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1 Organization

This material provides the full definitions, auxiliary lemmas, and proofs that are omitted in our paper “CPS
Transformation with Affine Types for Call-By-Value Implicit Polymorphism” at ICFP 2021. This is organized as
follows.

Section 2 presents the definitions. Section 2.1 defines our CPS target language Λopen and contextual equivalence
of it. Section 2.2 defines Curry-style CBV System F, referred to as λ∀v in the paper. This section also provides a
family of CBV full reductions and parallel reduction. Note that the CBV full reduction Z=⇒βηv in the paper is
described as Z=⇒βvηv in this material. Section 2.3 presents the following transformations. Section 2.3.1 provides our
CPS transformation from λ∀v to Λopen (shown in Section 5 in the paper). Section 2.3.2 provides the full definition
of a variant L · M of Plotkin’s CBV CPS transformation for the untyped λ-calculus [1]. Section 2.3.3 defines type
erasure erase from Λopen to (untyped) λ∀v . Section 2.4 defines the logical relation (shown in Section 6 in the paper).

Section 3 provides the full proofs of the properties shown in the paper. Section 3.1 proves type soundness of
Λopen (Theorem 1) with progress (Lemma 36) and subject reduction (Lemma 40). Section 3.2 proves the properties
concerning the reduction relations for λ∀v . Note that Lemma 6 in the paper is shown as a corollary of Lemmas 53,
54, 63, and 64 in this section. Section 3.3 proves the properties concerning type erasure erase. Theorem 2 shows
its meaning preservation property. Section 3.4 proves the type and meaning preservation properties of our CPS
transformation from λ∀v to Λopen in Theorems 3 and 4, respectively. Section 3.5 proves the Fundamental Property
(or, parametricity) of the logical relation (Theorem 5) and soundness of the logical relation with respect to contextual
equivalence (Theorem 6). Section 3.6 addresses a few partial free theorems.
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2 Definition

2.1 Λopen: CPS Target Language

2.1.1 Syntax

Variables x , y , z , f , k Type variables α, β, γ
Base types ι ::= bool | int | ...
Types A,B ,C ,D ::= α | ι | A( B | ∀α.A | !A
Constants c ::= true | false | 0 | + | ...
Terms M ::= x | c | λx .M | M1 M2 | !M | let !x = M1 inM2 |

να.M | Λ◦〈α,M 〉 | Λα.M | M A
Values V ::= c | λx .M | !R | Λα.M
Results R ::= V | να.R
Extrusion contexts E ::= [ ] R2 | Λ◦〈α, [ ] 〉 | [ ] A
Evaluation contexts E ::= [ ] M2 | R1 [ ] | let !x = [ ] inM2 | Λ◦〈α, [ ] 〉 | [ ] A | να. [ ] | ! [ ]
Program contexts C ::= [ ] | λx .C | CM2 | M1 C | !C | let !x = C inM2 | let !x = M1 inC |

να.C | Λ◦〈α,C 〉 | Λα.C | CA
Uses π ::= 0 | 1 | ω
Typing contexts Γ ::= ∅ | Γ, x :π A | Γ, απ

Convention 1. We write Γ1,Γ2 for the concatenation of Γ1 and Γ2. We use metavariable ∆ for denoting typing
contexts that consist only of απ.

Convention 2. We write να.M for να1. · · · ναn .M when α = α1, · · · , αn .

Definition 1 (Free variables and substitution). The sets ftv(A), ftv(M ), and ftv(E) of free type variables in a type
A, a term M , and an evaluation context E are defined in a standard manner, respectively. The set fv (M ) of free
variables in a term [M ] is also defined ordinarily.

Type substitution B [A/α] of A for α in B and term substitution M [M ′/x ] of M ′ for free variable x in M are
defined in a capture-avoiding manner as usual. The notable point of type substitution is that (Λ◦〈β,M 〉)[A/α] is
defined if and only if β[A/α] = γ for some type variable γ (i.e., β is mapped to γ by [A/α] or β 6= α) and, then,

Λ◦〈β,M 〉[A/α]
def
= Λ◦〈 γ,M [A/α] 〉.

Definition 2. The set of uses {0,1, ω} forms a commutative monoid equipped with an binary operation + such
that:

• 0 + π = π + 0 = π for any π;

• ω + π = π + ω = ω for any π; and

• 1 + 1 = ω.

We write π1 ≤ π2 and π2 ≥ π1 if and only if π1 + π = π2 for some π.
We also define the predicate Γ1 ≤ Γ2 as the smallest relation satisfying the following rules.

∅ ≤ ∅
Γ1 ≤ Γ2 π1 ≤ π2

Γ1, x :π1 A ≤ Γ2, x :π2 A

Γ1 ≤ Γ2 π1 ≤ π2 π2 6= ω

Γ1, α
π1 ≤ Γ2, α

π2

Definition 3 (Adding uses). Given a sequence of type variables α, 1α is a typing context obtained by adding the
use 1 to each type variable in α. Formally, it is defined by induction on α, as follows.

1〈〉 def
= ∅

1(α, β)
def
= 1α, β1

Assumption 1. We suppose that each constant c is assigned a closed first-order type ty(c) of the form ι1 ( . . .(
ιn ( ιn+1. We also suppose that, for any ι, there is the set Kι of constants of ι. For any constant c, ty(c) = ι if
and only if c ∈ Kι. The function ζ gives a denotation to pairs of constants. In particular, for any constants c1 and
c2: (1) ζ(c1, c2) is defined if and only if ty(c1) = ι0 ( A and ty(c2) = ι0 for some ι0 and A; and (2) if ζ(c1, c2)
is defined, ζ(c1, c2) is a constant and ty(ζ(c1, c2)) = A where ty(c1) = ι0 ( A.
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Reduction rules M1  M2

c1 (να. c2)  να. ζ(c1, c2) (R Const)
(λx .M ) R  M [R/x ] (R Beta)

let !x = να. !R inM  M [να.R/x ] (R Bang)
Λ◦〈α, !R 〉  !Λα.R (R Closing)
(Λα.M ) A  M [A/α] (R TBeta)

Evaluation rules M1 −→ M2

M1  M2

M1 −→ M2
E Red

M1 −→ M2

E [M1] −→ E [M2]
E Eval

α 6∈ ftv(E)

E[να.R] −→ να.E[R]
E Extr

Figure 1: Semantics.

2.1.2 Semantics

Definition 4. Relations M1 −→ M2 and M1  M2 are the smallest relations satisfying the rules in Figure 1.

Definition 5 (Multi-step evaluation). Binary relation −→∗ over terms is the reflexive and transitive closure of
−→.

Definition 6 (Nonreducible terms). We write M 6−→ if and only if there is no M ′ such that M −→ M ′.

2.1.3 Type System

Definition 7. Given a typing context Γ, ωΓ is a typing context obtained by induction on Γ as follows.

ω∅ def
= ∅

ω(Γ, x :ω A)
def
= ωΓ, x :ω A

ω(Γ, x :π A)
def
= ωΓ, x :0 A (if π 6= ω)

ω(Γ, απ)
def
= ωΓ, α0

Definition 8. Given a typing context Γ, its domain dom(Γ) is defined by induction on Γ as follows.

dom(∅) def
= ∅

dom(Γ, x :π A)
def
= {x} ∪ dom(Γ)

dom(Γ, απ)
def
= {α} ∪ dom(Γ)

Definition 9. Given typing contexts Γ1 and Γ2, their merging typing context Γ1 + Γ2 is defined as follows.

∅+ ∅ def
= ∅

(Γ1, x :π1 A) + (Γ2, x :π2 A)
def
= (Γ1 + Γ2), x :π1+π2 A

(Γ1, α
π1) + (Γ2, α

π2)
def
= (Γ1 + Γ2), απ1+π2 (if π1 + π2 6= ω)

Definition 10. We view Γ as a function that maps a variable to a type. Γ(x ) = A if and only if x :π A ∈ Γ for
some π 6= 0.

Definition 11. Well-formedness of typing contexts ` Γ is the smallest relation satisfying the rules at the top of
Figure 2. Well-formedness of types under typing contexts Γ ` A holds if and only ftv(A) ⊆ dom(Γ). Typing
judgment Γ ` M : A is the smallest relation satisfying the rules at the bottom of Figure 2.
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Well-formedness rules ` Γ

` ∅
WF Empty

` Γ Γ ` A x 6∈ dom(Γ)

` Γ, x :π A
WF Var

` Γ α 6∈ dom(Γ) π 6= ω

` Γ, απ
WF TyVar

Typing rules Γ ` M : A

` Γ

Γ ` x : Γ(x )
T Var

` Γ

Γ ` c : ty(c)
T Const

Γ, x :1 A ` M : B

Γ ` λx .M : A( B
T Abs

Γ1 ` M1 : A( B Γ2 ` M2 : A

Γ1 + Γ2 ` M1 M2 : B
T App

` Γ ωΓ ` M : A

Γ ` !M : !A
T Bang

Γ1 ` M1 : !B Γ2, x :ω B ` M2 : A

Γ1 + Γ2 ` let !x = M1 inM2 : A
T LetBang

Γ, α1 ` M : A Γ ` A

Γ ` να.M : A
T Nu

Γ1, α
0,Γ2 ` M : !A

Γ1, α1,Γ2 ` Λ◦〈α,M 〉 : !∀α.A
T Gen

` Γ ωΓ, α0 ` M : A

Γ ` Λα.M : ∀α.A
T TAbs

Γ ` M : ∀α.B Γ ` A

Γ ` M A : B [A/α]
T TApp

Figure 2: Type system.

2.1.4 Contextual Equivalence

Definition 12. A context typing judgment C : (Γ ` A) (Γ′ ` A′) is the smallest relation satisfying the inference
rules in Figure 3.

Definition 13 (Contextual Equivalence). Contextual equivalence Γ ` M1 ≈ctx M2 : A is the formula that states
that (1) Γ ` M1 : A, (2) Γ ` M2 : A, and (3) for any base type ι, constant c of ι, program context C such that
C : (Γ ` A) (∅ ` ι), C[M1] −→∗ να1. c for some α1 if and only if C[M2] −→∗ να2. c for some α2.

4



Context typing rules C : (Γ ` A) (Γ′ ` A′)

[ ] : (Γ ` A) (Γ ` A)
CT Hole

C : (Γ ` A) (Γ′, x :1 A′ ` B ′)

λx .C : (Γ ` A) (Γ′ ` A′( B ′)
CT Abs

C : (Γ ` A) (Γ′1 ` A′( B ′) Γ′2 ` M2 : A′

CM2 : (Γ ` A) (Γ′1 + Γ′2 ` B ′)
CT App1

Γ′1 ` M1 : A′( B ′ C : (Γ ` A) (Γ′2 ` A′)

M1 C : (Γ ` A) (Γ′1 + Γ′2 ` B ′)
CT App2

` Γ′ C : (Γ ` A) (ωΓ′ ` A′)

!C : (Γ ` A) (Γ′ ` !A′)
CT Bang

C : (Γ ` A) (Γ′1 ` !B ′) Γ′2, x :ω B ′ ` M2 : A′

let !x = C inM2 : (Γ ` A) (Γ′1 + Γ′2 ` A′)
CT LetBang1

Γ′1 ` M1 : !B ′ C : (Γ ` A) (Γ′2, x :ω B ′ ` A′)

let !x = M1 inC : (Γ ` A) (Γ′1 + Γ′2 ` A′)
CT LetBang2

C : (Γ ` A) (Γ′, α1 ` A′) Γ′ ` A′

να.C : (Γ ` A) (Γ′ ` A′)
CT Nu

C : (Γ ` A) (Γ′1, α
0,Γ′2 ` !A′)

Λ◦〈α,C 〉 : (Γ ` A) (Γ′1, α
1,Γ′2 ` !∀α.A′)

CT Gen

` Γ′ C : (Γ ` A) (ωΓ′, α0 ` A′)

Λα.C : (Γ ` A) (Γ′ ` ∀α.A′)
CT TAbs

C : (Γ ` A) (Γ′ ` ∀α.B ′) Γ′ ` A′

CA′ : (Γ ` A) (Γ′ ` B ′[A′/α])
CT TApp

Figure 3: Typing of contexts.
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Reduction rules e1 ℵ e2

c1 c2 δ ζ(c1, c2) (λx .e) w  βv
e[w/x ] (λx .w x ) ηv w (x 6∈ fv (w))

Evaluation rules e1 −→F e2

e1 ℵ e2 ℵ ∈ {δ, βv}
e1 −→F e2

e1 −→F e ′1
e1 e2 −→F e ′1 e2

e2 −→F e ′2
w1 e2 −→F w1 e ′2

Parallel reduction rules e1⇒ℵ e2

e⇒ℵ e
P Refl

e1⇒ℵ e2 w1⇒ℵ w2 βv ∈ {ℵ}
(λx .e1) w1⇒ℵ e2[w2/x ]

P Beta

w1⇒ℵ w2 x 6∈ fv (w1) ηv ∈ {ℵ}
λx .w1 x ⇒ℵ w2

P Eta
δ ∈ {ℵ}

c1 c2 δ ζ(c1, c2)
P Delta

e1⇒ℵ e2

λx .e1⇒ℵ λx .e2
P Abs

e11⇒ℵ e21 e12⇒ℵ e22

e11 e12⇒ℵ e21 e22
P App

Figure 4: Semantics.

2.2 λ∀
v: Curry-style CBV System F

2.2.1 Syntax

Types τ ::= α | ι | τ1 → τ2 | ∀α.τ
Terms e ::= x | c | λx .e | e1 e2

Values w ::= x | c | λx .e

Contexts C ::= [ ] | λx .C | C e2 | e1 C
Typing contexts Θ ::= ∅ | Θ, x : τ | Θ, α

Definition 14 (Free variables and substitution). Free type variables in a type and free variables in a term are
defined in a standard manner. We write ftv(τ) for the set of free type variables in a type τ and fv (e) for the set
of free variables in a term e. Type substitution τ1[τ2/α] of τ2 for free type variable α in τ1 and term substitution
e1[e2/x ] of e2 for free variable x in e1 are defined in a capture-avoiding manner as usual.

2.2.2 Semantics

Definition 15 (Reduction symbol). The metavariable ℵ ranges over reduction symbols of βv, ηv, and δ. We write
ℵ1 · · · ℵn for the sequence of the symbols ℵ1, · · · ,ℵn and abbreviate it to ℵ simply. We also write {ℵ} for viewing
the sequence ℵ as a set by ignoring the order.

Definition 16 (Reduction). The reduction relation  ℵ, indexed by the reduction symbol ℵ, is a binary relation
over terms in λ∀v defined by the rules at the top of Figure 4.

Definition 17 (Evaluation). The evaluation relation −→F is a binary relation over terms in λ∀v and defined as the
smallest relation that satisfies the rules at the middle of Figure 4. We write: e1 −→F

0,1 e2 if and only if e1 = e2

or e1 −→F e2; e1 −→F
≤2 e2 if and only if (1) e1 = e2, (2) e1 −→F e2, or (3) e1 −→F e and e −→F e2 for some e;

and e 6−→ F if and only if there exists no term e ′ such that e −→F e ′. We write −→∗F for the reflexive, transitive
closures of −→F .

A term e gets stuck if and only if there exists some e ′ such that: (1) e −→∗F e ′, (2) e ′ 6−→ F , and (3) e ′ is not a
value.
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Well-formedness rules ` Θ

` ∅
` Θ Θ ` τ x 6∈ dom(Θ)

` Θ, x : τ

` Θ α 6∈ dom(Θ)

` Θ, α

Typing rules Θ ` e : τ

` Θ

Θ ` x : Θ(x )

` Θ

Θ ` c : ty→(c)

Θ, x : τ1 ` e : τ2

Θ ` λx .e : τ1 → τ2

Θ ` e1 : τ1 → τ2 Θ ` e2 : τ1

Θ ` e1 e2 : τ2

Θ, α ` e : τ

Θ ` e : ∀α.τ
Θ ` e : ∀α.τ2 Θ ` τ1

Θ ` e : τ2[τ1/α]

Figure 5: Type system.

Definition 18 (Full reduction). We define full reduction Z=⇒ℵ indexed by ℵ, which is a binary relation over terms
in λ∀v , by: e1 Z=⇒ℵ e2 if and only if there exist some C, e ′1, and e ′2 such that e1 = C[e ′1], e2 = C[e ′2], and e ′1 ℵ e ′2.
We write Z=⇒ℵ for the union of {Z=⇒ℵ′ | ℵ′ ∈ {ℵ}}. We write Z=⇒∗ℵ for the reflexive, transitive closures of Z=⇒ℵ.

Definition 19 (Parallel reduction). We define parallel reduction ⇒ℵ indexed by ℵ, which is a binary relation over
terms in λ∀v , as the smallest relation that satisfies the rules at the bottom of Figure 4. We write⇒∗ℵ for the reflexive,
transitive closures of ⇒ℵ.

2.2.3 Type System

Definition 20. Given a typing context Θ, its domain dom(Θ) is defined by induction on Θ as follows.

dom(∅) def
= ∅

dom(Θ, x : τ)
def
= {x} ∪ dom(Θ)

dom(Θ, α)
def
= {α} ∪ dom(Θ)

Definition 21. We view Θ as a function that maps a variable to a type. Θ(x ) = τ if and only if x : τ ∈ Θ.

Definition 22. We give each constant c a first-order closed type ty→(c), which is the same as ty(c) given in
Assumption 1 except that type constructor ( is replaced by →.

Definition 23. Well-formedness of typing contexts ` Θ is the smallest relation that satisfies the rules at the top
of Figure 5. Well-formedness of types under typing contexts Θ ` τ holds if and only ftv(τ) ⊆ dom(Θ). Typing
judgment Θ ` e : τ is the smallest relation that satisfies the rules at the bottom of Figure 5.
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CPS transformation JΘ ` e : τK⇒ R

` Θ x : τ ∈ Θ

JΘ ` x : τK⇒ Λα.λk .k !x
C Var

` Θ

JΘ ` c : ty→(c)K⇒ Λα.λk .k Jc : ty→(c)K
C Const

JΘ, x : τ1 ` e : τ2K⇒ R y is fresh

JΘ ` λx .e : τ1 → τ2K⇒ Λα.λk .k !(λy .let !x = y inR)
C Abs

JΘ ` e1 : τ1 → τ2K⇒ R1 JΘ ` e2 : τ1K⇒ R2 x is fresh

JΘ ` e1 e2 : τ2K⇒ Λα.λk .R1 α (λx .R2 α (λy .let !z = x in z y α k))
C App

JΘ, β ` e : τK⇒ R

JΘ ` e : ∀β.τK⇒ Λα.λk .νβ.R α (λx .k Λ◦〈β, x 〉)
C TAbs

JΘ ` e : ∀β.τ2K⇒ R Θ ` τ1
JΘ ` e : τ2[τ1/β]K⇒ Λα.λk .R α (λx .let !y = x in k !(y Jτ1Kv))

C TApp

Figure 6: CPS transformation.

2.3 Translation

Convention 3. We use a metavariable χ for denoting variables or constants.

2.3.1 CPS Transformation: from λ∀v to Λopen

Definition 24. CPS transformations JτK of a type τ of terms and JτKv of a type τ of values are defined by induction
on τ , as follows.

JτK def
= ∀α.(!JτKv( α)( α (α 6∈ ftv(τ))

JαKv
def
= α

JιKv
def
= ι

Jτ1 → τ2Kv
def
= !Jτ1Kv( Jτ2K

J∀α.τKv
def
= ∀α.JτKv

CPS transformation JΘK of a typing context Θ is defined by induction on Θ, as follows.

J∅K def
= ∅

JΘ, x : τK def
= JΘK, x :ω JτKv

JΘ, αK def
= JΘK, α0

CPS transformation Jχ : τK of χ of a type τ is defined by induction on τ , as follows.

Jχ : ιK def
= !χ

Jχ : ι→ τK def
= !(λx .let !y = x in let !z = !(χ y) inΛα.λk .k Jz : τK) (where k , x , y , z 6∈ fv (χ))

Definition 25. CPS transformation JΘ ` e : τK ⇒ V of a typing judgment Θ ` e : τ is the smallest relation
satisfying the rules in Figure 6. In the rules of Figure 6, we assume that k and α are fresh, that is, k , α 6∈ dom(Θ),
α 6∈ ftv(τ), and k and α do not occur in e as a free nor bound variable, respectively.

2.3.2 CPS Transformation: from λ∀v to itself

Definition 26. CPS transformation Lχ : τ M of χ of a type τ is defined by induction on τ , as follows.

Lχ : ι M def
= χ

Lχ : ι→ τ M def
= λx .(λy .λk .k L y : τ M) (χ x ) (where k , x , y 6∈ fv (χ))
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CPS transformation L e M of a term e in λ∀v is defined by induction on e, as follows:

L x M def
= λk .k x

L c M def
= λk .k L c : ty→(c) M

Lλx .e M def
= λk .k λx .L e M

L e1 e2 M
def
= λk .L e1 M (λx .L e2 M (λy .x y k))

where k is a variable that does not occur in e as a free variable nor a bound variable.

2.3.3 Type Erasure: from Λopen to λ∀v

Definition 27. Type erasure erase is a function that translates terms in Λopen to untyped terms in λ∀v , defined by
induction on M as follows.

erase(x )
def
= x

erase(c)
def
= c

erase(λx .M )
def
= λx .erase(M )

erase(M1 M2)
def
= erase(M1) erase(M2)

erase(!M )
def
= erase(M )

erase(let !x = M1 inM2)
def
= (λx .erase(M2)) erase(M1)

erase(να.M )
def
= erase(M )

erase(Λ◦〈α,M 〉) def
= erase(M )

erase(Λα.M )
def
= erase(M )

erase(M A)
def
= erase(M )

Definition 28. A term M is erasable if and only if, for any subterm Λα.M ′ in M , M ′ = R for some R.
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2.4 Logical Relation

Convention 4. We employ the following conventions.

• For sets S1 and S2, we write S1 # S2 to state that they are disjoint.

• The metavariable ρ ranges over interpretations, which are mappings that map type variables to triples of the
form (A1,A2, r),

• The metavariable r ranges over relational interpretations, which are mappings that map worlds to sets of pairs
of terms.

• The metavariable ς ranges over relational result substitutions, which are mappings that map variables to pairs
of results.

• We write dom(ρ) (resp. dom (ς)) for the set of free type variables (resp. free variables) mapped by ρ (resp. ς).

• We write dom(r) for the set of worlds mapped by r.

• When W = (n, ∆, ρ), we write W .n for n, W .∆ for ∆, and W .ρ for ρ.

• For ρ1 and ρ2 such that dom(ρ1) # dom(ρ2), we write ρ1 ] ρ2 for the mapping that maps a type variable
α ∈ dom(ρ1) to ρ1(α) and a type variable α ∈ dom(ρ2) to ρ2(α).

• We write ρfst and ρsnd for capture-avoiding type substitutions that map a type variable α in dom(ρ) to A1 and
A2 when ρ(α) = (A1,A2, r), respectively.

• When ρ(α) = (A1,A2, r), we write ρ[α] for the relational interpretation r.

• We write ρAW for an interpretation {α Z⇒ (W .ρfst(A),W .ρsnd(A), r)} for some r.

• We write ∆1⊥∆2 if and only if ∆1 + ∆2 is well defined.

• We identify typing contexts ∆1 and ∆2 up to permutation (i.e., ∆, απ1 , βπ2 ,∆′ is identical with ∆, βπ2 , απ1 ,∆′)
for simplifying the technical development. Because ∆ contains only type variables, this identification does not
change typability of terms.

• We write −→n for the n step evaluation.

•
∑
x∈I ∆x stands for the typing context ∆x1

+ · · · + ∆xn given a family of typing contexts ∆x1
, · · · ,∆xn with a

finite index set of variables I = {x1, · · · , xn}. We also write ∃
∏

x∈I ∆x to existentially quantify ∆x1 , · · · ,∆xn .

• dom=1(Γ) stands for the finite set of variables that are affine in typing context Γ.

• We write ρ(ς) for ς ′ such that: dom (ς ′) = dom (ς); and, for any x ∈ dom (ς ′), ς ′fst(x ) = ρfst(ςfst(x )) and
ς ′snd(x ) = ρsnd(ςsnd(x )).

Definition 29 (Logical Relation). A logical relation for Λopen is defined in Figure 8 with auxiliary definitions in
Figure 7.
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Atom [∆,A1,A2]
def
= {(M1,M2) | ∆ ` M1 : A1 ∧ ∆ ` M2 : A2}

Atomres [∆,A1,A2]
def
= {(R1,R2) | (R1,R2) ∈ Atom [∆,A1,A2]}

Atom [W ,A]
def
= Atom [W .∆,W .ρfst(A),W .ρsnd(A)]

Worldn
def
= {(m, ∆, ρ) ∈ Nat× TypCtx× (TyVar ⇀ Type× Type× Relm) |

m < n ∧ ` (m, ∆, ρ)}

Reln [A1,A2]
def
= {r ∈ (W : Worldn) ⇀ P(Atomres [W .∆,W .ρfst(A1),W .ρsnd(A2)]) |

∀W1. ∀W2 wW1. ∀ (R1,R2) ∈ r(W1). (R1,R2)W2 ∈ r(W2)

∧ ∀W , ρ. ρ ]W ∈ dom(r) ∧ dom(ρ) # ftv(A1) ∧ dom(ρ) # ftv(A2) =⇒
r(ρ ]W ) ⊆ r(W )

∧ ∀W , α. {α}# ftv(A1) ∧ {α}# ftv(A2) ∧ `W =⇒
∀ (R1,R2) ∈ r(W @α). (να.R1, να.R2) ∈ r(W )

∧ ∀W , α. {α}#W =⇒
∀ (R1,R2) ∈ r(W ). (να.R1,R2) ∈ r(W ) ∧ (R1, να.R2) ∈ r(W )

}

Reln
def
=

⋃
A1,A2

Reln [A1,A2]

†(ρ)
def
= ω∆ such that dom(∆) = dom(ρ)

ρ2(ρ1)
def
= {α Z⇒ (ρ2fst(ρ1fst(α)), ρ2snd(ρ1snd(α)), ρ1[α]) | α ∈ dom(ρ1)}

ρ2 ◦ ρ1
def
= ρ2 ] ρ2(ρ1)

ftv(ρ)
def
=

⋃
α∈ dom(ρ) ftv(ρfst(α)) ∪ ftv(ρsnd(α))

ρ|S
def
= {α Z⇒ ρ(α) | α ∈ dom(ρ) ∩ S}

Γ � ρ def
= ∀α ∈ ftv(ρ|dom(Γ)) ∩ dom(Γ). α0 ∈ Γ

∆1 Ï ∆2
def
= ∃∆,∆0. ∆1 = (∆2 + ∆),∆0

W1 wW2
def
= `W1 ∧ `W2 ∧ W1.n ≤ W2.n ∧
∃ ρ. (W1.∆, †(ρ)) Ï W2.∆ ∧ W1.ρ = ρ ◦W2.ρ ∧ W2.∆ � ρ

(W1,W2) cW3
def
= W1.n = W2.n = W3.n ∧ W1.∆ + W2.∆ = W3.∆ ∧ W1.ρ = W2.ρ = W3.ρ

ρ ]W
def
= (W .n, W .∆, ρ ]W .ρ) (if dom(ρ)#W )

ωW
def
= (W .n, ω(W .∆), W .ρ)

W @α
def
= (W .n, (W .∆, α1), W .ρ) (if {α}#W )

S#W
def
= S # dom(W .∆) ∧ S # dom(W .ρ)

W ` (A1,A2, r)
def
= W .∆ ` A1 ∧ W .∆ ` A2 ∧ r ∈ RelW .n[A1,A2]

`W
def
= dom(W .ρ) # dom(W .∆) ∧ ∀α ∈ dom(W .ρ). W `W .ρ(α)

(n + m, ∆, ρ)−m
def
= (n, ∆, ρ)

IW
def
= W − 1

(R1,R2)W
def
= (W .ρfst(R1),W .ρsnd(R2))

Figure 7: Objects appearing in logical relation.
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RJιKW
def
= {(να1. c, να2. c) ∈ Atom [W , ι]}

RJαKW
def
= W .ρ[α](IW )

RJA( BKW
def
= {(R1,R2) ∈ Atom [W ,A( B ] | ∀W ′ wW . ∀ (W1,W2) cW ′. W1 wW =⇒

∀ (R′1,R
′
2) ∈ RJAKW2. (R1 R′1,R2 R′2)W ′ ∈ EJBKW ′}

RJ∀α.AKW
def
= {(R1,R2) ∈ Atom [W ,∀α.A] | ∀W ′ wW . ∀B1,B2, r.

ωW ′ ` (B1,B2, r) ∧ {α}#ωW ′ =⇒ (R1 B1,R2 B2)ωW ′ ∈ EJAK {α Z⇒ (B1,B2, r)} ] ωW ′}

RJ!AKW
def
= {(R1,R2) ∈ Atom [W , !A] | (let !x = R1 in x , let !x = R2 in x ) ∈ EJAKωW }

EJAKW
def
= {(M1,M2) ∈ Atom [W ,A] | ∀W ′ wW . ∀n < W ′.n. ∀R1.

W ′.ρfst(M1) −→n R1 =⇒ ∃R2. W ′.ρsnd(M2) −→∗ R2 ∧ (R1,R2) ∈ RJAK (W ′ − n)}

GJΓK def
= {(W , ς) | ∃∆.∃

∏
x ∈ dom=1(Γ) ∆x .

`W ∧ Γ � W .ρ ∧ W .∆ = ∆ +
∑

x∈dom=1(Γ) ∆x

∧ ∀απ ∈ Γ. (∃π′ ≥ π. απ′ ∈ ∆) ∨ (π = 0 ∧ α ∈ dom(W .ρ))

∧ ∀ x :1 A ∈ Γ. (ςfst(x ), ςsnd(x )) ∈ RJAK (W .n, ∆x , W .ρ)

∧ ∀ x :ω A ∈ Γ. (ςfst(x ), ςsnd(x )) ∈ RJAKωW }

Γ ` M1 � M2 : A
def
= Γ ` M1 : A ∧ Γ ` M2 : A ∧ ∀ (W , ς) ∈ GJΓK. (ςfst(M1), ςsnd(M2))W ∈ EJAKW

Γ ` M1 ≈ M2 : A
def
= Γ ` M1 � M2 : A ∧ Γ ` M2 � M1 : A

Figure 8: Logical relation.

12



3 Proofs

3.1 Type Soundness of Λopen

Lemma 1 (Uses as a commutative monoid).

1. π1 + π2 is well defined for any π1 and π2.

2. 0 + π = π + 0 = π for any π.

3. π1 + (π2 + π3) = (π1 + π2) + π3 for any π1, π2, and π3.

4. π1 + π2 = π2 + π1 for any π1 and π2.

Proof. 1. By definition.

2. By definition.

3. By case analysis on π1, π2, and π3.

Case π1 = ω: π1 + (π2 + π3) = ω = ω + π3 = (ω + π2) + π3 = (π1 + π2) + π3.

Case π1 = 0: π1 + (π2 + π3) = π2 + π3 = (0 + π2) + π3 = (π1 + π2) + π3.

Case π1 = 1 and π2 = ω: π1 + (π2 + π3) = ω = ω + π3 = (π1 + π2) + π3.

Case π1 = 1 and π2 = 0: π1 + (π2 + π3) = π1 + π3 = (π1 + π2) + π3.

Case π1 = π2 = 1 and π3 = ω: π1 + (π2 + π3) = ω = (π1 + π2) + π3.

Case π1 = π2 = 1 and π3 = 0: π1 + (π2 + π3) = π1 + π2 = (π1 + π2) + π3.

Case π1 = π2 = π3 = 1: π1 + (π2 + π3) = ω = (π1 + π2) + π3.

4. By definition.

Lemma 2 (Associativity of merging typing contexts). (Γ1 + Γ2) + Γ3 = Γ1 + (Γ2 + Γ3).

Proof. By induction on Γ3. The cases for Γ3 = Γ′3, x :π A and Γ3 = Γ′3, α
π rest on Lemma 1 (3).

Lemma 3 (Commutativity of merging typing contexts). Γ1 + Γ2 = Γ2 + Γ1.

Proof. By induction on Γ1 with Lemma 1 (4).

Lemma 4. ωΓ + ωΓ = ωΓ

Proof. Straightforward by induction on Γ. The proof depends on the fact that ω + ω = ω and 0 + 0 = 0.

Lemma 5. For any Γ, ωωΓ = ωΓ.

Proof. Straightforward by induction on Γ.

Lemma 6.

1. If π1 = ω or π2 = ω, then π1 + π2 = ω.

2. if π1 + π2 = 0, then π1 = π2 = 0.

3. If π1 + π2 + π3 6= ω, then π1 + π3 6= ω and π2 + π3 6= ω.

4. If π + 0 = ω, then π = ω.

5. If π1 6= 0 nor π2 6= 0, then π1 + π2 = ω.

Proof. 1. By definition.

2. Obvious.
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3. By Lemma 1, it suffices to show π1 + π3 6= ω. Since π1 + π2 + π3 6= ω, we can find π1 6= ω nor π3 6= ω. If
π1 = 1 and π3 = 1, then π1 + π2 + π3 = π2 + (1 + 1) = ω, which is contradictory. Other remaining cases
are: π1 = 1 and π3 = 0; π1 = 0 and π3 = 1; and π1 = π3 = 0. In all of the cases, π1 + π3 6= ω.

4. Obvious.

5. If π1 = ω or π2 = ω, then π1 + π2 = ω. Otherwise, π1 = π2 = 1, so we have the conclusion.

Lemma 7. (Γ1 + Γ2), (Γ3 + Γ4) = (Γ1,Γ3) + (Γ2,Γ4).

Proof. Straightforward by induction on Γ3.

Lemma 8. ω(Γ,Γ′) = ωΓ, ωΓ′.

Proof. By induction on Γ′.

Lemma 9. dom(Γ) = dom(ωΓ).

Proof. Both of the cases are shown by induction on Γ.

Lemma 10. If ` Γ, then ` ωΓ.

Proof. By induction on the derivation of ` Γ with Lemma 9.

Lemma 11. If Γ1 + Γ2 = Γ′1,Γ
′
2, then there are exist some Γ11, Γ12, Γ21, and Γ22 such that

• Γ1 = Γ11,Γ12,

• Γ2 = Γ21,Γ22,

• Γ′1 = Γ11 + Γ21, and

• Γ′2 = Γ12 + Γ22.

Proof. By induction on Γ′2.

Lemma 12. dom(Γ1 + Γ2) = dom(Γ1) = dom(Γ2).

Proof. By induction on Γ1.

Lemma 13. If ` Γ1 + Γ2, then ` Γ1 and ` Γ2.

Proof. By induction on Γ1 with Lemma 12. The case for (WF TyVar) relies on (the contraposition of) Lemma 6
(1).

Lemma 14. If Γ1 ≤ Γ2, then dom(Γ1) = dom(Γ2).

Proof. Straightforward by induction on Γ2.

Lemma 15. Suppose that Γ1 ≤ Γ2. ` Γ1 if and only if ` Γ2.

Proof. By induction on the derivation of Γ1 ≤ Γ2 with Lemma 14. The right-to-left direction in the case for
Γ′1, α

π1 ≤ Γ′2, α
π2 rests on the fact that, if π1 ≤ π2 and π2 6= ω, then π1 6= ω.

Lemma 16. If ` Γ1 and ` Γ2 and Γ1 + Γ2 is well defined, then ` Γ1 + Γ2.

Proof. By induction on the derivation of ` Γ1 with Lemma 12. The case for (WF TyVar) relies on the fact that,
if (Γ1, α

π1) + (Γ2, α
π2) is well defined, then π1 + π2 6= ω.

Lemma 17. If Γ ` M : A, then ` Γ.

