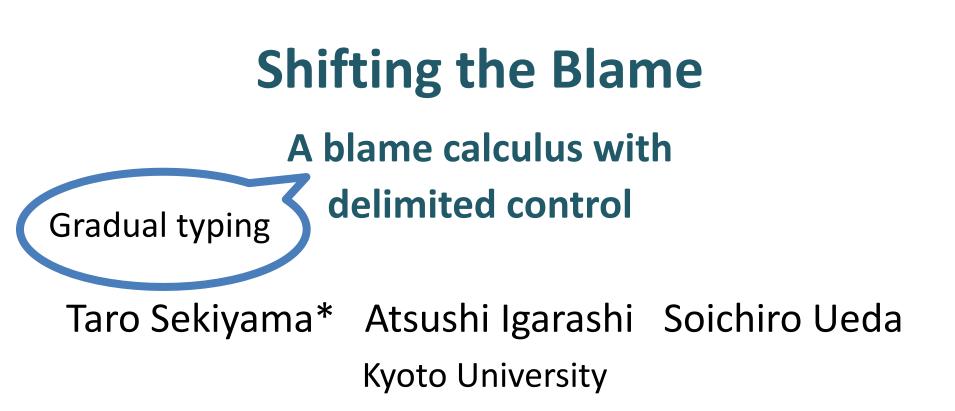
Shifting the Blame A blame calculus with delimited control

Taro Sekiyama* Atsushi Igarashi Soichiro Ueda Kyoto University

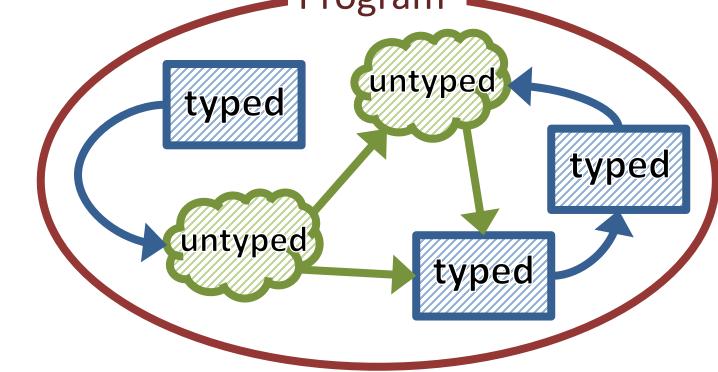


Gradual typing

[Tobin-Hochstadt&Felleisen'06,Siek&Taha'07]

Integration of static and dynamic typing

Typed and untyped code can coexist and interact
 Program



Blame calculus

[Tobin-Hochstadt&Felleisen'06,Wadler&Findler'09]

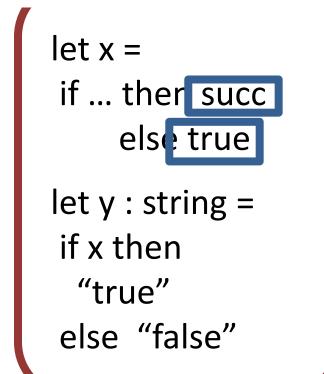
A typed lambda calculus to model intermediate languages for gradual typing

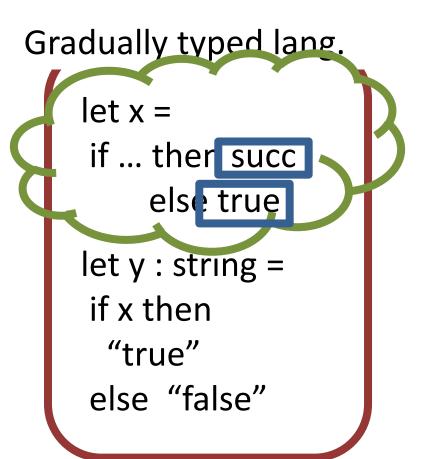
- The Dynamic type (Dyn for short)
 The type for untyped code
- Casts (type coercions) $s: S \longrightarrow T$
 - coerce term s of type S to type T
 - are used to monitor value flows between typed and untyped code

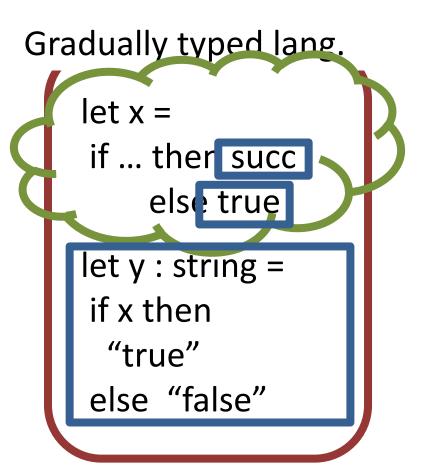
Gradually typed lang.

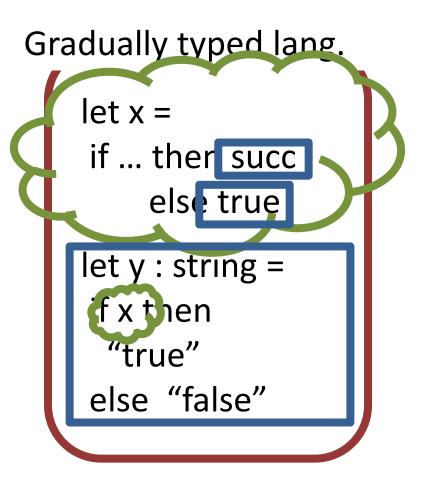
let x =
 if ... then succ
 else true
let y : string =
 if x then
 "true"
else "false"

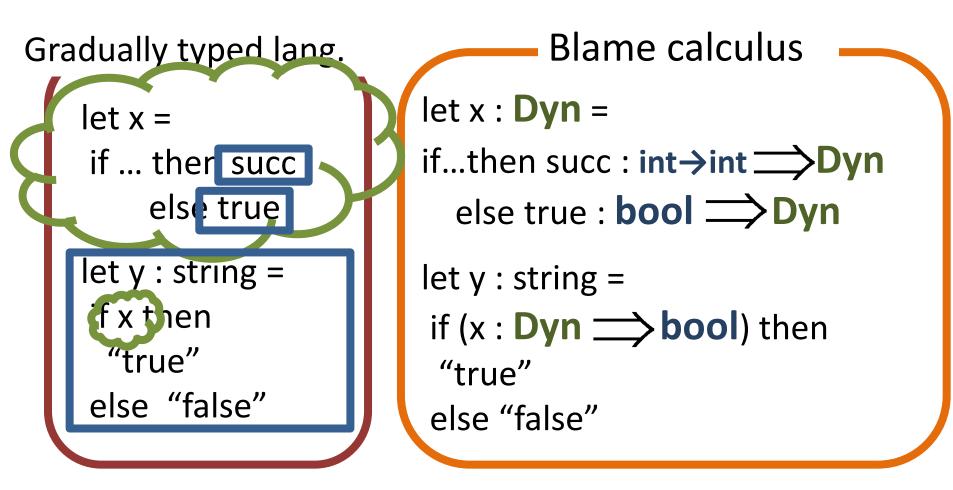
Gradually typed lang.

