
Shifting the Blame

A Blame Calculus with Delimited Control

Taro Sekiyama, Soichiro Ueda⋆, and Atsushi Igarashi

Graduate School of Informatics, Kyoto University

Abstract. We study integration of static and dynamic typing in the
presence of delimited-control operators. In a program where typed and
untyped parts coexist, the run-time system has to monitor the flow of
values between these parts and abort program execution if invalid values
are passed. However, control operators, which enable us to implement
useful control effects, make such monitoring tricky; in fact, it is known
that, with a standard approach, certain communications between typed
and untyped parts can be overlooked.

We propose a new cast-based mechanism to monitor all communications
between typed and untyped parts for a language with control operators
shift and reset. We extend a blame calculus with shift/reset to give its
semantics (operational semantics and CPS transformation) and prove
two important correctness properties of the proposed mechanism: Blame
Theorem and soundness of the CPS transformation.

1 Introduction

Many programming languages support either static or dynamic typing. Static
typing makes early error detection and compilation to faster code possible while
dynamic typing makes flexible and rapid software development easier. To take
the best of both worlds, integration of static and dynamic typing has been inves-
tigated. Indeed, several practical programming languages—e.g., C♯, TypeScript,
Typed Racket [30], Typed Clojure [5], Reticulated Python [31], Hack (an exten-
sion of PHP), etc.—allow typed and untyped parts to coexist in one program
and to communicate with each other.

In languages allowing such integration, casts [24, 15, 32] (or contracts [14,
29, 28]) play an important role for monitoring the flow of values between typed
and untyped parts. A source program that contains typed and untyped parts is
compiled to an intermediate language such that casts are inserted in points where
typed and untyped code interacts. Casts are a run-time mechanism to check that
a program component satisfies a given type specification. For example, when
typed code imports a certain component from untyped code as integer, a cast is
inserted to check that it is actually an integer at run time. If it is detected that
a component did not follow the specification, an uncatchable exception, called

⋆ Current affiliation: Works Applications Co., Ltd.

2 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

blame, will be raised to notify that something unexpected has happened. Tobin-
Hochstadt and Felleisen [29] originated a blame calculus to study integration of
static and dynamic typing and Wadler and Findler [32] refined the theory of
blame on its variant.

We study integration of static and dynamic typing in the presence of delimited-
control operators. As is well known, various control effects—e.g, exception han-
dling [27], backtracking [7], monads [13], generators [27], etc.—can be expressed
by using delimited continuations as first-class values. However, control operators
make it tricky to monitor the borders between typed and untyped parts; in fact,
as is pointed out by Takikawa, Strickland, and Tobin-Hochstadt [28], communi-
cations between the two parts via continuations captured by control operators
can be overlooked under standard cast semantics.

Our contributions. In this paper, we propose a blame calculus, based on Wadler
and Findler [32], with Danvy and Filinski’s delimited-control operators shift and
reset [7] and give a new cast-based mechanism to monitor all communications
between typed and untyped parts. The idea of the new cast comes from Danvy
and Filinski’s type system [6] for shift/reset, where type information about con-
texts is considered. Using types of contexts, our cast mechanism can monitor all
communications.

As a proof of correctness of our idea, we investigate two important properties.
One is Blame Theorem [29, 32], which states that values that flow from typed
code never trigger run-time type errors. The other property is soundness of CPS
transformation: it preserves well-typedness and, for any two source terms such
that one reduces to the other, their transformation results are equivalent in the
target calculus. It turns out that we need a few axioms about casts in addition
to usual axioms, such as (call-by-value) β-reduction, for equality in the target
calculus.

The organization of the paper. In Section 2, we review the blame calculus and
the control operators shift/reset, explain why the standard cast does not work
when they are naively combined, and briefly describe our solution. Section 3
formalizes our calculus with an operational semantics and a type system, and
shows type soundness of the calculus. Section 4 shows a Blame Theorem in our
calculus and Section 5 introduces CPS transformation and shows its soundness.
Finally, discussing related work in Section 6, we conclude in Section 7. We omit
proofs from the paper; interested readers are referred to Appendix.

2 Blame Calculus with Shift and Reset

2.1 Blame Calculus

The blame calculus of Wadler and Findler [32] is a kind of typed lambda calcu-
lus for studying integration of static and dynamic typing. It is designed as an
intermediate language for gradually typed languages [24], where a program at
an early stage is written in an untyped language and parts whose specifications

Shifting the Blame 3

are stable can be gradually rewritten in a typed language, resulting in a program
with both typed and untyped parts. In blame calculi, untyped parts are repre-
sented as terms of the special, dynamic type (denoted by ⋆), where any operation
is statically allowed at the risk of causing run-time errors. Blame calculi support
smooth interaction between typed and untyped parts—i.e., typed code can use
an untyped component and vice versa—via a type-directed mechanism, casts.

A cast, taking the form t : A ⇒p B , checks that term t of source type
A behaves as target type B at run time; p, called a blame label, is used to
identify the cast that has failed at run time. For example, using integer type int,
cast expression 1 : int ⇒p ⋆ injects integer 1 to the dynamic type; conversely,
t : ⋆ ⇒p int coerces untyped term t to int. A cast would fail if the coerced
value cannot behave as the target type of the cast. For example, cast expression
(1 : int ⇒p1 ⋆) : ⋆ ⇒p2 bool, which coerces integer 1 to the dynamic type and
then its result to Boolean type bool, causes blame blame p2 at run time since the
coerced value 1 cannot behave as bool.

Using casts, in addition to fully typed and fully untyped programs, we can
write a program where typed and untyped parts are mixed. For example, suppose
that we first write an untyped program as follows:

let succ = λx . x + 1 in succ 1

where we color untyped parts gray.1 If the successor function is statically typed,
we rewrite the program so that it imports the typed successor function:

let succ = (λx . x + 1) : int → int ⇒p ⋆ in succ 1

where we color typed parts white. When the source and target types in a cast
are not important, as is often the case, we just surround a term by a frame
to indicate the existence of some appropriate cast. So, the program above is
presented as below:

let succ = λx . x + 1 in succ 1

Intuitively, a frame in programs in this style means that flows of values between
the typed and untyped parts are monitored by casts. Conversely, the absence of
a frame between the two parts indicates that the run-time system will overlook
their communications.

What happens when a value is coerced to the dynamic type rests on the
source type of the cast. If it is a first-order type such as int, the cast simply tags
the value with its type. If it is a function type, by contrast, the cast generates a
lambda abstraction that wraps the target function and then tags the wrapper.
The wrapper, a function over values of the dynamic type, checks, by using a
cast, that a given argument has the type expected by the wrapped function and
coerces the return value of the wrapped function to the dynamic type, similarly
to function contracts [14]. For example, cast expression (λx :int. x + 1) : int →
int ⇒p ⋆ generates lambda abstraction λy : ⋆ . (((λx :int. x + 1) (y : ⋆ ⇒q int)) :

1 Precisely speaking, even untyped programs need casts to use values of the dynamic
type as functions, integers, etc., but we omit them to avoid the clutter.

4 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

int ⇒p ⋆). Here, blame label q is the negation of p, which we will discuss in
detail below. Using the notation introduced above, it is easy to understand that
all communications between typed and untyped parts are monitored because the
program above reduces to:

let succ = λy . (λx . x + 1) y in succ 1

As advocated by Findler and Felleisen [14], there are two kinds of blame—
positive blame and negative blame, which indicate that, when a cast fails, its
responsibility lies with the term contained in the cast and the context containing
the cast, respectively. Following Wadler and Findler, we introduce an involutive
operation ·̄ of negation on blame labels: for any blame label p, p̄ is its negation
and ¯̄p is the same as p. For a cast with blame label p in a program, blame p
and blame p̄ denotes positive blame and negative blame, respectively. A key
observation, so-called the Blame Theorem, in work on blame calculi is that a
cast failure is never caused by values from the more precisely typed side in the
cast—i.e., if the side of a term contained in a cast with p is more precisely typed,
a program including the cast never evaluates to blame p, while if the side of a
context containing the cast is, the program never evaluates to blame p̄.

2.2 Delimited-Control Operators: Shift and Reset

Shift and reset are delimited-control operators introduced by Danvy and Fil-
inski [7]. Shift captures the current continuation, like another control operator
call/cc, and reset delimits the continuation captured by shift. The captured con-
tinuation works as if it is a composable function, namely, unlike call/cc, control
is returned to a caller when the call to the captured continuation finishes.

As an example with shift and reset, let us consider the following program:

⟨5 +Sk . ((k 1 + k 2) = 13)⟩

Here, the shift operator is invoked by the subterm Sk . ((k 1 + k 2) = 13) and the
reset operator ⟨...⟩ encloses the whole term. To evaluate a reset operator, we
evaluate its body. Evaluation of the shift operator Sk . ((k 1 + k 2) = 13) proceeds
as follows. First, it captures the continuation up to the closest reset as a function.
Since the delimited continuation in this program is 5 + [] (here, [] means a hole
of the context), the captured continuation takes the form λx . ⟨5 + x ⟩ (note that
the body of the function is enclosed by reset). Next, variable k is bound to the
captured continuation. Finally, the body of the closest reset operator is replaced
with the body of the shift operator. Thus, the example program reduces to:

⟨(((λx . ⟨5 + x ⟩) 1) + ((λx . ⟨5 + x ⟩) 2)) = 13⟩.

Since reset returns the result of its body, it evaluates to true.
Let us consider a more interesting example of function choice, a user of which

passes a tuple of integers and expects to return one of them. The caller tests the

Shifting the Blame 5

returned integer by some Boolean expression and surrounds it by reset. Then,
the whole reset expression evaluates to the index (tagged with Some) to indicate
which integer satisfied the test, or None to indicate none of them satisfied. For
example, ⟨prime? (choice (141, 197))⟩ will evaluate to Some 2 because the second
argument 197 is a prime number. Using shift/reset, such a (two-argument version
of) choice function can be defined as follows:

choice = λ(x , y):int× int.Sk . if k x then Some 1 else if k y then Some 2 elseNone

It is important to observe k is bound to the predicate (in this case, λz . ⟨prime? z ⟩).
Since blame calculi support type-directed casts, it is crucial to consider type

discipline in the presence of shift/reset. This work adopts the type system pro-
posed by Danvy and Filinski [6]. Their type system introduces types, called
answer types, of contexts up to the closest reset to track modification of the
body of a reset operator—we have seen above that the body of a reset oper-
ator can be modified to the body of a shift operator at run time. In the type
system, using metavariables α and β for types, function types take the form
A/α → B/β, which means that a function of this type is one from A to B and,
when applied, it modifies the answer type α to β. For example, using a function
of type (int× int)/bool → int/(int option) (int option means integers tagged with
Some and None), its user, when passing a pair of integers, expects to return an
integer value and to modify the answer type bool to int option. Conversely, to
see how functions are given such a function type, let us consider choice, which is
typed at (int× int)/bool → int/(int option). It can be found from the type anno-
tation that it takes pairs of integers. The body captures a continuation and calls
it with the first and second components of the argument pair. Since a caller of
choice obtains a value passed to the continuation k , the return type is int. choice
demands the answer type of a context be bool because the captured continuation
is required to return a Boolean value in conditional expressions; and the shift
operator modifies the answer type to int option because the if-expression returns
an int option value.

2.3 Blame Calculus with Shift and Reset

We extend the blame calculus with shift/reset so that all value flows between
typed and untyped parts are monitored, following the type discipline discussed
above. The main question here is how we should give the semantics of casts
for function types, which now include answer type information. The standard
semantics discussed above does not suffice because it is ignorant of answer types.
In fact, it would fail to monitor value flows that occur due to manipulation of
delimited contiuations, as we see below. For example, let us consider the situation
that untyped code imports typed function choice via a cast (represented by a
frame):

let f = choice in 5 + ⟨succ (f (141, 197))⟩

This program contains two errors: first, subterm succ (f (141, 197)) within reset
returns an integer, though shift in choice expects it to return a Boolean value

6 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

since the continuation captured by the shift operator is used in conditional ex-
pressions; second, as found in subterm 5 + ⟨. . .⟩ , the computation result of reset
is expected to be an integer, though it should be an int option value coming from
the body of shift in choice. However, if the cast on choice behaved as a standard
function cast we discussed in Section 2.1, these errors would not be detected at
run time on borders between typed and untyped parts. To see the reason, let
us reduce the program. First, since the choice is coerced to the dynamic type, a
wrapper that checks an argument and the return value is generated and then is
applied to (141, 197):

let f = choice in 5 + ⟨succ (f (141, 197))⟩ 7−→∗ 5 + ⟨succ (choice (141, 197))⟩

The check for (141, 197) succeeds and so choice is applied to (141, 197), and
then the shift operator in choice is invoked.

· · · 7−→∗ 5 + ⟨succ Sk . if k 141 then Some 1 else if k 197 then Some 2 elseNone ⟩
7−→∗ 5 + ⟨ if (λx . ⟨succ x ⟩) 141 then Some 1 else if . . . then Some 2 elseNone⟩

Here, there are one gray area and one white area, both without surrounding
frames. The former means that the value flow from the captured continuation
λx . ⟨succ x ⟩ to typed code will not be monitored, when it should be by the cast
from the dynamic type to bool. Similarly, the latter means that the value flow
from the result of the (typed) if-expression to untyped code will not be moni-
tored, either, when it should be by the cast from int option to the dynamic type.
The problem is that the standard function casts can monitor calls of functions
but does not capture and calls of delimited continuations.

Our cast mechanism can monitor such capture and calls of delimited con-
tinuations. A wrapper generated by a cast from A/α → B/β to the dynamic
type, when applied, ensures that the reset expression enclosing the application
returns a value of the dynamic type by inserting injection from β and that the
continuation captured during the call to the wrapped function returns a value of
α by the cast to α. In the above example of choice, our cast mechanism reduces
the original program to a term like:

5 + ⟨ if (λx . ⟨succ x ⟩) 141 then Some 1 else if . . . then Some 2 elseNone ⟩

where two casts are added: one to check that the return value of the continuation
has bool and the other to inject the result of the if-expression to the dynamic
type.

3 Language

In this section, we formally define a call-by-value blame calculus with delimited-
control operators shift and reset and show its type soundness. Our calculus is a
variant of the blame calculus by Ahmed et al. [2].

Shifting the Blame 7

variables x , y , k blame labels p, q
constants c ::= true | false | ... base types ι ::= bool | ...
ground types G,H ::= ι | ⋆ / ⋆ → ⋆ / ⋆

types A,B , α, β, γ, δ ::= ι | ⋆ | A/α → B/β

values v ::= x | c | λx . t | v : G ⇒ ⋆

terms s, t , u ::= x | c | op(ti i) | λx . t | s t |
s : A ⇒p B | s isG | s : G ⇒ ⋆ | blame p | ⟨s⟩ | Sk . s

Fig. 1. Syntax.

3.1 Syntax

Figure 1 presents the syntax, which is parameterized over base types, denoted
by ι, constants, denoted by c, and primitive operations, denoted by op, over
constants. We assume that at least Booleans are available in our calculus.

Types consist of base types, the dynamic type, and function types with an-
swer types. Unlike the blame calculus of Wadler and Findler, our calculus does
not include refinement types (a.k.a., subset types) for simplicity; we believe that
it is not hard to add refinement types if refinements are restricted to be pure [3].
Ground types, denoted by G and H , classify kinds of values. If the ground type
is a base type, the values are constants of the base type, and if it is a function
type (constituted only of the dynamic type), the values are lambda abstractions.

Values, denoted by v , consist of variables, constants, lambda abstractions,
and ground values. A lambda abstraction λx . t is standard; variable x is bound
in the body t . A ground value v : G ⇒ ⋆ is a value of the dynamic type; the
kind of v follows ground type G .

Terms, denoted by s and t , extend those in the simply typed blame calculus

with two forms, reset expressions and shift expressions. Using the notation ti
i
to

denote a sequence t1, ..., tn of terms, we allow primitive operators to take tuples
of terms. A type test s isG investigates a kind of the result of term s of the
dynamic type at run time. If the value of s matches with G , then it returns
true; otherwise, it returns false. A reset expression is written as ⟨s⟩ and a shift
expression is as Sk . s where k is bound in the body s. The syntax includes blame
as a primitive construct despite the fact that exceptions can be implemented by
shift and reset because blame is an uncatchable exception in a blame calculus.
Note that ground values, ground terms (s : G ⇒ ⋆), and blame are supposed
to be “run-time” citizens that appear only during reduction and not in a source
program.

In what follows, as usual, we write s [x := v] for capture-avoiding substitution
of v for variable x in s. As shorthand, we write s : G ⇒⋆ ⇒p A and s : A ⇒p

G ⇒ ⋆ for (s : G ⇒ ⋆) : ⋆ ⇒p A and (s : A ⇒p G) : G ⇒ ⋆, respectively.

8 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

s −→ t Reduction rules

op(vi
i) −→ ζ (op, vi

i) R Op

(λx . s) v −→ s [x := v] R Beta

⟨v⟩ −→ v R Reset

⟨F [Sk . s]⟩ −→ ⟨s [k := λx . ⟨F [x]⟩]⟩ where x /∈ fv (F) R Shift

v : ι ⇒p ι −→ v R Base

v : ⋆ ⇒p ⋆ −→ v R Dyn

v : A/α → B/β ⇒p A′/α′ → B ′/β′ −→
λx .Sk . (⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′) R Wrap

v : A ⇒p ⋆ −→ v : A ⇒p G ⇒ ⋆ if A ∼ G and A ̸= ⋆ R Ground
v : G ⇒⋆ ⇒p A −→ v : G ⇒p A if G ∼ A and A ̸= ⋆ R Collapse

v : G ⇒⋆ ⇒p A −→ blame p if G ̸∼ A R Conflict

(v : G ⇒ ⋆) isG −→ true R IsTrue

(v : H ⇒ ⋆) isG −→ false if H ̸= G R IsFalse

s 7−→ t Evaluation rules

s −→ t

E [s] 7−→ E [t]
E Step

E ̸= []

E [blame p] 7−→ blame p
E Abort

Fig. 2. Reduction and evaluation.

3.2 Semantics

The semantics of our calculus is given in a small-step style by using two relations
over terms: reduction relation −→, which represents basic computation such as
β-reduction, and evaluation relation 7−→, in which subterms are reduced.

The reduction rules, shown at the top of Figure 2, are standard or similar to
the previous calculi except (R Wrap), which is the key of our work. In (R Op),
to reduce a call to a primitive operator, we assume that there is a function ζ which
returns an appropriate value when taking an operator name and arguments to it.
The rule (R Shift) presents that the shift operator captures the continuation up
to the closest reset operator. In the rule, the captured continuation is represented
by pure evaluation contexts, denoted by F , which are evaluation contexts [12]
where the hole does not occur in bodies of reset operators. Pure evaluation
contexts are defined as follows:

F ::= [] | op(vi i ,F , tj
j
) | F s | v F | F : A ⇒p B | F : G ⇒ ⋆ | F isG

As mentioned earlier, the body of the function representing the captured con-
tinuation is enclosed by reset. A type test succeeds and returns true if the kind
of a examined value matches with the specified ground type (by (R IsTrue));
otherwise, it returns false (by (R IsFalse)).

