7−→ t , then t sf p.

Proof. (1) By induction on the derivation of s sf p.

Case (SF POS): We are given t : A⇒p B sf p for some t , A, and B . By inversion,
we have t sf p and A <:+ B . By case analysis on the reduction rule applied
to t : A⇒p B . In what follows, we suppose that t = v for some value v .

Case (R BASE) and (R DYN): Obvious.
Case (R WRAP): We are given

v : A′/α′ → B ′/β′ ⇒p A′′/α′′ → B ′′/β′′ −→
λx .Sk . (〈(k ((v (x : A′′ ⇒p̄ A′)) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′〉 : β′ ⇒p β′′)

where A = A′/α′ → B ′/β′ and B = A′′/α′′ → B ′′/β′′. Since A′/α′ →
B ′/β′ <:+ A′′/α′′ → B ′′/β′′, we have A′′ <:− A′ and B ′ <:+ B ′′ and
α′′ <:− α′ and β′ <:+ β′′. By (SF POS), (SF NEG), and other rules, we
finish.

Case (R GROUND): We are given v : A ⇒p ? −→ v : A ⇒p G ⇒ ? for
some G such that A ∼ G . Note that A 6= ?. From (SF GROUND) and
(SF CAST), it suffices to show that A <:+ G . By case analysis on A.

Case A = ι: Then, G = ι, and so we finish by (S+ REFL).
Case A = A′/α′ → B ′/α′: Then, G = ? / ? → ? / ?. Since ? <:− A′ and

B ′ <:+ ? and ? <:− α′ and β′ <:+ ? by (S− DYN) and (S+ DYN), we
have A′/α′ → B ′/β′ <:+ ?/?→ ?/? by (S+ FUN).

Case (R COLLAPSE): We are given v ′ : G ⇒ ? ⇒p B −→ v ′ : G ⇒p B for
some v ′ and G such that G ∼ B and B 6= ?. Since ? <:+ B , B = ?
from (S+ REFL) and (S+ DYN). Thus, contradictory.

Case (R CONFLICT): We are given v ′ : G ⇒ ? ⇒p B −→ blame p for some
v ′ and G such that G 6∼ B . Since ? <:+ B , B = ? from (S+ REFL)
and (S+ DYN). However, it contradicts from G 6∼ B since G ∼ ? by
(C DYNTO).

Case (SF NEG): We are given t : A⇒p̄ B sf p for some t , A, and B . By inversion,
we have t sf p and A <:− B . By case analysis on the reduction rule applied
to t : A⇒p̄ B . In what follows, we suppose that t = v for some value v .

Case (R BASE) and (R DYN): Obvious.
Case (R WRAP): We are given

v : A′/α′ → B ′/β′ ⇒p̄ A′′/α′′ → B ′′/β′′ −→
λx .Sk . (〈(k ((v (x : A′′ ⇒p A′)) : B ′ ⇒p̄ B ′′)) : α′′ ⇒p α′〉 : β′ ⇒p̄ β′′)

where A = A′/α′ → B ′/β′ and B = A′′/α′′ → B ′′/β′′. It suffices to
show that A′′ <:+ A′ and B ′ <:− B ′′ and α′′ <:+ α′ and β′ <:− β′′.
By case analysis on the rule applied last to derive A′/α′ → B ′/β′ <:−

A′′/α′′ → B ′′/β′′.
Case (S− FUN): Obvious.
Case (S− ANY): By inversion, A′/α′ → B ′/β′ <:− G for some G . By

Lemma 3, A′ = α′ = ? and B ′ <:− B ′′ and β′ <:− β′′. By (S+ DYN),
A′′ <:+ A′ and α′′ <:+ α′.

118 Appendix A. Proofs of Gradual Typing with Delimited Control

Case (R GROUND): We are given v : A ⇒p̄ ? −→ v : A ⇒p̄ G ⇒ ? for
some G such that A ∼ G . Note that A 6= ?. From (SF GROUND) and
(SF CAST), it suffices to show that A <:− G .
Since A <:− ?, we have A = ? from (S− REFL) and (S− DYN) or A <:−

H for some H . If A = ?, then it contradicts from A 6= ?; otherwise, if
A <:− H , then we finish by (S− ANY).

Case (R COLLAPSE): We are given v ′ : G ⇒ ? ⇒p̄ B −→ v ′ : G ⇒p̄ B
for some v ′ and G such that G ∼ B and B 6= ?. Since G <:− G by
(S− REFL), we have G <:− B by (S− ANY).

Case (R CONFLICT): We are given v ′ : G ⇒? ⇒p̄ B −→ blame p̄ for some v ′

and G such that G 6∼ B . By (SF BLAME).

Case (SF CONST), (SF VAR), (SF ABS), (SF GROUND), (SF BLAME), and
(SF SHIFT): Contradictory.

Case (SF OP): By (SF CONST).

Case (SF APP): By Lemma A.2.5.

Case (SF CAST): Straightforward by safety rules.

Case (SF IS): By (SF CONST).

Case (SF RESET): By Lemmas A.2.6 and A.2.5.

(2) By case analysis on the evaluation rule applied.

Case (E STEP): Straightforward by induction on the derivation of s sf p with case
(1).

Case (E ABORT): We are given E [blame q] 7−→ blame q for some E and q . Since
E [blame q] sf p, q 6= p. Thus, we finish by (SF BLAME).

Theorem 2 (Blame Theorem and Subtype Theorem). Let s be a term with a subterm t :
A ⇒p B where cast is labeled by the only occurrence of p in s . Moreover, suppose that p̄ does
not appear in s .

(1) If A <:+ B , then s 67−→∗ blame p.

(2) If A <:− B , then s 67−→∗ blame p̄.

(3) If A <:n B , then s 67−→∗ blame p; if B <:n A, then s 67−→∗ blame p̄.

(4) If A <: B , then s 67−→∗ blame p and s 67−→∗ blame p̄.

Proof.

(1) Since s sf p, we finish by Lemmas 6 and 7 (2).

(2) Since s sf p̄, we finish by Lemmas 6 and 7 (2).

(3) By cases (1) and (2) and Lemma 4.

(4) By cases (1) and (2) and Lemma 5.

Appendix A. Proofs of Gradual Typing with Delimited Control 119

A.3 CPS Transformation

This sections shows two properties as a proof of correctness of our CPS transforma-
tion. The first property (Theorem 3), which states that the transformation preserves
well-typedness, is easy to show, while the second (Theorem 4), which states that the
transformation preserves term equality, is not.

Lemma A.3.1. If A ∼ B , then [[A]] ∼ [[B]].

Proof. By induction on the derivation of A ∼ B .

Case (C DYNTO), (C DYNFROM), and (C BASE): Obvious.

Case (C FUN): We are given A′/α′ → B ′/β′ ∼ A′′/α′′ → B ′′/β′′. By inversion, we
have A′′ ∼ A′ and B ′ ∼ B ′′ and α′′ ∼ α′ and β′ ∼ β′′. By the IHs, [[A′′]] ∼ [[A′]]
and [[B ′]] ∼ [[B ′′]] and [[α′′]] ∼ [[α′]] and [[β′]] ∼ [[β′′]]. Here, [[A′]] → ([[B ′]] →
[[α′]])→ [[β′]] ∼ [[A′′]]→ ([[B ′′]]→ [[α′′]])→ [[β′′]] holds.

Theorem 3 (Preservation of Type). If Γ;α ` s : A;β, then [[Γ]] ` [[s]] : ([[A]] → [[α]]) →
[[β]].

Proof. By induction on the typing derivation. In the following, we use weakening and
substitution lemmas for the target calculus; it is easy to prove the lemmas.

Case (T CONST): We are given Γ;α ` c : ty (c);α. By definition, [[c]] = λκ. κ c. Since
[[ty (c)]] = ty (c), [[Γ]] ` λκ. κ c : (ty (c)→ [[α]])→ [[α]] holds obviously.

Case (T OP): We are given Γ;α ` op(ti
i
) : ι;β. By inversion, we have, for any i ,

Γ;αi ` ti : ιi ;αi−1, and ty (op) = ιi
i → ι and α = αn and β = α0. By the

IHs, [[Γ]] ` [[ti]] : ([[ιi]] → [[αi]]) → [[αi−1]], for any i . Thus, [[Γ]], κ:[[ι]] → [[α]] `
[[t1]] (λx1. . . . [[tn]] (λxn . κ op(xi

i)) . . .) : β. By definition of CPS transformation,
we finish.

Case (T VAR): We are given Γ;α ` x : A;α. By inversion, we have x :A ∈ Γ. Since
[[Γ]] ` x : [[A]] and [[x]] = λκ. κ x , we have [[Γ]] ` λκ. κ x : ([[A]]→ [[α]])→ [[α]].

Case (T ABS): We are given Γ;α ` λx . t : A′/α′ → B ′/β′;α. By inversion, we have
Γ, x :A′;α′ ` t : B ′;β′. By the IH, [[Γ]], x :[[A′]] ` [[t]] : ([[B ′]] → [[α′]]) → [[β′]].
Then, [[Γ]] ` λx . [[t]] : [[A′]] → ([[B ′]] → [[α′]]) → [[β′]]. Here, we have [[Γ]] `
λκ. κ (λx . [[t]]) : (([[A′]] → ([[B ′]] → [[α′]]) → [[β′]]) → [[α]]) → [[α]]. Since [[λx . t]] =
λκ. κ (λx . [[t]]), we finish.

Case (T APP): We are given Γ;α ` t u : A;β. By inversion, we have Γ; γ ` t : A′/α→
A/β′;β and Γ;β′ ` u : A′; γ. Here,

[[Γ]], κ:[[A]]→ [[α]], x :[[A′]]→ ([[A]]→ [[α]])→ [[β′]], y :[[A′]] ` x y κ : [[β′]].

Thus,

[[Γ]], κ:[[A]]→ [[α]], x :[[A′]]→ ([[A]]→ [[α]])→ [[β′]] ` λy . x y κ : [[A′]]→ [[β′]].

Since [[Γ]] ` [[u]] : ([[A′]]→ [[β′]])→ [[γ]] by the IH, we have

[[Γ]], κ:[[A]]→ [[α]] ` λx . [[u]] (λy . x y κ) : ([[A′]]→ ([[A]]→ [[α]])→ [[β′]])→ [[γ]].

120 Appendix A. Proofs of Gradual Typing with Delimited Control

Since [[Γ]] ` [[t]] : (([[A′]] → ([[A]] → [[α]]) → [[β′]]) → ([[γ]])) → [[β]] by the IH, we
have

[[Γ]] ` λκ. [[t]] (λx . [[u]] (λy . x y κ)) : ([[A]]→ [[α]])→ [[β]].

Since [[t u]] = λκ. [[t]] (λx . [[u]] (λy . x y κ)), we finish.

Case (T CAST): We are given Γ;α ` t : A′ ⇒p A : A;β. By inversion, we have
Γ;α ` t : A′;β and A′ ∼ A. By the IH, [[Γ]] ` [[t]] : ([[A′]] → [[α]]) → [[β]]. By
Lemma A.3.1, [[Γ]], x :[[A′]] ` x : [[A′]] ⇒p [[A]] : [[A]]. Thus, [[Γ]], κ:[[A]] → [[α]] `
[[t]] (λx . κ (x : [[A′]] ⇒p [[A]])) : [[β]], and so [[Γ]] ` λκ. [[t]] (λx . κ (x : [[A′]] ⇒p

[[A]])) : ([[A]]→ [[α]])→ [[β]]. We finish by definition of CPS transformation.

Case (T GROUND): We are given Γ;α ` t : G ⇒p ? : ?;β. By inversion, we have
Γ;α ` t : G ;β. By the IH, [[Γ]] ` [[t]] : ([[G]]→ [[α]])→ [[β]]. By case analysis on G .

Case G = ι: By definition, [[t : ι ⇒p ?]] = λκ. [[t]] (λx . κ (x : ι ⇒ ?)).
Since [[Γ]], κ:? → [[α]] ` λx . κ (x : ι ⇒ ?) : [[ι]] → [[α]], we have
[[Γ]] ` λκ. [[t]] (λx . κ (x : ι⇒ ?)) : (?→ [[α]])→ [[β]].

Case G = ? / ? → ? / ?: By definition, [[t : ? / ? → ? / ? ⇒p ?]] =
λκ. [[t]] (λx . κ ((λy . (x y) : (? → ?) → ? ⇒p ?) : ? → ? ⇒ ?)). Since
[[Γ]], κ:? → [[α]] ` λx . κ ((λy . (x y) : (? → ?) → ? ⇒p ?) : ? → ? ⇒ ?) :
[[?/? → ?/?]] → [[α]], we have [[Γ]] ` λκ. [[t]] (λx . κ ((λy . (x y) : (? → ?) →
?⇒p ?) : ? → ?⇒ ?)) : (?→ [[α]])→ [[β]].

Case (T IS): We are given Γ;α ` t isG : bool;β. By inversion, we have Γ;α ` t : ?;β.
By the IH, [[Γ]] ` [[t]] : (?→ [[α]])→ [[β]]. By case analysis on G .

Case G = ι: By definition, [[t is ι]] = λκ. [[t]] (λx . κ (x is ι)). Since [[Γ]], κ:bool →
[[α]] ` λx . κ (x is ι) : ? → [[α]], we have [[Γ]] ` λκ. [[t]] (λx . κ (x is ι)) : (bool →
[[α]])→ [[β]].

Case G = ? / ? → ? / ?: Similarly to the above.

Case (T BLAME): We are given Γ;α ` blame p : A;β. Since [[blame p]] = λκ. blame p
and [[Γ]] ` λκ. blame p : ([[A]]→ [[α]])→ [[β]], we finish.

Case (T SHIFT): We are given Γ;α ` Sk . t : A;β. By inversion, Γ, k :A/γ → α/γ; δ `
t : δ;β. By the IH, [[Γ]], k :[[A]] → ([[α]] → [[γ]]) → [[γ]] ` [[t]] : ([[δ]] →
[[δ]]) → [[β]]. By definition, [[Sk . t]] = λκ. ([[t]] (λx . x)) [k := λx . λκ′. κ′ (κ x)].
Since [[Γ]], κ:[[A]] → [[α]] ` λx . λκ′. κ′ (κ x) : [[A]] → ([[α]] → [[γ]]) → [[γ]],
we have [[Γ]], κ:[[A]] → [[α]] ` ([[t]] (λx . x)) [k := λx . λκ′. κ′ (κ x)] : [[β]]. Thus,
[[Γ]] ` λκ. ([[t]] (λx . x)) [k := λx . λκ′. κ′ (κ x)] : ([[A]]→ [[α]])→ [[β]].

Case (T RESET): We are given Γ;α ` 〈t〉 : A;α. By inversion, Γ; γ ` t : γ;A. By the
IH, [[Γ]] ` [[t]] : ([[γ]] → [[γ]]) → [[A]]. By definition, [[〈t〉]] = λκ. κ ([[t]] (λx . x))
Since [[Γ]] ` [[t]] (λx . x) : [[A]], we have [[Γ]] ` λκ. κ ([[t]] (λx . x)) : ([[A]] → [[α]]) →
[[α]].

From now, we show that our CPS transformation preserves term equality. To clarify
statements and proofs, we define term relations each of which is the least congruence
satisfying one axiom in Definition 1. Recall that we use metavariables e, E, and A (and
B) to denote terms, evaluation contexts, and types in the target calculus, respectively,
and =⇒ to denote the evaluation relation in the target calculus, and write fv (v) and
fv (E) for the sets of free variables in v and E, respectively.

Appendix A. Proofs of Gradual Typing with Delimited Control 121

Definition 11 (Term Equality). Let

• β
= be the least congruence that contains evaluation relation =⇒,

• η
= be the least congruence that relates λx .v x to v for any x and v such that x /∈ fv (v),

• ω
= be the least congruence that relates (λx .E[x]) e to E[e] for any x , E, and e such that
x /∈ fv (E),

• ξ
= be the least congruence that relates e : ?⇒p ?→ ?⇒p A→ B to e : ?⇒p A→ B
for any e, p, A, and B, and

• υ
= be the least congruence that relates e : ?⇒p ? to e for any e and p.

For any subset Σ of {β, η, ω, ξ, υ}, we write Σ
= to denote the transitive and symmetric closure

of
⋃
σ∈Σ

σ
=.

Note that the relation ≈ given in Definition 1 coincides with
βηωξυ

= .

Lemma A.3.2. If G ∼ ι, then G = ι.

Proof. Straightforward by case analysis on the compatibility rule applied last to G ∼
ι.

Lemma A.3.3. If G ∼ A/α→ B/β, then G = ? / ? → ? / ?.

Proof. Straightforward by case analysis on the compatibility rule applied last to G ∼
A/α→ B/β.

Lemma A.3.4.

(1) [[s [x := v]]] = [[s]] [x := v∗].

(2) (v ′ [x := v])∗ = v ′∗ [x := v∗].

Proof. By mutual induction on structures of s and v ′.

(1) By case analysis on s .

Case s = v ′: [[v ′ [x := v]]] = λκ. κ (v ′ [x := v])∗. Similarly to case (2), we have
(v ′ [x := v])∗ = v ′∗ [x := v∗]. Thus, [[v ′ [x := v]]] = λκ. κ v ′∗ [x := v∗] =
[[v ′]] [x := v∗].

Case s = op(ti
i
): Similarly to the case for function applications.

Case s = t u :

[[(t u) [x := v]]]

= [[(t [x := v]) (u [x := v])]]

= λκ. [[t [x := v]]] (λy . [[u [x := v]]] (λz . y z κ))

= λκ. [[t]] [x := v∗] (λy . [[u]] [x := v∗] (λz . y z κ)) (by the IHs)
= (λκ. [[t]] (λy . [[u]] (λz . y z κ))) [x := v∗]

= [[t u]] [x := v∗].

122 Appendix A. Proofs of Gradual Typing with Delimited Control

Case s = 〈t〉:

[[〈t〉 [x := v]]] = [[〈t [x := v]〉]]
= λκ. κ ([[t [x := v]]] (λy . y))

= λκ. κ ([[t]] [x := v∗] (λy . y)) (by the IH)
= (λκ. κ ([[t]] (λy . y))) [x := v∗]

= [[〈t〉]] [x := v∗].

Case s = Sk . t : Without loss of generality, we can suppose that k 6= x and
k /∈ fv (v) ∪ fv (v∗).

[[(Sk . t) [x := v]]]

= [[(Sk . t [x := v])]]

= λκ. [[t [x := v]]] [k := λy . λκ′. κ′ (κ y)] (λz . z)

= λκ. [[t]] [x := v∗] [k := λy . λκ′. κ′ (κ y)] (λz . z) (by the IH)
= (λκ. [[t]] [k := λy . λκ′. κ′ (κ y)]) [x := v∗] (λz . z)

= [[Sk . t]] [x := v∗].

Case s = t : A⇒p B :

[[(t : A⇒p B) [x := v]]]

= [[t [x := v] : A⇒p B]]

= λκ. [[t [x := v]]] (λy . κ (y : [[A]]⇒p [[B]]))

= λκ. [[t]] [x := v∗] (λy . κ (y : [[A]]⇒p [[B]])) (by the IH)
= (λκ. [[t]] (λy . κ (y : [[A]]⇒p [[B]]))) [x := v∗]

= [[t : A⇒p B]] [x := v∗].

Case s = t : G ⇒ ?:

[[(t : G ⇒ ?) [x := v]]]

= [[t [x := v] : G ⇒ ?]]

= λκ. [[t [x := v]]] (λy . κ (y : G ⇒ ?)∗)

= λκ. [[t]] [x := v∗] (λy . κ (y : G ⇒ ?)∗) (by the IH)
= (λκ. [[t]] (λy . κ (y : G ⇒ ?)∗)) [x := v∗]

= [[t : G ⇒ ?]] [x := v∗].

Case s = t is ι:

[[(t is ι) [x := v]]] = [[t [x := v] is ι]]

= λκ. [[t [x := v]]] (λy . κ (y is ι))

= λκ. [[t]] [x := v∗] (λy . κ (y is ι)) (by the IH)
= (λκ. [[t]] (λy . κ (y is ι))) [x := v∗]

= [[t is ι]] [x := v∗].

Appendix A. Proofs of Gradual Typing with Delimited Control 123

Case s = t is ? / ? → ? / ?:

[[(t is ? / ? → ? / ?) [x := v]]]

= [[t [x := v] is ? / ? → ? / ?]]

= λκ. [[t [x := v]]] (λy . κ (y is ? → ?))

= λκ. [[t]] [x := v∗] (λy . κ (y is ? → ?)) (by the IH)
= (λκ. [[t]] (λy . κ (y is ? → ?))) [x := v∗]

= [[t is ? / ? → ? / ?]] [x := v∗].

Case s = blame p:

[[(blame p) [x := v]]] = [[blame p]]

= λκ. blame p

= (λκ. blame p) [x := v∗]

= [[blame p]] [x := v∗].

(2) By case analysis on v ′.

Case v ′ = y : If y = x , then:

(x [x := v])∗ = v∗

= x [x := v∗]

= x ∗ [x := v∗].

Otherwise, if y 6= x , then:

(y [x := v])∗ = y∗

= y

= y [x := v∗]

= y∗ [x := v∗].

Case v ′ = c:

(c [x := v])∗ = c∗

= c

= c [x := v∗]

= c∗ [x := v∗].

Case v ′ = λy . t : Without loss of generality, we can suppose that y 6= x and
y /∈ fv (v) ∪ fv (v∗). Thus,

((λy . t) [x := v])∗ = (λy . t [x := v])∗

= λy . [[t [x := v]]]

= λy . [[t]] [x := v∗] (by the IH)
= (λy . [[t]]) [x := v∗]

= (λy . t)∗ [x := v∗].

124 Appendix A. Proofs of Gradual Typing with Delimited Control

Case v ′ = v ′′ : ι⇒ ?:

((v ′′ : ι⇒ ?) [x := v])∗ = ((v ′′ [x := v]) : ι⇒ ?)∗

= (v ′′ [x := v])∗ : ι⇒ ?

= (v ′′
∗

[x := v∗]) : ι⇒ ? (by the IH)
= (v ′′

∗
: ι⇒ ?) [x := v∗]

= (v ′′ : ι⇒ ?)∗ [x := v∗].

Case v ′ = v ′′ : ? / ? → ? / ?⇒p ?:

((v ′′ : ? / ? → ? / ?⇒p ?) [x := v])∗

= (v ′′ [x := v] : ? / ? → ? / ?⇒p ?)∗

= (λy . ((v ′′ [x := v])∗ y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?
= (λy . (v ′′∗ [x := v∗] y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ? (by the IH)
= ((λy . (v ′′∗ y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?) [x := v∗]
= (v ′′ : ? / ? → ? / ?⇒p ?)∗ [x := v∗].

We show that the CPS-transformation result of term E [s] is equivalent to the com-
position of the CPS-transformation results of E and s . Before proving it, we define
a CPS transformation for evaluation contexts; note that it is also a transformation for
pure evaluation contexts.

Definition 12 (CPS Transformation for Evaluation Contexts). We define CPS transforma-
tion for evaluation contexts as follows.

[[[]]] = λx . x

[[op(vi
i ,E , tj

j
)]] = λx . λκ. [[E]] x (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ op(vi∗

i
, y , yj

j))))

[[E s]] = λx . λκ. [[E]] x (λy . [[s]] (λz . y z κ))

[[v E]] = λx . λκ. [[v]] (λy . [[E]] x (λz . y z κ))

[[〈E 〉]] = λx . λκ. κ ([[E]] x (λy . y))

[[E : A⇒p B]] = λx . λκ. [[E]] x (λy . κ (y : [[A]]⇒p [[B]]))

[[E : ι⇒ ?]] = λx . λκ. [[E]] x (λy . κ (y : ι⇒ ?))

[[E : ? / ? → ? / ?⇒p ?]] =
λx . λκ. [[E]] x (λy . κ ((λz . (y z) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))

[[E is ι]] = λx . λκ. [[E]] x (λy . κ (y is ι))

[[E is ? / ? → ? / ?]] = λx . λκ. [[E]] x (λy . κ (y is ? → ?))

Lemma A.3.5. [[E]] [[s]]
β
= [[E [s]]].

Proof. By structural induction on E . Note that [[s]] is a value.

Case E = []:

[[[]]] [[s]] = (λx . x) [[s]]
β
= [[s]] = [[[] [s]]].

Case E = op(vi
i ,E ′, tj

j
): Similarly to the case for function applications.

Appendix A. Proofs of Gradual Typing with Delimited Control 125

Case E = E ′ t :

[[E ′ t]] [[s]] = (λx . λκ. [[E ′]] x (λy . [[t]] (λz . y z κ))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . [[t]] (λz . y z κ))
β
= λκ. [[E ′[s]]] (λy . [[t]] (λz . y z κ)) (by the IH)
= [[E ′[s] t]].

Case E = v E ′:

[[v E ′]] [[s]] = (λx . λκ. [[v]] (λy . [[E ′]] x (λz . y z κ))) [[s]]
β
= λκ. [[v]] (λy . [[E ′]] [[s]] (λz . y z κ))
β
= λκ. [[v]] (λy . [[E ′[s]]] (λz . y z κ)) (by the IH)
= [[v E ′[s]]].

Case E = 〈E ′〉:

[[〈E ′〉]] [[s]] = (λx . λκ. κ ([[E ′]] x (λy . y))) [[s]]
β
= λκ. κ ([[E ′]] [[s]] (λy . y))
β
= λκ. κ ([[E ′[s]]] (λy . y)) (by the IH)
= [[〈E ′[s]〉]]

Case E = E ′ : A⇒p B :

[[E ′ : A⇒p B]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ (y : [[A]]⇒p [[B]]))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ (y : [[A]]⇒p [[B]]))
β
= λκ. [[E ′[s]]] (λy . κ (y : [[A]]⇒p [[B]])) (by the IH)
= [[E ′[s] : A⇒p B]].

Case E = E ′ : ι⇒ ?:

[[E ′ : ι⇒ ?]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ (y : ι⇒ ?))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ (y : ι⇒ ?))
β
= λκ. [[E ′[s]]] (λy . κ (y : ι⇒ ?)) (by the IH)
= [[E ′[s] : ι⇒ ?]].

Case E = E ′ : ? / ? → ? / ?⇒p ?:

[[E ′ : ? / ? → ? / ?⇒p ?]] [[s]]

= (λx . λκ. [[E ′]] x (λy . κ ((λz . (y z) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ ((λz . (y z) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))
β
= λκ. [[E ′[s]]] (λy . κ ((λz . (y z) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))

= [[E ′[s] : ? / ? → ? / ?⇒ ?]].

126 Appendix A. Proofs of Gradual Typing with Delimited Control

Case E = E ′ is ι:

[[E ′ is ι]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ (y is ι))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ (y is ι))
β
= λκ. [[E ′[s]]] (λy . κ (y is ι)) (by the IH)
= [[E ′[s] is ι]].

Case E = E ′ is ? / ? → ? / ?:

[[E ′ is ? / ? → ? / ?]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ (y is ? → ?))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ (y is ? → ?))
β
= λκ. [[E ′[s]]] (λy . κ (y is ? → ?)) (by the IH)
= [[E ′[s] is ? / ? → ? / ?]].

Lemma A.3.6. [[F]] [[s]]
βη
= λκ. [[s]] (λx . [[F]] (λκ′. κ′ x)κ) where x /∈ fv (F).

Proof. By structural induction on F .

Case F = []:

[[[]]] [[s]]
β
= [[s]]
η
= λκ. [[s]]κ
η
= λκ. [[s]] (λx . κ x)
β
= λκ. [[s]] (λx . (λκ′. κ′ x)κ)
β
= λκ. [[s]] (λx . [[[]]] (λκ′. κ′ x)κ).

Case F = op(vi
i ,F ′, tj

j
):

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ op(vi∗

i
, y , yj

j))))

βη
= λκ. (λκ′. [[s]] (λz . [[F ′]] (λκ′′. κ′′ z)κ′))

(λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ op(vi∗
i
, y , yj

j)))) (by the IH)
β
= λκ. [[s]] (λz . [[F ′]] (λκ′′. κ′′ z) (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ op(vi∗

i
, y , yj

j)))))

β
= λκ. [[s]] (λz . (λx . λκ′. [[F ′]] x (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ

′ op(vi∗
i
, y , yj

j)))))

(λκ′′. κ′′ z)κ)

= λκ. [[s]] (λz . [[F]] (λκ′′. κ′′ z)κ).

Appendix A. Proofs of Gradual Typing with Delimited Control 127

Case F = F ′ t :

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . [[t]] (λy . x y κ))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . [[t]] (λy . x y κ)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . [[t]] (λy . x y κ)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . [[t]] (λy . x y κ′))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = v F ′:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . v∗ x κ)
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . v∗ x κ) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . v∗ x κ))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . v∗ x κ′)) (λκ′′. κ′′ y)κ)
β
= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = F ′ : A⇒p B :

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ (x : [[A]]⇒p [[B]]))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ (x : [[A]]⇒p [[B]]))

(by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ (x : [[A]]⇒p [[B]])))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ (x : [[A]]⇒p [[B]]))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = F ′ : ι⇒ ?:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ (x : ι⇒ ?))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ (x : ι⇒ ?)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ (x : ι⇒ ?)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ (x : ι⇒ ?))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

128 Appendix A. Proofs of Gradual Typing with Delimited Control

Case F = F ′ : ? / ? → ? / ?⇒p ?:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ ((λz . (y z) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′))

(λx . κ ((λz . (y z) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))

(by the IH)
β
= λκ. [[s]]

(λy . [[F ′]] (λκ′′. κ′′ y)

(λx . κ ((λz . (y z) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?)))
β
= λκ. [[s]]

(λy . (λz . λκ′. [[F ′]] z

(λx . κ′ ((λz . (y z) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?)))

(λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = F ′ is ι:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ (x is ι))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ (x is ι)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ (x is ι)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ (x is ι))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = F ′ is ? / ? → ? / ?:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ (x is ? → ?))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ (x is ? → ?)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ (x is ? → ?)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ (x is ? → ?))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Lemma A.3.7. [[E]] [[blame p]]
βη
= [[blame p]].

Proof. We first show

[[E]] [[blame p]]
βη
= λκ. [[blame p]] (λx . [[E]] (λκ′. κ′ x)κ),

where x /∈ fv (E), by structural induction on E . We show only the case for E = 〈E ′〉;
other cases can be proven similarly to Lemma A.3.6. Suppose that E = 〈E ′〉 for some

Appendix A. Proofs of Gradual Typing with Delimited Control 129

E ′. Then,

[[〈E ′〉]] [[blame p]]
β
= λκ. κ ([[E ′]] [[blame p]] (λx . x))
βη
= λκ. κ ((λκ′. [[blame p]] (λx . [[E]] (λκ′′. κ′′ x)κ′)) (λx . x)) (by the IH)
β
= λκ. κ (blame p)
β
= λκ. blame p
β
= λκ. [[blame p]] (λx . [[E]] (λκ′. κ′ x)κ).

Next, we show [[E]] [[blame p]]
βη
= [[blame p]]. By the proof above,

[[E]] [[blame p]]
βη
= λκ. [[blame p]] (λx . [[E]] (λκ′. κ′ x)κ)
β
= λκ. blame p

= [[blame p]].

Lemma A.3.8. e : (A→ B)→ C⇒p (?→ ?)→ ?⇒p ?
βωξυ
= e : (A→ B)→ C⇒p ?

Proof.

e : (A→ B)→ C⇒p (?→ ?)→ ?⇒p ?
ω
= (λx . x : (A→ B)→ C⇒p (?→ ?)→ ?⇒p ?) e
β
= (λx . (λy . x (y : ?→ ?⇒p̄ A→ B) : C⇒p ?) : (?→ ?)→ ?⇒p ?) e
β
= (λx . (λy . x (y : ?→ ?⇒p̄ A→ B) : C⇒p ?) : (?→ ?)→ ?⇒p ? → ?⇒ ?) e
β
= (λx . (λz . ((λy . x (y : ?→ ?⇒p̄ A→ B) : C⇒p ?)

(z : ?⇒p̄ ?→ ?)) : ?⇒p ?) : ? → ?⇒ ?) e
ω
= (λx . (λz . x (z : ?⇒p̄ ?→ ?⇒p̄ A→ B) : C⇒p ?⇒p ?) : ? → ?⇒ ?) e
υ
= (λx . (λz . x (z : ?⇒p̄ ?→ ?⇒p̄ A→ B) : C⇒p ?) : ? → ?⇒ ?) e
ξ
= (λx . (λz . x (z : ?⇒p̄ A→ B) : C⇒p ?) : ? → ?⇒ ?) e
β
= (λx . x : (A→ B)→ C⇒p ? → ?⇒ ?) e
β
= (λx . x : (A→ B)→ C⇒p ?) e
ω
= e : (A→ B)→ C⇒p ?

Lemma A.3.9. e : (? → ?) → ? ⇒p ? ⇒q (A → B) → C βωυ
= e : (? → ?) → ? ⇒q

(A→ B)→ C

130 Appendix A. Proofs of Gradual Typing with Delimited Control

Proof.

e : (?→ ?)→ ?⇒p ?⇒q (A→ B)→ C
ω
= (λx . x : (?→ ?)→ ?⇒p ?⇒q (A→ B)→ C) e
β
= (λx . x : (?→ ?)→ ?⇒p ? → ?⇒?⇒q (A→ B)→ C) e
β
= (λx . (λy . x (y : ?⇒p̄ ?→ ?) : ?⇒p ?) : ? → ?⇒?⇒q (A→ B)→ C) e
υ
= (λx . (λy . x (y : ?⇒p̄ ?→ ?)) : ? → ?⇒?⇒q (A→ B)→ C) e
β
= (λx . (λy . x (y : ?⇒p̄ ?→ ?)) : ?→ ?⇒q (A→ B)→ C) e
β
= (λx . (λz . (λy . x (y : ?⇒p̄ ?→ ?)) (z : (A→ B)⇒q̄ ?) : ?⇒q C)) e
β
= (λx . (λz . x (z : (A→ B)⇒q̄ ?⇒p̄ ?→ ?) : ?⇒q C)) e
β
= (λx . (λz . x (z : (A→ B)⇒q̄ ? → ?⇒?⇒p̄ ?→ ?) : ?⇒q C)) e
β
= (λx . (λz . x

((λx ′. z (x ′ : ?⇒q A) : B⇒q̄ ?) : ? → ?⇒?⇒p̄ ?→ ?) : ?⇒q C)) e
β
= (λx . (λz . x

((λx ′. z (x ′ : ?⇒q A) : B⇒q̄ ?) : ?→ ?⇒p̄ ?→ ?) : ?⇒q C)) e
β
= (λx . (λz . x

(λy ′. (λx ′. z (x ′ : ?⇒q A) : B⇒q̄ ?) (y ′ : ?⇒p ?) : ?⇒p̄ ?) : ?⇒q C)) e
υ
= (λx . (λz . x (λy ′. (λx ′. z (x ′ : ?⇒q A) : B⇒q̄ ?) y ′) : ?⇒q C)) e
β
= (λx . (λz . x (λy ′. z (y ′ : ?⇒q A) : B⇒q̄ ?) : ?⇒q C)) e
β
= (λx . (λz . x (z : A→ B⇒q̄ ?→ ?) : ?⇒q C)) e
β
= (λx . x : (?→ ?)→ ?⇒q (A→ B)→ C) e
ω
= e : (?→ ?)→ ?⇒q (A→ B)→ C

Lemma A.3.10. If s −→ t , then [[s]]
βηωξυ

= [[t]].

Proof. By case analysis on the reduction rule applied to s .

Case (R OP): We are given op(vi
i) −→ ζ (op, vi

i) for some op and vi
i .

We show that [[op(vi
i)]]

β
= [[ζ (op, vi

i)]]. By definition, [[op(vi
i)]]

β
=

(λκ. [[v1]] (λx1. . . . [[vn]] (λxn . κ op(xi
i)))). Since op(vi

i) takes a step, all values vi
i

are constants. Thus, for each vi , [[vi]] = λκ′. κ′ vi , and so

[[op(vi
i)]]

β
= λκ. κ op(vi

i)
β
= λκ. κ ζ (op, vi

i)
β
= [[ζ (op, vi

i)]] (since ζ (op, vi
i) is a constant).

Appendix A. Proofs of Gradual Typing with Delimited Control 131

Case (R BETA): We are given (λx . u) v −→ u [x := v]. We show that [[(λx . u) v]]
β
=

[[u [x := v]]]. Here,

[[(λx . u) v]] = λκ. [[λx . u]] (λy . [[v]] (λz . y z κ))

= λκ. (λκ′. κ′ (λx . [[u]])) (λy . [[v]] (λz . y z κ))
β
= λκ. [[v]] (λz . (λx . [[u]]) z κ)

= λκ. (λκ′′. κ′′ v∗) (λz . (λx . [[u]]) z κ)
β
= λκ. (λx . [[u]]) v∗ κ
β
= λκ. [[u]] [x := v∗]κ

= λκ. [[u [x := v]]]κ (by Lemma A.3.4)
η
= [[u [x := v]]].

Case (R WRAP): We are given

v : A/α→ B/β ⇒p A′/α′ → B ′/β′ −→
λx .Sk . (〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′).

[[v : A/α→ B/β ⇒p A′/α′ → B ′/β′]]
= λκ. [[v]] (λx . κ (x : [[A/α→ B/β]]⇒p [[A′/α′ → B ′/β′]]))
β
= λκ. κ (v∗ : ([[A]]→ ([[B]]→ [[α]])→ [[β]])⇒p [[[[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]]]])
β
= λκ. κ (λx .

(v∗ (x : [[A′]]⇒p̄ [[A]])) : ([[B]]→ [[α]])→ [[β]]⇒p ([[B ′]]→ [[α′]])→ [[β′]])
ω
= λκ. κ (λx .

(λy . y : ([[B]]→ [[α]])→ [[β]]⇒p ([[B ′]]→ [[α′]])→ [[β′]])
(v∗ (x : [[A′]]⇒p̄ [[A]])))

β
= λκ. κ (λx .

(λy . λκ′. (y (κ′ : [[B ′]]→ [[α′]]⇒p̄ [[B]]→ [[α]])) : [[β]]⇒p [[β′]])
(v∗ (x : [[A′]]⇒p̄ [[A]])))

β
= λκ. κ (λx .

(λy . λκ′. (y (λz . (κ′ (z : [[B]]⇒p [[B ′]])) : [[α′]]⇒p̄ [[α]])) : [[β]]⇒p [[β′]])
(v∗ (x : [[A′]]⇒p̄ [[A]])))

ω
= λκ. κ (λx .

λκ′. (v∗ (x : [[A′]]⇒p̄ [[A]])
(λz . (κ′ (z : [[B]]⇒p [[B ′]])) : [[α′]]⇒p̄ [[α]])) : [[β]]⇒p [[β′]])

Moreover,

[[λx .Sk . (〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′)]]
= λκ. κ (λx .

[[Sk . (〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′)]])
= λκ. κ (λx .

λκ′. ([[〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′]]
(λy . y)) [k := λz . λκ′′. κ′′ (κ′ z)])

132 Appendix A. Proofs of Gradual Typing with Delimited Control

Here,

[[〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′]] (λy . y)
= (λκ′′′. [[〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉]]

(λx ′. κ′′′ (x ′ : [[β]]⇒p [[β′]])))
(λy . y)

β
= [[〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉]]

(λx ′. (λy . y) (x ′ : [[β]]⇒p [[β′]]))
ω
= [[〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉]]

(λx ′. x ′ : [[β]]⇒p [[β′]])
= (λκ′′′. κ′′′ ([[(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α]] (λy . y)))

(λx ′. x ′ : [[β]]⇒p [[β′]])
β
= (λx ′. x ′ : [[β]]⇒p [[β′]])

([[(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α]] (λy . y))
ω
= ([[(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α]] (λy . y)) : [[β]]⇒p [[β′]]
= ((λκ′′′. [[k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)]] (λx ′. κ′′′ (x ′ : [[α′]]⇒p̄ [[α]])))

(λy . y)) : [[β]]⇒p [[β′]]
β
= ([[k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)]]

(λx ′. (λy . y) (x ′ : [[α′]]⇒p̄ [[α]]))) : [[β]]⇒p [[β′]]
ω
= ([[k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)]]

(λx ′. x ′ : [[α′]]⇒p̄ [[α]])) : [[β]]⇒p [[β′]]
= ((λκ′′′. [[k]] (λx ′′. [[(v (x : A′ ⇒p̄ A)) : B ⇒p B ′]] (λy ′′. x ′′ y ′′ κ′′′)))

(λx ′. x ′ : [[α′]]⇒p̄ [[α]])) : [[β]]⇒p [[β′]]
β
= ([[k]] (λx ′′. [[(v (x : A′ ⇒p̄ A)) : B ⇒p B ′]]

(λy ′′. x ′′ y ′′ (λx ′. x ′ : [[α′]]⇒p̄ [[α]])))) : [[β]]⇒p [[β′]]
β
= ([[(v (x : A′ ⇒p̄ A)) : B ⇒p B ′]]

(λy ′′. k y ′′ (λx ′. x ′ : [[α′]]⇒p̄ [[α]]))) : [[β]]⇒p [[β′]]
= ((λκ′′′. [[v (x : A′ ⇒p̄ A)]] (λx ′′. κ′′′ (x ′′ : [[B]]⇒p [[B ′]])))

(λy ′′. k y ′′ (λx ′. x ′ : [[α′]]⇒p̄ [[α]]))) : [[β]]⇒p [[β′]]
β
= ([[v (x : A′ ⇒p̄ A)]]

(λx ′′. (λy ′′. k y ′′ (λx ′. x ′ : [[α′]]⇒p̄ [[α]]))
(x ′′ : [[B]]⇒p [[B ′]]))) : [[β]]⇒p [[β′]]

ω
= ([[v (x : A′ ⇒p̄ A)]]

(λx ′′. k (x ′′ : [[B]]⇒p [[B ′]]) (λx ′. x ′ : [[α′]]⇒p̄ [[α]]))) : [[β]]⇒p [[β′]]
= ((λκ′′′. [[v]] (λx ′′. [[x : A′ ⇒p̄ A]] (λy ′′. x ′′ y ′′ κ′′′)))

(λx ′′. k (x ′′ : [[B]]⇒p [[B ′]]) (λx ′. x ′ : [[α′]]⇒p̄ [[α]]))) : [[β]]⇒p [[β′]]
β
= ([[v]] (λx ′′′. [[x : A′ ⇒p̄ A]] (λy ′′. x ′′′ y ′′

(λx ′′. k (x ′′ : [[B]]⇒p [[B ′]]) (λx ′. x ′ : [[α′]]⇒p̄ [[α]]))))) : [[β]]⇒p [[β′]]

Appendix A. Proofs of Gradual Typing with Delimited Control 133

β
= ([[x : A′ ⇒p̄ A]] (λy ′′. v∗ y ′′

(λx ′′. k (x ′′ : [[B]]⇒p [[B ′]]) (λx ′. x ′ : [[α′]]⇒p̄ [[α]])))) : [[β]]⇒p [[β′]]
= ((λκ′′′. [[x]] (λx ′′′. κ′′′ (x ′′′ : [[A′]]⇒p̄ [[A]]))) (λy ′′. v∗ y ′′

(λx ′′. k (x ′′ : [[B]]⇒p [[B ′]]) (λx ′. x ′ : [[α′]]⇒p̄ [[α]])))) : [[β]]⇒p [[β′]]
β
= (([[x]] (λx ′′′. (λy ′′. v∗ y ′′ (λx ′′. k (x ′′ : [[B]]⇒p [[B ′]]) (λx ′. x ′ : [[α′]]⇒p̄ [[α]])))

(x ′′′ : [[A′]]⇒p̄ [[A]])))) : [[β]]⇒p [[β′]]
β
= ((λy ′′. v∗ y ′′ (λx ′′. k (x ′′ : [[B]]⇒p [[B ′]]) (λx ′. x ′ : [[α′]]⇒p̄ [[α]])))

(x : [[A′]]⇒p̄ [[A]])) : [[β]]⇒p [[β′]]
ω
= (v∗ (x : [[A′]]⇒p̄ [[A]])

(λx ′′. k (x ′′ : [[B]]⇒p [[B ′]]) (λx ′. x ′ : [[α′]]⇒p̄ [[α]]))) : [[β]]⇒p [[β′]].