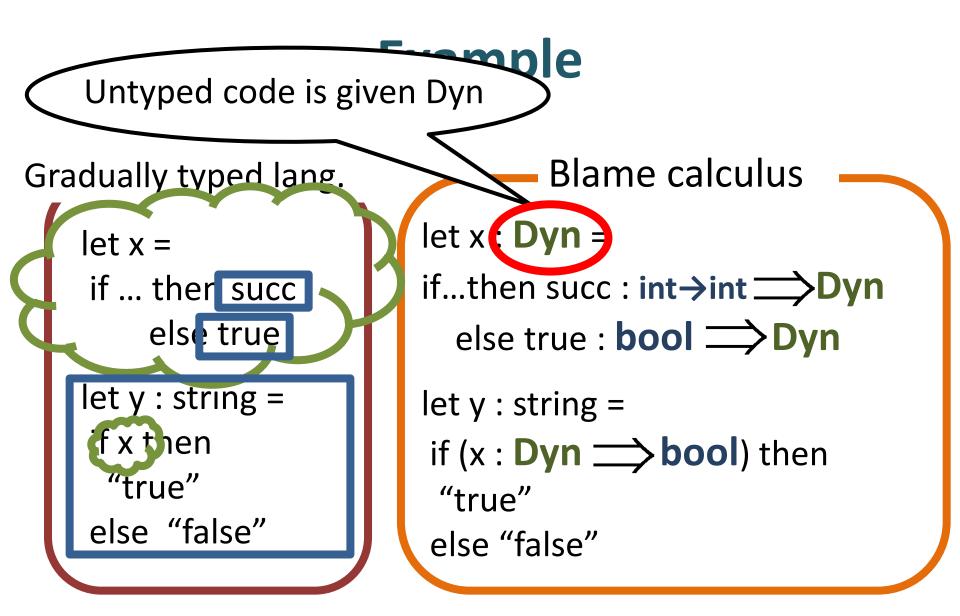


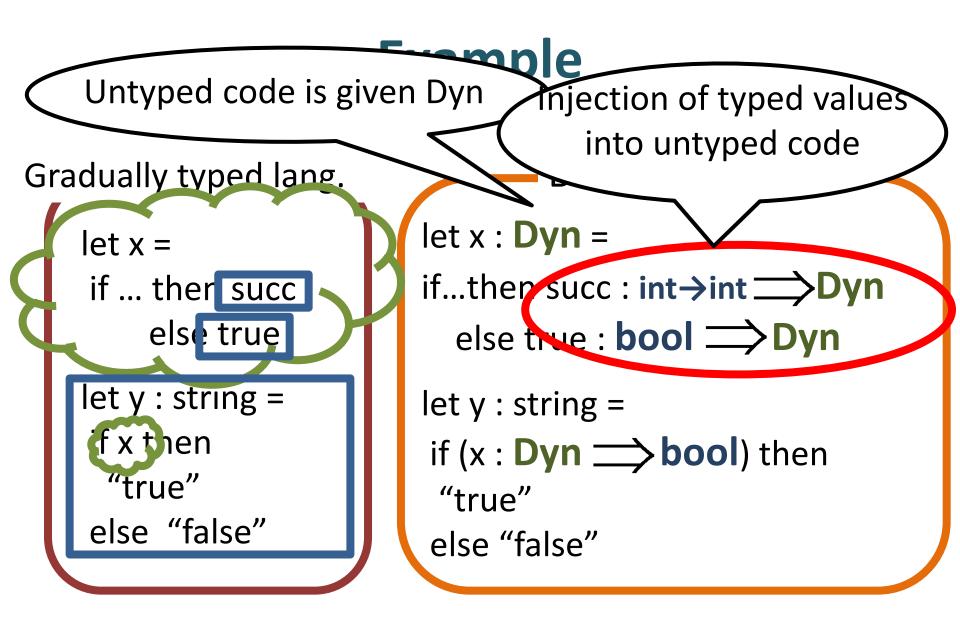


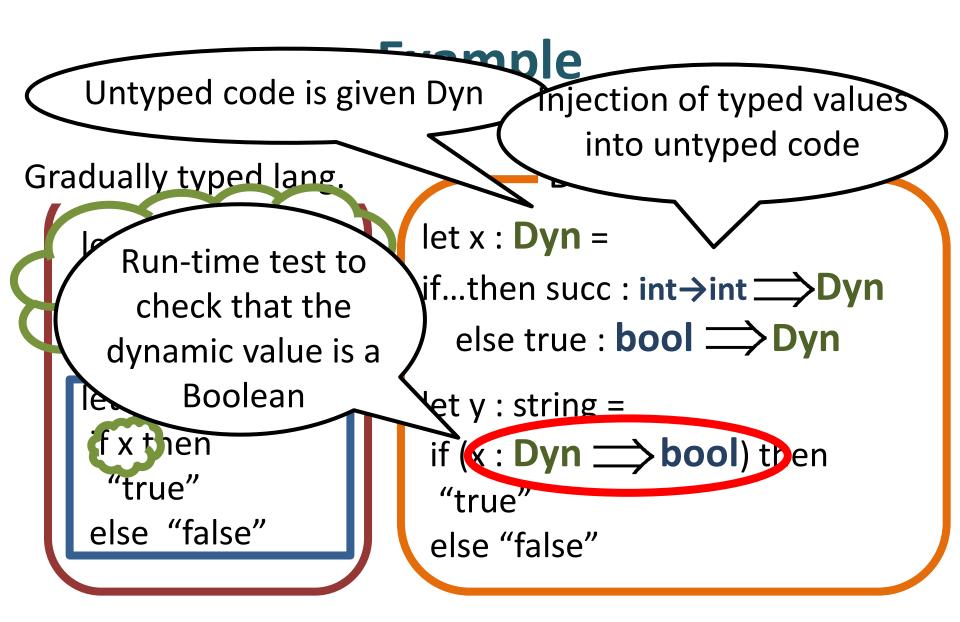








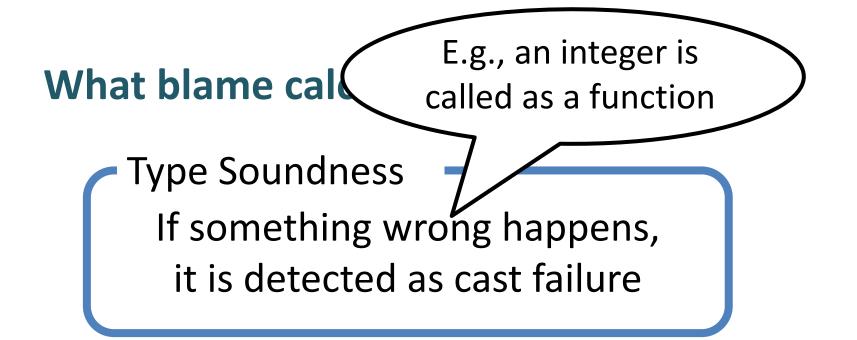




What blame calculus should guarantee

Type Soundness If something wrong happens, it is detected as cast failure

Blame Theorem
 Statically typed terms are never sources of cast failure



Blame Theorem Statically typed terms are never sources of cast failure

This work

- Extends the blame calculus with delimitedcontrol operators *shift/reset*
 - A new form of cast to monitor capturing and calling continuations
- Defines continuation passing style (CPS) transformation for the extended calculus
- Investigates three properties
 - Type soundness
 - Blame Theorem
 - Soundness of the CPS transformation

can implement various control effects

 Extends the blame calculus an delimitedcontrol operators *shift/reset*

This

- A new form of cast to monitor capturing and calling continuations
- Defines continuation passing style (CPS) transformation for the extended calculus
- Investigates three properties
 - Type soundness
 - Blame Theorem
 - Soundness of the CPS transformation

Challenge for Type Soundness

All value flows between typed and untyped parts have to be monitored by casts

Challenge for Ty Paraphrase of Type Soundness

All value flows between typed and untyped parts have to be monitored by casts

Challenge for Ty Paraphrase of Type Soundness

All value flows between typed and untyped parts have to be monitored by casts It isn't trivial to satisfy this property

Challenge for Ty Paraphrase of Type Soundness

All value flows between typed and untyped parts have to be monitored by casts It isn't trivial to satisfy this property

