
Shifting the Blame
A blame calculus with

delimited control

Taro Sekiyama* Atsushi Igarashi Soichiro Ueda
Kyoto University

Shifting the Blame
A blame calculus with

delimited control

Taro Sekiyama* Atsushi Igarashi Soichiro Ueda
Kyoto University

Gradual typing

Gradual typing
[Tobin-Hochstadt&Felleisen’06,Siek&Taha’07]

Integration of static and dynamic typing
• Typed and untyped code can coexist and

interact Program

Blame calculus
[Tobin-Hochstadt&Felleisen’06,Wadler&Findler’09]

A typed lambda calculus to model intermediate
languages for gradual typing
• The Dynamic type (Dyn for short)

– The type for untyped code

• Casts (type coercions) s : S T
– coerce term s of type S to type T
– are used to monitor value flows between typed

and untyped code

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

let x : Dyn =
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

let x : Dyn =
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus

Untyped code is given Dyn

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

let x : Dyn =
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus

Untyped code is given Dyn Injection of typed values
into untyped code

Example

let x =
if … then succ

else true

let y : string =
if x then

“true”
else “false”

Gradually typed lang.

let x : Dyn =
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus

Untyped code is given Dyn Injection of typed values
into untyped code

Run-time test to
check that the

dynamic value is a
Boolean

What blame calculus should guarantee

If something wrong happens,
it is detected as cast failure

Type Soundness

Statically typed terms are never
sources of cast failure

Blame Theorem

What blame calculus should guarantee

If something wrong happens,
it is detected as cast failure

Type Soundness

Statically typed terms are never
sources of cast failure

Blame Theorem

E.g., an integer is
called as a function

This work
• Extends the blame calculus with delimited-

control operators shift/reset
– A new form of cast to monitor capturing and calling

continuations

• Defines continuation passing style (CPS)
transformation for the extended calculus

• Investigates three properties
– Type soundness
– Blame Theorem
– Soundness of the CPS transformation

This work
• Extends the blame calculus with delimited-

control operators shift/reset
– A new form of cast to monitor capturing and calling

continuations

• Defines continuation passing style (CPS)
transformation for the extended calculus

• Investigates three properties
– Type soundness
– Blame Theorem
– Soundness of the CPS transformation

can implement various
control effects

Challenge for Type Soundness

All value flows between typed and
untyped parts have to be monitored by casts

Challenge for Type Soundness

All value flows between typed and
untyped parts have to be monitored by casts

Paraphrase of
Type Soundness

Challenge for Type Soundness

All value flows between typed and
untyped parts have to be monitored by casts

Paraphrase of
Type Soundness

It isn’t trivial to satisfy this property

Challenge for Type Soundness

Because terms with control operators can take
more actions
• To return a value
• To capture a continuation
• To call a continuation

Paraphrase of
Type Soundness

It isn’t trivial to satisfy this property

All value flows between typed and
untyped parts have to be monitored by casts

Because terms with control operators can take
more actions
• To return a value
• To capture a continuation
• To call a continuation

monitored by the early
blame calculus

Challenge for Type SoundnessParaphrase of
Type Soundness

It isn’t trivial to satisfy this property

All value flows between typed and
untyped parts have to be monitored by casts

Because terms with control operators can take
more actions
• To return a value
• To capture a continuation
• To call a continuation

monitored by the early
blame calculus

Challenge for Type SoundnessParaphrase of
Type Soundness

It isn’t trivial to satisfy this property

All value flows between typed and
untyped parts have to be monitored by castsWe design a system to

monitor these

Outline

1. Introduction
2. Background: blame calculus (without shift/reset)

3. Problem with control operators
4. Our extension of the blame calculus with

shift/reset

Blame calculus [Wadler&Findler’09]

λ with Dyn and casts

Types S, T ::= int | … | S → T | Dyn
Terms s, t ::= 1 | + | … | λx.s | s t |

s : S T

→

Blame calculus [Wadler&Findler’09]