Thus,

([[〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′]]
(λy . y)) [k := λz . λκ′′. κ′′ (κ′ z)]

βω
= (v∗ (x : [[A′]]⇒p̄ [[A]])

(λx ′′. (λz . λκ′′. κ′′ (κ′ z))
(x ′′ : [[B]]⇒p [[B ′]])
(λx ′. x ′ : [[α′]]⇒p̄ [[α]]))) : [[β]]⇒p [[β′]]

ω
= (v∗ (x : [[A′]]⇒p̄ [[A]])

(λx ′′. (λκ′′. κ′′ (κ′ (x ′′ : [[B]]⇒p [[B ′]])))
(λx ′. x ′ : [[α′]]⇒p̄ [[α]]))) : [[β]]⇒p [[β′]]

β
= (v∗ (x : [[A′]]⇒p̄ [[A]])

(λx ′′. (λx ′. x ′ : [[α′]]⇒p̄ [[α]]) (κ′ (x ′′ : [[B]]⇒p [[B ′]])))) : [[β]]⇒p [[β′]]
ω
= (v∗ (x : [[A′]]⇒p̄ [[A]])

(λx ′′. (κ′ (x ′′ : [[B]]⇒p [[B ′]])) : [[α′]]⇒p̄ [[α]])) : [[β]]⇒p [[β′]]

Therefore,

[[λx .Sk . (〈(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α〉 : β ⇒p β′)]]
βω
= λκ. κ (λx . λκ′.

(v∗ (x : [[A′]]⇒p̄ [[A]])
(λx ′′. (κ′ (x ′′ : [[B]]⇒p [[B ′]])) : [[α′]]⇒p̄ [[α]])) : [[β]]⇒p [[β′]])

βω
= [[v : A/α→ B/β ⇒p A′/α′ → B ′/β′]]

Case (R RESET): We are given 〈v〉 −→ v for some v . We show that [[〈v〉]] β
= [[v]]. Here,

[[〈v〉]] β
= λκ. κ ([[v]] (λx . x))
β
= λκ. κ v∗

β
= [[v]].

134 Appendix A. Proofs of Gradual Typing with Delimited Control

Case (R SHIFT): We are given 〈F [Sk . s]〉 −→ 〈s [k := λx . 〈F [x]〉]〉 where x /∈ fv (F).

We show that [[〈F [Sk . s]〉]] βη
= [[〈s [k := λx . 〈F [x]〉]〉]]. Here,

[[〈F [Sk . s]〉]]
= λκ. κ ([[F [Sk . s]]] (λy . y))
β
= λκ. κ ([[F]] [[Sk . s]] (λy . y)) (by Lemma A.3.5)
βη
= λκ. κ ((λκ′. [[Sk . s]] (λx . [[F]] (λκ′′. κ′′ x)κ′)) (λy . y)) (by Lemma A.3.6)
β
= λκ. κ ([[Sk . s]] (λx . [[F]] (λκ′′. κ′′ x) (λy . y)))

= λκ. κ

((λκ′′′. [[s]] [k := λz . λκ′′′′. κ′′′′ (κ′′′ z)] (λz . z)) (λx . [[F]] (λκ′′. κ′′ x) (λy . y)))
β
= λκ. κ ([[s]] [k := λz . λκ′′′′. κ′′′′ ((λx . [[F]] (λκ′′. κ′′ x) (λy . y)) z)] (λz . z))
β
= λκ. κ ([[s]] [k := λz . λκ′′′′. κ′′′′ ([[F]] (λκ′′. κ′′ z) (λy . y))] (λz . z))

= λκ. κ ([[s]] [k := λz . λκ′′′′. κ′′′′ ([[F]] [[z]] (λy . y))] (λz . z))
β
= λκ. κ ([[s]] [k := λz . λκ′′′′. κ′′′′ ([[F [z]]] (λy . y))] (λz . z)) (by Lemma A.3.5)
= λκ. κ ([[s]] [k := λz . [[〈F [z]〉]]] (λz . z))

= λκ. κ ([[s]] [k := (λz . 〈F [z]〉)∗] (λz . z))

= λκ. κ ([[s [k := λz . 〈F [z]〉]]] (λz . z)) (by Lemma A.3.4)
= [[〈s [k := λz . 〈F [z]〉]〉]].

Case (R BASE): We are given v : ι ⇒p ι −→ v for some v and ι. We show that

[[v : ι⇒p ι]]
β
= [[v]]. Here,

[[v : ι⇒p ι]]
β
= λκ. κ (v∗ : ι⇒p ι)
β
= λκ. κ v∗

= [[v]].

Case (R DYN): We are given v : ? ⇒p ? −→ v for some v . We show that [[v : ? ⇒p

?]]
υ
= [[v]]. Here,

[[v : ?⇒p ?]] = λκ. κ (v∗ : ?⇒p ?)
υ
= λκ. κ v∗

= [[v]].

Case (R GROUND): We are given v : A ⇒p ? −→ v : A ⇒p G ⇒p ? for some v , A,

p and G such that A ∼ G and A 6= ?. We show that [[v : A ⇒p ?]]
βωξυ
= [[v :

A⇒p G ⇒p ?]]. By case analysis on A.

Case A = ι: Then, we have G = ι by Lemma A.3.2. On one hand:

[[v : ι⇒p ?]]
β
= λκ. κ (v∗ : ι⇒p ?)
β
= λκ. κ (v∗ : ι⇒p ι⇒ ?)
β
= λκ. κ (v∗ : ι⇒ ?).

Appendix A. Proofs of Gradual Typing with Delimited Control 135

On the other hand:

[[v : ι⇒p ι⇒p ?]] = λκ. [[v : ι⇒p ι]] (λx . κ (x : ι⇒ ?))

β
= λκ. (λx . κ (x : ι⇒ ?)) (v∗ : ι⇒p ι)
β
= λκ. κ (v∗ : ι⇒ ?).

Therefore, we finish.

Case A = A′/α′ → B ′/β′: Then, we have G = ? / ? → ? / ? by Lemma A.3.3.
On one hand:

[[v : A′/α′ → B ′/β′ ⇒p ?]]
β
= λκ. κ (v∗ : [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]]⇒p ?)
β
= λκ. κ (v∗ : [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]]⇒p ? → ?⇒ ?)
β
= λκ. κ

((λx . v∗ (x : ?⇒p̄ [[A′]]) : ([[B ′]]→ [[α′]])→ [[β′]]⇒p ?) : ? → ?⇒ ?).

On the other hand:

[[v : A′/α′ → B ′/β′ ⇒p ? / ? → ? / ?⇒p ?]]
= λκ. [[v : A′/α′ → B ′/β′ ⇒p ?/?→ ?/?]]

(λx . κ (x : ? / ? → ? / ?⇒p ?)∗)
= λκ. [[v : A′/α′ → B ′/β′ ⇒p ?/?→ ?/?]]

(λx . κ ((λy . (x y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))
= λκ. (λκ′. κ′ (v∗ : [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]]⇒p ?→ (?→ ?)→ ?))

(λx . κ ((λy . (x y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))
β
= λκ. (λκ′. κ′ (λz . v∗ (z : ?⇒p̄ [[A′]])

: ([[B ′]]→ [[α′]])→ [[β′]]⇒p (?→ ?)→ ?))
(λx . κ ((λy . (x y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))

β
= λκ. κ ((λy . v∗ (y : ?⇒p̄ [[A′]])

: ([[B ′]]→ [[α′]])→ [[β′]]⇒p (?→ ?)→ ?⇒p ?)
: ? → ?⇒ ?)

βωξυ
= λκ. κ ((λy . v∗ (y : ?⇒p̄ [[A′]])

: ([[B ′]]→ [[α′]])→ [[β′]]⇒p ?) : ? → ?⇒ ?)
(by Lemma A.3.8).

Case (R COLLAPSE): We are given v : G ⇒?⇒p A −→ v : G ⇒p A for some v , G , p

and A such that G ∼ A and A 6= ?. We show that [[v : G ⇒? ⇒p A]]
βωξυ
= [[v :

G ⇒p A]] by case analysis on A.

Case A = ι: Then, G = ι by Lemma A.3.2. Thus,

[[v : ι⇒?⇒p ι]] = λκ. [[v : ι⇒ ?]] (λx . κ (x : ?⇒p ι))
β
= λκ. κ (v∗ : ι⇒?⇒p ι)
β
= λκ. κ (v∗ : ι⇒p ι)
β
= λκ. [[v]] (λx . κ (x : ι⇒p ι))
β
= [[v : ι⇒p ι]].

136 Appendix A. Proofs of Gradual Typing with Delimited Control

Case A = A′/α′ → B ′/β′: Then, G = ? / ? → ? / ? by Lemma A.3.3. Thus,

[[v : ? / ? → ? / ?⇒q ?⇒p A′/α′ → B ′/β′]]
= λκ. [[v : ? / ? → ? / ?⇒q ?]]

(λx . κ (x : ?⇒p [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]]))
= λκ. (λκ′. κ′ ((λy . (v∗ y) : (?→ ?)→ ?⇒q ?) : ? → ?⇒ ?))

(λx . κ (x : ?⇒p [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]]))
β
= λκ. κ ((λy . (v∗ y) : (?→ ?)→ ?⇒q ?)

: ? → ?⇒?⇒p [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]])
β
= λκ. κ ((λy . (v∗ y) : (?→ ?)→ ?⇒q ?)

: ?→ ?⇒p [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]])
β
= λκ. κ (λz . ((λy . (v∗ y) : (?→ ?)→ ?⇒q ?)

(z : [[A′]]⇒p̄ ?)) : ?⇒p ([[B ′]]→ [[α′]])→ [[β′]])
ω
= λκ. κ (λz . (v∗ (z : [[A′]]⇒p̄ ?))

: (?→ ?)→ ?⇒q ?⇒p ([[B ′]]→ [[α′]])→ [[β′]])
βωυ
= λκ. κ (λz . (v∗ (z : [[A′]]⇒p̄ ?))

: (?→ ?)→ ?⇒p ([[B ′]]→ [[α′]])→ [[β′]])
(by Lemma A.3.9)

β
= λκ. κ (v∗ : ?→ (?→ ?)→ ?⇒p [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]])
β
= [[v : ?/?→ ?/?⇒p A′/α′ → B ′/β′]]

Case (R CONFLICT): We are given v : G ⇒ ? ⇒p A −→ blame p for some v , G , p and

A such that G 6∼ A. We show that [[v : G ⇒ ? ⇒p A]]
β
= [[blame p]] by case

analysis on A.

Case A = ?: Contradictory since ? is compatible with any type.

Case A = ι: Then, G = ? / ? → ? / ? from G 6∼ A. Thus,

[[v : ? / ? → ? / ?⇒q ?⇒p ι]]
= λκ. [[v : ? / ? → ? / ?⇒q ?]] (λx . κ (x : ?⇒p ι))
= λκ. (λκ′. κ′ ((λy . (v∗ y) : (?→ ?)→ ?⇒q ?) : ? → ?⇒ ?))

(λx . κ (x : ?⇒p ι))
β
= λκ. κ ((λy . (v∗ y) : (?→ ?)→ ?⇒q ?) : ? → ?⇒?⇒p ι)
β
= λκ. κ (blame p)
β
= [[blame p]].

Case A = A′/α′ → B ′/β′: Then, G = ι for some ι from G 6∼ A. Thus,

[[v : ι⇒?⇒p A′/α′ → B ′/β′]]
= λκ. [[v : ι⇒ ?]] (λx . κ (x : ?⇒p [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]]))
= λκ. (λκ′. κ′ (v∗ : ι⇒ ?))

(λx . κ (x : ?⇒p [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]]))
β
= λκ. κ (v∗ : ι⇒?⇒p [[A′]]→ ([[B ′]]→ [[α′]])→ [[β′]])
β
= λκ. κ (blame p)
β
= [[blame p]].

Appendix A. Proofs of Gradual Typing with Delimited Control 137

Case (R ISTRUE): We are given (v : G ⇒ ?) isG −→ true for some v and G . We show

that [[(v : G ⇒ ?) isG]]
β
= [[true]] by case analysis on G .

Case G = ι: Then,

[[(v : ι⇒ ?) is ι]] = λκ. [[v : ι⇒ ?]] (λx . κ (x is ι))

= λκ. (λκ′. κ′ (v∗ : ι⇒ ?)) (λx . κ (x is ι))
β
= λκ. κ ((v∗ : ι⇒ ?) is ι)
β
= λκ. κ true

= [[true]].

Case G = ? / ? → ? / ?: Then,

[[(v : ? / ? → ? / ?⇒p ?) is ? / ? → ? / ?]]
= λκ. [[v : ? / ? → ? / ?⇒p ?]] (λx . κ (x is ? → ?))
= λκ. (λκ′. κ′ ((λy . (v∗ y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))

(λx . κ (x is ? → ?))
β
= λκ. κ (((λy . (v∗ y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?) is ? → ?)
β
= λκ. κ true
= [[true]].

Case (R ISFALSE): We are given (v : H ⇒ ?) isG −→ false for some v , H and G such

that H 6∼ G . We show that [[(v : H ⇒ ?) isG]]
β
= [[false]] by case analysis on G .

Case G = ι: By case analysis on H .

Case H = ι′ for some ι′ 6= ι:

[[(v : ι′ ⇒ ?) is ι]]
= λκ. [[v : ι′ ⇒ ?]] (λx . κ (x is ι))
= λκ. (λκ′. κ′ (v∗ : ι′ ⇒ ?)) (λx . κ (x is ι))
β
= λκ. κ ((v∗ : ι′ ⇒ ?) is ι)
β
= λκ. κ false
= [[false]].

Case H = ? / ? → ? / ?:

[[(v : ? / ? → ? / ?⇒p ?) is ι]]
= λκ. [[v : ? / ? → ? / ?⇒p ?]] (λx . κ (x is ι))
= λκ. (λκ′. κ′ ((λy . (v∗ y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?))

(λx . κ (x is ι))
β
= λκ. κ (((λy . (v∗ y) : (?→ ?)→ ?⇒p ?) : ? → ?⇒ ?) is ι)
β
= λκ. κ false
= [[false]].

138 Appendix A. Proofs of Gradual Typing with Delimited Control

Case G = ? / ? → ? / ?: Then, H = ι for some ι from H 6∼ G . Thus,

[[(v : ι⇒ ?) is ? / ? → ? / ?]]
= λκ. [[v : ι⇒ ?]] (λx . κ (x is ? → ?))
= λκ. (λκ′. κ′ (v∗ : ι⇒ ?)) (λx . κ (x is ? → ?))
β
= λκ. κ ((v∗ : ι⇒ ?) is ? → ?)
β
= λκ. κ false
= [[false]].

Theorem 4 (Preservation of Equality). If s 7−→ t , then [[s]] ≈ [[t]].

Proof. By case analysis on the evaluation rule applied to s and t .

Case (E STEP): We are given E [s ′] 7−→ E [t ′] for some E , s ′ and t ′ such that s ′ −→ t ′. By
Lemmas A.3.5 and A.3.10,

[[E [s ′]]]
β
= [[E]] [[s ′]]

βηωξυ
= [[E]] [[t ′]]

β
= [[E [t ′]]].

Case (E ABORT): We are given E [blame p] 7−→ blame p for some p. By Lemmas A.3.5
and A.3.7,

[[E [blame p]]]
β
= [[E]] [[blame p]]

βη
= [[blame p]].

Appendix B

Proofs of Manifest Contracts with
Parametric Polymorphism

This chapter gives the proofs of (syntactic) type soundness (Theorem 7) and para-
metricity (Theorem 8) of FσH, without conjectures. We start with proving standard prop-
erties about free variables and substitution (Section B.1) because they are nonstandard
and slightly tricky. Section B.2 shows cotermination, a key property to ensure that our
type conversion relates only types equivalent “semantically” (in particular, Lemma 12
deals with the case for refinement types). Using cotermination, we show type sound-
ness via progress (Theorem 5) and preservation (Theorem 6) in Section B.3. Finally,
Section B.4 shows parametricity (Theorem 8), which also depends on cotermination.

B.1 Properties of substitution

Lemma B.1.1 (Free Term Variables After Substitution). Let σ be a substitution.

1. For any term e , FV(σ(e)) = (FV(e) \ dom(σ)) ∪ FV(σ|AFV(e)).

2. For any type T , FV(σ(T)) = (FV(T) \ dom(σ)) ∪ FV(σ|AFV(T)).

Proof. By structural induction on e and T . We mention only the case of casts in the first
case. We are given e = 〈T1 ⇒ T2〉lσ1 . Let σ2 = σ(σ1)] σ|(AFV(T1)∪AFV(T2))\dom(σ1). By
definition, σ(e) = 〈T1 ⇒ T2〉lσ2 and

FV(σ(e))

= ((FV(T1) ∪ FV(T2)) \ dom(σ2)) ∪ FV(σ2)

= ((FV(T1) ∪ FV(T2)) \ (dom(σ1) ∪ dom(σ|(AFV(T1)∪AFV(T2))\dom(σ1)))) ∪ FV(σ2)

= ((FV(T1) ∪ FV(T2)) \ (dom(σ1) ∪ dom(σ))) ∪ FV(σ2).

We have FV(e) = ((FV(T1) ∪ FV(T2)) \ dom(σ1)) ∪ FV(σ1), and so

FV(e) \ dom(σ) = ((FV(T1) ∪ FV(T2)) \ (dom(σ1) ∪ dom(σ))) ∪ (FV(σ1) \ dom(σ)).

Thus, it suffices to show that

FV(σ2) = (FV(σ1) \ dom(σ)) ∪ FV(σ|AFV(e)).

139

140 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Here, we have FV(σ2) = FV(σ(σ1)) ∪ FV(σ|(AFV(T1)∪AFV(T2))\dom(σ1)). By the IHs,

FV(σ(σ1)) =
⋃

x ∈ dom(σ1)

FV(σ(σ1(x))) ∪
⋃

α∈ dom(σ1)

FV(σ(σ1(α)))

=
⋃

x ∈ dom(σ1)

((FV(σ1(x)) \ dom(σ)) ∪ FV(σ|AFV(σ1(x)))) ∪⋃
α∈ dom(σ1)

((FV(σ1(α)) \ dom(σ)) ∪ FV(σ|AFV(σ1(α))))

= (FV(σ1) \ dom(σ)) ∪ FV(σ|AFV(σ1)).

Thus,

FV(σ2) = (FV(σ1) \ dom(σ)) ∪ FV(σ|AFV(σ1)) ∪ FV(σ|(AFV(T1)∪AFV(T2))\dom(σ1)),

and so it suffices to show that

FV(σ|AFV(e)) = FV(σ|AFV(σ1)) ∪ FV(σ|(AFV(T1)∪AFV(T2))\dom(σ1)).

Since AFV(e) = ((AFV(T1) ∪ AFV(T2)) \ dom(σ1)) ∪ AFV(σ1), we finish.

Lemma B.1.2 (Free Type Variables After Substitution). Let σ be a substitution.

1. For any term e , FTV(σ(e)) = (FTV(e) \ dom(σ)) ∪ FTV(σ|AFV(e)).

2. For any type T , FTV(σ(T)) = (FTV(T) \ dom(σ)) ∪ FTV(σ|AFV(T)).

Proof. Similarly to Lemma B.1.1; by structural induction on e and T .

Lemma B.1.3. Let σ be a substitution.

1. If AFV(e) ∩ dom(σ) = ∅, then σ(e) = e .

2. If AFV(T) ∩ dom(σ) = ∅, then σ(T) = T .

Proof. By structural induction on e and T . We mention only the case of casts. We are
given e = 〈T1 ⇒ T2〉lσ′ . By definition:

FV(e) = ((FV(T1) ∪ FV(T2)) \ dom(σ′)) ∪ FV(σ′)

FTV(e) = ((FTV(T1) ∪ FTV(T2)) \ dom(σ′)) ∪ FTV(σ′)

Since (FV(e) ∪ FTV(e)) ∩ dom(σ) = ∅, we have:

dom(σ) ∩ ((FV(T1) ∪ FV(T2)) \ dom(σ′)) = ∅
dom(σ) ∩ ((FTV(T1) ∪ FTV(T2)) \ dom(σ′)) = ∅

Thus, σ(〈T1 ⇒ T2〉lσ′) = 〈T1 ⇒ T2〉lσ(σ′). Since (FV(e) ∪ FTV(e)) ∩ dom(σ) = ∅,
we have (FV(σ′) ∪ FTV(σ′)) ∩ dom(σ) = ∅, and thus σ(σ′) = σ′ by the IHs. Thus,
σ(〈T1 ⇒ T2〉lσ′) = 〈T1 ⇒ T2〉lσ′ .

Lemma B.1.4. Let σ1 and σ2 be substitutions. Suppose that dom(σ1) ∩ dom(σ2) = ∅ and
AFV(σ2) ∩ dom(σ1) = ∅.

1. For any term e , σ2(σ1(e)) = (σ2(σ1))(σ2(e)).

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 141

2. For any type T , σ2(σ1(T)) = (σ2(σ1))(σ2(T)).

Proof. By structural induction on e and T . We mention only the case of casts. We are
given e = 〈T1 ⇒ T2〉lσ. Let S1 = FV(T1) ∪ FV(T2), S2 = FTV(T1) ∪ FTV(T2),
and S = AFV(T1) ∪ AFV(T2). By definition, σ1(e) = 〈T1 ⇒ T2〉lσ′1 where σ′1 =

σ1(σ)] σ1|S\dom(σ). Thus, σ2(σ1(e)) = 〈T1 ⇒ T2〉lσ′′1 where

σ′′1 = σ2(σ′1)] σ2|S\dom(σ′1)

= σ2(σ1(σ))] σ2(σ1)|S\dom(σ)] σ2|S\dom(σ′1).

Also, we have σ2(e) = 〈T1 ⇒ T2〉lσ′2 where σ′2 = σ2(σ)]σ2|S\dom(σ), and σ2(σ1)(σ2(e)) =

〈T1 ⇒ T2〉lσ′′2 where

σ′′2 = (σ2(σ1))(σ′2)] σ2(σ1)|S\dom(σ′2)

= (σ2(σ1))(σ2(σ))] (σ2(σ1))(σ2)|S\dom(σ)] σ2(σ1)|S\dom(σ′2).

We show that σ′′1 = σ′′2 as follows.

1. We have σ2(σ1(σ)) = (σ2(σ1))(σ2(σ)) because, for any x ∈ dom(σ),

σ2(σ1(σ))(x) = σ2(σ1(σ(x)))

= (σ2(σ1))(σ2(σ(x))) (by the IH)
= (σ2(σ1))(σ2(σ))(x),

and for any α ∈ dom(σ), σ2(σ1(σ))(α) = (σ2(σ1))(σ2(σ))(α), which can be
proven similarly to term variables by the IH.

2. We show that σ2(σ1)|S\dom(σ) = σ2(σ1)|S\dom(σ′2), that is, we show that

dom(σ1) ∩ (S \ dom(σ)) = dom(σ1) ∩ (S \ dom(σ′2)).

Here, we have

dom(σ′2) = dom(σ) ∪ (dom(σ2) ∩ (S \ dom(σ)))

= (dom(σ) ∪ dom(σ2)) ∩ (dom(σ) ∪ (S \ dom(σ)))

= (dom(σ) ∪ dom(σ2)) ∩ (dom(σ) ∪ S)

= dom(σ) ∪ (dom(σ2) ∩ S).

Thus,

dom(σ1) ∩ (S \ dom(σ′2)) = dom(σ1) ∩ (S \ (dom(σ) ∪ (dom(σ2) ∩ S)))

= dom(σ1) ∩ (S \ (dom(σ) ∪ dom(σ2)))

= (dom(σ1) ∩ S) \ (dom(σ) ∪ dom(σ2))

= (dom(σ1) ∩ S) \ dom(σ)

(since dom(σ1) ∩ dom(σ2) = ∅)
= dom(σ1) ∩ (S \ dom(σ)).

142 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

3. We show that σ2|S\dom(σ′1) = (σ2(σ1))(σ2)|S\dom(σ). Since AFV(σ2) ∩ dom(σ1) =
∅, we have (σ2(σ1))(σ2) = σ2 by Lemma B.1.3. Thus, it suffices to show that

dom(σ2) ∩ (S \ dom(σ′1)) = dom(σ2) ∩ (S \ dom(σ)),

which can be shown similarly to the above.

B.2 Cotermination

The key observation in proving cotermination is that the relation {([e1/x]e, [e2/x]e) |
e1 −→ e2} is weak bisimulation. Lemmas 8 and 9 show it for cases that left- and right-
hand terms first evaluate, respectively; the cases of term and type applications (with-
out reducible subterms) are shown in Lemmas B.2.3 and B.2.5, respectively. We show
cotermination in the case that substitutions map only one term variable (Lemma 10),
and then show general cases (Lemma 11).

Throughout the proof, we implicitly make use of the determinism of the semantics.

Lemma B.2.1 (Determinism). If e −→ e1 and e −→ e2 then e1 = e2.

Proof. By case analysis for and induction on e −→ e1.

Lemma B.2.2. Suppose that e1 and e2 are closed terms and that e ′1, [e1/x]e ′2 and [e2/x]e ′2
are values. If [e1/x](e ′1 e

′
2) −→ e , then [e2/x](e ′1 e

′
2) −→ [e2/x]e ′ for some e ′ such that

e = [e1/x]e ′.

Proof. By case analysis on e ′1. Here e ′1 takes the form of either lambda abstraction or
cast since the application term [e1/x](e ′1 e

′
2) takes a step.

Case e ′1 = λy :T . e ′: Without loss of generality, we can suppose that y is
fresh. By (E REDUCE)/(E BETA), [e1/x](e ′1 e

′
2) = [e1/x]((λy :T . e ′) e ′2) −→

[[e1/x]e ′2/y][e1/x]e ′ and [e2/x](e ′1 e
′
2) = [e2/x]((λy :T . e ′) e ′2) −→

[[e2/x]e ′2/y][e2/x]e ′. Since, for i ∈ {1, 2}, [[ei/x]e ′2/y][ei/x]e ′ = [ei/x][e ′2/y]e ′ by
Lemma B.1.4, we finish.

Case e ′1 = 〈T ⇒ T 〉lσ: By (E REDUCE)/(E REFL), [e1/x](e ′1 e
′
2) = [e1/x](〈T ⇒

T 〉lσ e ′2) −→ [e1/x]e ′2 and [e2/x](e ′1 e
′
2) = [e2/x](〈T ⇒ T 〉lσ e ′2) −→ [e2/x]e ′2, and

thus we finish.

Case e ′1 = 〈y :T11→T12 ⇒ y :T21→T22〉lσ where y :T11→T12 6= y :T21→T22: Without
loss of generality, we can suppose that y and variables of dom(σ) are fresh. Let z
be a fresh variable and i , j ∈ {1, 2}. Moreover, let σi be

[ei/x]σ] ([ei/x]|(AFV(y:T11→T12)∪AFV(y:T21→T22))\dom(σ))

and σij be σi |AFV(T1j)∪AFV(T2j). Then, [ei/x]e ′1 = 〈y :T11→T12 ⇒ y :T21→T22〉lσi
and, by (E REDUCE)/(E FUN), [ei/x](e ′1 e

′
2) −→ e ′′i where e ′′i takes the form:

λy :σi(T21). let z : σi(T11) = 〈T21 ⇒ T11〉lσi1 y in 〈[z/y]T12 ⇒ T22〉lσi2 ([ei/x]e ′2 z).

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 143

Here, let σ′j = σ|AFV(T1j)∪AFV(T2j) and e ′ be

λy :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ′1 y in 〈[z/y]T12 ⇒ T22〉lσ′2 (e ′2 z)

for some fresh variable z .

We show [ei/x]e ′ = e ′′i . By Lemma B.1.4, [ei/x]σ(T21) = ([ei/x]σ)([ei/x]T21) =
σi(T21) and, similarly, [ei/x]σ(T11) = σi(T11). Also, letting Sj = AFV(T1j) ∪
AFV(T2j),

[ei/x]σ′j] ([ei/x]|Sj \dom(σ′j)
)

= [ei/x]σ′j] ([ei/x]|Sj \dom(σ)) (because Sj \ dom(σ′j) = Sj \ dom(σ))

= ([ei/x]σ|Sj)] ([ei/x]|Sj \dom(σ))

= (σi |dom(σ)∩Sj
)] ([ei/x]|Sj \dom(σ))

= (σij |dom(σ))] ([ei/x]|Sj \dom(σ))

= σij .

The last equation is derived from the fact that

x ∈ dom(σij)
⇐⇒ x ∈ Sj ∩ dom(σi)
⇐⇒ x ∈ Sj ∩ ((AFV(y :T11→T12) ∪ AFV(y :T21→T22)) \ dom(σ))
⇐⇒ x ∈ (Sj ∩ (AFV(y :T11→T12) ∪ AFV(y :T21→T22))) \ dom(σ)
⇐⇒ x ∈ Sj \ dom(σ).

Case e ′1 = 〈∀α.T1 ⇒ ∀α.T2〉lσ where ∀α.T1 6= ∀α.T2: Without loss of general-
ity, we can suppose that α is fresh. Let i ∈ {1, 2} and σi = [ei/x]σ]
([ei/x]|(AFV(∀α.T1)∪AFV(∀α.T2))\dom(σ)). Then, by (E REDUCE)/(E FORALL),
[ei/x](e ′1 e

′
2) −→ Λα. 〈[α/α]T1 ⇒ T2〉lσi ([ei/x]e ′2 α). Because

x ∈ (AFV(∀α.T1) ∪ AFV(∀α.T2)) \ dom(σ)
if and only if x ∈ (AFV(T1) ∪ AFV(T2)) \ dom(σ),

we have 〈[α/α]T1 ⇒ T2〉lσi = [ei/x](〈[α/α]T1 ⇒ T2〉lσ). Thus, we finish.

Case e ′1 = 〈T ⇒ {y :T | e}〉lσ: Without loss of generality, we can suppose that
y and variables of dom(σ) are fresh. Let i ∈ {1, 2} and σi = [ei/x]σ]
([ei/x]|AFV({y:T |e})\dom(σ)). By (E REDUCE)/(E CHECK), [ei/x](e ′1 e

′
2) −→ e ′′i

where e ′′i = 〈σi({y :T | e}), σi([[ei/x]e ′2/y]e), [ei/x]e ′2〉l . Since ei and [ei/x]e ′2 are
closed (recall evaluation relation is defined over closed terms), we have

σi([[ei/x]e ′2/y]e) = ([ei/x]σ)([ei/x][[ei/x]e ′2/y]e)
= ([ei/x]σ)([[ei/x]e ′2/y][ei/x]e)
= ([ei/x]σ)([ei/x][e ′2/y]e)
= [ei/x](σ([e ′2/y]e))

by Lemmas B.1.3 and B.1.4. Because σi({y :T | e}) = [ei/x]σ({y :T | e}) similarly,
we finish.

144 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Case e ′1 = 〈{y :T1 | e} ⇒ T2〉lσ where T2 6= {y :T1 | e1} and T2 6= {z :{y :T1 | e} | e ′} for
any z and e ′: Let i ∈ {1, 2} and

σi = [ei/x]σ] ([ei/x]|(AFV({y:T1|e1})∪AFV(T2))\dom(σ))

σ′i = σi |AFV(T1)∪AFV(T2).

Then, by (E REDUCE)/(E FORGET), [ei/x](e ′1 e
′
2) −→ 〈T1 ⇒ T2〉lσ′i [ei/x]e ′2.

Letting σ′ = σ|AFV(T1)∪AFV(T2), it suffices to show that [ei/x](〈T1 ⇒ T2〉lσ′) =

〈T1 ⇒ T2〉lσ′i . We can show that [ei/x]σ′] ([ei/x]|(AFV(T1)∪AFV(T2))\dom(σ′)) = σ′i
similarly to the case of casts between function types, and so we finish.

Case e ′1 = 〈T1 ⇒ {y :T2 | e}〉lσ where T1 6= T2 and T1 6= {z :T ′ | e ′} for any z , T ′ and
e ′: Let i ∈ {1, 2} and

σi = [ei/x]σ] ([ei/x]|(AFV(T1)∪AFV({y:T2|e}))\dom(σ))

σi1 = σi |AFV({y:T2|e})

σi2 = σi |AFV(T1)∪AFV(T2).

Then, by (E REDUCE)/(E PRECHECK), [ei/x](e ′1 e
′
2) −→ e ′′i where

e ′′i = 〈T2 ⇒ {y :T2 | e}〉lσi1 (〈T1 ⇒ T2〉lσi2 [ei/x]e ′2).

Let

σ′1 = σ|AFV({y:T2|e})

σ′2 = σ|AFV(T1)∪AFV(T2)

e ′ = 〈T2 ⇒ {y :T2 | e}〉lσ′1 (〈T1 ⇒ T2〉lσ′2 e
′
2).

Then, it suffices to show that [ei/x]e ′ = e ′′i . We can show
that [ei/x]σ′1] ([ei/x]|AFV({y:T2|e})\dom(σ′1)) = σi1 and [ei/x]σ′2]
([ei/x]|(AFV(T1)∪AFV(T2))\dom(σ′2)) = σi2 similarly to the above, and so we
finish.

Lemma B.2.3. Suppose that e1 −→ e2 and that [e1/x]e ′1, [e1/x]e ′2 and [e2/x]e ′2 are values.

1. If [e1/x](e ′1 e
′
2) −→ e , then [e2/x](e ′1 e

′
2) −→ [e2/x]e ′ for some e ′ such that e =

[e1/x]e ′.

2. If [e2/x](e ′1 e
′
2) −→ e , then [e1/x](e ′1 e

′
2) −→ [e1/x]e ′ for some e ′ such that e =

[e2/x]e ′.

Proof. Since [e1/x]e ′1 is a value, and e1 is not a value from e1 −→ e2, we have e ′1 is not a
variable, and thus e ′1 is a value from the assumption that so is [e1/x]e ′1. Since evaluation
relation is defined over closed terms, we finish by Lemma B.2.2.

Lemma B.2.4. Suppose that e1 and e2 are closed terms and that e is a value. If [e1/x](e T) −→
e ′, then [e2/x](e T) −→ [e2/x]e ′′ for some e ′′ such that e ′ = [e1/x]e ′′.

Proof. Since the type application term [e1/x](e T) takes a step, e takes the form of type
abstraction. Let e = Λα. e ′. Without loss of generality, we can suppose that α is fresh.

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 145

Let i ∈ {1, 2}. By (E REDUCE)/(E TBETA), [ei/x](e T) −→ [[ei/x]T/α][ei/x]e ′. Since
ei is closed, we have [[ei/x]T/α][ei/x]e ′ = [ei/x][T/α]e ′ by Lemma B.1.4, and thus we
finish.

Lemma B.2.5. Suppose that e1 −→ e2 and that [e1/x]e is a value.

1. If [e1/x](e T) −→ e ′, then [e2/x](e T) −→ [e2/x]e ′′ for some e ′′ such that e ′ =
[e1/x]e ′′.

2. If [e2/x](e T) −→ e ′, then [e1/x](e T) −→ [e1/x]e ′′ for some e ′′ such that e ′ =
[e2/x]e ′′.

Proof. By Lemma B.2.4 because it is found that e is a value and that e1 and e2 are closed
terms (evaluation relation is defined over closed terms).

Lemma B.2.6. If e1 −→∗ e2, then E [e1] −→∗ E [e2].

Proof. By induction on the number of evaluation steps of e1 with (E COMPAT).

Lemma 8 (Weak bisimulation, left side). Suppose that e1 −→ e2. If [e1/x]e −→ e ′, then
[e2/x]e −→∗ [e2/x]e ′′ for some e ′′ such that e ′ = [e1/x]e ′′.

Proof. By structural induction on e . Here e1 is not a value, since e1 −→ e2.

Case e = x : Since [e1/x]e = e1 and [e2/x]e = e2, we finish by Lemma B.1.3 when
letting e ′′ = e2 because e2 is closed (recall that the evaluation relation is a relation
over closed terms).

Case e = v , y where x 6= y or ⇑l : Contradiction from [e1/x]e −→ e ′.

Case e = op (e ′1, .. , e
′
n): If all terms [e1/x]e ′i are values, then they are constants since

[e1/x]op (e ′1, ... , e
′
n) takes a step. Since e1 is not a value, e ′i = ki for some ki . Thus,

[e1/x]e = [e2/x]e = op (k1, ... , kn) and so we finish.

Otherwise, we suppose that some [e1/x]e ′i is not a value and all terms to the left
of [e1/x]e ′i are values. From that, we can show that all terms to the left of [e2/x]e ′i
are values since e1 is not a value. If [e1/x]e ′i gets stuck, then contradiction because
[e1/x]e takes a step. If [e1/x]e ′i −→ e ′′, then, by the IH, [e2/x]e ′i −→∗ [e2/x]e ′′i for
some e ′′i such that e ′′ = [e1/x]e ′′i . Thus, we finish by Lemma B.2.6. Otherwise, if
[e1/x]e ′i = ⇑l , then [e2/x]e ′i = ⇑l because e ′i = ⇑l by e1 6= ⇑l , which follows from
e1 −→ e2. Thus, we finish by (E BLAME).

Case e = e ′1 e
′
2: We can show the case where either [e1/x]e ′1 or [e1/x]e ′2 is not a value

similarly to the above. Otherwise, if they are values, we can find that so are
[e2/x]e ′1 and [e2/x]e ′2, and thus we finish by Lemma B.2.3 (1).

Case e = e ′1 T2: Similarly to the case of function application, with Lemma B.2.5 (1).

Case e = 〈{y :T | e ′1}, e ′2, v〉l : Similarly to the above.

Lemma B.2.7. If e1 −→ e2, and [e2/x]e is a value, then there exists some e ′ such that

• [e1/x]e −→∗ [e1/x]e ′,

• [e1/x]e ′ is a value, and

146 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

• [e2/x]e = [e2/x]e ′.

Proof. By case analysis on e .

Lemma B.2.8. If e1 −→ e2, and [e2/x]e = ⇑l , then [e1/x]e −→∗ ⇑l .

Proof. By case analysis on e .

Lemma 9 (Weak bisimulation, right side). Suppose that e1 −→ e2. If [e2/x]e −→ e ′, then
[e1/x]e −→∗ [e1/x]e ′′ for some e ′′ such that e ′ = [e2/x]e ′′.

Proof. By structural induction on e .

Case e = x : Since [e1/x]e = e1 and [e2/x]e = e2, we finish by Lemma B.1.3 when
letting e ′′ = e ′.

Case e = v , y where x 6= y or ⇑l : Contradiction from [e2/x]e −→ e ′.

Case e = op (e ′1, .. , e
′
n): If all terms [e2/x]e ′i are values, then they are constants since

[e2/x]op (e ′1, ... , e
′
n) takes a step. By Lemma B.2.7, [e1/x]op (e ′1, ... , e

′
n) −→∗

[e1/x]op (e ′′1 , ... , e
′′
2) for some e ′′1 , ..., e

′′
n such that [e2/x]op (e ′1, ... , e

′
n) =

[e2/x]op (e ′′1 , ... , e
′′
n). Since e1 is not a value from e1 −→ e2, e ′′i = ki for some

ki . Thus, we finish.

Otherwise, we suppose that some [e2/x]e ′i is not a value and all terms to the left
of [e2/x]e ′i are values. By Lemma B.2.7, each term [e1/x]e ′j to the left of [e1/x]e ′i
evaluates to a value [e1/x]e ′′j for some e ′′j such that [e2/x]e ′j = [e2/x]e ′′j . If [e2/x]e ′i
gets stuck, then contradiction because [e2/x]e takes a step. If [e2/x]e ′i = ⇑l , then
[e1/x]e ′i −→∗ ⇑l by Lemma B.2.8. Thus, we finish by (E BLAME). Otherwise, if
[e2/x]e ′i −→ e ′′, then we finish by the IH and (E COMPAT).