Because terms with control operators can take more actions

- To return a value
- To capture a continuation
- To call a continuation

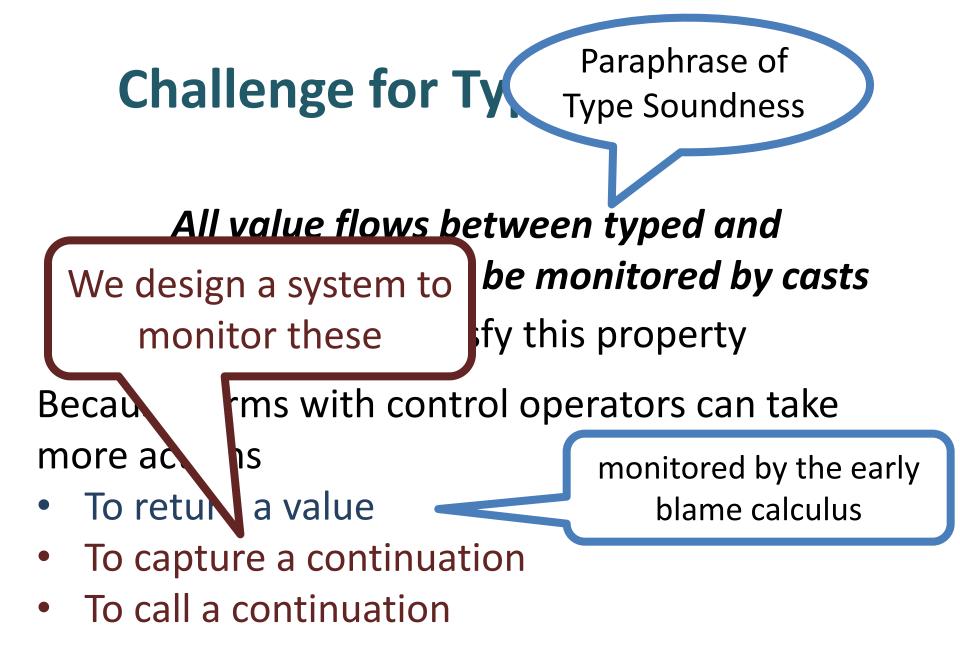
Challenge for Ty Paraphrase of Type Soundness

All value flows between typed and untyped parts have to be monitored by casts It isn't trivial to satisfy this property

Because terms with control operators can take more actions

- To return a value
- To capture a continuation
- To call a continuation

monitored by the early blame calculus



Outline

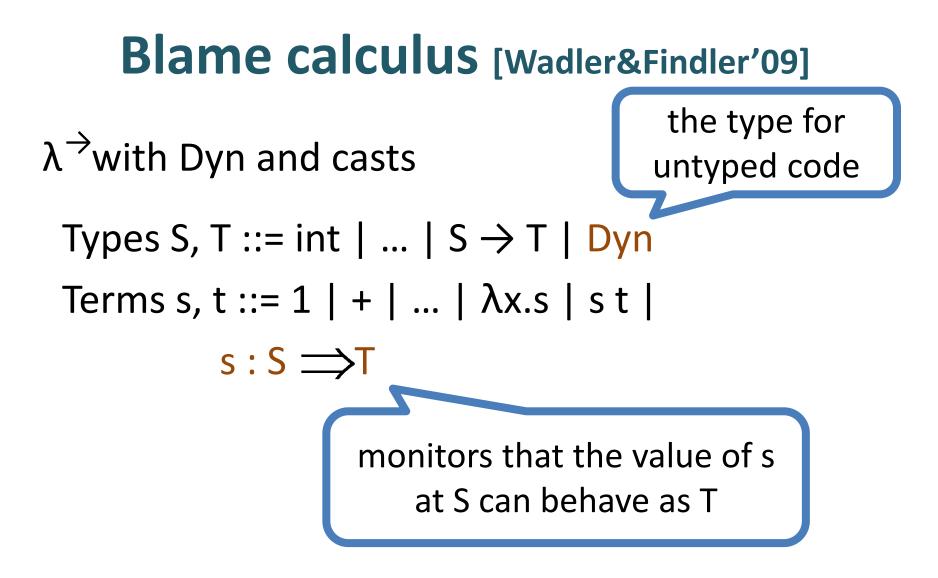
1. Introduction

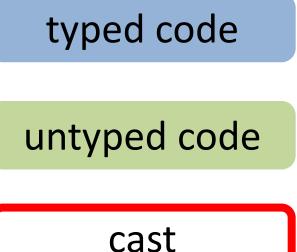
- 2. Background: blame calculus (without shift/reset)
- 3. Problem with control operators
- 4. Our extension of the blame calculus with shift/reset

Blame calculus [Wadler&Findler'09]

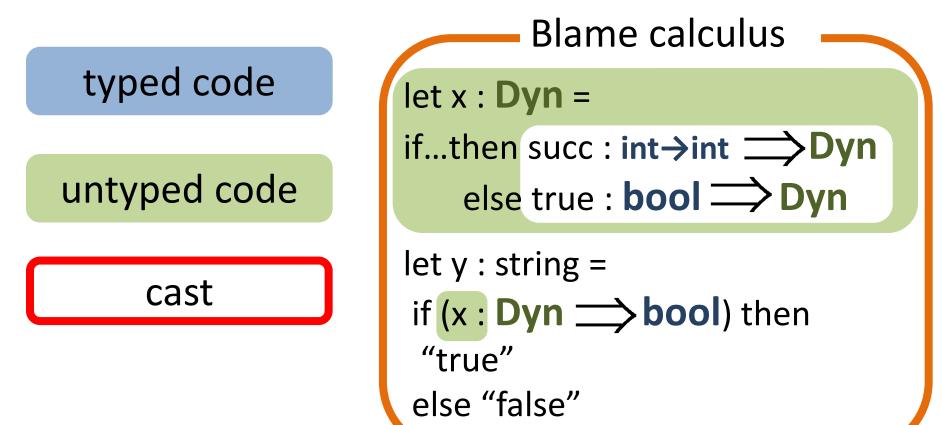
 λ^{\rightarrow} with Dyn and casts

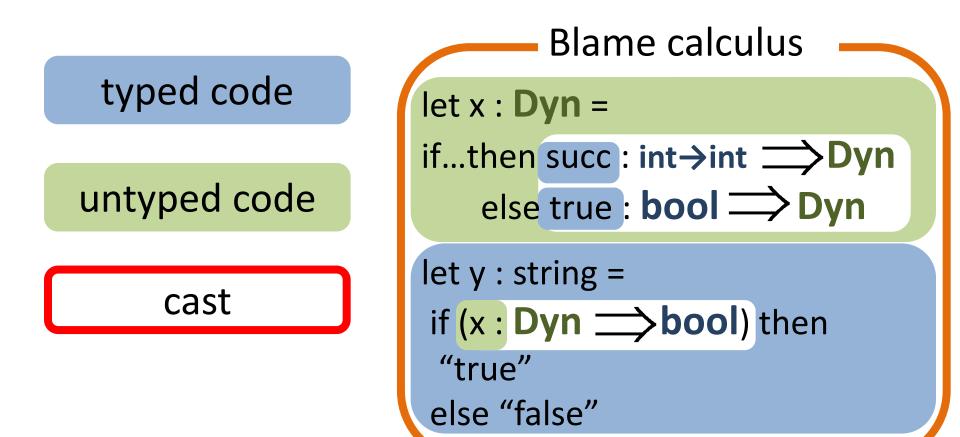
Types S, T ::= int $| \dots | S \rightarrow T |$ Dyn Terms s, t ::= 1 $| + | \dots | \lambda x.s | s t |$ $s : S \Longrightarrow T$