Proof. By induction on the typing derivation of Γ ` M : A. The cases for (T App) and (T LetBang) rest on
Lemma 16. The case for (T Gen) rests on Lemma 15.
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Lemma 18. If Γ ` M : A, then Γ ` A.

Proof. By induction on the typing derivation of Γ ` M : A. The case for (T Abs) rests on Lemma 17. The cases
for (T App) and (T LetBang) rest on Lemma 12. The cases for (T Bang) and (T TAbs) rest on Lemma 9. The
case for (T Gen) rests on Lemma 14.

Lemma 19 (Idempotent typing contexts). Let Γ be a typing context such that, for any απ ∈ Γ, π 6= ω. Then,
there exists some Γ′ such that Γ + Γ′ = Γ.

Proof. We can construct such a Γ′ by f(Γ) where f is a function defined inductively on Γ as follows.

f(∅) def
= ∅

f(Γ, x :π A)
def
= f(Γ), x :0 A

f(Γ, απ)
def
= f(Γ), α0 .

It is easy to see Γ + Γ′ = Γ.

Lemma 20 (Weakening). Suppose that ` Γ1,Γ2 and dom(Γ2) ∩ dom(Γ3) = ∅.

1. If ` Γ1,Γ3, then ` Γ1,Γ2,Γ3.

2. If Γ1,Γ3 ` M : A, then Γ1,Γ2,Γ3 ` M : A.

Proof. 1. Straightforward by induction on the derivation of ` Γ1,Γ3 with case analysis on Γ3.

2. By induction on the typing derivation of Γ1,Γ3 ` M : A.

Case (T Var) and (T Const): By the case (1).

Case (T Abs), (T Nu), and (T TApp): By the IH(s).

Case (T App): We are given Γ01+Γ02 ` M1 M2 : A for some Γ01, Γ02, M1, and M2 such that Γ1,Γ3 = Γ01+Γ02

and M = M1 M2. By inversion,

• Γ01 ` M1 : B ( A and

• Γ02 ` M2 : B

for some B . By Lemma 11, there are Γ11, Γ12, Γ31, and Γ32 such that

• Γ01 = Γ11,Γ31,

• Γ02 = Γ12,Γ32,

• Γ1 = Γ11 + Γ12, and

• Γ3 = Γ31 + Γ32.

We can construct Γ′2 such that Γ2 +Γ′2 = Γ2 by Lemma 19, so ` (Γ11 +Γ12), (Γ2 +Γ′2) from ` Γ1,Γ2. Since
(Γ11 + Γ12), (Γ2 + Γ′2) = (Γ11,Γ2) + (Γ12,Γ

′
2) by Lemma 7, we have ` Γ11,Γ2 and ` Γ12,Γ

′
2 by Lemma 13.

We also find

• dom(Γ2) ∩ dom(Γ31) = ∅ and

• dom(Γ′2) ∩ dom(Γ32) = ∅
by Lemma 12 and dom(Γ2) ∩ dom(Γ3) = ∅. Thus, by the IHs,

• Γ11,Γ2,Γ31 ` M1 : B ( A and

• Γ12,Γ
′
2,Γ32 ` M2 : B .

By (T App),
(Γ11,Γ2,Γ31) + (Γ12,Γ

′
2,Γ32) ` M1 M2 : A.

Since (Γ11,Γ2,Γ31) + (Γ12,Γ
′
2,Γ32) = Γ1,Γ2,Γ3 by Lemma 7, we have the conclusion.
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Case (T Bang): We are given Γ1,Γ3 ` !M ′ : !A′ for some M ′ and A′ such that M = !M ′ and A = !A′. By
inversion,

ω(Γ1,Γ3) ` M ′ : A′.

Since ` Γ1,Γ2, we have ` ω(Γ1,Γ2) by Lemma 10. By Lemma 8, ωΓ1, ωΓ3 ` M ′ : A′ and ` ωΓ1, ωΓ2.
Since dom(Γ2) ∩ dom(Γ3) = ∅, we have

dom(ωΓ2) ∩ dom(ωΓ3) = ∅

by Lemma 9. Thus, by the IH,
ωΓ1, ωΓ2, ωΓ3 ` M ′ : A′.

By Lemma 8 and (T Bang),
Γ1,Γ2,Γ3 ` !M ′ : !A′.

Note that we have ` Γ1,Γ2,Γ3 by the case (1).

Case (T LetBang): Similarly to the case for (T App).

Case (T Gen): We are given Γ01, α
1,Γ02 ` Λ◦〈α,M ′ 〉 : !∀α.A′ for some Γ01, Γ02, α, M ′, and A′ such that

• Γ1,Γ3 = Γ01, α
1,Γ02,

• M = Λ◦〈α,M ′ 〉, and

• A = !∀α.A′.
By inversion, Γ01, α

0,Γ02 ` M ′ : !A′. We perform case analysis on Γ1,Γ3 = Γ01, α
1,Γ02.

Case Γ1 = Γ01, α
1,Γ′02 for some Γ′02 such that Γ02 = Γ′02,Γ3: We have

Γ01, α
0,Γ′02,Γ3 ` M ′ : !A′ .

Since ` Γ1,Γ2, we have ` Γ01, α
1,Γ′02,Γ2, so ` Γ01, α

0,Γ′02,Γ2 by Lemma 15. Thus, by the IH,

Γ01, α
0,Γ′02,Γ2,Γ3 ` M ′ : !A′.

By (T Gen), we have the conclusion

Γ01, α
1,Γ′02,Γ2,Γ3 ` Λ◦〈α,M ′ 〉 : !∀α.A′.

Case Γ3 = Γ′01, α
1,Γ02 for some Γ′01 such that Γ01 = Γ1,Γ

′
01: We have

Γ1,Γ
′
01, α

0,Γ02 ` M ′ : !A′.

Since dom(Γ2) ∩ dom(Γ3) = ∅, we have dom(Γ2) ∩ dom(Γ′01, α
0,Γ02) = ∅ by Lemma 14. Thus, by

the IH,
Γ1,Γ2,Γ

′
01, α

0,Γ02 ` M ′ : !A′.

By (T Gen), we have the conclusion

Γ1,Γ2,Γ
′
01, α

1,Γ02 ` Λ◦〈α,M ′ 〉 : !∀α.A′.

Case (T TAbs): We are given Γ1,Γ3 ` Λα.M ′ : ∀α.A′ for some α, M ′, and A′ such that M = Λα.M ′ and
A = ∀α.A′. By inversion, ` Γ1,Γ3 and ω(Γ1,Γ3), α0 ` M ′ : A′. Since ` Γ1,Γ2, we have ` ω(Γ1,Γ2) by
Lemma 10. By Lemma 8, ωΓ1, ωΓ3, α

0 ` M ′ : A′ and ` ωΓ1, ωΓ2. Since dom(Γ2) ∩ dom(Γ3) = ∅, we
have

dom(ωΓ2) ∩ dom(ωΓ3) = ∅

by Lemma 9. Thus, by the IH,
ωΓ1, ωΓ2, ωΓ3, α

0 ` M ′ : A′.

By Lemma 8 and (T TAbs), we have the conclusion

Γ1,Γ2,Γ3 ` Λα.M ′ : ∀α.A′.

Note that we have ` Γ1,Γ2,Γ3 by the case (1).
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Lemma 21. If (Γ1 + Γ2) + Γ3 is well defined, then so are Γ1 + Γ3 and Γ2 + Γ3.

Proof. By induction on Γ3.

Case Γ3 = ∅: Obvious because Γ1 = Γ2 = ∅.

Case Γ3 = Γ′3, x :π3 A: We can find Γ1 = Γ′1, x :π1 A and Γ2 = Γ′2, x :π2 A for some Γ′1, Γ′2, π1, and π2, and
(Γ′1 + Γ′2) + Γ′3 is well defined. Thus, by the IH, so are Γ′1 + Γ′3 and Γ′2 + Γ′3. By Lemma 1 (1), so are
(Γ′1, x :π1 A) + (Γ′3, x :π3 A) and (Γ′2, x :π2 A) + (Γ′3, x :π3 A).

Case Γ3 = Γ′3, α
π3 : We can find Γ1 = Γ′1, α

π1 and Γ2 = Γ′2, α
π2 for some Γ′1, Γ′2, π1, and π2, and (Γ′1 + Γ′2) + Γ′3

is well defined. Thus, by the IH, so are Γ′1 + Γ′3 and Γ′2 + Γ′3. By Lemma 6 (3), so are (Γ′1, α
π1) + (Γ′3, α

π3) and
(Γ′2, α

π2) + (Γ′3, α
π3).

Lemma 22. If Γ1 + Γ2 ≤ Γ, then there exist some Γ′1 and Γ′2 such that Γ = Γ′1 + Γ′2 and Γ1 ≤ Γ′1 and Γ2 ≤ Γ′2.

Proof. By induction on Γ.

Case Γ = ∅: We finish by letting Γ′1 = ∅ and Γ′2 = ∅.

Case Γ = Γ′, x :π A: Since Γ1 + Γ2 ≤ Γ, there exist some Γ01, Γ02, π1, and π2 such that

• Γ1 = Γ01, x :π1 A,

• Γ2 = Γ02, x :π2 A,

• π1 + π2 ≤ π, and

• Γ01 + Γ02 ≤ Γ′.

By the IH, there exist some Γ′01 and Γ′02 such that

• Γ′ = Γ′01 + Γ′02,

• Γ01 ≤ Γ′01, and

• Γ02 ≤ Γ′02.

If we have π′1 and π′2 such that

• π1 ≤ π′1,

• π2 ≤ π′2, and

• π = π′1 + π′2,

then we finish by letting Γ′1 = Γ′01, x :π
′
1 A and Γ′2 = Γ′02, x :π

′
2 A.

We find such π′1 and π′2 by case analysis on π1 and π2.

Case π1 = ω or π2 = ω: We finish by letting π′1 = π1 and π′2 = π2 since π = ω.

Case π1 = 0: We finish by letting π′1 = 0 and π′2 = π since π2 ≤ π.

Case π2 = 0: We finish by letting π′1 = π and π′2 = 0 since π1 ≤ π.

Case π1 = π2 = 1: We finish by letting π′1 = π′2 = 1 since π = ω.

Case Γ = Γ′, απ: Since Γ1 + Γ2 ≤ Γ, π 6= ω and there exist some Γ01, Γ02, π1, and π2 such that

• Γ1 = Γ01, α
π1 ,

• Γ2 = Γ02, α
π2 ,

• π1 + π2 6= ω,

• π1 + π2 ≤ π, and
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• Γ01 + Γ02 ≤ Γ′.

By the IH, there exist some Γ′01 and Γ′02 such that

• Γ′ = Γ′01 + Γ′02,

• Γ01 ≤ Γ′01, and

• Γ02 ≤ Γ′02.

If we have π′1 and π′2 such that

• π1 ≤ π′1 6= ω,

• π2 ≤ π′2 6= ω, and

• π = π′1 + π′2,

then we finish by letting Γ′1 = Γ′01, α
π′

1 and Γ′2 = Γ′02, α
π′

2 .

We find such π′1 and π′2 by case analysis on π1 and π2.

Case π1 = ω, π2 = ω, or π1 = 1 and π2 = 1: Contradictory since π1 + π2 = ω but π1 + π2 6= ω by the
assumption.

Case π1 = 0: We finish by letting π′1 = 0 and π′2 = π since π2 ≤ π and π 6= ω.

Case π2 = 0: We finish by letting π′1 = π and π′2 = 0 since π1 ≤ π and π 6= ω.

Lemma 23. If Γ1,Γ2 ≤ Γ, then there exist some Γ′1 and Γ′2 such that Γ = Γ′1,Γ
′
2 and Γ1 ≤ Γ′1 and Γ2 ≤ Γ′2.

Proof. Straightforward by induction on Γ2.

Lemma 24. If Γ1 ≤ Γ2, then ωΓ1 ≤ ωΓ2.

Proof. By induction on Γ1.

Case Γ1 = ∅: Obvious since Γ2 = ∅.

Case Γ1 = Γ′1, x :π1 A: By inversion of Γ1 ≤ Γ2, there exist some Γ′2 and π2 such that

• Γ2 = Γ′2, x :π2 A,

• Γ′1 ≤ Γ′2, and

• π1 ≤ π2.

By the IH, ωΓ′1 ≤ ωΓ′2.

If π2 = ω, then we have ωΓ1 ≤ ωΓ2 since ωΓ2 = ωΓ′2, x :ω A and ωΓ′1 ≤ ωΓ′2.

Otherwise, if π2 6= ω, then π1 6= ω since π1 ≤ π2. Thus, ωΓ1 = ωΓ′1, x :0 A and ωΓ2 = ωΓ′1, x :0 A, and we
have the conclusion.

Case Γ1 = Γ′1, α
π1 : By inversion of Γ1 ≤ Γ2, there exist some Γ′2 and π2 such that Γ2 = Γ′2, α

π2 and Γ′1 ≤ Γ′2. By
the IH, ωΓ′1 ≤ ωΓ′2. We have ωΓ1 = ωΓ′1, α

0 and ωΓ2 = ωΓ′2, α
0, and also have ωΓ′1, α

0 ≤ ωΓ′2, α
0. Thus, we

have the conclusion.

Lemma 25 (Increasing uses). If Γ1 ` M : B and Γ1 ≤ Γ2, then Γ2 ` M : B.

Proof. By induction on the derivation of the typing judgment for M .

Case (T Var) and (T Const): By Lemma 15. Note that, for any π1 and π2 such that π1 ≤ π2, if π1 6= 0, π2 6= 0
by Lemma 6 (2).
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Case (T Abs), (T Nu), and (T TApp): By the IH. (The cases for (T Nu) and (T TApp) use Lemma 14.)

Case (T App) and (T LetBang): We show the case for (T App): the case for (T LetBang) can be proven
similarly.

We are given Γ01 + Γ02 ` M1 M2 : B for some Γ01, Γ02, M1, and M2 such that Γ1 = Γ01 + Γ02 and M = M1 M2.
By inversion, Γ01 ` M1 : C ( B and Γ02 ` M2 : C for some C . Since Γ1 ≤ Γ2, we have Γ01 + Γ02 ≤ Γ2. By
Lemma 22, there exist some Γ′01 and Γ′02 such that

• Γ2 = Γ′01 + Γ′02,

• Γ01 ≤ Γ′01, and

• Γ02 ≤ Γ′02.

By the IHs, Γ′01 ` M1 : C ( B and Γ′02 ` M2 : C . Thus, by (T App), we have the conclusion.

Case (T Bang): We are given Γ1 ` !M ′ : !B ′ for some M ′ and B ′ such that M = !M ′ and B = !B ′. By inversion,
` Γ1 and ωΓ1 ` M ′ : B ′.

By Lemma 15, ` Γ2. By Lemma 24, ωΓ1 ≤ ωΓ2, so, by the IH, ωΓ2 ` M ′ : B ′. Thus, we have the conclusion by
(T Bang).

Case (T Gen): By Lemma 23, the IH, and the fact that 1 ≤ π and π 6= ω imply π = 1 for any π.

Case (T TAbs): By Lemmas 15 and 24, the IH, and (T TAbs), similarly to the case for (T Bang).

Lemma 26. If Γ + Γ′ is well defined, then Γ ≤ Γ + Γ′.

Proof. Straightforward by induction on Γ with the fact that π1 ≤ π1 + π2 for any π1 and π2.

Definition 30. We write π |Γ if and only if Γ = ωΓ provided that π = ω.

Lemma 27.

1. If ` Γ1, x :π A,Γ2, then ` Γ1,Γ2.

2. If Γ1, x :0 A,Γ2 ` M : B, then Γ1,Γ2 ` M : B.

Proof. 1. Straightforward by induction on Γ2.

2. Straightforward by induction on the typing derivation. The cases for (T Var), (T Const), (T Bang), and
(T TAbs) rest on case (1). Further, the cases for (T Bang) and (T TAbs) rest on Lemma 8 as well. The
cases for (T App) and (T LetBang) rest on Lemma 6 (2).

Lemma 28. If Γ1 + Γ2 is well defined, so is Γ1 + ωΓ2.

Proof. Straightforward by induction on Γ2. The case for Γ2 = Γ′2, α
π rests on (the contraposition of) Lemma 6

(1).

Lemma 29. If Γ1 = ωΓ1, then ω(Γ1 + Γ2) = ωΓ1 + ωΓ2.

Proof. By induction on Γ1.

Case Γ1 = ∅: Obvious because Γ2 = ∅.
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Case Γ1 = Γ′1, x :π1 A: We have Γ′1 = ωΓ′1. There exist some Γ′2 and π2 such that Γ2 = Γ′2, x :π2 A.

ω(Γ1 + Γ2) = ω((Γ′1 + Γ′2), x :π1+π2 A)
= ω(Γ′1 + Γ′2), x :π A (where π = ω if π1 + π2 = ω; otherwise, π = 0)
= (ωΓ′1 + ωΓ′2), x :π A (by the IH).

If π1 = ω or π2 = ω, then π1 + π2 = ω, so we finish by:

(ωΓ′1 + ωΓ′2), x :π A = (ωΓ′1 + ωΓ′2), x :ω A = ω(Γ′1, x :π1 A) + ω(Γ′2, x :π2 A).

Otherwise, if π1 6= ω nor π2 6= ω, then π1 = 0 since Γ1 = ωΓ1. Thus, π1 +π2 = π2 6= ω, and so π = 0. Thus,
we finish by:

(ωΓ′1 + ωΓ′2), x :π A = (ωΓ′1 + ωΓ′2), x :0 A = ω(Γ′1, x :π1 A) + ω(Γ′2, x :π2 A).

Case Γ1 = Γ′1, α
π1 : We have Γ′1 = ωΓ′1. There exist some Γ′2 and π2 such that Γ2 = Γ′2, α

π2 . We finish by:

ω(Γ1 + Γ2) = ω((Γ′1 + Γ′2), απ1+π2)
= ω(Γ′1 + Γ′2), α0

= (ωΓ′1 + ωΓ′2), α0 (by the IH)
= (ω(Γ′1, α

π1) + ω(Γ′2, α
π2)).

Note that π1 + π2 6= ω, so π1 6= ω and π2 6= ω by (the contraposition of) Lemma 6 (1).

Lemma 30 (Term substitution). Suppose that Γ11 + Γ12 is well defined. If Γ11 ` M1 : A and Γ12, x :π A,Γ2 `
M2 : B and π |Γ11, then (Γ11 + Γ12),Γ2 ` M2[M1/x ] : B.

Proof. By induction on the typing derivation of Γ12, x :π A,Γ2 ` M2 : B .
We first show

` (Γ11 + Γ12),Γ2. (1)

By Lemma 17, we have ` Γ11 and ` Γ12, x :π A,Γ2. By Lemma 27 (1), ` Γ12,Γ2. By Lemma 19, there exists some
Γ′2 such that Γ2 + Γ′2 = Γ2. Since Γ11 + Γ12 is well defined, we have (Γ11 + Γ12),Γ2 = (Γ11 + Γ12), (Γ′2 + Γ2) =
(Γ11,Γ

′
2) + (Γ12,Γ2) by Lemmas 3 and 7. We have Γ12,Γ2 ≤ (Γ11,Γ

′
2) + (Γ12,Γ2) by Lemmas 3 and 26. Thus,

` (Γ11,Γ
′
2) + (Γ12,Γ2) by Lemma 15, so ` (Γ11 + Γ12),Γ2 by Lemma 7.

We perform case analysis on the typing rule last applied to derive Γ12, x :π A,Γ2 ` M2 : B .

Case (T Var): We are given Γ12, x :π A,Γ2 ` y : B for some y such that M2 = y and (Γ12, x :π A,Γ2)(y) = B .

Suppose that x 6= y , i.e., M2[M1/x ] = y . It is easy to find ((Γ11 +Γ12),Γ2)(y) = B . Thus, by (1) and (T Var),
we have the conclusion

(Γ11 + Γ12),Γ2 ` y : B .

Otherwise, if x = y , then we have M2[M1/x ] = M1 and B = A. We have Γ11 ≤ Γ11 + Γ12 by Lemma 26, so
Γ11 + Γ12 ` M1 : A by Lemma 25. By (1) and Lemma 20 (2), we have the conclusion

(Γ11 + Γ12),Γ2 ` M1 : A.

Case (T Const): By (1) and (T Const).

Case (T Abs), (T Nu), and (T TApp): By the IH.

Case (T App): We are given Γ′1 +Γ′2 ` M ′
1 M ′

2 : B for some Γ′1, Γ′2, M ′
1, and M ′

2 such that Γ12, x :π A,Γ2 = Γ′1 +Γ′2
and M2 = M ′

1 M ′
2. By inversion, Γ′1 ` M ′

1 : C ( B and Γ′2 ` M ′
2 : C for some C . By Lemma 11,

Γ12, x :π A,Γ2 = (Γ121 + Γ122), (x :π1 A + x :π2 A), (Γ21 + Γ22)

for some Γ121, Γ122, Γ21, Γ22, π1, and π2 such that
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• Γ12 = Γ121 + Γ122,

• π = π1 + π2,

• Γ2 = Γ21 + Γ22,

• Γ′1 = Γ121, x :π1 A,Γ21, and

• Γ′2 = Γ122, x :π2 A,Γ22.

By Lemmas 3 and 21, Γ11 + Γ121 and Γ11 + Γ122 are well defined since so is Γ11 + Γ12.

By case analysis on π, π1, and π2.

Case π = ω: Since π |Γ11, we have π1 |Γ11 and π2 |Γ11. Thus, by the IHs,

(Γ11 + Γ121),Γ21 ` M ′
1[M1/x ] : C ( B and

(Γ11 + Γ122),Γ22 ` M ′
2[M1/x ] : C .

By (T App) and Lemma 7,

((Γ11 + Γ121) + (Γ11 + Γ122)), (Γ21 + Γ22) ` (M ′
1 M ′

2)[M1/x ] : B .

Since π |Γ11 and π = ω, we have Γ11 = ωΓ11. Thus, (Γ11 + Γ121) + (Γ11 + Γ122) = Γ11 + (Γ121 + Γ122) by
Lemmas 2, 3, and 4. Since Γ12 = Γ121 + Γ122 and Γ2 = Γ21 + Γ22, we have the conclusion

(Γ11 + Γ12),Γ2 ` (M ′
1 M ′

2)[M1/x ] : B .

Case π = π1 = 1 and π2 = 0: We have π1 |Γ11. Thus, by the IH,

(Γ11 + Γ121),Γ21 ` M ′
1[M1/x ] : C ( B .

From the inversion of the typing derivation for M , we have Γ122, x :0 A,Γ22 ` M ′
2 : C . Thus, Γ122,Γ22 ` M ′

2 : C
by Lemma 27 (2), and so

Γ122,Γ22 ` M ′
2[M1/x ] : C

because x does not occur free in M ′
2. By (T App) and Lemmas 7 and 2, we have the conclusion

(Γ11 + Γ12),Γ2 ` (M ′
1 M ′

2)[M1/x ] : B .

Case π = π2 = 1 and π1 = 0: Similarly to the above case.

Case π = π1 = π2 = 0: Since Γ12, x :0 A,Γ2 ` M ′
1 M ′

2 : B , we have Γ12,Γ2 ` M ′
1 M ′

2 : B by Lemma 27 (2). Since
Γ12,Γ2 ≤ (Γ11 + Γ12),Γ2 as discussed in the beginning of this proof, we have

(Γ11 + Γ12),Γ2 ` M ′
1 M ′

2 : B .

by Lemma 25. Since x does not occur free in M ′
1 nor M ′

2, we have the conclusion.

Case (T Bang): We are given Γ12, x :π A,Γ2 ` !M ′ : !B ′ for some M ′ and B ′ such that M2 = !M ′ and B = !B ′.
By inversion, ` Γ12, x :π A,Γ2 and ω(Γ12, x :π A,Γ2) ` M ′ : B ′. By Lemma 8,

ωΓ12, x :π
′

A, ωΓ2 ` M ′ : B ′

for some π′ such that: π′ = ω if π = ω; otherwise, π′ = 0. We perform case analysis on π.

Case π = ω: Since π |Γ11, we have Γ11 = ωΓ11 and π′ |Γ11. Since Γ11 + Γ12 is well defined, so is Γ11 +ωΓ12 by
Lemma 28. Thus, by the IH,

(Γ11 + ωΓ12), ωΓ2 ` M ′[M1/x ] : B ′.

Since Γ11 = ωΓ11, we have
ω((Γ11 + Γ12),Γ2) ` M ′[M1/x ] : B ′.

by Lemmas 29 and 8. By (1) and (T Bang), we have the conclusion

(Γ11 + Γ12),Γ2 ` !M ′[M1/x ] : !B ′.
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Case π 6= ω: We have π′ = 0, so
ωΓ12, x :0 A, ωΓ2 ` M ′ : B ′.

By Lemma 27 (2),
ωΓ12, ωΓ2 ` M ′ : B ′.

Since ` Γ12, x :π A,Γ2, we have ` Γ12,Γ2 by Lemma 27 (1). Thus, by Lemma 8 and (T Bang),

Γ12,Γ2 ` !M ′ : !B ′.

Since Γ12,Γ2 ≤ (Γ11 + Γ12),Γ2, we have

(Γ11 + Γ12),Γ2 ` !M ′ : !B .

by Lemma 25. Since x does not occur free in M ′, we have the conclusion.

Case (T LetBang): Similar to the case for (T App).

Case (T Gen): We are given Γ′1, α
1,Γ′2 ` Λ◦〈α,M ′ 〉 : !∀α.C for some Γ′1, Γ′2, α, M ′, and C such that Γ12, x :π

A,Γ2 = Γ′1, α
1,Γ′2 and M2 = Λ◦〈α,M ′ 〉 and B = !∀α.C . By inversion, Γ′1, α

0,Γ′2 ` M ′ : !C . We perform case
analysis on Γ12, x :π A,Γ2 = Γ′1, α

1,Γ′2.

Case Γ12 = Γ′1, α
1,Γ′′2 for some Γ′′2 : We can find that Γ′2 = Γ′′2 , x :π A,Γ2. We have

Γ′1, α
0,Γ′′2 , x :π A,Γ2 ` M ′ : !C .

Since Γ11 + Γ12 = Γ11 + (Γ′1, α
1,Γ′′2) is well defined, we can find Γ11 = Γ′11, α

0,Γ′′11 for some Γ′11 and Γ′′11 such
that

Γ11 + Γ12 = (Γ′11, α
0,Γ′′11) + (Γ′1, α

1,Γ′′2) = (Γ′11 + Γ′1), α1, (Γ′′11 + Γ′′2) . (2)

It is found that

Γ11 + (Γ′1, α
0,Γ′′2) = (Γ′11, α

0,Γ′′11) + (Γ′1, α
0,Γ′′2) = (Γ′11 + Γ′1), α0, (Γ′′11 + Γ′′2)

is well defined. Thus, by the IH,

(Γ11 + (Γ′1, α
0,Γ′′2)),Γ2 ` M ′[M1/x ] : !C ,

i.e.,
(Γ′11 + Γ′1), α0, (Γ′′11 + Γ′′2),Γ2 ` M ′[M1/x ] : !C .

Thus, by (T Gen),
(Γ′11 + Γ′1), α1, (Γ′′11 + Γ′′2),Γ2 ` Λ◦〈α,M ′ 〉[M1/x ] : !∀α.C .

By (2), we have the conclusion

(Γ11 + Γ12),Γ2 ` Λ◦〈α,M ′ 〉[M1/x ] : !∀α.C .

Case Γ2 = Γ′′1 , α
1,Γ′2 for some Γ′′1 : We can find that Γ′1 = Γ12, x :π A,Γ′′1 . We have

Γ12, x :π A,Γ′′1 , α
0,Γ′2 ` M ′ : !C .

Thus, by the IH,
(Γ11 + Γ12),Γ′′1 , α

0,Γ′2 ` M ′[M1/x ] : !C .

By (T Gen),
(Γ11 + Γ12),Γ′′1 , α

1,Γ′2 ` Λ◦〈α,M ′ 〉[M1/x ] : !∀α.C .

Since Γ2 = Γ′′1 , α
1,Γ′2, we have the conclusion.

Case (T TAbs): Similar to the case for (T Bang).
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Lemma 31. (Γ1[A/α] + Γ2[A/α]) = (Γ1 + Γ2)[A/α].

Proof. Straightforward by induction on Γ1.

Lemma 32. (ωΓ)[A/α] = ω(Γ[A/α]).

Proof. Straightforward by induction on Γ.

Lemma 33. If Γ1, α
0,Γ2 ` M : A, then M [B/α] is well defined for any B.

Proof. Straightforward by induction on the typing derivation. The cases for (T App) and (T LetBang) rest on
Lemma 6 (2). The cases for (T Bang) and (T TAbs) rest on Lemma 8. The case for (T Gen) rests on the
assumption that the use given to α is 0.

Lemma 34 (Type substitution).

1. If Γ1 ` A and ` Γ1, α
0,Γ2, then ` Γ1,Γ2[A/α].

2. Suppose that, for any απ ∈ Γ1, π = 0. If Γ1 ` A and Γ1, α
0,Γ2 ` M : B, then Γ1,Γ2[A/α] ` M [A/α] :

B [A/α].

Proof. 1. Straightforward by induction on Γ2.

2. By induction on the typing derivation of Γ1, α
0,Γ2 ` M : B . Note that M [A/α] is well defined by Lemma 33.

Case (T Var) and (T Const): By the case (1).

Case (T Abs), (T Nu), and (T TApp): By the IH.

Case (T App): We are given Γ01 + Γ02 ` M ′
1 M ′

2 : B for some Γ01, Γ02, M ′
1, and M ′

2 such that Γ1, α
0,Γ2 =

Γ01 +Γ02 and M = M ′
1 M ′

2. By inversion, Γ01 ` M ′
1 : C ( B and Γ02 ` M ′

2 : C for some C . By Lemmas 11
and 6 (2), there exist some Γ11, Γ12, Γ21, and Γ22 such that

• Γ1 = Γ11 + Γ12,

• Γ2 = Γ21 + Γ22,

• Γ01 = Γ11, α
0,Γ21, and

• Γ02 = Γ12, α
0,Γ22.

Since Γ1 ` A, we have Γ11 ` A and Γ12 ` A by Lemma 12. We can find that, for any απ ∈ Γ11 or
απ ∈ Γ12, π = 0 by Lemma 6 (2). Thus, by the IHs, Γ11,Γ21[A/α] ` M ′

1[A/α] : C [A/α]( B [A/α] and
Γ12,Γ22[A/α] ` M ′

2[A/α] : C [A/α]. By (T App) and Lemma 7,

(Γ11 + Γ12), (Γ21[A/α] + Γ22[A/α]) ` (M ′
1 M ′

2)[A/α] : B [A/α].

Since Γ11 + Γ12 = Γ1 and (Γ21[A/α] + Γ22[A/α]) = (Γ21 + Γ22)[A/α] = Γ2[A/α] by Lemma 31, we have
the conclusion.

Case (T Bang): We are given Γ1, α
0,Γ2 ` !M ′ : !B ′ for some M ′ and B ′ such that M = !M ′ and B = !B ′.

By inversion, ` Γ1, α
0,Γ2 and ω(Γ1, α

0,Γ2) ` M ′ : B ′. By the case (1), ` Γ1,Γ2[A/α]. By Lemma 8,
ωΓ1, α

0, ωΓ2 ` M ′ : B ′. Since ωΓ1 ` A by Lemma 9, we have ωΓ1, ωΓ2[A/α] ` M ′[A/α] : B ′[A/α] by the
IH. By Lemmas 32 and 8, ω(Γ1,Γ2[A/α]) ` M ′[A/α] : B ′[A/α]. By (T Bang), we have the conclusion

Γ1,Γ2[A/α] ` !M ′[A/α] : !B ′[A/α].

Case (T LetBang): Similar to the case for (T App).

Case (T Gen): We are given Γ01, β
1,Γ02 ` Λ◦〈β,M ′ 〉 : !∀β.C for some Γ01, Γ02, β, M ′, and C such that

Γ1, α
0,Γ2 = Γ01, β

1,Γ02 and M = Λ◦〈β,M ′ 〉 and B = !∀β.C . By inversion, Γ01, β
0,Γ02 ` M ′ : !C .

We perform case analysis on Γ1, α
0,Γ2 = Γ01, β

1,Γ02.

Case Γ1 = Γ01, β
1,Γ′02 for some Γ′02: This is contradictory with the assumption that απ ∈ Γ1 implies

π = 0.
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Case Γ2 = Γ′01, β
1,Γ02 for some Γ′01: We have Γ01 = Γ1, α

0,Γ′01, so Γ1, α
0,Γ′01, β

0,Γ02 ` M ′ : !C . By the
IH,

Γ1,Γ
′
01[A/α], β0,Γ02[A/α] ` M ′[A/α] : !C [A/α].

Thus, by (T Gen),

Γ1,Γ
′
01[A/α], β1,Γ02[A/α] ` Λ◦〈β,M ′ 〉[A/α] : !∀β.(C [A/α]).

Since Γ1 ` A, β does not occur free in A. Since α 6= β, we have !∀β.(C [A/α]) = (!∀β.C )[A/α]. Thus,
we have the conclusion.

Case (T TAbs): Similar to the case for (T Bang). We are given Γ1, α
0,Γ2 ` Λβ.M ′ : ∀β.B ′ for some M ′

and B ′ such that M = Λβ.M ′ and B = ∀β.B ′. By inversion, ` Γ1, α
0,Γ2 and ω(Γ1, α

0,Γ2), β0 ` M ′ : B ′.
By the case (1), ` Γ1,Γ2[A/α]. By Lemma 8, ωΓ1, α

0, ωΓ2, β
0 ` M ′ : B ′. Since ωΓ1 ` A by Lemma 9,

we have ωΓ1, ωΓ2[A/α], β0 ` M ′[A/α] : B ′[A/α] by the IH. By Lemmas 32 and 8, ω(Γ1,Γ2[A/α]), β0 `
M ′[A/α] : B ′[A/α]. By (T TAbs), we have

Γ1,Γ2[A/α] ` Λβ.M ′[A/α] : ∀β.B ′[A/α] .

Since we can assume that β 6= α and β 6∈ ftv(A) without loss of generality, we have the conclusion.

Lemma 35 (Canonical forms). Suppose that Γ ` V : A.

1. If A = ι, then V = c for some c such that ty(c) = ι.

2. If A = B ( C , then:

• V = c for some c such that ty(c) = B ( C ; or

• V = λx .M for some x and M .

3. If A = ∀α.B, then V = Λα.M for some M .

4. If A = !B, then V = !R for some R.

Proof. Straightforward by case analysis on the typing rule applied last to derive Γ ` V : A.

Lemma 36 (Progress). If ∆ ` M : A, then:

• M = R for some R; or

• M −→ M ′ for some M ′.

Proof. By induction on the typing derivation of ∆ ` M : A.

Case (T Var): Contradictory.

Case (T Const), (T Abs), and (T TAbs): M is a value.

Case (T App): We are given ∆1 + ∆2 ` M1 M2 : A for some ∆1, ∆2, M1, and M2 such that ∆ = ∆1 + ∆2 and
M = M1 M2. By inversion, ∆1 ` M1 : B ( A and ∆2 ` M2 : B for some B .

By case analysis on the IHs for M1 and M2.

Case M1 −→ M ′
1 for some M ′

1: By (E Eval).

Case M1 = R1 and M2 −→ M ′
2 for some R1 and M ′

2: By (E Eval).

Case M1 = να.R1 and M2 = R2 for some α, R1, and R2: By (E Extr).

Case M1 = V1 and M2 = R2 for some V1 and R2: Since ∆1 ` V1 : B ( A, V1 = λx .M ′
1 for some x and M ′

1,
or V1 = c1 for some c1 such that ty(c1) = B ( A by Lemma 35.

If V1 = λx .M , then we have the conclusion by (R Beta)/(E Red).