Case e = e ′1 e
′
2: We can show the case where either [e2/x]e ′1 or [e2/x]e ′2 is not a value

similarly to the above. Otherwise, if they are values, we can find, by Lemma B.2.7,
that [e1/x]e ′1 and [e1/x]e ′2 evaluates to values [e1/x]e ′′1 and [e1/x]e ′′2 for some e ′′1
and e ′′2 such that [e2/x]e ′1 = [e2/x]e ′′1 and [e2/x]e ′2 = [e2/x]e ′′2 , respectively. Then,
we finish by Lemma B.2.3 (2).

Case e = e ′1 T2: Similarly to the case of function application, with Lemma B.2.5 (2).

Case e = 〈{y :T | e ′1}, e ′2, v〉l : Similarly to the above.

Lemma 10 (Cotermination, one variable).

1. Suppose that e1 −→ e2.

(a) If [e1/x]e −→∗ true, then [e2/x]e −→∗ true.

(b) If [e2/x]e −→∗ true, then [e1/x]e −→∗ true.

2. Suppose that e1 −→∗ e2.

(a) If [e1/x]e −→∗ true, then [e2/x]e −→∗ true.

(b) If [e2/x]e −→∗ true, then [e1/x]e −→∗ true.

Proof.

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 147

1. By induction on the number of evaluation steps of [e1/x]e and [e2/x]e with
Lemma 8 and Lemmas B.2.7 and 9, respectively.

2. By induction on the number of evaluation steps of e1 with the first case.

Lemma 11 (Cotermination). Suppose that σ1 −→∗ σ2.

1. If σ1(e) −→∗ true, then σ2(e) −→∗ true.

2. If σ2(e) −→∗ true, then σ1(e) −→∗ true.

Proof. By induction on the size of dom(σ1) with Lemma 10.

B.3 Type soundness

We show type soundness in a syntactic manner: progress (Theorem 5) and preservation
(Theorem 6). Cotermination is used to show value inversion (Lemma 13), which im-
plies consistency of the contract system of FσH and is used to show progress in the case
for (T OP). After proving properties of convertibility (Lemmas B.3.1–B.3.6) and com-
patibility (Lemmas B.3.7–B.3.10), we show progress and preservation, using standard
lemmas: weakening lemmas (Lemmas 16 and 17), substitution lemmas (Lemmas 18
and 19), inversion lemmas (Lemmas 20, B.3.11, and B.3.12), and canonical forms lemma
(Lemma 21).

Lemma 12 (Cotermination of refinement types). If {x :T1 | e1} ≡ {x :T2 | e2} then T1 ≡
T2 and [v/x]e1 −→∗ true iff [v/x]e2 −→∗ true, for any closed value v .

Proof. By induction on the equivalence. There are three cases.

Case (C REFINE): We have T1 ≡ T2 by assumption. We know that e1 = σ1(e) and
e2 = σ2(e) for σ1 −→∗ σ2. It is trivially true that v −→∗ v , so [v/x]σ1 −→∗ [v/x]σ2. By
cotermination (Lemma 11), we know that [v/x]σ1(e) −→∗ true iff [v/x]σ2(e) −→∗ true.

Case (C SYM): By the IH.

Case (C TRANS): By the IHs and transitivity of ≡ and cotermination.

Lemma 13 (Value inversion). If ∅ ` v : T and unrefn(T) = {x :Tn | en} then [v/x]en −→∗
true.

Proof. By induction on the height of the typing derivation; we list all the cases that
could type values.

Case (T CONST): By assumption of valid typing of constants.

Case (T ABS): Contradictory—the type is wrong.

Case (T TABS): Contradictory—the type is wrong.

Case (T CAST): Contradictory—the type is wrong.

Case (T CONV): By applying Lemma 12 on the stack of refinements on T .

Case (T FORGET): By the IH on ∅ ` v : {x :T | e}, adjusting each of the n down by one
to cover the stack of refinements on T .

Case (T EXACT): By assumption for the outermost refinement; by the IH on ∅ ` v : T
for the rest.

148 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Lemma B.3.1 (Reflexivity of conversion).
T ≡ T for all T .

Proof. By induction on T .

Lemma B.3.2 (Like-type arrow conversion). If x :T11→T12 ≡ T then T = x :T21→T22.

Proof. By induction on the conversion relation. Only (C FUN) applies, and (C SYM)
and (C TRANS) are resolved by the IH.

Lemma B.3.3 (Conversion arrow inversion). If x :T11→T12 ≡ x :T21→T22 then T11 ≡
T21 and T12 ≡ T22.

Proof. By induction on the conversion derivation, using Lemma B.3.2.

Lemma B.3.4 (Like-type forall conversion). If ∀α.T1 ≡ T then T = ∀α.T2.

Proof. By induction on the conversion relation. Only (C FORALL) applies, and (C SYM)
and (C TRANS) are resolved by the IH.

Lemma B.3.5 (Conversion forall inversion). If ∀α.T1 ≡ ∀α.T2 then T1 ≡ T2.

Proof. By induction on the conversion derivation, using Lemma B.3.4.

Lemma 14 (Term substitutivity of conversion).
If T1 ≡ T2 and e1 −→∗ e2 then [e1/x]T1 ≡ [e2/x]T2.

Proof. By induction on T1 ≡ T2.

Case (C VAR): By (C VAR).

Case (C BASE): By (C BASE).

Case (C REFINE): T1 = {y :T ′1 | σ1(e)} and T2 = {y :T ′2 | σ2(e)} such that T ′1 ≡ T ′2 and
σ1 −→∗ σ2. By the IH on T ′1 ≡ T ′2, we know that [e1/x]T ′1 ≡ [e2/x]T ′2. Since e1 −→∗ e2,
we know that σ1] [e1/x] −→∗ σ2] [e2/x], and we are done by (C REFINE).

Case (C FUN): By the IHs and (C FUN).

Case (C FORALL): By the IH and (C FORALL).

Case (C TRANS): By the IHs and (C TRANS).

Case (C SYM): By the IHs and (C SYM).

Lemma 15 (Type substitutivity of conversion).
If T1 ≡ T2 then [T/α]T1 ≡ [T/α]T2.

Proof. By induction on T1 ≡ T2.

Case (C VAR): If T1 = T2 = α, then by reflexivity (Lemma B.3.1). Otherwise, by
(C VAR).

Case (C BASE): By (C BASE).

Case (C REFINE): T1 = {y :T ′1 | σ1(e)} and T2 = {y :T ′2 | σ2(e)} such that T ′1 ≡ T ′2
and σ1 −→∗ σ2. By the IH on T ′1 ≡ T ′2, we know that [T/α]T ′1 ≡ [T/α]T ′2. Since
[T/α]σ1 = σ1 and [T/α]σ2 = σ2, so we are done by (C REFINE).

Case (C FUN): By the IHs and (C FUN).

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 149

Case (C FORALL): By the IH and (C FORALL), possibly varying the bound variable
name.

Case (C SYM): By the IH and (C SYM).

Case (C TRANS): By the IHs and (C TRANS).

Lemma B.3.6 (Conversion of unrefined types). If T1 ≡ T2 then unref(T1) ≡ unref(T2).

Proof. By induction on the derivation of T1 ≡ T2.

Lemma B.3.7 (Compatibility is symmetric). T1 ‖ T2 iff T2 ‖ T1.

Proof. By induction on T1 ‖ T2.

Case (SIM VAR): By (SIM VAR).

Case (SIM BASE): By (SIM BASE).

Case (SIM REFINEL): By (SIM REFINER) and the IH.

Case (SIM REFINER): By (SIM REFINEL) and the IH.

Case (SIM FUN): By (SIM FUN) and the IHs.

Case (SIM FORALL): By the IH and (SIM FORALL).

Lemma B.3.8 (Substitution preserves compatibility).
If T1 ‖ T2, then [e/x]T1 ‖ T2.

Proof. By induction on the compatibility relation.

Case (SIM VAR): By (SIM VAR).

Case (SIM BASE): By (SIM BASE).

Case (SIM REFINEL): By (SIM REFINEL) and the IH.

Case (SIM REFINER): By (SIM REFINER) and the IH.

Case (SIM FUN): By (SIM FUN) and the IHs.

Case (SIM FORALL): By (SIM FORALL) and the IH.

Lemma B.3.9 (Type substitution preserves compatibility). If T1 ‖ T2 then [T ′/α]T1 ‖
[T ′/α]T2.

Proof. By induction on the compatibility relation.

Case (SIM VAR): By (SIM VAR) or reflexivity of the compatibility (proved easily).

Case (SIM BASE): By (SIM BASE).

Case (SIM REFINEL): By (SIM REFINEL) and the IH.

Case (SIM REFINER): By (SIM REFINER) and the IH.

Case (SIM FUN): By (SIM FUN) and the IHs.

Case (SIM FORALL): By (SIM FORALL) and the IH.

Lemma B.3.10 (Identity type substitution on one side preserves compatibility). If T1 ‖
T2 then [α/α]T1 ‖ T2.

Proof. Similar to Lemma B.3.9.

150 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Lemma 16 (Term weakening). If x is fresh and Γ ` T ′ then

1. Γ,Γ′ ` e : T implies Γ, x :T ′,Γ ` e : T ,

2. Γ,Γ′ ` T implies Γ, x :T ′,Γ′ ` T , and

3. ` Γ,Γ′ implies ` Γ, x :T ′,Γ′.

Proof. By induction on e , T , and Γ′. The only interesting case is for terms where a
run-time rule applies:

Case ((T CONV),(T EXACT),(T FORGET)): The argument is the same for all terms, so:
since ` Γ, x :T ′,Γ′, we can reapply (T CONV), (T EXACT), or (T FORGET), respectively.
In the rest of this proof, we will not bother considering these rules.

Lemma 17 (Type weakening). If α is fresh then

1. Γ,Γ′ ` e : T implies Γ, α,Γ ` e : T ,

2. Γ,Γ′ ` T implies Γ, α,Γ′ ` T , and

3. ` Γ,Γ′ implies` Γ, α,Γ′.

Proof. By induction on e , T , and Γ′. The proof is similar to term weakening, Lemma 16.

Lemma 18 (Term substitution). If Γ ` e ′ : T ′, then

1. if Γ, x :T ′,Γ′ ` e : T then Γ, [e ′/x]Γ′ ` [e ′/x]e : [e ′/x]T ,

2. if Γ, x :T ′,Γ′ ` T then Γ, [e ′/x]Γ′ ` [e ′/x]T , and

3. if ` Γ, x :T ′,Γ′ then ` Γ, [e ′/x]Γ′.

Proof. By induction on e , T , and Γ′. In the first two clauses, we are careful to leave Γ′

as long as it is well formed.

Lemma 19 (Type substitution). If Γ ` T ′ then

1. if Γ, α,Γ′ ` e : T , then Γ, [T ′/α]Γ′ ` [T ′/α]e : [T ′/α]T ,

2. if Γ, α,Γ′ ` T , then Γ, [T ′/α]Γ′ ` [T ′/α]T , and

3. if ` Γ, α,Γ′, then ` Γ, [T ′/α]Γ′.

Proof. By induction on e , T , and Γ′.

Lemma 20 (Lambda inversion). If Γ ` λx :T1. e12 : T , then there exists some T2 such that

1. Γ ` T1,

2. Γ, x :T1 ` e12 : T2, and

3. x :T1→T2 ≡ unref(T).

Proof. By induction on the typing derivation. Cases not mentioned only apply to terms
which are not lambdas.

Case (T ABS): By inversion, we have Γ ` T1 and Γ, x :T1 ` e12 : T2. We find conversion
immediately by reflexivity (Lemma B.3.1), since unref(T) = T = x :T1→T2.

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 151

Case (T CONV): We have Γ ` λx :T1. e12 : T ; by inversion, T ≡ T ′ and ∅ ` λx :T1. e12 :
T ′. By the IH on this second derivation, we find ∅ ` T1 and x :T1 ` e12 : T2 where,
unref(T ′) ≡ x :T1→T2. By weakening, we have Γ ` T1 and Γ, x :T1 ` e12 : T2. Since
T ′ ≡ T , we have x :T1→T2 ≡ unref(T ′) ≡ unref(T) by (C TRANS).

Case (T EXACT): T = {x :T ′ | e}, and we have Γ ` λx :T1. e12 : {x :T ′ | e}; by inversion,
∅ ` λx :T1. e12 : T ′. By the IH, ∅ ` T1 and x :T1 ` e12 : T2, where x :T1→T2 ≡ unref(T ′).
By weakening, Γ ` T1 and Γ, x :T1 ` e12 : T2. Since unref(T ′) = unref({x :T ′ | e}), we
have the conversion by (C TRANS)): x :T1→T2 ≡ unref(T ′) = unref({x :T ′ | e}).

Case (T FORGET): We have Γ ` λx :T1. e12 : T ; by inversion, ∅ ` λx :T1. e12 : {x :T |
e}. By the IH on this latter derivation, we ∅ ` T1 and x :T1 ` e12 : T2, where
x :T1→ T2 ≡ unref({x :T | e}). By weakening, Γ ` T1 and Γ, x :T1 ` e12 : T2. Since
unref({x :T | e}) = unref(T), we have by (C TRANS) that x :T1→T12 ≡ unref({x :T |
e}) = unref(T).

Lemma B.3.11 (Cast inversion). If Γ ` 〈T1 ⇒ T2〉lσ : T , then

1. Γ ` σ(T1),

2. Γ ` σ(T2),

3. T1 ‖ T2

4. :σ(T1)→σ(T2) ≡ unref(T) (i.e., T2 does not mention the dependent variable), and

5. AFV(σ) ⊆ dom(Γ).

Proof. By induction on the typing derivation, as for 20.

Lemma B.3.12 (Type abstraction inversion). If Γ ` Λα. e : T , then

1. Γ, α ` e : T ′ and

2. ∀α.T ′ ≡ unref(T).

Proof. By induction on the typing derivation, as for 20.

Lemma 21 (Canonical forms). If ∅ ` v : T , then:

1. If unref(T) = B then v is k ∈ KB for some k .

2. If unref(T) = x :T1→T2 then

(a) v is λx :T ′1. e12 and T ′1 ≡ T1 for some x ,T ′1, and e12, or

(b) v is 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2 for some T ′1,T
′
2, σ, and l .

3. If unref(T) = ∀α.T ′ then v is Λα. e for some e .

Proof. By induction on the typing derivation.

Case (T VAR): Contradictory: variables are not values.

Case (T CONST): ∅ ` k : T and unref(T) = B ; we are in case 1. By assumption, k ∈ KB .

Case (T OP): Contradictory: op (e1, ... , en) is not a value.

Case (T ABS): ∅ ` λx :T1. e12 : T and T = unref(T) = x :T1→ T2; we are in case 2a.
Conversion is by reflexivity (Lemma B.3.1).

152 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Case (T APP): Contradictory: e1 e2 is not a value.

Case (T TABS): ∅ ` Λα. e : ∀α.T ; we are in case 3. It is immediate that v = Λα. e , and
conversion is by reflexivity (Lemma B.3.1).

Case (T TAPP): Contradictory: e T is not a value.

Case (T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : :σ(T1)→ σ(T2); we are in case 2b. It is immediate
that v = 〈T1 ⇒ T2〉lσ. Conversion is by reflexivity (Lemma B.3.1).

Case (T CHECK): Contradictory: 〈{x :T | e1}, e2, v〉l is not a value.

Case (T BLAME): Contradictory: ⇑l is not a value.

Case (T CONV): ∅ ` v : T ; by inversion, ∅ ` v : T ′ and T ′ ≡ T . We find an appropriate
form for unref(T ′) by the IH on ∅ ` v : T ′. We go by cases, in each case reproving
whatever case was found in the IH and finding conversions by (C TRANS).

Case Case 1: unref(T) = B and v = k ∈ KB . Since unref(T ′) ≡ unref(T), we know
that unref(T ′) = B , which is all we needed to show.

Case Case 2a: unref(T) = x :T1→T2 and v = λx :T ′′1 . e12 and T ′′1 ≡ T1. Since T ′ ≡ T ,
we have unref(T ′) ≡ unref(T) (Lemma B.3.6) and so unref(T ′) = x :T ′1 → T ′2
for some T ′1 and T ′2 such that T ′1 ≡ T1 (Lemma B.3.3); by (C TRANS), we have
T ′′1 ≡ T ′1.

Case Case 2b: unref(T) = x :T1→T2 and v = 〈T ′1 ⇒ T ′2〉l and T ′1 ≡ T1 and T ′2 ≡ T2.
Since T ′ ≡ T , we have unref(T ′) ≡ unref(T) (Lemma B.3.6) and so unref(T ′) =
x :T ′′1 →T ′′2 for some T ′′1 and T ′′2 such that T ′′1 ≡ T1 and T ′′2 ≡ T2 (Lemmas B.3.2
and B.3.3); by (C TRANS), we have T ′1 ≡ T ′′1 and T ′2 ≡ T ′′2 as required.

Case Case 3: unref(T) = ∀α.T0 and v is Λα. e . Since T ′ ≡ T , then unref(T ′) ≡
unref(T) (Lemma B.3.6).

Case (T EXACT): ∅ ` v : {x :T | e}; by inversion, ∅ ` v : T . Noting that unref({x :T |
e}) = unref(T), we apply the IH. Unlike the previous case, we need not change the
conversion—it is in terms of the unrefined type.

Case (T FORGET): ∅ ` v : T ; by inversion ∅ ` v : {x :T | e}. By the IH (noting
unref({x :T | e}) = unref(T)), so we use the IH’s conversion directly.

Theorem 5 (Progress). If ∅ ` e : T , then either

1. e −→ e ′, or

2. e is a result r , i.e., a value or blame.

Proof. By induction on the typing derivation.

Case (T VAR): Contradictory: there is no derivation ∅ ` x : T .

Case (T CONST): ∅ ` k : ty(k). In this case, e = k is a result.

Case (T OP): ∅ ` op (e1, ... , en) : σ(T), where ty(op) = x1 : T1 → ... → xn : Tn→T . By
inversion, ∅ ` ei : σ(Ti). Applying the IH from left to right, each of the ei either steps
or is a result.

Suppose everything to the left of ei is a value. Then either ei steps or is a result. If
ei −→ e ′i , then op(v1, ... , vi−1, ei , ... , en) −→ op(v1, ... , vi−1, e

′
i , ... , en) by (E COMPAT).

One the other hand, if ei is a result, there are two cases. If ei = ⇑l , then the original
expression steps to ⇑l by (E BLAME). If ei is a value, we can continue this process

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 153

for each of the operation’s arguments. Eventually, all of the operations arguments are
values. By value inversion (Lemma 13), we know that we can type each of these values
at the exact refinement types we need by (T EXACT). We assume that if op (v1, ... , vn)
is well defined on values satisfying the refinements in its type, so (E OP) applies.

Case (T ABS): ∅ ` λx :T1. e12 : (x :T1→T2). In this case, e = λx :T1. e12 is a result.

Case (T APP): ∅ ` e1 e2 : [e2/x]T2; by inversion, ∅ ` e1 : (x :T1→T2) and ∅ ` e2 : T1.
By the IH on the first derivation, e1 steps or is a result. If e1 steps, then the entire

term steps by (E COMPAT). In the latter case, if e1 is blame, we step by (E BLAME). So
e1 is a value, v1.

By the IH on the second derivation, e2 steps or is a result. If e2 steps, then by
(E COMPAT). Otherwise, if e2 is blame, we step by (E BLAME). So e2 is a value, v2.

By canonical forms (Lemma 21) on ∅ ` e1 : (x :T1→T2), there are two cases:

Case (e1 = λx :T ′1. e12 and T ′1 ≡ T1): In this case, (λx :T ′1. e12) v2 −→ [v2/x]e12 by
(E BETA).

Case (e1 = 〈T ′1 ⇒ T ′2〉lσ and σ(T ′1) ≡ T1 and σ(T ′2) ≡ T2): We know that T ′1 ‖ T ′2 by
cast inversion (Lemma B.3.11). We determine which step is taken by cases on T ′1
and T ′2.

Case (T ′1 = B):
Case (T ′2 = B ′): It must be the case that B = B ′, since B ‖ B ′. By (E REFL),

〈B ⇒ B〉lσ v2 −→ v2.
Case (T ′2 = α or x :T21→T22 or ∀α.T22): Incompatible; contradictory.
Case (T ′2 = {x :T ′′2 | e}): If T ′′2 = B , then by (E CHECK), 〈B ⇒

{x :B | e}〉lσ v2 −→ 〈σ({x :B | e}), σ([v2/x]e), v2〉l . Otherwise, by
(E PRECHECK), we have:

〈B ⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1 (〈B ⇒ T ′′2 〉lσ2 v2)

where σ1 = σ|AFV({x :T ′′2 |e}) and σ2 = σ|AFV(T ′′2).
Case (T ′1 = α):

Case (T ′2 = α′): It must be the case that α = α′, since α ‖ α′. By (E REFL),
〈α⇒ α〉lσ v2 −→ v2.

Case (T ′2 = B or x :T21→T22 or ∀α.T22): Incompatible; contradictory.
Case (T ′2 = {x :T ′′2 | e}): If T ′′2 = α, then by (E CHECK), 〈α ⇒ {x :α |

e}〉lσ v2 −→ 〈σ({x :α | e}), σ([v2/x]e), v2〉l . Otherwise,

〈α⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1 (〈α⇒ T ′′2 〉lσ2 v2)

where σ1 = σ|AFV({x :T ′′2 |e}) and σ2 = σ|AFV(T ′′2), by (E PRECHECK).
Case (T ′1 = x :T11→T12):

Case (T ′2 = B or α or ∀α.T22): Incompatible; contradictory.
Case (T ′2 = x :T21→T22): If T ′1 = T ′2, then 〈T ′1 ⇒ T ′1〉lσ v2 −→ v2 by (E REFL).

If not, then

〈x :T11→T12 ⇒ x :T21→T22〉lσ v2 −→
λx :σ(T21). let y : σ(T11) = 〈T21 ⇒ T11〉lσ1 x in (〈[y/x]T12 ⇒ T22〉lσ2 (v2 y))

for some fresh variable y , where σi = σ|AFV(T1 i)∪AFV(T2 i) (i ∈ {1, 2}),
by (E FUN).

154 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Case (T ′2 = {x :T ′′2 | e}): If T ′1 = T ′′2 , then 〈T ′1 ⇒ {x :T ′1 | e}〉lσ v2 −→
〈σ({x :T ′1 | e}), σ([v2/x]e), v2〉l by (E CHECK). If not, then

〈T ′1 ⇒ {x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1 (〈T ′1 ⇒ T ′′2 〉lσ2 v2)

, where σ1 = σ|AFV({x :T ′′2 |e}) and σ2 = σ|AFV(T ′1)∪AFV(T ′′2), by
(E PRECHECK).

Case (T ′1 = ∀α.T12):

Case (T ′2 = B or α or x :T21→T22): Incompatible; contradictory.
Case (T ′2 = ∀α.T22): If T ′1 = T ′2, then 〈T ′1 ⇒ T ′2〉lσ v2 −→ v2 by (E REFL). If

not, then 〈∀α.T11 ⇒ ∀α.T22〉lσ v2 −→ Λα. (〈[α/α]T11 ⇒ T22〉lσ (v2 α)) by
(E FORALL).

Case (T ′2 = {x :T ′′2 | e}): If T ′1 = T ′′2 , then 〈T ′1 ⇒ {x :T ′1 | e}〉lσ v2 −→
〈σ({x :T ′1 | e}), σ([v2/x]e), v2〉l by (E CHECK). If not, then 〈T ′1 ⇒
{x :T ′′2 | e}〉lσ v2 −→ 〈T ′′2 ⇒ {x :T ′′2 | e}〉lσ1 (〈T ′1 ⇒ T ′′2 〉lσ2 v2) where
σ1 = σ|AFV({x :T ′′2 |e}) and σ2 = σ|AFV(T ′1)∪AFV(T ′′2), by (E PRECHECK).

Case (T ′1 = {x :T ′′1 | e ′1}):
Case (T ′2 = B or α or x :T21→T22 or ∀α.T22): We see

〈{x :T ′′1 | e ′1} ⇒ T ′2〉lσ v2 −→ 〈T ′′1 ⇒ T ′2〉lσ′ v2

where σ′ = σ|AFV(T ′′1)∪AFV(T ′2), by (E FORGET).
Case (T ′2 = {x :T ′′2 | e ′2}): If T ′1 = T ′2, then we immediately have 〈T ′1 ⇒

T ′2〉lσ v2 −→ v2 by (E REFL). If T ′1 = T ′′2 , then

〈T ′1 ⇒ {x :T ′1 | e ′2}〉lσ v2 −→ 〈σ({x :T ′1 | e ′2}), σ([v2/x]e ′2), v2〉l

by (E CHECK). Otherwise,

〈{x :T ′′1 | e ′1} ⇒ {x :T ′′2 | e ′2}〉lσ v2 −→ 〈T ′′1 ⇒ {x :T ′′2 | e ′2}〉lσ′ v2

where σ′ = σ|AFV(T ′′1)∪AFV({x :T ′′2 |e′2}), by (E FORGET).

Case (T TABS): ∅ ` Λα. e ′ : ∀α.T . In this case, Λα. e ′ is a result.

Case (T TAPP): ∅ ` e1 T2 : [T2/α]T1; by inversion, ∅ ` e1 : ∀α.T1 and ∅ ` T2. By the
IH on the first derivation, e1 steps or is a result. If e1 −→ e ′1, then e1 T2 −→ e ′1 T2 by
(E COMPAT). If e1 = ⇑l , then ⇑l T2 −→ ⇑l by (E BLAME).

If e1 = v1, then we know that v1 = Λα. e ′1 by canonical forms (Lemma 21). We can
see (Λα. e ′1)T2 −→ [T2/α]e ′1 by (E TBETA).

Case (T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : T1→T2. In this case, 〈T1 ⇒ T2〉lσ is a result.

Case (T CHECK): ∅ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}; by inversion, ∅ ` e2 : bool. By the
IH, either e2 −→ e ′2 steps or e2 = r2. In the first case, 〈{x :T | e1}, e2, v〉l −→ 〈{x :T |
e1}, e ′2, v〉l by (E COMPAT). In the second case, either r2 = ⇑l or r2 = v2. If we have
blame, then the entire term steps by (E BLAME). If we have a value, then we know
that v2 is either true or false, since it is typed at bool. If it is true, we step by (E OK).
Otherwise we step by (E FAIL).

Case (T BLAME): ∅ ` ⇑l : T . In this case, ⇑l is a result.

Case (T CONV): ∅ ` e : T ′; by inversion, ∅ ` e : T . By the IH, we see that e −→ e ′ or
e = r .

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 155

Case (T EXACT): ∅ ` v : {x :T | e}. Here, v is a result by assumption.

Case (T FORGET): ∅ ` v : T . Again, v is a result by assumption.

Lemma 22 (Context and type well formedness). (1) If Γ ` e : T , then ` Γ and Γ ` T ; and
(2) if Γ ` T then ` Γ.

Proof. By induction on the typing and well formedness derivations.

Theorem 6 (Preservation). If ∅ ` e : T and e −→ e ′, then ∅ ` e ′ : T .

Proof. By induction on the typing derivation.

Case (T VAR): Contradictory—we cannot have ∅ ` x : T .

Case (T CONST): ∅ ` k : ty(k). Contradictory—values do not step.

Case (T OP): ∅ ` op (e1, ... , en) : σ(T). By cases on the step taken:

Case (E REDUCE)/(E OP): op (v1, ... , vn) −→ [[op]] (v1, ... , vn). This case is by assump-
tion.

Case (E BLAME): ei = ⇑l , and everything to its left is a value. By context and type well
formedness (Lemma 22), ∅ ` σ(T). So by (T BLAME), ∅ ` ⇑l : σ(T).

Case (E COMPAT): Some ei −→ e ′i . By the IH and (T OP), using (T CONV) to show
that σ(T) ≡ σ′(T) (Lemma 14).

Case (T ABS): ∅ ` λx :T1. e12 : (x :T1→T2). Contradictory—values do not step.

Case (T APP): ∅ ` e1 e2 : [e2/x]T ′2, with ∅ ` e1 : (x :T ′1 → T ′2) and ∅ ` e2 : T ′1, by
inversion. By cases on the step taken.

Case (E REDUCE)/(E BETA): (λx :T1. e12) v2 −→ [v2/x]e12. First, we have ∅ `
λx :T1. e12 : (x :T ′1→T ′2). By inversion for lambdas (Lemma 20), x :T1 ` e12 : T2.
Moreover, x :T1→T2 ≡ x :T ′1→T ′2, which means T2 ≡ T ′2 (Lemma B.3.3).

By substitution, ∅ ` [v2/x]e12 : [v2/x]T2. We then see that [v2/x]T2 ≡ [v2/x]T ′2
(Lemma 14), so (T CONV) completes this case.

Case (E REDUCE)/(E REFL): 〈T ⇒ T 〉lσ v2 −→ v2. By cast inversion (Lemma B.3.11),
:σ(T)→ σ(T) ≡ x :T ′1→ T ′2 and ∅ ` σ(T). In particular, we have σ(T) ≡ T ′2

and σ(T) ≡ T ′1 (Lemma B.3.3). By substitutivity of conversion (Lemma 14),
[v2/x]σ(T) ≡ [v2/x]T ′2. Since σ(T) is closed, we really know that σ(T) ≡
[v2/x]T ′2.

By (C SYM) and (C TRANS), we have T ′1 ≡ σ(T) ≡ [v2/x]T ′2. By (T CONV) on
∅ ` v2 : T ′1, we have ∅ ` v2 : [v2/x]T ′2.

Case (E REDUCE)/(E FORGET): 〈{x :T1 | e} ⇒ T2〉lσ v2 −→ 〈T1 ⇒ T2〉lσ′ v2 where
σ′ = σ|AFV(T1)∪AFV(T2). We have σ(T1) = σ′(T1) and σ(T2) = σ′(T2). We restate
the typing judgment and its inversion:

∅ ` 〈{x :T1 | e} ⇒ T2〉lσ v2 : [v2/y]T ′2
∅ ` 〈{x :T1 | e} ⇒ T2〉lσ : (y :T ′1→T ′2)
∅ ` v2 : T ′1

156 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

By cast inversion (Lemma B.3.11), we know that ∅ ` σ(T1) from ∅ ` σ({x :T1 | e})
and ∅ ` σ(T2)—as well as :σ({x :T1 | e})→σ(T2) ≡ y :T ′1→T ′2 and {x :T1 | e} ‖
T2 and AFV(σ) ⊆ ∅. Inverting this conversion (Lemma B.3.3), finding σ({x :T1 |
e}) ≡ T ′1 and σ(T2) ≡ T ′2. Then by (T CONV) and (C SYM), ∅ ` v2 : σ({x :T1 | e});
by (T FORGET), ∅ ` v2 : σ(T1).

By (T CAST), we have ∅ ` 〈T1 ⇒ T2〉lσ′ : y :σ(T1) → σ(T2), with T1 ‖ T2 iff
{x :T1 | e} ‖ T2, and AFV(σ′) ⊆ AFV(σ) ⊆ ∅. (Note, however, that y does not
appear in σ(T2)—we write it to clarify the substitutions below.)

By (T APP), we find ∅ ` 〈T1 ⇒ T2〉lσ′ v2 : [v2/y]σ(T2). Since σ(T2) ≡ T ′2, we have
[v2/y]σ(T2) ≡ [v2/y]T ′2 by Lemma 14. We are done by (T CONV).

Case (E REDUCE)/(E PRECHECK):

〈T1 ⇒ {x :T2 | e}〉lσ v2 −→
〈T2 ⇒ {x :T2 | e}〉lσ1 (〈T1 ⇒ T2〉lσ2 v2)

where σ1 = σ|AFV({x :T2|e}) and σ2 = σ|AFV(T1)∪AFV(T2). We have σ(T1) = σ2(T1)
and σ(T2) = σ1(T2) = σ2(T2) and σ({x :T2 | e}) = σ1({x :T2 | e}). We restate the
typing judgment and its inversion:

∅ ` 〈T1 ⇒ {x :T2 | e}〉lσ v2 : [v2/y]T ′2
∅ ` 〈T1 ⇒ {x :T2 | e}〉lσ : y :T ′1→T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma B.3.11), ∅ ` σ(T1) and ∅ ` σ({x :T2 | e}), and y :σ(T1)→
σ({x :T2 | e}) ≡ y :T ′1→T ′2 Also, T1 ‖ {x :T2 | e} and AFV(σ) ⊆ ∅.
By inversion on ∅ ` σ({x :T2 | e}), we find ∅ ` σ(T2). Next, T1 ‖ T2 iff T1 ‖
{x :T2 | e}, and AFV(σ2) ⊆ AFV(σ) ⊆ ∅. Now by (T CAST), we find ∅ ` 〈T1 ⇒
T2〉lσ2 : y :σ(T1)→σ(T2). Note, however, that y does not occur in σ(T2).

We can take the convertible function types and see that their parts are convertible:
σ(T1) ≡ T ′1 and σ({x :T2 | e}) ≡ T ′2. Using the first conversion, we find ∅ `
v2 : σ(T1) by (T CONV). By (T APP), ∅ ` 〈T1 ⇒ T2〉lσ2 v2 : [v2/y]σ(T2), where
[v2/y]σ(T2) = σ(T2).

By reflexivity of compatibility (easily proved) and (SIM REFINER), σ(T2) ‖
σ({x :T2 | e}). We have well formedness derivations for both types and
AFV(σ1) ⊆ AFV(σ) ⊆ ∅, as well, so ∅ ` 〈T2 ⇒ {x :T2 | e}〉lσ1 : y :σ(T2) →
σ({x :T2 | e}) by (T CAST). Again, y does not appear in σ(e) or σ(T2). By
(T APP), we have ∅ ` 〈T2 ⇒ {x :T2 | e}〉lσ1 (〈T1 ⇒ T2〉lσ2 v2) : [〈T1 ⇒
T2〉lσ2 v2/y]σ({x :T2 | e}).

Since y is not in σ({x :T2 | e}), we can see:

[〈T1 ⇒ T2〉lσ2 v2/y]σ({x :T2 | e}) = σ({x :T2 | e}) = [v2/y]σ({x :T2 | e})

By substitutivity of conversion (Lemma 14), we have [v2/y]σ({x :T2 | e}) ≡
[v2/y]T ′2. We can now apply (T CONV) to find ∅ ` 〈T2 ⇒ {x :T2 | e}〉lσ1 (〈T1 ⇒
T2〉lσ2 v2) : [v2/y]T ′2.

Case (E REDUCE)/(E CHECK): 〈T ⇒ {x :T | e}〉lσ v2 −→ 〈σ({x :T |
e}), σ([v2/x]e), v2〉l

′
. Without loss of generality, we can suppose that x is fresh

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 157

for σ. We restate the typing judgment with its inversion:

∅ ` 〈T ⇒ {x :T | e}〉lσ v2 : [v2/y]T ′2
∅ ` 〈T ⇒ {x :T | e}〉lσ : y :T ′1→T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma B.3.11), ∅ ` σ({x :T | e}) and ∅ ` σ(T) and AFV(σ) ⊆
∅. Moreover, y :σ(T)→ σ({x :T | e}) ≡ y :T ′1 → T ′2, where y does not occur in
σ({x :T | e}). This means that σ(T) ≡ T ′1 and σ({x :T | e}) ≡ T ′2.

Using (T CONV) and (C SYM) with the first conversion shows ∅ ` v2 : σ(T).
By inversion on ∅ ` σ({x :T | e}), we see x :σ(T) ` σ(e) : bool. By term sub-
stitution (Lemma 18), we find ∅ ` [v2/x]σ(e) : bool. Since [v2/x]σ = σ, by
Lemma B.1.4, [v2/x]σ(e) = σ([v2/x]e). Finally, σ([v2/x]e) −→∗ σ([v2/x]e) by
reflexivity (Lemma B.3.1).

(T CHECK) (with (WF EMPTY)) shows ∅ ` 〈σ({x :T | e}), σ([v2/x]e), v2〉l :
σ({x :T | e}). By substitutivity of conversion (Lemma 14), [v2/y]σ({x :T | e}) ≡
[v2/y]T ′2. Since y does not occur in σ({x :T | e}), we know that [v2/y]σ({x :T |
e}) = σ({x :T | e}), so we can show that σ({x :T | e}) ≡ [v2/y]T ′2 by (C SYM),
and now ∅ ` 〈σ({x :T | e}), σ([v2/x]e), v2〉l : [v2/y]T ′2 by (T CONV).

Case (E REDUCE)/(E FUN):

〈x :T11→T12 ⇒ x :T21→T22〉lσ v2 −→
λx :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ1 x in (〈[z/x]T12 ⇒ T22〉lσ2 (v2 z))

for some fresh variable z , where σi = σ|AFV(T1 i)∪AFV(T2 i) (i ∈ {1, 2}). Without
loss of generality, we can suppose that x is fresh for σ. We have σ(Tj i) = σi(Tj i)
(j ∈ {1, 2}). We restate the typing judgment with its inversion:

∅ ` 〈x :T11→T12 ⇒ x :T21→T22〉lσ v2 : [v2/y]T ′2
∅ ` 〈x :T11→T12 ⇒ x :T21→T22〉lσ : (y :T ′1→T ′2)
∅ ` v2 : T ′1

By cast inversion on the first derivation:

∅ ` σ(x :T11→T12) ∅ ` σ(x :T21→T22)
x :T11→T12 ‖ x :T21→T22 AFV(σ) ⊆ ∅

:σ(x :T11→T12)→σ(x :T21→T22) ≡ y :T ′1→T ′2

By inversion of this last (Lemma B.3.3):

σ(x :T11→T12) ≡ T ′1 σ(x :T21→T22) ≡ T ′2

So by (T CONV) and (C SYM), we have ∅ ` v2 : σ(x :T11→ T12). By weakening
(Lemma 16), x :σ(T21), z :σ(T11) ` v2 : σ(x :T11→T12).

By inversion of the well formedness of the function types:

∅ ` σ(T11) x :σ(T11) ` σ(T12) ∅ ` σ(T21) x :σ(T21) ` σ(T22)

158 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

By weakening (Lemma 16), we find x :σ(T21) ` σ(T11) and x :σ(T21) ` σ(T21). By
compatibility:

T11 ‖ T21 T12 ‖ T22

Since AFV(σ1) ⊆ AFV(σ) ⊆ ∅, we have x :σ(T21) ` 〈T21 ⇒ T11〉lσ1 : (:σ(T21)→
σ(T11)) by (T CAST) (compatibility is symmetric, per Lemma B.3.7). By (T APP)
and (T VAR), we can see x :σ(T21) ` 〈T21 ⇒ T11〉lσ1 x : [x/]σ(T11) = σ(T11).
Again by (T APP), we have x :σ(T21), z :σ(T11) ` v2 z : [z/x]σ(T12). By weakening
(Lemma 16) and substitution (Lemma 18), we have the following two derivations:

x :σ(T21), z :σ(T11) ` [z/x]σ(T12) = [z/x]σ2(T12) = σ2([z/x]T12)
x :σ(T21), z :σ(T11) ` σ(T22)

By (T CAST) and Lemma B.3.8:

x :σ(T21), z :σ(T11) ` 〈[z/x]T12 ⇒ T22〉lσ2 : (y :[z/x]σ(T12)→σ(T22))

Noting that y is free here. By (T APP):

x :σ(T21), z :σ(T11) ` 〈[z/x]T12 ⇒ T22〉l (v2 z)
: [v2 z/y]T22(= T22)

Finally, by (T ABS) and (T APP):

∅ ` λx :σ(T21).
let z : σ(T11) = 〈T21 ⇒ T11〉lσ1 x in
〈[z/x]T12 ⇒ T22〉lσ2 (v2 z)

: x :σ(T21)→σ(T22)

since [〈T21 ⇒ T11〉lσ1 x/z]σ(T22) = σ(T22).

Since y is not in x :σ(T21) → σ(T22), we can see that x :σ(T21) → σ(T22) =
[v2/y](x :σ(T21) → σ(T22)). Using this fact with substitutivity of conversion
(Lemma 14), we find x :σ(T21)→ σ(T22) ≡ [v2/y]T ′2. So—finally—by (T CONV)
we have:

∅ ` λx :σ(T21). let z : σ(T11) = 〈T21 ⇒ T11〉lσ1 x in 〈[z/x]T12 ⇒ T22〉lσ2 (v2 z) : [v2/y]T ′2

Case (E REDUCE)/(E FORALL): 〈∀α.T1 ⇒ ∀α.T2〉lσ v2 −→ (Λα. 〈[α/α]T1 ⇒
T2〉lσ (v α)) Without loss of generality, we can suppose that α is fresh for σ. We
restate the typing and its inversion:

∅ ` 〈∀α.T1 ⇒ ∀α.T2〉lσ v2 : [v2/x]T ′2
∅ ` 〈∀α.T1 ⇒ ∀α.T2〉lσ : x :T ′1→T ′2
∅ ` v2 : T ′1

By cast inversion (Lemma B.3.11):

∅ ` σ(∀α.T1) ∅ ` σ(∀α.T2)
∀α.T1 ‖ ∀α.T2 AFV(σ) ⊆ ∅

:σ(∀α.T1)→σ(∀α.T2) ≡ x :T ′1→T ′2

By inversion of this last σ(∀α.T1) ≡ T ′1 and σ(∀α.T2) ≡ T ′2 (Lemma B.3.3). By

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 159

(T CONV) and (C SYM), ∅ ` v2 : σ(∀α.T1) = ∀α.σ(T1). By type variable weaken-
ing (Lemma 17), (WF TVAR), and (T TAPP), we have:

α ` v2 α : [α/α]σ(T1) = σ([α/α]T1)

. Note that σ([α/α]T1) may be syntactically different from σ(T1). By inversion of
the universal type’s well formedness, compatibility, type weakening (Lemma 17),
type substitution (Lemma 19) and Lemma B.3.10:

α ` σ([α/α]T1) α ` σ(T2) [α/α]T1 ‖ T2

So by (T CAST), α ` 〈[α/α]T1 ⇒ T2〉lσ : (x :σ([α/α]T1) → σ(T2)), noting
that x does not occur in σ(T2). By (T APP), α ` 〈[α/α]T1 ⇒ T2〉lσ (v2 α) :
[v2 α/x]σ(T2) = σ(T2). By (T TABS), ∅ ` Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) : ∀α.σ(T2).