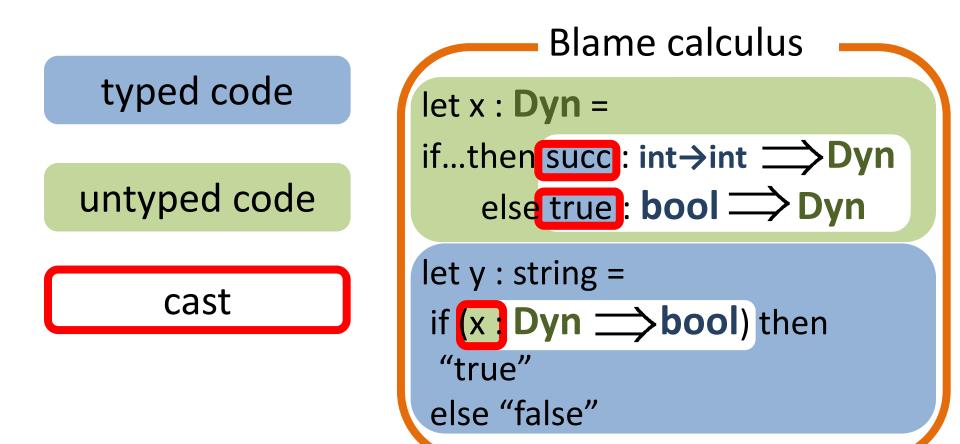




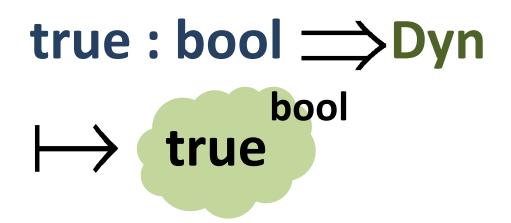
Blame calculus let x : **Dyn** = if...then succ : int \rightarrow int \rightarrow Dyn else true : **bool** \Longrightarrow **Dyn** let y : string = if $(x : Dyn \longrightarrow bool)$ then "true" else "false"



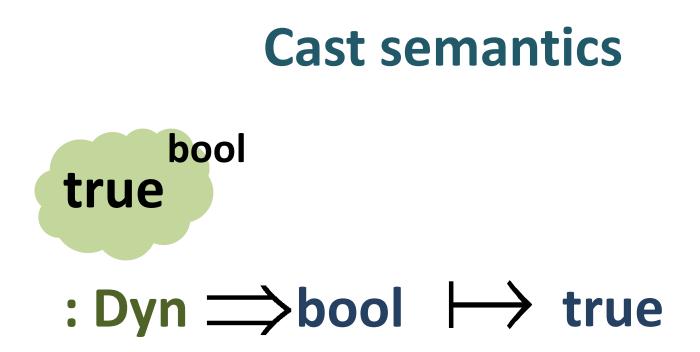




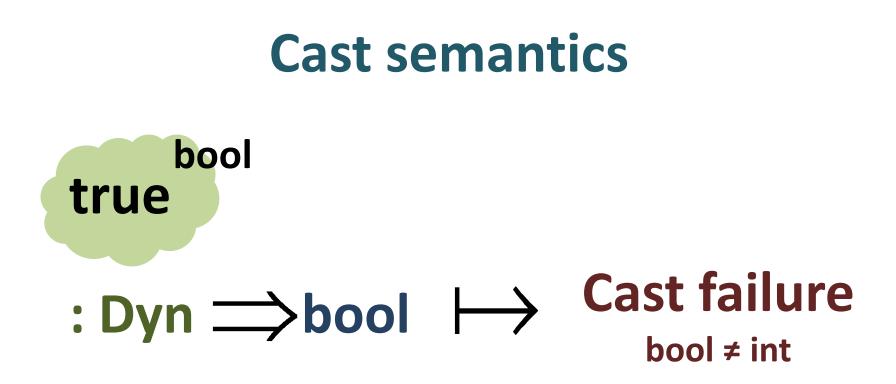
Cast semantics



- Casts from base types to Dyn always succeed
- Result values have the target value (true) and its type (bool)



 Casts from Dyn succeed if the tagged type matches with the target type



 Casts from Dyn fail if the tagged type *doesn't* match with the target type

Cast semantics

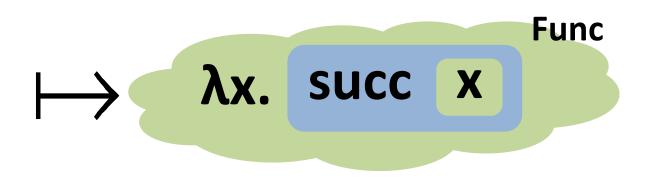
succ : (int→int) ⇒Dyn



- Casts from function types to Dyn generate wrappers of the target function
- All value flows between typed and untyped parts are monitored by casts

Cast semantics

succ : (int→int) ⇒Dyn



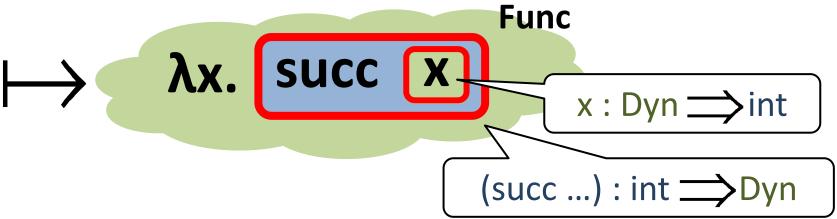
- Casts from function types to Dyn generate wrappers of the target function
- All value flows between typed and untyped parts are monitored by casts

Cast semantics succ : (int \rightarrow int) \rightarrow Dyn Func $\lambda x.$ succ x $x : Dyn \rightarrow$ int

- Casts from function types to Dyn generate wrappers of the target function
- All value flows between typed and untyped parts are monitored by casts

Cast semantics

succ : (int→int) ⇒Dyn



- Casts from function types to Dyn generate wrappers of the target function
- All value flows between typed and untyped parts are monitored by casts

Outline

- 1. Introduction
- 2. Background: blame calculus (without shift/reset)
- 3. Problem with control operators
- 4. Our extension of the blame calculus with shift/reset

Problem with control operators

NOT all value flows between typed and untyped code are monitored

because the standard cast semantics cannot monitor capturing and calling continuations

Shift and reset

CPS-based operators to manipulate "delimited" continuations

- Reset (s) delimits continuations in s
- Shift (S k. s) captures continuations up to the closest reset as k

$$\langle E[S k. s] \rangle \mapsto \langle s[k:=\lambda x. \langle E[x] \rangle] \rangle$$

where E is an evaluation context without reset

Shift and reset

CPS-based operators to manipulate backtracking, monads, etc.

- Reset (s) delimits continuations in s
- Shift (S k. s) captures continuations up to the closest reset as k

$$\langle E[S k. s] \rangle \mapsto \langle s[k:=\lambda x. \langle E[x] \rangle] \rangle$$

where E is an evaluation context without reset

used to impl.

exceptions,

$$\langle 3 + (S k. (k 1) == 4) \rangle$$

= $\langle E[S k. (k 1) == 4] \rangle$ where $E = 3 + []$
 $\mapsto \langle (k 1) == 4 \rangle$

$$\langle 3 + (S k. (k 1) == 4) \rangle$$

= $\langle E[S k. (k 1) == 4] \rangle$ where $E = 3 + []$
 $\rightarrow \langle (k 1) == 4 \rangle$
captured continuation

= **{E[S k. (k 1) == 4]** where **E** = 3 + []

$$\mapsto \langle ((\lambda x.\langle 3 + x \rangle) 1) == 4 \rangle$$

captured continuation

$$\mapsto \langle ((\lambda x.\langle 3 + x \rangle) 1) == 4 \rangle$$

captured continuation

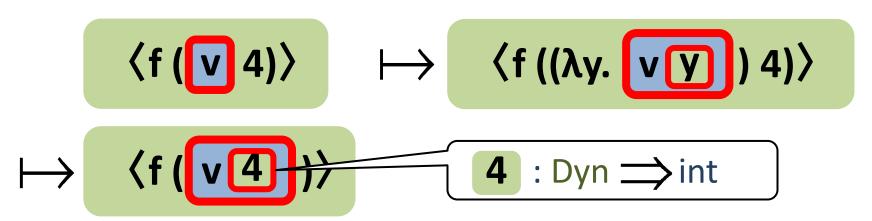
$$\mapsto \langle \langle 3+1 \rangle == 4 \rangle$$