If V1 = c1, then, by Assumption 1, B = ι for some ι. Since ∆2 ` R2 : B , we have R2 = να. c2 for some
α and c2 such that ty(c2) = ι by Lemma 35. By Assumption 1, ζ(c1, c2) is well defined. Thus, we have the
conclusion by (R Const)/(E Red).
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Case (T Bang): We are given ∆ ` !M0 : !B for some M0 and B such that M = !M0 and A = !B . By inversion,
ω∆ ` M0 : B . By case analysis on the IH.

Case M0 −→ M ′
0 for some M ′

0: By (E Bang).

Case M0 = R0 for some R0: We have the conclusion because M = !R0 is a value.

Case (T LetBang): Similar to the case for (T App). This case uses (R Bang) for reducing M .

Case (T Nu): By the IH and (E Eval).

Case (T Gen): We are given ∆1, α
1,∆2 ` Λ◦〈α,M0 〉 : !∀α.B for some ∆1, ∆2, α, M0, and B such that ∆ =

∆1, α
1,∆2 and M = Λ◦〈α,M0 〉 and A = !∀α.B . By inversion, ∆1, α

0,∆2 ` M0 : !B . By case analysis on the
IH.

Case M0 −→ M ′
0 for some M ′

0: By (E Eval).

Case M0 = νβ.R for some β and R: By (E Extr).

Case M0 = V for some V : By Lemma 35 and (R Closing)/(E Red).

Case (T TApp): We are given ∆ ` M0 B : C [B/α] for some M0, B , C , and α such that M = M0 B and A =
C [B/α]. By inversion, ∆ ` M0 : ∀α.C and ∆ ` B . By case analysis on the IH.

Case M0 −→ M ′
0 for some M ′

0: By (E Eval).

Case M0 = νβ.R0 for some β and R0: By (E Extr).

Case M0 = V for some V : By Lemma 35 and (R TBeta)/(E Red).

Lemma 37. If ` Γ, απ,∆, then ` Γ,∆.

Proof. Straightforward by induction on ∆.

Lemma 38. If Γ1 + Γ2 is well defined, then ωΓ1 + Γ2 ≤ Γ1 + Γ2.

Proof. Straightforward by induction on Γ1.

Lemma 39.

1. If ` Γ1, α
π1 , βπ2 ,Γ2, then ` Γ1, β

π2 , απ1 ,Γ2.

2. If Γ1, α
π1 , βπ2 ,Γ2 ` M : A, then Γ1, β

π2 , απ1 ,Γ2 ` M : A.

Proof. 1. Straightforward by induction on Γ2.

2. Straightforward by induction on the typing derivation. The cases for (T Var), (T Const), (T Bang), and
(T TAbs) rest on case (1). Further, the cases for (T Bang) and (T TAbs) rest on Lemma 8 as well. The
cases for (T App) and (T LetBang) rest on Lemma 6 (2).

Lemma 40 (Subject reduction).

1. If ∆ ` M1 : A and M1  M2, then ∆ ` M2 : A.

2. If ∆ ` M1 : A and M1 −→ M2, then ∆ ` M2 : A.

Proof. 1. By case analysis on the typing rule applied last to derive ∆ ` M1 : A.

Case (T Var): Contradictory.

Case (T Const), (T Abs), (T Bang), (T Nu), and (T TAbs): No reduction rule to be applied.
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Case (T App): We are given ∆1 + ∆2 ` M ′
1 M ′

2 : A for some ∆1, ∆2, M ′
1, and M ′

2 such that ∆ = ∆1 + ∆2

and M1 = M ′
1 M ′

2. By inversion, ∆1 ` M ′
1 : B ( A and ∆2 ` M ′

2 : B for some B . We perform case
analysis on the reduction rules applicable to M1 = M ′

1 M ′
2.

Case (R Const): We have

• M ′
1 = c1,

• M ′
2 = να. c2,

• M2 = να. ζ(c1, c2) (i.e., the reduction takes the form c1 να. c2  να. ζ(c1, c2))

for some c1, c2, and α. By inversion of the judgment ∆1 ` c1 : B ( A, we have ty(c1) = B ( A, so
ty(ζ(c1, c2)) = A by Assumption 1. Since ` ∆ by Lemma 17, we have the conclusion

∆ ` να. ζ(c1, c2) : A

by (T Const) and (T Nu).

Case (R Beta): We have

• M ′
1 = λx .M ,

• M ′
2 = R, and

• M2 = M [R/x ] (i.e., the reduction takes the form (λx .M ) R  M [R/x ])

for some x , M , and R. By inversion of the judgment ∆1 ` λx .M : B ( A, we can find ∆1, x :1 B ` M :
A. By Lemmas 30 and 3, we have the conclusion

∆1 + ∆2 ` M [R/x ] : A .

Case (T LetBang): We are given ∆1 + ∆2 ` let !x = M ′
1 inM ′

2 : A for some ∆1, ∆2, x , M ′
1, and M ′

2 such
that ∆ = ∆1 + ∆2 and M1 = let !x = M ′

1 inM ′
2. By inversion, ∆1 ` M ′

1 : !B and ∆2, x :ω B ` M ′
2 : A for

some B . Reduction rules applicable to M1 = let !x = M ′
1 inM ′

2 are only (R Bang). Thus,

• M ′
1 = να. !R and

• M2 = M ′
2[να.R/x ] (i.e., the reduction takes the form let !x = να. !R inM ′

2  M ′
2[να.R/x ])

for some α and R. By inversion of the judgment ∆1 ` να. !R : !B , we can find that α do not occur in
B and ω(∆1,∆

′) ` R : B where ∆′ = α1
1, · · · , αn

1 when α = α1, · · ·αn . By Lemma 25 and (T Nu),
ω∆1 ` να.R : B . By Lemmas 3 and 28, ω∆1 + ∆2 is well defined. By Lemma 5, ω |ω∆1. Thus, by
Lemma 30,

ω∆1 + ∆2 ` M ′
2[να.R/x ] : A .

By Lemmas 38 and 25, we have the conclusion

∆1 + ∆2 ` M ′
2[να.R/x ] : A .

Case (T Gen): We are given ∆1, α
1,∆2 ` Λ◦〈α,M ′ 〉 : !∀α.B for some ∆1, ∆2, α, M ′, and B such that

∆ = ∆1, α
1,∆2 and M1 = Λ◦〈α,M ′ 〉 and A = !∀α.B . By inversion, ∆1, α

0,∆2 ` M ′ : !B . Reduction
rules applicable to M1 = Λ◦〈α,M ′ 〉 are only (R Closing). Thus,

• M ′ = !R and

• M2 = !Λα.R (i.e., the reduction takes the form Λ◦〈α, !R 〉  !Λα.R)

for some R. By inversion of ∆1, α
0,∆2 ` !R : !B , we have ` ∆1, α

0,∆2 and ω(∆1, α
0,∆2) ` R : B . By

Lemmas 8, 39, and 5, ωω(∆1,∆2), α0 ` R : B . By Lemmas 37 and 10, ` ∆1,∆2 and ` ω(∆1,∆2). By
(T TAbs) and (T Bang), we have ∆1,∆2 ` !Λα.R : !∀α.B . By Lemma 20 (2), we have the conclusion

∆1, α
1,∆2 ` !Λα.R : !∀α.B .

Case (T TApp): We are given ∆ ` M ′
1 B : C [B/α] for some M ′

1, B , C , and α such that M1 = M ′
1 B and

A = C [B/α]. By inversion, ∆ ` M ′
1 : ∀α.C and ∆ ` B . Reduction rules applicable to M1 = M ′

1 B are
only (R TBeta). Thus, without loss of generality, we can suppose

• M ′
1 = Λα.M ′,

• M2 = M ′[B/α] (i.e., the reduction takes the form (Λα.M ′) B  M ′[B/α])
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for some M ′.

By inversion of the judgment ∆ ` Λα.M ′ : ∀α.C , we have ω∆, α0 ` M ′ : C . Since ∆ ` B , we have ω∆ ` B
by Lemma 9. Thus, by Lemma 34 (2), ω∆ ` M ′[B/α] : C [B/α]. Since ω∆ ≤ ∆, we have the conclusion

∆ ` M ′[B/α] : C [B/α]

by Lemma 25.

2. By induction on the derivation of M1 −→ M2 with case analysis on the evaluation rule applied last.

Case (E Red): By the case (1).

Case (E Eval): We are given E [M ′
1] −→ E [M ′

2] for some E , M ′
1, and M ′

2 such that M1 = E [M ′
1] and

M2 = E [M ′
2]. By inversion, M ′

1 −→ M ′
2. We perform case analysis on the typing rule applied last to

derive ∆ ` M1 : A.

Case (T Var), (T Const), (T Abs), and (T TAbs): Contradictory because there is no E such that M1 =
E [M ′

1].

Case (T App): We are given ∆1+∆2 ` M11 M12 : A for some ∆1, ∆2, M11, and M12 such that ∆ = ∆1+∆2

and M1 = M11 M12. By inversion, ∆1 ` M11 : B ( A and ∆2 ` M12 : B for some B . We perform case
analysis on E .

Case E = [ ] M12: We are given M ′
1 = M11. Since ∆1 ` M ′

1 : B ( A and M ′
1 −→ M ′

2, we have
∆1 ` M ′

2 : B ( A by the IH. By (T App),

∆1 + ∆2 ` M ′
2 M12 : A .

Since M ′
2 M12 = E [M ′

2] = M2, we have the conclusion.

Case E = R11 [ ] for some R11 such that R11 = M11: We are given M ′
1 = M12. Since ∆2 ` M ′

1 : B
and M ′

1 −→ M ′
2, we have ∆2 ` M ′

2 : B by the IH. By (T App),

∆1 + ∆2 ` R11 M ′
2 : A .

Since R11 M ′
2 = E [M ′

2] = M2, we have the conclusion.

Case (T LetBang), (T Gen), (T TApp), (T Bang), and (T Nu): Similar to the case for (T App).

Case (E Extr): We are given E[να.R] −→ να.E[R] for some E, α, and R such that M1 = E[να.R] and
M2 = να.E[R] and α 6∈ ftv(E). We perform case analysis on the typing rule applied last to derive
∆ ` M1 : A.

Case (T Var), (T Const), (T Abs), (T Bang), (T LetBang), (T Nu), and (T TAbs): Contradictory
because there is no E such that M1 = E[να.R].

Case (T App): We are given ∆1+∆2 ` M11 M12 : A for some ∆1, ∆2, M11, and M12 such that ∆ = ∆1+∆2

and M1 = M11 M12. By inversion, ∆1 ` M11 : B ( A and ∆2 ` M12 : B for some B . By case analysis
on E, we can find E = [ ] R12 for some R12 such that R12 = M12. We are also given M11 = να.R.
By inversion of the judgment ∆1 ` να.R : B ( A, we have ∆1, α

1 ` R : B ( A and ∆1 ` A. By
Lemmas 17 and 12, ` ∆2, α

0. Thus, by Lemma 20 (2), ∆2, α
0 ` R12 : B . Thus, by (T App) and

Lemma 7,
(∆1 + ∆2), α1 ` R R12 : A.

Since ∆1 + ∆2 ` A by Lemma 12, we have the conclusion

∆1 + ∆2 ` να. (R R12) : A

by (T Nu).

Case (T Gen), and (T TApp): Similar to the case for (T App).

Theorem 1 (Type soundness). If ∆ ` M : A and M −→∗ M ′ and M ′ 6−→, then M ′ = R for some R such that
∆ ` R : A.
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Proof. By induction on the number of the steps of M −→∗ M ′.
If the number of the steps is zero, then M = M ′. We have ∆ ` M : A and M 6−→, so M is a result by

Lemma 36.
If the number of the steps is more than zero, we have M −→ M ′′ and M ′′ −→∗ M ′ for some M ′′. By Lemma 40,

∆ ` M ′′ : A. By the IH, we have the conclusion.

3.2 Properties of Reductions in λ∀
v

Lemma 41. If w1⇒ℵ w2, then e[w1/x ]⇒ℵ e[w2/x ].

Proof. Straightforward by induction on e.

Lemma 42. If e1⇒ℵ e2 and w1⇒ℵ w2, then e1[w1/x ]⇒ℵ e2[w2/x ].

Proof. By induction on the derivation of e1⇒ℵ e2.

Case (P Refl): By Lemma 41.

Case (P Beta): We are given (λy .e ′′1 ) w ′′1 ⇒ℵ e ′′2 [w ′′2 /y ] for some y , e ′′1 , e ′′2 , w ′′1 , and w ′′2 such that e1 = (λy .e ′′1 ) w ′′1
and e2 = e ′′2 [w ′′2 /y ]. By inversion, e ′′1 ⇒ℵ e ′′2 and w ′′1 ⇒ℵ w ′′2 and βv ∈ {ℵ}. Without loss of generality, we can
suppose that y 6= x and y 6∈ fv (w1) ∪ fv (w2).

By the IHs, e ′′1 [w1/x ]⇒ℵ e ′′2 [w2/x ] and w ′′1 [w1/x ]⇒ℵ w ′′2 [w2/x ]. Thus, we have the conclusion

e1[w1/x ] = (λy .e ′′1 [w1/x ]) w ′′1 [w1/x ]⇒ℵ e ′′2 [w2/x ][w ′′2 [w2/x ]/y ] = e2[w2/x ] .

Case (P Eta): By the IH.

Case (P Delta): By the IH.

Case (P Abs): By the IH.

Case (P App): By the IHs.

Lemma 43. If e1 −→F e2, then e1[w/x ]−→F e2[w/x ].

Proof. By induction on the derivation of e1 −→F e2.

Case c1 c2 δ ζ(c1, c2): Obvious.

Case (λy .e ′) w ′ βv
e ′[w ′/x ]: We have e1 = (λy .e ′) w ′ and e2 = e ′[w ′/y ]. Without loss of generality, we can

suppose that y 6= x and y 6∈ fv (w). Then:

e1[w/x ] = (λy .e ′[w/x ]) w ′[w/x ]−→F e ′[w/x ][w ′[w/x ]/y ] = e ′[w ′/y ][w/x ] = e2[w/x ] .

Case e ′1 e ′2 −→F e ′′1 e ′2 and e ′1 −→F e ′′1 : We have e1 = e ′1 e ′2 and e2 = e ′′1 e ′2. By the IH, e ′1[w/x ] −→F e ′′1 [w/x ].
Thus:

e1[w/x ] = e ′1[w/x ] e ′2[w/x ]−→F e ′′1 [w/x ] e ′2[w/x ] = e2[w/x ] .

Case w ′1 e ′2 −→F w ′1 e ′′2 and e ′2 −→F e ′′2 : We have e1 = w ′1 e ′2 and e2 = w ′1 e ′′2 . By the IH, e ′2[w/x ] −→F e ′′2 [w/x ].
Thus:

e1[w/x ] = w ′1[w/x ] e ′2[w/x ]−→F w ′1[w/x ] e ′′2 [w/x ] = e2[w/x ] .

Lemma 44. If e1⇒ℵ1
e2 and {ℵ1} ⊆ {ℵ2}, then e1⇒ℵ2

e2.

Proof. Straightforward by induction on the derivation of e1⇒ℵ0
e2.
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Lemma 45. If e1 Z=⇒ℵ e2, then e1⇒ℵ e2.

Proof. By Lemma 44, it suffices to show that: for any e1, e2, C, and ℵ0 ∈ {ℵ}, if e1 ℵ0 e2, then C[e1]⇒ℵ0 C[e2].
We proceed by induction on C.

Case C = [ ] : By case analysis on ℵ0.

Case ℵ0 = βv: We can find C[e1] = (λx .e) w and C[e2] = e[w/x ] for some x , e, and w . We have (λx .e) w ⇒βv

e[w/x ] by (P Refl) and (P Beta).

Case ℵ0 = ηv: We can find C[e1] = λx .w x and C[e2] = w for some x and w such that x 6∈ fv (w). We have
λx .w x ⇒ηv w by (P Refl) and (P Eta).

Case ℵ0 = δ: We can find C[e1] = c1 c2 and C[e2] = ζ(c1, c2) for some c1 and c2. We have c1 c2⇒δ ζ(c1, c2) by
(P Refl) and (P Delta).

Case C = λx .C′: By the IH and (P Abs).

Case C = e C′, C′ e: By the IH, (P Refl), and (P App).

Lemma 46. If e1 Z=⇒∗ℵ e2, then C[e1] Z=⇒∗ℵ C[e2] for any C.

Proof. Straightforward by induction on the number of the steps of the reduction e1 Z=⇒∗ℵ e2.

Lemma 47. If e1⇒ℵ e2, then e1 Z=⇒∗ℵ e2.

Proof. By induction on the derivation of e1⇒ℵ e2.

Case (P Refl): Obvious.

Case (P Beta): We are given (λx .e ′1) w ′1⇒ℵ e ′2[w ′2/x ] for some x , e ′1, e ′2, w ′1, and w ′2 such that e1 = (λx .e ′1) w ′1 and

e2 = e ′2[w ′2/x ]. By inversion, e ′1⇒ℵ e ′2 and w ′1⇒ℵ w ′2 and βv ∈ {ℵ}. By the IHs, e ′1 Z=⇒∗ℵ e ′2 and w ′1 Z=⇒∗ℵ w ′2.
Thus:

e1 = (λx .e ′1) w ′1 Z=⇒∗ℵ (λx .e ′2) w ′1 Z=⇒∗ℵ (λx .e ′2) w ′2 Z=⇒ℵ e ′2[w ′2/x ] = e2

by Lemma 46 and βv ∈ {ℵ}.

Case (P Eta): We are given λx .w1 x ⇒ℵ w2 for some x , w1, and w2 such that e1 = λx .w1 x and e2 = w2. By

inversion, w1⇒ℵ w2 and x 6∈ fv (w1) and ηv ∈ {ℵ}. By the IH, w1 Z=⇒∗ℵ w2. Thus:

e1 = λx .w1 x Z=⇒ℵ w1 Z=⇒∗ℵ w2 = e2

by ηv ∈ {ℵ}.

Case (P Delta): We are given c1 c2⇒ℵ ζ(c1, c2) for some c1 and c2 such that e1 = c1 c2 and e2 = ζ(c1, c2). By

inversion, δ ∈ {ℵ}. Thus, we have the conclusion by δ-reduction.

Case (P Abs): By the IH and Lemma 46.

Case (P App): By the IHs and Lemma 46.

Lemma 48. If w ⇒ℵ e, then e is a value.

Proof. Straightforward by case analysis on the derivation of w ⇒ℵ e.

Lemma 49. Suppose that e1 or e2 is not a value. If e1 e2⇒ℵ e, then there exist some e ′1 and e ′2 such that e = e ′1 e ′2
and e1⇒ℵ e ′1 and e2⇒ℵ e ′2.

Proof. Straightforward by case analysis on the derivation of e1 e2⇒ℵ e.
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Lemma 50. If c⇒ℵ e, then e = c.

Proof. Straightforward by case analysis on the derivation of c⇒ℵ e.

Lemma 51. If e1⇒ℵ e2 and e1 −→F e ′1, then there exists some e ′2 such that e2 −→∗F e ′2 and e ′1⇒ℵ e ′2.

Proof. By induction on the derivation of e1 −→F e ′1 with case analysis on that derivation.

Case (λx .e) w  βv e[w/x ]: We have e1 = (λx .e) w and e ′1 = e[w/x ]. We perform case analysis on (λx .e) w =
e1⇒ℵ e2.

Case (P Refl) and (P App): With Lemma 48, we have e2 = w21 w22 for some w21 and w22 such that λx .e⇒ℵ
w21 and w ⇒ℵ w22. By case analysis on λx .e⇒ℵ w21.

Case (P Refl) and (P Abs): We have w21 = λx .e21 for some e21 such that e⇒ℵe21. We have the conclusion
by letting e ′2 = e21[w22/x ] because: e2 = w21 w22 = (λx .e21) w22−→F e21[w22/x ] = e ′2; and e ′1 = e[w/x ]⇒ℵ
e21[w22/x ] = e ′2 by Lemma 42.

Case (P Eta): We have e = w11 x for some w11 such that w11 ⇒ℵ w21 and x 6∈ fv (w11). (We also have

ηv ∈ {ℵ}.) We have the conclusion by letting e ′2 = w21 w22 because: e2 = w21 w22 = e ′2; and e ′1 =
e[w/x ] = w11 w ⇒ℵ w21 w22 = e ′2 by (P App).

Case (P Beta), (P Delta), and (P App): Contradictory.

Case (P Beta): We have e2 = e ′[w ′/x ] for some e ′ and w ′ such that e ⇒ℵ e ′ and w ⇒ℵ w ′. (We also have

βv ∈ {ℵ}). We have the conclusion by letting e ′2 = e ′[w ′/x ] because: e2 = e ′[w ′/x ] = e ′2; and e ′1 =
e[w/x ]⇒ℵ e ′[w ′/x ] = e ′2 by Lemma 42.

Case (P Eta), (P Delta), and (P Abs): Contradictory.

Case c1 c2 δ ζ(c1, c2): We have e1 = c1 c2 and e ′1 = ζ(c1, c2). By case analysis on c1 c2 = e1⇒ℵ e2.

Case (P Refl) and (P App): We can find e2 = e21 e22 for some e21 and e22 such that c1⇒ℵ e21 and c2⇒ℵ e22.
By Lemma 50, e21 = c1 and e22 = c2. We have the conclusion by letting e ′2 = ζ(c1, c2) because: e2 =
e21 e22 = c1 c2 −→F ζ(c1, c2) = e ′2; and e ′1 = ζ(c1, c2)⇒ℵ ζ(c1, c2) = e ′2 by (P Refl).

Case (P Delta): We are given e2 = ζ(c1, c2). (We also have δ ∈ {ℵ}). We have the conclusion by letting
e ′2 = ζ(c1, c2) because: e2 = ζ(c1, c2) = e ′2; and e ′1 = ζ(c1, c2)⇒ℵ ζ(c1, c2) = e ′2 by (P Refl).

Case (P Beta), (P Eta), and (P Abs): Contradictory.

Case e11 e12 −→F e ′11 e12 and e11 −→F e ′11: We have e1 = e11 e12 and e ′1 = e ′11 e12. Since e1 = e11 e12⇒ℵ e2, there
exist some e21 and e22 such that e2 = e21 e22 and e11⇒ℵ e21 and e12⇒ℵ e22 by Lemma 49. By the IH, there
exists some e ′21 such that e21 −→∗F e ′21 and e ′11⇒ℵ e ′21. We have the conclusion by letting e ′2 = e ′21 e22 because:
e2 = e21 e22 −→∗F e ′21 e22 = e ′2; and e ′1 = e ′11 e12⇒ℵ e ′21 e22 = e ′2 by (P App).

Case w11 e12 −→F w11 e ′12 and e12 −→F e ′12: We have e1 = w11 e12 and e ′1 = w11 e ′12. Since e1 = w11 e12 ⇒ℵ e2,
there exist some w21 and e22 such that e2 = w21 e22 and w11⇒ℵw21 and e12⇒ℵe22 by Lemmas 49 and 48. By the
IH, there exists some e ′22 such that e22 −→∗F e ′22 and e ′12⇒ℵ e ′22. We have the conclusion by letting e ′2 = w21 e ′22

because: e2 = w21 e22 −→∗F w21 e ′22 = e ′2; and e ′1 = w11 e ′12⇒ℵ w21 e ′22 = e ′2 by (P App).

Lemma 52. If e1⇒ℵ e2 and e1 −→∗F e ′1, then there exists some e ′2 such that e2 −→∗F e ′2 and e ′1⇒ℵ e ′2.

Proof. By induction on the number of the steps of e1 −→∗F e ′1.
If the number of the steps is zero, then e1 = e ′1, so we have the conclusion by letting e ′2 = e2.
If the number of the steps is more than zero, there exists some e ′′1 such that e1 −→F e ′′1 −→∗F e ′1. By Lemma 51,

there exists some e ′′2 such that e2 −→∗F e ′′2 and e ′′1 ⇒ℵ e ′′2 . By the IH, there exists some e ′2 such that e ′′2 −→∗F e ′2 and
e ′1⇒ℵ e ′2. Since e2 −→∗F e ′′2 −→∗F e ′2, we have the conclusion.

Lemma 53. If e1 Z=⇒∗ℵ e2 and e1 −→∗F e ′1, then there exists some e ′2 such that e2 −→∗F e ′2 and e ′1 Z=⇒∗ℵ e ′2.
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Proof. By induction on the number of the steps of e1 Z=⇒∗ℵ e2.

If the number of the steps is zero, then e1 = e2, so we have the conclusion by letting e ′2 = e ′1.
If the number of the steps is more than zero, then there exists some e such that e1 Z=⇒ℵ e Z=⇒∗ℵ e2. By

Lemmas 45 and 52, there exists some e ′ such that e −→∗F e ′ and e ′1⇒ℵ e ′. By the IH, there exists some e ′2 such
that e2 −→∗F e ′2 and e ′ Z=⇒∗ℵ e ′2. Since e ′1 ⇒ℵ e ′, we have e ′1 Z=⇒∗ℵ e ′ by Lemma 47. Thus, we have the conclusion

because e ′1 Z=⇒∗ℵ e ′ Z=⇒∗ℵ e ′2.

Lemma 54. If w Z=⇒∗ℵ e, then e is a value.

Proof. By induction on the number of the steps of w Z=⇒∗ℵ e.
If the number of the steps is zero, then w = e, so we have the conclusion.
Otherwise, if the number of the steps is more than zero, then there exists some e ′ such that w Z=⇒ℵ e ′ Z=⇒∗ℵ e.

By Lemmas 45 and 48, e ′ is a value. Thus, by the IH, e is a value.

Lemma 55. If e⇒ℵ w, then there exists some w ′ such that e −→∗F w ′ and w ′⇒ℵ w.

Proof. By induction on the derivation of e⇒ℵ w .

Case (P Refl): We are given e = w . We have the conclusion by letting w ′ = w because e = w −→∗F w = w ′;
and w ′ = w ⇒ℵ w by (P Refl).

Case (P Beta): We are given (λx .e1) w1⇒ℵ e2[w2/x ] for some x , e1, e2, w1, and w2 such that e = (λx .e1) w1 and

w = e2[w2/x ]. By inversion, e1⇒ℵ e2 and w1⇒ℵ w2 and βv ∈ {ℵ}. Since e2[w2/x ] = w is a value, e2 is also a
value. By the IH, there exists some w ′1 such that e1 −→∗F w ′1 and w ′1⇒ℵ e2.

We have the conclusion by letting w ′ = w ′1[w1/x ] because: e = (λx .e1) w1−→F e1[w1/x ]−→∗F w ′1[w1/x ] = w ′ by
Lemma 43; and w ′ = w ′1[w1/x ]⇒ℵ e2[w2/x ] = w by Lemma 42.

Case (P Eta): We are given λx .w1 x ⇒ℵ w for some x and w1 such that e = λx .w1 x . We have the conclusion by
letting w ′ = λx .w1 x .

Case (P Delta): We are given c1 c2⇒ℵ ζ(c1, c2) for some c1 and c2 such that e = c1 c2 and w = ζ(c1, c2). We
have the conclusion by letting w ′ = ζ(c1, c2).

Case (P Abs): We are given λx .e1⇒ℵ λx .e2 for some x , e1, and e2 such that e = λx .e1 and w = λx .e2. We have
the conclusion by letting w ′ = λx .e1.

Case (P App): Contradictory.

Lemma 56. If e⇒ℵ e1 e2, then there exist some e ′1 and e ′2 such that e −→∗F e ′1 e ′2 and e ′1⇒ℵ e1 and e ′2⇒ℵ e2.

Proof. By induction on e⇒ℵ e1 e2.

Case (P Refl): We are given e = e1 e2. Obvious by letting e ′1 = e1 and e ′2 = e2.

Case (P Beta): We are given (λx .e ′′1 ) w ′′1 ⇒ℵ e ′′2 [w ′′2 /x ] for some x , e ′′1 , e ′′2 , w ′′1 , and w ′′2 such that e = (λx .e ′′1 ) w ′′1
and e1 e2 = e ′′2 [w ′′2 /x ]. By inversion, e ′′1 ⇒ℵ e ′′2 and w ′′1 ⇒ℵ w ′′2 and βv ∈ {ℵ}. We can see e ′′2 = e ′′21 e ′′22 for some
e ′′21 and e ′22 such that e1 = e ′′21[w ′′2 /x ] and e2 = e ′′22[w ′′2 /x ]. Since e ′′1⇒ℵ e ′′2 = e ′′21 e ′′22, there exist some e ′′11 and e ′′12

such that e ′′1−→∗F e ′′11 e ′′12 and e ′′11⇒ℵe ′′21 and e ′′12⇒ℵe ′′22 by the IH. By Lemma 43, e ′′1 [w ′′1 /x ]−→∗F (e ′′11 e ′′12)[w ′′1 /x ]. We
have the conclusion by letting e ′1 = e ′′11[w ′′1 /x ] and e ′2 = e ′′12[w ′′1 /x ] because: e = (λx .e ′′1 ) w ′′1 −→F e ′′1 [w ′′1 /x ]−→∗F
(e ′′11 e ′′12)[w ′′1 /x ] = e ′1 e ′2; e ′1 = e ′′11[w ′′1 /x ]⇒ℵ e ′′21[w ′′2 /x ] = e1 by Lemma 42; and e ′2 = e ′′12[w ′′1 /x ]⇒ℵ e ′′22[w ′′2 /x ] = e2

by Lemma 42.

Case (P Eta), (P Delta), and (P Abs): Contradictory.

Case (P App): Obvious.
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Lemma 57. If w ⇒ℵ λx .e, then, for any w ′, w w ′ −→∗F (λx .e ′) w ′ for some e ′ such that e ′⇒ℵ e.

Proof. By induction on the derivation of w ⇒ℵ λx .e.

Case (P Refl): Obvious by letting e ′ = e.

Case (P Beta), (P Delta), and (P App): Contradictory.

Case (P Eta): We are given λy .w ′′ y⇒ℵλx .e for some y and w ′′ such that w = λy .w ′′ y . By inversion, w ′′⇒ℵλx .e
and y 6∈ fv (w ′′). By the IH, there exists some e ′ such that w ′′ w ′ −→∗F (λx .e ′) w ′ and e ′ ⇒ℵ e. We have the
conclusion because: w w ′ = (λy .w ′′ y) w ′ −→F w ′′ w ′ −→∗F (λx .e ′) w ′.

Case (P Abs): Obvious.

Lemma 58. Let w2 = c or x . If w1⇒ℵ w2, then w1 w −→∗F w2 w for any w.

Proof. By induction on the derivation of w1⇒ℵ w2.

Case (P Refl): Obvious.

Case (P Beta), (P Delta), (P Abs), and (P App): Contradictory.

Case (P Eta): We are given λy .w ′1 y⇒ℵw2 for some y and w ′1 such that w1 = λy .w ′1 y . By inversion, w ′1⇒ℵw2 and
y 6∈ fv (w ′1). By the IH, w ′1 w −→∗F w2 w . We have the conclusion because: w1 w = (λy .w ′1 y) w −→F w ′1 w −→∗F
w2 w .

Lemma 59. Suppose that e1 does not get stuck. If e1⇒ℵ e2 and e2 −→F e ′2, then there exists some e ′1 such that
e1 −→∗F e ′1 and e ′1⇒ℵ e ′2.

Proof. By induction on the derivation of e2 −→F e ′2 with case analysis on that derivation.

Case (λx .e) w  βv e[w/x ]: We have e2 = (λx .e) w and e ′2 = e[w/x ]. Since e1⇒ℵ e2 = (λx .e) w , there exist some
w11 and w12 such that e1−→∗F w11 w12 and w11⇒ℵλx .e and w12⇒ℵw by Lemmas 56 and 55. By Lemma 57, there
exists some e11 such that w11 w12 −→∗F (λx .e11) w12 and e11⇒ℵ e. Thus, we have the conclusion by letting e ′1 =
e11[w12/x ] because: e1−→∗F w11 w12−→∗F (λx .e11) w12−→F e11[w12/x ] = e ′1; and e ′1 = e11[w12/x ]⇒ℵ e[w/x ] = e ′2
by Lemma 42.

Case c1 c2 δ ζ(c1, c2): We have e2 = c1 c2 and e ′2 = ζ(c1, c2). Since e1⇒ℵe2 = c1 c2, there exist some w11 and w12

such that e1−→∗F w11 w12 and w11⇒ℵ c1 and w12⇒ℵ c2 by Lemmas 56 and 55. By Lemma 58, w11 w12−→∗F c1 w12.
Since e1 does not get stuck and e1 −→∗F c1 w12, we have w12 = c′2 for some c′2 such that ζ(c1, c

′
2) is well defined.

Since c′2 = w12 ⇒ℵ c2, we can see c′2 = c2. Thus, we have the conclusion by letting e ′1 = ζ(c1, c2) because:
e1 −→∗F c1 w12 = c1 c2 −→F ζ(c1, c2) = e ′1; and e ′1 = ζ(c1, c2)⇒ℵ ζ(c1, c2) = e ′2 by (P Refl).

Case e21 e22 −→F e ′21 e22 and e21 −→F e ′21: We have e2 = e21 e22 and e ′2 = e ′21 e22. Since e1⇒ℵ e2 = e21 e22, there
exist some e11 and e12 such that e1 −→∗F e11 e12 and e11⇒ℵ e21 and e12⇒ℵ e22 by Lemma 56. By the IH, there
exists some e ′11 such that e11 −→∗F e ′11 and e ′11⇒ℵ e ′21. We have the conclusion by letting e ′1 = e ′11 e12 because:
e1 −→∗F e11 e12 −→∗F e ′11 e12 = e ′1; and e ′1 = e ′11 e12⇒ℵ e ′21 e22 = e ′2 by (P App).

Case w21 e22 −→F w21 e ′22 and e22 −→F e ′22: We have e2 = w21 e22 and e ′2 = w21 e ′22. Since e1 ⇒ℵ e2 = w21 e22,
there exist some w11 and e12 such that e1 −→∗F w11 e12 and w11⇒ℵ w21 and e12⇒ℵ e22 by Lemmas 56 and 55.
By the IH, there exists some e ′12 such that e12 −→∗F e ′12 and e ′12 ⇒ℵ e ′22. We have the conclusion by letting
e ′1 = w11 e ′12 because: e1 −→∗F w11 e12 −→∗F w11 e ′12 = e ′1; and e ′1 = w11 e ′12⇒ℵ w21 e ′22 = e ′2 by (P App).

Lemma 60. Suppose that e1 does not get stuck. If e1⇒ℵ e2 and e2 −→∗F e ′2, then there exists some e ′1 such that
e1 −→∗F e ′1 and e ′1⇒ℵ e ′2.
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Proof. By induction on the number of the steps of e2 −→∗F e ′2.
If the number of the steps is zero, then e2 = e ′2, so we have the conclusion by letting e ′1 = e1.
If the number of the steps is more than zero, there exists some e ′′2 such that e2 −→F e ′′2 −→∗F e ′2. By Lemma 59,

there exists some e ′′1 such that e1−→∗F e ′′1 and e ′′1⇒ℵ e ′′2 . Since e1 does not get suck, e ′′1 does not either. Thus, by the
IH, there exists some e ′1 such that e ′′1 −→∗F e ′1 and e ′1⇒ℵ e ′2. Since e1 −→∗F e ′′1 −→∗F e ′1, we have the conclusion.

Lemma 61. If e1 does not get stuck and e1⇒ℵ e2 and e2 6−→ F , then e2 is a value.

Proof. By induction on e2.
If e2 is a value, then we have the conclusion.
Otherwise, we show a contradiction. Suppose that e2 is not a value, i.e., e2 = e21 e22 for some e21 and e22.