We know that ∀α.σ(T2) ≡ T ′2, so by term substitutivity of conversion (Lemma 14),
[v2/x]∀α.σ(T2) ≡ [v2/x]T ′2. Since x is not in ∀α.σ(T2), we know that ∀α.σ(T2) ≡
[v2/x]T ′2. Now we can see by (T CONV) that ∅ ` Λα. (〈[α/α]T1 ⇒ T2〉lσ (v α)) :
[v2/x]T ′2.

Case (E COMPAT): E [e] −→ E [e ′] when e −→ e ′ By cases on E:

Case (E = [] e2, e1 −→ e ′1): By the IH and (T APP).

Case (E = v1 [], e2 −→ e ′2): By the IH, (T APP), and (T CONV), since [e2/x]T2 ≡
[e ′2/x]T2 by reflexivity (Lemma B.3.1) and substitutivity (Lemma 14).

Case (E BLAME): E [⇑l] −→ ⇑l ∅ ` E [⇑l] : T by assumption. By type well formedness
(Lemma 22), we know that ∅ ` T . We then have ∅ ` ⇑l : T by (T BLAME).

Case (T TABS): ∅ ` Λα. e : ∀α.T . This case is contradictory—values do not step.

Case (T TAPP): ∅ ` e T : [T/α]T ′. By cases on the step taken.

Case (E REDUCE)/(E TBETA): (Λα. e ′)T −→ [T/α]e ′ We restate the typing derivation
and its inversion:

∅ ` (Λα. e ′)T : [T/α]T ′ ∅ ` Λα. e ′ : ∀α.T ′ ∅ ` T

By type abstraction inversion (Lemma B.3.12): α ` e ′ : T ′′ and ∀α.T ′′ ≡ ∀α.T ′;
by inversion of this last (Lemma B.3.5), T ′′ ≡ T ′.

By type variable substitution (Lemma 19), ∅ ` [T/α]e ′ : [T/α]T ′′. By type sub-
stitutivity of conversion (Lemma 15), [T/α]T ′′ ≡ [T/α]T ′. (T CONV) gives us
∅ ` [T/α]e ′ : [T/α]T ′ as desired.

Case (E COMPAT): E [e] −→ E [e ′], where E = []T . By the IH and (T TAPP).

Case (E BLAME): E [⇑l] −→ ⇑l . ∅ ` E [⇑l] : T by assumption. By type well formedness
(Lemma 22), we know that ∅ ` T . So we see ∅ ` ⇑l : T by (T BLAME).

Case (T CAST): ∅ ` 〈T1 ⇒ T2〉lσ : σ(T1)→σ(T2). This case is contradictory—values do
not step.

Case (T CHECK): ∅ ` 〈{x :T | e1}, e2, v〉l : {x :T | e1}. By cases on the step taken.

160 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Case (E REDUCE)/(E OK): 〈{x :T | e1}, true, v〉l −→ v . By inversion, ∅ ` v : T and ∅ `
{x :T | e}; we also have [v/x]e1 −→∗ true. By (WF EMPTY) and the assumption
that [v/x]e −→∗ true, we can find ∅ ` v : {x :T | e} by (T EXACT).

Case (E REDUCE)/(E FAIL): 〈{x :T | e1}, false, v〉l −→ ⇑l We have ∅ ` {x :T | e} by
inversion. By (WF EMPTY) and (T BLAME), ∅ ` ⇑l : {x :T | e}.

Case (E COMPAT): E [e] −→ E [e ′], where E = 〈{x :T | e1}, [] , v〉l. By the IH on e ,
we know that ∅ ` e ′ : bool. We still have ∅ ` {x :T | e1} and ∅ ` v : T from
our original derivation. Since [v/x]e1 −→∗ e and e −→ e ′, then [v/x]e1 −→∗ e ′.
Therefore, ∅ ` 〈{x :T | e1}, e ′, v〉l : {x :T | e1} by (T CHECK).

Case (E BLAME): E [⇑l] −→ ⇑l . ∅ ` E [⇑l] : T by assumption. By type well formedness
(Lemma 22), we know that ∅ ` T . So ∅ ` ⇑l : T by (T BLAME).

Case (T BLAME): ∅ ` ⇑l : T . This case is contradictory—blame does not step.

Case (T CONV): ∅ ` e : T ′; by inversion we have ∅ ` e : T and T ≡ T ′ and ∅ ` T ′ (and,
trivially, ` ∅). By the IH on the first derivation, we know that ∅ ` e ′ : T . By (T CONV),
we can see that ∅ ` e ′ : T ′.

Case (T EXACT): ∅ ` v : {x :T | e}. This case is contradictory—values do not step.

Case (T FORGET): ∅ ` v : T . This case is contradictory—values do not step.

B.4 Parametricity

This section proves parametricity; an outline of the proof is described in Section 3.4.2.
We write RT ,θ,δ for {(r1, r2) | r1 ∼ r2 : T ; θ; δ}.

Lemma 23 (Term compositionality). If θ1(δ1(e)) −→∗ v1 and θ2(δ2(e)) −→∗ v2 then
r1 ∼ r2 : T ; θ; δ[(v1, v2)/x] iff r1 ∼ r2 : [e/x]T ; θ; δ.

Proof. By induction on the (simple) structure of T , proving both directions simultane-
ously. We treat the case where r1 = r2 = ⇑l separately from the induction, since it is
the same easy proof in all cases: ⇑l ∼ ⇑l : T ; θ; δ irrespective of T and δ. So for the rest
of proof, we know r1 = v1 and r2 = v2. Only the refinement case is interesting.

Case (T = {y :T ′ | e ′}): We show both directions simultaneously, where x 6= y , i.e., y is
fresh. By the IH for T ′, we know that

v1 ∼ v2 : T ′; θ; δ[(e1, e2)/x] iff v1 ∼ v2 : [e/x]T ′; θ; δ.

It remains to show that the values satisfy their refinements.
That is, we must show:

θ1(δ1([v1/y][e1/x]e ′)) −→∗ true iff θ1(δ1([v1/y][e/x]e ′)) −→∗ true

θ2(δ2([v2/y][e2/x]e ′)) −→∗ true iff θ2(δ2([v2/y][e/x]e ′)) −→∗ true

So let:

σ1 = θ1δ1[δ1(e)/x , v1/y] −→∗ θ1δ1[e1/x , v1/y] = σ′1
σ2 = θ2δ2[δ2(e)/x , v2/y] −→∗ θ2δ2[e2/x , v2/y] = σ′2

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 161

We have σ1 −→∗ σ′1 by reflexivity except for δ1(e) −→∗ e1, which we have by assump-
tion; likewise, we have σ2 −→∗ σ′2. Then σi(e ′) and σ′i(e

′) coterminate (Lemma 11), and
we are done.

Lemma B.4.1 (Term Weakening/Strengthening). If x 6∈ T , then r1 ∼ r2 :
T ; θ; δ[(e1, e2)/x] iff r1 ∼ r2 : T ; θ; δ.

Proof. Similar to Lemma 23.

Lemma B.4.2 (Type Weakening/Strengthening). If α 6∈ T , then r1 ∼ r2 : T ; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : T ; θ; δ.

Proof. Similar to Lemma 23.

Lemma 24 (Type compositionality).
r1 ∼ r2 : T ; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ iff r1 ∼ r2 : [T ′/α]T ; θ; δ.

Proof. By induction on the (simple) structure of T , proving both directions simultane-
ously. As for Lemma 23, we treat the case where r1 = r2 = ⇑l separately from the
induction, since it is the same easy proof in all cases: ⇑l ∼ ⇑l : T ; θ; δ irrespective of T
and δ. So for the rest of proof, we know r1 = v1 and r2 = v2. Here, the interesting case
is for function types, where we must deal with some asymmetries in the definition of
the logical relation. We also include the case for quantified types.

Case (T = x :T1→T2): There are two cases:

Case (⇒): Given v1 ∼ v2 : (x :T1 → T2); θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ, we
wish to show that v1 ∼ v2 : [T ′/α](x :T1→T2); θ; δ. Let v ′1 ∼ v ′2 : [T ′/α]T1; θ; δ.
We must show that v1 v

′
1 ' v2 v

′
2 : [T ′/α]T2; θ; δ[(v ′1, v

′
2)/x]. By the IH on T1,

v ′1 ∼ v ′2 : T1; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. By assumption,

v1 v
′
1 ' v2 v

′
2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[(v ′1, v

′
2)/x].

These normalize to

r ′1 ∼ r ′2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[(v ′1, v
′
2)/x].

Since x 6∈ T ′, Lemma B.4.1 gives RT ′,θ,δ = RT ′,θ,δ[(v ′1,v
′
2)/x] and so

r ′1 ∼ r ′2 : T2; θ[α 7→ RT ′,θ,δ[(v ′1,v
′
2)/x], θ1(δ1([v ′1/x]T ′)), θ2(δ2([v ′2/x]T ′))]; δ[(v ′1, v

′
2)/x].

By the IH on T2, r ′1 ∼ r ′2 : [T ′/α]T2; θ; δ[(v ′1, v
′
2)/x]. By expansion, v1 v

′′
1 ' v2 v

′′
2 :

[T ′/α]T2; θ; δ[(v ′1, v
′
2)/x].

Case (⇐): This case is similar: Given v1 ∼ v2 : [T ′/α](x :T1 → T2); θ; δ, we wish to
show that v1 ∼ v2 : (x :T1 → T2); θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Let
v ′1 ∼ v ′2 : T1; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. We must show that

v1 v
′
1 ' v2 v

′
2 : T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[(v ′1, v

′
2)/x].

By the IH on T1, v ′1 ∼ v ′2 : [T ′/α]T1; θ; δ. By assumption, v1 v
′
1 ' v2 v

′
2 :

[T ′/α]T2; θ; δ[(v ′1, v
′
2)/x]. These normalize to r ′1 ' r ′2 : [T ′/α]T2; θ; δ[(v ′1, v

′
2)/x].

162 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

By the IH on T2,

r ′1 ' r ′2 : [T ′/α]T2;
θ[α 7→ RT ′,θ,δ[(v ′1,v

′
2)/x], θ1(δ1([v ′1/x]T ′)), θ2(δ2([v ′2/x]T ′))];

δ[(v ′1, v
′
2)/x].

Since x 6∈ T ′, Lemma B.4.1 gives

r ′1 ' r ′2 : [T ′/α]T2; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ[(v ′1, v
′
2)/x].

Finally, by expansion

v1 v
′
1 ' v2 v

′
2 : [T ′/α]T2;

θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))];
δ[(v ′1, v

′
2)/x].

Case (T = ∀α′.T0): There are two cases:

Case (⇒): Given v1 ∼ v2 : ∀α′.T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ, we wish
to show that v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ. Let a relation R and closed types
T1 and T2 be given. By assumption, we know that v1 T1 ' v2 T2 : T0; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))][α′ 7→ R,T1,T2]; δ. They normalize to r ′1 ∼ r ′2 :
T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))][α′ 7→ R,T1,T2]; δ. By the IH, r ′1 ∼ r ′2 :
[T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. By expansion, v1 T1 ' v2 T2 : [T ′/α]T0; θ[α′ 7→
R,T1,T2]; δ. Then, v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ.

Case (⇐): This case is similar: given v1 ∼ v2 : ∀α′.([T ′/α]T0); θ; δ, we wish to
show that v1 ∼ v2 : ∀α′.T0; θ[α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Let a re-
lation R and closed types T1 and T2 be given. By assumption, we know that
v1 T1 ' v2 T2 : [T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. They normalize to r ′1 ∼ r ′2 :
[T ′/α]T0; θ[α′ 7→ R,T1,T2]; δ. By the IH, r ′1 ∼ r ′2 : T0; θ[α′ 7→ R,T1,T2][α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. By expansion, v1 T1 ' v2 T2 : T0; θ[α′ 7→
R,T1,T2][α 7→ RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ. Then, v1 ∼ v2 : ∀α′.T0; θ[α 7→
RT ′,θ,δ, θ1(δ1(T ′)), θ2(δ2(T ′))]; δ.

Lemma 25 (Convertibility). If T1 ≡ T2 then r1 ∼ r2 : T1; θ; δ iff r1 ∼ r2 : T2; θ; δ.

Proof. By induction on the conversion relation, leaving θ and δ general. The case where
r1 = r2 = ⇑l is immediate, so we only need to consider the case where r1 = v1 and
r2 = v2.

Case (C VAR): It must be that T1 = T2 = α, so we are done immediately.

Case (C BASE): It must be that T1 = T2 = B , so we are done immediately.

Case (C REFINE): We have that T1 = {x :T ′1 | σ1(e)} and T2 = {x :T ′2 | σ2(e)}, where
T ′1 ≡ T ′2 and σ1 −→∗ σ2.

By cotermination (Lemma 11):

[v1/x](θ1(δ1(σ1(e)))) −→∗ true iff [v1/x](θ1(δ1(σ2(e)))) −→∗ true
[v2/x](θ2(δ2(σ1(e)))) −→∗ true iff [v2/x](θ2(δ2(σ2(e)))) −→∗ true.

We have [vi/x](θi(δi(σj (e)))) = σj ([vi/x](θi(δi(e)))) for i, j ∈ {1, 2} since all substitu-
tions here are closing.

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 163

Case (C FUN): We have that T1 = x :T11→T12 ≡ x :T21→T22 = T2.
Let v ′1 ∼ v ′2 : T21; θ; δ be given; we must show that v1 v

′
1 ' v2 v

′
2 : T22; θ; δ[(v ′1, v

′
2)/x].

By the IH, we know that v ′1 ∼ v ′2 : T11; θ; δ, so we know that v1 v
′
1 ' v2 v

′
2 :

T12; θ; δ[(v ′1, v
′
2)/x]. We are done by another application of the IH.

The other direction is similar.

Case (C FORALL): We have that T1 = ∀α.T ′1 ≡ ∀α.T ′2 = T2.
Let R, T , and T ′ be given. We must show that v1 T ' v2 T

′ : T ′2; θ[α 7→ R,T ,T ′]; δ.
We know that v1 T ' v2 T

′ : T ′1; θ[α 7→ R,T ,T ′]; δ, so we are done by the IH.
The other direction is similar.

Case (C SYM): By the IH.

Case (C TRANS): By the IHs.

Lemma 26 (Cast reflexivity). If ` Γ and T1 ‖ T2 and Γ ` σ(T1) ' σ(T1) : ∗ and Γ `
σ(T2) ' σ(T2) : ∗ and AFV(σ) ⊆ dom(Γ), then Γ ` 〈T1 ⇒ T2〉lσ ' 〈T1 ⇒ T2〉lσ :
σ(:T1→T2).

Proof. By induction on cc(〈T1 ⇒ T2〉l). We omit the majority of this proof, but we leave
in the case when T1 = T2 to highlight the need for the (E REFL) reduction rule.

Case T1 = T2: Given Γ ` θ; δ, we wish to show that

〈θ1(δ1(T1))⇒ θ1(δ1(T1))〉lσ ' 〈θ2(δ2(T1))⇒ θ2(δ2(T1))〉lσ : σ(T1→T1); θ; δ.

Let v1 ∼ v2 : σ(T1); θ; δ. We must show that

〈θ1(δ1(T1))⇒ θ1(δ1(T1))〉lσ v1 '
〈θ2(δ2(T1))⇒ θ2(δ2(T1))〉lσ v2 : σ(T1); θ; δ[(v1, v2)/z]

for fresh z . By (E REFL), these normalize to v1 ∼ v2 : σ(T1); θ; δ[(v1, v2)/z]. Lemma B.4.1
finishes the case.

Theorem 8 (Parametricity). (1) If Γ ` e : T then Γ ` e ' e : T ; and (2) if Γ ` T then
Γ ` T ' T : ∗.

Proof. By simultaneous induction on the derivations with case analysis on the last rule
used.

Case (T VAR): Let Γ ` θ; δ. We wish to show that θ1(δ1(x)) ' θ2(δ2(x)) : T ; θ; δ, which
follows from the assumption.

Case (T CONST): By the assumption that constants are assigned correct types.

Case (T OP): By the assumption that operators are assigned correct types (and the IHs
for the operator’s arguments).

Case (T ABS): We have e = λx :T1. e12 and T = x :T1→T2 and Γ, x :T1 ` e12 : T2. Let
Γ ` θ; δ. We wish to show that

θ1(δ1(λx :T1. e12)) ∼ θ2(δ2(λx :T1. e12)) : (x :T1→T2); θ; δ.

Let v1 ∼ v2 : T1; θ; δ. We must show that

(λx :θ1(δ1(T1)). θ1(δ1(e12))) v1 ' (λx :θ2(δ2(T1)). θ2(δ2(e12))) v2 : T2; θ; δ[(v1, v2)/x].

164 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Since

(λx :θ1(δ1(T1)). θ1(δ1(e12))) v1 −→ [v1/x]θ1(δ1(e12))

(λx :θ2(δ2(T1)). θ2(δ2(e12))) v2 −→ [v2/x]θ2(δ2(e12)),

it suffices to show

[v1/x]θ1(δ1(e12)) ' [v2/x]θ2(δ2(e12)) : T2; θ; δ[(v1, v2)/x].

By the IH, Γ, x :T1 ` e12 ' e12 : T2. The fact that Γ, x :T1 ` θ; δ[(v1, v2)/x] finishes the
case.

Case (T APP): We have e = e1 e2 and Γ ` e1 : x :T1 → T2 and Γ ` e2 : T1 and T =
[e2/x]T2. Let Γ ` θ; δ. We wish to show that

θ1(δ1(e1 e2)) ' θ2(δ2(e1 e2)) : [e2/x]T2; θ; δ.

By the IH,
θ1(δ1(e1)) ' θ2(δ2(e2)) : x :T1→T2; θ; δ, and
θ1(δ1(e2)) ' θ2(δ2(e2)) : T1; θ; δ.

These normalize to r11 ∼ r12 : x :T1→ T2; θ; δ and r21 ' r22 : T1; θ; δ, respectively. If
r11 = r12 = ⇑l or r21 = r22 = ⇑l for some l , then we are done:

θ1(δ1(e1 e2)) −→∗ ⇑l
θ2(δ2(e1 e2)) −→∗ ⇑l .

So let ri j = vi j . By definition,

v11 v21 ' v12 v22 : T2; θ; δ[(v21, v22)/x].

These normalize to r ′1 ∼ r ′2 : T2; θ; δ[(v21, v22)/x]. By Lemma 23,

r ′1 ∼ r ′2 : [e2/x]T2; θ; δ.

By expansion, we can then see

θ1(δ1(e1 e2)) ' θ2(δ2(e1 e2)) : [e2/x]T2; θ; δ.

Case (T TABS): We have e = Λα. e0 and T = ∀α.T0 and Γ, α ` e0 : T0. Let Γ ` θ; δ. We
wish to show that

θ1(δ1(Λα. e0)) ∼ θ2(δ2(Λα. e0)) : ∀α.T0; θ; δ.

Let R,T1,T2 be given. We must show that

θ1(δ1(Λα. e0))T1 ' θ2(δ2(Λα. e0))T2 : T0; θ[α 7→ R,T1,T2]; δ.

Since

θ1(δ1(Λα. e0))T1 −→ [T1/α]θ1(δ1(e0))

θ2(δ2(Λα. e0))T2 −→ [T2/α]θ2(δ2(e0))

Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism 165

it suffices to show that

[T1/α]θ1(δ1(e0)) ' [T2/α]θ2(δ2(e0)) : T0; θ[α 7→ R,T1,T2]; δ.

Since Γ, α ` θ[α 7→ R,T1,T2]; δ, the IH finishes the case with Γ, α ` e0 ' e0 : T0.

Case (T TAPP): We have e = e1 T2 and Γ ` e1 : ∀α.T0 and Γ ` T2 and T = [T2/α]T0.
Let Γ ` θ; δ. We wish to show that

θ1(δ1(e1 T2)) ' θ2(δ2(e1 T2)) : [T2/α]T0; θ; δ.

By the IH,
θ1(δ1(e1)) ' θ2(δ2(e1)) : ∀α.T0; θ; δ.

These normalize to r1 ∼ r2 : ∀α.T0; θ; δ. If both results are blame, θ1(δ1(e1 T2)) and
θ2(δ2(e1 T2)) also normalize to blame, and we are done. So let r1 = v1 and r2 = v2.
Then, by definition,

v1 T
′
1 ' v2 T

′
2 : T0; θ[α 7→ R,T ′1,T

′
2]; δ

for any R,T ′1,T
′
2. In particular,

v1 θ1(δ1(T2)) ' v2 θ2(δ2(T2)) : T0; θ[α 7→ RT2,θ,δ, θ1(δ1(T2)), θ2(δ2(T2))]; δ.

These normalize to

r ′1 ∼ r ′2 : T0; θ[α 7→ RT2,θ,δ, θ1(δ1(T2)), θ2(δ2(T2))]; δ.

By Lemma 24, r ′1 ∼ r ′2 : [T2/α]T0; θ; δ. By expansion,

θ1(δ1(e1 T2)) ' θ2(δ2(e1 T2)) : [T2/α]T0; θ; δ.

Case (T CAST): We have e = 〈T1 ⇒ T2〉lσ and ` Γ and T1 ‖ T2 and Γ ` T1, Γ ` T2 and
T = T1→T2. By the IH, Γ ` T1 ' T1 : ∗ and Γ ` T2 ' T2 : ∗. By Lemma 26,

Γ ` 〈T1 ⇒ T2〉lσ ' 〈T1 ⇒ T2〉lσ : σ(T1→T2),

which is exactly what we were looking for.

Case (T BLAME): Immediate.

Case (T CHECK): We have e = 〈{x :T1 | e1}, e2, v〉l and ∅ ` v : T1 and ∅ ` e2 : bool, ` Γ
and ∅ ` {x :T1 | e1} and [v/x]e1 −→∗ e2 and T = {x :T1 | e1}. Let Γ ` θ; δ. We wish to
show that

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) ' θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) : {x :T1 | e1}; θ; δ.

By the IH,
θ1(δ1(e2)) ' θ2(δ2(e2)) : bool; θ; δ

and these normalize to the same result. If the result is false or ⇑l ′ for some l ′, then, for
some l ′′,

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) −→∗ ⇑l ′′

θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) −→∗ ⇑l ′′.

166 Appendix B. Proofs of Manifest Contracts with Parametric Polymorphism

Otherwise, the result is true. Then, by the IH, v ∼ v : T1; θ; δ and ∅ ` {x :T1 | e1} '
{x :T1 | e1} : ∗. By definition,

[v/x]θ1(δ1(e1)) ' [v/x]θ2(δ2(e1)) : bool; θ; δ[(v , v)/x].

Then, we have

[v/x]θ1(δ1(e1)) = [v/x]e1 −→∗ true

[v/x]θ2(δ2(e1)) = [v/x]e1 −→∗ true.

By definition, v ' v : {x :T1 | e1}; θ; δ. By expansion,

θ1(δ1(〈{x :T1 | e1}, e2, v〉l)) ' θ2(δ2(〈{x :T1 | e1}, e2, v〉l)) : {x :T1 | e1}; θ; δ.

Case (T CONV): By Lemma 25.

Case (T EXACT): We have e = v and ∅ ` v : T and ∅ ` {x :T0 | e0} and [v/x]e0 −→∗ true
and T = {x :T0 | e0}. Let Γ ` θ; δ. We wish to show that

v ∼ v : {x :T0 | e0}; θ; δ.

By the IH, v ∼ v : T0; θ; δ. Since ∅ ` {x :T0 | e0}, the only free variable in e0 is x and

[v/x]θ1(δ1(e0)) = [v/x]e0 −→∗ true

[v/x]θ2(δ2(e0)) = [v/x]e0 −→∗ true.

By definition, v ∼ v : {x :T0 | e0}; θ; δ.

Case (T FORGET): By the IH, ∅ ` v ' v : {x :T | e}, which implies Γ ` v ' v : T .

Case (WF BASE): Trivial.

Case (WF TVAR): Trivial.

Case (WF FUN): By the IH.

Case (WF FORALL): By the IH.

Case (WF REFINE): By the IH.

Appendix C

Proofs of Manifest Contracts with
Algebraic Datatypes

This chapter shows properties of λH
dt . We start with showing a few properties of type

and term equivalence (Section C.1). Similarly to Chapter B, we prove cotermination in
Section C.2 and type soundness in Section C.3. Finally, Section C.4 shows correctness
of our syntactic type translation given in Section 4.3. In what follows, we use notation
Ri, which denotes i-times composition of relation R, and function unref, which returns
the underlying type of an argument type. The formal definition of unref is the same as
the one given in Section 3.2.3.

C.1 Term and Type Equivalence

Lemma C.1.1 (Type and Term Equivalences are Equivalences).

(1) The relation ≡ over types is a equivalence relation:

• T ≡ T for any T .

• If T1 ≡ T2 and T2 ≡ T3, then T1 ≡ T3.

• If T1 ≡ T2, then T2 ≡ T1.

(2) The relation ≡ over terms is a equivalence relation:

• e ≡ e for any e .

• If e1 ≡ e2 and e2 ≡ e3, then e1 ≡ e3.

• If e1 ≡ e2, then e2 ≡ e1.

Proof. Since ≡ is the transitive and symmetric closure ofV, transitivity and symmetry
hold obviously.

We show reflexivity of ≡ over types. Let T be a type, and x be a variable such that
x /∈ FV (T). Suppose that e1 −→ e2 for some e1 and e2 (e.g., e1 = λ x :bool.x and
e2 = true). Then, we have T {e1/x} V T {e2/x}. Since T {e1/x} = T {e2/x} = T ,
we finish.

Reflexivity of ≡ over terms can be shown similarly. Let e be a term, and x be a
variable such that x /∈ FV (e). Suppose that e1 −→ e2 for some e1 and e2 (e.g., e1 =
λ x :bool.x and e2 = true). Then, we have e {e1/x} V e {e2/x}. Since e {e1/x} =
e {e2/x} = e , we finish.

Lemma C.1.2. If e1 −→ e2, then e1 V e2.

Proof. Obvious because x {e1/x} V x {e2/x}.

167

168 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Lemma C.1.3.

(1) If e1 V e2, then T {e1/x} V T {e2/x}.

(2) If e1 V∗ e2, then T {e1/x} V∗ T {e2/x}.

(3) If e1 ≡ e2, then T {e1/x} ≡ T {e2/x}.

Proof.

1. Since e1 V e2, there exist e , y , e ′1 and e ′2 such that e1 = e {e ′1/y} and e2 =
e {e ′2/y} and e ′1 −→ e ′2. Suppose that z is a fresh variable. Here, we have

• T {e1/x} = T {e {e ′1/y}/x} = T {e {z/y} {e ′1/z}/x} =
T {e {z/y}/x} {e ′1/z},
• T {e {z/y}/x} {e ′1/z} V T {e {z/y}/x} {e ′2/z}, and

• T {e {z/y}/x} {e ′2/z} = T {e {z/y} {e ′2/z}/x} = T {e {e ′2/y}/x} =
T {e2/x}.

Thus, T {e1/x} V T {e2/x}.

2. By mathematical induction on the number of steps of e1 V∗ e2.

Case 0: Obvious because e1 = e2.

Case i + 1: We are given e1 V e3 Vi e2 for some e3. By the IH and the first case,
we finish.

3. By induction on e1 ≡ e2.

Case e1 V e2: By the first case.

Case transitivity and symmetry: By the IH(s).

Lemma C.1.4.

(1) If T1 V T2, then T1 {e/x} V T2 {e/x}

(2) If T1 V∗ T2, then T1 {e/x} V∗ T2 {e/x}

(3) If T1 ≡ T2, then T1 {e/x} ≡ T2 {e/x}.

Proof.

1. By definition, there exist T , y , e1 and e2 such that T1 = T {e1/y} and T2 =
T {e2/y} and e1 −→ e2. Suppose that z is a fresh variable. Since the evaluation
relation is defined over closed terms, it is found that e1 and e2 are closed. Here,
we have

• T1 {e/x} = T {e1/y} {e/x} = T {z/y} {e1/z} {e/x} =
T {z/y} {e/x} {e1/z},
• T {z/y} {e/x} {e1/z} V T {z/y} {e/x} {e2/z}, and

• T {z/y} {e/x} {e2/z} = T {z/y} {e2/z} {e/x} = T {e2/y} {e/x} =
T2 {e/x}.

Thus, T1 {e/x} V T2 {e/x}.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 169

2. By mathematical induction on the number of steps of T1 V∗ T2.

Case 0: Obvious because T1 = T2.

Case i + 1: We are given T1 V T3 Vi T2 for some T3. By the IH and the first
case, we finish.

3. By induction on T1 ≡ T2.

Case T1 V T2: By the first case.

Case transitivity and symmetry: Obvious by the IH(s).

Lemma C.1.5.

(1) If e1 V e2, then e {e1/x} V e {e2/x}.

(2) If e1 V∗ e2, then e {e1/x} V∗ e {e2/x}.

(3) If e1 ≡ e2, then e {e1/x} ≡ e {e2/x}

Proof.

1. Since e1 V e2, there exists some e ′, y , e ′1 and e ′2 such that e1 = e ′ {e ′1/y} and
e2 = e ′ {e ′2/y} and e ′1 −→ e ′2. Suppose that z is a fresh variable. Here, we have

• e {e1/x} = e {e ′ {e ′1/y}/x} = e {e ′ {z/y} {e ′1/z}/x} =
e {e ′ {z/y}/x} {e ′1/z},
• e {e ′ {z/y}/x} {e ′1/z} V e {e ′ {z/y}/x} {e ′2/z}, and

• e {e ′ {z/y}/x} {e ′2/z} = e {e ′ {z/y} {e ′2/z}/x} = e {e ′ {e ′2/y}/x} =
e {e2/x}.

Thus, e {e1/x} V e {e2/x}.

2. By mathematical induction on the number of steps of e1 V∗ e2.

Case 0: Obvious because e1 = e2.

Case i + 1: We are given e1 V e3 Vi e2 for some e3. By the IH and the first case,
we finish.

3. By induction on e1 ≡ e2.

Case e1 V e2: By the first case.

Case transitivity and symmetry: By the IH(s).

C.2 Cotermination

The proof of cotermination in λH
dt is similar to the one in FσH: we show that the relation

{(e {e1/x}, e {e2/x}) | e1 −→ e2} is weak bisimulation (Lemmas C.2.18 and C.2.21),
using auxiliary lemmas, and then cotermination (Lemma 29).

Lemma C.2.1 (Determinism). If e −→ e1 and e −→ e2, then e1 = e2.

Proof. Straightforward.

Lemma C.2.2 (Value Construction Closed Substitution). For any v , x , and e , v {e/x} is a
value.

170 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Proof. By structural induction on v .

Case v = c, fix f (x :T)= e or 〈T1 ⇐ T2〉`: Obvious.

Case v = (v1, v2) or C 〈e ′〉v ′: By the IHs.

Lemma C.2.3. If e1 is not a value and e2 {e1/x} is, then e2 is a value.

Proof. By structural induction on e2.

Case e2 = y : If x = y , then e2 {e1/x} = e1, which leads to a contradiction from the
assumptions that e1 is not a value and e2 {e1/x} is. Otherwise, if x 6= y , then
there is a contradiction because e2 {e1/x} is a value but e2 {e1/x} = y is not.

Case e2 = v : By Lemma C.2.2.

Case e2 = e ′1 e
′
2, e. i , match e ′0 withCi yi → e ′i

i
, if e ′1 then e

′
2 else e

′
3, ⇑`, 〈{y :T | e ′1}, e ′2, v ′〉`,

or 〈〈{y :T | e ′1}, e ′2〉〉`: Contradictory.

Case e = (e1, e2) or C 〈e1〉v2: By the IH(s).

Lemma C.2.4. Let e1 and e2 are closed terms such that e1 ≡ e2. If (v1 v2) {e1/x} −→ e ,
then (v1 v2) {e2/x} −→ e ′ {e2/x} for some e ′ such that e = e ′ {e1/x}.

Proof. By Lemma C.2.2, v1 {e1/x}, v1 {e2/x}, v2 {e1/x} and v2 {e2/x} are values. We
proceed by case analysis on v1. Note that v1 takes the form of either lambda abstraction
or cast since (v1 v2) {e1/x} takes a step and that if (v1 v2) {e1/x} is closed, then so is
(v1 v2) {e2/x}. In the following, let i ∈ {1, 2}.

Case v1 = fix f (y :T)= e ′: Without loss of generality, we can suppose that y and f are
fresh. By (E RED)/(R BETA),

((fix f (y :T)= e ′) v2) {ei/x} −→ e ′ {ei/x} {v2 {ei/x}/y , v1 {ei/x}/f }.

Because e ′ {ei/x} {v2 {ei/x}/y , v1 {ei/x}/f } = e ′ {v2/y , v1/f } {ei/x}, we finish.

Case v1 = 〈bool ⇐ bool〉`: Obvious because (〈bool ⇐ bool〉` v2) {ei/x} −→ v2 {ei/x}
by (E RED)/(R BASE).

Case v1 = 〈y :T11 → T12 ⇐ y :T21 → T22〉`: Without loss of generality, we can suppose
that y is fresh. By (E RED)/(R FUN),

(〈y :T11 → T12 ⇐ y :T21 → T22〉` v2) {ei/x}
−→ λ y :T11 {ei/x}.

(λ z :T21 {ei/x}.〈T12 {ei/x} ⇐ T22 {ei/x} {z/y}〉` (v2 {ei/x} z))
(〈T21 {ei/x} ⇐ T11 {ei/x}〉` y)

= (λ y :T11.(λ z :T21.〈T12 ⇐ T22 {z/y}〉` (v2 z)) (〈T21 ⇐ T11〉` y)) {ei/x}

for some fresh variable z . Thus, we finish.

Case v1 = 〈y :T11×T12 ⇐ y :T21×T22〉`: Without loss of generality, we can suppose
that y is fresh. It is found that v2 = (v ′1, v

′
2) for some v ′1 and v ′2 because (1)

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 171

(〈y :T11×T12 ⇐ y :T21×T22〉` v2) {e1/x} takes a step, (2) the only rule applica-
ble to the application term is (E RED)/(R PROD), and (3) v2 is a value (thus not a
variable). By (E RED)/(R PROD),

(〈y :T11×T12 ⇐ y :T21×T22〉` (v ′1, v
′
2)) {ei/x}

−→ (λ y :T11 {ei/x}.(y , 〈T12 {ei/x} ⇐ T22 {ei/x} {v ′1 {ei/x}/y}〉` v ′2 {ei/x}))
(〈T11 {ei/x} ⇐ T21 {ei/x}〉` v ′1 {ei/x})

= ((λ y :T11.(y , 〈T12 ⇐ T22 {v ′1/y}〉` v ′2)) (〈T11 ⇐ T21〉` v ′1)) {ei/x}.

Case v1 = 〈T1 ⇐ {y :T2 | e}〉`: By (E RED)/(R FORGET),

(〈T1 ⇐ {y :T2 | e}〉` v2) {ei/x} −→ 〈T1 {ei/x} ⇐ T2 {ei/x}〉` v2 {ei/x}
= (〈T1 ⇐ T2〉` v2) {ei/x}.

Case v1 = 〈{y :T1 | e} ⇐ T2〉` where T2 is not a refinement type: By
(E RED)/(R PRECHECK),

(〈{y :T1 | e} ⇐ T2〉` v2) {ei/x}
−→ 〈〈{y :T1 | e} {ei/x}, 〈T1 {ei/x} ⇐ T2 {ei/x}〉` v2 {ei/x}〉〉`
= 〈〈{y :T1 | e}, 〈T1 ⇐ T2〉` v2〉〉` {ei/x}.

Case v1 = 〈τ1〈e ′′1 〉 ⇐ τ2〈e ′′2 〉〉`: There are three reduction rules by which (v1 v2) {e1/x}
takes a step.

Case (E RED)/(R DATATYPE): We find that v2 = C2〈e ′′〉v ′′ for some C2, e ′′ and
v ′′ since v2 is a value (thus not a variable). We are given

(〈τ1〈e ′′1 〉 ⇐ τ2〈e ′′2 〉〉`C2〈e ′′〉v ′′) {e1/x}
−→ C1〈e ′′1 {e1/x}〉(〈T ′1 {e ′′1 {e1/x}/y1} ⇐ T ′2 {e ′′2 {e1/x}/y2}〉` v ′′ {e1/x})
= (C1〈e ′′1 〉(〈T ′1 {e ′′1 /y1} ⇐ T ′2 {e ′′2 /y2}〉` v ′′)) {e1/x}

where δ((〈τ1〈e ′′1 〉 ⇐ τ2〈e ′′2 〉〉`C2〈e ′′〉v ′′) {e1/x}) = C1 and, for j ∈ {1, 2},
ArgTypeOf (τj) = yj :Tj and
CtrArgOf (Cj) = T ′j . Note that only y1 and y2 can occur free in T ′1 and
T ′2, respectively, because of well-formedness of the type definition envi-
ronment. Since e1 ≡ e2, we have (v1 v2) {e1/x} ≡ (v1 v2) {e2/x} by
Lemma C.1.5 (3). From well-formedness of the constructor choice func-
tion, we have δ((v1 v2) {e2/x}) = δ((v1 v2) {e1/x}) = C1. Thus, by
(E RED)/(R DATATYPE),

(〈τ1〈e ′′1 〉 ⇐ τ2〈e ′′2 〉〉`C2〈e ′′〉v ′′) {e2/x}
−→ C1〈e ′′1 {e2/x}〉(〈T ′1 {e ′′1 {e2/x}/y1} ⇐ T ′2 {e ′′2 {e2/x}/y2}〉` v ′′ {e2/x})
= (C1〈e ′′1 〉(〈T ′1 {e ′′1 /y1} ⇐ T ′2 {e ′′2 /y2}〉` v ′′)) {e2/x}.

Case (E RED)/(R DATATYPEMONO): By (E RED)/(R DATATYPEMONO), (〈τ1 ⇐
τ2〉` v2) {ei/x} −→ v2 {ei/x}.

Case (E RED)/(R DATATYPEFAIL): We are given (〈τ1〈e ′′1 〉 ⇐
τ2〈e ′′2 〉〉` v2) {e1/x} −→ ⇑` and δ((〈τ1〈e ′′1 〉 ⇐ τ2〈e ′′2 〉〉` v2) {e1/x}) is
undefined. Since e1 ≡ e2, we have (v1 v2) {e1/x} ≡ (v1 v2) {e2/x}
by Lemma C.1.5 (3). If δ((v1 v2) {e2/x}) is defined, then so is

172 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

δ((v1 v2) {e1/x}) from well-formedness of the constructor choice func-
tion but it contradicts. Thus, δ((v1 v2) {e2/x}) is also undefined and so, by
(E RED)/(R DATATYPEFAIL), (〈τ1〈e ′′1 〉 ⇐ τ2〈e ′′2 〉〉` v2) {e2/x} −→ ⇑`.

Lemma C.2.5. Let e1 and e2 be terms such that e1 −→ e2.

(1) If (v1 v2) {e1/x} −→ e , then (v1 v2) {e2/x} −→ e ′ {e2/x} for some e ′ such that e =
e ′ {e1/x}.

(2) If (v1 v2) {e2/x} −→ e , then (v1 v2) {e1/x} −→ e ′ {e1/x} for some e ′ such that e =
e ′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed.
Thus, we finish by Lemma C.2.4.

Lemma C.2.6. Let e1 and e2 are closed terms, and i ∈ {1, 2}. If (v . i) {e1/x} −→ e , then
(v . i) {e2/x} −→ e ′ {e2/x} for some e ′ such that e = e ′ {e1/x}.

Proof. By Lemma C.2.2, v {e1/x} and v {e2/x} are values. We find that v takes the form
of pair since (v . i) {e1/x} takes a step. Note that if (v . i) {e1/x} is closed, then so is
(v . i) {e2/x}.

We are given v = (v1, v2) for some v1 and v2. By (E RED)/(R PROJi), for j ∈ {1, 2},

((v1, v2). i) {ej /x} −→ vi {ej /x}.

Thus, we finish.

Lemma C.2.7. Let e1 and e2 be terms such that e1 −→ e2, and i ∈ {1, 2}.

(1) If (v . i) {e1/x} −→ e , then (v . i) {e2/x} −→ e ′ {e2/x} for some e ′ such that e =
e ′ {e1/x}.

(2) If (v . i) {e2/x} −→ e , then (v . i) {e1/x} −→ e ′ {e1/x} for some e ′ such that e =
e ′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed.
Thus, we finish by Lemma C.2.6.

Lemma C.2.8. Let e1 and e2 are closed terms. If (if v then e ′1 else e
′
2) {e1/x} −→ e , then

(if v then e ′1 else e
′
2) {e2/x} −→ e ′ {e2/x} for some e ′ such that e = e ′ {e1/x}.

Proof. By Lemma C.2.2, v {e1/x} and v {e2/x} are values. Note that v takes
the form of Boolean value since (if v then e ′1 else e

′
2) {e1/x} takes a step and that if

(if v then e ′1 else e
′
2) {e1/x} is closed, then so is (if v then e ′1 else e

′
2) {e2/x}. By case analy-

sis on v . In the following, let i ∈ {1, 2}.

Case v = true: By (E RED)/(R IFTRUE),

(if true then e ′1 else e
′
2) {ei/x} −→ e ′1 {ei/x}.

Case v = false: By (E RED)/(R IFFALSE),

(if false then e ′1 else e
′
2) {ei/x} −→ e ′2 {ei/x}.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 173

Lemma C.2.9. Let e1 and e2 be terms such that e1 −→ e2.

(1) If (if v then e ′1 else e
′
2) {e1/x} −→ e , then (if v then e ′1 else e

′
2) {e2/x} −→ e ′ {e2/x} for

some e ′ such that e = e ′ {e1/x}.