There are six reduction rules for cast expressions. The rules (R Base) and
(R Dyn) mean that casts between the same base type and between the dynamic

Shifting the Blame 9

type perform no checks. We find (R Dyn), which does not appear in Ahmed et
al. [2], matches well with CPS transformation; we will discuss it in Section 5.
The rule (R Ground), applied when the target type is the dynamic type but
the source type is not, turns a cast expression to a ground term by inserting a
cast to the ground type G that represents the kind of the value v . The relation
∼, called compatibility, over two types is defined as the least compatible relation
closed under A ∼ ⋆ and ⋆ ∼ B . It intuitively means that a cast from A to B
(and vice versa) can succeed; in other words, A ̸∼ B means that a cast will fail.
One interesting fact about compatibility is that, for any nondynamic type A, we
can find exactly one ground type that is compatible with A: If A is a base type,
then G is equal to A and, if A is a function type, then G is ⋆ / ⋆ → ⋆ / ⋆. As
a result, G in (R Ground) is uniquely determined. The rules (R Collapse)
and (R Conflict) are applied when a target value is a ground value. When
the kind G of the underlying value v is not compatible with the target type of
the cast, the cast is blamed with blame label p by (R Conflict). Otherwise,
the underlying value is coerced from the ground type of the ground value to the
target type of the cast by (R Collapse).

The reduction rule (R Wrap), applied to casts between function types, is
the most involved. The rule means that the cast expression reduces to a lambda
abstraction that wraps the target value v . Since the wrapper function works as a
value of type A′/α′ → B ′/β′, it takes a value of A′. Like function contracts [14],
in the wrapper, the argument denoted by x is coerced to argument type A of
the source type to apply v to it and the return value of v is coerced to return
type B ′ of the target type. Furthermore, to call the target function in a context
of answer type α, the wrapper captures the continuation in which the wrapper
is applied by using shift, applies the captured continuation to the result of the
target function, and then coerces the result of the captured continuation to
α. Since the wrapper is applied in a context of answer type α′, the captured
continuation returns a value of α′. By enclosing the cast to α with reset, a
continuation captured during the call to v returns a value of α. Finally, the
wrapper coerces the result of the reset operator from β to β′ because the call
to the target function modifies the answer type of the context to β, and so the
reset expression returns a value of β, and the wrapper is expected to modify the
answer type to β′. The rule (R Wrap) reverses blame labels for casts from A′

to A and from α′ to α because target values for those casts originate from the
context side.

We illustrate how (R Wrap) makes monitoring of capture and calls of con-
tinuations possible, using choice in Section 2.3. By (R Ground), the cast from
(int× int)/bool → int/(int option) to the dynamic type reduces to that to ⋆ / ⋆ →
⋆ / ⋆. By (R Wrap), the cast generates a wrapper.

let f = choice in 5 + ⟨succ (f (141, 197))⟩

7−→ let f = λx .Sk ′. ⟨ k ′ (choice x) ⟩ in 5 + ⟨succ (f (141, 197))⟩

10 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

The wrapper is applied to (141, 197), so the evaluation proceeds as follows:

· · · 7−→∗ 5 + ⟨succ (Sk ′. ⟨ k ′ (choice (141, 197)) ⟩)⟩

7−→ 5 + ⟨ ⟨ (λx . ⟨succ x ⟩) (choice (141, 197)) ⟩ ⟩

7−→∗ 5 + ⟨ ⟨ (λx . ⟨succ x ⟩) (Sk . if k 141 then Some 1 else . . .) ⟩ ⟩

7−→ 5 + ⟨ ⟨if v 141 then Some 1 else if v 197 then Some 2 elseNone⟩ ⟩

where v = λy . ⟨ (λx . ⟨succ x ⟩) y ⟩. We can observe that all borders in the last

term are monitored by casts.
Evaluation rules, presented at the bottom of Figure 2, are standard: (E Step)

reduces a subterm that is a redex in a program and (E Abort) halts evaluation
of a program at blame when cast failure happens. To determine a redex in a
program, we use evaluation contexts [12], which are defined as follows.

E ::= [] | op(vi i ,E , tj
j
) | E s | v E | ⟨E ⟩ | E : A ⇒p B | E : G ⇒ ⋆ | E isG

This definition means that terms are evaluated from left to right. Unlike pure
evaluation contexts, evaluation contexts include a context where the hole is put
in the body of a reset operator.

3.3 Type System

This section presents a type system of our calculus. It is defined as a combination
of that of Danvy and Filinski and that of Wadler and Findler. As usual, we use
typing contexts, denoted by Γ , to denote a mapping of variables to types:

Γ ::= ∅ | Γ, x :A

Typing judgments in our type system take the form Γ ;α ⊢ s : A;β, which
means that term s is typed at type A under typing context Γ and it modifies
answer type α to β when evaluated. Perhaps, it may be easier to understand what
the typing judgment means when its CPS transformation is considered. When
we write [[·]] for the CPS transformation, the typing judgment Γ ;α ⊢ s : A;β
is translated into the form [[Γ]] ⊢ [[s]] : ([[A]] → [[α]]) → [[β]] in the simply typed
blame calculus (without shift/reset). That is, type A of term s and type α are
the argument type and the return type of a continuation, respectively, and type
β is the type of the whole computation result when the continuation is passed.

Figure 3 shows typing rules for deriving typing judgments. Typing rules for
shift operators, reset operators, and terms from the lambda calculus are the
same as Danvy and Filinski’s type system. In (T Op), we use function ty from
primitive operator names to their (first-order) types. Typing rules for terms from

Shifting the Blame 11

Γ ;α ⊢ t : A;β Typing rules

Γ ;α ⊢ c : ty (c);α
T Const

ty (op) = ιi
i → ι Γ ;αi ⊢ ti : ιi ;αi−1

i

Γ ;αn ⊢ op(ti
i
) : ι;α0

T Op

Γ ;α ⊢ blame p : A;β
T Blame

Γ, x :A;β ⊢ t : B ; γ

Γ ;α ⊢ λx . t : A/β → B/γ;α
T Abs

x :A ∈ Γ

Γ ;α ⊢ x : A;α
T Var

Γ ; γ ⊢ t : A/α → B/β; δ Γ ;β ⊢ s : A; γ

Γ ;α ⊢ t s : B ; δ
T App

Γ ;α ⊢ s : A;β A ∼ B

Γ ;α ⊢ (s : A ⇒p B) : B ;β
T Cast

Γ ;α ⊢ s : G;β

Γ ;α ⊢ (s : G ⇒ ⋆) : ⋆;β
T Ground

Γ ;α ⊢ s : ⋆;β

Γ ;α ⊢ s isG : bool;β
T Is

Γ, k :A/γ → α/γ; δ ⊢ s : δ;β

Γ ;α ⊢ Sk . s : A;β
T Shift

Γ ;β ⊢ s : β;A

Γ ;α ⊢ ⟨s⟩ : A;α
T Reset

Fig. 3. Typing rules.

the blame calculus are changed to follow Danvy and Filinski’s type system. In
(T Cast), following previous work on the blame calculus, we restrict casts in well
typed programs to be ones between compatible types. In other words, (T Cast)
rules out casts that will always fail. The typing rule (T Blame) seems to allow
blame to modify answer types to any type though blame does not invoke shift
operator; this causes no problems (and is necessary for type soundness) because
blame halts a program.

3.4 Type Soundness

We show type soundness of our calculus in the standard way: Preservation and
Progress [33]. In the presence of the dynamic type, we can write a divergent
term easily, and blame is a legitimate state of program evaluation. Thus, type
soundness in this paper means that any well typed program (a closed term
enclosed by reset) evaluates to a well typed value, diverges, or raises blame. In
what follows, we write 7−→∗ for the reflexive and transitive closure of 7−→.

Theorem 1 (Type Soundness). If ∅;α ⊢ ⟨s⟩ : A;α, then one of the follow-
ings holds:

– there is an infinite evaluation sequence from ⟨s⟩;
– ⟨s⟩ 7−→∗ blame p for some p; or
– ⟨s⟩ 7−→∗ v for some v such that ∅;α ⊢ v : A;α.

The outermost reset is assumed to exclude terms stuck at a shift operator with-
out a surrounding reset. The statement of Progress shown after Preservation,
however, has to take into account such a possibility for proof by induction to
work.

12 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Lemma 1 (Preservation). If ∅;α ⊢ s : A;β and s 7−→ t, then ∅;α ⊢ t : A;β.

Proof. By induction on the typing derivation with case analysis on the reduc-
tion/evaluation rule applied to s. In the case for (R Shift), we follow the proof
in the previous work on shift/reset [4].

Lemma 2 (Progress). If ∅;α ⊢ s : A;β, then one of the followings holds:

– s 7−→ s ′ for some s ′;
– s is a value;
– s = blame p for some p; or
– s = F [Sk . t] for some F, k and t.

Proof. Straightforward by induction on the typing derivation.

Proof (Theorem 1). By Progress and Preservation. Note that the evaluation from
⟨s⟩ to F [Sk . t] as stated in Progress does not happen since s is enclosed by reset
and reset does not appear in F .

4 Blame Theorem

Blame Theorem intuitively states that values from the typed code will never
be sources of cast failure at run time and, more specifically, clarifies conditions
under which some blame never happens. Following the original work [32], we
formalize such conditions using a few, different subtyping relations. Our proof
is based on that in Ahmed et al.’s work [2], which defined a safety relation for
terms and showed Blame Preservation and Blame Progress like preservation and
progress for type soundness.

4.1 Subtyping

To state a Blame Theorem, we introduce naive subtyping <:n, which formalizes
the notion of being “more precisely typed.” Roughly speaking, type A is a naive
subtype of B when A is obtained by substituting some types for occurrences of
the dynamic type in B . For example, int <:n ⋆ and int/int → int/int <:n ⋆/int →
int/⋆. Note that argument types are covariant here. The Blame Theorem states
that if type A is a naive subtype of type B , then the side of A is never blamed,
that is, a cast s : A ⇒p B does not cause blame p and s : B ⇒p A does not
blame p̄.

To prove the Blame Theorem, we introduce positive and negative subtyping.
Intuitively, that type A is a positive (resp. negative) subtype of B expresses
that positive (resp. negative) blame never happens for a cast from A to B .
It turns out that naive subtyping can be expressed in terms of positive and
negative subtyping, from which the Blame Theorem easily follows. In addition,
a cast from an ordinary subtype—where argument types of function types are
contravariant—to a supertype is shown not to raise blame.

Shifting the Blame 13

A <: B Subtype

A <: G

A <: ⋆
S Dyn

A′ <: A B <: B ′ α′ <: α β <: β′

A/α → B/β <: A′/α′ → B ′/β′ S Fun

A <:n B Naive Subtype

A <:n ⋆
SN Dyn

A <:n A′ B <:n B ′ α <:n α′ β <:n β′

A/α → B/β <:n A′/α′ → B ′/β′ SN Fun

A <:+ B Positive Subtype

A <:+ ⋆
S+ Dyn

A′ <:− A B <:+ B ′ α′ <:− α β <:+ β′

A/α → B/β <:+ A′/α′ → B ′/β′ S+ Fun

A <:− B Negative Subtype

⋆ <:− A
S− Dyn

A <:− G

A <:− B
S− Any

A′ <:+ A B <:− B ′ α′ <:+ α β <:− β′

A/α → B/β <:− A′/α′ → B ′/β′ S− Fun

Fig. 4. Subtyping rules.

Subtyping relations—ordinary subtyping <:, naive subtyping <:n, positive
subtyping <:+, and negative subtyping <:−—are reflexive relations satisfying
subtyping rules presented in Figure 4. The idea shared across all subtyping rules
for function types is that function type A/α → B/β is interpreted as if it takes
the CPS-transformation form A → (B → α) → β. In this form, A and α occur
at negative positions while B and β occur at positive positions.

We write A <: B to denote that A is a subtype of B . The rule (S Dyn)
means that any (nondynamic) type is a subtype of the dynamic type if it is a
subtype of the (unique) ground type compatible to it. The premise is needed for
cases that the subtype is higher order. Function types are covariant at positive
positions and contravariant at negative positions as usual.

As mentioned before, type A is a naive subtype of B when A is obtained by
putting some types in occurrences of the dynamic type in B . The rule (SN Dyn)
means that the dynamic type is least precise. In the rule (SN Fun), function
types for naive subtyping are covariant in both positive and negative positions.

The definitions of positive and negative subtyping are mutually recursive.
The rule (S+ Dyn) means that positive blame never happens when any value
is coerced to the dynamic type. Similarly to ordinary subtyping, in (S+ Fun),
function types are covariant at positive positions and contravariant at negative
positions. Negative subtyping is a reversed version of positive subtyping except
for addition of (S− Any), which is a combination of (S− Dyn) and the fact

14 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

s sf p A <:+ B

s : A ⇒p B sf p

s sf p A <:− B

s : A ⇒p̄ B sf p c sf p

∀i . ti sf p
op(ti

i
) sf p x sf p

s sf p

λx . s sf p

s sf p t sf p

s t sf p

q ̸= p q ̸= p̄ s sf p

s : A ⇒q B sf p

s sf p

s : G ⇒ ⋆ sf p
s sf p

s isG sf p

q ̸= p

blame q sf p

s sf p

Sk . s sf p
s sf p

⟨s⟩ sf p

Fig. 5. Safety rules.

that a cast from type A to the dynamic type never gives rise to negative blame
when A is a negative subtype of its ground type. The rule (S− Any) follows from
Ahmed et al.’s work [2] and represents a relaxed form of the system of Wadler and
Findler [32]. Notice that polarity of subtyping is reversed at negative positions.

As mentioned above, we show that naive subtyping (and ordinary subtyping)
can be expressed in terms of positive and negative subtyping.

Lemma 3. If A/α → B/β <:− G, then A = α = ⋆ and B <:− γ and β <:− γ
for any γ.

Lemma 4. A <:n B iff A <:+ B and B <:− A.

Lemma 5. A <: B iff A <:+ B and A <:− B.

The proofs of the direction from left to right are straightforward by induction
on the derivations of A <:n B and A <: B . The other direction is shown by
structural induction on A with Lemma 3.

4.2 Blame Theorem

The proof of the Blame Theorem is similar to preservation and progress for type
soundness. Instead of a type system, we introduce a safety relation using positive
and negative subtyping and show Blame Preservation, which states safety is
preserved by evaluation, and Blame Progress, which states that a safe term does
not give rise to blame. In this section, we focus only on whether a term gives
rise to blame or not and not on whether a term gets stuck or not.

A term s is safe for blame label p, written as s sf p, if every cast with blame
label p in s is from a type to its positive supertype and every cast with p̄ is
from a type to its negative supertype. We present inference rules for the safety
relation in Figure 5. From the definition, it is observed that a term safe for p
does not contain blame with p; this does not restrict a source program written
by a programmer because it should not contain any blame.

Blame Preservation and Blame Progress show that, if s sf p, term s never
gives rise to blame with label p. We write s ̸7−→ t and s ̸7−→∗ t to denote
that term s does not reduce to term t in a single step and in multiple steps,
respectively.

Shifting the Blame 15

Lemma 6 (Blame Preservation). If s sf p and s 7−→ t, then t sf p.

Proof. By induction on the derivation of s sf p with case analysis on the reduc-
tion/evaluation rule applied to s. In the case for (R Fun), we use Lemma 3 for
(S− Any).

Lemma 7 (Blame Progress). If s sf p, then s ̸7−→ blame p.

Proof. Straightforward by induction on the derivation of s sf p.

Finally, we show the Blame Theorem—values that flow from the more pre-
cisely typed side never cause blame—and, furthermore, that casts from one type
to its supertype never give rise to blame.

Theorem 2 (Blame Theorem).
Let s be a term with a subterm t : A ⇒p B where cast is labeled by the only

occurrence of p in s. Moreover, suppose that p̄ does not appear in s.

1. If A <:+ B, then s ̸7−→∗ blame p.
2. If A <:− B, then s ̸7−→∗ blame p̄.
3. If A <:n B, then s ̸7−→∗ blame p; if B <:n A, then s ̸7−→∗ blame p̄.
4. If A <: B, then s ̸7−→∗ blame p and s ̸7−→∗ blame p̄.

Proof. The first and second cases are shown by Blame Preservation and Blame
Progress because s sf p in the first case and s sf p̄ in the second case. The third
case (resp. the fourth case) follows from the first and second cases and Lemma 4
(resp. Lemma 5).

5 CPS Transformation

The semantics of programming languages with control operators has often been
established by transformation of programs with control operators to continuation
passing style (CPS), a programming style where continuations appear in a pro-
gram as arguments of functions. For example, programs with Reynolds’s escape
operator [21], call/cc in Scheme, shift/reset [7], and so on can be transformed to
CPS form.

As a proof of correctness of our approach, we define a CPS transformation
from terms in our calculus to those in the simply typed blame calculus of Ahmed
et al. [2] and show that a well typed source term is transformed to a well typed
target term and, for any source terms such that one reduces to the other, their
CPS-transformation results are equivalent in the target calculus. The equational
system is based on call-by-value axioms [22] due to blame, which is effectful.

Before giving the CPS transformation, we modify the syntax and the reduc-
tion rule (R Ground) of our calculus slightly in order to transform a ground
value of the form v : ⋆ / ⋆ → ⋆ / ⋆ ⇒ ⋆ to a value with a cast (the reason is
detailed later). To assign a blame label to the cast, the syntax is changed as
follows:

v ::= ... | v : G ⇒p ⋆ s ::= ... | s : G ⇒p ⋆

16 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

[[A]] CPS Transformation (Types)

[[ι]] = ι [[⋆]] = ⋆ [[A/α → B/β]] = [[A]] → ([[B]] → [[α]]) → [[β]]

v∗ CPS Transformation (Values)

x∗ = x c∗ = c (λx . s)∗ = λx . [[s]] (v : ι ⇒ ⋆)∗ = v∗ : ι ⇒ ⋆

(v : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆)∗ = (λx . (v∗ x) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆

[[s]] CPS Transformation (Terms)

[[v]] = λκ. κ v∗

[[op(ti
i
)]] = λκ. [[t1]] (λx1. . . . [[tn]] (λxn . κ op(xi

i)) . . .)

[[s t]] = λκ. [[s]] (λx . [[t]] (λy . x y κ))

[[⟨s⟩]] = λκ. κ ([[s]] (λx . x))

[[Sk . s]] = λκ. ([[s]] (λx . x)) [k := λx . λκ′. κ′ (κ x)]

[[s : A ⇒p B]] = λκ. [[s]] (λx . κ (x : [[A]] ⇒p [[B]]))

[[s : G ⇒ ⋆]] = λκ. [[s]] (λx . κ (x : G ⇒ ⋆)∗)

[[s is ι]] = λκ. [[s]] (λx . κ (x is ι))

[[s is (⋆ / ⋆ → ⋆ / ⋆)]] = λκ. [[s]] (λx . κ (x is (⋆ → ⋆)))

[[blame p]] = λκ. blame p

Fig. 6. CPS transformation.