λ with Dyn and casts

Types S, T ::= int | … | S → T | Dyn
Terms s, t ::= 1 | + | … | λx.s | s t |

s : S T

→ the type for
untyped code

monitors that the value of s
at S can behave as T

Notation

let x : Dyn =
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus
typed code

untyped code

cast

Notation

typed code

untyped code

cast

let x : Dyn =
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus

Notation

typed code

untyped code

cast

let x : Dyn =
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus

Notation

typed code

untyped code

cast

let x : Dyn =
if…then succ : int→int Dyn

else true : bool Dyn
let y : string =
if (x : Dyn bool) then
“true”

else “false”

Blame calculus

Cast semantics

true : bool Dyn

• Casts from base types to Dyn always succeed
• Result values have the target value (true) and

its type (bool)

true
bool

Cast semantics

: Dyn bool true

• Casts from Dyn succeed if the tagged type
matches with the target type

true
bool

Cast semantics

• Casts from Dyn fail if the tagged type doesn’t
match with the target type

Cast failure
bool ≠ int

true
bool

: Dyn bool

Cast semantics

succ : (int→int) Dyn

• Casts from function types to Dyn generate wrappers
of the target function

• All value flows between typed and untyped parts
are monitored by casts

Cast semantics

succ : (int→int) Dyn

λx. succ x

• Casts from function types to Dyn generate wrappers
of the target function

• All value flows between typed and untyped parts
are monitored by casts

Func

Cast semantics

succ : (int→int) Dyn

λx. succ x

• Casts from function types to Dyn generate wrappers
of the target function

• All value flows between typed and untyped parts
are monitored by casts

x : Dyn int

Func

Cast semantics

succ : (int→int) Dyn

λx. succ x

(succ …) : int Dyn
• Casts from function types to Dyn generate wrappers

of the target function
• All value flows between typed and untyped parts

are monitored by casts

x : Dyn int

Func

Outline

1. Introduction
2. Background: blame calculus (without shift/reset)

3. Problem with control operators
4. Our extension of the blame calculus with

shift/reset

Problem with control operators

NOT all value flows between typed and
untyped code are monitored

because the standard cast semantics cannot
monitor capturing and calling continuations

Shift and reset

CPS-based operators to manipulate “delimited”
continuations
• Reset 〈s〉 delimits continuations in s
• Shift (S k. s) captures continuations up to the

closest reset as k

〈E[S k. s]〉 〈s[k:=λx.〈E[x]〉]〉
where E is an evaluation context without reset

Shift and reset

CPS-based operators to manipulate “delimited”
continuations
• Reset 〈s〉 delimits continuations in s
• Shift (S k. s) captures continuations up to the

closest reset as k

〈E[S k. s]〉 〈s[k:=λx.〈E[x]〉]〉
where E is an evaluation context without reset

used to impl.
exceptions,
backtracking,
monads, etc.

1) == 4〉k

Reduction example

〈3 + (S k. (k 1) == 4)〉

= 〈E[S k. (k 1) == 4]〉 where E = 3 + []

〈(

1) == 4〉k

Reduction example

〈3 + (S k. (k 1) == 4)〉

= 〈E[S k. (k 1) == 4]〉 where E = 3 + []

〈(

captured continuation

1) == 4〉(λx.〈3 + x〉)

Reduction example

〈3 + (S k. (k 1) == 4)〉

= 〈E[S k. (k 1) == 4]〉 where E = 3 + []

〈(

captured continuation

1) == 4〉(λx.〈3 + x〉)

Reduction example

〈3 + (S k. (k 1) == 4)〉

= 〈E[S k. (k 1) == 4]〉 where E = 3 + []

〈〈3+1〉 == 4〉
* true

〈(

captured continuation

Problem of the standard cast semantics in the
presence of shift/reset

v = λx:int. 3 + (S k. (k 1) == x)

〈f (4)〉v

Problem of the standard cast semantics in the
presence of shift/reset

v = λx:int. 3 + (S k. (k 1) == x)