(2) If (if v then e ′1 else e
′
2) {e2/x} −→ e , then (if v then e ′1 else e

′
2) {e1/x} −→ e ′ {e1/x} for

some e ′ such that e = e ′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed.
Thus, we finish by Lemma C.2.8.

Lemma C.2.10. Let e1 and e2 are closed terms. If (match v withCi yi → e ′i
i
) {e1/x} −→ e ,

then (match v withCi yi → e ′i
i
) {e2/x} −→ e ′ {e2/x} for some e ′ such that e = e ′ {e1/x}.

Proof. Without loss of generality, we can suppose that each yi is fresh. By Lemma C.2.2,
v {e1/x} and v {e2/x} are values. We find that v takes the form of construc-
tor application since (match v withCi yi → e ′i

i
) {e1/x} takes a step. Note that if

(match v withCi yi → e ′i
i
) {e1/x} is closed, then so is (match v withCi yi → e ′i

i
) {e2/x}.

We are given v = Cj 〈e ′〉v ′ for some Cj ∈ Ci
i , e ′ and v ′. By (E RED)/(R MATCH),

for k ∈ {1, 2},

(matchCj 〈e ′〉v ′ withCi yi → e ′i
i
) {ek/x} −→ e ′j {ek/x} {v ′ {ek/x}/yj }

= e ′j {v ′/yj } {ek/x}.

Thus, we finish.

Lemma C.2.11. Let e1 and e2 be terms such that e1 −→ e2.

(1) If (match v withCi yi → e ′i
i
) {e1/x} −→ e , then

(match v withCi yi → e ′i
i
) {e2/x} −→ e ′ {e2/x} for some e ′ such that e = e ′ {e1/x}.

(2) If (match v withCi yi → e ′i
i
) {e2/x} −→ e , then

(match v withCi yi → e ′i
i
) {e1/x} −→ e ′ {e1/x} for some e ′ such that e = e ′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed.
Thus, we finish by Lemma C.2.10.

Lemma C.2.12. Let e1 and e2 are closed terms. If 〈〈{y :T | e ′1}, v〉〉` {e1/x} −→ e , then
〈〈{y :T | e ′1}, v〉〉` {e2/x} −→ e ′ {e2/x} for some e ′ such that e = e ′ {e1/x}.

Proof. Without loss of generality, we can suppose that y is fresh. By Lemma C.2.2,
v {e1/x} and v {e2/x} are values. Note that if 〈〈{y :T | e ′1}, v〉〉` {e1/x} is closed, then so
is 〈〈{y :T | e ′1}, v〉〉` {e2/x}. Letting i ∈ {1, 2}, by (E RED)/(R CHECK),

〈〈{y :T | e ′1}, v〉〉` {ei/x} −→ 〈{y :T | e ′1} {ei/x}, e ′1 {ei/x} {v {ei/x}/y}, v {ei/x}〉`
= 〈{y :T | e ′1}, e ′1 {v/y}, v〉` {ei/x}.

Thus, we finish.

Lemma C.2.13. Let e1 and e2 be terms such that e1 −→ e2.

(1) If 〈〈{y :T | e ′1}, v〉〉` {e1/x} −→ e , then 〈〈{y :T | e ′1}, v〉〉` {e2/x} −→ e ′ {e2/x} for some
e ′ such that e = e ′ {e1/x}.

174 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

(2) If 〈〈{y :T | e ′1}, v〉〉` {e2/x} −→ e , then 〈〈{y :T | e ′1}, v〉〉` {e1/x} −→ e ′ {e1/x} for some
e ′ such that e = e ′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed.
Thus, we finish by Lemma C.2.12.

Lemma C.2.14. Let e1 and e2 are closed terms. If 〈{y :T | e ′1}, v1, v2〉` {e1/x} −→ e , then
〈{y :T | e ′1}, v1, v2〉` {e2/x} −→ e ′ {e2/x} for some e ′ such that e = e ′ {e1/x}.

Proof. By Lemma C.2.2, v1 {e1/x} and v1 {e2/x} are values. Note that v1 takes
the form of Boolean value since 〈{y :T | e ′1}, v1, v2〉` {e1/x} takes a step and that if
〈{y :T | e ′1}, v1, v2〉` {e1/x} is closed, then so is 〈{y :T | e ′1}, v1, v2〉` {e2/x}. By case analy-
sis on v1. In the following, let i ∈ {1, 2}.

Case v1 = true: By (E RED)/(R OK), 〈{y :T | e ′1}, true, v2〉` {ei/x} −→ v2 {ei/x}.

Case v2 = false: By (E RED)/(R FAIL), 〈{y :T | e ′1}, false, v2〉` {ei/x} −→ ⇑`.

Lemma C.2.15. Let e1 and e2 be terms such that e1 −→ e2.

(1) If 〈{y :T | e ′1}, v1, v2〉` {e1/x} −→ e , then 〈{y :T | e ′1}, v1, v2〉` {e2/x} −→ e ′ {e2/x} for
some e ′ such that e = e ′ {e1/x}.

(2) If 〈{y :T | e ′1}, v1, v2〉` {e2/x} −→ e , then 〈{y :T | e ′1}, v1, v2〉` {e1/x} −→ e ′ {e1/x} for
some e ′ such that e = e ′ {e2/x}.

Proof. Since the evaluation relation is defined over closed terms, e1 and e2 are closed.
Thus, we finish by Lemma C.2.14.

Lemma C.2.16.

(1) If e1 −→n e2 is derived by (E RED), then E [e1] −→n E [e2] is derived by applying only
(E RED).

(2) If e −→∗ ⇑`, then E [e] −→∗ ⇑`.

Proof.

1. By induction on the number of evaluation steps of e1 −→n e2.

Case 0: Obvious.

Case i + 1: We are given e1 −→ e3 −→i e2 for some e3. Since e1 −→ e3 is
derived by (E RED), there exist some E ′, e ′1 and e ′3 such that e ′1 e ′3. Since
E [E ′[e ′1]] −→ E [E ′[e ′3]] by (E RED), we finish by the IH.

2. By induction on the number of evaluation steps of e1 −→∗ ⇑`.

Case 0: Since e = ⇑`, we finish by (E BLAME) if E 6= [].

Case n + 1: We are given e −→ e ′ −→n ⇑` for some e ′. If the evaluation rule
applied to e is (E RED), then e = E ′[e1] and e ′ = E ′[e2] for some E ′, e1 and
e2 such that e1 e2. Since E [E ′[e1]] −→ E [E ′[e2]] by (E RED), we finish
by the IH. Otherwise, if the evaluation rule applied to e is (E BLAME), then
e = E ′[⇑`] for some E ′, and e ′ = ⇑`. By (E BLAME), E [E ′[⇑`]] −→ ⇑`.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 175

Lemma C.2.17. Suppose that e1 −→ e2. If e {e1/x} = E1[⇑`], then there exists some E2

such that e {e2/x} = E2[⇑`].

Proof. By structural induction on e

Case e = x : It is found that e1 = e {e1/x} = E1[⇑`]. Since E1[⇑`] −→ ⇑` by
(E BLAME), e2 = ⇑`.

Case e = v : Contradictory.

Case e = ⇑`′: If `′ = `, then obvious. Otherwise, if `′ 6= `, then contradictory since
e {e1/x} = E1[⇑`].

Case e = e ′1 e
′
2: Since e {e1/x} = E1[⇑`], there are two cases we have to consider.

Case E1 = E ′1 e
′
2 {e1/x}: Since e ′1 {e1/x} = E ′1[⇑`], there exists some E ′2 such that

e ′1 {e2/x} = E ′2[⇑`], by the IH. Since E ′2 e
′
2 {e2/x} is an evaluation context

and e {e2/x} = E ′2[⇑`] e ′2 {e2/x}, we finish.
Case E1 = e ′1 {e1/x}E ′1 where e ′1 {e1/x} is a value: Since e ′2 {e1/x} = E ′1[⇑`],

there exists some E ′2 such that e ′2 {e2/x} = E ′2[⇑`], by the IH. Since e ′1 {e1/x}
is a value and e1 is not a value from e1 −→ e2, it is found by Lemmas C.2.3
and C.2.2 that e ′1 {e2/x} is a value. Thus, since e ′1 {e2/x}E ′2 is an evaluation
context and e {e2/x} = e ′1 {e2/x}E ′2[⇑`], we finish.

Case e = (e ′1, e
′
2) which is a not value: Since e {e1/x} = E1[⇑`], there are two cases we

have to consider.

Case E1 = (E ′1, e
′
2 {e1/x}): Since e ′1 {e1/x} = E ′1[⇑`], there exists some E ′2 such

that e ′1 {e2/x} = E ′2[⇑`], by the IH. Since (E ′2, e
′
2 {e2/x}) is an evaluation

context and e {e2/x} = (E ′2[⇑`], e ′2 {e2/x}), we finish.
Case E1 = (e ′1 {e1/x},E ′1) where e ′1 {e1/x} is a value: Since e ′2 {e1/x} = E ′1[⇑`],

there exists some E ′2 such that e ′2 {e2/x} = E ′2[⇑`], by the IH. Since e ′1 {e1/x}
is a value, it is found by Lemmas C.2.3 and C.2.2 that e ′1 {e2/x} is a
value. Thus, since (e ′1 {e2/x},E ′2) is an evaluation context and e {e2/x} =
e ′1 {e2/x}E ′2[⇑`], we finish.

Case e = e ′. i (i ∈ {1, 2}): Since e {e1/x} = E1[⇑`], there exists some E ′1 such that
e ′ {e1/x} = E ′1[⇑`]. By the IH, there exists some E ′2 such that e ′ {e2/x} = E ′2[⇑`].
Since e {e2/x} = E ′2[⇑`]. i , we finish.

Case e = C 〈e ′1〉e ′2 which is a not value: Since e {e1/x} = E1[⇑`], there exists
some E ′1 such that e ′2 {e1/x} = E ′1[⇑`]. By the IH, there exists some E ′2 such
that e ′2 {e2/x} = E ′2[⇑`]. Since C 〈e ′1 {e2/x}〉E ′2 is an evaluation context and
e {e2/x} = C 〈e ′1 {e2/x}〉E ′2[⇑`], we finish.

Case e = match e ′0 withCi yi → e ′i
i
: Since e {e1/x} = E1[⇑`], there exists some E ′1 such

that e ′0 {e1/x} = E ′1[⇑`]. By the IH, there exists some E ′2 such that e ′0 {e2/x} =

E ′2[⇑`]. Since matchE ′2 withCi yi → e ′i
i

is an evaluation context and e {e2/x} =

matchE ′2[⇑`]withCi yi → e ′i
i
, we finish.

Case e = if e ′1 then e
′
2 else e

′
3: Since e {e1/x} = E1[⇑`], there exists some E ′1 such that

e ′1 {e1/x} = E ′1[⇑`]. By the IH, there exists some E ′2 such that e ′1 {e2/x} = E ′2[⇑`].
Since if E ′2 then e

′
2 {e2/x} else e ′3 {e2/x} is an evaluation context and e {e2/x} =

if E ′2[⇑`] then e ′2 {e2/x} else e ′3 {e2/x}, we finish.

176 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Case e = 〈〈{y :T | e ′1}, e ′2〉〉`: Since e {e1/x} = E1[⇑`], there exists some E ′1 such that
e ′2 {e1/x} = E ′1[⇑`]. By the IH, there exists some E ′2 such that e ′2 {e2/x} =
E ′2[⇑`]. Since 〈〈{y :T | e ′1} {e2/x},E ′2〉〉` is an evaluation context and e {e2/x} =
〈〈{y :T | e ′1} {e2/x},E ′2[⇑`]〉〉`, we finish.

Case e = 〈{y :T | e ′1}, e ′2, v ′〉`: Since e {e1/x} = E1[⇑`], there exists some E ′1 such that
e ′2 {e1/x} = E ′1[⇑`]. By the IH, there exists some E ′2 such that e ′2 {e2/x} = E ′2[⇑`].
Since 〈{y :T | e ′1} {e2/x},E ′2, v ′ {e2/x}〉` is an evaluation context by Lemma C.2.2
and e {e2/x} = 〈{y :T | e ′1} {e2/x},E ′2[⇑`], v ′ {e2/x}〉`, we finish.

Lemma C.2.18 (Weak bisimulation, left side). Let e1 and e2 be terms such that e1 −→ e2.
If e {e1/x} −→ e ′, then e {e2/x} −→∗ e ′′ {e2/x} for some e ′′ such that e ′ = e ′′ {e1/x}.
Moreover, if e {e1/x} −→ e ′ is derived by (E RED), then the evaluation e {e2/x} −→∗
e ′′ {e2/x} is derived by applying only (E RED).

Proof. By structural induction on e . If e {e1/x} −→ e ′ is derived by (E BLAME), then
there exist some E1 and ` such that e {e1/x} = E1[⇑`] and e ′ = ⇑`. By Lemma C.2.17,
there exists some E2 such that e {e2/x} = E2[⇑`]. Thus, by (E BLAME), e {e2/x} −→
⇑`.

In what follows, we suppose that e {e1/x} −→ e ′ is derived by (E RED). We pro-
ceed by case analysis on e . Note that e1 is not a value from e1 −→ e2.

Case e = y : If x = y , then we have e {e1/x} = e1 and e {e2/x} = e2. We finish by
letting e ′′ = e2 because e {e1/x} = e1 −→ e2 and e2 {e1/x} = e2 {e2/x} = e2.
Note that e2 is closed since the evaluation relation is defined over closed terms.

Otherwise, if x 6= y , then there is a contradiction because the assumption says
that e {e1/x} = y takes a step.

Case e = ⇑`: Contradictory.

Case e = v : Contradictory by Lemma C.2.2 since e {e1/x} takes a step.

Case e = e ′1 e
′
2: Since e {e1/x} takes a step, there are three cases we have to consider.

Case e ′1 {e1/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′1 such that
e ′1 {e2/x} −→∗ e ′′1 {e2/x} and e ′′ = e ′′1 {e1/x}. Moreover, the evaluation
e ′1 {e2/x} −→∗ e ′′1 {e2/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1), (e ′1 e

′
2) {e1/x} −→ (e ′′1 e ′2) {e1/x} and (e ′1 e

′
2) {e2/x} −→∗

(e ′′1 e ′2) {e2/x}.
Case e ′1 {e1/x} is a value and e ′2 {e1/x} −→ e ′′ by (E RED): By Lemmas C.2.3

and C.2.2, e ′1 {e2/x} is a value. By the IH, there exists some e ′′2 such that
e ′2 {e2/x} −→∗ e ′′2 {e2/x} and e ′′ = e ′′2 {e1/x}. Moreover, the evaluation
e ′2 {e2/x} −→∗ e ′′2 {e2/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1), (e ′1 e

′
2) {e1/x} −→ (e ′1 e

′′
2) {e1/x} and (e ′1 e

′
2) {e2/x} −→∗

(e ′1 e
′′
2) {e2/x}.

Case e ′1 {e1/x} and e ′2 {e1/x} are values: Since e ′1 and e ′2 are values by
Lemma C.2.3, we finish by Lemma C.2.5 (1).

Case e = (e ′1, e
′
2): Similarly to the case for application term. Since e {e1/x} takes a

step, there are two cases we have to consider.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 177

Case e ′1 {e1/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′1 such that
e ′1 {e2/x} −→∗ e ′′1 {e2/x} and e ′′ = e ′′1 {e1/x}. Moreover, the eval-
uation e ′1 {e2/x} −→∗ e ′′1 {e2/x} is derived by applying only (E RED).
Thus, by Lemma C.2.16 (1), (e ′1, e

′
2) {e1/x} −→ (e ′′1 , e

′
2) {e1/x} and

(e ′1, e
′
2) {e2/x} −→∗ (e ′′1 , e

′
2) {e2/x}.

Case e ′1 {e1/x} is a value and e ′2 {e1/x} −→ e ′′ by (E RED): By Lemmas C.2.3
and C.2.2, e ′1 {e2/x} is a value. By the IH, there exists some e ′′2 such
that e ′2 {e2/x} −→∗ e ′′2 {e2/x} and e ′′ = e ′′2 {e1/x}. Moreover, the eval-
uation e ′2 {e2/x} −→∗ e ′′2 {e2/x} is derived by applying only (E RED).
Thus, by Lemma C.2.16 (1), (e ′1, e

′
2) {e1/x} −→ (e ′1, e

′′
2) {e1/x} and

(e ′1, e
′
2) {e2/x} −→∗ (e ′1, e

′′
2) {e2/x}.

Case e = e ′. i for i ∈ {1, 2}: Similarly to the case for application term except for use
of Lemma C.2.7 (1). Since e {e1/x} takes a step, there are two cases we have to
consider.

Case e ′ {e1/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′′ such that
e ′ {e2/x} −→∗ e ′′′ {e2/x} and e ′′ = e ′′′ {e1/x}. Moreover, the evaluation
e ′ {e2/x} −→∗ e ′′′ {e2/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1), (e ′. i) {e1/x} −→ (e ′′′. i) {e1/x} and (e ′. i) {e2/x} −→∗
(e ′′′. i) {e2/x}.

Case e ′ {e1/x} is a value: Since e ′ is a value by Lemma C.2.3, we finish by
Lemma C.2.7 (1).

Case e = C 〈e ′1〉e ′2: Similarly to the case for application term. Since e {e1/x} takes
a step, it is found that e ′2 {e1/x} −→ e ′′ by (E RED) for some e ′′. By the IH,
there exists some e ′′2 such that e ′2 {e2/x} −→∗ e ′′2 {e2/x} and e ′′ = e ′′2 {e1/x}.
Moreover, the evaluation e ′2 {e2/x} −→∗ e ′′2 {e2/x} is derived by applying only
(E RED). Thus, by Lemma C.2.16 (1), (C 〈e ′1〉e ′2) {e1/x} −→ (C 〈e ′1〉e ′′2) {e1/x} and
(C 〈e ′1〉e ′2) {e2/x} −→∗ (C 〈e ′1〉e ′′2) {e2/x}.

Case e = match e ′0 withCi yi → e ′i
i
: Similarly to the case for application term except

for use of Lemma C.2.11 (1). Since e {e1/x} takes a step, there are two cases we
have to consider.

Case e ′0 {e1/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′0 such that
e ′0 {e2/x} −→∗ e ′′0 {e2/x} and e ′′ = e ′′0 {e1/x}. Moreover, the evaluation
e ′0 {e2/x} −→∗ e ′′0 {e2/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1),

(match e ′0 withCi yi → e ′i
i
) {e1/x} −→ (match e ′′0 withCi yi → e ′i

i
) {e1/x}

(match e ′0 withCi yi → e ′i
i
) {e2/x} −→∗ (match e ′′0 withCi yi → e ′i

i
) {e2/x}.

Case e ′0 {e1/x} is a value: Since e ′0 is a value by Lemma C.2.3, we finish by
Lemma C.2.11 (1).

Case e = if e ′1 then e
′
2 else e

′
3: Similarly to the case for application term except for use

of Lemma C.2.9 (1). Since e {e1/x} takes a step, there are two cases we have to
consider.

Case e ′1 {e1/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′1 such that
e ′1 {e2/x} −→∗ e ′′1 {e2/x} and e ′′ = e ′′1 {e1/x}. Moreover, the evaluation

178 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

e ′1 {e2/x} −→∗ e ′′1 {e2/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1),

(if e ′1 then e
′
2 else e

′
3) {e1/x} −→ (if e ′′1 then e ′2 else e

′
3) {e1/x}

(if e ′1 then e
′
2 else e

′
3) {e2/x} −→∗ (if e ′′1 then e ′2 else e

′
3) {e2/x}.

Case e ′1 {e1/x} is a value: Since e ′1 is a value by Lemma C.2.3, we finish by
Lemma C.2.9 (1).

Case e = 〈{y :T | e ′1}, e ′2, v〉`: Similarly to the case for application term except for use
of Lemma C.2.15 (1). Since e {e1/x} takes a step, there are two cases we have to
consider.

Case e ′2 {e1/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′2 such that
e ′2 {e2/x} −→∗ e ′′2 {e2/x} and e ′′ = e ′′2 {e1/x}. Moreover, the evaluation
e ′2 {e2/x} −→∗ e ′′2 {e2/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1),

(〈{y :T | e ′1}, e ′2, v〉`) {e1/x} −→ (〈{y :T | e ′1}, e ′′2 , v〉`) {e1/x}
(〈{y :T | e ′1}, e ′2, v〉`) {e2/x} −→∗ (〈{y :T | e ′1}, e ′′2 , v〉`) {e2/x}.

Case e ′2 {e1/x} is a value: Since e ′2 is a value by Lemma C.2.3, we finish by
Lemma C.2.15 (1).

Case e = 〈〈{y :T | e ′1}, e ′2〉〉`: Similarly to the case for application term except for use
of Lemma C.2.13 (1). Since e {e1/x} takes a step, there are two cases we have to
consider.

Case e ′2 {e1/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′2 such that
e ′2 {e2/x} −→∗ e ′′2 {e2/x} and e ′′ = e ′′2 {e1/x}. Moreover, the evaluation
e ′2 {e2/x} −→∗ e ′′2 {e2/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1),

(〈〈{y :T | e ′1}, e ′2〉〉`) {e1/x} −→ (〈〈{y :T | e ′1}, e ′′2 〉〉`) {e1/x}
(〈〈{y :T | e ′1}, e ′2〉〉`) {e2/x} −→∗ (〈〈{y :T | e ′1}, e ′′2 〉〉`) {e2/x}.

Case e ′2 {e1/x} is a value: Since e ′2 is a value by Lemma C.2.3, we finish by
Lemma C.2.13 (1).

Lemma C.2.19. If e1 −→ e2, and e {e2/x} is a value, then there exists some e ′ such that

• e {e1/x} −→∗ e ′ {e1/x},

• e ′ {e1/x} is a value, and

• e {e2/x} = e ′ {e2/x}.

Proof. By structural induction on e .

Case e = y : If x = y , then e {e2/x} = e2 is a value. Thus, we finish by letting e ′ = e2

because e2 {e1/x} = e2 {e2/x} = e2. Note that e2 is closed since the evaluation
relation is defined over closed terms. Otherwise, if x 6= y , then contradiction
because e {e2/x} is a value but e {e2/x} = y is not.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 179

Case e = v : Obvious by letting e ′ = v because v {e1/x} is a value by Lemma C.2.2.

Case e = ⇑`, e ′1 e
′
2, e ′. i for i ∈ {1, 2}, match e ′0 withCi yi → e ′i

i
, if e ′1 then e

′
2 else e

′
3,

〈{y :T | e ′1}, e ′2, v〉` or 〈〈{y :T | e ′1}, e ′2〉〉`: Contradictory: e {e2/x} is a value.

Case e = (e ′1, e
′
2): Let i ∈ {1, 2}. By the assumption, e ′i {e2/x} is a value. By the

IH, there exists some e ′′i such that e ′i {e1/x} −→∗ e ′′i {e1/x} and e ′′i {e1/x} is a
value and e ′i {e2/x} = e ′′i {e2/x}. Thus, (e ′1, e

′
2) {e1/x} −→∗ (e ′′1 , e

′′
2) {e1/x} and

(e ′′1 , e
′′
2) {e1/x} is a value and e {e2/x} = (e ′′1 , e

′′
2) {e2/x}.

Case e = C 〈e ′1〉e ′2: By the assumption, e ′2 {e2/x} is a value. By the IH, there exists some
e ′′2 such that e ′2 {e1/x} −→∗ e ′′2 {e1/x} and e ′′2 {e1/x} is a value and e ′2 {e2/x} =
e ′′2 {e2/x}. Thus, (C 〈e ′1〉e ′2) {e1/x} −→∗ (C 〈e ′1〉e ′′2) {e1/x} and (C 〈e ′1〉e ′′2) {e1/x}
is a value and (C 〈e ′1〉e ′2) {e2/x} = (C 〈e ′1〉e ′′2) {e2/x}.

Lemma C.2.20. If e1 −→ e2 and e {e2/x} = E2[⇑`], then e {e1/x} −→∗ ⇑`.

Proof. By structural induction on e .

Case e = x : Obvious since e1 −→ e2 = e {e2/x} = E2[⇑`] −→ ⇑`.

Case e = ⇑`: Obvious.

Case e = y where y 6= x , ⇑`′ where ` 6= `′, and v : Contradictory (by Lemma C.2.3 in
the case that e = v) since e {e2/x} = E2[⇑`].

Case e = e ′1 e
′
2: Since e {e2/x} = E2[⇑`], there are two cases we have to consider.

Case E2 = E ′2 e
′
2 {e2/x}: Since e ′1 {e2/x} = E ′2[⇑`], we have e ′1 {e1/x} −→∗ ⇑` by

the IH. Thus, we finish by Lemma C.2.16 (2).

Case E2 = e ′1 {e2/x}E ′2 where e ′1 {e2/x} is a value: By Lemma C.2.19, there exists
some e ′′1 such that e ′1 {e1/x} −→∗ e ′′1 {e1/x} and e ′′1 {e1/x} is a value and
e ′1 {e2/x} = e ′′1 {e2/x}. Since e ′2 {e2/x} = E ′2[⇑`], we have e ′2 {e1/x} −→∗
⇑` by the IH. Thus, (e ′1 e

′
2) {e1/x} −→∗ (e ′′1 e ′2) {e1/x} −→∗ ⇑` by Lem-

mas C.2.16 (1) and (2).

Case e = (e ′1, e
′
2): Since e {e2/x} = E2[⇑`], there are two cases we have to consider.

Case E2 = (E ′2, e
′
2 {e2/x}): Since e ′1 {e2/x} = E ′2[⇑`], we have e ′1 {e1/x} −→∗ ⇑`

by the IH. Thus, we finish by Lemma C.2.16 (2).

Case E2 = (e ′1 {e2/x},E ′2) where e ′1 {e2/x} is a value: By Lemma C.2.19, there ex-
ists some e ′′1 such that e ′1 {e1/x} −→∗ e ′′1 {e1/x} and e ′′1 {e1/x} is a value and
e ′1 {e2/x} = e ′′1 {e2/x}. Since e ′2 {e2/x} = E ′2[⇑`], we have e ′2 {e1/x} −→∗
⇑` by the IH. Thus, (e ′1, e

′
2) {e1/x} −→∗ (e ′′1 , e

′
2) {e1/x} −→∗ ⇑` by Lem-

mas C.2.16 (1) and (2).

Case e = e ′. i for i ∈ {1, 2}: Since e {e2/x} = E2[⇑`], there exists some E ′2 such that
E2 = E ′2. i . Since e ′ {e2/x} = E ′2[⇑`], we have e ′ {e1/x} −→∗ ⇑` by the IH. By
Lemma C.2.16 (2), we finish.

Case e = C 〈e ′1〉e ′2: Since e {e2/x} = E2[⇑`], there exists some E ′2 such that E2 =
C 〈e ′1 {e2/x}〉E ′2. Since e ′2 {e2/x} = E ′2[⇑`], we have e ′2 {e1/x} −→∗ ⇑` by the IH.
By Lemma C.2.16 (2), we finish.

180 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Case e = match e ′0 withCi yi → e ′i
i
: Since e {e2/x} = E2[⇑`], there exists some E ′2

such that E2 = matchE ′2 withCi yi → e ′i
i
. Since e ′0 {e2/x} = E ′2[⇑`], we have

e ′0 {e1/x} −→∗ ⇑` by the IH. By Lemma C.2.16 (2), we finish.

Case e = if e ′1 then e
′
2 else e

′
3: Since e {e2/x} = E2[⇑`], there exists some E ′2 such

that E2 = if E ′2 then e
′
2 {e2/x} else e ′3 {e2/x}. Since e ′1 {e2/x} = E ′2[⇑`], we have

e ′1 {e1/x} −→∗ ⇑` by the IH. By Lemma C.2.16 (2), we finish.

Case e = 〈{y :T | e ′1}, e ′2, v〉`
′
: Since e {e2/x} = E2[⇑`], there exists some E ′2 such

that E2 = 〈{y :T | e ′1} {e2/x},E ′2, v {e2/x}〉`
′
. Since e ′2 {e2/x} = E ′2[⇑`], we have

e ′2 {e1/x} −→∗ ⇑` by the IH. By Lemma C.2.16 (2), we finish.

Case e = 〈〈{y :T | e ′1}, e ′2〉〉`
′
: Since e {e2/x} = E2[⇑`], there exists some E ′2 such

that E2 = 〈〈{y :T | e ′1} {e2/x},E ′2〉〉`
′
. Since e ′2 {e2/x} = E ′2[⇑`], we have

e ′2 {e1/x} −→∗ ⇑` by the IH. By Lemma C.2.16 (2), we finish.

Lemma C.2.21 (Weak bisimulation, right side). Suppose that e1 −→ e2. If e {e2/x} −→
e ′, then e {e1/x} −→∗ e ′′ {e1/x} for some e ′′ such that e ′ = e ′′ {e2/x}. Moreover, if
e {e2/x} −→ e ′ is derived by (E RED), then the evaluation e {e1/x} −→∗ e ′′ {e1/x} is
derived by applying only (E RED).

Proof. By structural induction on e . If e {e2/x} −→ e ′ is derived by (E BLAME), then
there exist some E2 and ` such that e {e2/x} = E2[⇑`] and e ′ = ⇑`. By Lemma C.2.20,
e {e1/x} −→∗ ⇑`. We finish by letting e ′′ = ⇑`.

In what follows, we suppose that e {e2/x} is derived by (E RED). We proceed by
case analysis on e .

Case e = y : If x = y , then we have e {e1/x} = e1 and e {e2/x} = e2. Thus, we finish
by letting e ′1 = e ′2 because e ′2 {e1/x} = e ′2 {e2/x} = e ′2. Note that the evaluation
relation is defined over closed terms. Otherwise, if x 6= y , then contradiction
because e {e2/x} = y takes a step.

Case e = ⇑`: Contradictory.

Case e = v : Contradictory by Lemma C.2.2 since e {e2/x} −→ e ′2.

Case e = e ′1 e
′
2: Since e {e2/x} takes a step, there are three cases we have to consider.

Case e ′1 {e2/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′1 such that
e ′1 {e1/x} −→∗ e ′′1 {e1/x} and e ′′ = e ′′1 {e2/x}. Moreover, the evaluation
e ′1 {e1/x} −→∗ e ′′1 {e1/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1), (e ′1 e

′
2) {e2/x} −→ (e ′′1 e ′2) {e2/x} and (e ′1 e

′
2) {e1/x} −→∗

(e ′′1 e ′2) {e1/x}.
Case e ′1 {e2/x} is a value and e ′2 {e2/x} −→ e ′′ by (E RED): By Lemma C.2.19,

there exists some e ′′1 such that e ′1 {e1/x} −→∗ e ′′1 {e1/x} and e ′′1 {e1/x} is a
value and e ′1 {e2/x} = e ′′1 {e2/x}. By the IH, there exists some e ′′2 such that
e ′2 {e1/x} −→∗ e ′′2 {e1/x} and e ′′ = e ′′2 {e2/x}. Moreover, the evaluation
e ′2 {e1/x} −→∗ e ′′2 {e1/x} is derived by applying only (E RED). Thus, by
Lemma C.2.16 (1), (e ′1 e

′
2) {e2/x} −→ (e ′′1 e ′′2) {e2/x} and (e ′1 e

′
2) {e1/x} −→∗

(e ′′1 e ′′2) {e1/x}.
Case e ′1 {e2/x} and e ′2 {e2/x} are values: Let i ∈ {1, 2}. By Lemma C.2.19, there

exist some e ′′i such that e ′i {e1/x} −→∗ e ′′i {e1/x} and e ′′i {e1/x} is a value
and e ′i {e2/x} = e ′′i {e2/x}. Since e ′′1 and e ′′2 are values by Lemma C.2.3, we
finish by Lemmas C.2.5 (2) and C.2.16 (1).

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 181

Case e = (e ′1, e
′
2): Similarly to the case for application term. Since e {e2/x} takes a

step, there are two cases we have to consider.

Case e ′1 {e2/x} −→ e ′′ by (E RED): By the IH, there exists some e ′′1 such that
e ′1 {e1/x} −→∗ e ′′1 {e1/x} and e ′′ = e ′′1 {e2/x}. Moreover, the eval-
uation e ′1 {e1/x} −→∗ e ′′1 {e1/x} is derived by applying only (E RED).
Thus, by Lemma C.2.16 (1), (e ′1, e

′
2) {e2/x} −→ (e ′′1 , e

′
2) {e2/x} and

(e ′1, e
′
2) {e1/x} −→∗ (e ′′1 , e

′
2) {e1/x}.

Case e ′1 {e2/x} is a value and e ′2 {e2/x} −→ e ′′ by (E RED): By Lemma C.2.19,
there exists some e ′′1 such that e ′1 {e1/x} −→∗ e ′′1 {e1/x} and e ′′1 {e1/x}
is a value and e ′1 {e2/x} = e ′′1 {e2/x}. By the IH, there exists some
e ′′2 such that e ′2 {e1/x} −→∗ e ′′2 {e1/x} and e ′′ = e ′′2 {e2/x}. More-
over, the evaluation e ′2 {e1/x} −→∗ e ′′2 {e1/x} is derived by applying only
(E RED). Thus, by Lemma C.2.16 (1), (e ′1, e

′
2) {e2/x} −→ (e ′′1 , e

′′
2) {e2/x} and

(e ′1, e
′
2) {e1/x} −→∗ (e ′′1 , e

′′
2) {e1/x}.

Case e = e ′. i for i ∈ {1, 2}: Similarly to the case for application term except for
use of Lemma C.2.7 (2). If there exists some e ′′ such that e ′ {e2/x} −→ e ′′ by
(E RED), then, by the IH, there exists some e ′′′ such that e ′ {e1/x} −→∗ e ′′′ {e1/x}
and e ′′ = e ′′′ {e2/x}. Moreover, the evaluation e ′ {e1/x} −→∗ e ′′′ {e1/x} is de-
rived by applying only (E RED). Thus, by Lemma C.2.16 (1), (e ′. i) {e2/x} −→
(e ′′′. i) {e2/x} and (e ′. i) {e1/x} −→∗ (e ′′′. i) {e1/x}. Otherwise, if e ′ {e2/x} is a
value, then there exists some e ′′ such that e ′ {e1/x} −→∗ e ′′ {e1/x} and e ′′ {e1/x}
is a value and e ′ {e2/x} = e ′′ {e2/x}. Since e ′′ is a value by Lemma C.2.3, we
finish by Lemmas C.2.7 (2) and C.2.16 (1).

Case e = C 〈e ′1〉e ′2: Similarly to the case for application term. Since e {e2/x} takes a
step, there exists some e ′′ such that e ′2 {e2/x} −→ e ′′ by (E RED). By the IH,
there exists some e ′′2 such that e ′2 {e1/x} −→∗ e ′′2 {e1/x} and e ′′ = e ′′2 {e2/x}.
Moreover, the evaluation e ′2 {e1/x} −→∗ e ′′2 {e1/x} is derived by applying only
(E RED). Thus, by Lemma C.2.16 (1), (C 〈e ′1〉e ′2) {e2/x} −→ (C 〈e ′1〉e ′′2) {e2/x} and
(C 〈e ′1〉e ′2) {e1/x} −→∗ (C 〈e ′1〉e ′′2) {e1/x}.

Case e = match e ′0 withCi yi → e ′i
i
: Similarly to the case for application term except

for use of Lemma C.2.11 (2). If there exists some e ′′ such that e ′0 {e2/x} −→ e ′′ by
(E RED), then, by the IH, there exists some e ′′0 such that e ′0 {e1/x} −→∗ e ′′0 {e1/x}
and e ′′ = e ′′0 {e2/x}. Moreover, the evaluation e ′0 {e1/x} −→∗ e ′′0 {e1/x} is de-
rived by applying only (E RED). Thus, by Lemma C.2.16 (1),

(match e ′0 withCi yi → e ′i
i
) {e2/x} −→ (match e ′′0 withCi yi → e ′i

i
) {e2/x}

(match e ′0 withCi yi → e ′i
i
) {e1/x} −→∗ (match e ′′0 withCi yi → e ′i

i
) {e1/x}.

Otherwise, if e ′0 {e2/x} is a value, then there exists some e ′′0 such that
e ′0 {e1/x} −→∗ e ′′0 {e1/x} and e ′′0 {e1/x} is a value and e ′0 {e2/x} = e ′′0 {e2/x}.
Since e ′′0 is a value by Lemma C.2.3, we finish by Lemmas C.2.11 (2) and
C.2.16 (1).

Case e = if e ′1 then e
′
2 else e

′
3: Similarly to the case for application term except for use of

Lemma C.2.9 (2). If there exists some e ′′ such that e ′1 {e2/x} −→ e ′′ by (E RED),
then, by the IH, there exists some e ′′1 such that e ′1 {e1/x} −→∗ e ′′1 {e1/x} and

182 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

e ′′ = e ′′1 {e2/x}. Moreover, the evaluation e ′1 {e1/x} −→∗ e ′′1 {e1/x} is derived
by applying only (E RED). Thus, by Lemma C.2.16 (1),

(if e ′1 then e
′
2 else e

′
3) {e2/x} −→ (if e ′′1 then e ′2 else e

′
3) {e2/x}

(if e ′1 then e
′
2 else e

′
3) {e1/x} −→∗ (if e ′′1 then e ′2 else e

′
3) {e1/x}.

Otherwise, if e ′1 {e2/x} is a value, then there exists some e ′′1 such that
e ′1 {e1/x} −→∗ e ′′1 {e1/x} and e ′′1 {e1/x} is a value and e ′1 {e2/x} = e ′′1 {e2/x}.
Since e ′′1 is a value by Lemma C.2.3, we finish by Lemmas C.2.9 (2) and C.2.16 (1).

Case e = 〈{y :T | e ′1}, e ′2, v〉`: Similarly to the case for application term except for use of
Lemma C.2.15 (2). If there exists some e ′′ such that e ′2 {e2/x} −→ e ′′ by (E RED),
then, by the IH, there exists some e ′′2 such that e ′2 {e1/x} −→∗ e ′′2 {e1/x} and
e ′′ = e ′′2 {e2/x}. Moreover, the evaluation e ′2 {e1/x} −→∗ e ′′2 {e1/x} is derived
by applying only (E RED). Thus, by Lemma C.2.16 (1),

(〈{y :T | e ′1}, e ′2, v〉`) {e2/x} −→ (〈{y :T | e ′1}, e ′′2 , v〉`) {e2/x}
(〈{y :T | e ′1}, e ′2, v〉`) {e1/x} −→∗ (〈{y :T | e ′1}, e ′′2 , v〉`) {e1/x}.

Otherwise, if e ′2 {e2/x} is a value, then there exists some e ′′2 such that
e ′2 {e1/x} −→∗ e ′′2 {e1/x} and e ′′2 {e1/x} is a value and e ′2 {e2/x} = e ′′2 {e2/x}.
Since e ′′2 is a value by Lemma C.2.3, we finish by Lemmas C.2.15 (2) and
C.2.16 (1).

Case e = 〈〈{y :T | e ′1}, e ′2〉〉`: Similarly to the case for application term except for use of
Lemma C.2.13 (2). If there exists some e ′′ such that e ′2 {e2/x} −→ e ′′ by (E RED),
then, by the IH, there exists some e ′′2 such that e ′2 {e1/x} −→∗ e ′′2 {e1/x} and
e ′′ = e ′′2 {e2/x}. Moreover, the evaluation e ′2 {e1/x} −→∗ e ′′2 {e1/x} is derived
by applying only (E RED). Thus, by Lemma C.2.16 (1),

(〈〈{y :T | e ′1}, e ′2〉〉`) {e2/x} −→ (〈〈{y :T | e ′1}, e ′′2 〉〉`) {e2/x}
(〈〈{y :T | e ′1}, e ′2〉〉`) {e1/x} −→∗ (〈〈{y :T | e ′1}, e ′′2 〉〉`) {e1/x}.

Otherwise, if e ′2 {e2/x} is a value, then there exists some e ′′2 such that
e ′2 {e1/x} −→∗ e ′′2 {e1/x} and e ′′2 {e1/x} is a value and e ′2 {e2/x} = e ′′2 {e2/x}.
Since e ′′2 is a value by Lemma C.2.3, we finish by Lemmas C.2.13 (2) and C.2.16 (1).

Lemma C.2.22. Suppose that e1 −→ e2.

(1) If e {e1/x} −→∗ v1, then e {e2/x} −→∗ e ′ {e2/x} for some e ′ such that v1 =
e ′ {e1/x}, and e ′ {e2/x} is a value.

(2) If e {e2/x} −→∗ v2, then e {e1/x} −→∗ e ′ {e1/x} for some e ′ such that v2 =
e ′ {e2/x}, and e ′ {e1/x} is a value.

Proof.

1. By mathematical induction on the number of evaluation steps of e {e1/x}.

Case 0: We are given e {e1/x} is a value. Since e1 is not a value from e1 −→ e2,
we find that e is a value by Lemma C.2.3. By Lemma C.2.2, so is e {e2/x}.
Thus, we finish when letting e ′ = e .

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 183

Case i + 1: We are given e {e1/x} −→ e ′1 −→i v1. By Lemma C.2.18, there exists
some e ′′ such that e {e2/x} −→∗ e ′′ {e2/x} and e ′1 = e ′′ {e1/x}. By the IH,
there exists some e ′ such that e ′′ {e2/x} −→∗ e ′ {e2/x} and v1 = e ′ {e1/x},
and e ′ {e2/x} is a value. Thus, we finish.

2. By mathematical induction on the number of evaluation steps of e {e2/x}.

Case 0: We are given e {e2/x} is a value. By Lemma C.2.19, there exists some e ′

such that e {e1/x} −→∗ e ′ {e1/x} and e {e2/x} = e ′ {e2/x} and e ′ {e1/x} is
a value.

Case i + 1: We are given e {e2/x} −→ e ′2 −→i v2. By Lemma C.2.21, there exists
some e ′′ such that e {e1/x} −→∗ e ′′ {e1/x} and e ′2 = e ′′ {e2/x}. By the IH,
there exists some e ′ such that e ′′ {e1/x} −→∗ e ′ {e1/x} and v2 = e ′ {e2/x},
and e ′ {e1/x} is a value. Thus, we finish.