Blame labels in ground terms and values are given as subscripts for ease of
distinction from casts. The reduction rule (R Ground) takes the following form:

v : A ⇒p ⋆ −→ (v : A ⇒p G) : G ⇒p ⋆ (if A ∼ G and A ̸= ⋆) R Ground

Our CPS transformation, which mostly follows Danvy and Filinski [7], is
shown in Figure 6 in three parts: transformation for types, values, and terms.
We use variable κ to denote continuations. The CPS transformation for types is
standard. A function of type A/α → B/β takes an argument of A, would pass
a value of B to a continuation that returns α, and results in a value of β as
the computation result. The CPS transformation for values maps values in our
calculus to those in the blame calculus without shift/reset. The definition shown
in Figure 6 is easy to understand except for ground values where the ground type
is a function type. We might expect that the CPS-transformation result of ground
value v : G ⇒p ⋆ can be defined as v∗ : [[G]] ⇒ ⋆. However, that form would
not be a valid term in the target calculus if the ground type G is a function type,
because the ground function type in the target calculus takes only the form ⋆ →
⋆ but [[⋆/⋆ → ⋆/⋆]] = ⋆ → (⋆ → ⋆) → ⋆. Expecting a value will be translated
to a value in the target calculus, we set a ground value v : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆
to be mapped to a value to which v∗ : [[G]] ⇒p ⋆ reduces, instead. (Notice the
superscript on ⇒. A term v∗ : [[G]] ⇒p ⋆ is a cast and always valid.) In the

Shifting the Blame 17

result, we omit the trivial cast x : ⋆ ⇒p̄ ⋆. The CPS transformation for terms
is self-explanatory. It is worth noting that, for type tests, there are two cases on
tested types. The case that a tested type is a base type is trivial. The other case
translates function type ⋆ / ⋆ → ⋆ / ⋆ with answer types to the function type
⋆ → ⋆, where the type of continuations is not presented, because the simply
typed blame calculus does not support type tests with higher-order types and,
more unfortunately, we cannot investigate that a value of the dynamic type
would take functions as an argument (recall [[⋆/⋆ → ⋆/⋆]] = ⋆ → (⋆ → ⋆) → ⋆)
in general. Although this treatment of type tests with function types causes no
problems in this work, it would be problematic when we consider inverse of the
CPS transformation as in completeness of axiomatization [18].

It is straightforward to show that well typed source terms are transformed to
well typed target terms. For any typing context Γ , we write [[Γ]] for the typing
context obtained by applying the CPS transformation to types mapped by Γ .

Theorem 3 (Preservation of Type). If Γ ;α ⊢ s : A;β, then [[Γ]] ⊢ [[s]] :
([[A]] → [[α]]) → [[β]].

Next, we define an equational system in the target calculus. The system
consists of axioms about casts as well as usual call-by-value axioms [22]. In
what follows, we use metavariables e, v, E, and A (and B) to denote terms,
values, evaluation contexts, and types in the target calculus, respectively, and
write fv (v) and fv (E) for the sets of free variables in v and E, respectively. In
addition, let the relation =⇒ be the evaluation relation in the target calculus.

Definition 1 (Term Equality) The relation ≈ is the least congruence that
contains the following axioms:

e1 =⇒ e2

e1 ≈ e2

x /∈ fv (v)

λx .v x ≈ v

x /∈ fv (E)
(λx .E[x]) e ≈ E[e]

e : ⋆ ⇒p ⋆ ≈ e e : ⋆ ⇒p ⋆ → ⋆ ⇒p A → B ≈ e : ⋆ ⇒p A → B

We think that the last two axioms about casts are reasonable. The former,
which skips the trivial cast, is found in another blame calculus [26]. This ax-
iom is introduced mainly to ignore redundant casts that often happen in CPS-
transformation results. The latter axiom, which collapses two casts into one, is
used to show terms reduced by (R Collapse) are equivalent after CPS transfor-
mation. The latter might be unnecessary if our calculus was able to investigate
structures of values of the dynamic type as Abadi et al. [1], but we leave it as
future work.

Now, we show that the relationship between our semantics in direct-style and
the CPS transformation.

Theorem 4 (Preservation of Equality). If s 7−→ t, then [[s]] ≈ [[t]].

Finally, we remark on (R Dyn). In fact, although we first had tried to show
Theorem 4 without (R Dyn), we could not. Without (R Dyn), we have to show
that the transformation results of v : G ⇒q ⋆ ⇒p ⋆ and v : G ⇒p ⋆ are

18 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

equivalent because the side condition A ̸= ⋆ in (R Collapse) is not needed [2]
and then the former would reduce to the latter. Unfortunately, the results are
not equivalent in our equational system because the former refers to label q
but the latter does not. We consider that there is room for improvement of the
CPS transformation, the equational system, and the proof of soundness of the
transformation in this paper; it is left as future work.

6 Related Work

Gradual typing and Blame Theorem. Blame calculi are variants of lambda calculi
for gradual typing by Siek and Taha [24], a mechanism to integrate static and
dynamic typing. Since the seminal work by Siek and Taha, the notion of grad-
ual typing has spread over various programming constructs—e.g., higher-order
functions [24], objects [25], mutable references [17], polymorphism [2], etc. The
property that values that flow from typed code never trigger cast failure was
studied first in the context of contract checking [29]. Wadler and Findler [32]
adopted blame of finer forms (positive and negative blame), following Findler
and Felleisen’s work [14], and investigated conditions under which blame does
not happen. They discovered that the notion of being “more precisely typed”
can be formalized as naive subtyping.

Delimited-control operators. Roughly speaking, there have been two major fam-
ilies of delimited-control operators: so-called “static” control operators, includ-
ing shift/reset [6, 7], and so-called “dynamic” control operators, including con-
trol/prompt [11, 16]. In this work, we choose shift/reset because their type sys-
tem and CPS transformation are well studied. In fact, CPS transformation for
shift/reset has served as a guide to designing our cast mechanism. Given recent
studies on relationship of control/prompt to their CPS transformation [23, 8,
10] and a type system for control/prompt [20], we leave an extension of blame
calculi to control/prompt for interesting future work.

Gradual typing with delimited-control operators. Most closely related work is
Takikawa et al. [28]; they have also studied integration of static and dynamic typ-
ing in the presence of control operators. They proposed a contract system for pro-
grams with control operators in Racket [16] and showed that values from typed
parts never trigger blame (in the sense of Tobin-Hochstadt and Felleisen [29])
through the complete monitoring property [9]. Aside from an obvious difference
in the choice of control operators, our calculus has finer-grained control over
how typed and untyped parts can be mixed: e.g., a function of type int → ⋆
cannot be expressed in Takikawa et al. because there are only fully typed and
fully untyped modules. We also define a CPS transformation for our calculus,
and investigate the relationship between our calculus and the CPS transforma-
tion. Although shift and reset can be implemented by using control operators in
Racket [16], it is not very clear whether their contract system can simulate our
casts for function types with answer types naturally.

Shifting the Blame 19

7 Conclusion

We have proposed a new cast-based mechanism to monitor all communications
between typed and untyped code in the presence of shift/reset. It is inspired by
Danvy and Filinski’s type system. To justify the design of our cast semantics, we
have defined a simply typed blame calculus with shift/reset and shown the Blame
Theorem and soundness of the CPS transformation. We have found additional
axioms for the equational system in the target language in proving the soundness.

There are many directions for future work. First is an extension of our blame
calculus with refinement types. Effects in refinements are obviously problem-
atic. One possible solution would be to restrict refinements to be pure. It is
interesting to investigate how such purity restriction can be relaxed. Second is
to apply succeeding work about blame calculi, such as space-efficiency [17] and
parametricity [2], to our calculus. In particular, an extension with parametric-
ity would be challenging because it is not clear how control operators and the
ν-operator interact with each other. Finally, we would like to develop a contract
system corresponding to our calculus and to inspect more detailed relationship
to the contract system of Takikawa et al.

Acknowledgments. We would like to thank Matthias Felleisen, Robby Findler,
Philip Wadler, and anonymous reviewers of APLAS 2015 for valuable comments.
This work was supported in part by Grant-in-Aid for Scientific Research (B) No.
25280024 from MEXT of Japan. The title is derived from that of a paper by
Kameyama, Kiselyov, and Shan [19].

References

1. Abadi, M., Cardelli, L., Pierce, B.C., Plotkin, G.D.: Dynamic typing in a statically-
typed language. In: Proc. of ACM POPL. pp. 213–227 (1989)

2. Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for all. In: Proc. of ACM
POPL. pp. 201–214 (2011)

3. Asai, K., Kameyama, Y.: Polymorphic delimited continuations. In: Proc. of
APLAS. LNCS, vol. 4807, pp. 239–254 (2007)

4. Asai, K., Kameyama, Y.: Polymorphic delimited continuations. CS-TR-07-10,
Dept. of Computer Science, University of Tsukuba (2007)

5. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for Clojure, unpublished draft

6. Danvy, O., Filinski, A.: A functional abstraction of typed contexts. 89/12, DIKU,
University of Copenhagen (1989)

7. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Functional Program-
ming. pp. 151–160 (1990)

8. Dariusz Biernacki, O.D., Millikin, K.: A dynamic continuation-passing style for
dynamic delimited continuations. Research Series RS-06-15, BRICS, DAIMI (2006)

9. Dimoulas, C., Tobin-Hochstadt, S., Felleisen, M.: Complete monitors for behavioral
contracts. In: Proc. of ESOP. LNCS, vol. 7211, pp. 214–233 (2012)

10. Dybvig, R.K., Peyton Jones, S.L., Sabry, A.: A monadic framework for delimited
continuations. J. Funct. Program. 17(6), 687–730 (2007)

20 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

11. Felleisen, M.: The theory and practice of first-class prompts. In: Proc. of ACM
POPL. pp. 180–190 (1988)

12. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (Sep 1992)

13. Filinski, A.: Representing monads. In: Proc. of ACM POPL. pp. 446–457 (1994)
14. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proc. of ACM

ICFP. pp. 48–59 (2002)
15. Flanagan, C.: Hybrid type checking. In: Proc. of ACM POPL. pp. 245–256 (2006)
16. Flatt, M., Yu, G., Findler, R.B., Felleisen, M.: Adding delimited and composable

control to a production programming environment. In: Proc. of ACM ICFP. pp.
165–176 (2007)

17. Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. In: Trends in
Functional Prog. pp. 1–18 (2007)

18. Kameyama, Y., Hasegawa, M.: A sound and complete axiomatization of delimited
continuations. In: Proc. of ACM ICFP. pp. 177–188 (2003)

19. Kameyama, Y., Kiselyov, O., Shan, C.: Shifting the stage: Staging with delimited
control. In: Proc. of ACM PEPM. pp. 111–120 (2009)

20. Kameyama, Y., Yonezawa, T.: Typed dynamic control operators for delimited con-
tinuations. In: Proc. of FLOPS. LNCS, vol. 4989, pp. 239–254 (2008)

21. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proc. of ACM Annual Conference. pp. 717–740 (1972)

22. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
Lisp and Symbolic Computation 6(3-4), 289–360 (1993)

23. Shan, C.: Shift to control. In: Scheme and Functional Programming Workshop. pp.
99–107 (2004)

24. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop. pp. 81–92 (2006)

25. Siek, J.G., Taha, W.: Gradual typing for objects. In: Proc. of ECOOP. LNCS, vol.
4609, pp. 2–27 (2007)

26. Siek, J.G., Wadler, P.: Threesomes, with and without blame. In: Proc. of ACM
POPL. pp. 365–376 (2010)

27. Sitaram, D.: Handling control. In: Proc. of ACM PLDI. pp. 147–155 (1993)
28. Takikawa, A., Strickland, T.S., Tobin-Hochstadt, S.: Constraining delimited con-

trol with contracts. In: Proc. of ESOP. LNCS, vol. 7792, pp. 229–248 (2013)
29. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: From scripts to pro-

grams. In: Dynamic Language Symposium. pp. 964–974 (2006)
30. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed

scheme. In: Proc. of ACM POPL. pp. 395–406 (2008)
31. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual

typing for Python. In: Dynamic Language Symposium. pp. 45–56 (2014)
32. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Proc. of ESOP.

LNCS, vol. 5502, pp. 1–16 (2009)
33. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information

and Computation 115(1), 38–94 (1994)

Shifting the Blame 21

APPENDIX

A Definition

A.1 Syntax

Variables x , y , z , k

Blame Labels p, q

Base types ι ::= int | bool | ...
Types A,B , α, β, γ, δ ::= ι | ⋆ | A/α → B/β

Ground types G ,H ::= ι | ⋆ / ⋆ → ⋆ / ⋆

Values v ::= x | c | λx . t | v : G ⇒p ⋆

Terms s, t , u ::= v | op(ti
i
) | s t | ⟨s⟩ | Sk . s |

s : A ⇒p B | s : G ⇒p ⋆ | s isG | blame p

Evaluation Contexts E ::= [] | op(vi i ,E , tj
j
) | E s | v E | ⟨E ⟩ |

E : A ⇒p B | E : G ⇒p ⋆ | E isG

Pure Evaluation Contexts F ::= [] | op(vi i ,F , tj
j
) | F s | v F |

F : A ⇒p B | F : G ⇒p ⋆ | F isG

Type Environments Γ ::= ∅ | Γ, x :A

Notation 1 We write Kι to denote the set of constants of ι. We omit the subscript blame labels of ground terms
and ground values if they are not important or clear from the context. As shorthand, we write s : G ⇒p ⋆ ⇒q A
and s : A ⇒p G ⇒q ⋆ for (s : G ⇒p ⋆) : ⋆ ⇒q A and (s : A ⇒p G) : G ⇒q ⋆, respectively.

A.2 Semantics

s −→ t Reduction Rules

op(vi
i) −→ ζ (op, vi

i) (R Op)

(λx . t) v −→ t [x := v] (R Beta)

v : A/α → B/β ⇒p A′/α′ → B ′/β′ −→
λx .Sk . (⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′) (R Wrap)

⟨v⟩ −→ v (R Reset)

⟨F [Sk . s]⟩ −→ ⟨s [k := λx . ⟨F [x]⟩]⟩ where x /∈ fv (F) (R Shift)

v : ι ⇒p ι −→ v (R Base)

v : ⋆ ⇒p ⋆ −→ v (R Dyn)

v : A ⇒p ⋆ −→ v : A ⇒p G ⇒p ⋆ if A ∼ G and A ̸= ⋆ (R Ground)

v : G ⇒⋆ ⇒p A −→ v : G ⇒p A if G ∼ A and A ̸= ⋆ (R Collapse)

v : G ⇒⋆ ⇒p A −→ blame p if G ̸∼ A (R Conflict)

(v : G ⇒ ⋆) isG −→ true (R IsTrue)

(v : H ⇒ ⋆) isG −→ false if H ̸= G (R IsFalse)

s 7−→ t Evaluation Rules

s −→ t

E [s] 7−→ E [t]
E Step

E ̸= []

E [blame p] 7−→ blame p
E Abort

22 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

A.3 Type System

A ∼ B

A ∼ ⋆
C DynTo

⋆ ∼ B
C DynFrom

ι ∼ ι
C Base

A′ ∼ A B ∼ B ′ α′ ∼ α β ∼ β′

A/α → B/β ∼ A′/α′ → B ′/β′ C Fun

Γ ;α ⊢ t : A;β

Γ ;α ⊢ c : ty (c);α
T Const

ty (op) = ιi
i → ι Γ ;αi ⊢ ti : ιi ;αi−1

i

Γ ;αn ⊢ op(ti
i
) : ι;α0

T Op
x :A ∈ Γ

Γ ;α ⊢ x : A;α
T Var

Γ, x :A;β ⊢ t : B ; γ

Γ ;α ⊢ λx . t : A/β → B/γ;α
T Abs

Γ ; γ ⊢ t : A/α → B/β; δ Γ ;β ⊢ s : A; γ

Γ ;α ⊢ t s : B ; δ
T App

Γ ;α ⊢ s : A;β A ∼ B

Γ ;α ⊢ (s : A ⇒p B) : B ;β
T Cast

Γ ;α ⊢ s : G ;β

Γ ;α ⊢ (s : G ⇒ ⋆) : ⋆;β
T Ground

Γ ;α ⊢ s : ⋆;β

Γ ;α ⊢ s isG : bool;β
T Is

Γ ;α ⊢ blame p : A;β
T Blame

Γ, k :A/γ → α/γ; δ ⊢ s : δ;β

Γ ;α ⊢ Sk . s : A;β
T Shift

Γ ;β ⊢ s : β;A

Γ ;α ⊢ ⟨s⟩ : A;α
T Reset

A.4 CPS Transformation

We use κ as variables that denote continuations.

[[A]] CPS Transformation (Types)

[[ι]] = ι

[[A/α → B/β]] = [[A]] → ([[B]] → [[α]]) → [[β]]

[[⋆]] = ⋆

v∗ CPS Transformation (Values)

x∗ = x

c∗ = c

(λx . s)∗ = λx . [[s]]

(v : ι ⇒ ⋆)∗ = v∗ : ι ⇒ ⋆

(v : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆)∗ = (λx . (v∗ x) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆

Shifting the Blame 23

[[s]] CPS Transformation (Terms)

[[v]] = λκ. κ v∗

[[op(ti
i
)]] = λκ. [[t1]] (λx1. . . . [[tn]] (λxn . κ op(xi

i)) . . .)

[[s t]] = λκ. [[s]] (λx . [[t]] (λy . x y κ))

[[⟨s⟩]] = λκ. κ ([[s]] (λx . x))

[[Sk . s]] = λκ. ([[s]] (λx . x)) [k := λx . λκ′. κ′ (κ x)]

[[s : A ⇒p B]] = λκ. [[s]] (λx . κ (x : [[A]] ⇒p [[B]]))

[[s : G ⇒ ⋆]] = λκ. [[s]] (λx . κ (x : G ⇒ ⋆)∗)

[[s is ι]] = λκ. [[s]] (λx . κ (x is ι))

[[s is (⋆ / ⋆ → ⋆ / ⋆)]] = λκ. [[s]] (λx . κ (x is (⋆ → ⋆)))

[[blame p]] = λκ. blame p

[[E]] CPS Transformation (Evaluation Contexts)

[[[]]] = λx . x

[[op(vi
i ,E , tj

j
)]] = λx . λκ. [[E]] x (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ op(vi∗

i
, y , yj

j))))

[[E s]] = λx . λκ. [[E]] x (λy . [[s]] (λz . y z κ))

[[v E]] = λx . λκ. [[v]] (λy . [[E]] x (λz . y z κ))

[[⟨E ⟩]] = λx . λκ. κ ([[E]] x (λy . y))

[[E : A ⇒p B]] = λx . λκ. [[E]] x (λy . κ (y : [[A]] ⇒p [[B]]))

[[E : ι ⇒ ⋆]] = λx . λκ. [[E]] x (λy . κ (y : ι ⇒ ⋆))

[[E : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆]] = λx . λκ. [[E]] x (λy . κ ((λz . (y z) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))

[[E is ι]] = λx . λκ. [[E]] x (λy . κ (y is ι))

[[E is ⋆ / ⋆ → ⋆ / ⋆]] = λx . λκ. [[E]] x (λy . κ (y is ⋆ → ⋆))

Notation 2 We use metavariables e, E, and A (and B) to denote terms, evaluation contexts, and types in the
target calculus, respectively, and write fv (v) and fv (E) for the sets of free variables in v and E, respectively. In
addition, let the relation =⇒ be the evaluation relation in the target calculus.

Definition 2 (Term Equality) Let

–
β
= be the least congruence that contains evaluation relation =⇒,

–
η
= be the least congruence that relates λx .v x to v for any x and v such that x /∈ fv (v),

–
ω
= be the least congruence that relates (λx .E[x]) e to E[e] for any x , E, and e such that x /∈ fv (E),

–
ξ
= be the least congruence that relates e : ⋆ ⇒p ⋆ → ⋆ ⇒p A → B to e : ⋆ ⇒p A → B for any e, p, A, and B,
and

–
υ
= be the least congruence that relates e : ⋆ ⇒p ⋆ to e for any e and p.

