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Gradual typing



Gradual typing 
[Tobin-Hochstadt&Felleisen’06,Siek&Taha’07]

Integration of static and dynamic typing
• Typed and untyped code can coexist and 

interact Program



Blame calculus 
[Tobin-Hochstadt&Felleisen’06,Wadler&Findler’09]

A typed lambda calculus to model intermediate 
languages for gradual typing
• The Dynamic type (Dyn for short)

– The type for untyped code

• Casts (type coercions)   s : S T
– coerce term s of type S to type T
– are used to monitor value flows between typed 

and untyped code



Example

let x = 
if … then succ

else true

let y : string =
if x then 

“true”
else  “false”
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Example

let x = 
if … then succ

else true

let y : string =
if x then 

“true”
else  “false”

Gradually typed lang.

let x : Dyn = 
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus

Untyped code is given Dyn Injection of typed values 
into untyped code

Run-time test to 
check that the 

dynamic value is a 
Boolean



What blame calculus should guarantee

If something wrong happens, 
it is detected as cast failure

Type Soundness

Statically typed terms are never 
sources of cast failure

Blame Theorem



What blame calculus should guarantee

If something wrong happens, 
it is detected as cast failure

Type Soundness

Statically typed terms are never 
sources of cast failure

Blame Theorem

E.g., an integer is 
called as a function



This work
• Extends the blame calculus with delimited-

control operators shift/reset
– A new form of cast to monitor capturing and calling 

continuations

• Defines continuation passing style (CPS) 
transformation for the extended calculus

• Investigates three properties
– Type soundness
– Blame Theorem
– Soundness of the CPS transformation



This work
• Extends the blame calculus with delimited-

control operators shift/reset
– A new form of cast to monitor capturing and calling 

continuations

• Defines continuation passing style (CPS) 
transformation for the extended calculus

• Investigates three properties
– Type soundness
– Blame Theorem
– Soundness of the CPS transformation

can implement various 
control effects
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Because terms with control operators can take 
more actions
• To return a value
• To capture a continuation
• To call a continuation

monitored by the early 
blame calculus

Challenge for Type SoundnessParaphrase of 
Type Soundness

It isn’t trivial to satisfy this property

All value flows between typed and 
untyped parts have to be monitored by castsWe design a system to 

monitor these



Outline

1. Introduction
2. Background: blame calculus (without shift/reset)

3. Problem with control operators
4. Our extension of the blame calculus with 

shift/reset



Blame calculus [Wadler&Findler’09]

λ with Dyn and casts

Types S, T ::= int | … | S → T | Dyn
Terms s, t ::= 1 | + | … | λx.s | s t | 

s : S  T

→



Blame calculus [Wadler&Findler’09]

λ with Dyn and casts

Types S, T ::= int | … | S → T | Dyn
Terms s, t ::= 1 | + | … | λx.s | s t | 

s : S  T

→ the type for 
untyped code

monitors that the value of s 
at S can behave as T
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Notation

typed code

untyped code

cast

let x : Dyn = 
if…then succ : int→int      Dyn

else true : bool    Dyn
let y : string =
if (x : Dyn    bool) then
“true”

else “false”

Blame calculus



Cast semantics

true : bool   Dyn

• Casts from base types to Dyn always succeed
• Result values have the target value (true) and 

its type (bool)  

true 
bool



Cast semantics

: Dyn    bool true

• Casts from Dyn succeed if the tagged type 
matches with the target type

true 
bool



Cast semantics

• Casts from Dyn fail if the tagged type doesn’t
match with the target type

Cast failure
bool ≠ int

true 
bool

: Dyn    bool
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Cast semantics

succ : (int→int)   Dyn

λx. succ x

(succ …) : int   Dyn
• Casts from function types to Dyn generate wrappers 

of the target function
• All value flows between typed and untyped parts 

are monitored by casts

x : Dyn     int

Func
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Problem with control operators

NOT all value flows between typed and 
untyped code are monitored 

because the standard cast semantics cannot 
monitor capturing and calling continuations



Shift and reset

CPS-based operators to manipulate “delimited” 
continuations
• Reset 〈s〉 delimits continuations in s
• Shift (S k. s) captures continuations up to the 

closest reset as k

〈E[S k. s]〉 〈s[k:=λx.〈E[x]〉]〉
where E is an evaluation context without reset



Shift and reset

CPS-based operators to manipulate “delimited” 
continuations
• Reset 〈s〉 delimits continuations in s
• Shift (S k. s) captures continuations up to the 

closest reset as k

〈E[S k. s]〉 〈s[k:=λx.〈E[x]〉]〉
where E is an evaluation context without reset

used to impl. 
exceptions, 
backtracking, 
monads, etc.
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1) == 4〉(λx.〈3 + x〉)