Lemma C.2.23. Suppose that e1 V∗ e2.

(1) If e1 −→∗ v1, then e2 −→∗ v2 for some v2 such that v1 V∗ v2.

(2) If e2 −→∗ v2, then e1 −→∗ v1 for some v1 such that v1 V∗ v2.

Proof. By mathematical induction on the number of steps of e1 V∗ e2.

Case 0: Obvious because e1 = e2.

Case i + 1: We are given e1 V e3 Vi e2. We are given some e , e ′1, e ′3 and x such
that e1 = e {e ′1/x} and e3 = e {e ′3/x} and e ′1 −→ e ′3. Thus, we finish by
Lemma C.2.22 and the IHs and transitivity ofV∗.

Lemma C.2.24.

(1) If c V∗ v , then v = c.

(2) If v V∗ c, then v = c.

Proof.

1. By mathematical induction on the number of steps of c V∗ v .

Case 0: Obvious.

Case i + 1: We are given c V e V∗ v . We are given e ′, e1, e2 and x such that
c = e ′ {e1/x} and e = e ′ {e2/x} and e1 −→ e2. Since e1 is not a value from
e1 −→ e2, we find that e ′ is a value by Lemma C.2.3. Thus, e ′ = c and so
e = c. By the IH, we finish.

2. By mathematical induction on the number of steps of v V∗ c.

Case 0: Obvious.

Case i + 1: We are given v V e V∗ c. We are given e ′, e1, e2 and x such that
v = e ′ {e1/x} and e = e ′ {e2/x} and e1 −→ e2. Since e1 is not a value from
e1 −→ e2, we find that e ′ is a value by Lemma C.2.3. Thus, so is e ′ {e2/x}
by Lemma C.2.2. By the IH, e ′ {e2/x} = c. Since e ′ is a value, e ′ = c and so
v = c.

Lemma 29 (Cotermination). Suppose that e1 V∗ e2.

184 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

(1) If e1 −→∗ true, then e2 −→∗ true.

(2) If e2 −→∗ true, then e1 −→∗ true.

Proof. By Lemmas C.2.23 and C.2.24.

Lemma C.2.25. Suppose that e1 ≡ e2.

(1) If e1 −→∗ true, then e2 −→∗ true.

(2) If e2 −→∗ true, then e1 −→∗ true.

Proof. Straightforward by induction on e1 ≡ e2. In particular, if e1 V e2, then we
finish by Lemma 29.

C.3 Type Soundness

The proof of type soundness in λH
dt is also similar to the one in FσH: we show Type

Soundness (Theorem 9) via Progress (Lemma 27) and Preservation (Lemma 28), using
standard and auxiliary lemmas.

Lemma C.3.1 (Weakening). Suppose that x is a fresh variable and Γ1 ` T1.

(1) If Γ1,Γ2 ` e : T , then Γ1, x :T1,Γ2 ` e : T .

(2) If Γ1,Γ2 ` T , then Γ1, x :T1,Γ2 ` T .

(3) If ` Γ1,Γ2, then ` Γ1, x :T1,Γ2.

Proof. Straightforward by induction on each derivation.

Lemma C.3.2 (Substitution). Suppose that Γ1 ` e ′ : T ′.

(1) If Γ1, x :T ′,Γ2 ` e : T , then Γ1,Γ2 {e ′/x} ` e {e ′/x} : T {e ′/x}.

(2) If Γ1, x :T ′,Γ2 ` T , then Γ1,Γ2 {e ′/x} ` T {e ′/x}.

(3) If ` Γ1, x :T ′,Γ2, then ` Γ1,Γ2 {e ′/x}.

Proof. Straightforward by induction on each derivation. The only interesting cases are
for (T CTR) and (T MATCH).

Case (T CTR): We are given Γ1, x :T ′,Γ2 ` C 〈e1〉e2 : τ〈e1〉 for some C , e1, e2 and τ .
By inversion, we have TypSpecOf (C) = y :T1 � T2 � τ〈y〉 and Γ1, x :T ′,Γ2 `
e1 : T1 and Γ1, x :T ′,Γ2 ` e2 : T2 {e1/y} and Γ1, x :T ′,Γ2 ` τ〈e1〉. Without loss
of generality, we can suppose that y is fresh.

By the IHs, Γ1,Γ2 {e ′/x} ` e1 {e ′/x} : T1 {e ′/x} and Γ1,Γ2 {e ′/x} ` e2 {e ′/x} :
T2 {e1/y} {e ′/x} and Γ1,Γ2 {e ′/x} ` τ〈e1 {e ′/x}〉. From well-formedness
of the type definition environment, it is found that T1 {e ′/x} = T1 and
T2 {e1/y} {e ′/x} = T2 {e1 {e ′/x}/y}. Thus, we finish by (T CTR).

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 185

Case (T MATCH): We are given Γ1, x :T ′,Γ2 ` match e0 withCi yi → ei
i

: T . By
inversion, we have Γ1, x :T ′,Γ2 ` e0 : τ〈e ′′〉 and Γ1, x :T ′,Γ2 ` T and
CtrsOf (τ) = Ci

i and ArgTypeOf (τ) = z :T ′′ and, for all i , CtrArgOf (Ci) = Ti

and Γ1, x :T ′,Γ2, yi :Ti {e ′′/z} ` ei : T . Without loss of generality, we can sup-
pose that yi i and z are fresh.

By the IHs, Γ1,Γ2 {e ′/x} ` e0 {e ′/x} : τ〈e ′′ {e ′/x}〉 and Γ1,Γ2 {e ′/x} `
T {e ′/x} and Γ1,Γ2 {e ′/x}, yi :Ti {e ′′/z} {e ′/x} ` ei {e ′/x} : T {e ′/x}.
From well-formedness of the type definition environment, it is found that
Ti {e ′′/z} {e ′/x} = Ti {e ′′ {e ′/x}/z}. Thus, we finish by (T MATCH).

Lemma C.3.3 (Base Types Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = bool implies T2 = bool, and

(2) T2 = bool implies T1 = bool.

Proof. Straightforward by induction on T1 ≡ T2. In particular, if T1 V T2, then
there exist some T , x , e1 and e2 such that T1 = T {e1/x} and T2 = T {e2/x}. Since
T1 = bool or T2 = bool, we have T = bool. Thus T1 = T2 = bool.

Lemma C.3.4 (Dependent Function Types Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = x :T11 → T12 implies

• T = x :T21 → T22,

• T11 ≡ T21, and

• T12 ≡ T22

for some T21 and T22, and

(2) T2 = x :T21 → T22 implies

• T1 = x :T11 → T12,

• T11 ≡ T21, and

• T12 ≡ T22

for some T11 and T12.

Proof. Straightforward by induction on T1 ≡ T2. In particular, if T1 V T2, then
there exist some T , y , e1 and e2 such that T1 = T {e1/y} and T2 = T {e2/y} and
e1 −→ e2. Without loss of generality, we can suppose that x is fresh for e1, e2 and y .
Since T1 = x :T11 → T12 or T2 = x :T21 → T22, we have T = x :T1 → T2 for some T1

and T2. Thus, T1 = x :T1 {e1/y} → T2 {e1/y} and T2 = x :T1 {e2/y} → T2 {e2/y}. We
have T1 {e1/y} V T1 {e2/y} and T2 {e1/y} V T2 {e2/y} by definition.

Lemma C.3.5 (Dependent Product Types Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = x :T11×T12 implies

• T2 = x :T21×T22,

• T11 ≡ T21, and

• T12 ≡ T22

186 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

for some T21 and T22, and

(2) T2 ≡ x :T21×T22 implies

• T1 = x :T11×T12,
• T11 ≡ T21, and
• T12 ≡ T22.

for some T11 and T12.

Proof. Similarly to Lemma C.3.4, straightforward by induction on T1 ≡ T2. In par-
ticular, if T1 V T2, then there exist some T , y , e1 and e2 such that T1 = T {e1/y}
and T2 = T {e2/y} and e1 −→ e2. Without loss of generality, we can suppose that
x is fresh for e1, e2 and y . Since T1 = x :T11×T12 or T2 = x :T21×T22, we have
T = x :T1×T2 for some T1 and T2. Thus, T1 = x :T1 {e1/y}×T2 {e1/y} and T2 =
x :T1 {e2/y}×T2 {e2/y}. We have T1 {e1/y} V T1 {e2/y} and T2 {e1/y} V T2 {e2/y}
by definition.

Lemma C.3.6 (Datatypes Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = τ〈e1〉 implies T2 = τ〈e2〉 and e1 ≡ e2 for some e2, and

(2) T2 = τ〈e2〉 implies T1 = τ〈e1〉 and e1 ≡ e2 for some e1.

Proof. Similarly to Lemma C.3.4, straightforward by induction on T1 ≡ T2. In partic-
ular, if T1 V T2, then there exist some T , x , e ′1 and e ′2 such that T1 = T {e ′1/x} and
T2 = T {e ′2/x} and e ′1 −→ e ′2. Since T1 = τ〈e1〉 or T2 = τ〈e2〉, we have T = τ〈e〉 for
some e . Thus, T1 = τ〈e {e ′1/x}〉 and T2 = τ〈e {e ′2/x}〉. We have e {e ′1/x} V e {e ′2/x}
by definition.

Lemma C.3.7 (Refinement Types Equivalence Inversion). If T1 ≡ T2, then

(1) T1 = {x :T ′1 | e ′1} implies

• T2 = {x :T ′2 | e ′2},
• T ′1 ≡ T ′2, and
• e ′1 ≡ e ′2

for some T ′2 and e ′2, and

(2) T2 = {x :T ′2 | e ′2} implies

• T1 = {x :T ′1 | e ′1},
• T ′1 ≡ T ′2, and
• e ′1 ≡ e ′2

for some T ′1 and e ′1.

Proof. Similarly to Lemma C.3.4, straightforward by induction on T1 ≡ T2. In partic-
ular, if T1 V T2, then there exist some T , y , e ′′1 and e ′′2 such that T1 = T {e ′′1 /y}
and T2 = T {e ′′2 /y} and e ′′1 −→ e ′′2 . Without loss of generality, we can suppose
that x is fresh for e ′′1 , e ′′2 and y . Since T1 = {x :T ′1 | e ′1} or T2 = {x :T ′2 | e ′2}, we have
T = {x :T ′ | e ′} for some T ′ and e ′. Thus, T1 = {x :T ′ {e ′′1 /y} | e ′ {e ′′1 /y}} and T2 =
{x :T ′ {e ′′2 /y} | e ′ {e ′′2 /y}}. We have T ′ {e ′′1 /y} V T ′ {e ′′2 /y} and e ′ {e ′′1 /y} V e ′ {e ′′2 /y}
by definition.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 187

Lemma C.3.8 (Type Equivalence Closed Under Unrefine). If T1 ≡ T2, then unref(T1) ≡
unref(T2).

Proof. By induction on T1.

Case T1 = bool, x :T ′1 → T ′2, x :T ′1×T ′2, or τ〈e〉: We have unref(T1) = T1. Since
T1 ≡ T2, we find that unref(T2) = T2 by Lemmas C.3.3 (1), C.3.4 (1), C.3.5 (1)
and C.3.6 (1). Thus, we finish.

Case T1 = {x :T ′1 | e ′1}: By Lemma C.3.7 (1), there exist some T ′2 and e ′2 such that T2 =
{x :T ′2 | e ′2} and T ′1 ≡ T ′2. By the IH, unref(T ′1) ≡ unref(T ′2). Because unref(T1) =
unref(T ′1) and unref(T2) = unref(T ′2), we finish.

Lemma C.3.9 (Lambda Inversion). If Γ ` fix f (x :T1):T2 = e : T , then

• Γ, f :(x :T1 → T2), x :T1 ` e : T2,

• f /∈ FV (T2), and

• x :T1 → T2 ≡ unref(T).

Proof. By induction on the typing derivation. Only four rules can be applied to the
lambda abstraction.

Case (T ABS): Since T = x :T1 → T2, we have x :T1 → T2 ≡ unref(T) by Lemma C.1.1
(reflexivity). By inversion, we finish.

Case (T CONV): By inversion, we have ∅ ` fix f (x :T1):T2 = e : T ′ and T ′ ≡ T for
some T ′. By the IH, we have f :(x :T1 → T2), x :T1 ` e : T2 and f /∈ FV (T2)
and x :T1 → T2 ≡ unref(T ′). Because unref(T ′) ≡ unref(T) by Lemma C.3.8, we
have x :T1 → T2 ≡ unref(T) by Lemma C.1.1 (transitivity). By Lemma C.3.1, we
finish.

Case (T FORGET): By inversion, we have ∅ ` fix f (x :T1):T2 = e : {y :T | e ′} for some
y and e ′. By the IH, f :(x :T1 → T2), x :T1 ` e : T2 and f /∈ FV (T2) and x :T1 →
T2 ≡ unref({y :T | e ′}). Since unref(T) = unref({y :T | e ′}), we have x :T1 →
T2 ≡ unref(T). By Lemma C.3.1, we finish.

Case (T EXACT): We are given Γ ` fix f (x :T1):T2 = e : {y :T ′ | e ′} for some y , T ′

and e ′. By inversion, we have ∅ ` fix f (x :T1):T2 = e : T ′. By the IH, we have
f :(x :T1 → T2), x :T1 ` e : T2 and f /∈ FV (T2) and x :T1 → T2 ≡ unref(T ′).
Since unref(T ′) = unref({y :T ′ | e ′}), we have x :T1 → T2 ≡ unref({y :T ′ | e ′}). By
Lemma C.3.1, we finish.

Lemma C.3.10 (Cast Inversion). If Γ ` 〈T1 ⇐ T2〉` : T , then

• Γ ` T1,

• Γ ` T2,

• T1 ‖ T2, and

• T2 → T1 ≡ unref(T).

188 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Proof. Similarly to Lemma C.3.9, by induction on the typing derivation. Only four rules
can be applied to the cast.

Case (T CAST): Since T = T2 → T1, we have T2 → T1 ≡ unref(T) by Lemma C.1.1
(reflexivity). By inversion, we finish.

Case (T CONV): By inversion, we have ∅ ` 〈T1 ⇐ T2〉` : T ′ and T ′ ≡ T for some T ′.
By the IH, we have ∅ ` T1 and ∅ ` T2 and T1 ‖ T2 and T2 → T1 ≡ unref(T ′).
Because unref(T ′) ≡ unref(T) by Lemma C.3.8, we have T2 → T1 ≡ unref(T)
by Lemma C.1.1 (transitivity). By Lemma C.3.1, we finish.

Case (T FORGET): By inversion, we have ∅ ` 〈T1 ⇐ T2〉` : {y :T | e} for some y and
e . By the IH, ∅ ` T1 and ∅ ` T2 and T1 ‖ T2 and T2 → T1 ≡ unref({y :T | e}).
Since unref({y :T | e}) = unref(T), we have T2 → T1 ≡ unref(T). By
Lemma C.3.1, we finish.

Case (T EXACT): We are given Γ ` 〈T1 ⇐ T2〉` : {x :T ′ | e ′} for some x , T ′ and e ′. By
inversion, we have ∅ ` 〈T1 ⇐ T2〉` : T ′. By the IH, we have ∅ ` T1 and ∅ ` T2

and T1 ‖ T2 and T2 → T1 ≡ unref(T ′). Since unref(T ′) = unref({x :T ′ | e ′}), we
have T2 → T1 ≡ unref({x :T ′ | e ′}). By Lemma C.3.1, we finish.

Lemma C.3.11 (Pair Inversion). If Γ ` (v1, v2) : T , then

• Γ ` v1 : T1,

• Γ ` v2 : T2 {v1/x},

• Γ, x :T1 ` T2, and

• x :T1×T2 ≡ unref(T)

for some T1, T2 and x .

Proof. Similarly to Lemma C.3.9, by induction on the typing derivation. Only four rules
can be applied to the pair.

Case (T PAIR): Since T = x :T1×T2, we have x :T1×T2 ≡ unref(T) by Lemma C.1.1
(reflexivity). By inversion, we finish.

Case (T CONV): By inversion, we have ∅ ` (v1, v2) : T ′ and T ′ ≡ T for some T ′.
By the IH, we have ∅ ` v1 : T1 and ∅ ` v2 : T2 {v1/x} and x :T1 ` T2 and
x :T1×T2 ≡ unref(T ′). Because unref(T ′) ≡ unref(T) by Lemma C.3.8, we have
x :T1×T2 ≡ unref(T) by Lemma C.1.1 (transitivity). By Lemma C.3.1, we finish.

Case (T FORGET): By inversion, we have ∅ ` (v1, v2) : {y :T | e ′} for some y and
e ′. By the IH, we have ∅ ` v1 : T1 and ∅ ` v2 : T2 {v1/x} and x :T1 ` T2

and x :T1×T2 ≡ unref({y :T | e ′}). Since unref({y :T | e ′}) = unref(T), we have
x :T1×T2 ≡ unref(T). By Lemma C.3.1, we finish.

Case (T EXACT): We are given Γ ` (v1, v2) : {y :T ′ | e ′} for some y , T ′ and e ′. By
inversion, we have ∅ ` (v1, v2) : T ′. By the IH, we have ∅ ` v1 : T1 and
∅ ` v2 : T2 {v1/x} and x :T1 ` T2 and x :T1×T2 ≡ unref(T ′). Since unref(T ′) =
unref({y :T ′ | e ′}), we have x :T1×T2 ≡ unref({y :T ′ | e ′}). By Lemma C.3.1, we
finish.

Lemma C.3.12 (Constructor Inversion). If Γ ` C 〈e〉v : T , then

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 189

• TypSpecOf (C) = x :T1 � T2 � τ〈x 〉,

• Γ ` v : T2 {e/x},

• Γ ` τ〈e〉, and

• τ〈e〉 ≡ unref(T).

Proof. Similarly to Lemma C.3.9, by induction on the typing derivation. Only four rules
can be applied to the constructor application.

Case (T CTR): Since T = τ〈e〉, we have τ〈e〉 ≡ unref(T) by Lemma C.1.1 (reflexivity).
By inversion, we finish.

Case (T CONV): By inversion, we have ∅ ` C 〈e〉v : T ′ and T ′ ≡ T for some T ′. By
the IH, we have TypSpecOf (C) = x :T1 � T2 � τ〈x 〉 and ∅ ` v : T2 {e/x} and
∅ ` τ〈e〉 and τ〈e〉 ≡ unref(T ′). Because unref(T ′) ≡ unref(T) by Lemma C.3.8,
we have τ〈e〉 ≡ unref(T) by Lemma C.1.1 (transitivity). By Lemma C.3.1, we
finish.

Case (T FORGET): By inversion, we have ∅ ` C 〈e〉v : {y :T | e ′} for some y and e ′. By
the IH, we have TypSpecOf (C) = x :T1 � T2 � τ〈x 〉 and ∅ ` v : T2 {e/x} and
∅ ` τ〈e〉 and τ〈e〉 ≡ unref({y :T | e ′}). Since unref({y :T | e ′}) = unref(T), we
have τ〈e〉 ≡ unref(T). By Lemma C.3.1, we finish.

Case (T EXACT): We are given Γ ` C 〈e〉v : {y :T ′ | e ′} for some y , T ′ and e ′. By
inversion, we have ∅ ` C 〈e〉v : T ′. By the IH, we have TypSpecOf (C) =
x :T1 � T2 � τ〈x 〉 and ∅ ` v : T2 {e/x} and ∅ ` τ〈e〉 and τ〈e〉 ≡ unref(T ′).
Since unref(T ′) = unref({y :T ′ | e ′}), we have τ〈e〉 ≡ unref({y :T ′ | e ′}). By
Lemma C.3.1, we finish.

Lemma C.3.13 (Canonical Forms). Suppose that ∅ ` v : T .

(1) If unref(T) = bool, then v = true or false.

(2) If unref(T) = x :T1 → T2, then

(a) v = fix f (x :T ′1):T ′2 = e for some f , T ′1, T ′2 and e , or

(b) v = 〈T ′2 ⇐ T ′1〉` for some T ′2, T ′1 and `.

(3) If unref(T) = x :T1×T2, then v = (v1, v2) for some v1 and v2.

(4) If unref(T) = τ〈e〉, then v = C 〈e ′〉v ′ for some C , e ′ and v ′.

Proof. By induction on the typing derivation.

Case (T CONST): We are given ∅ ` c : bool. By inversion, c ∈ {true, false}. Since
unref(bool) = bool, we are in the case (1).

Case (T VAR), (T BLAME), (T APP), (T PROJi) for i ∈ {1, 2}, (T MATCH), (T IF),
(T ACHECK), (T WCHECK): Contradictory: v is a value.

Case (T ABS): We are given ∅ ` fix f (x :T1):T2 = e : x :T1 → T2. Since unref(x :T1 →
T2) = x :T1 → T2, we are in the case (2).

Case (T CAST): We are given ∅ ` 〈T2 ⇐ T1〉` : T1 → T2. Since unref(T1 → T2) =
T1 → T2, we are in the case (2).

190 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Case (T PAIR): We are given ∅ ` (v1, v2) : x :T1×T2. Since unref(x :T1×T2) =
x :T1×T2, we are in the case (3).

Case (T CTR): We are given ∅ ` C 〈e ′〉v ′ : τ〈e ′〉. Since unref(τ〈e ′〉) = τ〈e ′〉, we are in
the case (4).

Case (T CONV): By inversion, we have ∅ ` v : T ′ for some T ′ such that T ′ ≡ T . By
Lemma C.3.8, unref(T ′) ≡ unref(T). By case analysis on unref(T ′):

Case unref(T ′) = bool: By the IH, v ∈ {true, false}. By Lemma C.3.3 (1),
unref(T) = bool and so we are in the case (1).

Case unref(T ′) = x :T1 → T2: By the IH, v is a lambda abstraction or a cast. By
Lemma C.3.4 (1), unref(T) = x :T ′1 → T ′2 for some T ′1 and T ′2 and so we are
in the case (2).

Case unref(T ′) = x :T1×T2: By the IH, v = (v1, v2) for some v1 and v2. By
Lemma C.3.5 (1), unref(T) = x :T ′1×T ′2 for some T ′1 and T ′2 and so we are
in the case (3).

Case unref(T ′) = τ〈e ′〉: By the IH, v = C 〈e ′′〉v ′′ for some e ′′ and v ′′. By
Lemma C.3.6 (1), unref(T) = τ〈e ′′′〉 for some e ′′′ and so we are in the case
(4).

Case (T FORGET): By inversion, we have ∅ ` v : {x :T | e} for some x and e . Since
unref(T) = unref({x :T | e}), we finish by the IH.

Case (T EXACT): We are given ∅ ` v : {x :T ′ | e} for some x , T ′ and e . By inversion,
we have ∅ ` v : T ′. Since unref({x :T ′ | e}) = unref(T ′), we finish by the IH.

Lemma 27 (Progress). If ∅ ` e : T , then

1. e −→ e ′ for some e ′,

2. e is a value, or

3. e = ⇑` for some `.

Proof. By induction on the typing derivation.

Case (T CONST), (T BLAME), (T ABS), (T CAST), (T FORGET), (T EXACT): The term e
is a blaming or a value.

Case (T VAR): Contradictory: ∅ ` x : T cannot be derived for any x .

Case (T APP): We are given ∅ ` e1 e2 : T2 {e2/x} for some e1, e2, T2 and x . By
inversion, we have ∅ ` e1 : x :T1 → T2 and ∅ ` e2 : T1 for some T1.

By the IH, e1 and e2 are reducible, values, or blaming. If e1 is reducible or a blam-
ing, then e1 e2 steps by one of evaluation rules. If e1 is a value and e2 is reducible
or a blaming, then e1 e2 steps by one of evaluation rules. Otherwise, if e1 and e2

are values, then there are two cases which we consider on e1 by Lemma C.3.13.

Case e1 = fix f (x :T ′1)= e12: The term e1 e2 steps by (E RED)/(R BETA).

Case e1 = 〈T ′1 ⇐ T ′2〉`: If T ′2 is a refinement type, then we finish by
(E RED)/(R FORGET). In the following, we suppose that T ′2 is not a refine-
ment type. By Lemma C.3.10, we have T ′1 ‖ T ′2 and T ′2 → T ′1 ≡ x :T1 → T2

We perform case analysis on T ′1.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 191

Case T ′1 = bool: It is found from bool ‖ T ′2 that T ′2 = bool since T ′2 is not a
refinement type. We then finish by (E RED)/(R BASE).

Case T ′1 = y :T11 → T12: It is found that from y :T11 → T12 ‖ T ′2 that T ′2 =
y :T21 → T22 for some T21 and T22 since T ′2 is not a refinement type. We
then finish by (E RED)/(R FUN).

Case T ′1 = y :T11×T12: It is found that from y :T11×T12 ‖ T ′2 that T ′2 =
y :T21×T22 for some T21 and T22 since T ′2 is not a refinement type.
By Lemmas C.3.4 and C.3.5 (1), T1 = y :T ′11×T ′12 for some T ′11 and
T ′12. Since ∅ ` e2 : T1 = y :T ′11×T ′12 and e2 is a value, we have
e2 = (v1, v2) for some v1 and v2 by Lemma C.3.13 (3). We then finish
by (E RED)/(R PROD).

Case T ′1 = τ1〈e ′1〉: It is found that from Σ ` τ1〈e ′1〉 ‖ T ′2 that T ′2 = τ2〈e ′2〉
for some τ2 and e ′2 since T ′2 is not a refinement type. If τ1 = τ2 and τ1

is monomorphic, then we apply (E RED)/(R DATATYPEMONO); if τ1 6=
τ2 or τ1 is not monomorphic, and δ(〈τ1〈e ′1〉 ⇐ τ2〈e ′2〉〉` e2) is defined, then
(E RED)/(R DATATYPE); otherwise, (E RED)/(R DATATYPEFAIL).

Case T ′1 = {y :T ′′1 | e ′′1 }: Since T ′2 is not a refinement type, we finish by
(E RED)/(R PRECHECK).

Case (T PAIR): We are given ∅ ` (e1, e2) : x :T1×T2 for some e1, e2, x , T1 and T2. By
inversion, we have ∅ ` e1 : T1 and ∅ ` e2 : T2 {e1/x}. By the IH, e1 and e2

are reducible, values, or blaming. If e1 is reducible or a blaming, then we finish
by one of evaluation rules. If e1 is a value and e2 is reducible or a blaming, then
we finish by one of evaluation rules. Otherwise, if e1 and e2 are values, then so is
(e1, e2) is.

Case (T PROJ1): We are given ∅ ` e1.1 : T1 for some e1 and T1. By inversion, we
have ∅ ` e1 : x :T1×T2 for some x and T2. By the IH, e1 is reducible, a value,
or a blaming. If e1 is reducible or a blaming, then we finish by one of evalua-
tion rules. Otherwise, if e1 is a value, then e1 = (v1, v2) for some v1 and v2 by
Lemma C.3.13 (3), and so we finish by (E RED)/(R PROJ1).

Case (T PROJ2): Similarly to the case for (T PROJ1). We are given ∅ ` e2.2 :
T2 {e2.1/x} for some e2, T2, and x . By inversion, we have ∅ ` e2 : x :T1×T2

for some T1. By the IH, e2 is reducible, a value, or a blaming. If e2 is reducible or
a blaming, then we finish by one of evaluation rules. Otherwise, if e2 is a value,
then e2 = (v1, v2) for some v1 and v2 by Lemma C.3.13 (3), and so we finish by
(E RED)/(R PROJ2).

Case (T CTR): We are given ∅ ` C 〈e1〉e2 : τ〈e1〉. By inversion, we have ∅ ` e2 :
T ′ {e1/x} for some T ′ and x such that TypSpecOf (C) = x :T ′′ � T ′ � τ〈x 〉. By
the IH, e2 is reducible, a value, or a blaming. If e2 is reducible or a blaming, then
we finish by one of evaluation rules. Otherwise, if e2 is a value, then so is C 〈e1〉e2.

Case (T MATCH): We are given Γ ` match e0 withCi xi → ei
i ∈{1,...,n}

: T for some
e0 and Ci xi → ei

i ∈{1,...,n}. By inversion, we have Γ ` e0 : τ〈e ′〉 for some τ
and e ′. By the IH, e0 is reducible, a value, or a blaming. If e0 is reducible or a
blaming, then we finish by one of evaluation rules. Otherwise, if e0 is a value,
then, by Lemma C.3.13 (4), we have e0 = C 〈e ′1〉v2 for some C , e ′1 and v2. By
Lemmas C.3.12 and C.3.6, C is a constructor of τ . There therefore exists j ∈

192 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

{1, ...,n} such that C = Cj since patterns are exhaustive. By (R MATCH), we
finish.

Case (T IF): We are given ∅ ` if e1 then e2 else e3 : T for some e1, e2 and e3. By inver-
sion, we have ∅ ` e1 : bool. By the IH, e1 is reducible, a value, or a blaming. If e1

is reducible or a blaming, then we finish by one of evaluation rules. Otherwise, if
e1 is a value, then e1 is true or false by Lemma C.3.13 (1). If e1 is true (resp. false),
then we finish by (R IFTRUE) (resp. (R IFFALSE)).

Case (T WCHECK): We are given ∅ ` 〈〈{x :T ′ | e1}, e2〉〉` : {x :T ′ | e1} for some x , T ′, e1,
e2 and `. By inversion, we have ∅ ` e2 : T ′. By the IH, e2 is reducible, a value,
or a blaming. If e2 is reducible or a blaming, then we finish by one of evaluation
rules. Otherwise, if e2 is a value, we finish by (R CHECK).

Case (T ACHECK): We are given ∅ ` 〈{x :T ′ | e1}, e2, v〉` : {x :T ′ | e1} for some x , T ′,
e1, e2, v and `. By inversion, we have ∅ ` e2 : bool. By the IH, e2 is reducible, a
value, or a blaming. If e2 is reducible or a blaming, then we finish by one of evalu-
ation rules. Otherwise, if e2 is a value, then e2 is true or false by Lemma C.3.13 (1).
If e2 is true (resp. false), then we finish by (R OK) (resp. (R FAIL)).

Case (T CONV): By inversion, we have ∅ ` e : T ′. By the IH, we finish.

Lemma C.3.14 (Context and Type Well-Formedness).

1. If Γ ` e : T , then ` Γ and Γ ` T .

2. If Γ ` T , then ` Γ.

Proof. By induction on the derivation of each judgment.

1. By case analysis on the typing derivation.

Case (T CONST): We are given Γ ` c : T for some c. By inversion, we have ` Γ
and T = bool. By (WT BASE), Γ ` bool.

Case (T VAR): We are given Γ ` x : T for some x . By inversion, we have ` Γ and
x :T ∈ Γ. Let Γ1 and Γ2 be typing contexts such that Γ1, x :T ,Γ2 = Γ. By in-
version of ` Γ, we have Γ1 ` T . Since for any y :T ′ ∈ Γ2, Γ1, x :T ,Γ′2 `
T ′ where Γ2 = Γ′2, y :T ′,Γ′′2 for some Γ′′2 , we have Γ1, x :T ,Γ2 ` T by
Lemma C.3.1.

Case (T BLAME): We are given Γ ` ⇑` : T for some `. By inversion, we have ` Γ
and ∅ ` T . By Lemma C.3.1, Γ ` T .

Case (T ABS): We are given Γ ` fix f (x :T1):T2 = e2 : x :T1 → T2 for some f ,
x , T1, T2 and e2. By inversion, we have Γ, f :(x :T1 → T2), x :T1 ` e2 : T2.
By the IH, we have ` Γ, f :(x :T1 → T2), x :T1. By inversion of it, ` Γ and
Γ ` x : T1 → T2.

Case (T CAST): We are given Γ ` 〈T1 ⇐ T2〉` : x :T2 → T1 for some T1, T2, ` and
x . Without loss of generality, we can suppose that x is fresh. By inversion,
we have Γ ` T1 and Γ ` T2. By the IH, we have ` Γ. By Lemma C.3.1,
Γ, x :T2 ` T1. By (WT FUN), we have Γ ` x : T2 → T1.

Case (T APP): We are given Γ ` e1 e2 : T2 {e2/x} for some T2, e2 and x . By
inversion, we have Γ ` e1 : x :T1 → T2 and Γ ` e2 : T1. By the IH,
we have ` Γ and Γ ` x : T1 → T2. By inversion of the latter, we have
Γ, x :T1 ` T2. By Lemma C.3.2, we have Γ ` T2 {e2/x}.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 193

Case (T PAIR): We are given Γ ` (e1, e2) : x :T1×T2 for some e1, e2, x , T1 and
T2. By inversion, we have Γ, x :T1 ` T2. By the IH, ` Γ, x :T1. By inversion
of it, we have ` Γ. Since Γ, x :T1 ` T2, we finish by (WT PROD).

Case (T PROJ1): We are given Γ ` e ′.1 : T for some e ′. By inversion, we have
Γ ` e ′ : x :T ×T ′ for some x and T ′. By the IH, we have ` Γ and Γ `
x :T ×T ′. By inversion of the latter, we have Γ ` T .

Case (T PROJ2): we are given Γ ` e ′.2 : T2 {e ′.1/x} for some e ′, T2 and x . By
inversion, we have Γ ` e ′ : x :T1×T2 for some T1. By the IH, ` Γ and
Γ ` x :T1×T2. By inversion of the latter, we have Γ, x :T1 ` T2. Since
Γ ` e ′ : x :T1×T2, we have Γ ` e ′.1 : T1 by (T PROJ1). By Lemma C.3.2,
we have Γ ` T2 {e ′.1/x}.

Case (T CTR): We are given Γ ` C 〈e1〉e2 : τ〈e1〉 for some C , e1, e2 and τ . By
inversion, we have Γ ` τ〈e1〉. By the IH, we have ` Γ.

Case (T MATCH): We are given Γ ` match e0 withCi xi → ei
i

: T for some e0 and
Ci xi → ei

i . By inversion, we have Γ ` T . By the IH, we have ` Γ.

Case (T IF): We are given Γ ` if e1 then e2 else e3 : T for some e1, e2 and e3. By
inversion, we have Γ ` e2 : T . By the IH, we have ` Γ and Γ ` T .

Case (T WCHECK): We are given Γ ` 〈〈{x :T1 | e1}, e2〉〉` : {x :T1 | e1} for some
x , T1, e1, e2 and `. By inversion, we have ` Γ and ∅ ` {x :T1 | e1}. By
Lemma C.3.1, we have Γ ` {x :T1 | e1}.

Case (T ACHECK): We are given Γ ` 〈{x :T1 | e1}, e2, v〉` : {x :T1 | e1} for some
x , T1, e1, e2, v and `. By inversion, we have ` Γ and ∅ ` {x :T1 | e1}. By
Lemma C.3.1, we have Γ ` {x :T1 | e1}.

Case (T CONV): By inversion, we have ` Γ and ∅ ` T . By Lemma C.3.1, we have
Γ ` T .

Case (T FORGET): We are given Γ ` v : T for some v . By inversion, we have
` Γ and ∅ ` v : {x :T | e ′} for some x and e ′. By the IH, ∅ ` {x :T | e ′}. By
inversion of it, we have ∅ ` T . By Lemma C.3.1, Γ ` T .

Case (T EXACT): We are given Γ ` v : {x :T ′ | e ′} for some v , x , T ′ and e ′. By
inversion, we have ` Γ and ∅ ` {x :T ′ | e ′}. By Lemma C.3.1, we finish.

2. By case analysis on the well-formedness derivation.

Case (WT BASE): We are given Γ ` bool for some bool. By inversion, we have
` Γ.

Case (WT FUN): We are given Γ ` x : T1 → T2 for some x , T1 and T2. By
inversion, we have Γ ` T1. By the IH, ` Γ.

Case (WT REFINE): We are given Γ ` {x :T ′ | e ′} for some x , T ′ and e ′. By inver-
sion, we have Γ ` T ′. By the IH, ` Γ.

Case (WT PROD): We are given Γ ` x :T1×T2 for some x , T1 and T2. By inver-
sion, we have Γ ` T1. By the IH, ` Γ.

Case (WT DATATYPE): We are given Γ ` τ〈e〉 for some τ and e . By inversion and
the IH, we finish.

Lemma C.3.15. If T1 ‖ {x :T2 | e2}, then T1 ‖ T2.

Proof. By induction on T1 ‖ {x :T2 | e2}. There are only two cases where T1 ‖ {x :T2 | e2}
can be derived.

194 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Case {x :T ′1 | e ′1} ‖ {x :T2 | e2}: By inversion, we have T ′1 ‖ T2. By (C REFINEL),
{x :T ′1 | e ′1} ‖ T2.

Case (C REFINEL): We are given {y :T ′1 | e ′1} ‖ {x :T2 | e2}. By inversion, we have T ′1 ‖
{x :T2 | e2}. By the IH, we have T ′1 ‖ T2. By (C REFINEL), we finish.

Lemma C.3.16. If T1 ‖ T2, then T1 ‖ T2 {e/x} for any e and x .

Proof. Straightforward by induction on T1 ‖ T2.

Lemma 28 (Preservation). Suppose that ∅ ` e : T .

(1) If e e ′, then ∅ ` e ′ : T .

(2) If e −→ e ′, then ∅ ` e ′ : T .

Proof.

1. By induction on the typing derivation.

Case (T CONST), (T VAR), (T BLAME), (T ABS), (T CAST), (T PAIR), (T CTR),
(T FORGET) or (T EXACT): Trivial because e does not step in the reduction
relation.

Case (T APP): We are given ∅ ` e1 e2 : T2 {e2/x} for some e1, e2, T2 and x .
Without loss of generality, we can suppose that x is fresh. By inversion, we
have ∅ ` e1 : x :T1 → T2 and ∅ ` e2 : T1 for some T1. By case analysis on
the reduction rule applied.

Case (R BETA): We are given (fix f (x :T ′1):T ′2 = e12) v2
e12 {v2/x , fix f (x :T ′1)= e12/f } for some f , T ′1, T ′2, e12 and v2. Without
loss of generality, we can suppose that f is fresh. By Lemma C.3.9,
we have f :(x :T ′1 → T ′2), x :T ′1 ` e12 : T ′2 and f /∈ FV (T ′2) and
x :T ′1 → T ′2 ≡ x :T1 → T2 for some T ′2. Note that x (resp. f)
does not occur in T ′1 (resp. T ′1 and T ′2). By Lemma C.3.14 and
inversion, we have ∅ ` x :T ′1 → T ′2, and thus ∅ ` T ′1. Because
∅ ` e1 : x :T ′1 → T ′2 by Lemma C.1.1 (symmetry) and (T CONV), we
have x :T ′1 ` e12 {e1/f } : T ′2 by Lemma C.3.2. Since T1 ≡ T ′1 by
Lemma C.3.4, we have ∅ ` v2 : T ′1 by (T CONV). By Lemma C.3.2,
∅ ` e12 {e1/f , v2/x} : T ′2 {v2/x} (note that e1 is closed). Since
T2 ≡ T ′2 by Lemma C.3.4, we have T2 {v2/x} ≡ T ′2 {v2/x} by
Lemma C.1.4 (3). Because ∅ ` T2 {v2/x} by Lemma C.3.14, we have
∅ ` e12 {e1/f , v2/x} : T2 {v2/x} by Lemma C.1.1 (symmetry) and
(T CONV).

Case (R BASE): We are given 〈bool ⇐ bool〉` v2 v2 for ` and v2. By
Lemmas C.3.10, C.3.4 and C.3.3, we have T1 = T2 = bool. Since
T2 {e2/x} = bool and so ∅ ` v2 : bool, we finish.

Case (R FUN): We are given

〈y :T11 → T12 ⇐ y :T21 → T22〉` v2
λ y :T11.(λ z :T21.〈T12 ⇐ T22 {z/y}〉` (v2 z)) (〈T21 ⇐ T11〉` y)

for some y , T11, T12, T21, T22, `, v2 and z such that z is fresh. By
Lemma C.3.10, we have ∅ ` y :T11 → T12, ∅ ` y :T21 → T22, y :T11 →
T12 ‖ y :T21 → T22 and x :(y :T21 → T22) → (y :T11 → T12) ≡ x :T1 →

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 195

T2. Note that x does not occur in y :T11 → T12. By inversion of deriva-
tions, ∅ ` T11, ∅ ` T21, y :T11 ` T12, y :T21 ` T22, T11 ‖ T21, and
T12 ‖ T22.
Since T21 ‖ T11 by symmetry of the compatibility relation, we have
∅ ` 〈T21 ⇐ T11〉` : T11 → T21 by (T CAST). Since ∅ ` T11, we have
y :T11 ` 〈T21 ⇐ T11〉` : T11 → T21 by Lemma C.3.1. Since y :T11 ` y :
T11 by (T VAR), we have y :T11 ` 〈T21 ⇐ T11〉` y : T21 by (T APP).
By Lemma C.3.4, y :T21 → T22 ≡ T1 and y :T11 → T12 ≡ T2, and
thus, by Lemma C.3.4 (1), T1 = y :T ′21 → T ′22 and T2 = y :T ′11 → T ′12

for some T ′21, T ′22, T ′11 and T ′12. Since ∅ ` v2 : y :T ′21 → T ′22 and
∅ ` y :T21 → T22, we have ∅ ` v2 : y :T21 → T22 by Lemma C.1.1
(symmetry) and (T CONV). We have z :T21 ` v2 : y :T21 → T22

by Lemma C.3.1, and thus z :T21 ` v2 z : T22 {z/y} by (T VAR) and
(T APP).
Since y :T21 ` T22, we have z :T21, y :T21 ` T22 and thus y :T11, z :T21 `
T22 {z/y} by Lemmas C.3.2 and C.3.1. Since y :T11, z :T21 ` T12

by Lemma C.3.1, and T12 ‖ T22 {z/y} by Lemma C.3.16, we have
y :T11, z :T21 ` 〈T12 ⇐ T22 {z/y}〉` : T22 {z/y} → T12 by (T CAST).
By Lemma C.3.1 and (T APP), y :T11, z :T21 ` 〈T12 ⇐
T22 {z/y}〉` (v2 z) : T12. By Lemma C.3.1 and (T ABS), we have
y :T11 ` λ z :T21.〈T12 ⇐ T22 {z/y}〉` (v2 z) : T21 → T12. (Note that z
does not occur T12.) Since y :T11 ` 〈T21 ⇐ T11〉` y : T21, by (T APP)
we have y :T11 ` (λ z :T21.〈T12 ⇐ T22 {z/y}〉` (v2 z)) (〈T21 ⇐ T11〉` y) :
T12. By Lemma C.3.1 and (T ABS), ∅ ` λ y :T11.(λ z :T21.〈T12 ⇐
T22 {z/y}〉` (v2 z)) (〈T21 ⇐ T11〉` y) : (y :T11 → T12).
Since y :T11 → T12 ≡ T2, we have (y :T11 → T12) {v2/x} ≡ T2 {v2/x}
by Lemma C.1.4 (3). Since (y :T11 → T12) {v2/x} = y :T11 → T12 and
∅ ` T2 {v2/x} by Lemma C.3.14, we finish by (T CONV).