Since e1⇒ℵ e2 = e21 e22, there exist some e11 and e12 such that e1 −→∗F e11 e12 and e11⇒ℵ e21 and e12⇒ℵ e22 by
Lemma 56. Since e1 does not get stuck, e11 does not either. Since e21 e22 = e2 6−→ F , we have e21 6−→ F . Thus,
by the IH, e21 = w21 for some w21. Since e11 ⇒ℵ e21 = w21, there exists some w11 such that e11 −→∗F w11 and
w11 ⇒ℵ w21 by Lemma 55. Thus, e1 −→∗F e11 e12 −→∗F w11 e12. Since e1 does not get stuck, e12 does not either.
Since w21 e22 = e2 6−→ F , we have e22 6−→ F . Thus, by the IH, e22 = w22 for some w22. Since e12 ⇒ℵ e22 = w22,
there exists some w12 such that e12 −→∗F w12 and w12⇒ℵ w22 by Lemma 55. Thus, e1 −→∗F w11 e12 −→∗F w11 w12.
By case analysis on w21.

Case w21 = λx .e ′21: Contradictory because e2 6−→ F by the assumption but e2 = (λx .e ′21) w22 can be evaluated.

Case w21 = c1 or x : Since w11⇒ℵ w21, we have e1 −→∗F w11 w12 −→∗F w21 w12 by Lemma 58.

If w21 = x , then contradictory to the assumption that e1 does not get stuck.

Otherwise, if w21 = c1, then, since e1 does not get stuck, we can see w12 = c2 for some c2 such that ζ(c1, c2) is
well defined, and w21 w12 = c1 c2 δ ζ(c1, c2). Since c2 = w12⇒ℵ w22, we have w22 = c2 by Lemma 50. Thus,
e2 = w21 w22 = c1 c2 −→F ζ(c1, c2), which is contradictory to the assumption that e2 6−→ F .

Lemma 62. If e1 does not get stuck and e1 Z=⇒ℵ e2, then e2 does not either.

Proof. Suppose that e2 gets stuck, i.e., there exists some e ′2 such that e2−→∗F e ′2 and e ′2 6−→ F and e ′2 is not a value.
By Lemmas 45 and 60, there exists some e ′1 such that e1−→∗F e ′1 and e ′1⇒ℵ e ′2. Since e1 does not get stuck, e ′1 does
not either. By Lemma 61, e ′2 is a value, which is contradictory to the assumption that e ′2 is not a value.

Lemma 63. Suppose that e1 does not get stuck. If e1 Z=⇒∗ℵ e2 and e2 −→∗F e ′2, then there exists some e ′1 such that

e1 −→∗F e ′1 and e ′1 Z=⇒∗ℵ e ′2.

Proof. By induction on the number of the steps of e1 Z=⇒∗ℵ e2.

If the number of the steps is zero, then e1 = e2, so we have the conclusion by letting e ′1 = e ′2.
If the number of the steps is more than zero, then there exists some e such that e1 Z=⇒ℵ e Z=⇒∗ℵ e2. By Lemma 62,

e does not get stuck. Thus, by the IH, there exists some e ′ such that e −→∗F e ′ and e ′ Z=⇒∗ℵ e ′2. Since e1 Z=⇒ℵ e, we

have e1⇒ℵ e by Lemma 45. By Lemma 60, there exists some e ′1 such that e1−→∗F e ′1 and e ′1⇒ℵ e ′. By Lemma 47,
e ′1 Z=⇒∗ℵ e ′. Thus, we have the conclusion because e ′1 Z=⇒∗ℵ e ′ Z=⇒∗ℵ e ′2.

Lemma 64. If e does not get stuck and e Z=⇒∗ℵ w, then e −→∗F w ′ for some w ′ such that w ′ Z=⇒∗ℵ w.

Proof. By induction on the number of the steps of e Z=⇒∗ℵ w .

If the number of the steps is zero, then e = w , so we have the conclusion by letting w ′ = w .
If the number of the steps is more than zero, then there exists some e ′′ such that e Z=⇒ℵe ′′ Z=⇒∗ℵw . By Lemma 62,

e ′′ does not get stuck. Thus, by the IH, there exists some w ′′ such that e ′′−→∗F w ′′ and w ′′ Z=⇒∗ℵ w . By Lemmas 45

and 60, there exists some e ′ such that e −→∗F e ′ and e ′ ⇒ℵ w ′′. By Lemma 55, there exists some w ′ such that
e ′ −→∗F w ′ and w ′⇒ℵ w ′′. By Lemma 47, w ′ Z=⇒∗ℵ w ′′. Now, we have the conclusion because: e −→∗F e ′ −→∗F w ′;

and w ′ Z=⇒∗ℵ w ′′ Z=⇒∗ℵ w .
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3.3 Type Erasure

Lemma 65. For any erasable result R, erase(R) is a value in λ∀v .

Proof. By induction on R. If R = Λα.M for some α and M , then M = R′ for some R′ because R is erasable.
Thus, erase(R) = erase(R′) is a value by the IH.

Lemma 66. For any M1, M2, and x , erase(M1)[erase(M2)/x ] = erase(M1[M2/x ]).

Proof. By induction on M1.

Case M1 = y : Obvious.

Case M1 = c: Obvious.

Case M1 = λy .M ′
1: Without loss of generality, we can suppose that y 6= x and y does not occur free in M2 and

erase(M2). Then:
erase(M1)[erase(M2)/x ] = (λy .erase(M ′

1))[erase(M2)/x ]
= λy .(erase(M ′

1)[erase(M2)/x ])
= (λy .erase(M ′

1[M2/x ])) (by the IH)
= erase(λy .M ′

1[M2/x ])
= erase(M1[M2/x ]) .

Case M1 = M11 M12: By the IHs.

Case M1 = !M ′
1: By the IH,

erase(M1)[erase(M2)/x ] = erase(M ′
1)[erase(M2)/x ] = erase(M ′

1[M2/x ]) = erase(!M ′
1[M2/x ]) = erase(M1[M2/x ]) .

Case M1 = let !y = M11 inM12: Without loss of generality, we can suppose that y 6= x and y does not occur free
in M2 and erase(M2). Then:

erase(M1)[erase(M2)/x ] = ((λy .erase(M12)) erase(M11))[erase(M2)/x ]
= (λy .(erase(M12)[erase(M2)/x ])) erase(M11)[erase(M2)/x ]
= (λy .erase(M12[M2/x ])) erase(M11[M2/x ]) (by the IHs)
= erase(let !y = M11[M2/x ] inM12[M2/x ])
= erase(M1[M2/x ]) .

Case M1 = να.M ′
1: By the IH.

Case M1 = Λ◦〈α,M ′
1 〉: By the IH.

Case M1 = Λα.M ′
1: By the IH.

Case M1 = M ′
1 A: By the IH.

Lemma 67. For any M , A, and α, erase(M [A/α]) = erase(M ).

Proof. Straightforward by induction on M .

Lemma 68. If M1 is erasable and M1  M2, then erase(M1) = erase(M2) or erase(M1) ℵ erase(M2) for some
ℵ ∈ {βv, δ}.

Proof. By case analysis on the reduction rule applied to derive M1  M2.

Case (R Const): By δ-reduction.
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Case (R Beta): We are given (λx .M ) R  M [R/x ] for some x , M , and R such that M1 = (λx .M ) R and
M2 = M [R/x ]. Since M1 is erasable, so is R. Thus, by Lemma 65, erase(R) is a value in λ∀v . Thus:

erase(M1) = (λx .erase(M )) erase(R) βv
erase(M )[erase(R)/x ] .

By Lemma 66, erase(M )[erase(R)/x ] = erase(M [R/x ]) = erase(M2). Thus, we have the conclusion.

Case (R Bang): We are given let !x = να. !R inM  M [να.R/x ] for some x , α, R, and M such that M1 =
let !x = να. !R inM and M2 = M [να.R/x ]. By Lemma 65, erase(να.R) is a value in λ∀v . Thus:

erase(M1) = (λx .erase(M )) erase(να.R) βv erase(M )[erase(να.R)/x ] .

By Lemma 66, erase(M )[erase(να.R)/x ] = erase(M [να.R/x ]) = erase(M2). Thus, we have the conclusion.

Case (R Closing): We are given Λ◦〈α, !R 〉  !Λα.R for some α and R such that M1 = Λ◦〈α, !R 〉 and M2 =
!Λα.R. By definition, erase(M1) = erase(M2).

Case (R TBeta): We are given (Λα.M ) A  M [A/α] for some α, M , and A such that M1 = (Λα.M ) A and
M2 = M [A/α]. We have the conclusion by:

erase(M1) = erase(M ) = erase(M [A/α]) = erase(M2)

with Lemma 67.

Lemma 69. If M1 is erasable and M1 −→ M2, then erase(M1)−→F
0,1 erase(M2).

Proof. By induction on the derivation of M1 −→ M2.

Case (E Red): By Lemma 68.

Case (E Eval): We are given E [M ′
1] −→ E [M ′

2] for some E , M ′
1, and M ′

2 such that M1 = E [M ′
1] and M2 = E [M ′

2].
By inversion, we have M ′

1 −→ M ′
2.

By the IH, erase(M ′
1)−→F

0,1 erase(M ′
2). We perform case analysis on E .

Case E = [ ] M : We have M1 = M ′
1 M and M2 = M ′

2 M . Since erase(M ′
1) −→F

0,1 erase(M ′
2), we have the

conclusion by:

erase(M1) = erase(M ′
1) erase(M )−→F

0,1 erase(M ′
2) erase(M ) = erase(M2) .

Case E = R [ ] : We have M1 = R M ′
1 and M2 = R M ′

2. Since M1 is erasable, so is R. Thus, by Lemma 65,
erase(R) is a value in λ∀v . Since erase(M ′

1)−→F
0,1 erase(M ′

2), we have the conclusion by:

erase(M1) = erase(R) erase(M ′
1)−→F

0,1 erase(R) erase(M ′
2) = erase(M2) .

Case E = let !x = [ ] inM : We have M1 = let !x = M ′
1 inM and M2 = let !x = M ′

2 inM . Since erase(M ′
1)−→F

0,1

erase(M ′
2), we have the conclusion by:

erase(M1) = (λx .erase(M )) erase(M ′
1)−→F

0,1 (λx .erase(M )) erase(M ′
2) = erase(M2) .

Case E = Λ◦〈β, [ ] 〉, [ ] A, να. [ ] , and ! [ ] : We have the conclusion by:

erase(M1) = erase(M ′
1)−→F

0,1 erase(M ′
2) = erase(M2)

with the IH erase(M ′
1)−→F

0,1 erase(M ′
2).

Case (E Extr): We are given E[νβ.R] −→ νβ.E[R] for some E, β, and R such that M1 = E[νβ.R] and M2 =
νβ.E[R] and α 6∈ ftv(E).

We show that erase(M1) = erase(M2) by case analysis on E.
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Case E = [ ] R2: We find M1 = (νβ.R) R2 and M2 = νβ. (R R2). We have the conclusion by:

erase(M1) = erase((νβ.R) R2) = erase(R R2) = erase(νβ. (R R2)) = erase(M2) .

Case E = Λ◦〈 γ, [ ] 〉 and [ ] A: We have the conclusion by:

erase(M1) = erase(E[νβ.R]) = erase(νβ.R) = erase(R) = erase(E[R]) = erase(νβ.E[R]) = erase(M2) .

Lemma 70. If R is erasable and ∆ ` R : ∀α.A, then, for any B, R B −→∗ R′ for some R′ such that erase(R) =
erase(R′).

Proof. By induction on the derivation of ∆ ` R : ∀α.A.

Case (T Var): Contradictory.

Case (T Const), (T Abs), and (T Bang): Contradictory because the type of R is a polymorphic type.

Case (T App), (T TApp), (T LetBang), and (T Gen): Contradictory because terms accepted by those typing
rules are not results.

Case (T Nu): We are given ∆ ` νβ.R0 : ∀α.A for some β and R0 such that R = νβ.R0. By inversion, ∆, β1 `
R0 : ∀α.A. Without loss of generality, we can suppose that β 6∈ ftv(B).

By the IH, R0 B −→∗ R′′ for some R′′ such that erase(R0) = erase(R′′). By (E Eval), νβ. (R0 B) −→∗ νβ.R′′.
We have the conclusion by letting R′ = νβ.R′′ because: R B = (νβ.R0) B −→ νβ. (R0 B) −→∗ νβ.R′′ = R′;
and erase(R) = erase(R0) = erase(R′′) = erase(νβ.R′′) = erase(R′).

Case (T TAbs): We are given ∆ ` Λα.R0 : ∀α.A for some ∆, ∆, and R0 such that R = Λα.R0. Note that the
body of the type abstraction is a result because R is erasable. We have the conclusion by letting R′ = R0[B/α]
because: R B = (Λα.R0) B −→ R0[B/α] = R′ by (R TBeta)/(E Red); and erase(R) = erase(R0) = erase(R′)
by Lemma 67.

Lemma 71. If ∆ ` R : !A, then Λ◦〈α,R 〉 −→∗ R′ for some R′ such that erase(R) = erase(R′).

Proof. By induction on the derivation of ∆ ` R : !A.

Case (T Var): Contradictory.

Case (T Const), (T Abs), and (T TAbs): Contradictory because the type of R is !A.

Case (T App), (T LetBang), (T TApp), and (T Gen): Contradictory because terms accepted by those typing
rules are not results.

Case (T Bang): We are given ∆ ` !R0 : !A for some R0 such that R = !R0. We have the conclusion by letting
R′ = !Λα.R0 because: Λ◦〈α,R 〉 = Λ◦〈α, !R0 〉 −→ !Λα.R0 = R′; and erase(R) = erase(R0) = erase(!Λα.R0) =
erase(R′).

Case (T Nu): We are given ∆ ` νβ.R0 : !A for some β and R0 such that R = νβ.R0. By inversion, ∆, β1 ` R0 : !A.
Without loss of generality, we can suppose that β 6= α.

By the IH, Λ◦〈α,R0 〉 −→∗ R′′ for some R′′ such that erase(R0) = erase(R′′). By (E Eval), νβ.Λ◦〈α,R0 〉 −→∗
νβ.R′′. We have the conclusion by letting R′ = νβ.R′′ because: Λ◦〈α,R 〉 = Λ◦〈α, νβ.R0 〉 −→ νβ.Λ◦〈α,R0 〉 −→∗
νβ.R′′ = R′; and erase(R) = erase(R0) = erase(R′′) = erase(R′).

Lemma 72. If M is erasable and M −→ M ′, then M ′ is also erasable.
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Proof. Straightforward by induction on the evaluation derivation of M −→ M ′. The case for (E Red) depends
on the fact that substitution preserves erasability (which can be proven easily using the fact that substitution for
a variable in a result produces a result).

Lemma 73. Suppose that M is erasable. If ∆ ` M : A and erase(M ) is a value, then M −→∗ R for some R such
that erase(R) = erase(M ).

Proof. By induction on the typing derivation for M .

Case (T Var): Contradictory.

Case (T Const), (T Abs), and (T TAbs): Obvious by letting R = M .

Case (T App): Contradictory because erase(M ) is not a value.

Case (T Bang): We are given ∆ ` !M ′ : !B for some M ′ and B such that M = !M ′ and A = !B . By inversion,
ω∆ ` M ′ : B .

Since erase(M ) = erase(M ′), we find erase(M ′) is a value. Since M is erasable, so is M ′. Thus, by the IH,
M ′ −→∗ R′ for some R′ such that erase(R′) = erase(M ′). We have the conclusion by letting R = !R′ because:
M = !M ′ −→∗ !R′ = R by (E Eval); and erase(R) = erase(R′) = erase(M ′) = erase(M ).

Case (T LetBang): Contradictory because erase(M ) is not a value.

Case (T Nu): We are given ∆ ` να.M ′ : A for some α and M ′ such that M = να.M ′. By inversion, ∆, α1 ` M ′ :
A.

Since erase(M ) = erase(M ′), we find erase(M ′) is a value. Since M is erasable, so is M ′. Thus, by the IH,
M ′ −→∗ R′ for some R′ such that erase(R′) = erase(M ′). We have the conclusion by letting R = να.R′

because: M = να.M ′ −→∗ να.R′ = R by (E Eval); and erase(R) = erase(R′) = erase(M ′) = erase(M ).

Case (T Gen): We are given ∆1, α
1,∆2 ` Λ◦〈α,M ′ 〉 : !∀α.B for some ∆1, ∆2, α, M ′, and B such that ∆ =

∆1, α
1,∆2 and M = Λ◦〈α,M ′ 〉 and A = !∀α.B . By inversion, ∆1, α

0,∆2 ` M ′ : !B .

Since erase(M ) = erase(M ′), we find erase(M ′) is a value. Since M is erasable, so is M ′. Thus, by the IH,
M ′ −→∗ R′ for some R′ such that erase(R′) = erase(M ′). We also have ∆1, α

0,∆2 ` R′ : !B by Lemma 40.
By Lemma 71, Λ◦〈α,R′ 〉 −→∗ R for some R such that erase(R′) = erase(R). We have the conclusion by:
M = Λ◦〈α,M ′ 〉 −→∗ Λ◦〈α,R′ 〉 −→∗ R; and erase(R) = erase(R′) = erase(M ′) = erase(M ).

Case (T TApp): We are given ∆ ` M ′ B : C [B/α] for some M ′, B , C , and α such that M = M ′ B and A =
C [B/α]. By inversion, ∆ ` M ′ : ∀α.C .

Since erase(M ) = erase(M ′), we find erase(M ′) is a value. Since M is erasable, so is M ′. Thus, by the IH,
M ′ −→∗ R′ for some R′ such that erase(R′) = erase(M ′). By Lemma 40, ∆ ` R′ : ∀α.C . By Lemma 72, R′ is
erasable. Thus, by Lemma 70, R′ B −→∗ R for some R such that erase(R′) = erase(R). We have the conclusion
because: M = M ′ B −→∗ R′ B −→∗ R; and erase(R) = erase(R′) = erase(M ′) = erase(M ).

Lemma 74. If ∆1 ` R1 : A( B and ∆2 ` R2 : A and R2 is erasable and erase(R1 R2) ℵ e for some ℵ ∈ {βv, δ},
then R1 R2 −→∗ M for some M such that erase(M ) = e.

Proof. By induction on the derivation of ∆1 ` R1 : A ( B with case analysis on the typing rule applied last to
derive ∆1 ` R1 : A( B .

Case (T Var), (T App), (T Bang), (T LetBang), (T Gen), (T TAbs), and (T TApp): Contradictory.

Case (T Const): We are given ∆1 ` c1 : ty(c1) for some c1 such that R1 = c1 and A ( B = ty(c1). By
Assumption 1, A = ι for some ι. Since ∆2 ` R2 : ι, we have R2 = να. c2 for some α and c2 such that ty(c2) = ι
by Lemma 35. Again by Assumption 1, ζ(c1, c2) is well defined, and R1 R2 = c1 να. c2 −→ να. ζ(c1, c2) by
(R Const)/(E Red). We also have erase(R1 R2) = c1 c2 ℵ e, so e = ζ(c1, c2). Since ζ(c1, c2) is a constant,
we have erase(να. ζ(c1, c2)) = ζ(c1, c2). Thus, we have the conclusion by letting M = να. ζ(c1, c2).
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Case (T Abs): We have R1 = λx .M1 for some x and M1. By (R Beta)/(E Red), R1 R2 −→ M1[R2/x ]. Let M =
M1[R2/x ]. Since R2 is erasable, erase(R2) is a value by Lemma 65. Thus, erase(R1 R2) = (λx .erase(M1)) erase(R2) ℵ
erase(M1)[erase(R2)/x ] = e. By Lemma 66, e = erase(M1[R2/x ]) = erase(M ). Thus, we have the conclusion.

Case (T Nu): We are given ∆1 ` να.R′1 : A ( B for some α and R′1 such that R1 = να.R′1. By inversion,
∆1, α

1 ` R′1 : A( B . By (R Extr)/(E Red), R1 R2 −→ να. (R′1 R2). Since erase(R′1 R2) = erase(R1 R2) ℵ e,
there exists some M ′ such that R′1 R2 −→∗ M ′ and erase(M ′) = e by the IH. We have the conclusion by letting
M = να.M ′ because: R1 R2 = (να.R′1) R2 −→ να. (R′1 R2) −→∗ να.M ′ = M ; and erase(M ) = erase(M ′) = e.

Lemma 75. Suppose that M1 and M2 are erasable. If ∆1 ` M1 : A( B and ∆2 ` M2 : A and erase(M1 M2) ℵ e
for some ℵ ∈ {βv, δ}, then M1 M2 −→∗ M for some M such that erase(M ) = e.

Proof. Since erase(M1 M2) = erase(M1) erase(M2) and erase(M1 M2) ℵ e, we find erase(M1) and erase(M2) are
values. Thus, by Lemma 73, there exist some R1 and R2 such that

• M1 −→∗ R1 and erase(R1) = erase(M1), and

• M2 −→∗ R2 and erase(R2) = erase(M2).

We also have ∆1 ` R1 : A ( B and ∆2 ` R2 : A by Lemma 40. Since erase(R1 R2) = erase(M1 M2), we have
erase(R1 R2) ℵe. By Lemma 72, R2 is erasable. Thus, by Lemma 74, there exists some M such that R1 R2 −→∗ M
and erase(M ) = e. Since M1 M2 −→∗ R1 M2 −→∗ R1 R2 −→∗ M , we have the conclusion.

Lemma 76. Suppose that M1 is erasable. If ∆1 ` M1 : !B and ∆2, x :ω B ` M2 : A and erase(let !x =
M1 inM2) ℵ e for some ℵ ∈ {βv, δ}, then let !x = M1 inM2 −→∗ M for some M such that erase(M ) = e.

Proof. Since (λx .erase(M2)) erase(M1) = erase(let !x = M1 inM2) ℵ e, we can find erase(M1) is a value. Thus, by
Lemma 73, M1 −→∗ R1 for some R1 such that erase(R1) = erase(M1). We also have ∆1 ` R1 : !B by Lemma 40.
By Lemma 35, R1 = να. !R′1 for some α and R′1. Now, we have the conclusion by letting M = M2[να.R′1/x ]
because:

• let !x = M1 inM2 −→∗ let !x = R1 inM2 = let !x = να. !R′1 inM2 −→ M2[να.R′1/x ]; and

• erase(M ) = erase(M2[να.R′1/x ]) = erase(M2)[erase(να.R′1)/x ] = erase(M2)[erase(R1)/x ] = erase(M2)[erase(M1)/x ] =
e with Lemma 66 and the fact that (λx .erase(M2)) erase(M1) ℵ e, so e = erase(M2)[erase(M1)/x ].

Lemma 77. Suppose that M1 is erasable. If ∆ ` M1 : A and erase(M1) ℵ e for ℵ ∈ {βv, δ}, then there exists
some M2 such that M1 −→∗ M2 and erase(M2) = e.

Proof. By induction on the typing derivation of ∆ ` M1 : A.

Case (T Var): Contradictory.

Case (T Const) and (T Abs): Contradictory because there is no reduction allowing erase(M1) ℵ e.

Case (T TAbs): Since M1 is erasable, we have M1 = Λα.R for some α and erasable R. By Lemma 65, erase(R) is
a value in λ∀v . Thus, there is no reduction allowing erase(R) = erase(M1) ℵ e.

Case (T App): By Lemma 75.

Case (T Bang): We are given ∆ ` !M ′
1 : !B for some M ′

1 and B such that M1 = !M ′
1 and A = !B . By inversion,

ω∆ ` M ′
1 : B . We have erase(M ′

1) = erase(M1)  ℵ e. Since M1 is erasable, so is M ′
1. Thus, by the IH,

M ′
1 −→∗ M ′

2 for some M ′
2 such that erase(M ′

2) = e. We have the conclusion by letting M2 = !M ′
2 because:

M1 = !M ′
1 −→∗ !M ′

2 = M2 by (E Eval); and erase(M2) = erase(M ′
2) = e.

Case (T LetBang): By Lemma 76.
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Case (T Nu): We are given ∆ ` να.M ′
1 : A for some α and M ′

1 such that M1 = να.M ′
1. By inversion, ∆, α1 `

M ′
1 : A. We have erase(M ′

1) = erase(M1) ℵ e. Since M1 is erasable, so is M ′
1. Thus, by the IH, M ′

1 −→∗ M ′
2 for

some M ′
2 such that erase(M ′

2) = e. We have the conclusion by letting M2 = να.M ′
2 because: M1 = να.M ′

1 −→∗
να.M ′

2 = M2 by (E Eval); and erase(M2) = erase(M ′
2) = e.

Case (T Gen) and (T TApp): By the IH, similarly to the cases of (T Bang) and (T Nu).

Lemma 78. Suppose that M1 is erasable. If ∆ ` M1 : A and erase(M1) −→F e, then there exists some M2 such
that M1 −→∗ M2 and erase(M2) = e.

Proof. By induction on the derivation of ∆ ` M1 : A with case analysis on the typing rule last to derive ∆ ` M1 : A.

Case (T Var): Contradictory.

Case (T Const) and (T Abs): Contradictory because there is no reduction allowing erase(M1)−→F e.

Case (T TAbs): Since M1 is erasable, we have M1 = Λα.R for some α and erasable R. By Lemma 65, erase(R) =
erase(M1) is a value in λ∀v . Thus, there is no reduction allowing erase(M1)−→F e, so there is a contradiction.

Case (T App): We are given ∆1 + ∆2 ` M11 M12 : A for some ∆1, ∆2, M11, and M12 such that ∆ = ∆1 + ∆2 and
M1 = M11 M12. By inversion, ∆1 ` M11 : B ( A and ∆2 ` M12 : B for some B . We perform case analysis on
how the evaluation erase(M11) erase(M12) = erase(M1)−→F e proceeds.

Case erase(M11) erase(M12) ℵ e for some ℵ ∈ {βv, δ}: By Lemma 77.

Case erase(M11)−→F e1 and e = e1 erase(M12): Since ∆1 ` M11 : B ( A and M11 is erasable, there exists
some M21 such that M11 −→∗ M21 and erase(M21) = e1 by the IH. We have the conclusion by letting
M2 = M21 M12 because: M1 = M11 M12 −→∗ M21 M12 = M2; and erase(M2) = erase(M21) erase(M12) =
e1 erase(M12) = e.

Case erase(M11) = w1 and erase(M12)−→F e2 and e = w1 e2: Since erase(M11) is a value and M11 is erasable,
there exists some R11 such that M11 −→∗ R11 and erase(R11) = erase(M11) by Lemma 73.

By the IH on M12, there exists some M22 such that M12 −→∗ M22 and erase(M22) = e2. We have the
conclusion by letting M2 = R11 M22 because: M1 = M11 M12 −→∗ R11 M12 −→∗ R11 M22 = M2; and
erase(M2) = erase(R11 M22) = erase(M11) e2 = e.

Case (T Bang), (T Nu), (T TApp), and (T Gen): By the IH and (E Eval).

Case (T LetBang): We are given ∆1 + ∆2 ` let !x = M11 inM12 : A for some ∆1, ∆2, x , M11, and M12 such that
∆ = ∆1 + ∆2 and M1 = let !x = M11 inM12. By inversion, ∆1 ` M11 : !B and ∆2, x :ω B ` M12 : A for some
B . We perform case analysis on how the evaluation (λx .erase(M12)) erase(M11) = erase(M1)−→F e proceeds.

Case (λx .erase(M12)) erase(M11) ℵ e for some ℵ ∈ {βv, δ}: By Lemma 77.

Case erase(M11)−→F e1 and e = (λx .erase(M12)) e1: By the IH, there exists some M21 such that M11 −→∗ M21

and erase(M21) = e1. We have the conclusion by letting M2 = let !x = M21 inM12 because: M1 = let !x =
M11 inM12 −→∗ let !x = M21 inM12 = M2; and erase(M2) = (λx .erase(M12)) erase(M21) = (λx .erase(M12)) e1 =
e.

Theorem 2 (Meaning preservation of type erasure). Suppose that M is erasable.

1. If M −→∗ M ′, then erase(M )−→∗F erase(M ′). Furthermore, if M ′ is a result, then erase(M ′) is a value.

2. If ∆ ` M : A and erase(M )−→∗F e, then M −→∗ M ′ for some M ′ such that erase(M ′) = e. Furthermore, if
e = w, then M ′ −→∗ R for some R such that erase(R) = w.

39



Proof. 1. We first show that M −→∗ M ′ implies erase(M ) −→∗F erase(M ′) by induction on the number of the
steps of M −→∗ M ′.

If the number of the steps is zero, i.e., M = M ′, then we have the conclusion because erase(M )−→∗F erase(M ) =
erase(M ′).

If the number of the steps is more than zero, there exists some M ′′ such that M −→ M ′′ −→∗ M ′. We have
the conclusion because erase(M )−→F

0,1 erase(M ′′)−→∗F erase(M ′) by Lemmas 69 and 72 and the IH.

Finally, by Lemma 72, M ′ is erasable. Thus, if M ′ = R for some R, then erase(R) is a value by Lemma 65.
Thus, we have the conclusion.

2. We first show that there exists a desired M ′ by induction on the number of the steps of erase(M )−→∗F e.

If the number of the steps is zero, i.e., erase(M ) = e, then we have the conclusion by letting M ′ = M .

If the number of the steps is more than zero, there exists some e ′′ such that erase(M ) −→F e ′′ −→∗F e. By
Lemma 78, there exists some M ′′ such that M −→∗ M ′′ and erase(M ′′) = e ′′. By Lemma 40, ∆ ` M ′′ : A.
By Lemma 72, M ′′ is erasable. Thus, by the IH, M ′′ −→∗ M ′ for some M ′ such that erase(M ′) = e. M ′ is
a desired term since M −→∗ M ′′ −→∗ M ′.

Next, we show that, if erase(M ′) = w , then M ′ −→∗ R for some R such that erase(R) = w . Since ∆ ` M ′ : A
by Lemma 40 and M ′ is erasable by Lemma 72, this is proven by Lemma 73.

Lemma 79. Suppose that V2 is erasable. If ∆1 ` V1 : A ( B and ∆2 ` V2 : A, then erase(V1 V2) −→F e for
some e.

Proof. By inversion of ∆1 ` V1 : A( B .

Case (T Const): We are given ∆1 ` c1 : ty(c1) for some c1 such that V1 = c1 and A ( B = ty(c1). By
Assumption 1, A = ι for some ι. By inversion of ∆2 ` V2 : ι, we can find V2 = c2 for some c2 such that
ty(c2) = ι. Thus, by Assumption 1 and Definition 22, erase(V1 V2) = c1 c2 −→F ζ(c1, c2).

Case (T Abs): We are given V1 = λx .M1 for some x and M1. Since erase(V1) = λx .erase(M1) and erase(V2) is
a value by Lemma 65, we have the conclusion by letting e = erase(M1)[erase(V2)/x ] because: erase(V1 V2) =
(λx .erase(M1)) erase(V2)−→F erase(M1)[erase(V2)/x ] = e.

Otherwise: Contradictory.

Lemma 80. Suppose that R2 is erasable. If ∆1 ` V1 : A ( B and ∆2 ` R2 : A, then erase(V1 R2) −→F e for
some e.

Proof. By induction on the derivation of ∆2 ` R2 : A.

Case (T Var), (T App), (T LetBang), (T TApp), and (T Gen): Contradictory.

Case (T Const), (T Abs), (T Bang), and (T TAbs): By Lemma 79.

Case (T Nu): We are given ∆2 ` να.R′2 : A for some α and R′2 such that R2 = να.R′2. By inversion, ∆, α1 ` R′2 :
A. By the IH, erase(V1 R′2)−→F e for some e. Since erase(V1 R′2) = erase(V1 R2), we have the conclusion.

Lemma 81. Suppose that R2 is erasable. If ∆1 ` R1 : A ( B and ∆2 ` R2 : A, then erase(R1 R2) −→F e for
some e.

Proof. By induction on the derivation of ∆1 ` R1 : A( B .

Case (T Var), (T App), (T Bang), (T LetBang), (T Gen), (T TAbs), and (T TApp): Contradictory.

Case (T Const) and (T Abs): By Lemma 80.
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Case (T Nu): We are given ∆1 ` να.R′1 : A ( B for some α and R′1 such that R1 = να.R′1. By inversion,
∆, α1 ` R′1 : A ( B . By the IH, erase(R′1 R2) −→F e for some e. Since erase(R′1 R2) = erase(R1 R2), we have
the conclusion.

Lemma 82. Suppose that M is erasable. If ∆ ` M : A and erase(M ) 6−→ F , then erase(M ) is a value in λ∀v .

Proof. By induction on the derivation of ∆ ` M : A.

Case (T Var): Contradictory.

Case (T Const) and (T Abs): Obvious.

Case (T App): We are given ∆1 + ∆2 ` M1 M2 : A for some ∆1, ∆2, M1, and M2 such that ∆ = ∆1 + ∆2 and
M = M1 M2. By inversion, ∆1 ` M1 : B ( A and ∆2 ` M2 : B for some B .

Since erase(M1) erase(M2) = erase(M ) 6−→ F , we can find erase(M1) 6−→ F . Thus, by the IH, erase(M1) is a value.
By Lemma 73, M1 −→∗ R1 for some R1 such that erase(R1) = erase(M1). Since erase(M1) is a value and
erase(M1) erase(M2) 6−→ F , we can find erase(M2) 6−→ F . Thus, by the IH, erase(M2) is a value. By Lemma 73,
M2 −→∗ R2 for some R2 such that erase(R2) = erase(M2).

By Lemma 40, ∆1 ` R1 : B ( A and ∆2 ` R2 : B . By Lemma 72, R2 is erasable. By Lemma 81,
erase(M ) = erase(M1 M2) = erase(R1 R2) −→F e for some e. However, it is contradictory to the assumption
that erase(M ) 6−→ F .

Case (T Bang), (T Nu), (T Gen), and (T TApp): By the IH.

Case (T LetBang): We are given ∆1 + ∆2 ` let !x = M1 inM2 : A for some ∆1, ∆2, x , M1, and M2 such that
∆ = ∆1 + ∆2 and M = let !x = M1 inM2. By inversion, ∆1 ` M1 : !B and ∆2, x :ω B ` M2 : A for some B .

Since (λx .erase(M2)) erase(M1) = erase(M ) 6−→ F , we can find erase(M1) 6−→ F . Thus, by the IH, erase(M1) is a
value. Thus, we have erase(M ) = (λx .erase(M2)) erase(M1)−→F erase(M2)[erase(M1)/x ], which is contradictory
to the assumption that erase(M ) 6−→ F .

Case (T TAbs): Since M is erasable, M = Λα.R for some α and erasable R. By Lemma 65, erase(M ) = erase(R)
is a value in λ∀v .

Lemma 83. If M is erasable and ∆ ` M : A, then erase(M ) does not get stuck.

Proof. Suppose that erase(M ) gets stuck, i.e., there exists some e such that erase(M ) −→∗F e and e 6−→ F and e
is not a value. By Theorem 2, there exists some M ′ such that M −→∗ M ′ and erase(M ′) = e. By Lemma 40,
∆ ` M ′ : A. By Lemma 72, M ′ is erasable. Since erase(M ′) = e 6−→ F , we can find e is a value by Lemma 82.
However, it is contradictory to the assumption that e is not a value.

3.4 CPS Transformation for λ∀
v

3.4.1 Type Preservation

Lemma 84. For any τ , ftv(τ) = ftv(JτK) = ftv(JτKv).

Proof. Straightforward by induction on τ .

Lemma 85. For any Θ, dom(Θ) = dom(JΘK).

Proof. Straightforward by induction on Θ.

Lemma 86. If ` Θ, then ` JΘK.

Proof. Straightforward by induction on the derivation of ` Θ with Lemmas 84 and 85.
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Lemma 87. For any Θ, JΘK = ω(JΘK).

Proof. Straightforward by induction on Θ.

Lemma 88. For any Θ and x, if Θ(x ) is well defined, then JΘ(x )Kv = JΘK(x ).

Proof. Obvious.

Lemma 89. If JΘ ` e : τK⇒ R, then ` Θ and Θ ` τ .