Reduction example

〈3 + (S k. (k 1) == 4)〉

= 〈E[S k. (k 1) == 4]〉 where E = 3 + []

〈〈3+1〉 == 4〉
* true

〈(

captured continuation
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Problem of the standard cast semantics in the 
presence of shift/reset

…

〈f ( )〉3 + (S k. (k 1) == 4) 

〈 ((λz.〈 〉) 1) == 4 〉f ( )3 + z

NOT all value flows between typed and 
untyped parts are monitored
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How does the problem happen?

…

v = λx:int. 3 + (S k. (k 1) == x)

An untyped continuation is captured and sent to 
typed code

〈f ( )〉3 + (S k. (k 1) == 4) 

Captured continuations are 
expected to be typed

The captured continuation is untypedf ( )3 + z



Our solution

Changing the cast semantics so that: 
• Typed code captures only typed continuations
• Untyped code captures only untyped

continuations
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the argument to v’
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Our cast semantics

〈
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4

f     x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

〈 〉

guarantees captured continuations 
in untyped function f are untyped



Our cast semantics

〈
let x = v in

〉
4

f     x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

Additional casts are constructed by using 
type information given in 

Danvy&Filinski’s type system
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Our cast semantics

〈
let x = v in

〉
4

f     x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉

requires that the closest reset’s body at 
call point result in an integer

〈…〉 : Dyn    int
to check the outer reset’s body returns an integer

v : int/int→int/bool Dyn



Our cast semantics

〈
let x = v in

〉
4

f     x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int/int→int/bool Dyn

guarantees that the closest reset 
at call point returns a Boolean 

〈…〉 : bool Dyn
to inject Boolean values to untyped code



Our cast semantics

〈
let x = v in

〉
4

f     x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int/int→int/bool Dyn



Our calculus

Program syntax:
 Types S, T, α, β ::= int | … | Dyn | S/α → T/β
Terms s, t       ::= 1 | + | … | λx.s | s t |

s : S T | S k. s |〈s〉

Type system:

Semantics:
shift/reset + our cast semantics

Γ; α├ s : T; β



Type soundness

If 〈s〉 is a well typed, closed term, then:
• 〈s〉 diverges;
• 〈s〉 v for some v; or
• some cast in 〈s〉 fails

*

via Progress and Preservation 

If something wrong happens, 
it is detected as cast failure



In the paper…

• A formal system including run-time terms
• Support for “blame”
• Blame Theorem

– Statically typed terms are never responsible for cast 
failure

• CPS transformation
• Sounenss of the CPS transformation

– Preservation of Type
– Preservation of Equality

responsibility for 
cast failure 



Our CPS transformation [[・]]

• [[・]] transforms terms/types in our calculus to 
ones in the simply typed blame calculus

• The definition is standard except for casts

[[s : S T]]  := λk. [[s]] (λx. x : [[S]] [[T]])
[[Dyn]] := Dyn

[[S/α→T/β]] := [[S]]→([[T]]→[[α]])→[[β]] 



Soundness of 
the CPS transformation

If s t, then [[s]] 〜 [[t]]

where 〜 is an equational system with usual call-by-
value axioms and a few additional axiomas

If Γ;α├ s : T; β, 
then [[Γ]]├ [[s]] : ([[T]]→[[α]])→[[β]]

Preservation of Equality

Preservation of Type



Related work

Constraining delimited control with contracts 
[Takikawa et al., ESOP’13]

studies “macro” gradual typing with:
• Control operators not based on CPS 

– powerful enough to express shift/reset

• Contract system
– allows refined type information to be represented 



Related work

Constraining delimited control with contracts 
[Takikawa et al., ESOP’13]

studies “macro” gradual typing with:
• Control operators not based on CPS 

– powerful enough to express shift/reset

• Contract system
– allows refined type information to be represented 

Modules are 
fully typed or 
fully untyped



Conclusion

An extension of blame calculus with shift/reset
• Cast semantic to monitor capturing and calling 

continuations 
• Three properties investigated

– Type soundness
– Blame Theorem
– Soundness of the CPS transformation
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