→* true

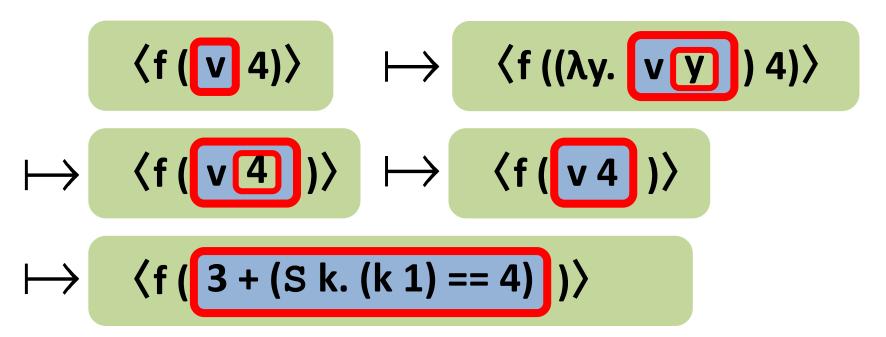
$$\langle f(V4) \rangle \mapsto \langle f((\lambda y. VY) 4) \rangle$$

$$\begin{array}{c} \langle f(\mathbf{V} 4) \rangle & \mapsto & \langle f((\lambda y. \mathbf{VY}) 4) \rangle \\ \rightarrow & \langle f(\mathbf{V4}) \rangle \end{array} \end{array}$$

 $v = \lambda x:int. 3 + (S k. (k 1) == x)$

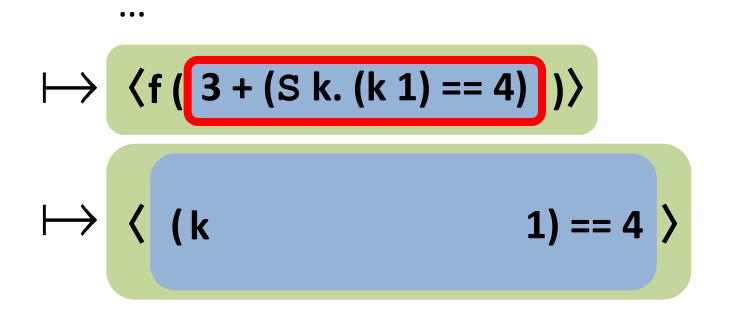


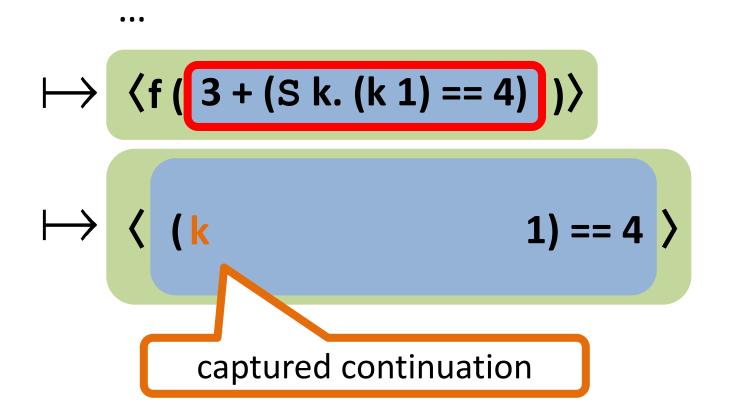
$$\begin{array}{c} \langle f(\forall 4) \rangle & \mapsto & \langle f((\lambda y. \forall \forall) 4) \rangle \\ \\ \mapsto & \langle f(\forall 4) \rangle & \mapsto & \langle f(\forall 4) \rangle \end{array} \end{array}$$

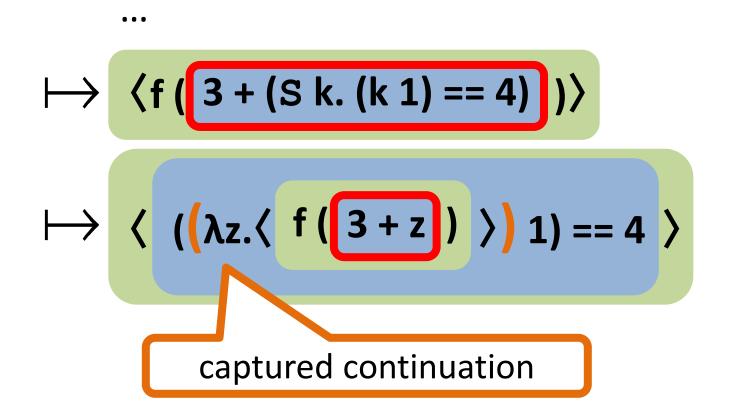


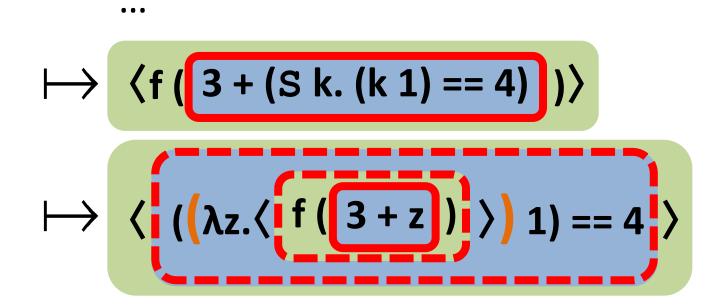
$$\mapsto \langle f(3 + (S k. (k 1) == 4)) \rangle$$

...









NOT all value flows between typed and untyped parts are monitored

Outline

- 1. Introduction
- 2. Background: blame calculus (without shift/reset)
- 3. Problem with control operators
- 4. Our extension of the blame calculus with shift/reset

How does the problem happen?

An untyped continuation is captured and sent to typed code

$$\mapsto \langle f(3 + (S k. (k 1) == 4)) \rangle$$

How does the problem happen?

An untyped continuation is captured and sent to typed code Captured continuations are

expected to be typed

. . .

How does the problem happen?

An untyped continuation is captured and sent to typed code Captured continuations are expected to be typed

v = λx:int. 3 + (S k. (k 1) == x)

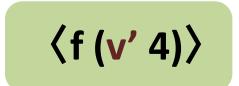
The captured continuation f(3+z) is untyped ... $\mapsto \langle f(3+(S,k,(k,1)==4)) \rangle$

Our solution

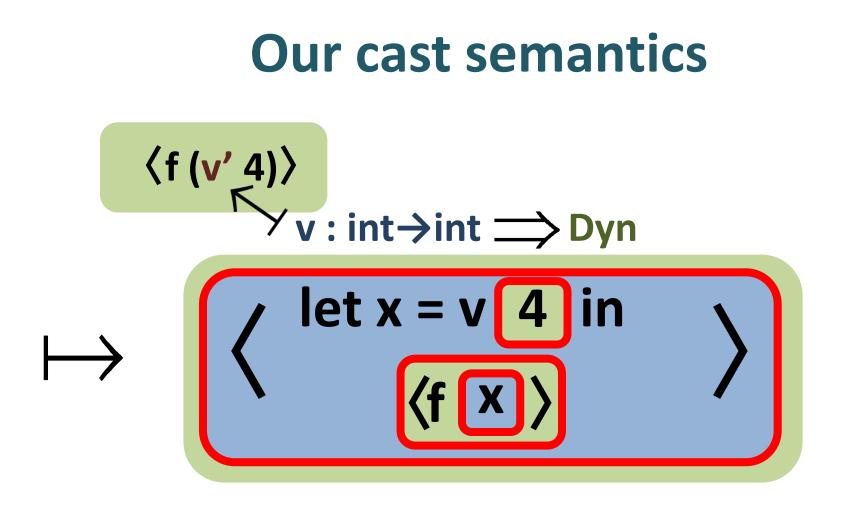
Changing the cast semantics so that:

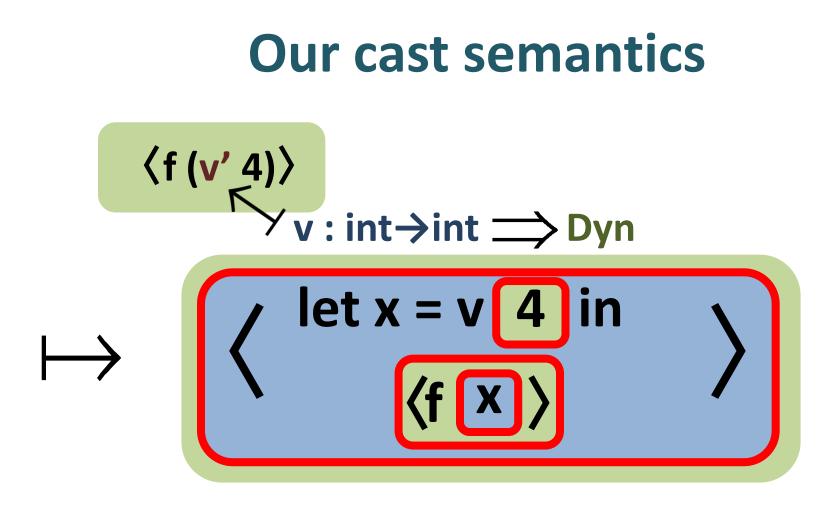
- *Typed* code captures only *typed* continuations
- Untyped code captures only untyped continuations