Proof. Straightforward by induction on the derivation of JΘ ` e : τK⇒ R.

Lemma 90. For any τ1, τ2, and α, Jτ1Kv[Jτ2Kv/α] = Jτ1[τ2/α]Kv.

Proof. By induction on τ1.

Case τ1 = β, ι: Obvious.

Case τ1 = τ11 → τ12:

Jτ1Kv[Jτ2Kv/α] = (!Jτ11Kv( ∀β.(!Jτ12Kv( β)( β)[Jτ2Kv/α] (β 6∈ ftv(τ12))
= !(Jτ11Kv[Jτ2Kv/α])( ∀β.(!(Jτ12Kv[Jτ2Kv/α])( β)( β

(since we can suppose β 6= α and β 6∈ ftv(τ2) = ftv(Jτ2Kv) (Lemma 84) w.l.o.g.)
= !Jτ11[τ2/α]Kv( ∀β.(!Jτ12[τ2/α]Kv( β)( β (by the IHs)
= Jτ11[τ2/α]→ τ12[τ2/α]Kv
= Jτ1[τ2/α]Kv .

Case τ1 = ∀β.τ0: Without loss of generality, we can suppose that β 6= α and β 6∈ ftv(τ2) = ftv(Jτ2Kv) (Lemma 84).
Then:

Jτ1Kv[Jτ2Kv/α] = (∀β.Jτ0Kv)[Jτ2Kv/α]
= ∀β.(Jτ0Kv[Jτ2Kv/α])
= ∀β.Jτ0[τ2/α]Kv (by the IH)
= J∀β.τ0[τ2/α]Kv
= Jτ1[τ2/α]Kv .

Lemma 91. If ωΓ, α0 ` M : A, then ωΓ ` Λα.M : ∀α.A.

Proof. By Lemma 5, ωωΓ, α0 ` M : A. By Lemma 17, ` ωΓ. Thus, by (T TAbs), we have the conclusion.

Lemma 92. If JΘK, α0 ` M : A, then JΘK ` Λα.M : ∀α.A.

Proof. By Lemmas 87 and 91.

Lemma 93. Suppose that Jx : τK is well defined. Let A be a type obtained by replacing → in τ by (. Then,
x :ω A ` Jx : τK : !JτKv.

Proof. By induction on the derivation of Jx : τK.

Case Jx : ιK = !x : We have τ = A = ι. We have the conclusion x :ω ι ` !x : !ι.

Case Jx : ι→ τ ′K = !(λx ′.let !y = x ′ in let !z = !(x y) inΛα.λk .k Jz : τ ′K): We have τ = ι → τ ′ and A = ι( B for
some B obtained by replacing → in τ ′ by (. By the IH,

z :ω B ` Jz : τ ′K : !Jτ ′Kv .

Thus,

x :ω ι( B ` !(λx ′.let !y = x ′ in let !z = !(x y) inΛα.λk .k Jz : τ ′K) : !(!ι( ∀α.(!Jτ ′Kv( α)( α)

with Lemmas20 (2) and 91. Since JτKv = Jι→ τ ′Kv = !ι( ∀α.(!Jτ ′Kv( α)( α, we have the conclusion.
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Lemma 94. For any c, ∅ ` Jc : ty→(c)K : !Jty→(c)Kv.

Proof. It is easy to show that Jc : ty→(c)K is well defined by induction on ty→(c). By case analysis on Jc : ty→(c)K.

Case Jc : ιK = !c: We have ty→(c) = ι. We have the conclusion ∅ ` !c : !ι by (T Const) and (T Bang).

Case Jc : ι→ τK = !(λx .let !y = x in let !z = !(c y) inΛα.λk .k Jz : τK): We have ty→(c) = ι→ τ , so ty(c) = ι( A
for some A obtained by replacing → in τ by ( (Definition 22). By Lemma 93,

z :ω A ` Jz : τK : !JτKv .

Thus,
∅ ` !(λx .let !y = x in let !z = !(c y) inΛα.λk .k Jz : τK) : !(!ι( ∀α.(!JτKv( α)( α) .

with Lemmas20 (2) and 91. Since Jty→(c)Kv = Jι→ τKv = !ι( ∀α.(!JτKv( α)( α, we have the conclusion.

Lemma 95. If JΘ ` e : τK⇒ R, then JΘK ` R : JτK.

Proof. By induction on the derivation of JΘ ` e : τK⇒ R.

Case (C Var): We are given JΘ ` x : Θ(x )K ⇒ Λα.λk .k !x for some x , k , and α such that e = x and τ = Θ(x )
and R = Λα.λk .k !x . By inversion, ` Θ, so ` JΘK by Lemma 86. Without loss of generality, we can suppose
that α 6∈ dom(Θ) = dom(JΘK) (Lemma 85).

The conclusion we have to show is

JΘK ` Λα.λk .k !x : ∀α.(!JΘ(x )Kv( α)( α .

By Lemma 92, it suffices to show that

JΘK, α0 ` λk .k !x : (!JΘ(x )Kv( α)( α .

We have JΘK = ω(JΘK) by Lemma 87 and ` JΘK, α0, k :π !JΘ(x )Kv( α for any π by Lemmas 84 and 85. Thus,
the typing rules (T Var) and (T Bang) can be applied, and it suffices to show that JΘK(x ) = JΘ(x )Kv, which
is shown by Lemma 88.

Case (C Const): We are given JΘ ` c : ty→(c)K⇒ Λα.λk .k Jc : ty→(c)K for some c, k , and α. By inversion, ` Θ.

The conclusion we have to show is

JΘK ` Λα.λk .k Jc : ty→(c)K : ∀α.(!Jty→(c)Kv( α)( α .

By Lemma 94,
∅ ` Jc : ty→(c)K : !Jty→(c)Kv .

Thus, we have the conclusion by Lemmas 86, 20 (2), 92, (T Var), (T App), and (T Abs).

Case (C Abs): We are given JΘ ` λx .e ′ : τ1 → τ2K⇒ Λα.λk .k !(λy .let !x = y inR′) for some x , y , e ′, R′, τ1, τ2, α,
and k . By inversion, JΘ, x : τ1 ` e ′ : τ2K⇒ R′ and y is fresh.

The conclusion we have to show is

JΘK ` Λα.λk .k !(λy .let !x = y inR′) : ∀α.(!Jτ1 → τ2Kv( α)( α .

By the IH,
JΘK, x :ω Jτ1Kv ` R′ : Jτ2K .

By Lemmas 17 and 20 (2),
JΘK, y :0 !Jτ1Kv, x :ω Jτ1Kv ` R′ : Jτ2K .

Thus, by (T Var), (T LetBang), (T Abs), and (T Bang) with ω(JΘK) = JΘK by Lemma 87,

JΘK ` !(λy .let !x = y inR′) : !(!Jτ1Kv( Jτ2K) = !Jτ1 → τ2Kv .

Thus, we have the conclusion by (T Var), (T App), (T Abs), and Lemma 92.
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Case (C App): We are given JΘ ` e1 e2 : τK ⇒ Λα.λk .R1 α (λx .R2 α (λy .let !z = x in z y α k)) for some e1, e2, R1,
R2, α, x , y , z , and k . By inversion, JΘ ` e1 : τ0 → τK⇒ R1 and JΘ ` e2 : τ0K⇒ R2 for some τ0, and x is fresh.

The conclusion we have to show is

JΘK ` Λα.λk .R1 α (λx .R2 α (λy .let !z = x in z y α k)) : ∀α.(!JτKv( α)( α .

By the IHs:
JΘK ` R1 : ∀α.(!Jτ0 → τKv( α)( α
JΘK ` R2 : ∀α.(!Jτ0Kv( α)( α .

Since JΘK = JΘK+ JΘK by Lemmas 87 and 5, it suffices to show that

JΘK, α0, k :1 !JτKv( α, x :1 !Jτ0 → τKv, y :1 !Jτ0Kv ` let !z = x in z y α k : α

by (T TApp), (T Abs), (T App), and Lemmas 20 (2) and 92. We have

Jτ0 → τKv = !Jτ0Kv( ∀β.(!JτKv( β)( β

for some β 6∈ ftv(τ) = ftv(JτKv) (Lemma 84). Thus, we have the derivation of the judgment above by (T Var),
(T App), (T TApp), and (T LetBang).

Case (C TAbs): We are given JΘ ` e : ∀β.τ0K ⇒ Λα.λk .νβ.R′ α (λx .k Λ◦〈β, x 〉) for some β, α, τ0, k , R′, and x .
By inversion, JΘ, β ` e : τ0K⇒ R′.

The conclusion we have to show is

JΘK ` Λα.λk .νβ.R′ α (λx .k Λ◦〈β, x 〉) : ∀α.(!(∀β.Jτ0Kv)( α)( α .

By the IH, JΘK, β0 ` R′ : ∀α.(!Jτ0Kv ( α) ( α where α 6∈ ftv(τ0) = ftv(Jτ0Kv) (Lemma 84). Since JΘK =
JΘK+ JΘK by Lemmas 87 and 5, it suffices to show that

JΘK, α0, k :1 !(∀β.Jτ0Kv)( α, β1, x :1 !Jτ0Kv ` k Λ◦〈β, x 〉 : α

by (T Abs), (T Nu), (T TApp), (T App), and 20 (2) and 92. In turn, it suffices to show that

JΘK, α0, k :0 !(∀β.Jτ0Kv)( α, β1, x :1 !Jτ0Kv ` Λ◦〈β, x 〉 : !(∀β.Jτ0Kv)

by (T App). By (T Var) and (T Gen), we can derive this judgment.

Case (C TApp): We are given JΘ ` e : τ2[τ1/β]K ⇒ Λα.λk .R′ α (λx .let !y = x in k !(y Jτ1Kv)) for some τ1, τ2, β, α,
k , x , and R′. By inversion, JΘ ` e : ∀β.τ2K⇒ R′ and Θ ` τ1.

The conclusion we have to show is

JΘK ` Λα.λk .R′ α (λx .let !y = x in k !(y Jτ1Kv)) : ∀α.(!Jτ2[τ1/β]Kv( α)( α .

By the IH, JΘK ` R′ : ∀α.(!(∀β.Jτ2Kv)( α)( α where α 6∈ ftv(τ2) = Jτ2Kv (Lemma 84). We have ω(JΘK) = JΘK
by Lemma 87 and JΘK = JΘK + JΘK by Lemma 5. Thus, with Lemma 92, it suffices to show that

JΘK, α0, k :0 !Jτ2[τ1/β]Kv( α, x :0 !(∀β.Jτ2Kv), y :ω ∀β.Jτ2Kv ` y Jτ1Kv : Jτ2[τ1/β]Kv .

Since Θ ` τ1, we have JΘK ` Jτ1Kv by Lemmas 85 and 84. Thus, by (T Var) and (T TApp),

JΘK, α0, k :0 !Jτ2[τ1/β]Kv( α, x :0 !(∀β.Jτ2Kv), y :ω ∀β.Jτ2Kv ` y Jτ1Kv : Jτ2Kv[Jτ1Kv/β] .

By Lemma 90, we finish.

Lemma 96. If Θ ` e : τ , then JΘ ` e : τK⇒ R for some R.

Proof. Straightforward by induction on the derivation of Θ ` e : τ .

Theorem 3 (Type preservation of CPS transformation for λ∀v). If Θ ` e : τ , then there exists some R such that
JΘ ` e : τK⇒ R and JΘK ` R : JτK.

Proof. By Lemmas 96 and 95.
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3.4.2 Meaning Preservation

Lemma 97. erase(Jχ : τK) Z=⇒∗ηv Lχ : τ M.

Proof. By induction on τ . There are two cases we have to consider for τ by case analysis on the definition of Jχ : τK.

Case τ = ι: We have the conclusion by:

erase(Jχ : τK) = erase(!χ) = χ = Lχ : τ M .

Case τ = ι→ τ ′: We have the conclusion by:

erase(Jχ : τK) = erase(!(λx .let !y = x in let !z = !(χ y) inΛα.λk .k Jz : τ ′K)) (k , x , y , z 6∈ fv (χ))
= λx .(λy .(λz .λk .k erase(Jz : τ ′K)) (χ y)) x
Z=⇒∗ηv λx .(λy .(λz .λk .k L z : τ ′ M) (χ y)) x (by the IH)
Z=⇒ηv λx .(λz .λk .k L z : τ ′ M) (χ x )
= Lχ : ι→ τ ′ M
= Lχ : τ M .

Lemma 98. If JΘ ` e : τK⇒ R, then erase(R) Z=⇒∗βvηv
L e M.

Proof. By induction on the derivation of JΘ ` e : τK⇒ R.

Case (C Var): We are given JΘ ` x : Θ(x )K⇒ Λα.λk .k !x for some x , k , and α. We have the conclusion by:

erase(R) = erase(Λα.λk .k !x )
= λk .k x
= L x M .

Case (C Const): We are given JΘ ` c : ty→(c)K ⇒ Λα.λk .k Jc : ty→(c)K for some c, α, and k . We have the
conclusion by Lemma 97.

Case (C Abs): We are given JΘ ` λx .e ′ : τ1 → τ2K⇒ Λα.λk .k !(λy .let !x = y inR′) for some x , y , k , e ′, α, τ1, τ2,
and R′. By inversion, JΘ, x : τ1 ` e ′ : τ2K⇒ R′ and y is fresh. We have the conclusion by:

erase(R) = erase(Λα.λk .k !(λy .let !x = y inR′))
= λk .k (λy .(λx .erase(R′)) y)

Z=⇒∗βvηv
λk .k (λy .(λx .L e ′ M) y) (by the IH)

Z=⇒ηv λk .k (λx .L e ′ M)
= Lλx .e ′ M .

Case (C App): We are given JΘ ` e1 e2 : τK⇒ Λα.λk .R1 α (λx .R2 α (λy .let !z = x in z y α k)) for some e1, e2, k , x ,
y , z , α, R1, and R2. By inversion, JΘ ` e1 : τ0 → τK⇒ R1 and JΘ ` e2 : τ0K⇒ R2 for some τ0, and x is fresh.
We have the conclusion by:

erase(R) = erase(Λα.λk .R1 α (λx .R2 α (λy .let !z = x in z y α k)))
= λk .erase(R1) (λx .erase(R2) (λy .(λz .z y k) x ))

Z=⇒∗βvηv
λk .L e1 M (λx .L e2 M (λy .(λz .z y k) x )) (by the IHs)

Z=⇒βv
λk .L e1 M (λx .L e2 M (λy .x y k))

= L e1 e2 M .

Case (C TAbs): We are given JΘ ` e : ∀β.τ ′K ⇒ Λα.λk .νβ.R′ α (λx .k Λ◦〈β, x 〉) for some β, α, τ ′, k , x , and R′.
By inversion, JΘ, β ` e : τ ′K⇒ R′. We have the conclusion by:

erase(R) = erase(Λα.λk .νβ.R′ α (λx .k Λ◦〈β, x 〉))
= λk .erase(R′) (λx .k x )

Z=⇒∗βvηv
λk .L e M (λx .k x ) (by the IH)

Z=⇒ηv λk .L e M k
Z=⇒ηv L e M (note that e is a value) .
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Case (C TApp): We are given JΘ ` e : τ2[τ1/β]K ⇒ Λα.λk .R′ α (λx .let !y = x in k !(y Jτ1Kv)) for some τ1, τ2, β, α,
k , x , y , and R′. By inversion, JΘ ` e : ∀β.τ2K⇒ R′. We have the conclusion by:

erase(R) = erase(Λα.λk .R′ α (λx .let !y = x in k !(y Jτ1Kv)))
= λk .erase(R′) (λx .(λy .k y) x )

Z=⇒∗βvηv
λk .L e M (λx .(λy .k y) x ) (by the IH)

Z=⇒∗ηv L e M (note that e is a value) .

Definition 31. The function Ψ(w) returns a value in λ∀v , defined as follows:

Ψ(c)
def
= L c : ty→(c) M

Ψ(λx .e)
def
= λx .L e M

We write w ⇒ R if and only if erase(R) Z=⇒∗βvηv
Ψ(w).

Corollary 1 (Meaning preservation of L · M). For any e:

1. if e −→∗F w, then L e M (λx .x )−→∗F Ψ(w); and

2. if L e M (λx .x )−→∗F w ′, then e −→∗F w for some w such that w ′ = Ψ(w).

Proof. By the indifference and simulation properties of L · M, jointly with the equivalence of the small-step and
big-step CBV semantics for λ∀v , all of which have been proven by Plotkin [1].

Lemma 99. If JΘ ` e : τK⇒ R, then R is erasable.

Proof. Straightforward by induction on the derivation of JΘ ` e : τK⇒ R.

Theorem 4 (Meaning preservation of CPS transformation for λ∀v). Suppose that J∅ ` e : τK⇒ R.

1. If e −→∗F w, then R !JτKv (λx .x ) −→∗ R′ for some R′ such that w ⇒ R′.

2. If R !JτKv (λx .x ) −→∗ R′, then e −→∗F w for some w such that w ⇒ R′.

Proof. 1. By Corollary 1, L e M (λx .x )−→∗F Ψ(w). By Lemmas 98 and 46,

erase(R) (λx .x ) Z=⇒∗βvηv L e M (λx .x ) .

By Lemma 95, ∅ ` R : ∀α.(!JτKv ( α) ( α for any α (note that ∅ ` !JτKv by Lemmas 89 and 84).
Thus, ∅ ` R !JτKv (λx .x ) : !JτKv. Further, we can find R erasable by Lemma 99. Thus, erase(R !JτKv (λx .x )) =
erase(R) (λx .x ) does not get stuck by Lemma 83. By Lemma 63, there exists some e ′ such that erase(R) (λx .x )−→∗F
e ′ and e ′ Z=⇒∗βvηv

Ψ(w). Since erase(R) (λx .x ) does not get stuck, e ′ does not either. Thus, by Lemma 64, there
exists some w ′ such that e ′−→∗F w ′ and w ′ Z=⇒∗βvηv

Ψ(w). That is, erase(R) (λx .x )−→∗F w ′ and w ′ Z=⇒∗βvηv
Ψ(w).

Since R is erasable, Theorem 2 implies R !JτKv (λx .x ) −→∗ R′ for some R′ such that erase(R′) = w ′. Since
erase(R′) = w ′ Z=⇒∗βvηv

Ψ(w), we have w ⇒ R′.

2. We can find R erasable by Lemma 99. Thus, Theorem 2 implies erase(R) (λx .x ) = erase(R !JτKv (λx .x ))−→∗F
erase(R′). Note that erase(R′) is a value. By Lemmas 98 and 46, erase(R) (λx .x ) Z=⇒∗βvηv

L e M (λx .x ). By
Lemma 53, there exists some e ′ such that L e M (λx .x ) −→∗F e ′ and erase(R′) Z=⇒∗βvηv

e ′. Since erase(R′) is a
value, e ′ = w ′ for some w ′ by Lemma 54. Thus, L e M (λx .x ) −→∗F w ′. By Corollary 1, e −→∗F w for some w
such that w ′ = Ψ(w). Since erase(R′) Z=⇒∗βvηv

e ′ = w ′ = Ψ(w), we have w ⇒ R′.
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3.5 Parametricity and Soundness of the Logical Relation with respect to Contextual
Equivalence

Lemma 100. If ` ∆, then ω∆ ≤ ∆.

Proof. Straightforward by induction on ∆.

Lemma 101. If ` ∆, then ∆ + ω∆ = ∆.

Proof. Straightforward by induction on ∆.

Lemma 102. If ∆1⊥∆2, then ω(∆1 + ∆2) = ω∆1 = ω∆2.

Proof. Straightforward by induction on ∆1.

Lemma 103. If ∆1⊥∆2, then ∆1 ≤ ∆1 + ∆2 and ∆2 ≤ ∆1 + ∆2.

Proof. Straightforward by induction on ∆1.

Lemma 104. If ∆1 ≤ ∆2 and ∆2⊥∆, then ∆1⊥∆ and, further, ∆1 + ∆ ≤ ∆2 + ∆.

Proof. It suffices to show that, for any π1, π2, and π, if π1 ≤ π2 and π2+π 6= ω, then π1+π 6= ω and π1+π ≤ π2+π.
To show the former, suppose that π1 + π = ω. Since π1 ≤ π2, there exists some π′ such that π1 + π′ = π2.

Since π2 + π 6= ω, we have π1 + π′ + π 6= ω. Since π1 + π = ω, we have ω + π′ 6= ω with Lemma 1. This is
contradictory with the definition of uses. Thus, we have π1 + π 6= ω.

Furthermore, since π1 + π′ = π2 for some π′, we have π1 + π ≤ π2 + π.

Lemma 105. For any n, ∆1, ∆2, and ρ such that dom(∆1) = dom(∆2), ` (n, ∆1, ρ) if and only if ` (n, ∆2, ρ).
In particular, for any W , `W if and only if ` ωW .

Proof. It is straightforward to show the first property. The second property is shown by the first one and Lemma 9.

Lemma 106. For any ρ1, ρ2, and ρ3,

ρ1 ◦ (ρ2 ◦ ρ3) = (ρ1 ◦ ρ2) ◦ ρ3 .

Proof. By:
ρ1 ◦ (ρ2 ◦ ρ3) = ρ1 ] ρ1(ρ2 ] ρ2(ρ3))

= ρ1 ] ρ1(ρ2) ] ρ1(ρ2(ρ3))
= ρ1 ] ρ1(ρ2) ] (ρ1 ] ρ1(ρ2))(ρ3)
= (ρ1 ◦ ρ2) ] (ρ1 ◦ ρ2)(ρ3)
= (ρ1 ◦ ρ2) ◦ ρ3 .

Lemma 107. ∆ Ï ∆ for any ∆.

Proof. Because ∆ + ω∆ = ∆ by Lemma 101.

Lemma 108. If ∆1 Ï ∆2, then ∆1,∆ Ï ∆2,∆.

Proof. Since ∆1 Ï ∆2, there exists some ∆′1 and ∆′2 such that ∆1 = (∆2 +∆′1),∆′2. By Lemma 101, ∆+ω∆ = ∆.
Thus, ∆1,∆ = (∆2 + ∆′1),∆′2,∆ = ((∆2,∆) + (∆′1, ω∆)),∆′2. This means that ∆1,∆ Ï ∆2,∆ holds.

Lemma 109. If ∆1 Ï ∆2 and ∆2 Ï ∆3, then ∆1 Ï ∆3.

Proof. Since ∆1 Ï ∆2, there exist some ∆′1 and ∆′2 such that ∆1 = (∆2 + ∆′1),∆′2. Since ∆2 Ï ∆3, there exist
some ∆′′1 and ∆′′2 such that ∆2 = (∆3 + ∆′′1),∆′′2 . Thus, we have

∆1 = (∆2 + ∆′1),∆′2 = (((∆3 + ∆′′1),∆′′2) + ∆′1),∆′2 .

Since ((∆3 + ∆′′1),∆′′2)⊥∆′1, there exist some ∆′11 and ∆′12 such that
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• ∆′1 = ∆′11,∆
′
12 and

• ((∆3 + ∆′′1),∆′′2) + ∆′1 = (∆3 + ∆′′1 + ∆′11), (∆′′2 + ∆′12).

We also have

(((∆3 + ∆′′1),∆′′2) + ∆′1),∆′2 = ((∆3 + ∆′′1 + ∆′11), (∆′′2 + ∆′12)),∆′2 = (∆3 + (∆′′1 + ∆′11)), (∆′′2 + ∆′12),∆′2 .

Thus, we have ∆1 Ï ∆3.

Lemma 110. If W1 wW2 and W2 wW3, then W1 wW3.

Proof. W1.n ≤ W3.n and `W1 and `W3 hold obviously. Since W1 wW2, there exists some ρ12 such that

• W1.∆, †(ρ12) Ï W2.∆,

• W1.ρ = ρ12 ◦W2.ρ, and

• W2.∆ � ρ12.

Since W2 wW3, there exists some ρ23 such that

• W2.∆, †(ρ23) Ï W3.∆,

• W2.ρ = ρ23 ◦W3.ρ, and

• W3.∆ � ρ23.

Let ρ123 = ρ12 ◦ ρ23. We have the conclusion by the following.

• Since W1.ρ = ρ12 ◦W2.ρ and W2.ρ = ρ23 ◦W3.ρ, we have W1.ρ = ρ123 ◦W3.ρ by Lemma 106.

• By Lemmas 108 and 109, W1.∆, †(ρ123) = W1.∆, †(ρ12), †(ρ23) Ï W2.∆, †(ρ23) Ï W3.∆

• We show that W3.∆ � ρ123. Let α ∈ ftv(ρ123|dom(W3.∆)) ∩ dom(W3.∆).

We first show that α ∈ dom(W2.∆). Since W2.∆, †(ρ23) Ï W3.∆ and α ∈ dom(W3.∆), we have α ∈
dom(W2.∆) ∪ dom(ρ23). To show α ∈ dom(W2.∆), it suffices to prove that α 6∈ dom(ρ23). ` W1 implies
dom(W1.∆)# dom(W1.ρ). We have α ∈ dom(W1.∆) since α ∈ ftv(ρ123|dom(W3.∆)) and W1.ρ = ρ123 ◦W3.ρ
and `W1. Thus, α 6∈ dom(W1.ρ) ⊇ dom(ρ23).

Next, we show that α ∈ ftv(ρ12|dom(W2.∆)) ∪ ftv(ρ23|dom(W3.∆)). Since α ∈ ftv(ρ123|dom(W3.∆)), we can find
that α ∈ ftv(ρ12|dom(W3.∆)) or α ∈ ftv(ρ12(ρ23)|dom(W3.∆)).

Case α ∈ ftv(ρ12|dom(W3.∆)): Since W2.∆, †(ρ23) Ï W3.∆, we have dom(W3.∆) ⊆ dom(W2.∆) ∪ dom(ρ23).
Thus, α ∈ ftv(ρ12|dom(W2.∆)∪ dom(ρ23)). Since W1.ρ = ρ12 ◦W2.ρ = ρ12 ◦(ρ23 ◦W3.ρ), we have dom(ρ12)#
dom(ρ23). Thus, α ∈ ftv(ρ12|dom(W2.∆)).

Case α ∈ ftv(ρ12(ρ23)|dom(W3.∆)): We can find α ∈ ftv(ρ23|dom(W3.∆)) or α ∈ ftv(ρ12|ftv(ρ23|dom(W3.∆))).

Case α ∈ ftv(ρ23|dom(W3.∆)): It is what we have to prove.

Case α ∈ ftv(ρ12|ftv(ρ23|dom(W3.∆))): Since ` W2, we have ftv(ρ23|dom(W3.∆)) ⊆ ftv(ρ23) ⊆ dom(W2.∆).

Thus, α ∈ ftv(ρ12|dom(W2.∆)).

We show that α0 ∈ W3.∆.

If α ∈ ftv(ρ12|dom(W2.∆)), then W2.∆� ρ12 and α ∈ dom(W2.∆) implies α0 ∈ W2.∆. Since W2.∆, †(ρ23) Ï

W3.∆ and α ∈ dom(W3.∆), we have α0 ∈ W3.∆.

Otherwise, if α ∈ ftv(ρ23|dom(W3.∆)), then W3.∆ � ρ23 and α ∈ dom(W3.∆) implies α0 ∈ W3.∆.

Lemma 111. If `W , then W wW .

Proof. Obvious by letting ρ = ∅; note that W .∆ Ï W .∆ by Lemma 107.
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Lemma 112. If W1 wW2, then ωW1 w ωW2.

Proof. Since W1 wW2, there exist some ρ such that

• W1.∆, †(ρ) Ï W2.∆,

• W1.ρ = ρ ◦W2.ρ, and

• W2.∆ � ρ.

Since ωWi = (Wi .n, ω(Wi .∆), Wi .ρ) for i ∈ {1, 2}, W1 wW2 implies:

• ` ωW1 and ` ωW2 by Lemma 105;

• ωW1.n ≤ ωW2.n; and

• ωW1.ρ = ρ ◦ ωW2.ρ

ωW2.∆ � ρ holds obviously.
Thus, it suffices to show that

ω(W1.∆), †(ρ) Ï ω(W2.∆) .

Since (W1.∆, †(ρ)) Ï W2.∆, there exist some ∆ and ∆0 such that W1.∆, †(ρ) = (W2.∆ + ∆),∆0. Since
ω(W1.∆) assigns the use 0 to all the type variables, ω(W1.∆), †(ρ) = ω(W1.∆, †(ρ)) = ω((W2.∆ + ∆),∆0) =
(ω(W2.∆) + ω∆) + ω∆0. Thus, we have the conclusion.

Lemma 113. If `W and (M1,M2) ∈ Atom [W ,A], then M1 = W .ρfst(M1) and M2 = W .ρsnd(M2).

Proof. Since (M1,M2) ∈ Atom [W ,A], we have W .∆ ` M1 : W .ρfst(A) and W .∆ ` M2 : W .ρsnd(A). Since ` W ,
we have dom(W .∆) # dom(W .ρ). Thus, the type variables in dom(W .ρ) do not occur free in M1 and M2, so we
have the conclusion.

Lemma 114. Suppose that W1 wW2.

• For any α, W1.ρfst(α) = W1.ρfst(W2.ρfst(α)) and W1.ρsnd(α) = W1.ρsnd(W2.ρsnd(α)).

• (M1,M2) ∈ Atom [W2,A] implies (M1,M2)W1 ∈ Atom [W1,A].

Proof.

• We show only W1.ρfst(α) = W1.ρfst(W2.ρfst(α)); the other equation is shown similarly.

Obvious if α 6∈ dom(W2.ρ).

Suppose that α ∈ dom(W2.ρ). Since W1 w W2, there exist some ρ such that W1.ρ = ρ ◦W2.ρ. Since α ∈
dom(W2.ρ), we have W1.ρfst(α) = ρfst(W2.ρfst(α)). Since W1 w W2 implies ` W2, we have dom(W2.∆) #
dom(W2.ρ) and W2.∆ `W2.ρfst(α). Thus, W2.ρfst(α) = W2.ρfst(W2.ρfst(α)). Hence

W1.ρfst(α) = ρfst(W2.ρfst(α)) = ρfst(W2.ρfst(W2.ρfst(α))) = W1.ρfst(W2.ρfst(α)) .

• Suppose that (M1,M2) ∈ Atom [W2,A]. We show only W1.∆ `W1.ρfst(M1) : W1.ρfst(A); the other judgment
can be shown similarly.

By definition, W2.∆ ` M1 : W2.ρfst(A). Since W1 wW2, there exists some ρ such that:

– W1.∆, †(ρ) Ï W2.∆;

– W1.ρ = ρ ◦W2.ρ; and

– W2.∆ � ρ.

Since W1.∆, †(ρ) Ï W2.∆, there exist some ∆′1 and ∆′2 such that W1.∆, †(ρ) = (W2.∆ + ∆′1),∆′2. Further,
there exist some ∆21, ∆22, ∆′11, ∆′21, and ∆′22 such that

– W2.∆ = ∆21, ω∆22,
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– ∆′1 = ∆′11, ω∆22,

– ∆′2 = ∆′21, ω∆′22,

– W1.∆ = (∆21 + ∆′11),∆′21, and

– †(ρ) = ω∆22, ω∆′22.

Since †(ρ) = ω∆22, ω∆′22, we can take ρ1 and ρ2 such that

– ρ = ρ1 ] ρ2,

– dom(ρ1) = dom(ω∆22), and

– dom(ρ2) = dom(ω∆′22).

Let ∆211 and ∆212 be typing contexts such that

– ∆21 = ∆211, ω∆212 and

– ∀α ∈ dom(∆211). α1 ∈ ∆211.

Since W2.∆ ` M1 : W2.ρfst(A), we have W2.∆, ω∆′21 ` M1 : W2.ρfst(A) by Lemma 20. Since W2.∆ =
∆21, ω∆22 = ∆211, ω∆212, ω∆22, we have

∆211, ω∆212, ω∆22, ω∆′21 ` M1 : W2.ρfst(A) . (3)

Since W1 wW2 implies `W1, we have ∀α ∈ dom(ρ1). W1.∆ ` ρ1fst(α). Since W1.∆ = (∆21 + ∆′11),∆′21 =
((∆211, ω∆212) + ∆′11),∆′21, we have

∀α ∈ dom(ρ1). ∆211, ω∆212, ω∆′21 ` ρ1fst(α) .

Since W2.∆ � ρ and dom(ρ1) = dom(ω∆22) ⊆ dom(W2.∆), we have ∀α ∈ ftv(ρ1) ∩ dom(W2.∆). α0 ∈
W2.∆. Since

– W2.∆ = ∆211, ω∆212, ω∆22 and

– ∀α ∈ dom(∆211). α1 ∈ ∆211 ⊆W2.∆,

we have ftv(ρ1) ∩ dom(∆211) = ∅. Thus,

∀α ∈ dom(ρ1). ω∆212, ω∆′21 ` ρ1fst(α) . (4)

By Lemma 34 with the judgments (3) and (4), noting dom(ρ1) = dom(ω∆22), we have

∆211, ω∆212, ω∆′21 ` ρ1fst(M1) : ρ1fst(W2.ρfst(A)) .

Since dom(ρ2) = dom(ω∆′22), we have dom(ρ2)#(dom(∆211, ω∆212, ω∆′21)). Thus, noting ∆21 = ∆211, ω∆212,
we have

∆21, ω∆′21 ` ρfst(M1) : ρfst(W2.ρfst(A)) .

Since W1.∆ = (∆21 + ∆′11),∆′21, we have

W1.∆ ` ρfst(M1) : ρfst(W2.ρfst(A))

by Lemma 25. Since (M1,M2) ∈ Atom [W2,A] and `W2 (implied by W1 wW2), we have

W1.∆ ` ρfst(W2.ρfst(M1)) : ρfst(W2.ρfst(A))

by Lemma 113. Since W1.ρ = ρ ◦W2.ρ, we have

W1.∆ `W1.ρfst(M1) : W1.ρfst(A) ,

which is what is required to show.
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Lemma 115. If W1 wW2 and (R1,R2) ∈ W2.ρ[α](IW2), then (R1,R2)W1 ∈ W1.ρ[α](IW1).

Proof. Since W1 wW2, there exists some ρ such that W1.ρ = ρ◦W2.ρ. Let (A1,A2, r) = W2.ρ(α), B1 = ρfst(A1),
and B2 = ρsnd(A2). By definition, W1.ρ(α) = (B1,B2, r). W1 w W2 implies IW1 wIW2. Since (R1,R2) ∈ r(I
W2), monotonicity of r implies (R1,R2)W1

∈ r(IW1). Thus, we have the conclusion.

Lemma 116. Suppose that W1 wW2.

1. If (R1,R2) ∈ RJAKW2, then (R1,R2)W1 ∈ RJAKW1.

2. If (M1,M2) ∈ EJAKW2, then (M1,M2)W1
∈ EJAKW1.

Proof. By induction on A. Note that (R1,R2) ∈ Atom [W2,A] implies (R1,R2)W1
∈ Atom [W1,A] by Lemma 114.

We first show the first property and then the second property by assuming that the first holds.

1. We first consider (R1,R2) ∈ RJAKW2 implies (R1,R2)W1 ∈ RJAKW1. We proceed by case analysis on A.

Case A = ι: Obvious.

Case A = α: Let (R1,R2) ∈ RJαKW2. By definition, (R1,R2) ∈ W2.ρ[α](IW2). By Lemma 115, we have
(R1,R2)W1

∈ W1.ρ[α](IW1). Thus, (R1,R2)W1
∈ RJαKW1.

Case A = B ( C : Let (R1,R2) ∈ RJB ( C KW2. It suffices to show that (R1,R2)W1 ∈ RJB ( C KW1,
that is, for any W ′ wW1, (W ′

1,W
′
2) cW ′, R′1, and R′2 such that

• W ′
1 wW1 and

• (R′1,R
′
2) ∈ RJBKW ′

2,

it suffices to show that
(R1 R′1,R2 R′2)W ′ ∈ EJC KW ′ .