For any subset Σ of {β, η, ω, ξ, υ}, we write
Σ
= to denote the transitive and symmetric closure of

∪
σ∈Σ

σ
=.

A.5 Subtyping Relations

A <: B Subtype

A <: A
S Refl

A <: G

A <: ⋆
S Dyn

A′ <: A B <: B ′ α′ <: α β <: β′

A/α → B/β <: A′/α′ → B ′/β′ S Fun

A <:n B Naive Subtype

24 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

A <:n A
SN Refl

A <:n ⋆
SN Dyn

A <:n A′ B <:n B ′ α <:n α′ β <:n β′

A/α → B/β <:n A′/α′ → B ′/β′ SN Fun

A <:+ B Positive Subtype

A <:+ A
(S+ Refl)

A <:+ ⋆
(S+ Dyn)

A′ <:− A B <:+ B ′ α′ <:− α β <:+ β′

A/α → B/β <:+ A′/α′ → B ′/β′ (S+ Fun)

A <:− B Negative Subtype

A <:− A
(S− Refl)

⋆ <:− A
(S− Dyn)

A <:− G

A <:− B
(S− Any)

A′ <:+ A B <:− B ′ α′ <:+ α β <:− β′

A/α → B/β <:− A′/α′ → B ′/β′ (S− Fun)

A.6 Safety Relation

s sf p Safety

s sf p A <:+ B

s : A ⇒p B sf p
SF Pos

s sf p A <:− B

s : A ⇒p̄ B sf p
SF Neg

c sf p
SF Const

∀i . ti sf p
op(ti

i
) sf p

SF Op
x sf p

SF Var
s sf p

λx . s sf p
SF Abs

s sf p t sf p

s t sf p
SF App

q ̸= p q ̸= p̄ s sf p

s : A ⇒q B sf p
SF Cast

s sf p

s : G ⇒ ⋆ sf p
SF Ground

s sf p

s isG sf p
SF Is

q ̸= p

blame q sf p
SF Blame

s sf p

Sk . s sf p
SF Shift

s sf p

⟨s⟩ sf p
SF Reset

B Type Soundness

Lemma 8 (Weakening). If Γ ;α ⊢ s : A;β and x is a fresh variable, then Γ, x :B ;α ⊢ s : A;β for any type B.

Proof. Straightforward by induction on the typing derivation.

Lemma 9 (Strenghtening). If Γ, x :A;α ⊢ s : B ;β and x /∈ fv (s), then Γ ;α ⊢ s : B ;β.

Proof. Straightforward by induction on the typing derivation.

Lemma 10. If Γ ;α ⊢ v : A;β, then α = β.

Proof. Straightforward by induction on the typing derivation.

Lemma 11. If Γ ;α ⊢ v : A;β, then Γ ; γ ⊢ v : A; γ for any type γ.

Proof. Straightforward by induction on the typing derivation.

Lemma 12 (Substitution). If Γ ;α ⊢ v : A;α and Γ, x :A;β ⊢ s : B ; γ, then Γ ;β ⊢ s [x := v] : B ; γ.

Proof. Straightforward by induction on the typing derivation of s. Note that, in the case for (T Var), we have
Γ ;β ⊢ v : A;β by Lemma 10.

Lemma 13 (Lambda Inversion). If Γ ;α ⊢ λx . s : A/γ → B/δ;β, then Γ, x :A; γ ⊢ s : B ; δ.

Shifting the Blame 25

Proof. By case analysis on the typing rule applied last.

Lemma 14 (Ground Inversion). If Γ ;α ⊢ v : G ⇒ ⋆ : ⋆;β, then Γ ;α ⊢ v : G ;β.

Proof. By case analysis on the typing rule applied last.

Lemma 15 (Shift Inversion). If Γ ;α ⊢ Sk . s : A;β, then Γ, k :A/γ → α/γ; δ ⊢ s : δ;β for some γ and δ.

Proof. By case analysis on the typing rule applied last.

Lemma 16 (Application Inversion). If Γ ;α ⊢ s t : B ; δ, then Γ ; γ ⊢ s : A/α → B/β; δ and Γ ;β ⊢ t : A; γ for
some A, β, γ, and δ.

Proof. By case analysis on the typing rule applied last.

Lemma 17 (Reset Inversion). If Γ ;α ⊢ ⟨s⟩ : A;β, then Γ ; γ ⊢ s : γ;A for some γ, and α = β.

Proof. By case analysis on the typing rule applied last.

Lemma 18 (Variable Inversion). If Γ ;α ⊢ x : A;β, then x :A ∈ Γ .

Proof. By case analysis on the typing rule applied last.

Lemma 19. Let x be a variable and F be a pure evaluation context such that x /∈ fv (F). If Γ, x :A;α ⊢ F [x] : B ;β
and Γ ;β ⊢ s : A; γ, then Γ ;α ⊢ F [s] : B ; γ.

Proof. By induction on the typing derivation of F [x].

Case (T Const), (T Abs), (T Blame), (T Shift), and (T Reset): Contradictory.
Case (T Var): By Lemma 10.

Case (T Op): We are given Γ, x :A;α ⊢ op(vi
i ,F ′[x], tj

j
) : B ;β for some op, vi

i , F ′, and tj
j
. By inversion and

Lemma 10, we have ty (op) = ιi
i → ι′ → ι′′j

j
→ B and Γ, x :A;β ⊢ vi : ιi ;β

i
and Γ, x :A; γ0 ⊢ F ′[x] : ι′;β and

Γ, x :A; γ′
j ⊢ tj : ι′′j ; γ

′
j−1

j
and γ′

n = α (where we assume that tj
j
= t1, ..., tn).

By the IH, Γ ; γ0 ⊢ F ′[s] : ι′; γ. By Lemmas 9 and 11, Γ ; γ ⊢ vi : ιi ; γ
i
and Γ ; γ′

j ⊢ tj : ι′′j ; γ
′
j−1

j
. Thus, by

(T Op), we finish.
Case (T App): By case analysis on F .

Case F = F ′ t: By inversion, we have Γ, x :A; γ′ ⊢ F ′[x] : A′/α → B/β′;β and Γ, x :A;β′ ⊢ t : A′; γ′ for some
A′, β′, and γ′. By the IH, Lemma 9, and (T App), we finish.

Case F = v F ′: By inversion, we have Γ, x :A; γ′ ⊢ v : A′/α → B/β′;β and Γ, x :A;β′ ⊢ F ′[x] : A′; γ′ for some
A′, β′, and γ′. By the IH, Lemmas 9 and 11, and (T App), we finish.

Case (T Cast), (T Ground), and (T Is): By the IH.

Definition 3 The relation ↠ is the least contextual relation that contains the following rules:

op(vi
i ,Sk . s, tj

j
) ↠ Sk ′. s [k := λx . ⟨k ′ op(vi

i , x , tj
j
)⟩]

(Sk . s) t ↠ Sk ′. s [k := λx . ⟨k ′ (x t)⟩]
v (Sk . s) ↠ Sk ′. s [k := λx . ⟨k ′ (v x)⟩]
(Sk . s) : A ⇒p B ↠ Sk ′. s [k := λx . ⟨k ′ (x : A ⇒p B)⟩]
(Sk . s) : G ⇒ ⋆ ↠ Sk ′. s [k := λx . ⟨k ′ (x : G ⇒ ⋆)⟩]
(Sk . s) isG ↠ Sk ′. s [k := λx . ⟨k ′ (x isG)⟩]
⟨Sk . s⟩ ↠ ⟨s [k := λx . ⟨x ⟩]⟩
⟨(λx . ⟨F [x]⟩) s⟩ ↠ ⟨F [s]⟩

where x is a fresh variable. We write ↠∗ to denote the transitive closure of ↠.

Lemma 20. If Γ ;α ⊢ s : A;β and s ↠ t, then Γ ;α ⊢ t : A;β.

Proof. By induction on the typing derivation. We mention only the cases where rules in Definition 3 are applied.

26 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Case (T Op): We are given op(vi
i ,Sk . t , tj

j
) ↠ Sk ′. t [k := λx . ⟨k ′ op(vi

i , x , tj
j
)⟩]. By inversion and Lemma 10, we

have ty (op) = ιi
i → ι′ → ι′′j

j
→ A and Γ ;β ⊢ vi : ιi ;β

i
and Γ ; γ0 ⊢ Sk . t : ι′;β and Γ ; γj ⊢ tj : ι′′j ; γj−1

j
and

γn = α (note that here we assume that tj
j
= t0, ..., tn).

By Lemmas 11 and 8, Γ, x :ι′; γ0 ⊢ vi : ιi ; γ0
i
, and by (T Var), Γ, x :ι′; γ0 ⊢ x : ι′; γ0. Thus, by Lemma 8 and

(T Op), Γ, x :ι′;α ⊢ op(vi
i , x , tj

j
) : A; γ0. By Lemma 8, (T Var), and (T App),

Γ, k ′:A/α → α/α, x :ι′;α ⊢ k ′ op(vi
i , x , tj

j
) : α; γ0.

Here, by Lemma 15, Γ, k :ι′/γ′ → γ0/γ
′; δ′ ⊢ t : δ′;β for some γ′ and δ′. Since, by (T Reset) and (T Abs),

Γ, k ′:A/α → α/α;α ⊢ λx . ⟨k ′ op(vi
i , x , tj

j
)⟩ : ι′/γ′ → γ0/γ

′;α, we have

Γ, k ′:A/α → α/α; δ′ ⊢ t [k := λx . ⟨k ′ op(vi
i , x , tj

j
)⟩] : δ′;β

by Lemmas 8 and 12. By (T Shift), Γ ;α ⊢ Sk ′. t [k := λx . ⟨k ′ op(vi
i , x , tj

j
)⟩] : A;β.

Case (T App): By case analysis on the rule applied.
Case (Sk . t) u ↠ Sk ′. t [k := λx . ⟨k ′ (x u)⟩]: By inversion, we have Γ ; γ ⊢ Sk . t : B/α → A/β′;β and Γ ;β′ ⊢ u :

B ; γ for some B, β′, and γ.
By Lemma 8, (T Var), and (T App), Γ, x :B/α → A/β′;α ⊢ x u : B ; γ. Again, by Lemma 8, (T Var),
and (T App),

Γ, k ′:A/α → α/α, x :B/α → A/β′;α ⊢ k ′ (x u) : α; γ.

Here, by Lemma 15, Γ, k :(B/α → A/β′)/γ′ → γ/γ′; δ′ ⊢ t : δ′;β for some γ′ and δ′. Since, by (T Reset)
and (T Abs), Γ, k ′:A/α → α/α;α ⊢ λx . ⟨k ′ (x u)⟩ : (B/α → A/β′)/γ′ → γ/γ′;α, we have

Γ, k ′:A/α → α/α; δ′ ⊢ t [k := λx . ⟨k ′ (x u)⟩] : δ′;β

by Lemmas 8 and 12. By (T Shift), Γ ;α ⊢ Sk ′. t [k := λx . ⟨k ′ (x u)⟩] : A;β.
Case v (Sk . t) ↠ Sk ′. t [k := λx . ⟨k ′ (v x)⟩]: By inversion and Lemma 10, we have Γ ;β ⊢ v : B/α → A/β′;β and

Γ ;β′ ⊢ Sk . t : B ;β for some B and β′.
By Lemma 8, (T Var), and (T App), Γ, x :B ;α ⊢ v x : A;β′. Again, by Lemma 8, (T Var), and (T App),

Γ, k ′:A/α → α/α, x :B ;α ⊢ k ′ (v x) : α;β′.

Here, by Lemma 15, Γ, k :B/γ′ → β′/γ′; δ′ ⊢ t : δ′;β for some γ′ and δ′. Since, by (T Reset) and (T Abs),
Γ, k ′:A/α → α/α;α ⊢ λx . ⟨k ′ (v x)⟩ : B/γ′ → β′/γ′;α, we have

Γ, k ′:A/α → α/α; δ′ ⊢ t [k := λx . ⟨k ′ (v x)⟩] : δ′;β

by Lemmas 8 and 12. By (T Shift), Γ ;α ⊢ Sk ′. t [k := λx . ⟨k ′ (v x)⟩] : A;β.
Case (T Cast): We are given (Sk . t) : B ⇒p A ↠ Sk ′. t [k := λx . ⟨k ′ (x : B ⇒p A)⟩]. By inversion, we have

Γ ;α ⊢ Sk . t : B ;β.
By (T Var), and (T Cast), Γ, x :B ;α ⊢ x : B ⇒p A : A;α. By Lemma 8, (T Var), and (T App),

Γ, k ′:A/α → α/α, x :B ;α ⊢ k ′ (x : B ⇒p A) : α;α.

Here, by Lemma 15, Γ, k :B/γ′ → α/γ′; δ′ ⊢ t : δ′;β for some γ′ and δ′. Since, by (T Reset) and (T Abs),
Γ, k ′:A/α → α/α;α ⊢ λx . ⟨k ′ (x : B ⇒p A)⟩ : B/γ′ → α/γ′;α, we have

Γ, k ′:A/α → α/α; δ′ ⊢ t [k := λx . ⟨k ′ (x : B ⇒p A)⟩] : δ′;β

by Lemmas 8 and 12. By (T Shift), Γ ;α ⊢ Sk ′. t [k := λx . ⟨k ′ (x : B ⇒p A)⟩] : A;β.
Case (T Ground): We are given (Sk . t) : G ⇒ ⋆ ↠ Sk ′. t [k := λx . ⟨k ′ (x : G ⇒ ⋆)⟩]. By inversion, we have

Γ ;α ⊢ Sk . t : G ;β. Note that A = ⋆.
By (T Var), and (T Cast), Γ, x :G ;α ⊢ x : G ⇒ ⋆ : ⋆;α. By Lemma 8, (T Var), and (T App),

Γ, k ′: ⋆ /α → α/α, x :G ;α ⊢ k ′ (x : G ⇒ ⋆) : α;α.

Here, by Lemma 15, Γ, k :G/γ′ → α/γ′; δ′ ⊢ t : δ′;β for some γ′ and δ′. Since, by (T Reset) and (T Abs),
Γ, k ′: ⋆ /α → α/α;α ⊢ λx . ⟨k ′ (x : G ⇒ ⋆)⟩ : G/γ′ → α/γ′;α, we have

Γ, k ′: ⋆ /α → α/α; δ′ ⊢ t [k := λx . ⟨k ′ (x : G ⇒ ⋆)⟩] : δ′;β

by Lemmas 8 and 12. By (T Shift), Γ ;α ⊢ Sk ′. t [k := λx . ⟨k ′ (x : G ⇒ ⋆)⟩] : ⋆;β.

Shifting the Blame 27

Case (T Is): We are given (Sk . t) isG ↠ Sk ′. t [k := λx . ⟨k ′ (x isG)⟩]. By inversion, we have Γ ;α ⊢ Sk . t : ⋆;β.
Note that A = bool.
By (T Var), and (T Cast), Γ, x :⋆;α ⊢ x isG : bool;α. By Lemma 8, (T Var), and (T App),

Γ, k ′:bool/α → α/α, x :G ;α ⊢ k ′ (x isG) : α;α.

Here, by Lemma 15, Γ, k : ⋆ /γ′ → α/γ′; δ′ ⊢ t : δ′;β for some γ′ and δ′. Since, by (T Reset) and (T Abs),
Γ, k ′:bool/α → α/α;α ⊢ λx . ⟨k ′ (x isG)⟩ : ⋆/γ′ → α/γ′;α, we have

Γ, k ′:bool/α → α/α; δ′ ⊢ t [k := λx . ⟨k ′ (x isG)⟩] : δ′;β

by Lemmas 8 and 12. By (T Shift), Γ ;α ⊢ Sk ′. t [k := λx . ⟨k ′ (x isG)⟩] : bool;β.
Case (T Reset): By case analysis on the rule applied.

Case ⟨Sk . t⟩ ↠ ⟨t [k := λx . ⟨x ⟩]⟩: By inversion, we have Γ ; γ ⊢ Sk . t : γ;A for some γ. By Lemma 15, Γ, k :γ/γ′ →
γ/γ′; δ′ ⊢ t : δ′;A for some γ′, δ′. Since Γ ;α ⊢ λx . ⟨x ⟩ : γ/γ′ → γ/γ′;α by (T Var) and (T Abs), we
have

Γ ; δ′ ⊢ t [k := λx . ⟨x ⟩] : δ′;A

by Lemma 12. By (T Reset), Γ ;α ⊢ ⟨t [k := λx . ⟨x ⟩]⟩ : A;β.
Case ⟨(λx . ⟨F [x]⟩) t⟩ ↠ ⟨F [t]⟩: By inversion, we have Γ ; γ ⊢ (λx . ⟨F [x]⟩) t : γ;A for some γ, and α = β.

By Lemma 16, Γ ; γ′ ⊢ λx . ⟨F [x]⟩ : B ′/γ → γ/β′;A and Γ ;β′ ⊢ t : B ′; γ′ for some B ′, β′, and γ′. By
Lemma 10, γ′ = A. By Lemmas 13 and 17, β′ = γ and Γ, x :B ′; γ′′ ⊢ F [x] : γ′′; γ for some γ′′. Since
Γ ; γ ⊢ t : B ′;A, we have Γ ; γ′′ ⊢ F [t] : γ′′;A by Lemma 19. By (T Reset), Γ ;α ⊢ ⟨F [t]⟩ : A;β (note
that α = β).

Lemma 21. If F ̸= [], then F [Sk . s] ↠∗ Sk ′. s [k := λx . ⟨k ′ F [x]⟩] where x /∈ fv (F).

Proof. By structural induction on F.

Case F = []: Contradictory.

Case F = op(vi
i ,F ′, tj

j
): If F ′ = [], then obvious; otherwise,

op(vi
i ,F ′[Sk . s], tj

j
) ↠∗ op(vi

i ,Sk ′. s [k := λx . ⟨k ′ F ′[x]⟩], tj
j
) (by the IH)

↠ Sk ′′. s [k := λx . ⟨(λy . ⟨k ′′ op(vi
i , y , tj

j
)⟩)F ′[x]⟩]

↠∗ Sk ′′. s [k := λx . ⟨k ′′ op(vi
i ,F ′[x], tj

j
)⟩].

Case F = F ′ t: If F ′ = [], then obvious; otherwise,

F ′[Sk . s] t ↠∗ (Sk ′. s [k := λx . ⟨k ′ F ′[x]⟩]) t (by the IH)

↠ Sk ′′. s [k := λx . ⟨(λy . ⟨k ′′ (y t)⟩)F ′[x]⟩]
↠ Sk ′′. s [k := λx . ⟨k ′′ (F ′[x] t)⟩].

Case F = v F ′: If F ′ = [], then obvious; otherwise,

v F ′[Sk . s] ↠∗ v (Sk ′. s [k := λx . ⟨k ′ F ′[x]⟩]) (by the IH)

↠ Sk ′′. s [k := λx . ⟨(λy . ⟨k ′′ (v y)⟩)F ′[x]⟩]
↠ Sk ′′. s [k := λx . ⟨k ′′ (v F ′[x])⟩].