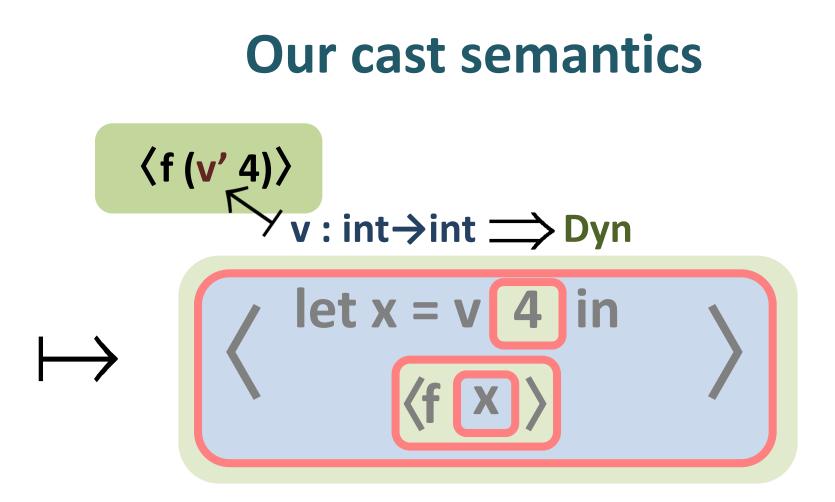
Our cast semantics

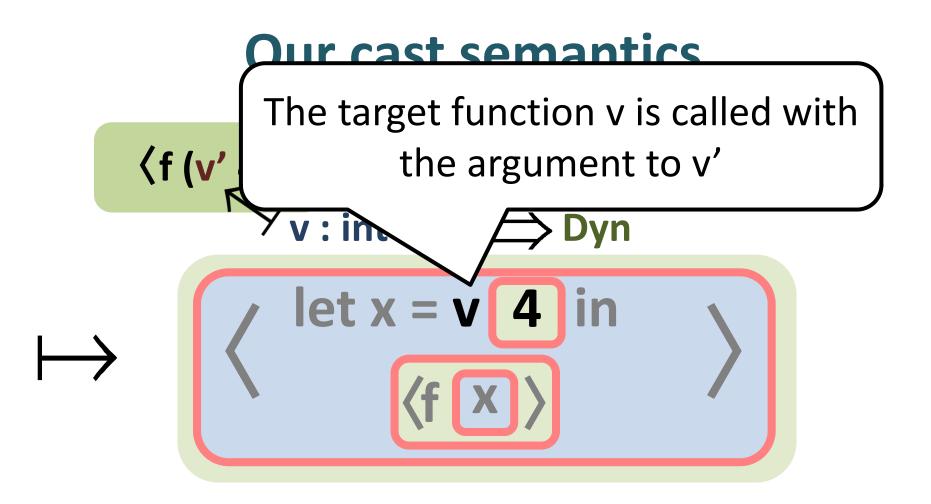


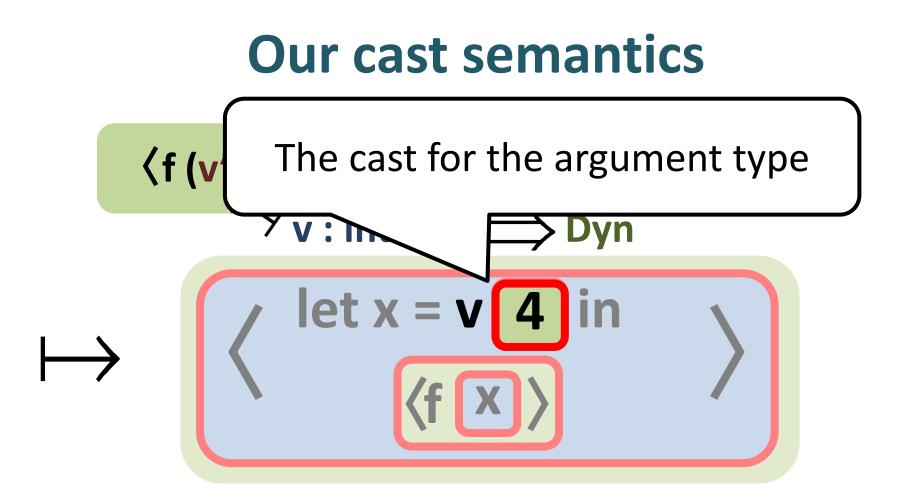
Our cast semantics

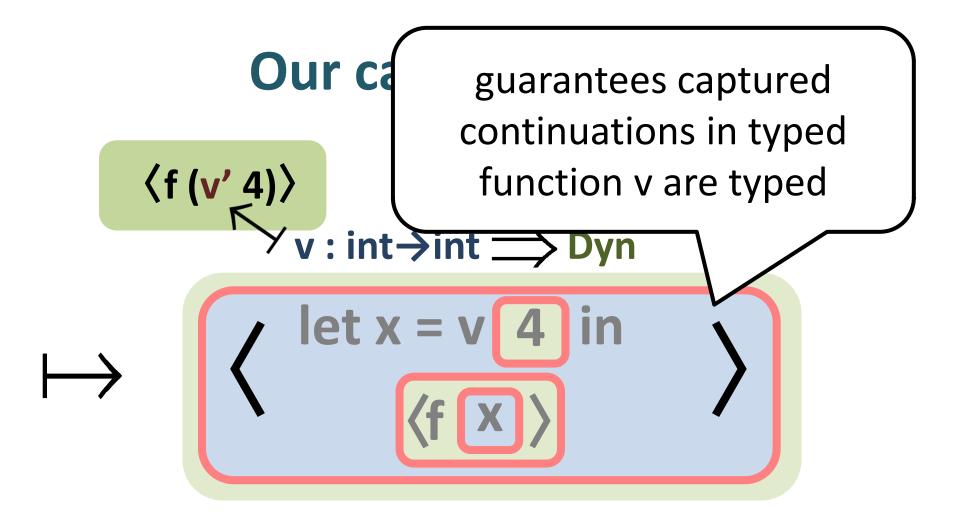


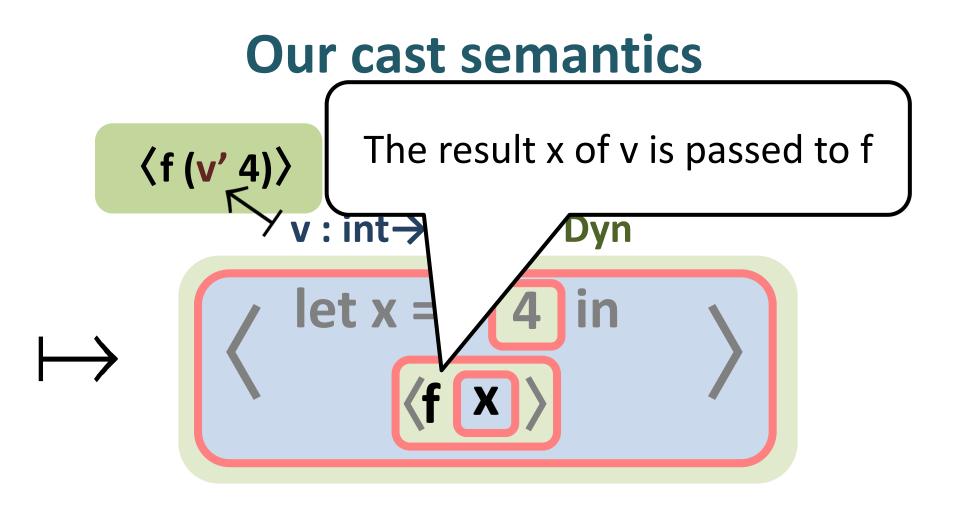




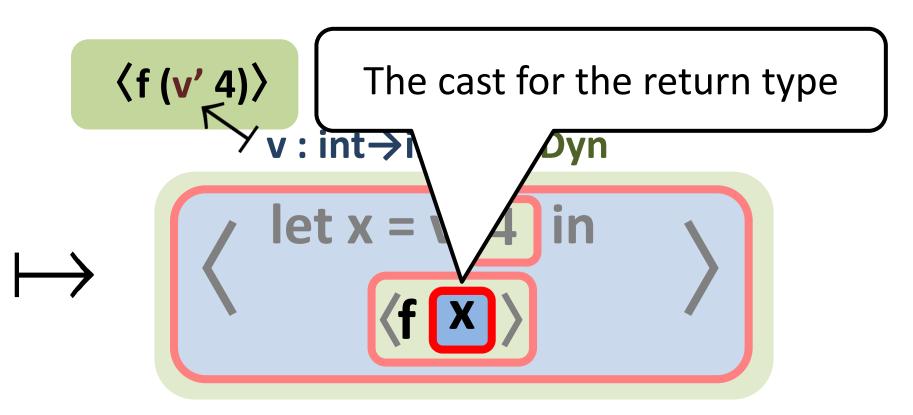


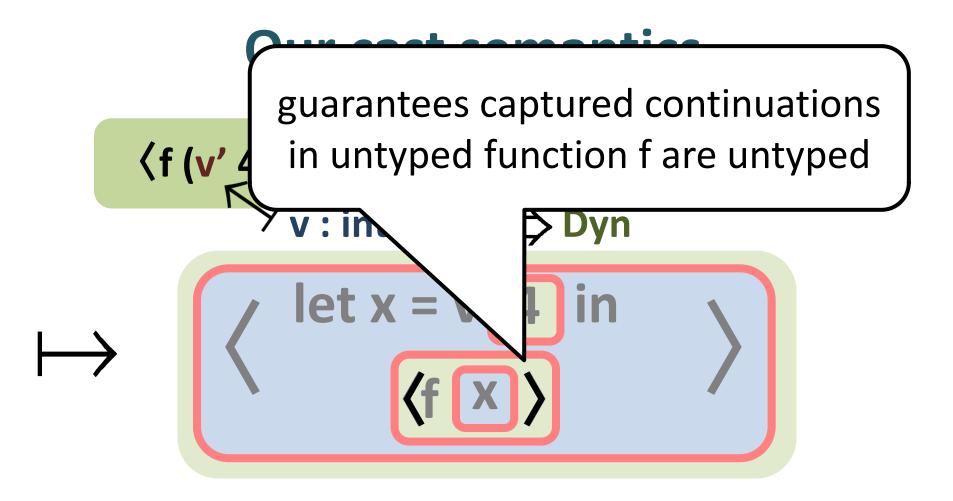


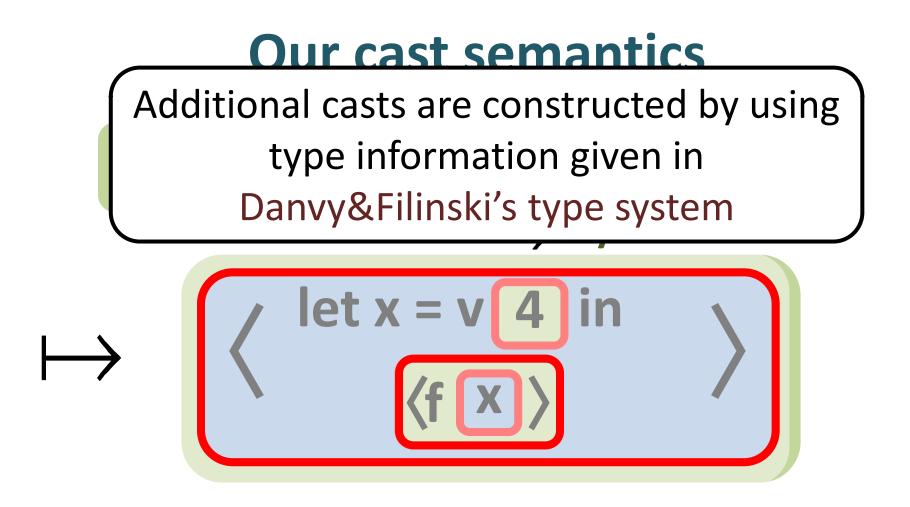




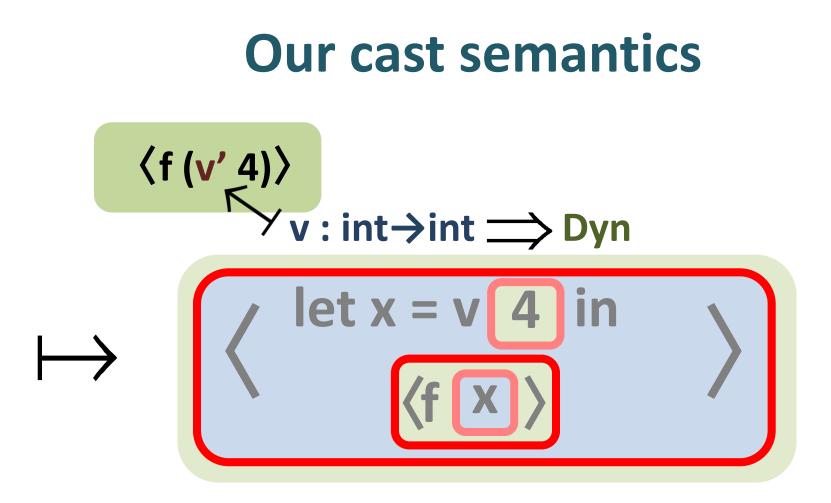
Our cast semantics







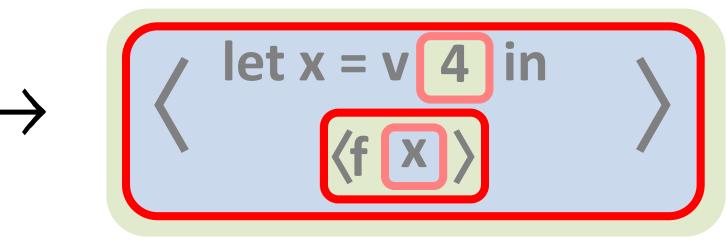
≈ **〈f (v 4)〉** (if all casts are ignored)