Since W ′ w W1 w W2 and W ′
1 w W1 w W2, we have W ′ w W2 and W ′

1 w W2 by Lemma 110. Since
further

• (R1,R2) ∈ RJB ( C KW2,

• (W ′
1,W

′
2) cW ′, and

• (R′1,R
′
2) ∈ RJBKW ′

2,

we have the conclusion.

Case A = ∀α.B : Let (R1,R2) ∈ RJ∀α.BKW2. It suffices to show that (R1,R2)W1
∈ RJ∀α.BKW1, that is,

for any W ′ wW1, and C1, C2, and r such that ωW ′ ` (C1,C2, r) and {α}#ωW ′, it suffices to show that

(R1 C1,R2 C2)ωW ′ ∈ EJBK {α Z⇒ (C1,C2, r)} ] ωW ′ .

Since W ′ wW1 and W1 wW2, we have W ′ wW2 by Lemma 110. Since further

• (R1,R2) ∈ RJ∀α.BKW2,

• ωW ′ ` (C1,C2, r), and

• {α}#ωW ′,

we have the conclusion.

Case A = !B : By the IH with Lemma 112.

2. Let (M1,M2) ∈ EJAKW2. We show (M1,M2)W1
∈ EJAKW1. Suppose that W ′ wW1 and W ′.ρfst(W1.ρfst(M1)) −→n

R1 for some W ′, n < W ′.n, and R1. Then, it suffices to show that there exist some R2 such that

• W ′.ρsnd(W1.ρsnd(M2)) −→∗ R2 and

• (R1,R2) ∈ EJAK (W ′ − n)

Since W ′ w W1, we have W ′.ρfst(W1.ρfst(M1)) = W ′.ρfst(M1) and W ′.ρsnd(W1.ρsnd(M1)) = W ′.ρsnd(M1)
by Lemma 114. Since W1 w W2, we have W ′ w W2 by Lemma 110. Thus, since (M1,M2) ∈ EJAKW2, we
have the conclusion.
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Lemma 117. For any W and ∆, if `W and dom(∆)#W , then (W .n, (W .∆,∆), W .ρ) wW .

Proof. Obvious because W .∆,∆ Ï W .∆ and ` (W .n, (W .∆,∆), W .ρ) from `W and dom(∆)#W .

Lemma 118. For any W and ∆, if `W and W .∆ ≤ ∆, then (W .n, ∆, W .ρ) wW .

Proof. Obvious because ∆ Ï W .∆ from W .∆ ≤ ∆, and ` (W .n, ∆, W .ρ) from `W with Lemma 14.

Lemma 119. If W1 wW2 and (W2, ς) ∈ GJΓK, then (W1,W1.ρ(ς)) ∈ GJΓK. Furthermore, if W1.ρ = W2.ρ, then
ς = W1.ρ(ς).

Proof. Since (W2, ς) ∈ GJΓK, we have

• `W2,

• Γ � W2.ρ, and

• there exist some ∆ and
∏

x ∈ dom=1(Γ) ∆x such that:

– W2.∆ = ∆ +
∑

x∈dom=1(Γ) ∆x ;

– for any απ ∈ Γ, ∃π′ ≥ π. απ′ ∈ ∆ or π = 0 ∧ α ∈ dom(W2.ρ);

– for any x :1 A ∈ Γ, (ςfst(x ), ςsnd(x )) ∈ RJAK (W2.n, ∆x , W2.ρ); and

– for any x :ω A ∈ Γ, (ςfst(x ), ςsnd(x )) ∈ RJAKωW2.

Since W1 wW2, there exists some ρ such that

• W1.ρ = ρ ◦W2.ρ,

• W1.∆, †(ρ) Ï W2.∆, and

• W2.∆ � ρ.

Thus, there exist some ∆′ and ∆′0 such that W1.∆, †(ρ) = (W2.∆ + ∆′),∆′0. Since W2.∆ = ∆ +
∑

x∈dom=1(Γ) ∆x ,

there exist some ∆1, ∆2,
∏

x ∈ dom=1(Γ) ∆1,x , ∆′1, ∆′01, and ∆′02 such that

• ∆ = ∆1, ω∆2,

• ∆x = ∆1,x , ω∆2 for any x ∈ dom=1(Γ),

• ∆′ = ∆′1, ω∆2,

• ∆′0 = ∆′01, ω∆′02,

• W1.∆ = (∆1 +
∑

x∈dom=1(Γ) ∆1,x + ∆′1),∆′01, and

• †(ρ) = ω∆2, ω∆′02.

Let ∆3 = (∆1 + ∆′1),∆′01 and ∆3,x = ∆1,x , ω∆′01 for x ∈ dom=1(Γ). Further, let ς1 = W1.ρ(ς).
We show (W1, ς1) ∈ GJΓK in what follows.

• We have `W1 from W1 wW2.

• We have W1.∆ = ∆3 +
∑

x∈dom=1(Γ) ∆3,x .

• We show that Γ � W1.ρ, i.e., let α ∈ ftv(W1.ρ|dom(Γ)) ∩ dom(Γ) and then show that α0 ∈ Γ.

We first show that α ∈ dom(W2.∆) by contradiction. Suppose that α 6∈ dom(W2.∆). Since α ∈
dom(Γ), (W2, ς) ∈ GJΓK implies α ∈ dom(W2.ρ). ` W1 and dom(W1.ρ) = dom(ρ) ∪ dom(W2.ρ) im-
plies dom(W1.∆) # (dom(ρ) ∪ dom(W2.ρ)). `W1 and α ∈ ftv(W1.ρ) implies α ∈ dom(W1.∆). Thus, there
is a contradiction.

Next, we show that α ∈ ftv(ρ|dom(W2.∆)) ∪ ftv(W2.ρ|dom(Γ)). Since α ∈ ftv(W1.ρ|dom(Γ)) and W1.ρ =
ρ ◦W2.ρ, we have α ∈ ftv(ρ|dom(Γ)) ∪ ftv(ρ(W2.ρ)|dom(Γ)).
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Case α ∈ ftv(ρ|dom(Γ)): (W2, ς) ∈ GJΓK implies ∀α ∈ dom(Γ). α ∈ dom(W2.∆) ∪ dom(W2.ρ). Thus,
α ∈ ftv(ρ|dom(W2.∆)∪ dom(W2.ρ)). Since W1.ρ = ρ ◦W2.ρ is well defined, we have dom(ρ) # dom(W2.ρ).
Thus, α ∈ ftv(ρ|dom(W2.∆)).

Case α ∈ ftv(ρ(W2.ρ)|dom(Γ)): We have α ∈ ftv(W2.ρ|dom(Γ)) ∪ ftv(ρ|ftv(W2.ρ|dom(Γ))).

Case α ∈ ftv(W2.ρ|dom(Γ)): We have what is required to prove.

Case α ∈ ftv(ρ|ftv(W2.ρ|dom(Γ))): `W2 implies ftv(W2.ρ) ⊆ dom(W2.∆). Thus, α ∈ ftv(ρ|dom(W2.∆)).

We show that α0 ∈ Γ.

If α ∈ ftv(ρ|dom(W2.∆)), then W2.∆ � ρ and α ∈ dom(W2.∆) implies α0 ∈ W2.∆. ` W2 implies α 6∈
dom(W2.ρ). Let απ ∈ Γ. (W2, ς) ∈ GJΓK implies απ

′ ∈ ∆ for some π′ ≥ π. Since ∆ ≤ W2.∆ and
α0 ∈ W2.∆, we have π′ = 0. Since 0 = π′ ≥ π, we have π = 0.

Otherwise, if α ∈ ftv(W2.ρ|dom(Γ)), then Γ � W2.ρ and dom(Γ) implies α0 ∈ Γ.

• For απ ∈ Γ, suppose that ∀π′ ≥ π. απ′ 6∈ ∆3. We show that π = 0 ∧ α ∈ dom(W1.ρ).

Since απ ∈ Γ, we can perform case analysis on ∃π′ ≥ π. απ′ ∈ ∆ or π = 0 ∧ α ∈ dom(W2.ρ) (which is
implied by (W2, ς) ∈ GJΓK).

Case ∃π′ ≥ π. απ′ ∈ ∆: Since ∆ = ∆1, ω∆2, we proceed by case analysis on απ
′ ∈ ∆1 or απ

′ ∈ ω∆2.

Case απ
′ ∈ ∆1: Since ∆3 = (∆1 + ∆′1),∆′01, we have απ

′′ ∈ ∆3 for some π′′ ≥ π′. Since π′ ≥ π, we have
π′′ ≥ π. However, we have assumed ∀π′ ≥ π. απ′ 6∈ ∆3. Thus, there is a contradiction.

Case απ
′ ∈ ω∆2: Since π′ ≥ π, We have π′ = π = 0. Since †(ρ) = ω∆2, ω∆′02, we have α ∈ dom(ρ).

Since W1.ρ = ρ ◦W2.ρ, we have α ∈ dom(W1.ρ).

Case π = 0 ∧ α ∈ dom(W2.ρ): Since W1.ρ = ρ ◦W2.ρ, we have α ∈ dom(W1.ρ).

• Let x :1 A ∈ Γ.

We first show that (W1.n, ∆3,x , W1.ρ) w (W2.n, ∆x , W2.ρ).

– ` (W1.n, ∆3,x , W1.ρ) and ` (W2.n, ∆x , W2.ρ) by Lemma 105 with `W1 and `W2 and dom(W1.∆) =
dom(∆3,x ) and dom(W2.∆) = dom(∆x ).

– We have W1.n ≤ W2.n by W1 wW2.

– We have ∆3,x , †(ρ) = ∆1,x , ω∆′01, ω∆2, ω∆′02 Ï ∆1,x , ω∆2 = ∆x .

– We have W1.ρ = ρ ◦W2.ρ.

– We show that ∆x � ρ. Let α ∈ ftv(ρ|dom(∆x )) ∩ dom(∆x ). Since dom(∆x ) = dom(W2.∆), we have
α0 ∈ W2.∆ by W2.∆ � ρ. Since ∆x ≤W2.∆, we have α0 ∈ ∆x .

Thus, since (ςfst(x ), ςsnd(x )) ∈ RJAK (W2.n, ∆x , W2.ρ), we have

(ςfst(x ), ςsnd(x ))W1
∈ RJAK (W1.n, ∆3,x , W1.ρ)

by Lemma 116. Thus,
(ς1fst(x ), ς1snd(x )) ∈ RJAK (W1.n, ∆3,x , W1.ρ) .

• Let x :ω A ∈ Γ. We have had (ςfst(x ), ςsnd(x )) ∈ RJAKωW2. Since ωW1 w ωW2 by Lemma 112, we have

(ςfst(x ), ςsnd(x ))ωW1
∈ RJAKωW1

by Lemma 116. Thus,
(ς1fst(x ), ς1snd(x )) ∈ RJAKωW1 .

If W1.ρ = W2.ρ, then ς = W1.ρ(ς) by Lemma 113.

Lemma 120. If Γ ` x : A, then Γ ` x � x : A.
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Proof. Let (W , ς) ∈ GJΓK and W ′ wW such that 0 < W ′.n. Then, it suffices to show that

(ςfst(x ), ςsnd(x ))W ′ ∈ RJAKW ′ .

By Lemma 119, (W ′,W ′.ρ(ς)) ∈ GJΓK. Since Γ ` x : A, we have x :π A ∈ Γ for some π 6= 0. By case analysis on
π.

Case π = 0: Contradictory.

Case π = 1: Since (W ′,W ′.ρ(ς)) ∈ GJΓK, we have (ςfst(x ), ςsnd(x ))W ′ ∈ RJAK (W ′.n, ∆, W ′.ρ) for some ∆ ≤
W ′.∆. By Lemmas 118, 116, and 113, we have the conclusion.

Case π = ω: Since (W ′,W ′.ρ(ς)) ∈ GJΓK, we have (ςfst(x ), ςsnd(x ))W ′ ∈ RJAKωW ′. We also have W w ωW by
Lemmas 100 and 118. Thus, we have the conclusion by Lemmas 116 and 113.

Lemma 121. If Γ ` c : ty(c), then Γ ` να1. c � να2. c : ty(c) for any α1 and α2.

Proof. By structural induction on ty(c). Let (W , ς) ∈ GJΓK and W ′ wW such that 0 < W ′.n. It suffices to show
that

(να1. c, να2. c) ∈ RJty(c)KW ′ .

If ty(c) = ι for some ι, we have (να1. c, να2. c) ∈ RJιKW ′ by definition. Thus, we have the conclusion.
If ty(c) = ι( A for some ι and A, then it suffices to show that, for any W ′′, W1, W2, R′1, and R′2, if

• W ′′ wW ′,

• (W1,W2) cW ′′,

• W1 wW ′, and

• (R′1,R
′
2) ∈ RJιKW2,

then
((να1. c) R′1, (να2. c) R′2) ∈ EJAKW ′′ .

Since (R′1,R
′
2) ∈ RJιKW2, we have R′1 = νβ1. c

′ and R′2 = νβ2. c
′ for some β1, β2, and c′ such that ty(c′) = ι. By

Assumption 1, for i ∈ {1, 2}, there exists some ni such that (ναi . c) R′i −→ni ναi . νβi . ζ(c, c′), and Γ ` ζ(c, c′) : A.
Let W ′′′ wW ′′ and n1 < W ′′′.n. Then it suffices to show that

(να1. νβ1. ζ(c, c′), να2. νβ2. ζ(c, c′)) ∈ RJAK (W ′′′ − n1) .

By the IH,
Γ ` να1. νβ1. ζ(c, c′) � να2. νβ2. ζ(c, c′) : A .

Since (W , ς) ∈ GJΓK and W ′′′ − n1 w W ′′′ w W ′′ w W ′ w W , we have (W ′′′ − n1,W
′′′.ρ(ς)) ∈ GJΓK by

Lemmas 110 and 119. Thus, we have

(να1. νβ1. ζ(c, c′), να2. νβ2. ζ(c, c′)) ∈ EJAK (W ′′′ − n1) .

Since n1 < W ′′′.n, we have 0 < W ′′′.n− n1. Thus, we have the conclusion.

Lemma 122. If (W , ς) ∈ GJΓK and (R1,R2) ∈ RJAK (W .n, ∆, W .ρ) and W .∆⊥∆, then

((W .n, W .∆ + ∆, W .ρ), ς ] {x Z⇒ R1,R2}) ∈ GJΓ, x :1 AK .

Proof. (W , ς) ∈ GJΓK implies `W . By Lemma 102, dom(W .∆) = dom(∆). Thus, by Lemma 105, ` (W .n, W .∆+
∆, W .ρ). The remaining part is obvious by definition.

Lemma 123. If Γ, x :1 A ` M1 � M2 : B, then Γ ` λx .M1 � λx .M2 : A( B.
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Proof. Let (W , ς) ∈ GJΓK. By definition and Lemma 114, it suffices to show that, for any W ′, W ′′, W1, W2, R′1,
and R′2, if

• W ′ wW ,

• 0 < W ′.n,

• W ′′ wW ′,

• (W1,W2) cW ′′,

• W1 wW ′, and

• (R′1,R
′
2) ∈ RJAKW2,

then
(ςfst(λx .M1) R′1, ςsnd(λx .M2) R′2)W ′′ ∈ EJBKW ′′ .

Let W ′′′ wW ′′ such that W ′′′.ρfst(ςfst(λx .M1) R′1) −→n R1 for some n < W ′′′.n and R1. Then, it suffices to show
that there exists some R′2 such that

• W ′′′.ρsnd(ςsnd(λx .M2) R′2) −→∗ R2 and

• (R1,R2) ∈ RJBK (W ′′′ − n).

Since (W , ς) ∈ GJΓK and W1 wW ′ wW and W1.ρ = W ′′.ρ, we have (W1,W
′′.ρ(ς)) ∈ GJΓK by Lemmas 110

and 119. Since (W1,W2) cW ′′ and (R′1,R
′
2) ∈ RJAKW2, we have (W ′′,W ′′.ρ(ς)]{x Z⇒ R′1,R

′
2}) ∈ GJΓ, x :1 AK

by Lemma 122. Since Γ, x :1 A ` M1 � M2 : B , we have

(ςfst(M1[R′1/x ]), ςsnd(M2[R′2/x ]))W ′′ ∈ EJBKW ′′ .

Since W ′′′.ρfst(ςfst(λx .M1) R′1) −→n R1, we can find W ′′′.ρfst(ςfst(M1[R′1/x ])) −→n1 R1 for some n1 < n.
Since W ′′′ wW ′′ and n1 < n < W ′′′.n, there exists some R2 such that

• W ′′′.ρsnd(ςsnd(M2[R′2/x ])) −→∗ R2 and

• (R1,R2) ∈ RJBK (W ′′′ − n1).

We have W ′′′.ρsnd(ςsnd(λx .M2) R′2) −→ W ′′′.ρsnd(ςsnd(M2[R′2/x ])) −→∗ R2. Since W ′′′ − n w W ′′′ − n1, we have
(R1,R2) ∈ RJBK (W ′′′ − n) by Lemmas 116 and 113.

Lemma 124. If (W , ς) ∈ GJΓ1 + Γ2K, then there exist some W1 and W2 such that

• (W1, ς) ∈ GJΓ1K,

• (W2, ς) ∈ GJΓ2K, and

• (W1,W2) cW .

Proof. Since (W , ς) ∈ GJΓ1 + Γ2K, we have

• `W ,

• Γ1 + Γ2 � W .ρ, and

• there exist some ∆′ and
∏

x ∈ dom=1(Γ1+Γ2) ∆x such that

– W .∆ = ∆′ +
∑

x∈dom=1(Γ1+Γ2) ∆x ,

– ∀απ ∈ Γ. (∃π′ ≥ π. απ′ ∈ ∆′) ∨ (π = 0 ∧ α ∈ dom(W .ρ)),

– ∀ x :1 A ∈ Γ. (ςfst(x ), ςsnd(x )) ∈ RJAK (W .n, ∆x , W .ρ), and

– ∀ x :ω A ∈ Γ. (ςfst(x ), ςsnd(x )) ∈ RJAKωW .
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For i ∈ {1, 2} and x ∈ dom=1(Γi), let ∆i,x = ∆x if x ∈ dom=1(Γ1 + Γ2), and otherwise ∆i,x = ω∆′.
We also build ∆′i for i ∈ {1, 2} as follows:

• if α1 ∈ ∆′ and α1 ∈ Γi , then α1 ∈ ∆′i ;

• if α1 ∈ ∆′ and α0 ∈ Γi and α1 ∈ Γ2−i , then α0 ∈ ∆′i ;

• if α1 ∈ ∆′ and α0 ∈ Γ1 + Γ2 ∨ α 6∈ dom(Γ1 + Γ2), then α0 ∈ ∆′1 and α1 ∈ ∆′2; and

• if α0 ∈ ∆′, then α0 ∈ ∆′i .

Then, we can find ∆′i⊥
∑

x∈dom=1(Γi )
∆i,x for i ∈ {1, 2}: for any α, if α1 ∈ ∆′i , then α1 ∈ ∆′; since

∆′⊥
∑

x∈dom=1(Γ1+Γ2) ∆x , we have α0 ∈ ∆x .

Let i ∈ {1, 2} and Wi = (W .n, ∆′i +
∑

x∈dom=1(Γi )
∆i,x , W .ρ). We show that (W1,W2) c W , i.e., W1.∆ +

W2.∆ = W .∆. First, we have the following.

• ∆′ = ∆′1 + ∆′2. If α0 ∈ ∆′, then α0 ∈ ∆′1 and α0 ∈ ∆′2; If α1 ∈ ∆′, then only either of ∆′1 and ∆′2 has α1.

• We have

ω∆′ +
∑

x∈dom=1(Γ1+Γ2) ∆x

= ω∆′ +
∑

x∈dom=1(Γ1)∩ dom=1(Γ1+Γ2) ∆1,x +
∑

x∈dom=1(Γ2)∩ dom=1(Γ1+Γ2) ∆2,x

= ω∆′ +
∑

x∈dom=1(Γ1) ∆1,x +
∑

x∈dom=1(Γ2) ∆2,x

Thus,
W .∆ = ∆′ +

∑
x∈dom=1(Γ1+Γ2) ∆x

= ∆′1 + ∆′2 + ω∆′ +
∑

x∈dom=1(Γ1+Γ2) ∆x

= ∆′1 + ∆′2 + ω∆′ +
∑

x∈dom=1(Γ1) ∆1,x +
∑

x∈dom=1(Γ2) ∆2,x

= ∆′1 +
∑

x∈dom=1(Γ1) ∆1,x + ∆′2 +
∑

x∈dom=1(Γ2) ∆2,x

= W1.∆ + W2.∆ .

Finally, we show that (Wi , ς) ∈ GJΓiK.

• We have `Wi by Lemma 105 with `W and dom(W .∆) = dom(Wi .∆) (which is shown by Lemma 102).

• We show that Γi � Wi .ρ. Let α ∈ ftv(Wi .ρ|dom(Γi )) ∩ dom(Γi). Since Wi .ρ = W .ρ and dom(Γi) =
dom(Γ1 + Γ2), Γ1 + Γ2 � W .ρ implies α0 ∈ Γ1 + Γ2. Thus, α0 ∈ Γi .

• Let α1 ∈ Γi . Since α1 ∈ Γ1 + Γ2, we have α1 ∈ ∆′ from (W , ς) ∈ GJΓ1 + Γ2K. By the definition of ∆′i ,
α1 ∈ ∆′i .

• Let α0 ∈ Γi .

If α ∈ dom(∆′), then α ∈ dom(∆′i). Thus, there exists some π′ ≥ π such that απ
′ ∈ ∆′i .

Otherwise, if α 6∈ dom(∆′), then, since (W , ς) ∈ GJΓ1 + Γ2K, α ∈ dom(W .ρ) = dom(Wi .ρ).

• Let x :1 A ∈ Γi . We show (ςfst(x ), ςsnd(x )) ∈ RJAK (W .n, ∆i,x , W .ρ).

If x :1 A ∈ Γ1 + Γ2, then ∆i,x = ∆x . Thus, (ςfst(x ), ςsnd(x )) ∈ RJAK (W .n, ∆i,x , W .ρ) from (W , ς) ∈
GJΓ1 + Γ2K.

Otherwise, if x :ω A ∈ Γ1 + Γ2, then (ςfst(x ), ςsnd(x )) ∈ RJAKωW from (W , ς) ∈ GJΓ1 + Γ2K. Since
ω∆′ = ∆i,x by definition, we have the conclusion.

• Let x :ω A ∈ Γi . Since ωW1 = ωW2 = ωW , it suffices to show that (ςfst(x ), ςsnd(x )) ∈ RJAKωW , which is
shown by (W , ς) ∈ GJΓ1 + Γ2K.

Lemma 125. If Γ1 ` M11 � M21 : A ( B and Γ2 ` M12 � M22 : A and Γ1⊥Γ2, then Γ1 + Γ2 ` M11 M12 �
M21 M22 : B.
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Proof. Let (W , ς) ∈ GJΓ1 + Γ2K. By the definition and Lemma 114, suppose that

• W ′ wW ,

• n < W ′.n, and

• W ′.ρfst(ςfst(M11 M12)) −→n R1

for some W ′, n, and R1, and then it suffices to show that there exists some R2 such that

• W ′.ρsnd(ςsnd(M21 M22)) −→∗ R2 and

• (R1,R2) ∈ RJBK (W ′ − n).

By Lemma 119, (W ′,W ′.ρ(ς)) ∈ GJΓ1 + Γ2K. By Lemma 124, there exist some W1 and W2 such that

• (W1,W
′.ρ(ς)) ∈ GJΓ1K,

• (W2,W
′.ρ(ς)) ∈ GJΓ2K, and

• (W1,W2) cW ′.

Since Γ1 ` M11 � M21 : A( B and W1.ρ = W ′.ρ (from (W1,W2) cW ′), we have

(ςfst(M11), ςsnd(M21))W1
∈ EJA( BKW1 .

Since Γ2 ` M12 � M22 : A and W2.ρ = W ′.ρ, we have

(ςfst(M12), ςsnd(M22))W2
∈ EJAKW2 .

Since W ′.ρfst(ςfst(M11 M12)) −→n R1, we can find W1.ρfst(ςfst(M11)) −→n1 R11 and W2.ρfst(ςfst(M12)) −→n2

R12 for some R11, R12, n1, and n2 such that n1 + n2 < n; note that W1.ρ = W2.ρ = W ′.ρ. Since W1.n = W2.n = n,
there exist some R21 and R22 such that

• W1.ρsnd(ςsnd(M21)) −→∗ R21,

• W2.ρsnd(ςsnd(M22)) −→∗ R22,

• (R11,R21) ∈ RJA( BK (W1 − n1), and

• (R12,R22) ∈ RJAK (W2 − n2).

Since W2 − n1 − n2 w W2 − n2, we have (R12,R22) ∈ RJAK (W2 − n1 − n2) by Lemmas 116 and 113. Since
(W1,W2) cW ′, we have (W1 − n1 − n2,W2 − n1 − n2) cW ′ − n1 − n2. Further, by Lemma 118, W ′ − n1 − n2 w
W1 − n1 − n2. Since W1 − n1 − n2 wW1 − n1, we have W ′ − n1 − n2 wW1 − n1 by Lemma 110. Now, we have

• (R11,R21) ∈ RJA( BK (W1 − n1),

• (R12,R22) ∈ RJAK (W2 − n1 − n2),

• W ′ − n1 − n2 wW1 − n1.

• (W1 − n1 − n2,W2 − n1 − n2) cW ′ − n1 − n2, and

• W1 − n1 − n2 wW1 − n1.

Thus, by the definition of R,
(R11 R12,R21 R22) ∈ EJBKW ′ − n1 − n2 .

Since
W ′.ρfst(ςfst(M11 M12)) −→n1 R11 W ′.ρfst(ςfst(M12))

−→n2 R11 R12

−→n3 R1

for some n3 = n − n1 − n2, there exists some R2 such that
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• R21 R22 −→∗ R2 and

• (R1,R2) ∈ RJBK (W ′ − n).

Note that n3 < W ′.n− n1 − n2. We have

W ′.ρsnd(ςsnd(M21 M22)) −→∗ R21 W ′.ρsnd(ςsnd(M22))
−→∗ R21 R22

−→∗ R2 .

Thus, we have the conclusion.

Lemma 126. If (W , ς) ∈ GJΓK, then (ωW , ς) ∈ GJωΓK.

Proof. By induction on Γ. Note that: since (W , ς) ∈ GJΓK, we have ` W , which implies ` ωW by Lemma 105;
and ωΓ � ωW .ρ.

Case Γ = ∅: Obvious.

Case Γ = Γ′, απ: We have (W , ς) ∈ GJΓ′K. By the IH, (ωW , ς) ∈ GJωΓ′K. By the definition of G, we have
(ωW ).∆ = ∆′ +

∑
x∈dom=1(ωΓ′) ∆′x for some ∆′ and

∏
x ∈ dom=1(ωΓ′) ∆′x .

Then, it suffices to show that, for any α, if α 6∈ dom(∆′), then α ∈ dom(W .ρ).

Suppose that α 6∈ dom(∆′). By Lemmas 12 and 9, α 6∈ dom(W .∆). Since (W , ς) ∈ GJΓ′, απK, we can find
π = 0 (if π 6= 0, then α ∈ dom(W .∆)) and α ∈ dom(W .ρ).

Case Γ = Γ′, x :π A: We have (W , ς) ∈ GJΓ′K. By the IH, (ωW , ς) ∈ GJωΓ′K.
If π = 1 or π = 0, then we have (ωW , ς) ∈ GJωΓ′, x :0 AK = GJω(Γ′, x :π A)K by the definition of G and
(ωW , ς) ∈ GJωΓ′K.
Otherwise, suppose that π = ω. Then, it suffices to show that

(ςfst(x ), ςsnd(x )) ∈ RJAKωωW .

Since (W , ς) ∈ GJΓ′, x :ω AK, we can find (ςfst(x ), ςsnd(x )) ∈ RJAKωW . Since ωωW = ωW by Lemma 5, we
have the conclusion.

Lemma 127. If ` Γ and ωΓ ` M1 � M2 : A, then Γ ` !M1 � !M2 : !A.

Proof. Let (W , ς) ∈ GJΓK. It suffices to show that

(ςfst(!M1), ςsnd(!M2))W ∈ EJ!AKW .

Suppose that

• W ′ wW ,

• n < W ′.n, and

• W ′.ρfst(ςfst(!M1)) −→n R1

for some W ′, n, and R1, and then it suffices to show that there exists some R2 such that

• W ′.ρsnd(ςsnd(!M2)) −→∗ R2 and

• (R1,R2) ∈ RJ!AK (W ′ − n).

Since (W , ς) ∈ GJΓK, Lemmas 119 and 126 imply (ωW ′,W ′.ρ(ς)) ∈ GJωΓK. Since ωΓ ` M1 � M2 : A, we have

(ςfst(M1), ςsnd(M2))W ′ ∈ EJAKωW ′ .

Since W ′.ρfst(ςfst(!M1)) −→n R1 and W ′.ρ = ωW ′.ρ, we can find ωW ′.ρfst(ςfst(M1)) −→n R′1 for some R′1 such
R1 = !R′1. Thus, by the definition of E , there exists some R′2 such that
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• ωW ′.ρsnd(ςsnd(M2)) −→∗ R′2 and

• (R′1,R
′
2) ∈ RJAK (ωW ′ − n).

Let R2 = !R′2. Now, it suffices to show that (!R′1, !R
′
2) ∈ RJ!AK (W ′ − n). By definition, it suffices to show that

(let !x = !R′1 in x , let !x = !R′2 in x ) ∈ EJAKω(W ′ − n) .

Let W ′′ w ω(W ′ − n) and suppose that 1 < W ′′.n. Then, it suffices to show that

(R′1,R
′
2)W ′′ ∈ RJAK (W ′′ − 1) .

Since (R′1,R
′
2) ∈ RJAK (ωW ′ − n) and W ′′ − 1 w W ′′ w ω(W ′ − n) = ωW ′ − n, we have the conclusion by

Lemmas 110 and 116.

Lemma 128. If Γ1 ` M11 � M21 : !B and Γ2, x :ω B ` M12 � M22 : A, then Γ1 + Γ2 ` let !x = M11 inM12 �
let !x = M21 inM22 : A.

Proof. Let (W , ς) ∈ GJΓ1 + Γ2K. It suffices to show that

(ςfst(let !x = M11 inM12), ςsnd(let !x = M21 inM22))W ∈ EJAKW .

Suppose that

• W ′ wW ,

• n < W ′.n, and

• W .ρfst(ςfst(let !x = M11 inM12)) −→n R1

for some W ′, n, and R1, and then it suffices to show that there exists some R2 such that

• W ′.ρsnd(ςsnd(let !x = M21 inM22)) −→∗ R2 and

• (R1,R2) ∈ RJAK (W ′ − n).

Since (W , ς) ∈ GJΓ1 +Γ2K and W ′ wW , we have (W ′,W ′.ρ(ς)) ∈ GJΓ1 +Γ2K by Lemma 119. Lemma 124 implies
that there exist some W1 and W2 such that

• (W1,W
′.ρ(ς)) ∈ GJΓ1K,

• (W2,W
′.ρ(ς)) ∈ GJΓ2K, and

• (W1,W2) cW ′.

Note that W ′.ρ = W1.ρ = W2.ρ. Since Γ1 ` M11 � M21 : !B , we have

(ςfst(M11), ςsnd(M21))W1
∈ EJ!BKW1 .

Since W ′.ρfst(ςfst(let !x = M11 inM12)) −→∗ R1, we can find that

• W ′.ρfst(ςfst(M11)) −→n1 να1. !R
′
11,

• W ′.ρfst(ςfst(let !x = M11 inM12)) −→n1 W ′.ρfst(ςfst(let !x = να1. !R
′
11 inM12)) −→1 W ′.ρfst(ςfst(M12[να1.R

′
11/x ]))

for some α1, R′11, and n1. Thus, by the definitions of E and R, there exist some α2 and R′21 such that

• W1.ρsnd(ςsnd(M21)) −→∗ να2. !R
′
21 and

• (να1.R
′
11, να2.R

′
21) ∈ RJBKω(W1 − n1 − 1).
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Note that n1 +1 ≤ n < W ′.n = W1.n. Since (W1,W2) cW ′, we have ωW1 = ωW2. Thus, (να1.R
′
11, να2.R

′
21) ∈

RJBKω(W2−n1− 1). Since (W2,W
′.ρ(ς)) ∈ GJΓ2K, we have (W2−n1− 1,W ′.ρ(ς)) ∈ GJΓ2K by Lemmas 119 and

113. Thus, by the definition of G,

(W2 − n1 − 1,W ′.ρ(ς) ] {x Z⇒ να1.R
′
11, να2.R

′
21}) ∈ GJΓ2, x :ω BK .

Since Γ2, x :ω B ` M12 � M22 : A and W2.ρ = W ′.ρ, we have

(ςfst(M12[να1.R
′
11/x ]), ςsnd(M22[να2.R

′
21/x ]))W2−n1−1 ∈ EJAK (W2 − n1 − 1) .

Since W ′.ρfst(ςfst(let !x = M11 inM12)) −→n1+1 W ′.ρfst(ςfst(M12[να1.R
′
11/x ])) −→n−n1−1 R1, there exists some R2

such that

• W ′.ρsnd(ςsnd(M22[να2.R
′
21/x ])) −→∗ R2 and

• (R1,R2) ∈ RJAK (W2 − n).

Now, we have the conclusion because:

•
W ′.ρsnd(ςsnd(let !x = M21 inM22)) −→∗ W ′.ρsnd(ςsnd(let !x = να2. !R

′
21 inM22))

−→ W ′.ρsnd(ςsnd(M22[να2.R
′
21/x ]))

−→∗ R2

and

• since (R1,R2) ∈ RJAK (W2 − n) and W ′ − n wW2 − n by Lemma 118, we have (R1,R2) ∈ RJAK (W ′ − n)
by Lemmas 116 and 113.

Lemma 129. For any π ≤ 1, If `W and {α}#W , then ` (W .n, (W .∆, απ), W .ρ).

Proof. The conclusion is shown by the following.

• dom(W .ρ) # dom(W .∆, απ) because {α}#W .

• Let β ∈ dom(W .ρ). Since W .∆ ` W .ρfst(β) and W .∆ ` W .ρsnd(β), we have W .∆, απ ` W .ρfst(β) and
W .∆, απ `W .ρsnd(β).

Lemma 130. Suppose that {α}#W1 and {α}#W2. If W1 w W2 and π ≤ 1, then (W1.n, (W1.∆, α
π), W1.ρ) w

(W2.n, (W2.∆, α
π), W2.ρ).

Proof. Let W ′
1 = (W1.n, (W1.∆, α

π), W1.ρ) and W ′
2 = (W2.n, (W2.∆, α

π), W2.ρ). Since W1 wW2, we have

• `W1 and `W2,

• W1.n ≤ W2.n,

• there exists some ρ such that

– W1.∆, †(ρ) Ï W2.∆,

– W1.ρ = ρ ◦W2.ρ,

– W2.∆ � ρ.

We have the conclusion by the following.

• `W ′
1 and W ′

2 by Lemma 129 with `W1 and `W2.

• W1.∆, α
π, †(ρ) Ï W2.∆, α

π since W1.∆, †(ρ) Ï W2.∆.
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• We show that W ′
2.∆ � ρ. Let β ∈ ftv(ρ|dom(W ′

2.∆)) ∩ dom(W ′
2.∆). Since {α}#W1 and ` W1, we have

α 6∈ ftv(ρ) ∪ dom(ρ). Thus, β ∈ ftv(ρ|dom(W2.∆)) ∩ dom(W2.∆). Thus, W2.∆ � ρ implies β0 ∈ W2.∆, so
β0 ∈ W2.∆, α

π = W ′
2.∆.