Case F = F ′ : A ⇒p B: If F ′ = [], then obvious; otherwise,

F ′[Sk . s] : A ⇒p B ↠∗ (Sk ′. s [k := λx . ⟨k ′ F ′[x]⟩]) : A ⇒p B (by the IH)

↠ Sk ′′. s [k := λx . ⟨(λy . ⟨k ′′ (y : A ⇒p B)⟩)F ′[x]⟩]
↠ Sk ′′. s [k := λx . ⟨k ′′ (F ′[x] : A ⇒p B)⟩].

28 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Case F = F ′ : G ⇒ ⋆: If F ′ = [], then obvious; otherwise,

F ′[Sk . s] : G ⇒ ⋆ ↠∗ (Sk ′. s [k := λx . ⟨k ′ F ′[x]⟩]) : G ⇒ ⋆ (by the IH)

↠ Sk ′′. s [k := λx . ⟨(λy . ⟨k ′′ (y : G ⇒ ⋆)⟩)F ′[x]⟩]
↠ Sk ′′. s [k := λx . ⟨k ′′ (F ′[x] : G ⇒ ⋆)⟩].

Case F = F ′ isG: If F ′ = [], then obvious; otherwise,

F ′[Sk . s] isG ↠∗ (Sk ′. s [k := λx . ⟨k ′ F ′[x]⟩]) isG (by the IH)

↠ Sk ′′. s [k := λx . ⟨(λy . ⟨k ′′ (y isG)⟩)F ′[x]⟩]
↠ Sk ′′. s [k := λx . ⟨k ′′ (F ′[x] isG)⟩].

Lemma 22. ⟨F [Sk . s]⟩ ↠∗ ⟨s [k := λx . ⟨F [x]⟩]⟩.

Proof. If F = [], ⟨Sk . s⟩ ↠ ⟨s [k := λx . ⟨x ⟩]⟩, and so we finish. Otherwise, if F ̸= [], then

⟨F [Sk . s]⟩ ↠∗ ⟨Sk ′. s [k := λx . ⟨k ′ F [x]⟩]⟩ (by Lemma 21)

↠ ⟨s [k := λx . ⟨(λy . ⟨y⟩)F [x]⟩]⟩
↠ ⟨s [k := λx . ⟨F [x]⟩]⟩.

Lemma 23 (Canonical Forms). Suppose that ∅;α ⊢ v : A;β.

(1) If A = ι, then v = c ∈ Kι.
(2) If A = A′/α′ → B ′/β′, then v = λx . s for some s and s.
(3) If A = ⋆, then v = v ′ : G ⇒ ⋆ for some v ′ and G.

Proof. By case analysis on the typing rule applied last to v.

Lemma 24 (Unique Ground Type). For any type A ̸= ⋆, there exists an unique ground type G such that
A ∼ G.

Proof. Straightforward by case analysis on A.

Lemma 25 (Progress). If ∅;α ⊢ s : A;β, then one of the followings holds:

(1) s 7−→ s ′ for some s ′;
(2) s is a value;
(3) s = blame p for some p; or
(4) s = F [Sk . t] for some F, k and t.

Proof. By induction on the typing derivation.

Case (T Const), (T Abs), (T Blame), (T Shift): Obvious.
Case (T Var): Contradictory.

Case (T Op): We are given ∅;α ⊢ op(ti
i ∈{1,...,n}

) : A;β for some op and ti
i
. By inversion, we have ty (op) =

ιi
i → A and ∅; γi ⊢ ti : ιi ; γi−1 where α = γn and β = γ0. If all terms ti

i
are values, then we finish by

Lemma 23 (1) and (R Op). Otherwise, suppose that t1, ..., tj−1 are values and tj is not for some j . By case
analysis on tj with the IH.

Case tj 7−→ u: By (E Step) or (E Abort).
Case tj = blame p: By (E Abort).
Case tj = F [Sk . u]: We finish.

Case (T App): We are given ∅;α ⊢ t u : A;β for some t and u. By inversion, we have ∅; γ ⊢ t : B/α → A/β′;β
and ∅;β′ ⊢ u : B ; γ for some B, β′, and γ. If t or u is not a value, then we finish similarly to the case for
(T Op). Otherwise, suppose that t and u are values. By Lemma 23 (2), t = λx . t ′ for some x and t ′. Thus,
we finish by (R Beta).

Shifting the Blame 29

Case (T Cast): We are given ∅;α ⊢ t : B ⇒p A : A;β for some t and B. By inversion, we have ∅;α ⊢ t : B ;β
and B ∼ A. If t is not a value, then we finish similarly to the case for (T Op). Otherwise, if t is a value, we
proceed by case analysis on B ∼ A.

Case (C DynTo): We are given A = ⋆. If B = ⋆, then we finish by (R Dyn). Otherwise, we finish by Lemma 24
and (R Ground).

Case (C DynFrom): If A = ⋆, then we finish by (R Dyn). Otherwise, by Lemma 23 (3), and (R Collapse)
or (R Conflict).

Case (C Base): By (R Base).
Case (C Fun): By (R Wrap).

Case (T Ground): We are given ∅;α ⊢ t : G ⇒ ⋆ : ⋆;β for some t and G. By inversion, we have ∅;α ⊢ t : G ;β. If
t is not a value, then we finish similarly to the case for (T Op). Otherwise, if t is a value, then so is t : G ⇒ ⋆.

Case (T Is): We are given ∅;α ⊢ t isG : bool;β for some t and G. By inversion, we have ∅;α ⊢ t : ⋆;β. If t is not
a value, then we finish similarly to the case for (T Op). Otherwise, if t is a value, then t = v : H ⇒ ⋆ for
some v and H by Lemma 23 (3). We finish by (R IsTrue) or (R IsFalse).

Case (T Reset): We are given ∅;α ⊢ ⟨t⟩ : A;α for some t. By inversion, we have ∅; γ ⊢ t : γ;A for some γ. If
t takes a step or is blamed, then we finish similarly to the case for (T Op). If t is a value, then we finish by
(R Reset). Otherwise, we finish by (R Shift).

Lemma 26. If A/α → B/β ∼ A′/α′ → B ′/β′, then A′ ∼ A and B ∼ B ′ and α′ ∼ α and β ∼ β′.

Proof. Straightforward by case analysis on the compatibility rule applied last.

Lemma 27 (Preservation). Suppose that ∅;α ⊢ s : A;β.

(1) If s −→ t, then ∅;α ⊢ t : A;β.
(2) If s 7−→ t, then ∅;α ⊢ t : A;β.

Proof.

(1) By case analysis on the typing rule applied to s.
Case (T Const), (T Var), (T Abs), (T Ground), (T Blame), (T Shift): Contradictory.

Case (T Op): We are given ∅;α ⊢ op(ti
i
) : A;β for some op and ti

i
. The only reduction rule applicable to

op(ti
i
) is (R Op). By Lemma 10 and the assumption on ζ, we finish.

Case (T App): We are given ∅;α ⊢ t u : A;β for some t and u. By inversion, we have ∅; γ ⊢ t : B/α → A/β′;β
and ∅;β′ ⊢ u : B ; γ for some β′ and γ. The only reduction rule applicable to t u is (R Beta), so t = λx . t ′

for some x and t ′, and u is a value. By Lemma 10, β = γ = β′. By Lemma 13, x :B ;α ⊢ t : A;β. By
Lemma 12, ∅;α ⊢ t [x := u] : A;β.

Case (T Cast): We are given ∅;α ⊢ t : B ⇒p A : A;β for some t, p and B. By inversion, we have ∅;α ⊢ t :
B ;β and B ∼ A. By case analysis on the reduction rule applicable to t : B ⇒p A.

Case (R Base) and (R Dyn): We are given v : A ⇒p A −→ v where v = t and B = A. Since ∅;α ⊢ v :
A;β, we finish.

Case (R Wrap): We are given

v : A′/α′ → B ′/β′ ⇒p A′′/α′′ → B ′′/β′′ −→
λx .Sk . (⟨(k ((v (x : A′′ ⇒p̄ A′)) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′⟩ : β′ ⇒p β′′)

where v = t and B = A′/α′ → B ′/β′ and A = A′′/α′′ → B ′′/β′′. Since B ∼ A, we have A′′ ∼ A′

and B ′ ∼ B ′′ and α′′ ∼ α′ and β′ ∼ β′′ by Lemma 26.
Since α = β by Lemma 10, we have

x :A′′;α′ ⊢ v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′ : B ′′;β′.

by Lemma 8, (T Var), (T Cast), and (T App). By Lemma 8, (T Var), and (T App),

x :A′′, k :B ′′/α′ → α′′/α′;α′ ⊢ k (v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′) : α′′;β′.

By (T Cast) and (T Reset),

x :A′′, k :B ′′/α′ → α′′/α′;β′′ ⊢ ⟨(k (v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′⟩ : β′;β′′.

30 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

By (T Cast) and (T Shift),

x :A′′;α′′ ⊢ Sk . (⟨(k (v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′⟩ : β′ ⇒p β′′) : B ′′;β′′.

By (T Abs),

∅;α ⊢ λx .Sk . (⟨(k (v (x : A′′ ⇒p̄ A′) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′⟩ : β′ ⇒p β′′) : A′′/α′′ → B ′′/β′′;β

(note that α = β).
Case (R Ground): We are given v : B ⇒p ⋆ −→ v : B ⇒p G ⇒ ⋆ where t = v and A = ⋆ and B ∼ G.

By (T Cast) and (T Ground), we finish.
Case (R Collapse): We are given v : G ⇒ ⋆ ⇒p A −→ v : G ⇒p A where t = v : G ⇒ ⋆ and B = ⋆

and G ∼ A and A ̸= ⋆. By Lemma 14, ∅;α ⊢ v : G ;β. Thus, we finish by (T Cast).
Case (R Conflict): We are given v : G ⇒⋆ ⇒p A −→ blame p. We finish by (T Blame).

Case (T Is): We are given ∅;α ⊢ t isG : bool;β for some t and G. By inversion, we have ∅;α ⊢ t : ⋆;β. By
case analysis on the reduction rule applicable to t isG.

Case (R IsTrue): We are given (v : G ⇒ ⋆) isG −→ true. By Lemma 10 and (T Const), we finish.
Case (R IsFalse): We are given (v : H ⇒ ⋆) isG −→ false. By Lemma 10 and (T Const), we finish.

Case (T Reset): We are given ∅;α ⊢ ⟨t⟩ : A;α for some t. By inversion, we have ∅; γ ⊢ t : γ;A for some γ.
By case analysis on the reduction rule applicable to ⟨t⟩.

Case (R Reset): We are given ⟨v⟩ −→ v where t = v. By Lemma 10, A = γ, so ∅;A ⊢ t : A;A. By
Lemma 11, we finish.

Case (R Shift): We are given ⟨F [Sk . u]⟩ −→ ⟨u [k := λx . ⟨F [x]⟩]⟩ where t = F [Sk . u] and x /∈ fv (F). By
Lemmas 22 and 20.

(2) By case analysis on the evaluation rule applied.
Case (E Step): Straightforward by induction on the typing derivation of Γ ;α ⊢ s : A;β with case (1).
Case (E Abort): By (T Blame).

C Blame Theorem

Lemma 28 (Substitution of Safety Value). If t sf p and v sf p, then t [x := v] sf p.

Proof. Straightforward by induction on the derivation of t sf p.

Lemma 29 (Blame Progress). If s sf p, then s ̸7−→ blame p.

Proof. By induction on the derivation of s sf p.

Case (SF Pos): We are given t : A ⇒p B sf p for some t, A, and B. By inversion, we have t sf p and A <:+ B. By
case analysis on t.

Case t 7−→ u: By the IH, and (E Step) or (E Abort).
Case t = blame q: Obviously q ̸= p, so we finish by (E Abort).
Case t = v: The reduction rule that implies blame p is only (R Conflict), so we consider only it. In that case,

we are given A = ⋆ and t = v ′ : G ⇒ ⋆ for some v ′ and G such that G ̸∼ B. Since ⋆ <:+ B, B = ⋆
from (S+ Refl) and (S+ Dyn). Here, G ̸∼ ⋆ contradicts from the fact that α ∼ ⋆ for any type α.

Case otherwise: t : A ⇒p B does not takes a step.
Case (SF Neg): We are given t : A ⇒p̄ B sf p for some t, A, and B. By inversion, we have t sf p and A <:− B.

By case analysis on t.
Case t 7−→ u: By the IH, and (E Step) or (E Abort).
Case t = blame q: Obviously q ̸= p, so we finish.
Case t = v: There are no reduction rules that imply blame p.
Case otherwise: t : A ⇒p B does not takes a step.

Case (SF Const), (SF Var), and (SF Abs), (SF Blame), (SF Shift): Obvious.
Case (SF Op): By the IHs and (SF Const).
Case (SF App): By the IHs.
Case (SF Cast), (SF Ground), (SF Is): By the IH.

Shifting the Blame 31

Case (SF Reset): By the IH.

Lemma 30. If A/α → B/β <:− G, then A = α = ⋆ and B <:− γ and β <:− γ for any γ.

Proof. By induction on the derivation of A/α → B/β <:− G.

Case (S− Refl): Obvious.
Case (S− Dyn): Contradictory.
Case (S− Any): By the IH.
Case (S− Fun): We are given G = ⋆ / ⋆ → ⋆ / ⋆. By inversion, we have ⋆ <:+ A and B <:− ⋆ and ⋆ <:+ α and

β <:− ⋆. From (S+ Refl) and (S+ Dyn), A = ⋆ and α = ⋆. From (S− Refl), (S− Dyn), and (S− Any),
B = ⋆ or B <:− G ′ for some G ′, and β = ⋆ or β <:− G ′′ for some G ′′. Thus, (S− Dyn) or (S− Any), we
finish.

Lemma 31. If F [Sk . s] sf p, then F [x] sf p for any x .

Proof. Straightforward by induction on the derivation of F [Sk . s] sf p.

Lemma 32 (Blame Preservation).

(1) If s sf p and s −→ t, then t sf p.
(2) If s sf p and s 7−→ t, then t sf p.

Proof. (1) By induction on the derivation of s sf p.
Case (SF Pos): We are given t : A ⇒p B sf p for some t, A, and B. By inversion, we have t sf p and A <:+ B.

By case analysis on the reduction rule applied to t : A ⇒p B. In what follows, we suppose that t = v for
some value v.

Case (R Base) and (R Dyn): Obvious.
Case (R Wrap): We are given

v : A′/α′ → B ′/β′ ⇒p A′′/α′′ → B ′′/β′′ −→
λx .Sk . (⟨(k ((v (x : A′′ ⇒p̄ A′)) : B ′ ⇒p B ′′)) : α′′ ⇒p̄ α′⟩ : β′ ⇒p β′′)

where A = A′/α′ → B ′/β′ and B = A′′/α′′ → B ′′/β′′. Since A′/α′ → B ′/β′ <:+ A′′/α′′ → B ′′/β′′,
we have A′′ <:− A′ and B ′ <:+ B ′′ and α′′ <:− α′ and β′ <:+ β′′. By (SF Pos), (SF Neg), and other
rules, we finish.

Case (R Ground): We are given v : A ⇒p ⋆ −→ v : A ⇒p G ⇒ ⋆ for some G such that A ∼ G. Note
that A ̸= ⋆. From (SF Ground) and (SF Cast), it suffices to show that A <:+ G. By case analysis
on A.

Case A = ι: Then, G = ι, and so we finish by (S+ Refl).
Case A = A′/α′ → B ′/α′: Then, G = ⋆ / ⋆ → ⋆ / ⋆. Since ⋆ <:− A′ and B ′ <:+ ⋆ and ⋆ <:− α′ and

β′ <:+ ⋆ by (S− Dyn) and (S+ Dyn), we have A′/α′ → B ′/β′ <:+ ⋆/⋆ → ⋆/⋆ by (S+ Fun).
Case (R Collapse): We are given v ′ : G ⇒ ⋆ ⇒p B −→ v ′ : G ⇒p B for some v ′ and G such that

G ∼ B and B ̸= ⋆. Since ⋆ <:+ B, B = ⋆ from (S+ Refl) and (S+ Dyn). Thus, contradictory.
Case (R Conflict): We are given v ′ : G ⇒ ⋆ ⇒p B −→ blame p for some v ′ and G such that G ̸∼ B.

Since ⋆ <:+ B, B = ⋆ from (S+ Refl) and (S+ Dyn). However, it contradicts from G ̸∼ B since
G ∼ ⋆ by (C DynTo).

Case (SF Neg): We are given t : A ⇒p̄ B sf p for some t, A, and B. By inversion, we have t sf p and A <:− B.
By case analysis on the reduction rule applied to t : A ⇒p̄ B. In what follows, we suppose that t = v for
some value v.

Case (R Base) and (R Dyn): Obvious.
Case (R Wrap): We are given

v : A′/α′ → B ′/β′ ⇒p̄ A′′/α′′ → B ′′/β′′ −→
λx .Sk . (⟨(k ((v (x : A′′ ⇒p A′)) : B ′ ⇒p̄ B ′′)) : α′′ ⇒p α′⟩ : β′ ⇒p̄ β′′)

where A = A′/α′ → B ′/β′ and B = A′′/α′′ → B ′′/β′′. It suffices to show that A′′ <:+ A′ and
B ′ <:− B ′′ and α′′ <:+ α′ and β′ <:− β′′. By case analysis on the rule applied last to derive A′/α′ →
B ′/β′ <:− A′′/α′′ → B ′′/β′′.

32 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Case (S− Fun): Obvious.
Case (S− Any): By inversion, A′/α′ → B ′/β′ <:− G for some G. By Lemma 30, A′ = α′ = ⋆ and

B ′ <:− B ′′ and β′ <:− β′′. By (S+ Dyn), A′′ <:+ A′ and α′′ <:+ α′.
Case (R Ground): We are given v : A ⇒p̄ ⋆ −→ v : A ⇒p̄ G ⇒ ⋆ for some G such that A ∼ G. Note

that A ̸= ⋆. From (SF Ground) and (SF Cast), it suffices to show that A <:− G.
Since A <:− ⋆, we have A = ⋆ from (S− Refl) and (S− Dyn) or A <:− H for some H . If A = ⋆,
then it contradicts from A ̸= ⋆; otherwise, if A <:− H , then we finish by (S− Any).

Case (R Collapse): We are given v ′ : G ⇒ ⋆ ⇒p̄ B −→ v ′ : G ⇒p̄ B for some v ′ and G such that
G ∼ B and B ̸= ⋆. Since G <:− G by (S− Refl), we have G <:− B by (S− Any).

Case (R Conflict): We are given v ′ : G ⇒⋆ ⇒p̄ B −→ blame p̄ for some v ′ and G such that G ̸∼ B. By
(SF Blame).

Case (SF Const), (SF Var), (SF Abs), (SF Ground), (SF Blame), and (SF Shift): Contradictory.
Case (SF Op): By (SF Const).
Case (SF App): By Lemma 28.
Case (SF Cast): Straightforward by safety rules.
Case (SF Is): By (SF Const).
Case (SF Reset): By Lemmas 31 and 28.

(2) By case analysis on the evaluation rule applied.
Case (E Step): Straightforward by induction on the derivation of s sf p with case (1).
Case (E Abort): We are given E [blame q] 7−→ blame q for some E and q. Since E [blame q] sf p, q ̸= p. Thus,

we finish by (SF Blame).

Lemma 33. If A <:n B, then

(1) A <:+ B and
(2) B <:− A.