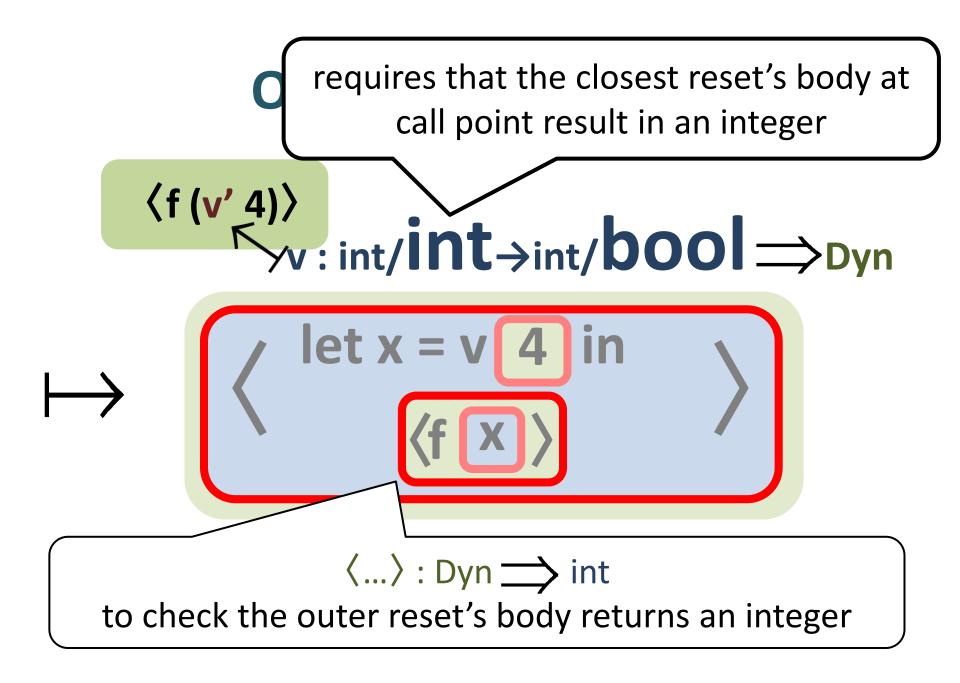
≈ 〈f (v 4)〉 (if all casts are ignored)

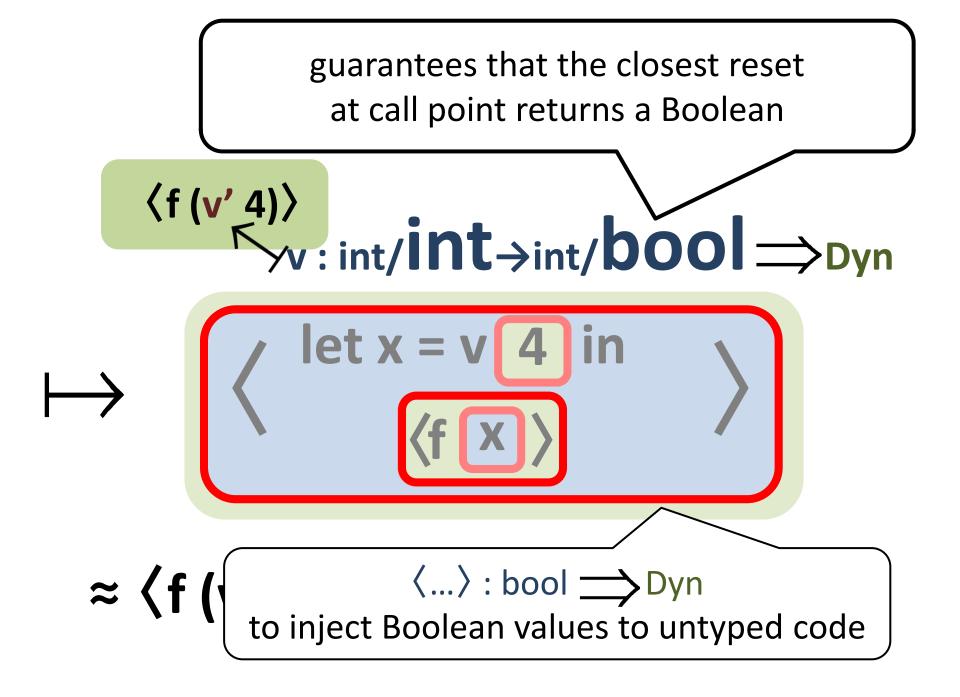
Our cast semantics

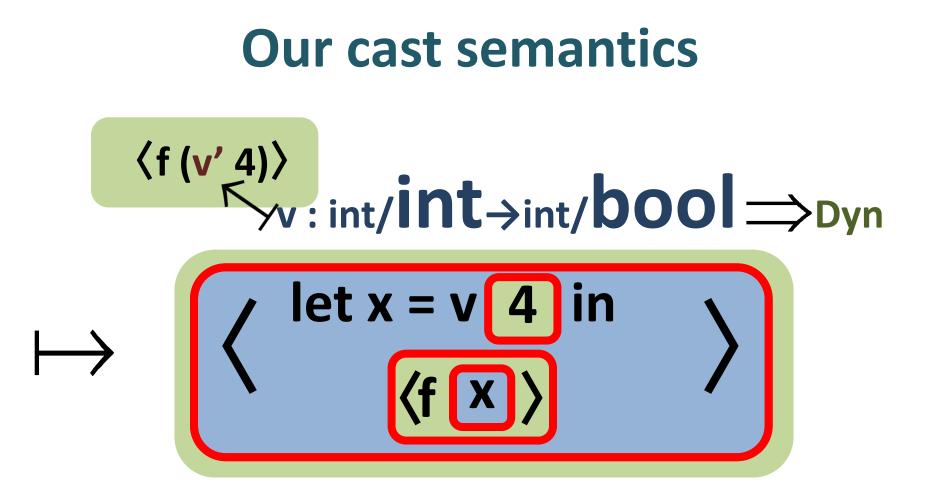
$\langle f(v' 4) \rangle$ $\forall v : int/int \rightarrow int/bool \Rightarrow Dyn$



≈ **(f (v 4)**) (if all casts are ignored)







≈ 〈f (v 4)〉 (if all casts are ignored)

Our calculus

Program syntax:

Types S, T, α , β ::= int | ... | Dyn | S/ $\alpha \rightarrow T/\beta$ Terms s, t ::= 1 | + | ... | $\lambda x.s$ | s t | s : S \longrightarrow T | S k. s | $\langle s \rangle$

Type system:

Γ; α ⊢ s : T; β

Semantics:

shift/reset + our cast semantics

Type soundness

If $\langle s \rangle$ is a well typed, closed term, then:

- <s>diverges;
- $\langle s \rangle \mapsto^* v$ for some v; or
- some cast in $\langle s \rangle$ fails

via Progress and Preservation

If something wrong happens, it is detected as cast failure

In the paper...

- A formal system including run-time terms
- Support for "blame"
- Blame Theorem

- Statically typed terms are never responsible for cast failure
- CPS transformation
- Sounenss of the CPS transformation
 - Preservation of Type
 - Preservation of Equality

Our CPS transformation [[•]]

- [[•]] transforms terms/types in our calculus to ones in the simply typed blame calculus
- The definition is standard except for casts

 $[[s:S \Longrightarrow T]] := \lambda k. [[s]] (\lambda x. x : [[S]] \Longrightarrow [[T]])$ [[Dyn]] := Dyn $[[S/\alpha \rightarrow T/\beta]] := [[S]] \rightarrow ([[T]] \rightarrow [[\alpha]]) \rightarrow [[\beta]]$

Soundness of the CPS transformation

```
Preservation of Type
If \Gamma; \alpha \vdash s : T; \beta,
then [[\Gamma]] \vdash [[s]] : ([[T]]\rightarrow[[\alpha]])\rightarrow[[\beta]]
```

Preservation of Equality

If $s \mapsto t$, then [[s]] \sim [[t]]

where \sim is an equational system with usual call-byvalue axioms and a few additional axiomas

Related work

Constraining delimited control with contracts [Takikawa et al., ESOP'13]

studies "macro" gradual typing with:

- Control operators not based on CPS
 - powerful enough to express shift/reset
- Contract system
 - allows refined type information to be represented

Modules are fully typed or fully untyped

training delimited control with contracts [Takikawa et al., ESOP'13]

studies "macro" gradual typing with:

- Control operators not based on CPS
 - powerful enough to express shift/reset
- Contract system
 - allows refined type information to be represented

Conclusion

An extension of blame calculus with shift/reset

- Cast semantic to monitor capturing and calling continuations
- Three properties investigated
 - Type soundness
 - Blame Theorem
 - Soundness of the CPS transformation