Lemma 131. If `W and {α}# ftv(A), then:

• (R1,R2) ∈ RJAKW @α implies (να.R1, να.R2) ∈ RJAKW ; and

• (M1,M2) ∈ EJAKW @α implies (να.M1, να.M2) ∈ EJAKW .

Proof. By induction on A. We first consider the first property on R and then the second one on E with the first
property.

• Let (R1,R2) ∈ RJAKW @α. We show (να.R1, να.R2) ∈ RJAKW by case analysis on A.

Case A = ι: By definition.

Case A = β: Let (B1,B2, r) = W .ρ(β). Since (R1,R2) ∈ RJβKW @α, we have (R1,R2) ∈ r(I(W @α)) by
definition. Since β ∈ dom(W .ρ) and ` W , we have W .∆ ` B1 and W .∆ ` B2 and r ∈ RelW .n[B1,B2].
Since W @α is well defined, we have {α}#W , so {α} # ftv(B1) and {α} # ftv(B2). We also have `IW
from `W . Thus, by the third condition on r ∈ RelW .n[B1,B2] about extension with fresh type variables,
(να.R1, να.R2) ∈ r(IW ). Thus, we have (να.R1, να.R2) ∈ RJβKW .

Case A = B ( C : Suppose that

– W ′ wW ,

– (W1,W2) cW ′,

– W1 wW , and

– (R′1,R
′
2) ∈ RJBKW2

for some W ′, W1, W2, R′1, and R′2, and then it suffices to show that

((να.R1) R′1, (να.R2) R′2)W ′ ∈ EJC KW ′ .

Since W ′.ρfst((να.R1) R′1) −→ W ′.ρfst(να. (R1 R′1)) and W ′.ρsnd((να.R2) R′2) −→ W ′.ρsnd(να. (R2 R′2)),
it suffices to show that

((να.R1 R′1), (να.R2 R′2))W ′ ∈ EJC KW ′

by Lemmas 116 and 113. Since {α}#W , we can suppose that {α}#W ′ without loss of generality. Since

– (R1,R2) ∈ RJB ( C KW @α

– W ′@α wW @α by Lemma 130 with W ′ wW ,

– W1@α wW @α by Lemma 130 with W1 wW ,

– (W1@α, (W2.n, (W2.∆, α
0), W2.ρ)) cW ′@α (from (W1,W2) cW ′), and

– (R′1,R
′
2) ∈ RJBK (W2.n, (W2.∆, α

0), W2.ρ) by Lemmas 117, 116, and 113,

we have
(R1 R′1,R2 R′2)W ′@α ∈ EJC KW ′@α .

By the IH with `W ′ implied by W ′ wW , we have the conclusion

(να.R1 R′1, να.R2 R′2)W ′ ∈ EJC KW ′ .

Case A = ∀β.B : Suppose that

– W ′ wW ,

– ωW ′ ` (C1,C2, r), and

– {β}#ωW ′
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for some W ′, C1, C2, and r, and then it suffices to show that

((να.R1) C1, (να.R2) C2)ωW ′ ∈ EJBK {β Z⇒ (C1,C2, r)} ] ωW ′ .

Since ωW ′.ρfst((να.R1) C1) −→ ωW ′.ρfst(να. (R1 C1)) and ωW ′.ρsnd((να.R2) C2) −→ ωW ′.ρsnd(να. (R2 C2)),
it suffices to show that

(να.R1 C1, να.R2 C2)ωW ′ ∈ EJBK {β Z⇒ (C1,C2, r)} ] ωW ′

by Lemmas 116 and 113. Since {α}#W , we can suppose that {α}#ωW ′ without loss of generality. Since

– (R1,R2) ∈ RJ∀β.BKW @α

– W ′@α wW @α by Lemma 130 with W ′ wW , and

– ω(W ′@α) ` (C1,C2, r) from W ′ ` (C1,C2, r),

we have
(R1 C1,R2 C2)ω(W ′@α) ∈ EJBK {β Z⇒ (C1,C2, r)} ] ω(W ′@α) .

By Lemma 118, {β Z⇒ (C1,C2, r)} ] (ωW ′)@α w {β Z⇒ (C1,C2, r)} ] ω(W ′@α). By Lemmas 116 and
113, we have

(R1 C1,R2 C2)(ωW ′)@α ∈ EJBK {β Z⇒ (C1,C2, r)} ] (ωW ′)@α .

Since we can suppose that α 6= β without loss of generality, we have {α} # ftv(B). We also have `
{β Z⇒ (C1,C2, r)} ] ωW ′ by Lemma 105 with `W ′ and ωW ′ ` (C1,C2, r). Thus, by the IH, we have the
conclusion

(να.R1 C1, να.R2 C2)ωW ′ ∈ EJBK {β Z⇒ (C1,C2, r)} ] ωW ′ .

Case A = !B : It suffices to show that (να.R1, να.R2) ∈ RJ!BKW , that is,

(let !x = να.R1 in x , let !x = να.R2 in x ) ∈ EJBKωW .

By Lemma 35, there exist some β1, β2, R′1, and R′2 such that

– R1 = νβ1. !R
′
1 and

– R2 = νβ2. !R
′
2.

Suppose that

– W ′ w ωW ,

– 1 < W ′.n, and

– W ′.ρfst(let !x = να. νβ1. !R
′
1 in x ) −→ W ′.ρfst(να. νβ1.R

′
1)

for some W ′ and n, and then it suffices to show that

(να. νβ1.R
′
1, να. νβ2.R

′
2)W ′ ∈ EJBK (W ′ − 1) .

Since (R1,R2) ∈ RJ!BKW @α, we have (νβ1.R
′
1, νβ2.R

′
2) ∈ RJBK (ω(W @α) − 1). Since ` W , we have

` ωW − 1 by Lemma 105. Thus, by the IH, we have

(να. νβ1.R
′
1, να. νβ2.R

′
2) ∈ RJBK (ωW − 1) .

Since W ′ w ωW , we have W ′ − 1 w ωW − 1. Thus, we have the conclusion by Lemma 116.

• Let (M1,M2) ∈ EJAKW @α. We show (να.M1, να.M2) ∈ EJAKW with the first property. Suppose that

– W ′ wW ,

– n < W ′.n, and

– W ′.ρfst(να.M1) −→n R1

for some W ′, n, and R1, and the it suffices to show that there exists some R2 such that

– W ′.ρsnd(να.M2) −→∗ R2 and
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– (R1,R2) ∈ RJAK (W ′ − n).

By the semantics, R1 = να.R′1 for some R′1 such that W ′.ρfst(M1) −→n R′1. Since {α}#W , we can suppose
that {α}#W ′ without loss of generality. Thus, W ′@α w W @α by Lemma 130 with W ′ w W . Since
(M1,M2) ∈ EJAKW @α, Lemma 116 implies that there exists some R′2 such that

– W ′.ρsnd(M2) −→∗ R′2 and

– (R′1,R
′
2) ∈ RJAKW ′@α− n.

By the first property on R with ` W ′ − n implied by W ′ w W , we have the conclusion (να.R′1, να.R
′
2) ∈

RJAK (W ′ − n) where let R2 = να.R′2.

Lemma 132. If {α}#W and (W , ς) ∈ GJΓK, then (W @α, ς) ∈ GJΓ, α1K.

Proof. Since (W , ς) ∈ GJΓK, we have

• `W ,

• Γ � W .ρ,

• there exist some ∆ and
∏

x ∈ dom=1(Γ) ∆x such that

– W .∆ = ∆ +
∑

x∈dom=1(Γ) ∆x ,

– ∀βπ ∈ Γ. (∃π′ ≥ π. βπ′ ∈ ∆) ∨ (π = 0 ∧ β ∈ dom(W .ρ)),

– ∀ x :1 A ∈ Γ. (ςfst(x ), ςsnd(x )) ∈ RJAK (W .n, ∆x , W .ρ), and

– ∀ x :ω A ∈ Γ. (ςfst(x ), ςsnd(x )) ∈ RJAKωW .

Let ∆0 = ∆, α1 and ∆0,x = ∆x , α
0. We have W .∆, α1 = ∆0 +

∑
x∈dom=1(Γ) ∆0,x .

We have (W @α, ς) ∈ GJΓ, α1K by the following.

• `W @α by Lemma 129.

• We show that Γ, α1�(W @α).ρ. Let β ∈ ftv((W @α).ρ|dom(Γ,α1)) ∩ dom(Γ, α1). Since {α}#W and `W and
(W @α).ρ = W .ρ, we have α 6∈ dom((W @α).ρ) ∪ ftv((W @α).ρ). Thus, β ∈ ftv(W .ρ|dom(Γ)) ∩ dom(Γ),
and so Γ � W .ρ implies β0 ∈ Γ.

• α1 ∈ ∆0.

• ∀ x :1 A ∈ Γ, α1. (ςfst(x ), ςsnd(x )) ∈ RJAK (W .n, ∆0,x , W .ρ) by Lemmas 117, 116, and 113.

• ∀ x :ω A ∈ Γ, α1. (ςfst(x ), ςsnd(x )) ∈ RJAKω(W @α) because, since ω(W @α) w ωW by Lemma 117 with
` ωW , it is proven by Lemmas 116 and 113.

Lemma 133. If Γ, α1 ` M1 � M2 : A and Γ ` A, then Γ ` να.M1 � να.M2 : A.

Proof. Let (W , ς) ∈ GJΓK. It suffices to show that

(ςfst(να.M1), ςsnd(να.M2))W ∈ EJAKW .

Suppose that

• W ′ wW ,

• n < W ′.n, and

• W .ρfst(ςfst(να.M1)) −→n R1
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for some W ′, n, and R1, and then it suffices to show that there exists some R2 such that

• W ′.ρsnd(ςsnd(να.M2)) −→∗ R2 and

• (R1,R2) ∈ RJAK (W ′ − n).

Without loss of generality, we can suppose that {α}#W ′. Since (W , ς) ∈ GJΓK and W ′ w W , we have
(W ′,W ′.ρ(ς)) ∈ GJΓK by Lemma 119. Thus, by Lemma 132,

(W ′@α,W ′.ρ(ς)) ∈ GJΓ, α1K .

Since Γ, α1 ` M1 � M2 : A, we have

(ςfst(M1), ςsnd(M2))W ′ ∈ EJAKW ′@α .

Since W ′.ρfst(ςfst(να.M1)) −→n R1, there exists some R′1 such that

• W ′.ρfst(ςfst(M1)) −→n R′1 and

• R1 = να.R′1.

Thus, there exists some R′2 such that

• W ′.ρsnd(ςsnd(M2)) −→∗ R′2 and

• (R′1,R
′
2) ∈ RJAK (W ′@α− n).

Since Γ ` A, we have α 6∈ ftv(A). We also have `W ′−n from W ′ wW . Thus, by Lemma 131, (να.R′1, να.R
′
2) ∈

RJAK (W ′ − n). We have the conclusion by letting R2 = να.R′2. since W ′.ρsnd(ςsnd(να.M2)) −→∗ να.R′2.

Lemma 134. If (W , ς) ∈ GJΓ1, α
1,Γ2K, then there exist some ∆1 and ∆2 such that

• W .∆ = ∆1, α
1,∆2 and

• ((W .n, (∆1, α
0,∆2), W .ρ), ς) ∈ GJΓ1, α

0,Γ2K.

Proof. Let Γ = Γ1, α
1,Γ2. Since (W , ς) ∈ GJΓK, we have

• `W ,

• Γ � W .ρ,

• there exist some ∆ and
∏

x ∈ dom=1(Γ) ∆x such that

– W .∆ = ∆ +
∑

x∈dom=1(Γ) ∆x ,

– ∀βπ ∈ Γ. (∃π′ ≥ π. βπ′ ∈ ∆) ∨ (π = 0 ∧ β ∈ dom(W .ρ)),

– ∀ x :1 A ∈ Γ. (ςfst(x ), ςsnd(x )) ∈ RJAK (W .n, ∆x , W .ρ), and

– ∀ x :ω A ∈ Γ. (ςfst(x ), ςsnd(x )) ∈ RJAKωW .

Since α1 ∈ Γ, we have α1 ∈ ∆. Let ∆′1 and ∆′2 such that ∆ = ∆′1, α
1,∆′2.

Let ∆′ = ∆′1, α
0,∆′ and W ′ = (W .n, ∆′ +

∑
x∈dom=1(Γ1,α0,Γ2) ∆x , W .ρ). Since ∆⊥∆x , we have α0 ∈ ∆x .

Thus, α0 ∈ W ′.∆.
Finally, (W ′, ς) ∈ GJΓ1, α

0,Γ2K is shown by the following.

• `W ′ by Lemma 105 with `W .

• Γ1, α
0,Γ2 � W .ρ holds obviously because dom(Γ1, α

0,Γ2) = dom(Γ) and Γ � W .ρ.

• α0 ∈ ∆′.
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Lemma 135. If `W and {α}#ωW and ωW ` (A1,A2, r), then {α Z⇒ (A1,A2, r)} ] ωW w ω(W @α).

Proof. We have the conclusion by the following.

• We show that ` ω(W @α). By Lemmas 9 and 105 with `W , we have ` ωW . By Lemma 129 with {α}#ωW ,
we have ` ω(W @α).

• ` {α Z⇒ (A1,A2, r)} ] ωW by definition with ` ωW and ωW ` (A1,A2, r) and {α}#ωW .

• We have ωW .∆, †({α Z⇒ (A1,A2, r)}) = ωW .∆, α0 Ï ωW .∆, α0 = ω(W @α).∆ by Lemma 5.

• We have {α Z⇒ (A1,A2, r)} ] ωW .ρ = {α Z⇒ (A1,A2, r)} ◦ ωW .ρ because {α}#ωW and `W .

• ω(W @α).∆ � {α Z⇒ (A1,A2, r)} holds obviously because ω(W @α).∆ assigns the use 0 to all the bound type
variables.

Lemma 136. If W1 wW2 and ∀α ∈ dom(ρ). W2 ` ρ(α), then ∀α ∈ dom(W1.ρ(ρ)). W1 `W1.ρ(ρ)(α).

Proof. Let α ∈ dom(ρ) = dom(W1.ρ(ρ)), (A1,A2, r) = ρ(α), B1 = W1.ρfst(A1), and B2 = W1.ρsnd(A2). We
have W1.ρ(ρ)(α) = (B1,B2, r). It suffices to show that W1 ` (B1,B2, r), which is proven below.

• We show that W1.∆ ` B1; W1.∆ ` B2 can be proven similarly.

Since B1 = W1.ρfst(A1) = W1.ρfst(ρfst(α)), it suffices to show that ftv(W1.ρ) ⊆ dom(W1.∆) and ftv(ρ) \
dom(W1.ρ) ⊆ dom(W1.∆).

We have ftv(W1.ρ) ⊆ dom(W1.∆) since `W1 implied by W1 wW2.

We show that ftv(ρ) \ dom(W1.ρ) ⊆ dom(W1.∆). Let β ∈ ftv(ρ) \ dom(W1.ρ). By the assumption
∀α ∈ dom(ρ). W2 ` ρ(α), we have ftv(ρ) ⊆ dom(W2.∆). Thus, β ∈ dom(W2.∆) \ dom(W1.ρ). Since
W1 wW2, there exists some ρ′ such that

– W1.∆, †(ρ′) Ï W2.∆ and

– W1.ρ = ρ′ ◦W2.ρ.

W1.∆, †(ρ′) Ï W2.∆ implies dom(W2.∆) ⊆ dom(W1.∆) ∪ dom(ρ′). Thus, β ∈ (dom(W1.∆) ∪ dom(ρ′)) \
dom(W1.ρ). W1.ρ = ρ′ ◦W2.ρ implies dom(ρ′) ⊆ dom(W1.ρ). Thus, β ∈ dom(W1.∆).

• We show that r ∈ RelW1.n[B1,B2]. By the assumption ∀α ∈ dom(ρ).W2 ` ρ(α), we have r ∈ RelW2.n[A1,A2].
Thus, r ∈ RelW2.n[B1,B2] by definition. Since W1.n ≤ W2.n, we can view r ∈ RelW1.n[B1,B2].

Lemma 137. If W1 wW2 and dom(ρ)#W1 and ` ρ ]W2, then W1.ρ(ρ) ]W1 w ρ ]W2.

Proof. Since W1 wW2, we have the following.

• `W1 and `W2,

• W1.n ≤ W2.n, and

• there exists some ρ′ such that

– W1.∆, †(ρ′) Ï W2.∆,

– W1.ρ = ρ′ ◦W2.ρ, and

– W2.∆ � ρ′.

Let W ′
1 = W1.ρ(ρ) ]W1. The conclusion W ′

1 w ρ ]W2 is shown in what follows, where ρ′ is the intermediate
interpretation mapping.

• We show that `W ′
1.
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– We show that dom(W ′
1.∆) # dom(W ′

1.ρ). Since ` W1, we have dom(W1.ρ) # dom(W1.∆). By the
assumption dom(ρ)#W1, we have dom(ρ) # dom(W1.ρ) and dom(ρ) # dom(W1.∆). The first property
implies that W ′

1 is well defined. The second property implies dom(W ′
1.ρ) = (dom(ρ) ∪ dom(W1.ρ)) #

dom(W1.∆) = dom(W ′
1.∆).

– Let α ∈ dom(W ′
1.ρ). We show that W ′

1 `W ′
1.ρ(α).

Since α ∈ dom(W ′
1.ρ), we have α ∈ dom(ρ) or α ∈ dom(W1.ρ).

Case α ∈ dom(ρ): By `W1.

Case α ∈ dom(ρ): We have W1 ` W1.ρ(ρ)(α) by Lemma 136 with W1 w W2 and ` ρ ]W2. Thus,
W ′

1 `W1.ρ(ρ)(α) = W ′
1.ρ(α).

• ` ρ ]W2 by the assumption.

• W ′
1.n = W1.n ≤ W2.n = (ρ ]W2).n.

• W ′
1.∆, †(ρ′) = W1.∆, †(ρ′) Ï W2.∆ = (ρ ]W2).∆.

• We show that W ′
1.ρ = ρ′ ◦ (ρ ] W2.ρ). We have ftv(ρ) # dom(W2.ρ) because ftv(ρ) ⊆ dom(W2.∆) by

` ρ ]W2, and dom(W2.∆) # dom(W2.ρ) by `W2. Thus:

W ′
1.ρ = W1.ρ(ρ) ]W1.ρ (by definition)

= (ρ′ ◦W2.ρ)(ρ) ] (ρ′ ◦W2.ρ) (since W1.ρ = ρ′ ◦W2.ρ)
= (ρ′ ] ρ′(W2.ρ))(ρ) ] ρ′ ] ρ′(W2.ρ)
= ρ′(ρ) ] ρ′ ] ρ′(W2.ρ) (since ftv(ρ) # dom(W2.ρ))
= ρ′ ] ρ′(ρ ]W2.ρ)
= ρ′ ◦ (ρ ]W2.ρ) .

• We have (ρ ]W2).∆ � ρ′ because W2.∆ � ρ′ and (ρ ]W2).∆ = W2.∆.

Lemma 138. If W1 w ρ ]W2, then there exists some W ′
1 such that W ′

1 wW2 and W1 = W ′
1.ρ(ρ) ]W ′

1.

Proof. Since W1 w ρ ]W2, we have

• `W1 and ` ρ ]W2,

• W1.n ≤ (ρ ]W2).n = W2.n, and

• there exists some ρ′ such that (note that (ρ ]W2).∆ = W2.∆):

– W1.∆, †(ρ′) Ï W2.∆;

– W1.ρ = ρ′ ◦ (ρ ]W2.ρ); and

– (ρ ]W2).∆ = W2.∆ � ρ′.

Let W ′
1 = (W1.n, W1.∆, ρ

′ ◦W2.ρ).
We first show that W ′

1 wW2 with ρ′ as the intermediate interpretation mapping.

• We show that `W ′
1.

– We show that dom(W ′
1.∆) # dom(W ′

1.ρ). By the definition of W ′
1, it suffices to show that dom(W1.∆) #

(dom(ρ′) ∪ dom(W2.ρ)). Since ` W1 and W1.ρ = ρ′ ◦ (ρ ]W2.ρ), we have dom(W1.∆) # (dom(ρ′) ∪
dom(ρ) ∪ dom(W2.ρ)).

– We show that ∀α ∈ dom(W ′
1.ρ). W ′

1 `W ′
1.ρ(α). This is proven by `W1 and W1.ρ = ρ′ ◦ (ρ ]W2.ρ).

• We have `W2 by ` ρ ]W2.

• W ′
1.n = W1.n ≤ W2.n.

• W ′
1.∆, †(ρ′) = W1.∆, †(ρ′) Ï W2.∆.
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• W ′
1.ρ = ρ′ ◦W2.ρ by definition.

• We have W2.∆ � ρ′.

Next, we show that W1 = W ′
1.ρ(ρ) ]W ′

1. It suffices to show that W1.ρ = W ′
1.ρ(ρ) ]W ′

1.ρ. Noting that
ftv(ρ) # dom(W2.ρ) because ftv(ρ) ⊆ dom(W2.∆) and dom(W2.∆) # dom(W2.ρ) by ` ρ ]W2, we have:

W1.ρ = ρ′ ◦ (ρ ]W2.ρ)
= ρ′ ] ρ′(ρ) ] ρ′(W2.ρ)
= ρ′(ρ) ] ρ′ ◦W2.ρ
= (ρ′ ] ρ′(W2.ρ))(ρ) ] ρ′ ◦W2.ρ (since ftv(ρ) # dom(W2.ρ))
= (ρ′ ◦W2.ρ)(ρ) ] ρ′ ◦W2.ρ
= W ′

1.ρ(ρ) ]W ′
1.ρ .

Lemma 139. If `W and dom(ρ)#W and ∀α ∈ dom(ρ). W ` ρ(α), then ρ ]W wW .

Proof. We have the conclusion by the following, where ρ is used as the intermediate interpretation mapping.

• We have `W by the assumption.

• We show that ` ρ ]W .

Since ` W and dom(ρ)#W , we have dom((ρ ]W ).∆) = dom(W .∆) # (dom(ρ) ∪ dom(W .ρ)) = dom((ρ ]
W ).ρ).

Let α ∈ dom((ρ ] W ).ρ). If α ∈ dom(ρ), then we have W ` ρ(α) by the assumption. Otherwise, if
α ∈ dom(W .ρ), then `W implies W `W .ρ(α). Thus, in either case, ρ ]W ` (ρ ]W ).ρ(α).

• We have W1.n = (ρ ]W ).n.

• We have (ρ ]W ).∆, †(ρ) = W .∆, †(ρ) Ï W .∆ by Lemma 9.

• We have (ρ ]W ).ρ = ρ ]W .ρ.

• We show that W .∆ � ρ. It suffices to show that dom(ρ) # dom(W .∆), which is implied by dom(ρ)#W .

Lemma 140. If dom(ρ) # ftv(A),

1. RJAK ρ ]W ⊆ RJAKW and

2. EJAK ρ ]W ⊆ EJAKW .

Proof. By induction on A. We first consider the first case and then show the second case with the first property.

1. Let (R1,R2) ∈ RJAK ρ ]W . We show that (R1,R2) ∈ RJAKW . By case analysis on A.

Case A = ι: Obvious.

Case A = α: Since (R1,R2) ∈ RJαK ρ]W , we have (R1,R2) ∈ (ρ]W ).ρ[α](I(ρ]W )). Since dom(ρ)#{α},
we have (R1,R2) ∈ W .ρ[α](I(ρ ]W )). Let (B1,B2, r) = W .ρ(α). Since ρ ]W is well defined, we have
dom(ρ)#W . Since (ρ]W ).∆ ` B1 and (ρ]W ).∆ ` B2, we have dom(ρ) # ftv(B1) and dom(ρ) # ftv(B2).
Thus, by the irrelevance condition on W .ρ[α] = r ∈ RelW .n[B1,B2], we have (R1,R2) ∈ W .ρ[α](IW ).
Thus, (R1,R2) ∈ RJαKW .

Case A = B ( C : Suppose that

• W ′ wW ,

• (W1,W2) cW ′,

• W1 wW , and

• (R′1,R
′
2) ∈ RJBKW2
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for some W ′, W1, W2, R′1, and R′2, and then it suffices to show that

(R1 R′1,R2 R′2)W ′ ∈ EJC KW ′ .

Without loss of generality, we can suppose that dom(ρ)#W ′. Since W ′ w W and W1 w W , Lemma 137
implies

• W ′.ρ(ρ) ]W ′ w ρ ]W and

• W1.ρ(ρ) ]W1 w ρ ]W

Since W1.ρ = W ′.ρ from (W1,W2) cW ′, we have

W ′.ρ(ρ) ]W1 w ρ ]W .

Since (W1,W2) cW ′, we have

(W ′.ρ(ρ) ]W1,W
′.ρ(ρ) ]W2) cW ′.ρ(ρ) ]W ′ .

We have the following.

• `W2 by Lemma 105 with `W ′, which is implied by W ′ wW .

• dom(W ′.ρ(ρ))#W2 since dom(W ′.ρ(ρ))#W ′, which is implied by well-definedness of W ′.ρ(ρ) ]W ′.

• ∀α ∈ dom(W ′.ρ(ρ)). W2 ` W ′.ρ(ρ)(α) since ` W ′.ρ(ρ) ]W ′, which is implied by W ′.ρ(ρ) ]W ′ w
ρ ]W .

Thus, by Lemma 139,
W ′.ρ(ρ) ]W2 wW2 .

Since (R′1,R
′
2) ∈ RJBKW2, we have

(R′1,R
′
2) ∈ RJBKW ′.ρ(ρ) ]W2

by Lemmas 116 and 113. Note that dom(ρ) # dom(W2.∆) ⊇ ftv(R′1) ∪ ftv(R′1). Since

• (R1,R2) ∈ RJB ( C K ρ ]W (which further implies dom(ρ) # (ftv(R1) ∪ ftv(R2))),

• W ′.ρ(ρ) ]W ′ w ρ ]W ,

• (W ′.ρ(ρ) ]W1,W
′.ρ(ρ) ]W2) cW ′.ρ(ρ) ]W ′,

• W ′.ρ(ρ) ]W1 w ρ ]W , and

• (R′1,R
′
2) ∈ RJBKW ′.ρ(ρ) ]W2,

we have
(R1 R′1,R2 R′2)W ′.ρ(ρ)]W ′ ∈ EJC KW ′.ρ(ρ) ]W ′ .

Since dom(ρ) # (ftv(R1) ∪ ftv(R′1) ∪ ftv(R2) ∪ ftv(R′2)), we have

(R1 R′1,R2 R′2)W ′ ∈ EJC KW ′.ρ(ρ) ]W ′ .

Since dom(ρ) # ftv(B ( C ) implies dom(W ′.ρ(ρ)) # ftv(C ), we have the conclusion

(R1 R′1,R2 R′2)W ′ ∈ EJC KW ′

by the IH.

Case A = ∀α.B : Suppose that

• W ′ wW ,

• ωW ′ ` (C1,C2, r), and

• {α}#ωW ′

for some W ′, C1, C2, and r, and then it suffices to show that

(R1 C1,R2 C2)ωW ′ ∈ EJBK {α Z⇒ (C1,C2, r)} ] ωW ′ .

Without loss of generality, we can suppose that dom(ρ)#W ′ and dom(ρ) # {α}. We have the following.
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• (R1,R2) ∈ RJ∀α.BK ρ ]W .

• W ′.ρ(ρ) ]W ′ w ρ ]W by Lemma 137 with W ′ wW .

• ω(W ′.ρ(ρ) ]W ′) ` (C1,C2, r) from ωW ′ ` (C1,C2, r).

• {α}#ω(W ′.ρ(ρ) ]W ′) from {α}#ωW ′ and dom(ρ) # {α}.
Thus, we have

(R1 C1,R2 C2)ω(W ′.ρ(ρ)]W ′) ∈ EJBK {α Z⇒ (C1,C2, r)} ] ω(W ′.ρ(ρ) ]W ′)

Since dom(ρ) # (ftv(R1) ∪ ftv(R2) ∪ ftv(C1) ∪ ftv(C2)), we have

(R1 C1,R2 C2)ωW ′ ∈ EJBKW ′.ρ(ρ) ] ({α Z⇒ (C1,C2, r)} ] ωW ′) .

Since dom(ρ) # ftv(∀α.B) and dom(ρ) # {α} implies dom(W ′.ρ(ρ)) = dom(ρ) # ftv(B), we have the
conclusion

(R1 C1,R2 C2)ωW ′ ∈ EJBK {α Z⇒ (C1,C2, r)} ] ωW ′

by the IH.

Case A = !B : By the IH.

2. Let (M1,M2) ∈ EJAK ρ ]W . We show that (M1,M2) ∈ EJAKW . Suppose that

• W ′ wW ,

• n < W ′.n,

• W ′.ρfst(M1) −→n R1

for some W ′, n, and R1, and then it suffices to show that there exists some R2 such that

• W ′.ρsnd(M2) −→∗ R2 and

• (R1,R2) ∈ RJAK (W ′ − n).

Without loss of generality, we can suppose that dom(ρ)#W ′. Since W ′ wW , we have

W ′.ρ(ρ) ]W ′ w ρ ]W

by Lemma 137. Since (M1,M2) ∈ EJAK ρ ]W , we have dom(ρ) # dom(W .∆) ⊇ ftv(M1) ∪ ftv(M2). Thus,

• (W ′.ρ(ρ) ]W ′).ρfst(M1) = W ′.ρfst(M1) and

• (W ′.ρ(ρ) ]W ′).ρsnd(M2) = W ′.ρsnd(M2).

We have the following.

• (M1,M2) ∈ EJAK ρ ]W .

• W ′.ρ(ρ) ]W ′ w ρ ]W .

• n < W ′.n = (W ′.ρ(ρ) ]W ′).n.

• (W ′.ρ(ρ) ]W ′).ρfst(M1) = W ′.ρfst(M1) −→n R1.

Thus, there exists some R2 such that

• (W ′.ρ(ρ) ]W ′).ρsnd(M2) = W ′.ρsnd(M2) −→∗ R2 and

• (R1,R2) ∈ RJAK (W ′.ρ(ρ) ]W ′)− n.

Since dom(ρ) # ftv(A) implies dom(W ′.ρ(ρ)) # ftv(A), we have the conclusion

(R1,R2) ∈ RJAK (W ′ − n)

by the first property on R.
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Lemma 141. If Γ1, α
0,Γ2 ` M1 � M2 : !A, then Γ1, α

1,Γ2 ` Λ◦〈α,M1 〉 � Λ◦〈α,M2 〉 : !∀α.A.

Proof. Let (W , ς) ∈ GJΓ1, α
1,Γ2K. It suffices to show that

(ςfst(Λ
◦〈α,M1 〉), ςsnd(Λ◦〈α,M2 〉))W ∈ EJ!∀α.AKW .

Suppose that

• W1 wW ,

• n < W1.n, and

• W1.ρfst(ςfst(Λ
◦〈α,M1 〉)) −→n R1

for some W1, n, and R1, and then it suffices to show that there exists some R2 such that

• W1.ρsnd(ςsnd(Λ◦〈α,M2 〉)) −→∗ R2 and

• (R1,R2) ∈ RJ!∀α.AK (W1 − n).

Since (W , ς) ∈ GJΓ1, α
1,Γ2K and W1 w W , we have (W1,W1.ρ(ς)) ∈ GJΓ1, α

1,Γ2K by Lemma 119. Lemma 134
implies that there exist some W ′

1, ∆1, and ∆2 such that

• W1.∆ = ∆1, α
1,∆2, and

• W ′
1 = (W1.n, (∆1, α

0,∆2), W1.ρ),

• (W ′
1,W1.ρ(ς)) ∈ GJΓ1, α

0,Γ2K.

Note that W1.ρ = W ′
1.ρ and W1.n = W ′

1.n. Since Γ1, α
0,Γ2 ` M1 � M2 : !A, we have

(ςfst(M1), ςsnd(M2))W ′
1
∈ EJ!AKW ′

1 .

Since W1.ρfst(ςfst(Λ
◦〈α,M1 〉)) −→n R1, there exist some β1, R′1, and n1 < n such that

• W1.ρfst(ςfst(M1)) −→n1 νβ1. !R
′
1 and

• W1.ρfst(ςfst(Λ
◦〈α,M1 〉)) −→n1 Λ◦〈α, νβ1. !R

′
1 〉 −→n−n1 νβ1. !Λα.R

′
1 = R1.

Since W ′
1.ρ = W1.ρ and n < W1.n = W ′

1.n, we can find that there exist some β2 and R′2 such that

• W ′
1.ρsnd(ςsnd(M2)) −→∗ νβ2. !R

′
2 and

• (νβ1. !R
′
1, νβ2. !R

′
2) ∈ RJ!AK (W ′

1 − n1).

Thus, we have
W ′

1.ρsnd(ςsnd(Λ◦〈α,M2 〉)) −→∗ Λ◦〈α, νβ2. !R
′
2 〉 −→∗ νβ2. !Λα.R

′
2 .

We let R2 = νβ2. !Λα.R
′
2. Then, it suffices to show that

(νβ1. !Λα.R
′
1, νβ2. !Λα.R

′
2) ∈ RJ!∀α.AK (W1 − n) .

By definition, it suffices to show that, for any W2 such that W2 w ω(W1 − n) and 1 < W2.n,

(νβ1.Λα.R
′
1, νβ2.Λα.R

′
2)W2 ∈ RJ∀α.AK (W2 − 1) .

By alpha-renaming the type variable α bound in A to a fresh type variable γ, it suffices to show that

(νβ1.Λα.R
′
1, νβ2.Λα.R

′
2)W2

∈ RJ∀γ.A[γ/α]K (W2 − 1) .
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Let W3 w W2 − 1 and suppose that ωW3 ` (B1,B2, r) for some B1, B2, and r. Without loss of generality, we can
suppose that {γ}#ωW3 and that the type variables β1 and β2 do not occur free in B1 and B2, respectively. Then,
it suffices to show that

((νβ1.Λα.R
′
1) B1, (νβ2.Λα.R

′
2) B2)ωW3

∈ EJA[γ/α]K {γ Z⇒ (B1,B2, r)} ] ωW3 .

Let W4 w {γ Z⇒ (B1,B2, r)} ] ωW3 and suppose that 1 < W4.n, and then it suffices to show that

(νβ1.R
′
1[B1/α], νβ2.R

′
2[B2/α])W4

∈ RJA[γ/α]K (W4 − 1) .

Since (νβ1. !R
′
1, νβ2. !R

′
2) ∈ RJ!AK (W ′

1 − n1) and 1 < W2.n ≤ ωW1.n− n < W ′
1.n− n1, we have

(νβ1.R
′
1, νβ2.R

′
2) ∈ RJAKω(W ′

1 − n1 − 1) .

Let

• ρ1 = W1.ρ|dom(Γ1,α1,Γ2),

• ρ2 = W1.ρ|dom(W1.ρ) \ dom(Γ1,α1,Γ2), and

• W ′′
1 = (W1.n, W ′

1.∆, ρ1).

Since W ′
1.n = W1.n and W ′

1.ρ = W1.ρ = ρ1 ] ρ2, we have ρ2 ]W ′′
1 = W ′

1. Thus, we have

(νβ1.R
′
1, νβ2.R

′
2) ∈ RJAK ρ2 ] ω(W ′′

1 − n1 − 1) .

Since Γ1, α
0,Γ2 ` M1 � M2 : !A implies Γ1, α

0,Γ2 ` M1 : !A, we have Γ1, α
0,Γ2 ` A by Lemma 18. Thus,

dom(ρ2) # dom(Γ1, α
0,Γ2) ⊇ ftv(A). Hence, by Lemma 140,

(νβ1.R
′
1, νβ2.R

′
2) ∈ RJAKω(W ′′

1 − n1 − 1) .