Proof. By induction on the derivation of A <:n B.

Case (SN Refl): By (S+ Refl) and (S− Refl).
Case (SN Dyn): By (S+ Dyn) and (S− Dyn).
Case (SN Fun): We are given A′/α′ → B ′/β′ <:n A′′/α′′ → B ′′/β′′. By inversion, we have A′ <:n A′′ and B ′ <:n B ′′

and α′ <:n α′′ and β′ <:n β′′. By the IHs,
• A′ <:+ A′′ and A′′ <:− A′,
• B ′ <:+ B ′′ and B ′′ <:− B ′,
• α′ <:+ α′′ and α′′ <:− α′, and
• β′ <:+ β′′ and β′′ <:− β′.

Thus, by (S+ Fun) and (S− Fun), we finish.

Lemma 34. If A <:+ B and B <:− A, then A <:n B.

Proof. By induction on the structure of A with case analysis on the rule applied last to derive A <:+ B.

Case (S+ Refl): By (SN Refl).
Case (S+ Dyn): By (SN Dyn).
Case (S+ Fun): We are given A′/α′ → B ′/β′ <:+ A′′/α′′ → B ′′/β′′. By inversion, we have A′′ <:− A′ and B ′ <:+

B ′′ and α′′ <:− α′ and β′ <:+ β′′. By case analysis on the rule applied last to derive A′′/α′′ → B ′′/β′′ <:−

A′/α′ → B ′/β′.
Case (S− Refl): By (S+ Refl) and (S− Refl), A′ <:+ A′′ and B ′′ <:− B ′ and α′ <:+ α′′ and β′′ <:− β′.

Thus, by the IHs, A′ <:n A′′ and B ′ <:n B ′′ and α′ <:n α′′ and β′ <:n β′′. Thus, by (SN Fun), we finish.
Case (S− Dyn): Contradictory.
Case (S− Any): By inversion, we have A′′/α′′ → B ′′/β′′ <:− G for some G. By Lemma 30, A′′ = α′′ = ⋆ and

B ′ <:− B ′′ and β′ <:− β′′. By (S+ Dyn), A′ <:+ A′′ and α′ <:+ α′′. Thus, we finish by the IHs and
(SN Fun).

Case (S− Fun): By the IHs and (SN Fun).

Lemma 35. A <:n B iff A <:+ B and B <:− A.

Shifting the Blame 33

Proof. By Lemmas 33 and 34.

Lemma 36. If A <: B, then A <:+ B and A <:− B.

Proof. By induction on the derivation of A <: B.

Case (S Refl): By (S+ Refl) and (S− Refl).

Case (S Dyn): We are given A <: ⋆. By inversion, A <: G. By the IH, A <:− G. Thus, by (S− Any), A <:− ⋆. By
(S+ Dyn), A <:+ ⋆.

Case (S Fun): By the IHs, (S+ Fun), and (S− Fun).

Lemma 37. If A <:+ B and A <:− B, then A <: B.

Proof. By induction on the structure of A with case analysis on the rule applied last to derive A <:+ B.

Case (S+ Refl): By (S Refl).

Case (S+ Dyn): We are given A <:+ ⋆. Since A <:− ⋆, A = ⋆ from (S− Refl) and (S− Dyn), or A <:− G for
some G from (S− Any). If A = ⋆, then we finish by (S Refl). Otherwise, if A <:− G for some G, by case
analysis on A.

Case A = ⋆: By (S Refl).

Case A = ι: Since ι <: ι by (S Refl), we finish by (S Dyn).

Case A = A′/α′ → B ′/β′: By Lemma 30, A′ = α′ = ⋆ and B ′ <:− ⋆ and β′ <:− ⋆. Since B ′ <:+ ⋆ and β′ <:+ ⋆
by (S+ Dyn), we have B ′ <: ⋆ and β′ <: ⋆ by the IHs. Since ⋆ <: A′ and ⋆ <: α′ by (S Refl), we have
A′/α′ → B ′/β′ <: ⋆/⋆ → ⋆/⋆ by (S Fun), and so A′/α′ → B ′/β′ <: ⋆ by (S Dyn).

Case (S+ Fun): We are given A′/α′ → B ′/β′ <:+ A′′/α′′ → B ′′/β′′ for some A′, B ′, α′, β′, A′′, B ′′, α′′, and β′′.
By inversion, we have A′′ <:− A′ and B ′ <:+ B ′′ and α′′ <:− α′ and β′ <:+ β′′. By case analysis on the rule
applied last to derive A′/α′ → B ′/β′ <:− A′′/α′′ → B ′′/β′′.

Case (S− Refl): By (S Refl).

Case (S− Dyn): Contradictory.

Case (S− Any): By inversion, we have A′/α′ → B ′/β′ <:− G for some G. By Lemma 30, A′ = α′ = ⋆ and
B ′ <:− B ′′ and β′ <:− β′′. By the IHs, B ′ <: B ′′ and β′ <: β′′. Since A′′ <:+ A′ and α′′ <:+ α′ by
(S+ Dyn), we have A′′ <: A′ and α′′ <: α′ by the IHs. Thus, we finish by (S Fun).

Case (S− Fun): By the IHs and (S Fun).

Lemma 38. A <: B iff A <:+ B and A <:− B.

Proof. By Lemmas 36 and 37.

Theorem 1 (Blame Theorem and Subtype Theorem) Let s be a term with a subterm t : A ⇒p B where
cast is labeled by the only occurrence of p in s. Moreover, suppose that p̄ does not appear in s.

(1) If A <:+ B, then s ̸7−→∗ blame p.

(2) If A <:− B, then s ̸7−→∗ blame p̄.

(3) If A <:n B, then s ̸7−→∗ blame p; if B <:n A, then s ̸7−→∗ blame p̄.

(4) If A <: B, then s ̸7−→∗ blame p and s ̸7−→∗ blame p̄.

Proof.

(1) Since s sf p, we finish by Lemmas 29 and 32 (2).

(2) Since s sf p̄, we finish by Lemmas 29 and 32 (2).

(3) By cases (1), (2) and Lemma 35.

(4) By cases (1), (2) and Lemma 38.

34 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

D CPS Transformation

Lemma 39. If G ∼ ι, then G = ι.

Proof. Straightforward by case analysis on the compatibility rule applied last to G ∼ ι.

Lemma 40. If G ∼ A/α → B/β, then G = ⋆ / ⋆ → ⋆ / ⋆.

Proof. Straightforward by case analysis on the compatibility rule applied last to G ∼ A/α → B/β.

Lemma 41.

(1) [[s [x := v]]] = [[s]] [x := v∗].
(2) (v ′ [x := v])∗ = v ′∗ [x := v∗].

Proof. By mutual induction on structures of s and v ′.

(1) By case analysis on s.

Case s = v ′: [[v ′ [x := v]]] = λκ. κ (v ′ [x := v])∗. Similarly to case (2), we have (v ′ [x := v])∗ = v ′∗ [x := v∗].
Thus, [[v ′ [x := v]]] = λκ. κ v ′∗ [x := v∗] = [[v ′]] [x := v∗].

Case s = op(ti
i
): Similarly to the case for function applications.

Case s = t u:

[[(t u) [x := v]]] = [[(t [x := v]) (u [x := v])]]

= λκ. [[t [x := v]]] (λy . [[u [x := v]]] (λz . y z κ))

= λκ. [[t]] [x := v∗] (λy . [[u]] [x := v∗] (λz . y z κ)) (by the IHs)

= (λκ. [[t]] (λy . [[u]] (λz . y z κ))) [x := v∗]

= [[t u]] [x := v∗].

Case s = ⟨t⟩:

[[⟨t⟩ [x := v]]] = [[⟨t [x := v]⟩]]
= λκ. κ ([[t [x := v]]] (λy . y))

= λκ. κ ([[t]] [x := v∗] (λy . y)) (by the IH)

= (λκ. κ ([[t]] (λy . y))) [x := v∗]

= [[⟨t⟩]] [x := v∗].

Case s = Sk . t: Without loss of generality, we can suppose that k ̸= x and k /∈ fv (v) ∪ fv (v∗).

[[(Sk . t) [x := v]]] = [[(Sk . t [x := v])]]

= λκ. [[t [x := v]]] [k := λy . λκ′. κ′ (κ y)] (λz . z)

= λκ. [[t]] [x := v∗] [k := λy . λκ′. κ′ (κ y)] (λz . z) (by the IH)

= (λκ. [[t]] [k := λy . λκ′. κ′ (κ y)]) [x := v∗] (λz . z)

= [[Sk . t]] [x := v∗].

Case s = t : A ⇒p B:

[[(t : A ⇒p B) [x := v]]] = [[t [x := v] : A ⇒p B]]

= λκ. [[t [x := v]]] (λy . κ (y : [[A]] ⇒p [[B]]))

= λκ. [[t]] [x := v∗] (λy . κ (y : [[A]] ⇒p [[B]])) (by the IH)

= (λκ. [[t]] (λy . κ (y : [[A]] ⇒p [[B]]))) [x := v∗]

= [[t : A ⇒p B]] [x := v∗].

Shifting the Blame 35

Case s = t : G ⇒ ⋆:

[[(t : G ⇒ ⋆) [x := v]]] = [[t [x := v] : G ⇒ ⋆]]

= λκ. [[t [x := v]]] (λy . κ (y : G ⇒ ⋆)∗)

= λκ. [[t]] [x := v∗] (λy . κ (y : G ⇒ ⋆)∗) (by the IH)

= (λκ. [[t]] (λy . κ (y : G ⇒ ⋆)∗)) [x := v∗]

= [[t : G ⇒ ⋆]] [x := v∗].

Case s = t is ι:

[[(t is ι) [x := v]]] = [[t [x := v] is ι]]

= λκ. [[t [x := v]]] (λy . κ (y is ι))

= λκ. [[t]] [x := v∗] (λy . κ (y is ι)) (by the IH)

= (λκ. [[t]] (λy . κ (y is ι))) [x := v∗]

= [[t is ι]] [x := v∗].

Case s = t is ⋆ / ⋆ → ⋆ / ⋆:

[[(t is ⋆ / ⋆ → ⋆ / ⋆) [x := v]]] = [[t [x := v] is ⋆ / ⋆ → ⋆ / ⋆]]

= λκ. [[t [x := v]]] (λy . κ (y is ⋆ → ⋆))

= λκ. [[t]] [x := v∗] (λy . κ (y is ⋆ → ⋆)) (by the IH)

= (λκ. [[t]] (λy . κ (y is ⋆ → ⋆))) [x := v∗]

= [[t is ⋆ / ⋆ → ⋆ / ⋆]] [x := v∗].

Case s = blame p:

[[(blame p) [x := v]]] = [[blame p]]

= λκ. blame p

= (λκ. blame p) [x := v∗]

= [[blame p]] [x := v∗].

(2) By case analysis on v ′.
Case v ′ = y: If y = x , then:

(x [x := v])∗ = v∗

= x [x := v∗]

= x∗ [x := v∗].

Otherwise, if y ̸= x , then:

(y [x := v])∗ = y∗

= y

= y [x := v∗]

= y∗ [x := v∗].

Case v ′ = c:

(c [x := v])∗ = c∗

= c

= c [x := v∗]

= c∗ [x := v∗].

36 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Case v ′ = λy . t: Without loss of generality, we can suppose that y ̸= x and y /∈ fv (v) ∪ fv (v∗). Thus,

((λy . t) [x := v])∗ = (λy . t [x := v])∗

= λy . [[t [x := v]]]

= λy . [[t]] [x := v∗] (by the IH)

= (λy . [[t]]) [x := v∗]

= (λy . t)∗ [x := v∗].

Case v ′ = v ′′ : ι ⇒ ⋆:

((v ′′ : ι ⇒ ⋆) [x := v])∗ = ((v ′′ [x := v]) : ι ⇒ ⋆)∗

= (v ′′ [x := v])∗ : ι ⇒ ⋆

= (v ′′∗ [x := v∗]) : ι ⇒ ⋆ (by the IH)

= (v ′′∗ : ι ⇒ ⋆) [x := v∗]

= (v ′′ : ι ⇒ ⋆)∗ [x := v∗].

Case v ′ = v ′′ : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆:

((v ′′ : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆) [x := v])∗

= (v ′′ [x := v] : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆)∗

= (λy . ((v ′′ [x := v])∗ y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆
= (λy . (v ′′∗ [x := v∗] y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆ (by the IH)
= ((λy . (v ′′∗ y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) [x := v∗]
= (v ′′ : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆)∗ [x := v∗].

Lemma 42. [[E]] [[s]]
β
= [[E [s]]].

Proof. By structural induction on E. Note that [[s]] is a value.

Case E = []:

[[[]]] [[s]] = (λx . x) [[s]]
β
= [[s]] = [[[] [s]]].

Case E = op(vi
i ,E ′, tj

j
): Similarly to the case for function applications.

Case E = E ′ t:

[[E ′ t]] [[s]] = (λx . λκ. [[E ′]] x (λy . [[t]] (λz . y z κ))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . [[t]] (λz . y z κ))
β
= λκ. [[E ′[s]]] (λy . [[t]] (λz . y z κ)) (by the IH)

= [[E ′[s] t]].

Case E = v E ′:

[[v E ′]] [[s]] = (λx . λκ. [[v]] (λy . [[E ′]] x (λz . y z κ))) [[s]]
β
= λκ. [[v]] (λy . [[E ′]] [[s]] (λz . y z κ))
β
= λκ. [[v]] (λy . [[E ′[s]]] (λz . y z κ)) (by the IH)

= [[v E ′[s]]].

Case E = ⟨E ′⟩:

[[⟨E ′⟩]] [[s]] = (λx . λκ. κ ([[E ′]] x (λy . y))) [[s]]
β
= λκ. κ ([[E ′]] [[s]] (λy . y))
β
= λκ. κ ([[E ′[s]]] (λy . y)) (by the IH)

= [[⟨E ′[s]⟩]]

Shifting the Blame 37

Case E = E ′ : A ⇒p B:

[[E ′ : A ⇒p B]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ (y : [[A]] ⇒p [[B]]))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ (y : [[A]] ⇒p [[B]]))
β
= λκ. [[E ′[s]]] (λy . κ (y : [[A]] ⇒p [[B]])) (by the IH)

= [[E ′[s] : A ⇒p B]].

Case E = E ′ : ι ⇒ ⋆:

[[E ′ : ι ⇒ ⋆]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ (y : ι ⇒ ⋆))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ (y : ι ⇒ ⋆))
β
= λκ. [[E ′[s]]] (λy . κ (y : ι ⇒ ⋆)) (by the IH)

= [[E ′[s] : ι ⇒ ⋆]].

Case E = E ′ : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆:

[[E ′ : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ ((λz . (y z) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))) [[s]]

β
= λκ. [[E ′]] [[s]] (λy . κ ((λz . (y z) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))
β
= λκ. [[E ′[s]]] (λy . κ ((λz . (y z) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))

= [[E ′[s] : ⋆ / ⋆ → ⋆ / ⋆ ⇒ ⋆]].

Case E = E ′ is ι:

[[E ′ is ι]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ (y is ι))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ (y is ι))
β
= λκ. [[E ′[s]]] (λy . κ (y is ι)) (by the IH)

= [[E ′[s] is ι]].

Case E = E ′ is ⋆ / ⋆ → ⋆ / ⋆:

[[E ′ is ⋆ / ⋆ → ⋆ / ⋆]] [[s]] = (λx . λκ. [[E ′]] x (λy . κ (y is ⋆ → ⋆))) [[s]]
β
= λκ. [[E ′]] [[s]] (λy . κ (y is ⋆ → ⋆))
β
= λκ. [[E ′[s]]] (λy . κ (y is ⋆ → ⋆)) (by the IH)

= [[E ′[s] is ⋆ / ⋆ → ⋆ / ⋆]].

Lemma 43. [[F]] [[s]]
βη
= λκ. [[s]] (λx . [[F]] (λκ′. κ′ x)κ) where x /∈ fv (F).

Proof. By structural induction on F.

Case F = []:

[[[]]] [[s]]
β
= [[s]]
η
= λκ. [[s]]κ
η
= λκ. [[s]] (λx . κ x)
β
= λκ. [[s]] (λx . (λκ′. κ′ x)κ)
β
= λκ. [[s]] (λx . [[[]]] (λκ′. κ′ x)κ).

38 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Case F = op(vi
i ,F ′, tj

j
):

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ op(vi∗

i
, y , yj

j))))

βη
= λκ. (λκ′. [[s]] (λz . [[F ′]] (λκ′′. κ′′ z)κ′)) (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ op(vi∗

i
, y , yj

j)))) (by the IH)

β
= λκ. [[s]] (λz . [[F ′]] (λκ′′. κ′′ z) (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ op(vi∗

i
, y , yj

j)))))

β
= λκ. [[s]] (λz . (λx . λκ′. [[F ′]] x (λy . [[t1]] (λy1. . . . [[tn]] (λyn . κ

′ op(vi∗
i
, y , yj

j))))) (λκ′′. κ′′ z)κ)

= λκ. [[s]] (λz . [[F]] (λκ′′. κ′′ z)κ).

Case F = F ′ t:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . [[t]] (λy . x y κ))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . [[t]] (λy . x y κ)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . [[t]] (λy . x y κ)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . [[t]] (λy . x y κ′))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = v F ′:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . v∗ x κ)
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . v∗ x κ) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . v∗ x κ))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . v∗ x κ′)) (λκ′′. κ′′ y)κ)
β
= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = F ′ : A ⇒p B:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ (x : [[A]] ⇒p [[B]]))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ (x : [[A]] ⇒p [[B]])) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ (x : [[A]] ⇒p [[B]])))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ (x : [[A]] ⇒p [[B]]))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = F ′ : ι ⇒ ⋆:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ (x : ι ⇒ ⋆))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ (x : ι ⇒ ⋆)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ (x : ι ⇒ ⋆)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ (x : ι ⇒ ⋆))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = F ′ : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ ((λz . (y z) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ ((λz . (y z) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ ((λz . (y z) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ ((λz . (y z) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Shifting the Blame 39

Case F = F ′ is ι:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ (x is ι))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ (x is ι)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ (x is ι)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ (x is ι))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Case F = F ′ is ⋆ / ⋆ → ⋆ / ⋆:

[[F]] [[s]]
β
= λκ. [[F ′]] [[s]] (λx . κ (x is ⋆ → ⋆))
βη
= λκ. (λκ′. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y)κ′)) (λx . κ (x is ⋆ → ⋆)) (by the IH)
β
= λκ. [[s]] (λy . [[F ′]] (λκ′′. κ′′ y) (λx . κ (x is ⋆ → ⋆)))
β
= λκ. [[s]] (λy . (λz . λκ′. [[F ′]] z (λx . κ′ (x is ⋆ → ⋆))) (λκ′′. κ′′ y)κ)

= λκ. [[s]] (λy . [[F]] (λκ′′. κ′′ y)κ).

Lemma 44. [[E]] [[blame p]]
βη
= [[blame p]].