Case (R PROD): Similarly to the case for (R FUN). We are given

〈y :T11×T12 ⇐ y :T21×T22〉` (v1, v2)
(λ y :T11.(y , 〈T12 ⇐ T22 {v1/y}〉` v2)) (〈T11 ⇐ T21〉` v1)

for some y , T11, T12, T21, T22, `, v1 and v2. Without loss of gen-
erality, we can suppose that y is fresh. By Lemma C.3.10, we have
∅ ` y :T11×T12 and ∅ ` y :T21×T22 and y :T11×T12 ‖ y :T21×T22 and
x :(y :T21×T22) → y :T11×T12 ≡ x :T1 → T2. Note that x does not oc-
cur in y :T11×T12. By inversion of derivations, ∅ ` T11 and ∅ ` T21

and y :T11 ` T12 and y :T21 ` T22 and T11 ‖ T21 and T12 ‖ T22.
By Lemma C.3.11, we have ∅ ` v1 : T ′21 and ∅ ` v2 : T ′22 {v1/y} and
y :T ′21 ` T ′22 and y :T ′21×T ′22 ≡ unref(T1) for some T ′21 and T ′22. Since
y :T21×T22 ≡ T1 by Lemma C.3.4, we have y :T21×T22 ≡ y :T ′21×T ′22,
and thus T21 ≡ T ′21 and T22 ≡ T ′22 by Lemma C.3.5. Since ∅ ` T21, we
have ∅ ` v1 : T21 by Lemma C.1.1 (symmetry) and (T CONV). There-
fore, we have ∅ ` 〈T11 ⇐ T21〉` v1 : T11 by (T CAST) and (T APP).
Since y :T21 ` T22 and ∅ ` v1 : T21, we have y :T11 ` T22 {v1/y}
by Lemmas C.3.2 and C.3.1. By Lemma C.3.16, T12 ‖ T22 {v1/y}. By
(T CAST), we have y :T11 ` 〈T12 ⇐ T22 {v1/y}〉` : T22 {v1/y} → T12.
Since T22 ≡ T ′22, we have T22 {v1/y} ≡ T ′22 {v1/y} by Lemma C.1.4 (3).
Since ∅ ` T22 {v1/y} by Lemma C.3.2, we have ∅ ` v2 : T22 {v1/y} by

196 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Lemma C.1.1 (symmetry) and (T CONV). By Lemma C.3.1 and (T APP),
y :T11 ` 〈T12 ⇐ T22 {v1/y}〉` v2 : T12.
Let z be a fresh variable. Since z :T11, y :T11 ` 〈T12 ⇐ T22 {v1/y}〉` v2 :
T12 by Lemma C.3.1, we have z :T11 ` (〈T12 ⇐ T22 {v1/y}〉` v2) {z/y} :
T12 {z/y} by Lemma C.3.2. Since z :T11 ` z : T11 by (T VAR),
and z :T11, y :T11 ` T12 by Lemmas C.3.1 and C.3.2, we have
z :T11 ` (z , (〈T12 ⇐ T22 {v1/y}〉` v2) {z/y}) : y :T11×T12 by
Lemma C.3.1 and (T PAIR). By Lemmas C.3.1 and C.3.2,
y :T11 ` (z , (〈T12 ⇐ T22 {v1/y}〉` v2) {z/y}) {y/z} :
(y :T11×T12) {y/z}, that is,

y :T11 ` (y , (〈T12 ⇐ T22 {v1/y}〉` v2)) : (y :T11×T12).

By Lemma C.3.1 and (T ABS), ∅ ` λ y :T11.(y , 〈T12 ⇐ T22 {v1/y}〉` v2) :
T11 → y :T11×T12. By (T APP), ∅ ` (λ y :T11.(y , 〈T12 ⇐
T22 {v1/y}〉` v2)) (〈T11 ⇐ T21〉` v1) : y :T11×T12.
Since y :T11×T12 ≡ T2 by Lemma C.3.5, we have
(y :T11×T12) {v2/x} ≡ T2 {v2/x} by Lemma C.1.4 (3). Since
(y :T11×T12) {v2/x} = y :T11×T12 and ∅ ` T2 {v2/x} by
Lemma C.3.14, we finish by (T CONV).

Case (R FORGET): We are given 〈T ′1 ⇐ {y :T ′2 | e ′2}〉` v2 〈T ′1 ⇐ T ′2〉` v2 for
some T ′1, y , T ′2, e ′2 and v2. Without loss of generality, we can suppose
that y is fresh. By Lemma C.3.10, we have ∅ ` T ′1 and ∅ ` {y :T ′2 | e ′2}
and T ′1 ‖ {y :T ′2 | e ′2} and x :{y :T ′2 | e ′2} → T ′1 ≡ x :T1 → T2. Note that
x does not occur in T ′1. By inversion and Lemma C.3.15, ∅ ` T ′2 and
T ′1 ‖ T ′2.
By (T CAST), we have ∅ ` 〈T ′1 ⇐ T ′2〉` : T ′2 → T ′1. Since {y :T ′2 | e ′2} ≡
T1 by Lemma C.3.4, we have ∅ ` v2 : {y :T ′2 | e ′2} by Lemma C.1.1
(symmetry) and (T CONV). By (T FORGET), ∅ ` v2 : T ′2. Thus, ∅ `
〈T ′1 ⇐ T ′2〉` v2 : T ′1. Since T ′1 ≡ T2 by Lemma C.3.4, T ′1 {v2/x} ≡
T2 {v2/x} by Lemma C.1.4 (3). Since T ′1 {v2/x} = T ′1, we have ∅ `
〈T ′1 ⇐ T ′2〉` v2 : T2 {v2/x} by Lemma C.3.14 and (T CONV).

Case (R PRECHECK): We are given 〈{y :T ′1 | e ′1} ⇐ T ′2〉` v2
〈〈{y :T ′1 | e ′1}, 〈T ′1 ⇐ T ′2〉` v2〉〉` for some y , T ′1, e ′1, T ′2, ` and v2. Without
loss of generality, we can suppose that y is fresh. By Lemma C.3.10,
we have ∅ ` {y :T ′1 | e ′1} and ∅ ` T ′2 and {y :T ′1 | e ′1} ‖ T ′2 and
x :T ′2 → {y :T ′1 | e ′1} ≡ x :T1 → T2. Note that x does not occur in
{y :T ′1 | e ′1}. By inversion and Lemma C.3.15, ∅ ` T ′1 and T ′1 ‖ T ′2.
By (T CAST), we have ∅ ` 〈T ′1 ⇐ T ′2〉` : T ′2 → T ′1. Since T ′2 ≡ T1 by
Lemma C.3.4, we have ∅ ` v2 : T ′2 by (T CONV). Thus, by (T APP),
∅ ` 〈T ′1 ⇐ T ′2〉` v2 : T ′1. By (T WCHECK), ∅ ` 〈〈{y :T ′1 | e ′1}, 〈T ′1 ⇐
T ′2〉` v2〉〉` : {y :T ′1 | e ′1}. Since {y :T ′1 | e ′1} ≡ T2 by Lemma C.3.4,
we have {y :T ′1 | e ′1} {v2/x} ≡ T2 {v2/x}. Since {y :T ′1 | e ′1} {v2/x} =
{y :T ′1 | e ′1}, we have ∅ ` 〈〈{y :T ′1 | e ′1}, 〈T ′1 ⇐ T ′2〉` v2〉〉` : T2 {v2/x} by
Lemma C.3.14 and (T CONV).

Case (R DATATYPE): We are given

〈τ1〈e ′1〉 ⇐ τ2〈e ′2〉〉`C2〈e ′〉v C1〈e ′1〉(〈T ′′1 {e ′1/y1} ⇐ T ′′2 {e ′2/y2}〉` v)

for some τ1, e ′1, τ2, e ′2, `, C2, e ′, v , C1, T ′′1 , y1, T ′′2 , and y2 such that τ1 6= τ2

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 197

or τ1 is not monomorphic, and C1 = δ(〈τ1〈e ′1〉 ⇐ τ2〈e ′2〉〉`C2〈e ′〉v) and,
for i ∈ {1, 2}, ArgTypeOf (τi) = yi :T

′
i and CtrArgOf (Ci) = T ′′i .

Since the constructor choice function δ is well-formed, we find that C1 ∈
CompatCtrsOf (τ1,C2), that is, C1 ∈ CtrsOf (τ1) and T ′′1 ‖ T ′′2 from well-
formedness of the type definition environment. Also, y1:T ′1 ` T ′′1 and
y2:T ′2 ` T ′′2 from well-formedness of the type definition environment.
By Lemma C.3.16, T ′′1 {e ′1/y1} ‖ T ′′2 {e ′2/y2}. By Lemma C.3.10, we have
∅ ` τ1〈e ′1〉 and ∅ ` τ2〈e ′2〉 and x :τ2〈e ′2〉 → τ1〈e ′1〉 ≡ x :T1 → T2.
Note that x does not occur in τ1〈e ′1〉. By inversion of derivations, and
Lemma C.3.2, we have ∅ ` T ′′1 {e ′1/y1} and ∅ ` T ′′2 {e ′2/y2}. Thus by
(T CAST), ∅ ` 〈T ′′1 {e ′1/y1} ⇐ T ′′2 {e ′2/y2}〉` : T ′′2 {e ′2/y2} → T ′′1 {e ′1/y1}.
By Lemma C.3.12, ∅ ` v : T ′′2 {e ′/y2} and τ2〈e ′〉 ≡ unref(T1). Since
τ2〈e ′2〉 ≡ unref(T1) by Lemmas C.3.4 and C.3.8, we have τ2〈e ′〉 ≡ τ2〈e ′2〉
by Lemma C.3.4 and Lemma C.1.1 (transitivity). Thus, e ′ ≡ e ′2 by
Lemma C.3.6. Since T ′′2 {e ′/y2} ≡ T ′′2 {e ′2/y2} by Lemma C.1.3 (3), we
have ∅ ` v : T ′′2 {e ′2/y2} by (T CONV). By (T APP), we have ∅ `
〈T ′′1 {e ′1/y1} ⇐ T ′′2 {e ′2/y2}〉` v : T ′′1 {e ′1/y1}. By inversion of ∅ ` τ1〈e ′1〉,
we have ∅ ` e ′1 : T ′1. Thus, by (T CTR), ∅ ` C1〈e ′1〉(〈T ′′1 {e ′1/y1} ⇐
T ′′2 {e ′2/y2}〉` v) : τ1〈e ′1〉.
By Lemma C.3.4, we have τ1〈e ′1〉 ≡ T2. Since τ1〈e ′1〉 {C2〈e ′〉v/x} =
τ1〈e ′1〉, we have τ1〈e1〉 ≡ T2 {C2〈e ′〉v/x} by Lemma C.1.4 (3). By
Lemma C.3.14 and (T CONV), we finish.

Case (R DATATYPEMONO): We are given 〈τ ⇐ τ〉` v2 v2 for some τ , ` and
v2. By Lemma C.3.10, x :τ → τ ≡ x :T1 → T2. Note that x does not
occur in τ . By Lemma C.3.4, τ ≡ T1 and τ ≡ T2, and so T1 ≡ T2 by
Lemma C.1.1. Since T1 {v2/x} = T1 by Lemma C.3.14, T1 ≡ T2 {v2/x}
by Lemma C.1.4 (3). Since ∅ ` v2 : T1, we have ∅ ` v2 : T2 {v2/x} by
Lemma C.3.14 and (T CONV).

Case (R DATATYPEFAIL): We are given 〈τ1〈e ′1〉 ⇐ τ2〈e ′2〉〉` v2 ⇑` for some
τ1, e ′1, τ2, e ′2, ` and v2. By Lemma C.3.14 and (T BLAME), we finish.

Case (T PROJ1): We are given ∅ ` e1.1 : T for some e1. By inversion, we have
∅ ` e1 : x :T ×T2 for some x and T2. The term steps only by (R PROJ1):
(v1, v2).1 v1 for some v1 and v2 such that e1 = (v1, v2).
By Lemma C.3.11, we have ∅ ` v1 : T ′1 and x :T ′1×T ′2 ≡ x :T ×T2 for
some T ′1 and T ′2. By Lemma C.3.5, we have T ′1 ≡ T . Since ∅ ` T by
Lemma C.3.14, we have ∅ ` v1 : T by (T CONV).

Case (T PROJ2): We are given ∅ ` e2.2 : T2 {e2.1/x} for some e2, T2 and x . By
inversion, we have ∅ ` e2 : x :T1×T2 for some T1. The term steps only by
(R PROJ2): (v1, v2).2 v2 for some v1 and v2 such that e2 = (v1, v2).
By Lemma C.3.11, we have ∅ ` v2 : T ′2 {v1/x} and x :T ′1×T ′2 ≡ x :T1×T2

for some T ′1 and T ′2. Since (v1, v2).1 −→ v1 by (E RED)/(R PROJ1), we
have T ′2 {(v1, v2).1/x} ≡ T ′2 {v1/x} by Lemmas C.1.2 and C.1.3 (3). Since
T ′2 ≡ T2 by Lemma C.3.5, we have T ′2 {(v1, v2).1/x} ≡ T2 {(v1, v2).1/x} by
Lemma C.1.4 (3), and thus T ′2 {v1/x} ≡ T2 {(v1, v2).1/x} by Lemma C.1.1
(symmetry and transitivity). Since ∅ ` T2 {(v1, v2).1/x} by Lemma C.3.14,
we have ∅ ` v2 : T2 {(v1, v2).1/x} by (T CONV).

Case (T MATCH): We are given ∅ ` match e0 withCi xi → ei
i ∈{1,...,n}

: T for
some e0 and Ci xi → ei

i ∈{1,...,n}. By inversion, we have ∅ ` e0 : τ〈e ′′〉

198 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

and ∅ ` T and CtrsOf (τ) = Ci
i ∈{1,...,n} and ArgTypeOf (τ) = y :T ′ and,

for i ∈ {1, ...,n}, CtrArgOf (Ci) = Ti and xi :Ti {e ′′/y} ` ei : T . The term
steps only by (R MATCH):

matchCj 〈e ′′′〉v ′ withCi xi → ei
i ∈{1,...,n}

 ej {v ′/xj }

for some j ∈ {1, ...,n}, e ′′′, v ′ such that e0 = Cj 〈e ′′′〉v ′.
By Lemma C.3.12, we have ∅ ` v ′ : Tj {e ′′′/y} and τ〈e ′′′〉 ≡ τ〈e ′′〉.
Since e ′′′ ≡ e ′′ by Lemma C.3.6, we have Tj {e ′′′/y} ≡ Tj {e ′′/y} by
Lemma C.1.3 (3). Since xj :Tj {e ′′/y} ` ej : T , we have ∅ ` Tj {e ′′/y}
by Lemma C.3.14 and inversion. Thus we have ∅ ` v ′ : Tj {e ′′/y} by
(T CONV). Since xj does not occur in T , we have ∅ ` ej {v ′/xj } : T by
Lemma C.3.2.

Case (T IF): We are given ∅ ` if e1 then e2 else e3 : T for some e1, e2 and e3. By
inversion, we have ∅ ` e2 : T and ∅ ` e3 : T . Only two reduction
rules can be applied to the term: (R IFTRUE) and (R IFFALSE). The case of
(R IFTRUE) follows from ∅ ` e2 : T , and (R IFFALSE) from ∅ ` e3 : T .

Case (T WCHECK): We are given ∅ ` 〈〈{x :T1 | e1}, e2〉〉` : {x :T1 | e1} for
some x , T1, e1, e2 and `. By inversion, we have ∅ ` {x :T1 | e1} and
∅ ` e2 : T1. The term steps only by (R CHECK): 〈〈{x :T1 | e1}, v2〉〉`
〈{x :T1 | e1}, e1 {v2/x}, v2〉` for some v2 such that e2 = v2.
From ∅ ` {x :T1 | e1}, we find that x :T1 ` e1 : bool. By Lemma C.3.2,
∅ ` e1 {v2/x} : bool. Because e1 {v2/x} −→∗ e1 {v2/x}, we finish.

Case (T ACHECK): We are given ∅ ` 〈{x :T1 | e1}, e2, v〉` : {x :T1 | e1} for some
x , T1, e1, e2 and v . By inversion, we have ∅ ` {x :T1 | e1} and ∅ ` v : T1

and e1 {v/x} −→∗ e2. Only two reduction rules can be applied to the term:
(R OK) and (R FAIL). The case of (R OK) follows from (T EXACT), and
(R FAIL) from (T BLAME).

Case (T CONV): By inversion, we have ∅ ` e : T ′ and T ′ ≡ T and ∅ ` T for
some T ′. If e steps to e ′, then we have ∅ ` e ′ : T ′ by the IH. By (T CONV),
we finish.

2. By induction on the typing derivation. If e −→ ⇑` by (E BLAME), then we finish
by Lemma C.3.14 and (T BLAME). In the following, we suppose that e steps by
(E RED).

Case (T CONST), (T VAR), (T BLAME), (T ABS), (T CAST), (T FORGET) or
(T EXACT): Trivial because e does not step in the evaluation relation.

Case (T APP): We are given ∅ ` e1 e2 : T2 {e2/x} for some e1, e2, T2 and x . By
inversion, we have ∅ ` e1 : x :T1 → T2 and ∅ ` e2 : T1 for some T1.
If e1 is not a value, then e1 −→ e ′1 for some e ′1 (noting e1 is not a blaming; if
so, (E BLAME) is applied to e1 e2, but it is contradictory). By the IH, ∅ ` e ′1 :
x :T1 → T2 and thus ∅ ` e ′1 e2 : T2 {e2/x} by (T APP).
If e1 is a value but e2 is not, then e2 −→ e ′2 for some e ′2. By the IH,
∅ ` e ′2 : T1 and thus ∅ ` e1 e

′
2 : T2 {e ′2/x} by (T APP). Because

T2 {e ′2/x} ≡ T2 {e2/x} by Lemmas C.1.2, C.1.3 (3) and C.1.1, we have
∅ ` e1 e

′
2 : T2 {e2/x} by Lemma C.3.14 and (T CONV).

Otherwise, if e1 and e2 are values, then we finish by the case (1).

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 199

Case (T PAIR): We are given ∅ ` (e1, e2) : x :T1×T2 for some e1, e2, x , T1 and T2.
By inversion, we have ∅ ` e1 : T1 and ∅ ` e2 : T2 {e1/x} and x :T1 ` T2.
If e1 is not a value, then e1 −→ e ′1 for some e ′1. By the IH, ∅ ` e ′1 : T1

and thus ∅ ` T2 {e ′1/x} by Lemma C.3.2. Because T2 {e1/x} ≡ T2 {e ′1/x}
by Lemmas C.1.2 and C.1.3 (3), we have ∅ ` e2 : T2 {e ′1/x} by (T CONV).
Thus, by (T PAIR), ∅ ` (e ′1, e2) : x :T1×T2.
If e1 is a value but e2 is not, then e2 −→ e ′2 for some e ′2. By the IH, ∅ ` e ′2 :
T2 {e1/x} and thus ∅ ` (e1, e

′
2) : x :T1×T2.

Otherwise, if e1 and e2 are values, then so is (e1, e2).

Case (T PROJ1): We are given ∅ ` e1.1 : T for some e1. By inversion, we have
∅ ` e1 : x :T ×T2 for some x and T2. If e1 is not a value, then e1 −→ e ′1 for
some e ′1. By the IH, ∅ ` e ′1 : x :T ×T2 and thus ∅ ` e ′1.1 : T by (T PROJ1).
Otherwise, if e1 is a value, we finish by the case (1).

Case (T PROJ2): We are given ∅ ` e2.2 : T2 {e2.1/x} for some e2, T2 and x .
By inversion, we have ∅ ` e2 : x :T1×T2 for some T1. If e2 is not a
value, then e2 −→ e ′2 for some e ′2. By the IH, ∅ ` e ′2 : x :T ×T2 and thus
∅ ` e ′2.2 : T2 {e ′2.1/x} by (T PROJ2). Because T2 {e ′2.1/x} ≡ T2 {e2.1/x}
by Lemmas C.1.2, C.1.3 (3) and C.1.1, we have ∅ ` e ′2.2 : T2 {e2.1/x} by
Lemma C.3.14 and (T CONV). Otherwise, if e2 is a value, we finish by the
case (1).

Case (T IF): We are given ∅ ` if e1 then e2 else e3 : T for some e1, e2 and e3. By
inversion, we have ∅ ` e1 : bool and ∅ ` e2 : T and ∅ ` e3 : T . If e1

is not a value, e1 −→ e ′1 for some e ′1. By the IH, ∅ ` e ′1 : bool and thus
∅ ` if e ′1 then e2 else e3 : T by (T IF). Otherwise, if e1 is a value, then we
finish by the case (1).

Case (T CTR): We are given ∅ ` C 〈e1〉e2 : τ〈e1〉 for some C , e1, e2 and τ . By
inversion, we have TypSpecOf (C) = x :T1 � T2 � τ〈x 〉 and ∅ ` e1 : T1

and ∅ ` e2 : T2 {e1/x} and ∅ ` τ〈e1〉. If e2 is not a value, then e2 −→ e ′2
for some e ′2. By the IH, ∅ ` e ′2 : T2 {e1/x} and thus ∅ ` C 〈e1〉e ′2 : τ〈e1〉 by
(T CTR). Otherwise, if e2 is a value, then so is C 〈e1〉e2.

Case (T MATCH): We are given ∅ ` match e0 withCi xi → ei
i

: T . By inver-
sion, we have ∅ ` e0 : τ〈e ′′〉 and ∅ ` T and CtrsOf (τ) = Ci

i and
ArgTypeOf (τ) = y :T ′ and, for all i , CtrArgOf (Ci) = Ti and xi :Ti {e ′′/y} `
ei : T . If e0 is not a value, then e0 −→ e ′0 for some e ′0. By the IH,
∅ ` e ′0 : τ〈e ′′〉 and thus ∅ ` match e ′0 withCi xi → ei

i
: T by (T MATCH).

Otherwise, if e0 is a value, then we finish by the case (1).

Case (T WCHECK): We are given ∅ ` 〈〈{x :T1 | e1}, e2〉〉` : {x :T1 | e1} for some x ,
T1, e1, e2 and `. By inversion, we have ∅ ` {x :T1 | e1} and ∅ ` e2 : T1. If
e2 is not a value, then e2 −→ e ′2 for some e ′2. By the IH, ∅ ` e ′2 : T1 and
thus ∅ ` 〈〈{x :T1 | e1}, e ′2〉〉` : {x :T1 | e1} by (T WCHECK). Otherwise, if e2 is
a value, then we finish by the case (1).

Case (T ACHECK): We are given ∅ ` 〈{x :T1 | e1}, e2, v〉` : {x :T1 | e1} for some x ,
T1, e1, e2, v and `. By inversion, we have ∅ ` {x :T1 | e1} and ∅ ` v : T1

and ∅ ` e2 : bool and e1 {v/x} −→∗ e2. If e2 is not a value, then e2 −→ e ′2
for some e ′2. By the IH, ∅ ` e ′2 : bool. Because e1 {v/x} −→∗ e ′2, we have
∅ ` 〈{x :T1 | e1}, e ′2, v〉` : {x :T1 | e1}. Otherwise, if e2 is a value, then we
finish by the case (1).

200 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Case (T CONV): By inversion, we have ∅ ` e : T ′ and T ′ ≡ T and ∅ ` T for
some T ′. Since e −→ e ′, we have ∅ ` e ′ : T ′ by the IH. By (T CONV),
∅ ` e ′ : T .

Definition 13. We define a function refines from types to sets of pairs of a bound variable and
a term, as follows.

refines ({x :T | e}) = {(x , e)} ∪ refines (T)
refines (T) = ∅ (If T is not a refinement type.)

In addition, we write ` v : refines (T) if (1) v is a closed value, and (2) for any (x , e) ∈
refines (T), e {v/x} −→∗ true.

Lemma C.3.17.

(1) If T1 V T2, then ` v : refines (T1) iff ` v : refines (T2).

(2) If T1 ≡ T2, then ` v : refines (T1) iff ` v : refines (T2).

Proof.

1. From T1 V T2, there exist some T , x , e ′1 and e ′2 such that T1 = T {e ′1/x} and
T2 = T {e ′2/x} and e ′1 −→ e ′2. By induction on T .

Case T = bool, y :T ′1 → T ′2, y :T ′1×T ′2, or τ〈e〉: Obvious because refines (T1) and
refines (T2) are empty.

Case T = {y :T ′ | e ′}: Without loss of generality, we suppose that y is a
fresh variable. Since T ′ {e ′1/x} V T ′ {e ′2/x}, it suffices to show that
e ′ {e ′1/x} {v/y} −→∗ true iff e ′ {e ′2/x} {v/y} −→∗ true by the IH. For
i ∈ {1, 2}, since v and e ′i are closed values (recall that the evaluation relation
is defined over closed terms), we have e ′ {e ′i/x} {v/y} = e ′ {v/y} {e ′i/x}.
Since e ′ {v/y} {e ′1/x} V e ′ {v/y} {e ′2/x}, we finish by Lemma 29.

2. By induction on T1 ≡ T2.

Case T1 V T2: By the case (1).

Case transitivity and symmetry: By the IH(s).

Lemma C.3.18. If ∅ ` v : T , then ` v : refines (T).

Proof. By induction on ∅ ` v : T .

Case (T CONST), (T ABS), (T CAST), (T PAIR) or (T CTR): Obvious because
refines (T) = {}.

Case (T VAR), (T BLAME), (T APP), (T PROJ1), (T PROJ2), (T MATCH), (T IF),
(T WCHECK) or (T ACHECK): Contradictory.

Case (T CONV): By inversion, we have ∅ ` v : T ′ for some T ′ such that T ′ ≡ T . By
the IH and Lemma C.3.17 (2), we finish.

Case (T FORGET): By inversion, we have ∅ ` v : {x :T | e} for some x and e . By the
IH, we finish.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 201

Case (T EXACT): We are given ∅ ` v : {x :T ′ | e ′} for some x , T ′ and e ′. By inver-
sion, we have ∅ ` v : T ′ and e ′ {v/x} −→∗ true. Since refines ({x :T ′ | e ′}) =
refines (T ′) ∪ {(x , e ′)}, we finish by the IH.

Theorem 9 (Type Soundness). If ∅ ` e : T , then

1. e −→∗ v for some v such that ∅ ` v : T and ` v : refines (T);

2. e −→∗ ⇑` for some `; or

3. there is an infinite sequence of evaluation e −→ e1 −→ · · · .

Proof. Suppose that e −→∗ e ′ for some e ′ such that e ′ cannot reduce. We show the
theorem by mathematical induction on the number of evaluation steps of e .

1. 0: We know that e cannot reduce. Since ∅ ` e : T , we find that e is a value
or a blaming by Lemma 27. Moreover, if e is a value, then ` e : refines (T) by
Lemma C.3.18.

2. i + 1: We are given e −→ e ′′ −→i e ′ for some e ′′. By Lemma 28 (2), ∅ ` e ′′ : T
and thus we finish by the IH.

C.4 Translation

In this section, as a proof of correctness of our translation, we show that: the translation
generates a well-formed datatype (Theorem 10); a cast from a refinement type to the
generated datatype always succeeds (Lemma C.4.9); and a cast from the datatype to the
refinement type also succeeds (Lemma C.4.12). In this section, we assume a few things.
First, type definition environments include int list. Second, we make type definition
environments and constructor choice functions explicit sometimes; we write 〈Σ, δ〉; Γ `
e : T , 〈Σ, δ〉; Γ ` T , and 〈Σ, δ〉 ` Γ to expose both in typing judgments and δ `
e1 −→ e2 and δ ` e1 −→∗ e2 to expose constructor choice functions in evaluation.
We still assume that they are well formed. We write v ↓τ for 〈Σ, δ〉 ` v ↓τ if Σ and δ
are not important or clear from the context. Finally, we assume that the input predicate
function F takes the form

fix f (y :T , x :int list)= match x with []→ e1 | z1 :: z2 → e2

and it is translatable under Σ. We refer to metasymbols (f , y , x , e1, etc.) in the definition
of F as ones with subscript F . For example, y in F is written as yF when we want to
emphasize that it is from F .

C.4.1 Static Correctness

We first show that the new datatype generated from a translatable function by the
translation algorithm is well formed.

Lemma C.4.1 (Type Definition Weakening). Let ς be a type definition.

(1) If 〈Σ, δ〉; Γ ` e : T , then 〈Σ, ς, δ〉; Γ ` e : T .

(2) If 〈Σ, δ〉; Γ ` T , then 〈Σ, ς, δ〉; Γ ` T .

(3) If 〈Σ, δ〉 ` Γ, then 〈Σ, ς, δ〉 ` Γ.

202 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Proof. Straightforward by induction on each derivation.

Definition 14 (Free Variables in Typing Contexts). We write FV (Γ) to denote the set of free
variables in a typing context Γ. Formally, it is defined as follows:

FV (∅) = ∅
FV (Γ, x :T) = FV (Γ) ∪ (FV (T)\dom (Γ))

where dom (Γ) means the set of binding variables in Γ.

Lemma C.4.2 (Strengthening).

(1) If Γ1, x :T ′,Γ2 ` e : T and x /∈ FV (Γ2) ∪ FV (e), then Γ1,Γ2 ` e : T .

(2) If Γ1, x :T ′,Γ2 ` T and x /∈ FV (Γ2) ∪ FV (T), then Γ1,Γ2 ` T .

(3) If ` Γ1, x :T ′,Γ2 and x /∈ FV (Γ2), then ` Γ1,Γ2.

Proof. By induction on each derivation. The interesting cases are for (T ABS), (T APP)
and (T MATCH).

1. By case analysis on the rule applied last.

Case (T CONST): We are given Γ1, x :T ′,Γ2 ` c : bool. By inversion, we have
` Γ1, x :T ′,Γ2. By the IH, ` Γ1,Γ2 and thus Γ1,Γ2 ` c : bool by (T CONST).

Case (T VAR): We are given Γ1, x :T ′,Γ2 ` y : T . By inversion, we have
` Γ1, x :T ′,Γ2 and y :T ∈ Γ1, x :T ′,Γ2. By the IH, ` Γ1,Γ2. We find that
x 6= y from x /∈ FV (y). Thus, Γ1,Γ2 ` y : T by (T VAR).

Case (T BLAME): We are given Γ1, x :T ′,Γ2 ` ⇑` : T . By inversion, we have
` Γ1, x :T ′,Γ2 and ∅ ` T . By the IH, ` Γ1,Γ2 and thus Γ1,Γ2 ` ⇑` : T by
(T BLAME).

Case (T ABS): We are given Γ1, x :T ′,Γ2 ` fix f (y :T1):T2 = e2 : y :T1 → T2.
Without loss of generality, we can suppose that f and y are fresh for x .
By inversion, we have Γ1, x :T ′,Γ2, f :(y :T1 → T2), y :T1 ` e2 : T2. Since
x /∈ FV (Γ2) ∪ FV (fix f (y :T1):T2 = e2), we find that x /∈ FV (Γ2, f :(y :T1 →
T2), y :T1) ∪ FV (e2). Note that, thanks to type annotation T2 in the lambda
abstraction, we can find x /∈ FV (T2). Thus, by the IH, Γ1,Γ2, f :(y :T1 →
T2), y :T1 ` e2 : T2. By (T ABS), we finish.

Case (T CAST): We are given Γ1, x :T ′,Γ2 ` 〈T1 ⇐ T2〉` : T2 → T1. By inversion,
we have Γ1, x :T ′,Γ2 ` T1 and Γ1, x :T ′,Γ2 ` T2 and T1 ‖ T2. Since x /∈
FV (Γ2) ∪ FV (〈T1 ⇐ T2〉`), we find that x /∈ FV (Γ2) ∪ FV (T1) ∪ FV (T2).
Thus, by the IHs, Γ1,Γ2 ` T1 and Γ1,Γ2 ` T2. By (T CAST), we finish.

Case (T APP): We are given Γ1, x :T ′,Γ2 ` e1 e2 : T2 {e2/y}. By inversion, we
have Γ1, x :T ′,Γ2 ` e1 : y :T1 → T2 and Γ1, x :T ′,Γ2 ` e2 : T1. Since
x /∈ FV (Γ2)∪ FV (e1 e2), we find that x /∈ FV (Γ2)∪ FV (e1)∪ FV (e2). Thus,
by the IHs, Γ1,Γ2 ` e1 : y :T1 → T2 and Γ1,Γ2 ` e2 : T1. By (T APP), we
finish.

Case (T PAIR): We are given Γ1, x :T ′,Γ2 ` (e1, e2) : y :T1×T2. Without loss
of generality, we can suppose that y is fresh for x . By inversion, we
have Γ1, x :T ′,Γ2 ` e1 : T1 and Γ1, x :T ′,Γ2 ` e2 : T2 {e1/y} and
Γ1, x :T ′,Γ2, y :T1 ` T2. Since x /∈ FV (Γ2) ∪ FV ((e1, e2)), we find that

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 203

x /∈ FV (Γ2) ∪ FV (e1) ∪ FV (e2). Thus, by the IHs, Γ1,Γ2 ` e1 : T1 and
Γ1,Γ2 ` e2 : T2 {e1/y}. By Lemma C.3.14, x /∈ FV (T1)∪ FV (T2). Thus, by
the IH, Γ1,Γ2, y :T1 ` T2. By (T PAIR), we finish.

Case (T PROJ1): We are given Γ1, x :T ′,Γ2 ` e1.1 : T . By inversion, we have
Γ1, x :T ′,Γ2 ` e1 : y :T1×T2. Since x /∈ FV (Γ2)∪FV (e1.1), we find that x /∈
FV (Γ2) ∪ FV (e1). Thus, by the IH, Γ1,Γ2 ` e1 : y :T1×T2. By (T PROJ1),
we finish.

Case (T PROJ2): We are given Γ1, x :T ′,Γ2 ` e2.2 : T2 {e2.1/y}. By inversion, we
have Γ1, x :T ′,Γ2 ` e2 : y :T1×T2. Since x /∈ FV (Γ2) ∪ FV (e2.2), we find
that x /∈ FV (Γ2) ∪ FV (e2). Thus, by the IH, Γ1,Γ2 ` e2 : y :T1×T2. By
(T PROJ2), we finish.

Case (T CTR): We are given [G1, x : T ′, G2| − Ce1e2 : te1]. By inversion, we
have TypSpecOf (C) = y :T1 � T2 � τ〈y〉 and Γ1, x :T ′,Γ2 ` e1 : T1

and Γ1, x :T ′,Γ2 ` e2 : T2 {e1/y} and Γ1, x :T ′,Γ2 ` τ〈e1〉. Since x /∈
FV (Γ2) ∪ FV (C 〈e1〉e2), we find that x /∈ FV (Γ2) ∪ FV (e1) ∪ FV (e2). Thus,
by the IHs, Γ1,Γ2 ` e1 : T1 and Γ1,Γ2 ` T2 {e1/y} and Γ1,Γ2 ` τ〈e1〉. By
(T CTR), we finish.

Case (T MATCH): We are given Γ1, x :T ′,Γ2 ` match e0 withCi yi → ei
i

: T . We
can suppose that each yi is fresh for x . By inversion, we have Γ1, x :T ′,Γ2 `
e0 : τ〈e ′〉 and Γ1, x :T ′,Γ2 ` T and CtrsOf (τ) = Ci

i and ArgTypeOf (τ) =
y :T ′′ and for any i , CtrArgOf (Ci) = Ti and Γ1, x :T ′,Γ2, yi :Ti {e ′/y} `
ei : T . Since x /∈ FV (Γ2) ∪ FV (match e0 withCi yi → ei

i
), we find that

x /∈ FV (Γ2) ∪ FV (e0) ∪
⋃

i FV (ei). Thus, by the IH, Γ1,Γ2 ` e0 : τ〈e ′〉.
By Lemma C.3.14 and its inversion, x /∈ FV (e ′). From well-formedness of
the type definition environment, x /∈ FV (Ti). Thus, by the IHs, for any
i , Γ1,Γ2, yi :Ti {e ′/y} ` ei : T . By Lemma C.3.14, x /∈ FV (T) (noting
τ has at least one constructor from well-formedness of the type definition
environment). By the IH, Γ1,Γ2 ` T . By (T MATCH), we finish.

Case (T IF): We are given Γ1, x :T ′,Γ2 ` if e1 then e2 else e3 : bool. By inver-
sion, we have Γ1, x :T ′,Γ2 ` e1 : bool and Γ1, x :T ′,Γ2 ` e2 : T and
Γ1, x :T ′,Γ2 ` e3 : T . Since x /∈ FV (Γ2) ∪ FV (if e1 then e2 else e3), we find
that x /∈ FV (Γ2)∪ FV (e1)∪ FV (e2)∪ FV (e3). By the IHs, Γ1,Γ2 ` e1 : bool
and Γ1,Γ2 ` e2 : T and Γ1,Γ2 ` e3 : T . By (T IF), we finish.

Case (T ACHECK): We are given Γ1, x :T ′,Γ2 ` 〈{y :T1 | e1}, e2, v〉` : {y :T1 | e1}.
By inversion, we have ` Γ1, x :T ′,Γ2 and ∅ ` {y :T1 | e1} and ∅ ` v : T1 and
∅ ` e2 : bool and e1 {v/y} −→∗ e2. By the IH, ` Γ1,Γ2. By (T ACHECK),
we finish.

Case (T WCHECK): We are given Γ1, x :T ′,Γ2 ` 〈〈{y :T1 | e1}, e2〉〉` : {y :T1 | e1}.
By inversion, we have ` Γ1, x :T ′,Γ2 and ∅ ` {y :T1 | e1} and ∅ ` e2 : T1.
By the IH, ` Γ1,Γ2. By (T ACHECK), we finish.

Case (T CONV): By inversion, we have ` Γ1, x :T ′,Γ2 and ∅ ` e : T ′′ and T ′′ ≡
T and ∅ ` T . By the IH, ` Γ1,Γ2. By (T CONV), we finish.

Case (T FORGET): We are given Γ1, x :T ′,Γ2 ` v : T . By inversion, we have
` Γ1, x :T ′,Γ2 and ∅ ` v : {y :T | e ′}. By the IH, ` Γ1,Γ2. By (T FORGET),
we finish.

Case (T EXACT): We are given Γ1, x :T ′,Γ2 ` v : {y :T ′′ | e ′′}. By inversion, we
have ` Γ1, x :T ′,Γ2 and ∅ ` v : T ′′ and ∅ ` {y :T ′′ | e ′′} and e ′′ {v/y} −→∗
true. By the IH, ` Γ1,Γ2. By (T EXACT), we finish.

204 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

2. By case analysis on the rule applied last.

Case (WT BASE): We are given Γ1, x :T ′,Γ2 ` bool. By the IH and (WT BASE),
we finish.

Case (WT FUN): We are given Γ1, x :T ′,Γ2 ` y : T1 → T2. Without loss of
generality, we can suppose that y is fresh for x . By inversion, we have
Γ1, x :T ′,Γ2 ` T1 and Γ1, x :T ′,Γ2, y :T1 ` T2. Since x /∈ FV (Γ2) ∪
FV (y :T1 → T2), we find that x /∈ FV (Γ2) ∪ FV (T1) ∪ FV (T2). By the
IHs, Γ1,Γ2 ` T1 and Γ1,Γ2, y :T1 ` T2. By (WT FUN), we finish.

Case (WT PROD): We are given Γ1, x :T ′,Γ2 ` y :T1×T2. Without loss of general-
ity, we can suppose that y is fresh for x . By inversion, we have Γ1, x :T ′,Γ2 `
T1 and Γ1, x :T ′,Γ2, y :T1 ` T2. Since x /∈ FV (Γ2) ∪ FV (y :T1×T2), we
find that x /∈ FV (Γ2) ∪ FV (T1) ∪ FV (T2). By the IHs, Γ1,Γ2 ` T1 and
Γ1,Γ2, y :T1 ` T2. By (WT PROD), we finish.

Case (WT REFINE): We are given Γ1, x :T ′,Γ2 ` {y :T ′′ | e ′′}. Without loss of
generality, we can suppose that y is fresh for x . By inversion, we have
Γ1, x :T ′,Γ2 ` T ′′ and Γ1, x :T ′,Γ2, y :T ′′ ` e ′′ : bool. Since x /∈ FV (Γ2) ∪
FV ({y :T ′′ | e ′′}), we find that x /∈ FV (Γ2) ∪ FV (T ′′) ∪ FV (e ′′). Thus, by the
IHs, Γ1,Γ2 ` T ′′ and Γ1,Γ2, y :T ′′ ` e ′′ : bool. By (WT REFINE), we finish.

Case (WT DATATYPE): We are given Γ1, x :T ′,Γ2 ` τ〈e ′〉. By the IH and
(WT DATATYPE), we finish.

3. By case analysis on the rule applied last.

Case (WC EMPTY): Obvious.