〈f (4)〉v 〈f ((λy.) 4)〉v y

Problem of the standard cast semantics in the
presence of shift/reset

v = λx:int. 3 + (S k. (k 1) == x)

〈f ()〉v 4

〈f (4)〉v 〈f ((λy.) 4)〉v y

Problem of the standard cast semantics in the
presence of shift/reset

v = λx:int. 3 + (S k. (k 1) == x)

〈f ()〉v 4

〈f (4)〉v 〈f ((λy.) 4)〉v y

: Dyn int4

Problem of the standard cast semantics in the
presence of shift/reset

v = λx:int. 3 + (S k. (k 1) == x)

〈f ()〉v 4 〈f ()〉v 4

〈f (4)〉v 〈f ((λy.) 4)〉v y

Problem of the standard cast semantics in the
presence of shift/reset

v = λx:int. 3 + (S k. (k 1) == x)

〈f ()〉v 4 〈f ()〉v 4

〈f ()〉3 + (S k. (k 1) == 4)

〈f (4)〉v 〈f ((λy.) 4)〉v y

Problem of the standard cast semantics in the
presence of shift/reset

…

〈f ()〉3 + (S k. (k 1) == 4)

Problem of the standard cast semantics in the
presence of shift/reset

…

〈f ()〉3 + (S k. (k 1) == 4)

((λz.〈 〉) 1) == 4k 〉〈

((λz.〈 〉) 1) == 4 〉

Problem of the standard cast semantics in the
presence of shift/reset

…

〈f ()〉3 + (S k. (k 1) == 4)

〈 k

captured continuation

((λz.〈 〉) 1) == 4 〉

Problem of the standard cast semantics in the
presence of shift/reset

…

〈f ()〉3 + (S k. (k 1) == 4)

〈 f ()

captured continuation

3 + z

Problem of the standard cast semantics in the
presence of shift/reset

…

〈f ()〉3 + (S k. (k 1) == 4)

〈 ((λz.〈 〉) 1) == 4 〉f ()3 + z

NOT all value flows between typed and
untyped parts are monitored

Outline

1. Introduction
2. Background: blame calculus (without shift/reset)

3. Problem with control operators
4. Our extension of the blame calculus with

shift/reset

How does the problem happen?

v = λx:int. 3 + (S k. (k 1) == x)

An untyped continuation is captured and sent to
typed code

〈f ()〉3 + (S k. (k 1) == 4)

…

How does the problem happen?

…

v = λx:int. 3 + (S k. (k 1) == x)

An untyped continuation is captured and sent to
typed code

〈f ()〉3 + (S k. (k 1) == 4)

Captured continuations are
expected to be typed

How does the problem happen?

…

v = λx:int. 3 + (S k. (k 1) == x)

An untyped continuation is captured and sent to
typed code

〈f ()〉3 + (S k. (k 1) == 4)

Captured continuations are
expected to be typed

The captured continuation is untypedf ()3 + z

Our solution

Changing the cast semantics so that:
• Typed code captures only typed continuations
• Untyped code captures only untyped

continuations

Our cast semantics

〈f (v’ 4)〉

Our cast semantics

〈f (v’ 4)〉
v : int→int Dyn

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v’ 4)〉
v : int→int Dyn

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

v 4

The target function v is called with
the argument to v’

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

v 4

The cast for the argument type

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

〈 〉

guarantees captured
continuations in typed

function v are typed

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

f x

The result x of v is passed to f

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

f x

The cast for the return type

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

〈 〉

guarantees captured continuations
in untyped function f are untyped

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

Additional casts are constructed by using
type information given in

Danvy&Filinski’s type system

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int→int Dyn

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int/int→int/bool Dyn

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉

requires that the closest reset’s body at
call point result in an integer

〈…〉 : Dyn int
to check the outer reset’s body returns an integer

v : int/int→int/bool Dyn

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int/int→int/bool Dyn

guarantees that the closest reset
at call point returns a Boolean

〈…〉 : bool Dyn
to inject Boolean values to untyped code

Our cast semantics

〈
let x = v in

〉
4

f x〈 〉

〈f (v 4)〉 (if all casts are ignored)≈

〈f (v’ 4)〉
v : int/int→int/bool Dyn

Our calculus

Program syntax:
 Types S, T, α, β ::= int | … | Dyn | S/α → T/β
Terms s, t ::= 1 | + | … | λx.s | s t |

s : S T | S k. s |〈s〉

Type system:

Semantics:
shift/reset + our cast semantics

Γ; α├ s : T; β

Type soundness

If 〈s〉 is a well typed, closed term, then:
• 〈s〉 diverges;
• 〈s〉 v for some v; or
• some cast in 〈s〉 fails

*

via Progress and Preservation

If something wrong happens,
it is detected as cast failure

In the paper…

• A formal system including run-time terms
• Support for “blame”
• Blame Theorem

– Statically typed terms are never responsible for cast
failure

• CPS transformation
• Sounenss of the CPS transformation

– Preservation of Type
– Preservation of Equality

responsibility for
cast failure

Our CPS transformation [[・]]

• [[・]] transforms terms/types in our calculus to
ones in the simply typed blame calculus

• The definition is standard except for casts

[[s : S T]] := λk. [[s]] (λx. x : [[S]] [[T]])
[[Dyn]] := Dyn

[[S/α→T/β]] := [[S]]→([[T]]→[[α]])→[[β]]

Soundness of
the CPS transformation

If s t, then [[s]] 〜 [[t]]

where 〜 is an equational system with usual call-by-
value axioms and a few additional axiomas

If Γ;α├ s : T; β,
then [[Γ]]├ [[s]] : ([[T]]→[[α]])→[[β]]

Preservation of Equality

Preservation of Type

Related work

Constraining delimited control with contracts
[Takikawa et al., ESOP’13]

studies “macro” gradual typing with:
• Control operators not based on CPS

– powerful enough to express shift/reset

• Contract system
– allows refined type information to be represented

Related work

Constraining delimited control with contracts
[Takikawa et al., ESOP’13]

studies “macro” gradual typing with:
• Control operators not based on CPS

– powerful enough to express shift/reset

• Contract system
– allows refined type information to be represented

Modules are
fully typed or
fully untyped

Conclusion

An extension of blame calculus with shift/reset
• Cast semantic to monitor capturing and calling

continuations
• Three properties investigated

– Type soundness
– Blame Theorem
– Soundness of the CPS transformation

	Shifting the Blame
	Shifting the Blame
	Gradual typing �[Tobin-Hochstadt&Felleisen’06,Siek&Taha’07]
	Blame calculus �[Tobin-Hochstadt&Felleisen’06,Wadler&Findler’09]
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	What blame calculus should guarantee
	What blame calculus should guarantee
	This work
	This work
	Challenge for Type Soundness
	Challenge for Type Soundness
	Challenge for Type Soundness
	Challenge for Type Soundness
	Challenge for Type Soundness
	Challenge for Type Soundness
	Outline
	Blame calculus [Wadler&Findler’09]
	Blame calculus [Wadler&Findler’09]
	Notation
	Notation
	Notation
	Notation
	Cast semantics
	Cast semantics
	Cast semantics
	Cast semantics
	Cast semantics
	Cast semantics
	Cast semantics
	Outline
	Problem with control operators
	Shift and reset
	Shift and reset
	Reduction example
	Reduction example
	Reduction example
	Reduction example
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Problem of the standard cast semantics in the presence of shift/reset
	Outline
	How does the problem happen?
	How does the problem happen?
	How does the problem happen?
	Our solution
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our cast semantics
	Our calculus
	Type soundness
	In the paper…
	Our CPS transformation [[・]]
	Soundness of �the CPS transformation
	Related work
	Related work
	Conclusion