Proof. We first show

[[E]] [[blame p]]
βη
= λκ. [[blame p]] (λx . [[E]] (λκ′. κ′ x)κ),

where x /∈ fv (E), by structural induction on E. We show only the case for E = ⟨E ′⟩; other cases can be proven
similarly to Lemma 43. Suppose that E = ⟨E ′⟩ for some E ′. Then,

[[⟨E ′⟩]] [[blame p]]
β
= λκ. κ ([[E ′]] [[blame p]] (λx . x))
βη
= λκ. κ ((λκ′. [[blame p]] (λx . [[E]] (λκ′′. κ′′ x)κ′)) (λx . x)) (by the IH)
β
= λκ. κ (blame p)
β
= λκ. blame p
β
= λκ. [[blame p]] (λx . [[E]] (λκ′. κ′ x)κ).

Next, we show [[E]] [[blame p]]
βη
= [[blame p]]. By the proof above,

[[E]] [[blame p]]
βη
= λκ. [[blame p]] (λx . [[E]] (λκ′. κ′ x)κ)
β
= λκ. blame p

= [[blame p]].

Lemma 45. e : (A → B) → C ⇒p (⋆ → ⋆) → ⋆ ⇒p ⋆
βωξυ
= e : (A → B) → C ⇒p ⋆

40 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Proof.

e : (A → B) → C ⇒p (⋆ → ⋆) → ⋆ ⇒p ⋆
ω
= (λx . x : (A → B) → C ⇒p (⋆ → ⋆) → ⋆ ⇒p ⋆) e
β
= (λx . (λy . x (y : ⋆ → ⋆ ⇒p̄ A → B) : C ⇒p ⋆) : (⋆ → ⋆) → ⋆ ⇒p ⋆) e
β
= (λx . (λy . x (y : ⋆ → ⋆ ⇒p̄ A → B) : C ⇒p ⋆) : (⋆ → ⋆) → ⋆ ⇒p ⋆ → ⋆ ⇒ ⋆) e
β
= (λx . (λz . (λy . x (y : ⋆ → ⋆ ⇒p̄ A → B) : C ⇒p ⋆) (z : ⋆ ⇒p̄ ⋆ → ⋆) : ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) e
ω
= (λx . (λz . x (z : ⋆ ⇒p̄ ⋆ → ⋆ ⇒p̄ A → B) : C ⇒p ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) e
υ
= (λx . (λz . x (z : ⋆ ⇒p̄ ⋆ → ⋆ ⇒p̄ A → B) : C ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) e
ξ
= (λx . (λz . x (z : ⋆ ⇒p̄ A → B) : C ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) e
β
= (λx . x : (A → B) → C ⇒p ⋆ → ⋆ ⇒ ⋆) e
β
= (λx . x : (A → B) → C ⇒p ⋆) e
ω
= e : (A → B) → C ⇒p ⋆

Lemma 46. e : (⋆ → ⋆) → ⋆ ⇒p ⋆ ⇒q (A → B) → C βωυ
= e : (⋆ → ⋆) → ⋆ ⇒q (A → B) → C

Proof.

e : (⋆ → ⋆) → ⋆ ⇒p ⋆ ⇒q (A → B) → C
ω
= (λx . x : (⋆ → ⋆) → ⋆ ⇒p ⋆ ⇒q (A → B) → C) e
β
= (λx . x : (⋆ → ⋆) → ⋆ ⇒p ⋆ → ⋆ ⇒⋆ ⇒q (A → B) → C) e
β
= (λx . (λy . x (y : ⋆ ⇒p̄ ⋆ → ⋆) : ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒⋆ ⇒q (A → B) → C) e
υ
= (λx . (λy . x (y : ⋆ ⇒p̄ ⋆ → ⋆)) : ⋆ → ⋆ ⇒⋆ ⇒q (A → B) → C) e
β
= (λx . (λy . x (y : ⋆ ⇒p̄ ⋆ → ⋆)) : ⋆ → ⋆ ⇒q (A → B) → C) e
β
= (λx . (λz . (λy . x (y : ⋆ ⇒p̄ ⋆ → ⋆)) (z : (A → B) ⇒q̄ ⋆) : ⋆ ⇒q C)) e
β
= (λx . (λz . x (z : (A → B) ⇒q̄ ⋆ ⇒p̄ ⋆ → ⋆) : ⋆ ⇒q C)) e
β
= (λx . (λz . x (z : (A → B) ⇒q̄ ⋆ → ⋆ ⇒⋆ ⇒p̄ ⋆ → ⋆) : ⋆ ⇒q C)) e
β
= (λx . (λz . x ((λx ′. z (x ′ : ⋆ ⇒q A) : B ⇒q̄ ⋆) : ⋆ → ⋆ ⇒⋆ ⇒p̄ ⋆ → ⋆) : ⋆ ⇒q C)) e
β
= (λx . (λz . x ((λx ′. z (x ′ : ⋆ ⇒q A) : B ⇒q̄ ⋆) : ⋆ → ⋆ ⇒p̄ ⋆ → ⋆) : ⋆ ⇒q C)) e
β
= (λx . (λz . x (λy ′. (λx ′. z (x ′ : ⋆ ⇒q A) : B ⇒q̄ ⋆) (y ′ : ⋆ ⇒p ⋆) : ⋆ ⇒p̄ ⋆) : ⋆ ⇒q C)) e
υ
= (λx . (λz . x (λy ′. (λx ′. z (x ′ : ⋆ ⇒q A) : B ⇒q̄ ⋆) y ′) : ⋆ ⇒q C)) e
β
= (λx . (λz . x (λy ′. z (y ′ : ⋆ ⇒q A) : B ⇒q̄ ⋆) : ⋆ ⇒q C)) e
β
= (λx . (λz . x (z : A → B ⇒q̄ ⋆ → ⋆) : ⋆ ⇒q C)) e
β
= (λx . x : (⋆ → ⋆) → ⋆ ⇒q (A → B) → C) e
ω
= e : (⋆ → ⋆) → ⋆ ⇒q (A → B) → C

Lemma 47. If s −→ t, then [[s]]
βηωξυ
= [[t]].

Proof. By case analysis on the reduction rule applied to s.

Case (R Op): We are given op(vi
i) −→ ζ (op, vi

i) for some op and vi
i . We show that [[op(vi

i)]]
β
= [[ζ (op, vi

i)]]. By

definition, [[op(vi
i)]]

β
= (λκ. [[v1]] (λx1. . . . [[vn]] (λxn . κ op(xi

i)))). Since op(vi
i) takes a step, all values vi

i are
constants. Thus, for each vi , [[vi]] = λκ′. κ′ vi , and so

[[op(vi
i)]]

β
= λκ. κ op(vi

i)
β
= λκ. κ ζ (op, vi

i)
β
= [[ζ (op, vi

i)]] (since ζ (op, vi
i) is a constant).

Shifting the Blame 41

Case (R Beta): We are given (λx . u) v −→ u [x := v]. We show that [[(λx . u) v]]
β
= [[u [x := v]]]. Here,

[[(λx . u) v]] = λκ. [[λx . u]] (λy . [[v]] (λz . y z κ))

= λκ. (λκ′. κ′ (λx . [[u]])) (λy . [[v]] (λz . y z κ))
β
= λκ. [[v]] (λz . (λx . [[u]]) z κ)

= λκ. (λκ′′. κ′′ v∗) (λz . (λx . [[u]]) z κ)
β
= λκ. (λx . [[u]]) v∗ κ
β
= λκ. [[u]] [x := v∗]κ

= λκ. [[u [x := v]]]κ (by Lemma 41)
η
= [[u [x := v]]].

Case (R Wrap): We are given

v : A/α → B/β ⇒p A′/α′ → B ′/β′ −→
λx .Sk . (⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′).

[[v : A/α → B/β ⇒p A′/α′ → B ′/β′]]
= λκ. [[v]] (λx . κ (x : [[A/α → B/β]] ⇒p [[A′/α′ → B ′/β′]]))
β
= λκ. κ (v∗ : ([[A]] → ([[B]] → [[α]]) → [[β]]) ⇒p [[[[A′]] → ([[B ′]] → [[α′]]) → [[β′]]]])
β
= λκ. κ (λx . (v∗ (x : [[A′]] ⇒p̄ [[A]])) : ([[B]] → [[α]]) → [[β]] ⇒p ([[B ′]] → [[α′]]) → [[β′]])
ω
= λκ. κ (λx . (λy . y : ([[B]] → [[α]]) → [[β]] ⇒p ([[B ′]] → [[α′]]) → [[β′]]) (v∗ (x : [[A′]] ⇒p̄ [[A]])))
β
= λκ. κ (λx . (λy . λκ′. (y (κ′ : [[B ′]] → [[α′]] ⇒p̄ [[B]] → [[α]])) : [[β]] ⇒p [[β′]]) (v∗ (x : [[A′]] ⇒p̄ [[A]])))
β
= λκ. κ (λx . (λy . λκ′. (y (λz . (κ′ (z : [[B]] ⇒p [[B ′]])) : [[α′]] ⇒p̄ [[α]])) : [[β]] ⇒p [[β′]]) (v∗ (x : [[A′]] ⇒p̄ [[A]])))
ω
= <<no parses (char 143): \kap. kap (\x.\kap’. (cpsv(v) (x : cps(A’) => p cps(A)) ((\z. (kap’ (z : cps(B) =>p cps(B’))) : cps(al’) => p cps(al))) : cps(bt) =>p cps(bt’))*** >>

Moreover,

[[λx .Sk . (⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′)]]
= λκ. κ (λx . [[Sk . (⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′)]])
= λκ. κ (λx . λκ′. ([[⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′]] (λy . y)) [k := λz . λκ′′. κ′′ (κ′ z)])

42 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Here,

[[⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′]] (λy . y)
= (λκ′′′. [[⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩]] (λx ′. κ′′′ (x ′ : [[β]] ⇒p [[β′]]))) (λy . y)
β
= [[⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩]] (λx ′. (λy . y) (x ′ : [[β]] ⇒p [[β′]]))
ω
= [[⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩]] (λx ′. x ′ : [[β]] ⇒p [[β′]])
= (λκ′′′. κ′′′ ([[(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α]] (λy . y))) (λx ′. x ′ : [[β]] ⇒p [[β′]])
β
= (λx ′. x ′ : [[β]] ⇒p [[β′]]) ([[(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α]] (λy . y))
ω
= ([[(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α]] (λy . y)) : [[β]] ⇒p [[β′]]
= ((λκ′′′. [[k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)]] (λx ′. κ′′′ (x ′ : [[α′]] ⇒p̄ [[α]]))) (λy . y)) : [[β]] ⇒p [[β′]]
β
= ([[k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)]] (λx ′. (λy . y) (x ′ : [[α′]] ⇒p̄ [[α]]))) : [[β]] ⇒p [[β′]]
ω
= ([[k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)]] (λx ′. x ′ : [[α′]] ⇒p̄ [[α]])) : [[β]] ⇒p [[β′]]
= ((λκ′′′. [[k]] (λx ′′. [[(v (x : A′ ⇒p̄ A)) : B ⇒p B ′]] (λy ′′. x ′′ y ′′ κ′′′))) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]])) : [[β]] ⇒p [[β′]]
β
= ([[k]] (λx ′′. [[(v (x : A′ ⇒p̄ A)) : B ⇒p B ′]] (λy ′′. x ′′ y ′′ (λx ′. x ′ : [[α′]] ⇒p̄ [[α]])))) : [[β]] ⇒p [[β′]]
β
= ([[(v (x : A′ ⇒p̄ A)) : B ⇒p B ′]] (λy ′′. k y ′′ (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))) : [[β]] ⇒p [[β′]]
= ((λκ′′′. [[v (x : A′ ⇒p̄ A)]] (λx ′′. κ′′′ (x ′′ : [[B]] ⇒p [[B ′]]))) (λy ′′. k y ′′ (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))) : [[β]] ⇒p [[β′]]
β
= ([[v (x : A′ ⇒p̄ A)]] (λx ′′. (λy ′′. k y ′′ (λx ′. x ′ : [[α′]] ⇒p̄ [[α]])) (x ′′ : [[B]] ⇒p [[B ′]]))) : [[β]] ⇒p [[β′]]
ω
= ([[v (x : A′ ⇒p̄ A)]] (λx ′′. k (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))) : [[β]] ⇒p [[β′]]
= ((λκ′′′. [[v]] (λx ′′. [[x : A′ ⇒p̄ A]] (λy ′′. x ′′ y ′′ κ′′′)))

(λx ′′. k (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))) : [[β]] ⇒p [[β′]]
β
= ([[v]] (λx ′′′. [[x : A′ ⇒p̄ A]] (λy ′′. x ′′′ y ′′ (λx ′′. k (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))))) : [[β]] ⇒p [[β′]]
β
= ([[x : A′ ⇒p̄ A]] (λy ′′. v∗ y ′′ (λx ′′. k (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]])))) : [[β]] ⇒p [[β′]]
= ((λκ′′′. [[x]] (λx ′′′. κ′′′ (x ′′′ : [[A′]] ⇒p̄ [[A]])))

(λy ′′. v∗ y ′′ (λx ′′. k (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]])))) : [[β]] ⇒p [[β′]]
β
= (([[x]] (λx ′′′. (λy ′′. v∗ y ′′ (λx ′′. k (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]])))

(x ′′′ : [[A′]] ⇒p̄ [[A]])))) : [[β]] ⇒p [[β′]]
β
= ((λy ′′. v∗ y ′′ (λx ′′. k (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))) (x : [[A′]] ⇒p̄ [[A]])) : [[β]] ⇒p [[β′]]
ω
= (v∗ (x : [[A′]] ⇒p̄ [[A]]) (λx ′′. k (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))) : [[β]] ⇒p [[β′]].

Thus,

([[⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′]] (λy . y)) [k := λz . λκ′′. κ′′ (κ′ z)]
βω
= (v∗ (x : [[A′]] ⇒p̄ [[A]]) (λx ′′. (λz . λκ′′. κ′′ (κ′ z)) (x ′′ : [[B]] ⇒p [[B ′]]) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))) : [[β]] ⇒p [[β′]]
ω
= (v∗ (x : [[A′]] ⇒p̄ [[A]]) (λx ′′. (λκ′′. κ′′ (κ′ (x ′′ : [[B]] ⇒p [[B ′]]))) (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]))) : [[β]] ⇒p [[β′]]
β
= (v∗ (x : [[A′]] ⇒p̄ [[A]]) (λx ′′. (λx ′. x ′ : [[α′]] ⇒p̄ [[α]]) (κ′ (x ′′ : [[B]] ⇒p [[B ′]])))) : [[β]] ⇒p [[β′]]
ω
= (v∗ (x : [[A′]] ⇒p̄ [[A]]) (λx ′′. (κ′ (x ′′ : [[B]] ⇒p [[B ′]])) : [[α′]] ⇒p̄ [[α]])) : [[β]] ⇒p [[β′]]

Therefore,

[[λx .Sk . (⟨(k ((v (x : A′ ⇒p̄ A)) : B ⇒p B ′)) : α′ ⇒p̄ α⟩ : β ⇒p β′)]]
βω
= λκ. κ (λx . λκ′. (v∗ (x : [[A′]] ⇒p̄ [[A]]) (λx ′′. (κ′ (x ′′ : [[B]] ⇒p [[B ′]])) : [[α′]] ⇒p̄ [[α]])) : [[β]] ⇒p [[β′]])
βω
= [[v : A/α → B/β ⇒p A′/α′ → B ′/β′]]

Case (R Reset): We are given ⟨v⟩ −→ v for some v. We show that [[⟨v⟩]] β
= [[v]]. Here,

[[⟨v⟩]] β
= λκ. κ ([[v]] (λx . x))
β
= λκ. κ v∗

β
= [[v]].

Shifting the Blame 43

Case (R Shift): We are given ⟨F [Sk . s]⟩ −→ ⟨s [k := λx . ⟨F [x]⟩]⟩ where x /∈ fv (F). We show that [[⟨F [Sk . s]⟩]] βη
=

[[⟨s [k := λx . ⟨F [x]⟩]⟩]]. Here,

[[⟨F [Sk . s]⟩]] = λκ. κ ([[F [Sk . s]]] (λy . y))
β
= λκ. κ ([[F]] [[Sk . s]] (λy . y)) (by Lemma 42)
βη
= λκ. κ ((λκ′. [[Sk . s]] (λx . [[F]] (λκ′′. κ′′ x)κ′)) (λy . y)) (by Lemma 43)
β
= λκ. κ ([[Sk . s]] (λx . [[F]] (λκ′′. κ′′ x) (λy . y)))

= λκ. κ ((λκ′′′. [[s]] [k := λz . λκ′′′′. κ′′′′ (κ′′′ z)] (λz . z)) (λx . [[F]] (λκ′′. κ′′ x) (λy . y)))
β
= λκ. κ ([[s]] [k := λz . λκ′′′′. κ′′′′ ((λx . [[F]] (λκ′′. κ′′ x) (λy . y)) z)] (λz . z))
β
= λκ. κ ([[s]] [k := λz . λκ′′′′. κ′′′′ ([[F]] (λκ′′. κ′′ z) (λy . y))] (λz . z))

= λκ. κ ([[s]] [k := λz . λκ′′′′. κ′′′′ ([[F]] [[z]] (λy . y))] (λz . z))
β
= λκ. κ ([[s]] [k := λz . λκ′′′′. κ′′′′ ([[F [z]]] (λy . y))] (λz . z)) (by Lemma 42)

= λκ. κ ([[s]] [k := λz . [[⟨F [z]⟩]]] (λz . z))
= λκ. κ ([[s]] [k := (λz . ⟨F [z]⟩)∗] (λz . z))
= λκ. κ ([[s [k := λz . ⟨F [z]⟩]]] (λz . z)) (by Lemma 41)

= [[⟨s [k := λz . ⟨F [z]⟩]⟩]].

Case (R Base): We are given v : ι ⇒p ι −→ v for some v and ι. We show that [[v : ι ⇒p ι]]
β
= [[v]]. Here,

[[v : ι ⇒p ι]]
β
= λκ. κ (v∗ : ι ⇒p ι)
β
= λκ. κ v∗

= [[v]].

Case (R Dyn): We are given v : ⋆ ⇒p ⋆ −→ v for some v. We show that [[v : ⋆ ⇒p ⋆]]
υ
= [[v]]. Here,

[[v : ⋆ ⇒p ⋆]] = λκ. κ (v∗ : ⋆ ⇒p ⋆)
υ
= λκ. κ v∗

= [[v]].

Case (R Ground): We are given v : A ⇒p ⋆ −→ v : A ⇒p G ⇒p ⋆ for some v, A, p and G such that A ∼ G

and A ̸= ⋆. We show that [[v : A ⇒p ⋆]]
βωξυ
= [[v : A ⇒p G ⇒p ⋆]]. By case analysis on A.

Case A = ι: Then, we have G = ι by Lemma 39. On one hand:

[[v : ι ⇒p ⋆]]
β
= λκ. κ (v∗ : ι ⇒p ⋆)
β
= λκ. κ (v∗ : ι ⇒p ι ⇒ ⋆)
β
= λκ. κ (v∗ : ι ⇒ ⋆).

On the other hand:

[[v : ι ⇒p ι ⇒p ⋆]] = λκ. [[v : ι ⇒p ι]] (λx . κ (x : ι ⇒ ⋆))

β
= λκ. (λx . κ (x : ι ⇒ ⋆)) (v∗ : ι ⇒p ι)
β
= λκ. κ (v∗ : ι ⇒ ⋆).