Case (WC EXTENDVAR): If Γ2 = ∅, then, by inversion, we have ` Γ1 and thus we
finish. Otherwise, if Γ2 = Γ′2, y :T ′′, then, by inversion, ` Γ1, x :T ′,Γ′2 and
Γ1, x :T ′,Γ′2 ` y : T ′′. By the IHs and (WC EXTENDVAR), we finish.

Lemma C.4.3 (Application Inversion). If Γ ` e1 e2 : T , then

• Γ ` e1 : x :T1 → T2,

• Γ ` e2 : T1, and

• T2 {e2/x} ≡ T

for some x , T1 and T2.

Proof. Similarly to Lemma C.3.9, by induction on the typing derivation. Only two rules
can be applied to the application.

Case (T APP): Since T = T2 {e2/x}, we have T2 {e2/x} ≡ T by Lemma C.1.1 (reflex-
ivity). By inversion, we finish.

Case (T CONV): By inversion, we have ∅ ` e1 e2 : T ′ and T ′ ≡ T for some T ′. By the
IH, we have ∅ ` e1 : x :T1 → T2 and ∅ ` e2 : T1 and T2 {e2/x} ≡ T ′. We have
T2 {e2/x} ≡ T by Lemma C.1.1 (transitivity). By Lemma C.3.1, we finish.

Lemma C.4.4 (Variable Inversion). If Γ ` x : T , then ` Γ and x :T ∈ Γ.

Proof. Obvious because only (T VAR) can drive Γ ` x : T .

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 205

Lemma C.4.5. Let F be a translatable function, e be a subterm of e2
F , Γ1 = f F :TF →

int list → bool, yF :TF , z1
F :int, and Γ2 be a typing context. If Γ1,Γ2 ` e : bool and

(eopt0
, e0) ∈ GenContracts (e), then:

• for any e ′, if eopt0
= Some e ′, then yF :TF , z1

F :int ` e ′ : TF ; and

• Γ1,Γ2 ` e0 : bool.

Proof. By structural induction on e with case analysis on Γ1,Γ2 ` e : bool.

Case (T CONST): Obvious because GenContracts (true) = {(None, true)} and
GenContracts (false) = ∅.

Case (T VAR), (T ABS), (T CAST), (T APP), (T PAIR), (T PROJi) for i ∈ {1, 2},
(T CTR), (T FORGET), (T EXACT), (T BLAME), (T ACHECK), and (T WCHECK):
Obvious because GenContracts (e) = {(None, e)}.

Case (T IF): We are given Γ1,Γ2 ` if e1 then e2 else e3 : bool. By inversion, we have
Γ1,Γ2 ` e1 : bool and Γ1,Γ2 ` e2 : bool and Γ1,Γ2 ` e3 : bool. There are three
cases which we have to consider.

Case e1 = f F e ′1 z2
F where FV (e ′1) ⊆ {yF , z1

F}: Then,

GenContracts (e) =
{(Some e ′1, e2)} ∪
{(eopt, if f

F e ′1 z2
F
then false else e ′3) | (eopt, e

′
3) ∈ GenContracts (e3)}

We first show yF :TF , z1
F :int ` e ′1 : TF . Since Γ1,Γ2 ` f F e ′1 z2

F
: bool,

we find that Γ1,Γ2 ` f F : x :T1 → T2 and Γ1,Γ2 ` e ′1 : T1 for some
x , T1 and T2, by applying Lemma C.4.3 twice. By Lemma C.4.4, x :T1 →
T2 = TF → int list → bool since f F :x :T1 → T2 ∈ Γ1. Thus, T1 = TF

and so Γ1,Γ2 ` e ′1 : TF . Since FV (e ′1) ⊆ {yF , z1
F}, and f F /∈ FV (TF)

by Lemma C.3.14, we have yF :TF , z1
F :int ` e ′1 : TF by Lemma C.4.2 (1).

In addition, we have Γ1,Γ2 ` e2 : bool from the premise of the typing
derivation.
Let (eopt, e

′
3) ∈ GenContracts (e3). It suffices to show that (1) for any

e ′, if eopt = Some e ′, then yF :TF , z1
F :int ` e ′ : TF and (2) Γ1,Γ2 `

if f F e ′1 z2
F
then false else e ′3 : bool. The case (1) is shown by the IH. The case

(2) is obvious by (T IF) because Γ1,Γ2 ` false : bool by Lemmas C.3.14 and
C.3.1 and Γ1,Γ2 ` e ′3 : bool by the IH.

Case e1 6= f F e ′1 z2
F for any e ′1 such that FV (e ′1) ⊆ {yF , z1

F}, and a term of the
form f F e ′1 z2

F for some e ′1 occurs in e2 or e3: Similarly to the above. We have

GenContracts (e) =
{(eopt, if e1 then e

′
2 else false) | (eopt, e

′
2) ∈ GenContracts (e2)} ∪

{(eopt, if e1 then false else e
′
3) | (eopt, e

′
3) ∈ GenContracts (e3)}.

Since Γ1,Γ2 ` e2 : bool and Γ1,Γ2 ` e3 : bool, we finish by the IHs.

Case otherwise: Obvious because GenContracts (e) = {(None, e)}.

Case (T MATCH): Similarly to the case for (T IF). We are given Γ1,Γ2 `
match e0 withCi xi → ei

i ∈{1,...,n}
: bool. By inversion, we have Γ1,Γ2 ` e0 :

206 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

τ〈e ′〉 and ArgTypeOf (τ) = x ′:T ′ and, for any i ∈ {1, ...,n}, CtrArgOf (Ci) = Ti

and Γ1,Γ2, xi :Ti {e ′/x ′} ` ei : bool for some τ , e ′, x ′, T ′, and Ti
i ∈{1,...,n}.

If some ei contains a term of the form f F e ′1 z2
F for some e ′1, then we have

GenContracts (e) =⋃
j ∈{1,...,n}{(eopt,match e0 withCi xi → e ′′i

i ∈{1,...,n}
) |

(eopt, e
′′
j) ∈ GenContracts (ej) ∧ ∀i 6= j . e ′′i = false}.

We finish by the IHs with the fact that, for any i , Γ1,Γ2, xi :Ti {e ′/x ′} ` false :
bool by Lemmas C.3.14 and C.3.1, and so Γ1,Γ2, xi :Ti {e ′/x ′} ` e ′′i : bool.

Otherwise, obvious because GenContracts (e) = {(None, e)}.

Case (T CONV): By inversion, we have ∅ ` e : T and T ≡ bool. If e = false, then
obvious because GenContracts (false) = ∅. Otherwise, since f F (and z2

F) does not
occur in e , we have GenContracts (e) = {(None, e)} (even if e = true) and so we
finish.

Theorem 10 (Translation Generates Well-Formed Datatype). Let Σ be a well-formed type
definition environment and F be a translatable function under Σ. Then, the type definition
Trans (F) is well formed under Σ.

Proof. By definition, Trans (F) = type τ 〈yF :TF 〉 = D ‖ [] :

{z :unit | e1
F} |Di ‖ (::) : Ti

i
where z is fresh. It suffices to show that the type definition

satisfies five conditions from definition of well-formedness of type definition under
type definition environment.

(a) We show that τ has constructors more than zero, which is obvious.

(b) We show that Σ; ∅ ` TF . Since F is well typed, we have Σ; ∅ ` TF by
Lemma C.3.14 and its inversion.

(c) We show that (1) Σ,Trans (F); yF :TF ` {z :unit | e1
F} and (2)

Σ,Trans (F); yF :TF ` Ti for any i .

(1) Since F is translatable under Σ, we have (Σ, ∅); yF :TF ` e1
F : bool. By

Lemma C.4.1, (Σ,Trans (F), ∅); yF :TF ` e1
F : bool. By Lemma C.3.1 and

(T REFINE), (Σ,Trans (F), ∅); yF :TF ` {z :unit | e1
F}.

(2) By definition of GenContracts, Ti is defined based on GenContracts (e2
F).

Let (eopt, e) ∈ GenContracts (e2
F) and Γ = f F :TF → int list →

bool, yF :TF , z1
F :int, z2

F :int list. Since F is translatable under Σ, we have
(Σ, ∅); Γ ` e2

F : bool. By Lemma C.4.5, (Σ, ∅); Γ ` e : bool. Since (Σ, ∅); ∅ `
F : TF → int list → bool, we have (Σ, ∅); yF :TF , z1

F :int, z2
F :int list `

e {F/f F} : bool by Lemma C.3.2. Note that TF is closed by Lemma C.3.14
and its inversion. By Lemma C.4.1,

(Σ,Trans (F), ∅); yF :TF , z1
F :int, z2

F :int list ` e {F/f F} : bool.

By case analysis on eopt, letting Γ′ = yF :TF , z1
F :int.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 207

Case eopt = Some e ′′: By Lemma C.3.1 and (T ABS),

(Σ,Trans (F), ∅); Γ′ ` λ z2
F :int list.e {F/f F} : int list→ bool.

By Lemmas C.4.5 and C.4.1,

(Σ,Trans (F), ∅); Γ′ ` e ′′ : TF .

Thus,
(Σ,Trans (F), ∅); Γ′ ` τ〈e ′′〉

by (WT DATATYPE). By (C DATATYPE), Σ,Trans (F) ` τ〈e ′′〉 ‖ int list.
Since (Σ,Trans (F), ∅); Γ′ ` int list by Lemmas C.3.14 and C.3.1 and
(WT DATATYPE), we find

(Σ,Trans (F), ∅); Γ′ ` 〈int list⇐ τ〈e ′′〉〉` : τ〈e ′′〉 → int list

for any `, by (T CAST). By Lemma C.3.1, (T VAR) and (T APP), we have

(Σ,Trans (F), ∅); Γ′, z2
F :τ〈e ′′〉 ` 〈int list⇐ τ〈e ′′〉〉` z2

F
: int list.

Letting e0 = (λ z2
F :int list.e {F/f F}) (〈int list⇐ τ〈e ′′〉〉` z2

F
), we have

(Σ,Trans (F), ∅); Γ′, z2
F :τ〈e ′′〉 ` e0 : bool

by Lemma C.3.1 and (T APP). Note that e0 can be written as let z2
F =

〈int list⇐ τ〈e ′′〉〉` z2
F
in e {F/f F}. Letting T0 = τ〈e ′′〉, we have

(Σ,Trans (F), ∅); Γ′ ` {z2
F :T0 | e0}.

by (WT REFINE). Thus, by (WT PROD),

(Σ,Trans (F), ∅); yF :TF ` z1
F : int×{z2

F :T0 | e0}.

Note that Ti = z1
F :int×{z2

F :T0 | e0}.
Case eopt = None: By (WT REFINE) and (WT PROD), we have

(Σ,Trans (F), ∅); yF :TF ` z1
F : int×{z2

F :int list | e {F/f F}}.

Note that Ti = z1
F :int×{z2

F :int list | e {F/f F}}.

(d) We show that Σ includes int list, which is proven by the assumption.

(e) We show that (1) Σ,Trans (F) ` {z :unit | e1
F} ‖ unit and (2) Σ,Trans (F) ` Ti ‖

int× int list. The case (1) is obvious by (C REFINEL) and reflexivity of the com-
patibility relation. The case (2) is straightforward because Ti takes either of the
form z1

F :int×{z2
F :int list | e0} or z1

F :int×{z2
F :τ〈e ′′〉 | e0}, and reflexivity of the

compatibility relation and Σ,Trans (F) ` τ〈e ′′〉 ‖ int list.

C.4.2 Dynamic Correctness

Next, we show correctness of translation in the dynamic aspect: casts between refine-
ment types with a translatable function F and the datatype generated from F succeed

208 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

always. In particular, such casts convert “constructors” but not “structures.” In this
section, we assume that type definition environments include the datatype generated
from a translatable function F .

Definition 15. A constructor choice function δ is said to be trivial for τ when, if the type
definition of τ takes the form type τ1 〈x :T 〉 = Ci ‖ Di : Ti

i
and each Di belongs to τ2, then

δ(〈τ2〈e2〉 ⇐ τ1〈e1〉〉`Ci〈e3〉e4) = Di for any e1, e2, e3, and e4.

We say that a constructor choice function is trivial when it is trivial for Trans (F).

Lemma C.4.6. Let δ be a trivial choice function. Suppose that

Trans (F) = type τ 〈yF :TF 〉 = D ‖ [] : {z :unit | e1
F} |Di ‖ (::) : z1

F :int×{z2
F :Ti | ei}

i
.

If ∅ ` 〈int list ⇐ τ〈e〉〉` v : int list under δ, then 〈int list ⇐ τ〈e〉〉` v −→∗ v ′ under δ for
some v ′ which is obtained by replacing data constructors D and Di of which v consists with []
and (::), respectively.

Proof. We proceed by structural induction on v . Since ∅ ` 〈int list ⇐ τ〈e〉〉` v : int list,
we have ∅ ` 〈int list ⇐ τ〈e〉〉` : x :T ′1 → T ′2 and ∅ ` v : T ′1 and T ′2 {v/x} ≡ int list
for some x , T ′1, and T ′2 by Lemma C.4.3. By Lemma C.3.6, T ′2 = int list. By Lem-
mas C.3.10 and C.3.4, we have ∅ ` τ〈e〉 and τ〈e〉 ≡ T ′1. We perform case analysis on
v by Lemmas C.3.13 (4) and C.3.12.

Case v = D〈e ′〉v ′: Since δ is trivial, δ(〈int list ⇐ τ〈e〉〉`D〈e ′〉v ′) = []. Thus, by
(R DATATYPE), (R FORGET) and (R BASE) with (E RED),

〈int list⇐ τ〈e〉〉`D〈e ′〉v ′ −→∗ [].

Case v = Dj 〈e ′〉v ′: By Lemma C.3.12, ∅ ` v ′ : z1
F :int×{z2

F :Ti | ei} {e ′/yF}. By
Lemmas C.3.13 (3) and C.3.11, v ′ = (v1, v2) for some v1 and v2 such that ∅ `
v1 : int and ∅ ` v2 : {z2

F :Ti | ei} {e ′/yF , v1/z1
F}. Note that e ′ is a closed term.

Since δ is trivial, δ(〈int list ⇐ τ〈e〉〉`Dj 〈e ′〉v ′) = (::). Thus, by (R DATATYPE),
(R PROD), (R BASE) and (R FORGET) with (E RED),

〈int list⇐ τ〈e〉〉`Dj 〈e ′〉v ′ −→∗ v1 :: (〈int list⇐ Ti {e ′/yF , v1/z1
F}〉` v2).

From Trans, there are two cases we have to consider. If Ti = int list, then
〈int list ⇐ τ〈e〉〉`Dj 〈e ′〉v ′ −→∗ v1 :: v2 by (R DATATYPEMONO). Otherwise, if
Ti = τ〈e ′′〉 for some e ′′, then we finish by the IH, noting ∅ ` 〈int list ⇐
Ti {e ′/yF , v1/z1

F}〉` v2 : int list, which follows from well-typedness of v2, com-
patibility of int list and τ , (T CAST), and (T APP).

Definition 16 (Notation). Let σ be a (simultaneous) substitution. Then, we write σ(e) to
denote application of σ to e .

Lemma C.4.7. Let F be a translatable function, v , v1 and v2 be closed values, σ be a simul-
taneous substitution including {F/f F , v/yF , v1/z1

F , v2/z2
F}, and e be a subterm of e2

F . If
σ(e) −→∗ true, then there is a unique pair (eopt0

, e0) ∈ GenContracts (e) such that

• σ(e0) −→∗ true and

• for any e ′, eopt0
= Some e ′ implies F σ(e ′) v2 −→∗ true.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 209

Proof. By structural induction on e .

Case e = true: Obvious since GenContracts (true) = {(None, true)}.

Case e = false: Contradictory; σ(e) −→∗ false.

Case e = if f F e ′ z2
F
then e ′2 else e

′
3 where FV (e ′) ⊆ {yF , z1

F}: By definition of
GenContracts, we have

GenContracts (e) =
{(Some e ′, e ′2)} ∪
{(eopt0, if f

F e ′ z2
F
then false else e ′′3) | (eopt0, e

′′
3) ∈ GenContracts (e ′3)}.

By case analysis on evaluation of σ(f F e ′ z2
F

) = F σ(e ′) v2. Note that the evalu-
ation result is either true or false.

Case F σ(e ′) v2 −→∗ true: We have

σ(if f F e ′ z2
F
then e ′2 else e

′
3) −→∗ if true thenσ(e ′2) elseσ(e ′3)
−→ σ(e ′2).

Since σ(e) −→∗ true, we find that σ(e ′2) −→∗ true. Because

σ(if f F e ′ z2
F
then false else e ′′3) −→∗ if true then false elseσ(e ′′3)

−→ false,

pair (Some e ′, e ′2) is the unique one satisfying the property above.

Case F σ(e ′) v2 −→∗ false: We have

σ(if f F e ′ z2
F
then e ′2 else e

′
3) −→∗ if false thenσ(e ′2) elseσ(e ′3)
−→ σ(e ′3).

Since σ(e) −→∗ true, we find that σ(e ′3) −→∗ true. By the IH, there is a
unique pair (eopt, e

′′
3) ∈ GenContracts (e ′3) satisfying the above property. We

have σ(if f F e ′ z2
F
then false else e ′′3) −→∗ true. Since F σ(e ′) v2 −→∗ false,

pair (eopt, if f
F e ′ z2

F
then false else e ′′3) is the unique one satisfying the prop-

erty above.

Case e = if e ′1 then e
′
2 else e

′
3 where e ′1 6= f F e ′ z2

F for any e ′ such that FV (e ′) ⊆
{yF , z1

F}: By case analysis on evaluation of σ(e ′1). Note that the evaluation result
is either true or false.

Case σ(e ′1) −→∗ true: Since σ(if e ′1 then e
′
2 else e

′
3) −→∗ σ(e ′2) −→∗ true, there

a unique pair (eopt, e
′′
2) ∈ GenContracts (e ′2) satisfying the above prop-

erty, by the IH. Since σ(if e ′1 then false else e
′′
3) −→∗ false for any e ′′3 , pair

(eopt, if e
′
1 then e

′′
2 else false) is the unique one satisfying the property above.

Case σ(e ′1) −→∗ false: Since σ(if e ′1 then e
′
2 else e

′
3) −→∗ σ(e ′3) −→∗ true, there

a unique pair (eopt, e
′′
3) ∈ GenContracts (e ′3) satisfying the above prop-

erty, by the IH. Since σ(if e ′1 then e
′′
2 else false) −→∗ false for any e ′′2 , pair

(eopt, if e
′
1 then false else e

′′
3) is the unique one satisfying the property above.

210 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Case e = match e ′0 withCi xi → e ′i
i ∈{1,...,n}

: Without loss of generality, we can suppose
that each xi is fresh for σ. Since σ(e) −→∗ true, we find that σ(e ′0) −→∗ Cj 〈e ′〉v ′
for some j ∈ {1, ...,n}, e ′ and v ′, and thus σ(e ′j) {v ′/xj } −→∗ true. By the IH,
there is a unique pair (eopt, e

′′
j) ∈ GenContracts (e ′j) satisfying the above prop-

erty. Since σ(match e ′0 withCj xj → false | Ci xi → e ′′i
i ∈{1,...,n}\{j}

) −→∗ false,

pair (eopt,match e ′0 withCj xj → e ′′j | Ci xi → false
i ∈{1,...,n}\{j}

) is the unique one
satisfying the property above.

Case otherwise: Obvious because Trans (e) = {(None, e)}.

In what follows, we compute constructor choice functions to convert data struc-
tures. Before it, we show that extensions of constructor choice functions are conserva-
tive with respect to evaluation results.

Lemma C.4.8. Let δ′ be an extension of constructor choice function δ. If δ ` e −→∗ v , then
δ′ ` e −→∗ v .

Proof. From the two facts: (1) δ returns a constructor whenever taking cast applica-
tions in the evaluation e −→∗ v and (2) δ′ returns the same constructor as δ for cast
applications contained by the domain of δ.

Definition 17. We write δ1] δ2 to denote the union of graphs of constructor choice functions
δ1 and δ2 with disjoint domains.

Lemma C.4.9 (From Refinement Types to Datatypes). Suppose that

Trans (F) = type τ 〈yF :TF 〉 = D ‖ [] : {z :unit | e1
F} |Di ‖ (::) : z1

F :int×{z2
F :Ti | ei}

i
.

Let δ be a trivial constructor choice function such that δ(〈τ〈e ′〉 ⇐ int list〉` v ′) is undefined for
any e ′ and sublist v ′ of v .

If ∅ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` v : τ〈e〉 under δ, then there exists an extension δ′ of
δ such that 〈τ〈e〉 ⇐ {l :int list |F e l}〉` v −→∗ v ′ under δ′ where v ′ is obtained by replacing
some occurrences of data constructors [] and (::) of which v consists with D and one of Di

i ,
respectively.

Proof. By Lemma C.4.3, we have ∅ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` : x0:T01 → T02 and
∅ ` v : T01 and T02 {v/x0} ≡ τ〈e〉 for some x0, T01 and T02. By Lemmas C.3.10 and
C.3.4 and (T CONV), ∅ ` v : {x :int list |F e x} and so F e v −→∗ true by Theorem 9
(noting that e is a closed term since ∅ ` τ〈e〉 by Lemma C.3.14). Thus, e −→∗ v ′ for
some v ′.

We proceed by case analysis on v by Lemmas C.3.13 (4) and C.3.12.

Case v = []: Let δ′ = δ] {〈τ〈e〉 ⇐ int list〉` [] 7→ D}. Then, by (R FORGET) and
(R DATATYPE) with (E RED),

δ′ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` [] −→∗ D〈e〉(〈{z :unit | e1
F {e/x}} ⇐ unit〉` ())

Since F v ′ v −→∗ true, we find that e1
F {F/f F , v ′/yF , v/xF} −→∗ true. Since

F is translatable, we have y :T ` e1
F : bool and so e1

F {F/f F , v ′/yF , v/xF} =
e1

F {v ′/yF}. Thus, e1
F {v ′/yF} −→∗ true. Since e V∗ v ′ by Lemma C.1.2,

we have e1
F {e/yF} V∗ e1

F {v ′/yF} by Lemma C.1.5 (2). By Lemma 29 (2),

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 211

e1
F {e/yF} −→∗ true. Since δ′ ` e1

F {e/yF} −→∗ true by Lemma C.4.8, we
have

δ′ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` [] −→∗ D〈e〉()

by (R PRECHECK), (R BASE), (R CHECK), and (R OK) with (E RED).

Case v = (v1 :: v2): Since F v ′ v −→∗ true, we find that

e2
F {F/f F , v ′/yF , v/xF , v1/z1

F , v2/z2
F} −→∗ true.

Since F is translatable, f F :TF → int list → bool, yF :TF , z1
F :int, z2

F :int list `
e2

F : bool and so

e2
F {F/f F , v ′/yF , v/xF , v1/z1

F , v2/z2
F} = e2

F {F/f F , v ′/yF , v1/z1
F , v2/z2

F}.

By Lemma C.4.7, there is a unique pair (eopt0, e0) ∈ GenContracts (e2
F) satisfying

the property stated in Lemma C.4.7. We perform case analysis on eopt0.

Case eopt0 = Some e ′0: There exists some Dj such that

CtrArgOf (Dj) = z1
F :int×Tj

where Tj = {z2
F :τ〈e ′0〉 | let z2

F = 〈int list⇐ τ〈e ′0〉〉` z2
F
in e0 {F/f F}}. For

any δ′, if δ′(〈τ〈e〉 ⇐ int list〉` (v1 :: v2)) = Dj , then by (R FORGET),
(R DATATYPE), (R PROD), and (R BASE) with (E RED),

δ′ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` (v1 :: v2) −→∗
Dj 〈e〉(v1, 〈〈Tj , 〈τ〈e ′0〉 ⇐ int list〉` v2〉〉` {e/yF , v1/z1

F}).

Let e ′′0 = e ′0 {e/yF , v1/z1
F}. By Lemmas C.4.5 and C.3.2, we have ∅ ` e ′′0 :

TF since ∅ ` v1 : int by Lemma C.3.12, and ∅ ` e : TF from inversion
of ∅ ` τ〈e〉. Thus, x :int list ` F e ′′0 x : bool by Lemma C.3.1, (T VAR) and
(T APP), and so ∅ ` {x :int list |F e ′′0 x} by (WT REFINE).
Since e −→∗ v ′, we have F e ′′0 v2 V∗ F e ′0 {v ′/yF , v1/z1

F} v2 by Lem-
mas C.1.2 and C.1.5 (2). Since F e ′0 {v ′/yF , v1/z1

F} v2 −→∗ true by
Lemma C.4.7, we have F e ′′0 v2 −→∗ true by Lemma 29 (2). Thus, by
(T EXACT), ∅ ` v2 : {x :int list |F e ′′0 x} since ∅ ` v2 : int list by
Lemma C.3.12. Since τ〈e ′′0 〉 ‖ {x :int list |F e ′′0 x} by (C DATATYPE) and
(C REFINEL) (noting the compatibility relation is a equivalence one), and
∅ ` τ〈e ′′0 〉 by (WT DATATYPE), we have

∅ ` 〈τ〈e ′′0 〉 ⇐ {x :int list |F e ′′0 x}〉` v2 : τ〈e ′′0 〉

by (T CAST) and (T APP). By the IH, there exist some δ′′ and v ′2 such that

δ′′ ` 〈τ〈e ′′0 〉 ⇐ {x :int list |F e ′′0 x}〉` v2 −→∗ v ′2

and δ′′ is an extension of δ, and v ′2 is obtained by replacing data constructor
[] and (::) of which v2 consists with D and one of Di

i , respectively. Let δ′′′ =
{〈τ〈e〉 ⇐ int list〉` (v1 :: v2) 7→ Dj }] δ′′. Then,

δ′′′ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` (v1 :: v2) −→∗
Dj 〈e〉(v1, 〈〈Tj {e/yF , v1/z1

F}, v ′2〉〉`).

212 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Since ∅ ` v ′2 : τ〈e ′′0 〉 by Theorem 9, we have ∅ ` 〈int list ⇐
τ〈e ′′0 〉〉` v ′2 : int list by (T CAST) and (T APP). By Lemma C.4.6,
we have 〈int list ⇐ τ〈e ′′0 〉〉` v ′2 −→∗ v2 since δ is trivial. Since
e0 {F/f F , v ′/yF , v1/z1

F , v2/z2
F} −→∗ true by Lemma C.4.7, we have

e0 {F/f F , e/yF , v1/z1
F , v2/z2

F} −→∗ true by Lemmas C.1.2 and C.1.5 (2)
and Lemma 29 (2). Thus,

(let z2
F = 〈int list⇐ τ〈e ′0〉〉` z2

F
in e0 {F/f F}) {e/yF , v1/z1

F , v ′2/z2
F}

−→∗ true.

Therefore, by (R CHECK) and (R OK) with (E RED) and Lemma C.4.8,

δ′′′ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` (v1 :: v2) −→∗ Dj 〈e〉(v1, v
′
2).

Case eopt0 = None: There exists some Dj such that

CtrArgOf (Dj) = z1
F :int×Tj

where Tj = {z2
F :int list | e0 {F/f F}}. Let δ′ = δ] {〈τ〈e〉 ⇐

int list〉` (v1 :: v2) 7→ Dj }. By (R FORGET), (R DATATYPE), (R PROD),
(R BASE) with (E RED),

δ′ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` (v1 :: v2) −→∗
Dj 〈e〉(v1, 〈〈Tj , 〈int list⇐ int list〉` v2〉〉` {e/yF , v1/z1

F}).

Since 〈int list⇐ int list〉` v2 −→∗ v2 by (R DATATYPEMONO), we have

δ′ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` (v1 :: v2) −→∗
Dj 〈e〉(v1, 〈Tj , e0 {F/f F , v2/z2

F}, v2〉` {e/yF , v1/z1
F})

by (E RED)/(R CHECK). Since e0 {F/f F , v ′/yF , v1/z1
F , v2/z2

F} −→∗ true
by Lemma C.4.7, we have e0 {F/f F , e/yF , v1/z1

F , v2/z2
F} −→∗ true by

Lemmas C.1.2 and C.1.5 (2) and Lemma 29 (2). Thus, by (E RED)/(R OK)
and Lemma C.4.8,

δ′ ` 〈τ〈e〉 ⇐ {x :int list |F e x}〉` (v1 :: v2) −→∗ Dj 〈e〉(v1, v2).

Lemma C.4.10. Let F be a translatable function, e be a subterm of e2
F , and σ be a simultane-

ous substitution including {F/f F , e ′/yF , v1/z1
F , v2/z2

F}. If (eopt0
, e0) ∈ GenContracts (e)

and σ(e0) −→∗ true and eopt0
= Some e ′′ implies F σ(e ′′) v2 −→∗ true for any e ′′, then

σ(e) −→∗ true.

Proof. By structural induction on e .

Case e = true: Obvious.

Case false: Contradictory; GenContracts (false) = ∅.

Case e = if f F e ′′ z2
F
then e ′2 else e

′
3 where FV (e ′′) ⊆ {yF , z1

F}: There are two cases
which we have to consider by case analysis on e0.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 213

Case e0 = e ′2: Since eopt0 = Some e ′′, we have F σ(e ′′) v2 −→∗ true. Thus,

σ(if f F e ′′ z2
F
then e0 else e

′
3) −→∗ σ(e0) −→∗ true.

Case e0 = if f F e ′′ z2
F
then false else e ′′3 where (eopt0, e

′′
3) ∈ GenContracts (e ′3):

Since σ(e0) −→∗ true, we find that F σ(e ′′) v2 −→∗ false and σ(e ′′3) −→∗
true. Since (eopt0, e

′′
3) ∈ GenContracts (e ′3), we have σ(e ′3) −→∗ true by the

IH. Thus, σ(if f F e ′′ z2
F
then e ′2 else e

′
3) −→∗ true.

Case e = if e ′1 then e
′
2 else e

′
3 where e ′1 6= f F e ′′ z2

F for any e ′′ such that FV (e ′′) ⊆
{yF , z1

F}: There are two cases which we have to consider by case analysis on e0.

Case e0 = if e ′1 then e
′′
2 else false where (eopt0, e

′′
2) ∈ GenContracts (e ′2): Since

σ(e0) −→∗ true, we find that σ(e ′1) −→∗ true and σ(e ′′2) −→∗ true. Since
(eopt0, e

′′
2) ∈ GenContracts (e ′2), we have σ(e ′2) −→∗ true by the IH. Thus,

σ(if e ′1 then e
′
2 else e

′
3) −→∗ true.

Case e0 = if e ′1 then false else e
′′
3 where (eopt0, e

′′
3) ∈ GenContracts (e ′3): Since

σ(e0) −→∗ true, we find that σ(e ′1) −→∗ false and σ(e ′′3) −→∗ true. Since
(eopt0, e

′′
3) ∈ GenContracts (e ′3), we have σ(e ′3) −→∗ true by the IH. Thus,

σ(if e ′1 then e
′
2 else e

′
3) −→∗ true.

Case e = match e ′0 withCi xi → e ′i
i ∈{1,...,n}

: For some j , we have e0 =

match e ′0 withCj xj → e ′′j | Ci xi → false
i ∈{1,...,n}\{j} where (eopt0, e

′′
j) ∈

GenContracts (e ′j). Since σ(e0) −→∗ true, we have σ(e ′0) −→∗ Cj 〈e ′′〉v ′ and
σ(e ′′j) {v ′/xj } −→∗ true for some e ′′ and v ′. By the IH, σ(e ′j) {v ′/xj } −→∗ true.

Thus, σ(match e ′0 withCi xi → e ′i
i ∈{1,...,n}

) −→∗ true.

Case otherwise: Obvious since GenContracts (e) = {(None, e)}.

Lemma C.4.11. Let F be a translatable function and δ be a trivial constructor choice function.
If v ↓τ and ∅ ` 〈int list⇐ τ〈e〉〉` v : int list, then F e (〈int list⇐ τ〈e〉〉` v) −→∗ true.

Proof. By structural induction on v . Suppose that

Trans (F) = type τ 〈yF :TF 〉 = D ‖ [] : {z :unit | e1
F} |Di ‖ (::) : z1

F :int×{z2
F :Ti | ei}

i
.

By Lemmas C.4.3 and C.3.10 and (T CONV), we have ∅ ` v : τ〈e〉. By Lem-
mas C.3.13 (4) and C.3.12, there are two cases which we have to consider by case anal-
ysis on v .

Case v = D〈e ′〉v ′: Since v ↓τ , e ′ −→∗ v ′′ for some v ′′. By Lemmas C.3.12 and C.3.6,
we have ∅ ` v ′ : {z :unit | e1

F {e ′/yF}} and e ′ ≡ e . By Theorem 9, we find that
e1

F {e ′/yF , v ′/z} = e1
F {e ′/yF} −→∗ true. Since 〈int list ⇐ τ〈e〉〉`D〈e ′〉v ′ −→∗

[] by Lemma C.4.6, we have

F e (〈int list⇐ τ〈e〉〉` v)
≡ F e ′ (〈int list⇐ τ〈e〉〉` v) (by Lemmas C.1.1 and C.1.5 (3))
−→∗ F v ′′ (〈int list⇐ τ〈e〉〉` v)
−→∗ F v ′′ []
−→∗ e1

F {v ′′/yF}
≡ e1

F {e ′/yF}. (by Lemmas C.1.2, C.1.5 (3) and C.1.1)

214 Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes

Thus, by Lemma C.2.25 (2),

F e (〈int list⇐ τ〈e〉〉` v) −→∗ true.

Case v = Dj 〈e ′〉v ′: By definition of Trans, there is a unique pair (eopt0, e0) ∈
GenContracts (e2

F) such that CtrArgOf (Dj) is constructed from the pair. By case
analysis on eopt0.

Case eopt0 = Some e ′0: We have

CtrArgOf (Dj) =

z1
F :int×{z2

F :τ〈e ′0〉 | let z2
F = 〈int list⇐ τ〈e ′0〉〉` z2

F
in e0 {F/f F}}.

By Lemmas C.3.12, C.3.13 (3), C.3.11 and C.3.6, we have v ′ =
(v1, v2) and ∅ ` v1 : int and ∅ ` v2 : {z2

F :τ〈e ′0〉 | let z2
F =

〈int list⇐ τ〈e ′0〉〉` z2
F
in e0 {F/f F}} {e ′/yF , v1/z1

F} and e ≡ e ′ for some v1

and v2. By Lemma C.3.14, we have ∅ ` e : TF . Since yF :TF , z1
F :int `

e ′0 : TF by Lemma C.4.5, we have ∅ ` e ′0 {e/yF , v1/z1
F} : TF . Since ∅ `

τ〈e ′0〉 {e/yF , v1/z1
F} by Theorem 10 and Lemma C.3.2 (2) and (T FORGET),

we have
∅ ` v2 : τ〈e ′0〉 {e/yF , v1/z1

F}

by Lemma C.1.5 (3), (T FORGET), and (T CONV). Thus, we have ∅ `
〈int list ⇐ τ〈e ′0 {e/yF , v1/z1

F}〉〉` v2 : int list by (T FORGET), (T CAST) and
(T APP). By Lemma C.4.6, there exists some v ′2 such that

〈int list⇐ τ〈e ′0 {e/yF , v1/z1
F}〉〉` v2 −→∗ v ′2.

By the IH, we have

F e ′0 {e/yF , v1/z1
F} (〈int list⇐ τ〈e ′0 {e/yF , v1/z1

F}〉〉` v2) −→∗ true.

Thus, there exists some v ′0 such that e ′0 {e/yF , v1/z1
F} −→∗ v ′0 and

F v ′0 v
′
2 −→∗ true. Since F e ′0 {e/yF , v1/z1

F} v ′2 V∗ F v ′0 v
′
2 by Lemmas C.1.2

and C.1.5 (2), we have

F e ′0 {e/yF , v1/z1
F} v ′2 −→∗ true

by Lemma 29. By applying Lemma C.3.18 to v2, we have
e0 {F/f F , e ′/yF , v1/z1

F , v ′2/z2
F} −→∗ true. Thus, by Lemmas C.1.5 (3)

and C.2.25, we have

e0 {F/f F , e/yF , v1/z1
F , v ′2/z2

F} −→∗ true.

By Lemma C.4.10,

e2
F {F/f F , e/yF , v1/z1

F , v ′2/z2
F} −→∗ true.

Since e ′ −→∗ v ′′ for some v ′′ from v ↓τ , we have v ′′ ≡ e . By Lem-
mas C.1.5 (3) and C.2.25,

e2
F {F/f F , v ′′/yF , v1/z1

F , v ′2/z2
F} −→∗ true.

Appendix C. Proofs of Manifest Contracts with Algebraic Datatypes 215

Thus,

F e ′ (〈int list⇐ τ〈e〉〉`Dj 〈e ′〉v ′)
−→∗ F v ′′ (〈int list⇐ τ〈e〉〉`Dj 〈e ′〉v ′)
−→∗ F v ′′ (v1 :: (〈int list⇐ τ〈e ′0 {e/yF , v1/z1

F}〉〉` v2))
−→∗ F v ′′ (v1 :: v ′2)
−→∗ e2

F {F/f F , v ′′/yF , v1/z1
F , v ′2/z2

F}
−→∗ true.

Case eopt0 = None: We have CtrArgOf (Dj) = z1
F :int×{z2

F :int list | e0 {F/f F}}.
By Lemmas C.3.12, C.3.13 (3), C.3.11 and C.3.6, we have
∅ ` e ′ : TF and v ′ = (v1, v2) and ∅ ` v1 : int and
∅ ` v2 : {z2

F :int list | e0 {F/f F}} {e ′/yF , v1/z1
F} for some v1 and

v2. By Lemma C.3.18, e0 {F/f F , e ′/yF , v1/z1
F , v2/z2

F} −→∗ true.
By Lemma C.4.10, we have e2

F {F/f F , e ′/yF , v1/z1
F , v2/z2

F} −→∗
true. Since e ′ −→∗ v ′′ for some v ′′ from v ↓τ , we have
e2

F {F/f F , v ′′/yF , v1/z1
F , v2/z2

F} −→∗ true by Lemmas C.1.2 and
C.1.5 (2) and Lemma 29 (1). Thus,

F e ′ (〈int list⇐ τ〈e〉〉`Dj 〈e ′〉v ′) −→∗ F v ′′ (v1 :: v2) −→∗ true.

Lemma C.4.12 (From Datatypes to Refinement Types). Suppose that

Trans (F) = type τ 〈yF :TF 〉 = D ‖ [] : {z :unit | e1
F} |Di ‖ (::) : z1

F :int×{z2
F :Ti | ei}

i
.

Let δ be a trivial constructor choice function.
If v ↓τ and ∅ ` v : τ〈e〉, then 〈{x :int list |F e x} ⇐ τ〈e〉〉` v −→∗ v ′ for some v ′

obtained by replacing data constructor D and Di in v with [] and (::), respectively.

Proof. Since ∅ ` τ〈e〉 Lemma C.3.14 and int list ‖ τ〈e〉, we have ∅ ` 〈int list ⇐
τ〈e〉〉` v : int list by (T CAST) and (T APP). By Lemma C.4.6, 〈int list ⇐ τ〈e〉〉` v −→∗
v ′ for some v ′ which satisfies the property in the statement above. By Lemma C.4.11,
we have F e (〈int list ⇐ τ〈e〉〉` v) −→∗ true. Thus, letting v ′′ be a value such that
e −→∗ v ′′, we find that F v ′′ v ′ −→∗ true. By Lemmas C.1.2 and C.1.5 (2) and
Lemma 29 (2), F e v ′ −→∗ true. Thus, by (R PRECHECK) and (R OK) with (E RED),

〈{x :int list |F e x} ⇐ τ〈e〉〉` v −→∗ v ′.

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Software Verification
	Type-Based Software Verification
	Integration of Static and Dynamic Verification
	Gradual Typing
	Manifest Contracts

	This Thesis
	Gradual Typing with Delimited Control
	Manifest Contracts with Parametric Polymorphism
	Manifest Contracts with Algebraic Datatypes

	Organization

	Gradual Typing with Delimited Control
	Blame Calculus with Shift and Reset
	Blame Calculus
	Delimited-Control Operators: Shift and Reset
	Blame Calculus with Shift and Reset

	Language
	Syntax
	Semantics
	Type System
	Type Soundness

	Blame Theorem
	Subtyping
	Blame Theorem

	CPS Transformation

	Manifest Contracts with Parametric Polymorphism
	Overview
	Manifest Contract Calculus for Hybrid Type Checking
	Polymorphic Manifest Contract Calculus F_H
	Flaws in F_H—and How We Solve Them

	Defining F_Hsigma
	Syntax
	Operational Semantics
	Static Typing

	Properties of F_Hsigma
	Cotermination
	Type Soundness

	Parametricity
	Logical Relation
	Parametricity

	Three Versions of F_H
	F_H 1.0: Belo et al.'s Work
	F_H 2.0: Greenberg's Thesis
	F_Hsigma

	Manifest Contracts with Algebraic Datatypes
	Overview
	Casts for Datatypes
	Ideas for Translation

	A Manifest Contract Calculus Hdt
	Syntax
	Type System
	Semantics
	Type Soundness
	Typing for Run-time Terms
	Well-formed Type Definition Environments

	Comparison of F_Hsigma and Hdt

	Translation from Refinement Types to Datatypes
	Translation, Formally
	Correctness
	Efficiency Preservation
	Extension: Binary Trees
	Discussion

	Related Work
	Integration of Static and Dynamic Typing
	Integration of Static and Dependent Typing
	Dependent and/or Refinement Type Systems
	Parametricity with Dynamic Type Analysis
	Contracts for Datatypes
	Systematic Derivation of Datatype Definitions

	Conclusion
	This Thesis
	Future Work

	Proofs of Gradual Typing with Delimited Control
	Type Soundness
	Blame Theorem
	CPS Transformation

	Proofs of Manifest Contracts with Parametric Polymorphism
	Properties of substitution
	Cotermination
	Type soundness
	Parametricity

	Proofs of Manifest Contracts with Algebraic Datatypes
	Term and Type Equivalence
	Cotermination
	Type Soundness
	Translation
	Static Correctness
	Dynamic Correctness