Therefore, we finish.
Case A = A′/α′ → B ′/β′: Then, we have G = ⋆ / ⋆ → ⋆ / ⋆ by Lemma 40. On one hand:

[[v : A′/α′ → B ′/β′ ⇒p ⋆]]
β
= λκ. κ (v∗ : [[A′]] → ([[B ′]] → [[α′]]) → [[β′]] ⇒p ⋆)
β
= λκ. κ (v∗ : [[A′]] → ([[B ′]] → [[α′]]) → [[β′]] ⇒p ⋆ → ⋆ ⇒ ⋆)
β
= λκ. κ ((λx . v∗ (x : ⋆ ⇒p̄ [[A′]]) : ([[B ′]] → [[α′]]) → [[β′]] ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆).

44 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

On the other hand:

[[v : A′/α′ → B ′/β′ ⇒p ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆]]
= λκ. [[v : A′/α′ → B ′/β′ ⇒p ⋆/⋆ → ⋆/⋆]] (λx . κ (x : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆)∗)
= λκ. [[v : A′/α′ → B ′/β′ ⇒p ⋆/⋆ → ⋆/⋆]]

(λx . κ ((λy . (x y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))
= λκ. (λκ′. κ′ (v∗ : [[A′]] → ([[B ′]] → [[α′]]) → [[β′]] ⇒p ⋆ → (⋆ → ⋆) → ⋆))

(λx . κ ((λy . (x y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))
β
= λκ. (λκ′. κ′ (λz . v∗ (z : ⋆ ⇒p̄ [[A′]]) : ([[B ′]] → [[α′]]) → [[β′]] ⇒p (⋆ → ⋆) → ⋆))

(λx . κ ((λy . (x y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆))
β
= λκ. κ ((λy . v∗ (y : ⋆ ⇒p̄ [[A′]]) : ([[B ′]] → [[α′]]) → [[β′]] ⇒p (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆)

βωξυ
= λκ. κ ((λy . v∗ (y : ⋆ ⇒p̄ [[A′]]) : ([[B ′]] → [[α′]]) → [[β′]] ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) (by Lemma 45).

Case (R Collapse): We are given v : G ⇒ ⋆ ⇒p A −→ v : G ⇒p A for some v, G, p and A such that G ∼ A

and A ̸= ⋆. We show that [[v : G ⇒⋆ ⇒p A]]
βωξυ
= [[v : G ⇒p A]] by case analysis on A.

Case A = ι: Then, G = ι by Lemma 39. Thus,

[[v : ι ⇒⋆ ⇒p ι]] = λκ. [[v : ι ⇒ ⋆]] (λx . κ (x : ⋆ ⇒p ι))
β
= λκ. κ (v∗ : ι ⇒⋆ ⇒p ι)
β
= λκ. κ (v∗ : ι ⇒p ι)
β
= λκ. [[v]] (λx . κ (x : ι ⇒p ι))
β
= [[v : ι ⇒p ι]].

Case A = A′/α′ → B ′/β′: Then, G = ⋆ / ⋆ → ⋆ / ⋆ by Lemma 40. Thus,

[[v : ⋆ / ⋆ → ⋆ / ⋆ ⇒q ⋆ ⇒p A′/α′ → B ′/β′]]
= λκ. [[v : ⋆ / ⋆ → ⋆ / ⋆ ⇒q ⋆]] (λx . κ (x : ⋆ ⇒p [[A′]] → ([[B ′]] → [[α′]]) → [[β′]]))
= λκ. (λκ′. κ′ ((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒q ⋆) : ⋆ → ⋆ ⇒ ⋆))

(λx . κ (x : ⋆ ⇒p [[A′]] → ([[B ′]] → [[α′]]) → [[β′]]))
β
= λκ. κ ((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒q ⋆) : ⋆ → ⋆ ⇒⋆ ⇒p [[A′]] → ([[B ′]] → [[α′]]) → [[β′]])
β
= λκ. κ ((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒q ⋆) : ⋆ → ⋆ ⇒p [[A′]] → ([[B ′]] → [[α′]]) → [[β′]])
β
= λκ. κ (λz . (λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒q ⋆) (z : [[A′]] ⇒p̄ ⋆) : ⋆ ⇒p ([[B ′]] → [[α′]]) → [[β′]])
ω
= λκ. κ (λz . (v∗ (z : [[A′]] ⇒p̄ ⋆)) : (⋆ → ⋆) → ⋆ ⇒q ⋆ ⇒p ([[B ′]] → [[α′]]) → [[β′]])

βωυ
= λκ. κ (λz . (v∗ (z : [[A′]] ⇒p̄ ⋆)) : (⋆ → ⋆) → ⋆ ⇒p ([[B ′]] → [[α′]]) → [[β′]]) (by Lemma 46)
β
= λκ. κ (v∗ : ⋆ → (⋆ → ⋆) → ⋆ ⇒p [[A′]] → ([[B ′]] → [[α′]]) → [[β′]])
β
= [[v : ⋆/⋆ → ⋆/⋆ ⇒p A′/α′ → B ′/β′]]

Case (R Conflict): We are given v : G ⇒ ⋆ ⇒p A −→ blame p for some v, G, p and A such that G ̸∼ A. We

show that [[v : G ⇒⋆ ⇒p A]]
β
= [[blame p]] by case analysis on A.

Case A = ⋆: Contradictory since ⋆ is compatible with any type.

Case A = ι: Then, G = ⋆ / ⋆ → ⋆ / ⋆ from G ̸∼ A. Thus,

[[v : ⋆ / ⋆ → ⋆ / ⋆ ⇒q ⋆ ⇒p ι]]
= λκ. [[v : ⋆ / ⋆ → ⋆ / ⋆ ⇒q ⋆]] (λx . κ (x : ⋆ ⇒p ι))
= λκ. (λκ′. κ′ ((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒q ⋆) : ⋆ → ⋆ ⇒ ⋆)) (λx . κ (x : ⋆ ⇒p ι))
β
= λκ. κ ((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒q ⋆) : ⋆ → ⋆ ⇒⋆ ⇒p ι)
β
= λκ. κ (blame p)
β
= [[blame p]].

Shifting the Blame 45

Case A = A′/α′ → B ′/β′: Then, G = ι for some ι from G ̸∼ A. Thus,

[[v : ι ⇒⋆ ⇒p A′/α′ → B ′/β′]]
= λκ. [[v : ι ⇒ ⋆]] (λx . κ (x : ⋆ ⇒p [[A′]] → ([[B ′]] → [[α′]]) → [[β′]]))
= λκ. (λκ′. κ′ (v∗ : ι ⇒ ⋆)) (λx . κ (x : ⋆ ⇒p [[A′]] → ([[B ′]] → [[α′]]) → [[β′]]))
β
= λκ. κ (v∗ : ι ⇒⋆ ⇒p [[A′]] → ([[B ′]] → [[α′]]) → [[β′]])
β
= λκ. κ (blame p)
β
= [[blame p]].

Case (R IsTrue): We are given (v : G ⇒ ⋆) isG −→ true for some v and G. We show that [[(v : G ⇒ ⋆) isG]]
β
=

[[true]] by case analysis on G.

Case G = ι: Then,

[[(v : ι ⇒ ⋆) is ι]] = λκ. [[v : ι ⇒ ⋆]] (λx . κ (x is ι))

= λκ. (λκ′. κ′ (v∗ : ι ⇒ ⋆)) (λx . κ (x is ι))
β
= λκ. κ ((v∗ : ι ⇒ ⋆) is ι)
β
= λκ. κ true

= [[true]].

Case G = ⋆ / ⋆ → ⋆ / ⋆: Then,

[[(v : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆) is ⋆ / ⋆ → ⋆ / ⋆]]
= λκ. [[v : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆]] (λx . κ (x is ⋆ → ⋆))
= λκ. (λκ′. κ′ ((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆)) (λx . κ (x is ⋆ → ⋆))
β
= λκ. κ (((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) is ⋆ → ⋆)
β
= λκ. κ true
= [[true]].

Case (R IsFalse): We are given (v : H ⇒ ⋆) isG −→ false for some v, H and G such that H ̸∼ G. We show that

[[(v : H ⇒ ⋆) isG]]
β
= [[false]] by case analysis on G.

Case G = ι: By case analysis on H .

Case H = ι′ for some ι′ ̸= ι:

[[(v : ι′ ⇒ ⋆) is ι]]
= λκ. [[v : ι′ ⇒ ⋆]] (λx . κ (x is ι))
= λκ. (λκ′. κ′ (v∗ : ι′ ⇒ ⋆)) (λx . κ (x is ι))
β
= λκ. κ ((v∗ : ι′ ⇒ ⋆) is ι)
β
= λκ. κ false
= [[false]].

Case H = ⋆ / ⋆ → ⋆ / ⋆:

[[(v : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆) is ι]]
= λκ. [[v : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆]] (λx . κ (x is ι))
= λκ. (λκ′. κ′ ((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆)) (λx . κ (x is ι))
β
= λκ. κ (((λy . (v∗ y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) is ι)
β
= λκ. κ false
= [[false]].

46 Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi

Case G = ⋆ / ⋆ → ⋆ / ⋆: Then, H = ι for some ι from H ̸∼ G. Thus,

[[(v : ι ⇒ ⋆) is ⋆ / ⋆ → ⋆ / ⋆]]
= λκ. [[v : ι ⇒ ⋆]] (λx . κ (x is ⋆ → ⋆))
= λκ. (λκ′. κ′ (v∗ : ι ⇒ ⋆)) (λx . κ (x is ⋆ → ⋆))
β
= λκ. κ ((v∗ : ι ⇒ ⋆) is ⋆ → ⋆)
β
= λκ. κ false
= [[false]].

Theorem 2 If s 7−→ t, then [[s]]
βηωξυ
= [[t]].

Proof. By case analysis on the evaluation rule applied to s and t.

Case (E Step): We are given E [s ′] 7−→ E [t ′] for some E, s ′ and t ′ such that s ′ −→ t ′. By Lemmas 42 and 47,

[[E [s ′]]]
β
= [[E]] [[s ′]]

βηωξυ
= [[E]] [[t ′]]

β
= [[E [t ′]]].

Case (E Abort): We are given E [blame p] 7−→ blame p for some p. By Lemmas 42 and 44,

[[E [blame p]]]
β
= [[E]] [[blame p]]

βη
= [[blame p]].

Lemma 48. If A ∼ B, then [[A]] ∼ [[B]].

Proof. By induction on the derivation of A ∼ B.

Case (C DynTo), (C DynFrom), and (C Base): Obvious.
Case (C Fun): We are given A′/α′ → B ′/β′ ∼ A′′/α′′ → B ′′/β′′. By inversion, we have A′′ ∼ A′ and B ′ ∼ B ′′

and α′′ ∼ α′ and β′ ∼ β′′. By the IHs, [[A′′]] ∼ [[A′]] and [[B ′]] ∼ [[B ′′]] and [[α′′]] ∼ [[α′]] and [[β′]] ∼ [[β′′]].
Here, [[A′]] → ([[B ′]] → [[α′]]) → [[β′]] ∼ [[A′′]] → ([[B ′′]] → [[α′′]]) → [[β′′]] holds.

Theorem 3 For any typing context Γ , we write [[Γ]] for the typing context obtained by applying CPS transformation
to types mapped by Γ . If Γ ;α ⊢ s : A;β, then [[Γ]] ⊢ [[s]] : ([[A]] → [[α]]) → [[β]].

Proof. By induction on the typing derivation. In the following, we use weakening and substitution lemmas for the
target calculus; it is easy to prove the lemmas.

Case (T Const): We are given Γ ;α ⊢ c : ty (c);α. By definition, [[c]] = λκ. κ c. Since [[ty (c)]] = ty (c), [[Γ]] ⊢
λκ. κ c : (ty (c) → [[α]]) → [[α]] holds obviously.

Case (T Op): We are given Γ ;α ⊢ op(ti
i
) : ι;β. By inversion, we have, for any i, Γ ;αi ⊢ ti : ιi ;αi−1, and

ty (op) = ιi
i → ι and α = αn and β = α0. By the IHs, [[Γ]] ⊢ [[ti]] : ([[ιi]] → [[αi]]) → [[αi−1]], for any i. Thus,

[[Γ]], κ:[[ι]] → [[α]] ⊢ [[t1]] (λx1. . . . [[tn]] (λxn . κ op(xi
i)) . . .) : β. By definition of CPS transformation, we finish.

Case (T Var): We are given Γ ;α ⊢ x : A;α. By inversion, we have x :A ∈ Γ . Since [[Γ]] ⊢ x : [[A]] and [[x]] =
λκ. κ x , we have [[Γ]] ⊢ λκ. κ x : ([[A]] → [[α]]) → [[α]].

Case (T Abs): We are given Γ ;α ⊢ λx . t : A′/α′ → B ′/β′;α. By inversion, we have Γ, x :A′;α′ ⊢ t : B ′;β′. By the
IH, [[Γ]], x :[[A′]] ⊢ [[t]] : ([[B ′]] → [[α′]]) → [[β′]]. Then, [[Γ]] ⊢ λx . [[t]] : [[A′]] → ([[B ′]] → [[α′]]) → [[β′]]. Here, we
have [[Γ]] ⊢ λκ. κ (λx . [[t]]) : (([[A′]] → ([[B ′]] → [[α′]]) → [[β′]]) → [[α]]) → [[α]]. Since [[λx . t]] = λκ. κ (λx . [[t]]), we
finish.

Case (T App): We are given Γ ;α ⊢ t u : A;β. By inversion, we have Γ ; γ ⊢ t : A′/α → A/β′;β and Γ ;β′ ⊢ u :
A′; γ. Here,

[[Γ]], κ:[[A]] → [[α]], x :[[A′]] → ([[A]] → [[α]]) → [[β′]], y :[[A′]] ⊢ x y κ : [[β′]].

Thus,
[[Γ]], κ:[[A]] → [[α]], x :[[A′]] → ([[A]] → [[α]]) → [[β′]] ⊢ λy . x y κ : [[A′]] → [[β′]].

Shifting the Blame 47

Since [[Γ]] ⊢ [[u]] : ([[A′]] → [[β′]]) → [[γ]] by the IH, we have

[[Γ]], κ:[[A]] → [[α]] ⊢ λx . [[u]] (λy . x y κ) : ([[A′]] → ([[A]] → [[α]]) → [[β′]]) → [[γ]].

Since [[Γ]] ⊢ [[t]] : (([[A′]] → ([[A]] → [[α]]) → [[β′]]) → ([[γ]])) → [[β]] by the IH, we have

[[Γ]] ⊢ λκ. [[t]] (λx . [[u]] (λy . x y κ)) : ([[A]] → [[α]]) → [[β]].

Since [[t u]] = λκ. [[t]] (λx . [[u]] (λy . x y κ)), we finish.
Case (T Cast): We are given Γ ;α ⊢ t : A′ ⇒p A : A;β. By inversion, we have Γ ;α ⊢ t : A′;β and A′ ∼ A.

By the IH, [[Γ]] ⊢ [[t]] : ([[A′]] → [[α]]) → [[β]]. By Lemma 48, [[Γ]], x :[[A′]] ⊢ x : [[A′]] ⇒p [[A]] : [[A]]. Thus,
[[Γ]], κ:[[A]] → [[α]] ⊢ [[t]] (λx . κ (x : [[A′]] ⇒p [[A]])) : [[β]], and so [[Γ]] ⊢ λκ. [[t]] (λx . κ (x : [[A′]] ⇒p [[A]])) :
([[A]] → [[α]]) → [[β]]. We finish by definition of CPS transformation.

Case (T Ground): We are given Γ ;α ⊢ t : G ⇒p ⋆ : ⋆;β. By inversion, we have Γ ;α ⊢ t : G ;β. By the IH,
[[Γ]] ⊢ [[t]] : ([[G]] → [[α]]) → [[β]]. By case analysis on G.

Case G = ι: By definition, [[t : ι ⇒p ⋆]] = λκ. [[t]] (λx . κ (x : ι ⇒ ⋆)). Since [[Γ]], κ:⋆ → [[α]] ⊢ λx . κ (x : ι ⇒
⋆) : [[ι]] → [[α]], we have [[Γ]] ⊢ λκ. [[t]] (λx . κ (x : ι ⇒ ⋆)) : (⋆ → [[α]]) → [[β]].

Case G = ⋆ / ⋆ → ⋆ / ⋆: By definition, [[t : ⋆ / ⋆ → ⋆ / ⋆ ⇒p ⋆]] = λκ. [[t]] (λx . κ ((λy . (x y) : (⋆ → ⋆) → ⋆ ⇒p

⋆) : ⋆ → ⋆ ⇒ ⋆)). Since [[Γ]], κ:⋆ → [[α]] ⊢ λx . κ ((λy . (x y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆) : [[⋆/⋆ →
⋆/⋆]] → [[α]], we have [[Γ]] ⊢ λκ. [[t]] (λx . κ ((λy . (x y) : (⋆ → ⋆) → ⋆ ⇒p ⋆) : ⋆ → ⋆ ⇒ ⋆)) : (⋆ → [[α]]) →
[[β]].

Case (T Is): We are given Γ ;α ⊢ t isG : bool;β. By inversion, we have Γ ;α ⊢ t : ⋆;β. By the IH, [[Γ]] ⊢ [[t]] : (⋆ →
[[α]]) → [[β]]. By case analysis on G.

Case G = ι: By definition, [[t is ι]] = λκ. [[t]] (λx . κ (x is ι)). Since [[Γ]], κ:bool → [[α]] ⊢ λx . κ (x is ι) : ⋆ → [[α]], we
have [[Γ]] ⊢ λκ. [[t]] (λx . κ (x is ι)) : (bool → [[α]]) → [[β]].

Case G = ⋆ / ⋆ → ⋆ / ⋆: Similarly to the above.
Case (T Blame): We are given Γ ;α ⊢ blame p : A;β. Since [[blame p]] = λκ. blame p and [[Γ]] ⊢ λκ. blame p :

([[A]] → [[α]]) → [[β]], we finish.
Case (T Shift): We are given Γ ;α ⊢ Sk . t : A;β. By inversion, Γ, k :A/γ → α/γ; δ ⊢ t : δ;β. By the IH,

[[Γ]], k :[[A]] → ([[α]] → [[γ]]) → [[γ]] ⊢ [[t]] : ([[δ]] → [[δ]]) → [[β]]. By definition, [[Sk . t]] = λκ. ([[t]] (λx . x)) [k :=
λx . λκ′. κ′ (κ x)]. Since [[Γ]], κ:[[A]] → [[α]] ⊢ λx . λκ′. κ′ (κ x) : [[A]] → ([[α]] → [[γ]]) → [[γ]], we have [[Γ]], κ:[[A]] →
[[α]] ⊢ ([[t]] (λx . x)) [k := λx . λκ′. κ′ (κ x)] : [[β]]. Thus, [[Γ]] ⊢ λκ. ([[t]] (λx . x)) [k := λx . λκ′. κ′ (κ x)] : ([[A]] →
[[α]]) → [[β]].

Case (T Reset): We are given Γ ;α ⊢ ⟨t⟩ : A;α. By inversion, Γ ; γ ⊢ t : γ;A. By the IH, [[Γ]] ⊢ [[t]] : ([[γ]] → [[γ]]) →
[[A]]. By definition, [[⟨t⟩]] = λκ. κ ([[t]] (λx . x)) Since [[Γ]] ⊢ [[t]] (λx . x) : [[A]], we have [[Γ]] ⊢ λκ. κ ([[t]] (λx . x)) :
([[A]] → [[α]]) → [[α]].