Since (W1,W1.ρ(ς)) ∈ GJΓ1, α
1,Γ2K, we have Γ1, α

1,Γ2 � W1.ρ. Thus, α 6∈ ftv(W1.ρ|dom(Γ1,α1,Γ2)) = ftv(ρ1) =
ftv(W ′′

1 .ρ). Hence, noting that we can suppose {γ}# dom(W ′′
1 .∆) = dom(W ′

1.∆) = dom(∆1, α
0,∆2) without loss

of generality, by alpha-renaming the type variable α in the above formula to γ, we have

(νβ1.R
′
1[γ/α], νβ2.R

′
2[γ/α]) ∈ RJA[γ/α]Kω((W1.n, (∆1, γ

0,∆2), ρ1)− n1 − 1) .

Let W ′′′
1 = (W1.n, (W ′

1.∆, γ
0), W1.ρ). By applying Lemmas 110, 112, 116, and 113 with

W ′′′
1 = (W1.n, (W ′

1.∆, γ
0), ρ1 ] ρ2)

w (W1.n, (W ′
1.∆, †(ρ2), γ0), ρ1) (by Lemma 135)

w (W1.n, (W ′
1.∆, γ

0), ρ1) (by Lemma 117)
= (W1.n, (∆1, α

0,∆2, γ
0), ρ1)

w (W1.n, (∆1, γ
0,∆2), ρ1) (by Lemma 117) ,

we have
(νβ1.R

′
1[γ/α], νβ2.R

′
2[γ/α]) ∈ RJA[γ/α]Kω(W ′′′

1 − n1 − 1) .

Since n1 < n, we have

W3 wW2 − 1 wW2 w ω(W1 − n) w ω(W1 − n1 − 1) = ω(W ′
1 − n1 − 1) .

Thus, by Lemmas 110, 112, and 5,
ωW3 w ω(W ′

1 − n1 − 1) .

By Lemma 130,
ω(W3@γ) w ω(W ′′′

1 − n1 − 1) .

Since `W3 and {γ}#ωW3 and ωW3 ` (B1,B2, r), we have

{γ Z⇒ (B1,B2, r)} ] ωW3 w ω(W3@γ)

71



by Lemma 135. Thus, by Lemma 110,

{γ Z⇒ (B1,B2, r)} ] ωW3 w ω(W ′′′
1 − n1 − 1) .

Thus, by Lemma 116,

(νβ1.R
′
1[B1/α], νβ2.R

′
2[B2/α])ωW3

∈ RJA[γ/α]K {γ Z⇒ (B1,B2, r)} ] ωW3 .

Since W4 − 1 wW4 w {γ Z⇒ (B1,B2, r)} ] ωW3, we have the conclusion by Lemmas 110, 116, and 114.

Lemma 142. If W1 wW2, then W1.ρ(W2.ρ(ρ)) = W1.ρ(ρ) for any ρ.

Proof. Let α ∈ dom(ρ) and (A1,A2, r) = ρ(α). Since W1 wW2, there exists some ρ′ such that

• W1.∆, †(ρ′) Ï W2.∆ and

• W1.ρ = ρ′ ◦W2.ρ.

It suffices to show that W1.ρfst(W2.ρfst(A1)) = W1.ρfst(A1); W1.ρsnd(W2.ρsnd(A2)) = W1.ρsnd(A2) is proven
similarly. Noting that W1 wW2 implies `W2, we have:

W1.ρfst(A1) = ρ′fst(W2.ρfst(A1)) (since W1.ρ = ρ′ ◦W2.ρ)
ρ′fst(W2.ρfst(W2.ρfst(A1))) (since dom(W2.ρ) # dom(W2.∆) implied by `W2)
W1.ρfst(W2.ρfst(A1)) .

Lemma 143. Let α be a type variable, A be a type, and r be a function that, given a world W , returns RJAK (W .n+
1, W .∆, W .ρ), and ρ = {α Z⇒ (A,A, r)}. Suppose that {α}# ftv(A).

For any W and A′, if `W and {α}#W and W `W .ρ(ρ)(α), then:

• RJA′KW .ρ(ρ) ]W = RJA′[A/α]KW ; and

• EJA′KW .ρ(ρ) ]W = EJA′[A/α]KW .

Proof. By induction on A′.

• We first show that RJA′KW .ρ(ρ) ]W = RJA′[A/α]KW .

Case A′ = ι: Obvious since A′ = A′[A/α] = ι.

Case A′ = α: We first show that RJAKW .ρ(ρ)]W = RJAKW . Since {α}# ftv(A), we have RJAKW .ρ(ρ)]
W ⊆ RJAKW by Lemma 140. By Lemmas 139, 116, and 113 and {α}#W , we have RJAKW ⊆
RJAKW .ρ(ρ) ]W .

Thus, we have
RJA′KW .ρ(ρ) ]W = r(I(W .ρ(ρ) ]W ))

= RJAKW .ρ(ρ) ]W
= RJAKW
= RJA′[A/α]KW .

Case A′ = β for some β 6= α: We have

RJA′KW .ρ(ρ)]W = RJβKW .ρ(ρ)]W = (W .ρ(ρ)]W ).ρ[β](I(W .ρ(ρ)]W )) = W .ρ[β](I(W .ρ(ρ)]W )) .

Let (B1,B2, r
′) = W .ρ(β). Since `W , we have

– W .∆ ` B1,

– W .∆ ` B2, and

– r′ ∈ RelW .n[B1,B2].
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Since {α}#W , we have {α}# (ftv(B1) ∪ ftv(B2)). Thus, the irrelevance condition on r′ ∈ RelW .n[B1,B2]
implies r′(I(W .ρ(ρ) ]W )) ⊆ r′(IW ). Since I(W .ρ(ρ) ]W ) wIW by Lemma 139, we have r′(IW ) ⊆
r′(I(W .ρ(ρ) ]W )) by monotonicity of r′, Lemma 113, and {α}#W . Thus,

W .ρ[β](I(W .ρ(ρ) ]W )) = r′(I(W .ρ(ρ) ]W )) = r′(IW ) .

Since
r′(IW ) = W .ρ[β](IW ) = RJβKW = RJA′[A/α]KW ,

we have the conclusion RJA′KW .ρ(ρ) ]W = RJA′[A/α]KW .

Case A′ = B ′( C ′:

– We show that RJB ′( C ′KW .ρ(ρ) ]W ⊆ RJ(B ′( C ′)[A/α]KW .
Let (R1,R2) ∈ RJB ′( C ′KW .ρ(ρ) ]W . To prove (R1,R2) ∈ RJ(B ′( C ′)[A/α]KW , suppose that

∗ W0 wW ,

∗ (W1,W2) cW0, and

∗ W1 wW , and

∗ (R′1,R
′
2) ∈ RJB ′[A/α]KW2.

for some W0, W1, W2, R′1, and R′2, and then it suffices to show that

(R1 R′1,R2 R′2)W0
∈ EJC ′[A/α]KW0 .

We can suppose that {α}#W0 without loss of generality.
By Lemma 137 with W0 wW , W1 wW , and `W .ρ(ρ)]W , noting W0.ρ = W1.ρ by (W1,W2) cW0,
we have

∗ W0.ρ(ρ) ]W0 wW .ρ(ρ) ]W and

∗ W0.ρ(ρ) ]W1 wW .ρ(ρ) ]W .

Since (W1,W2) cW0, we have

∗ (W0.ρ(ρ) ]W1,W0.ρ(ρ) ]W2) cW0.ρ(ρ) ]W0.

We have the following.

∗ (R′1,R
′
2) ∈ RJB ′[A/α]KW2.

∗ {α}#W2 since {α}#W0 and (W1,W2) cW0.

∗ `W2 by Lemma 105 with `W0 and (W1,W2) cW0.

∗ W2 `W2.ρ(ρ)(α) because W0 `W0.ρ(ρ)(α), which is implied by `W0.ρ(ρ) ]W0 from W0.ρ(ρ) ]
W0 wW .ρ(ρ) ]W .

Thus, by the IH, we have
(R′1,R

′
2) ∈ RJB ′KW2.ρ(ρ) ]W2 .

Since

∗ (R1,R2) ∈ RJB ′( C ′KW .ρ(ρ) ]W ,

∗ W0.ρ(ρ) ]W0 wW .ρ(ρ) ]W ,

∗ W0.ρ(ρ) ]W1 wW .ρ(ρ) ]W ,

∗ (W0.ρ(ρ) ]W1,W0.ρ(ρ) ]W2) cW0.ρ(ρ) ]W0, and

∗ (R′1,R
′
2) ∈ RJB ′KW0.ρ(ρ) ]W2 (note that W2.ρ = W0.ρ),

noting that {α}#W0, we have

(R1 R′1,R2 R′2)W0
∈ EJC ′KW0.ρ(ρ) ]W0 .

By the IH, we have the conclusion

(R1 R′1,R2 R′2)W0 ∈ EJC ′[A/α]KW0 .

– We show that RJ(B ′( C ′)[A/α]KW ⊆ RJB ′( C ′KW .ρ(ρ) ]W .
Let (R1,R2) ∈ RJ(B ′( C ′)[A/α]KW . To prove (R1,R2) ∈ RJB ′( C ′KW .ρ(ρ) ]W , suppose that
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∗ W0 wW .ρ(ρ) ]W ,

∗ (W1,W2) cW0, and

∗ W1 wW .ρ(ρ) ]W , and

∗ (R′1,R
′
2) ∈ RJB ′KW2.

for some W0, W1, W2, R′1, and R′2, and then it suffices to show that

(R1 R′1,R2 R′2)W0 ∈ EJC ′KW0 .

By Lemma 138 with W0 w W .ρ(ρ) ]W and W1 w W .ρ(ρ) ]W , there exist some W ′
0 and W ′

1 such
that

∗ W ′
0 wW ,

∗ W0 = W ′
0.ρ(ρ) ]W ′

0,

∗ W ′
1 wW , and

∗ W1 = W ′
1.ρ(ρ) ]W ′

1.

Since (W1,W2) cW0, there exists some W ′
2 such that

∗ W2 = W ′
0.ρ(ρ) ]W ′

2 and

∗ (W ′
1,W

′
2) cW ′

0.

Note that W ′
1.ρ = W ′

2.ρ = W ′
0.ρ. We have the following.

∗ (R′1,R
′
2) ∈ RJB ′KW ′

2.ρ(ρ) ] W ′
2 since (R′1,R

′
2) ∈ RJB ′KW2 and W2 = W ′

0.ρ(ρ) ] W ′
2 and

(W ′
1,W

′
2) cW ′

0.

∗ `W ′
2 by Lemma 105 with `W ′

0 (from W ′
0 wW ) and (W ′

1,W
′
2) cW ′

0.

∗ {α}#W ′
2 because {α}#W ′

0 (from `W0) and (W ′
1,W

′
2) cW ′

0.

∗ W ′
2 `W ′

2.ρ(ρ)(α) because `W ′
0.ρ(ρ) ]W ′

0 and W ′
0.ρ = W ′

2.ρ.

Thus, by the IH, we have
(R′1,R

′
2) ∈ RJB ′[A/α]KW ′

2 .

We also have the following.

∗ (R1,R2) ∈ RJ(B ′( C ′)[A/α]KW .

∗ W ′
0 wW ,

∗ W ′
1 wW , and

∗ (W ′
1,W

′
2) cW ′

0.

Thus,
(R1 R′1,R2 R′2)W ′

0
∈ EJC ′[A/α]KW ′

0 .

Noting α does not occur free in R1, R′1, R2, nor R′2, since `W ′
0 and {α}#W ′

0 and W ′
0 `W ′

0.ρ(ρ)(α),
the IH implies the conclusion

(R1 R′1,R2 R′2)W0 ∈ EJC ′KW0 .

Case A′ = ∀β.B ′:
– We show that RJ∀β.B ′KW .ρ(ρ) ]W ⊆ RJ(∀β.B ′)[A/α]KW .

Let (R1,R2) ∈ RJ∀β.B ′KW .ρ(ρ) ]W . We show that (R1,R2) ∈ RJ(∀β.B ′)[A/α]KW . Without loss
of generality, we can suppose that {β}# (ftv(A) ∪ {α} ∪ ftv(ρ)) and {β}#W . Suppose that

∗ W0 wW ,

∗ ωW0 ` (B1,B2, r0), and

∗ {β}#W0

for some W0, B1, B2, and r0, and then it suffices to show that

(R1 B1,R2 B2)ωW0
∈ EJB ′[A/α]KW ′

0

where W ′
0 = {β Z⇒ (B1,B2, r0)} ] ωW0. Without loss of generality, we can suppose that {α}#W0.

Since W0 w W , we have W0.ρ(ρ) ]W0 w W .ρ(ρ) ]W by Lemma 137. Since W0 ` (B1,B2, r0), we
have W0.ρ(ρ) ]W0 ` (B1,B2, r0). Since (R1,R2) ∈ RJ∀β.B ′KW .ρ(ρ) ]W , we have

(R1 B1,R2 B2)W0.ρ(ρ)]W0
∈ EJB ′K {β Z⇒ (B1,B2, r0)} ] (ω(W0.ρ(ρ) ]W0)) .
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Since {β}# ftv(ρ), we have

{β Z⇒ (B1,B2, r0)} ] (ω(W0.ρ(ρ) ]W0)) = W ′
0.ρ(ρ) ]W ′

0 .

Since α and β do not occur in R1, R2, B1, nor B2, we have

(R1 B1,R2 B2)ωW0 ∈ EJB ′KW ′
0.ρ(ρ) ]W ′

0 .

We have the following.

∗ `W ′
0 since ` ωW0 by Lemma 105 with `W0 (from W0 wW ) and ωW0 ` (B1,B2, r0).

∗ {α}#W ′
0 since α 6= β and {α}#W0.

∗ W ′
0 `W ′

0.ρ(α) because `W0.ρ(ρ) ]W0 from W0.ρ(ρ) ]W0 wW .ρ(ρ) ]W .

Thus, by the IH, we have the conclusion

(R1 B1,R2 B2)ωW0
∈ EJB ′[A/α]KW ′

0 .

– We show that RJ(∀β.B ′)[A/α]KW ⊆ RJ∀β.B ′KW .ρ(ρ) ]W .
Let (R1,R2) ∈ RJ(∀β.B ′)[A/α]KW . We show that (R1,R2) ∈ RJ∀β.B ′KW .ρ(ρ) ]W . Suppose that

∗ W0 wW .ρ(ρ) ]W ,

∗ ωW0 ` (B1,B2, r0), and

∗ {β}#ωW0

for some W0, B1, B2, and r0, and then it suffices to show that

(R1 B1,R2 B2)ωW0
∈ EJB ′K {β Z⇒ (B1,B2, r0)} ] ωW0 .

Since W0 wW .ρ(ρ) ]W , there exists some W ′
0 such that

∗ W ′
0 wW and

∗ W0 = W ′
0.ρ(ρ) ]W ′

0

by Lemma 138. Since ωW0 ` (B1,B2, r0), we have ωW ′
0 ` (B1,B2, r0). Since (R1,R2) ∈ RJ(∀β.B ′)[A/α]KW

and {β}#ωW ′
0 (from {β}#ωW0), we have

(R1 B1,R2 B2)ωW ′
0
∈ EJB ′[A/α]K {β Z⇒ (B1,B2, r0)} ] ωW ′

0 .

Let W ′ = {β Z⇒ (B1,B2, r0)} ] ωW ′
0. We have the following.

∗ `W ′ since ωW ′
0 by Lemma 105 with `W ′

0 and ωW ′
0 ` (B1,B2, r0).

∗ {α}#W ′,

∗ W ′ `W ′.ρ(ρ)(α) because `W ′
0.ρ(ρ) ]W ′

0.

Thus, by the IH,
(R1 B1,R2 B2)ωW ′

0
∈ EJB ′KW ′.ρ(ρ) ]W ′ .

Since {α}# (ftv(R1) ∪ ftv(R2) ∪ ftv(B1) ∪ ftv(B2)) and we can suppose that {β}# ftv(ρ) without
loss of generality, we have the conclusion

(R1 B1,R2 B2)ωW0 ∈ EJB ′K {β Z⇒ (B1,B2, r0)} ] ωW ′
0.ρ(ρ) ] ωW ′

0 .

Case A′ = !B ′: By the IH with Lemma 105.

• Next, we consider EJA′KW .ρ(ρ) ]W = EJA′[A/α]KW .

– We show that EJA′KW .ρ(ρ) ]W ⊆ EJA′[A/α]KW

Let (M1,M2) ∈ EJA′KW .ρ(ρ) ]W . We show that (M1,M2) ∈ EJA′[A/α]KW . Suppose that

∗ W ′ wW ,

∗ n < W ′.n, and

∗ W ′.ρfst(M1) −→n R1

for some W ′, n, and R1, and then it suffices to show that there exists some R2 such that
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∗ W ′.ρsnd(M2) −→∗ R2 and

∗ (R1,R2) ∈ RJA′[A/α]K (W ′ − n).

Without loss of generality, we can suppose that {α}#W ′. Thus, we can suppose that α does not occur
in R1. Further, since W ′ wW , we have

W ′.ρ(ρ) ]W ′ wW .ρ(ρ) ]W

by Lemma 137. Since (M1,M2) ∈ EJA′KW .ρ(ρ) ]W , there exists some R2 such that

∗ W ′.ρsnd(M2) −→∗ R2 and

∗ (R1,R2) ∈ RJA′K ((W ′.ρ(ρ) ]W ′)− n)

(note that α does not occur in M2). We have the following.

∗ `W ′ − n since W ′ wW .

∗ {α}#(W ′ − n).

∗ W ′−n ` (W ′−n).ρ(ρ)(α) since `W ′.ρ(ρ)]W ′ which is implied by W ′.ρ(ρ)]W ′ wW .ρ(ρ)]W .

Thus, by the first property on R, we have the conclusion (R1,R2) ∈ RJA′[A/α]K (W ′ − n).

– We show that EJA′[A/α]KW ⊆ EJA′KW .ρ(ρ) ]W

Let (M1,M2) ∈ EJA′[A/α]KW . We show that (M1,M2) ∈ EJA′KW .ρ(ρ) ]W .

Suppose that

∗ W0 wW .ρ(ρ) ]W ,

∗ n < W0.n, and

∗ W0.ρfst(M1) −→n R1

for some W0, n, and R1, and then it suffices to show that there exists some R2 such that

∗ W0.ρsnd(M2) −→∗ R2 and

∗ (R1,R2) ∈ RJA′K (W0 − n).

Since W0 wW .ρ(ρ) ]W , Lemma 138 implies that there exists some W ′
0 such that

∗ W ′
0 wW and

∗ W0 = W ′
0.ρ(ρ) ]W ′

0.

Since (M1,M2) ∈ EJA′[A/α]KW and n < W0.n = W ′
0.n and we can suppose that α does not occur free

in M1 and M2, there exists some R2 such that

∗ W0.ρsnd(M2) −→∗ R2 and

∗ (R1,R2) ∈ RJA′[A/α]K (W ′
0 − n).

We have the following.

∗ `W ′
0 − n since W ′

0 wW .

∗ {α}#(W ′
0 − n).

∗ W ′
0−n ` (W ′

0−n).ρ(ρ)(α) since `W ′
0.ρ(ρ)]W ′

0 which is implied by W ′
0.ρ(ρ)]W ′

0 wW .ρ(ρ)]W .

Thus, by the first property on R, we have the conclusion

(R1,R2) ∈ RJA′K ((W ′
0.ρ(ρ) ]W ′

0)− n) .

Lemma 144. If {α}#ωW and (ωW , ς) ∈ GJωΓK and ωW ` (A1,A2, r), then ({α Z⇒ (A1,A2, r)} ] ωW , ς) ∈
GJωΓ, α0K.

Proof. Since (ωW , ς) ∈ GJωΓK, we have the following.

• ` ωW .

• ωΓ � ωW .ρ.
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• ∀β ∈ dom(ωΓ). (∃π. βπ ∈ ωW .∆) ∨ β ∈ dom(ωW .ρ), and

• ∀ x :ω A ∈ ωΓ. (ςfst(x ), ςsnd(x )) ∈ RJAKωωW = RJAKωW (by Lemma 5).

Let W ′ = {α Z⇒ (A1,A2, r)} ] ωW . We have the conclusion (W ′, ς) ∈ GJωΓ, α0K by the following.

• `W ′ since ` ωW and ωW ` (A1,A2, r).

• ωΓ, α0 � W ′.ρ because ωΓ, α0 assigns the use 0 to all the bound type variables.

• ∀β ∈ dom(ωΓ, α0). (∃π. βπ ∈ W ′.∆) ∨ (β ∈ dom(W ′.ρ)).

• ∀ x :ω A ∈ ωΓ, α0. (ςfst(x ), ςsnd(x )) ∈ RJAKωW ′ by Lemmas 116 and 113 with (ςfst(x ), ςsnd(x )) ∈ RJAKωW
and ωW ′ w ωωW = ωW , which is obtained by Lemma 112 with W ′ w ωW . W ′ w ωW is proven by
Lemma 139.

Lemma 145. If ` Γ and ωΓ, α0 ` M1 � M2 : A, then Γ ` Λα.M1 � Λα.M2 : ∀α.A.

Proof. Let (W , ς) ∈ GJΓK. It suffices to show that

(ςfst(Λα.M1), ςsnd(Λα.M2))W ∈ EJ∀α.AKW .

Let W1 wW such that 0 < W1.n. It suffices to show that

(ςfst(Λα.M1), ςsnd(Λα.M2))W1 ∈ RJ∀α.AKW1 .

Suppose that

• W2 wW1,

• ωW2 ` (B1,B2, r), and

• {α}#ωW2,

for some W2, B1, B2, and r, and then it suffices to show that

(ςfst(Λα.M1) B1, ςsnd(Λα.M2) B2)ωW2
∈ EJAK {α Z⇒ (B1,B2, r)} ] ωW2 .

Suppose that

• W3 w {α Z⇒ (B1,B2, r)} ] ωW2,

• 0 < n < W3.n, and

• W3.ρfst(ςfst(Λα.M1) B1) −→n R1

for some W3, n, and R1, and then it suffices to show that there exists some R2 such that

• W3.ρsnd(ςsnd(Λα.M2) B2) −→∗ R2 and

• (R1,R2) ∈ RJAK (W3 − n).

Since W3.ρfst(ςfst(Λα.M1) B1) −→n R1, we can find

W3.ρfst(ςfst(Λα.M1) B1) −→W3.ρfst(ςfst(M1[B1/α])) −→n−1 R1 .

Then, it suffices to show that

(ςfst(M1[B1/α]), ςsnd(M2[B2/α]))W3
∈ EJAK (W3 − 1) .

Since W3 w {α Z⇒ (B1,B2, r)} ] ωW2, there exists some W ′
3 such that
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• W ′
3 w ωW2

• W3 = W ′
3.ρ({α Z⇒ (B1,B2, r)}) ]W ′

3 and

by Lemma 138. Since (W , ς) ∈ GJΓK and W2 w W1 w W , we have (W2,W2.ρ(ς)) ∈ GJΓK by Lemmas 110 and
119. Noting that ωW2.ρ = W2.ρ, by Lemma 126, (ωW2, ωW2.ρ(ς)) ∈ GJωΓK. Since W ′

3 − 1 w W ′
3 w ωW2,

we have (W ′
3,W

′
3.ρ(ς)) ∈ GJωΓK by Lemmas 119 and 114. By Lemmas 126 and 5, (ωW ′

3,W
′
3.ρ(ς)) ∈ GJωΓK.

Since W ′
3 w ωW2 and ωW2 ` (B1,B2, r), we have W ′

3 ` W ′
3.ρ({α Z⇒ (B1,B2, r)})(α), i.e., ωW ′

3 ` ωW ′
3.ρ({α Z⇒

(B1,B2, r)})(α), by Lemma 136. Thus, by Lemma 144,

(ωW ′
3.ρ({α Z⇒ (B1,B2, r)}) ] ωW ′

3,W
′
3.ρ(ς)) ∈ GJωΓ, α0K .

Since ωΓ, α0 ` M1 � M2 : A, we have

(ςfst(M1[B1/α]), ςsnd(M2[B2/α]))ωW ′
3
∈ EJAK (ωW ′

3.ρ({α Z⇒ (B1,B2, r)}) ] ωW ′
3) .

Since α can be supposed not to occur free in B1, B2, nor ς, and ωW3 = ω(W ′
3.ρ({α Z⇒ (B1,B2, r)}) ]W ′

3) =
ωW ′

3.ρ({α Z⇒ (B1,B2, r)}) ] ωW ′
3, we have

(ςfst(M1[B1/α]), ςsnd(M2[B2/α]))W3 ∈ EJAKωW3 .

Since W3 − 1 w ωW3 − 1 w ωW3 by Lemma 118, we have the conclusion by Lemmas 110, 116, and 113.

Lemma 146. If {α1, α2}#W , then:

• (R1,R2) ∈ RJAKW implies (να1.R1, να2.R2) ∈ RJAKW ; and

• (M1,M2) ∈ EJAKW implies (να1.M1, να2.M2) ∈ EJAKW .

Proof. By induction on A. We first consider the first property on R and then the second one on E with the first
property.

• Let (R1,R2) ∈ RJAKW . We show (να1.R1, να2.R2) ∈ RJAKW by case analysis on A.

Case A = ι: By definition.

Case A = β: Let (B1,B2, r) = W .ρ(β). Since (R1,R2) ∈ RJβKW , we have (R1,R2) ∈ r(IW ) by defini-
tion. It suffices to show that (να1.R1, να2.R2) ∈ r(IW ). Since `W , we have r ∈ RelW .n[B1,B2]. Thus,
the conclusion is implied by the fourth condition on RelW .n[B1,B2] since {α1, α2}#W .

Case A = B ( C : Suppose that

– W ′ wW ,

– (W1,W2) cW ′,

– W1 wW , and

– (R′1,R
′
2) ∈ RJBKW2

for some W ′, W1, W2, R′1, and R′2, and then it suffices to show that

((να1.R1) R′1, (να2.R2) R′2)W ′ ∈ EJC KW ′ .

We can find that W ′.ρfst((να1.R1) R′1) −→n W ′.ρfst(να1. (R1 R′1)) for some n, and W ′.ρsnd((να2.R2) R′2) −→∗
W ′.ρsnd(να2. (R2 R′2)). Then, it suffices to show that

(να1. (R1 R′1), να2. (R2 R′2))W ′ ∈ EJC KW ′

by Lemmas 116 and 113. Without loss of generality, we can suppose that {α1, α2}#W ′. Since (R1,R2) ∈
RJB ( C KW , we have

(R1 R′1,R2 R′2)W ′ ∈ EJC KW ′ .

By the IH, we have the conclusion.

Case A = ∀β.B : Suppose that
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– W ′ wW ,

– ωW ′ ` (C1,C2, r), and

– {β}#ωW ′

for some W ′, C1, C2, and r, and then it suffices to show that

((να1.R1) C1, (να2.R2) C2)ωW ′ ∈ EJBK {β Z⇒ (C1,C2, r)} ] ωW ′ .

Since W ′.ρfst((να1.R1) C1) −→n W ′.ρfst(να1. (R1 C1)) for some n, and W ′.ρsnd((να2.R2) C2) −→∗
W ′.ρsnd(να2. (R2 C2)), it suffices to show that

(να1. (R1 C1), να2. (R2 C2))ωW ′ ∈ EJBK {β Z⇒ (C1,C2, r)} ] ωW ′

by Lemmas 116 and 113. Without loss of generality, we can suppose that {α1, α2}#W ′. Since (R1,R2) ∈
RJ∀β.BKW , we have

(R1 C1,R2 C2)ωW ′ ∈ EJBK {β Z⇒ (C1,C2, r)} ] ωW ′ .

Since we can suppose that β 6∈ {α1, α2} without loss of generality, we have {α1, α2}#({β Z⇒ (C1,C2, r)}]
ωW ′). Thus, by the IH, we have the conclusion.

Case A = !B : It suffices to show that (να1.R1, να2.R2) ∈ RJ!BKW , that is,

(let !x = να1.R1 in x , let !x = να2.R2 in x ) ∈ EJBKωW .

By Lemma 35, there exist some β1, β2, R′1, and R′2 such that

– R1 = νβ1. !R
′
1 and

– R2 = νβ2. !R
′
2.

Let W ′ w ωW such that 1 < W ′.n. We have

– W ′.ρfst(let !x = να1. νβ1. !R
′
1 in x ) −→ W ′.ρfst(να1. νβ1.R

′
1) and

– W ′.ρsnd(let !x = να2. νβ2. !R
′
2 in x ) −→ W ′.ρsnd(να2. νβ2.R

′
2).

Thus, it suffices to show that

(να1. νβ1.R
′
1, να2. νβ2.R

′
2)W ′ ∈ RJBK (W ′ − 1) .

Since (R1,R2) ∈ RJ!BKW , we have (νβ1.R
′
1, νβ2.R

′
2)W ′ ∈ RJBK (W ′ − 1). By the IH, we have the

conclusion.

• Let (M1,M2) ∈ EJAKW . We show that (να1.M1, να2.M2) ∈ EJAKW with the first property. Suppose that

– W ′ wW ,

– n < W ′.n, and

– W ′.ρfst(να1.M1) −→n R1

for some W ′, n, and R1, and the it suffices to show that there exists some R2 such that

– W ′.ρsnd(να1.M2) −→∗ R2 and

– (R1,R2) ∈ RJAK (W ′ − n).

By the semantics, R1 = να1.R
′
1 for some R′1 such that W ′.ρfst(M1) −→n R′1. Since (M1,M2) ∈ EJAKW

and W ′ wW , there exists some R′2 such that

– W ′.ρsnd(M2) −→∗ R′2 and

– (R′1,R
′
2) ∈ RJAKW ′ − n.

By the first property on R, we have the conclusion (να1.R
′
1, να2.R

′
2) ∈ RJAK (W ′ − n) where let R2 =

να2.R
′
2.
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Lemma 147. If Γ ` M1 � M2 : ∀α.B and Γ ` A, then Γ ` M1 A � M2 A : B [A/α].

Proof. Let (W , ς) ∈ GJΓK. It suffices to show that

(ςfst(M1 A), ςsnd(M2 A))W ∈ EJB [A/α]KW .

Suppose that

• W ′ wW ,

• n < W ′.n, and

• W ′.ρfst(ςfst(M1 A)) −→n R1

for some W ′, n, and R1, and then it suffices to show that there exists some R2 such that

• W ′.ρsnd(ςsnd(M2 A)) −→∗ R2 and

• (R1,R2) ∈ RJB [A/α]K (W ′ − n).

Since W ′.ρfst(ςfst(M1 A)) −→n R1, we can find that there exist some β1, M ′
1, and n1 such that

• W ′.ρfst(ςfst(M1)) −→n1 νβ1.Λα.M
′
1 and

• W ′.ρfst(ςfst(M1 A)) −→n1 (νβ1.Λα.M
′
1) W ′.ρfst(A) −→n2 νβ1.M

′
1[W ′.ρfst(A)/α] −→n−n1−n2 R1 for some n2

(note that we can suppose that type variables β1 do not occur in W ′.ρfst(A) without loss of generality).

Since (W , ς) ∈ GJΓK and W ′ w W , we have (W ′,W ′.ρ(ς)) ∈ GJΓK by Lemma 119. Since Γ ` M1 � M2 : ∀α.B ,
we have

(ςfst(M1), ςsnd(M2))W ′ ∈ EJ∀α.BKW ′ .

Since W ′.ρfst(ςfst(M1)) −→n1 νβ1.Λα.M
′
1 and n1 < n < W ′.n, there exist some β2 and M ′

2 such that

• ρsnd(ςsnd(M2)) −→∗ νβ2.Λα.M
′
2 and

• (νβ1.Λα.M
′
1, νβ2.Λα.M

′
2) ∈ RJ∀α.BK (W ′ − n1).

Let A1 = W ′.ρfst(A), and A2 = W ′.ρsnd(A). Since Γ ` A and (W ′,W ′.ρ(ς)) ∈ GJΓK, we have W ′.∆ ` A1

and W ′.∆ ` A2. Let r be a function given in Lemma 143 for α and A, that is, given a world W0, r returns
RJAK (W0.n+ 1, W0.∆, W0.ρ). By

• Lemma 116 (for monotonicity),

• Lemma 140 (for the irrelevance condition on Reln),

• Lemma 131 (for the third condition on Reln), and

• Lemma 146 (for the fourth condition on Reln),

we have ω(W ′ − n1) ` (A1,A2, r). Since (νβ1.Λα.M
′
1, νβ2.Λα.M

′
2) ∈ RJ∀α.BKW ′ − n1 and we can suppose that

{α}#ω(W ′ − n1) without loss of generality, we have

((νβ1.Λα.M
′
1) A1, (νβ2.Λα.M

′
2) A2) ∈ EJBK {α Z⇒ (A1,A2, r)} ] ω(W ′ − n1)

with Lemma 113. Further, we have ` ω(W ′ − n1) by Lemma 105 with ` W ′ implied by W ′ w W . Since
ω(W ′ − n1).ρ({α Z⇒ (A,A, r)}) = {α Z⇒ (A1,A2, r)}, we have

((νβ1.Λα.M
′
1) A1, (νβ2.Λα.M

′
2) A2) ∈ EJB [A/α]Kω(W ′ − n1)

by Lemma 143. Since (νβ1.Λα.M
′
1) A1 −→n2 νβ1.M

′
1[A1/α] −→n−n1−n2 R1, we can find that there exists some R2

such that
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• W ′.ρfst(ςsnd(M2 A)) −→∗ (νβ2.Λα.M
′
2) A2 −→∗ R2 and

• (R1,R2) ∈ EJB [A/α]KωW ′ − n.

Since W ′ − n w ωW ′ − n by Lemma 118, we have the conclusion by Lemmas 116 and 113.

Theorem 5 (Parametricity / Fundamental Property). If Γ ` M : A, then Γ ` M ≈ M : A

Proof. It suffices to show that Γ ` M � M : A, which is shown by induction on the typing derivation of Γ ` M : A
withe the compatibility lemmas (Lemmas 120, 121, 123, 125, 127, 128, 133, 141, 145, and 147).

Theorem 6 (Soundness with respect to Contextual Equivalence). If Γ ` M1 ≈ M2 : A, then Γ ` M ≈ctx M : A

Proof. Let ι be a base type, c be a constant of ι, and C be a context such that C : (Γ ` A)  (∅ ` ι). Now, we
suppose that C[M1] −→n να1. c for some n and α1, and then show that C[M2] −→∗ να2. c for some α2; the reverse
direction can be proven in a similar way. By induction on the typing derivation of C with the compatibility lemmas
(Lemmas 120, 121, 123, 125, 127, 128, 133, 141, 145, 147), we have ∅ ` C[M1] � C[M2] : ι; note that, for any Γ, M ,
A, Γ ` M : A implies Γ ` M � M : A (which is shown in a way similar to parametricity). Let W = (n + 1, ∅, ∅).
Since (W , ∅) ∈ GJ∅K, we have (C[M1],C[M2]) ∈ EJιKW . Since C[M1] −→n να1. c, there exists some R2 such that

• C[M2] −→∗ R2 and

• (να1. c,R2) ∈ RJιK (W − n).

By the definition of R, we have R2 = να2. c for some α2.

3.6 Examples of Free Theorems

Example 1 (Free Theorem for the Empty Type). If ∆ ` M : ∀α.α and ∆ ` A, then there exists no result R such
that M A −→∗ R.

Proof. Assume that M A −→n R for some n and R. Since ∆ ` M : ∀α.α, we have ∆ ` M � M : ∀α.α by
Theorem 5. Let W = (n + 1, ∆, ∅). We have (W , ∅) ∈ GJ∆K by definition. Thus, (M ,M ) ∈ EJ∀α.αKW . Since
M A −→n R, there exist some R′, n1, and n2 such that

• M −→n1 R′,

• R′A −→n2 R, and

• n = n1 + n2.

Since n1 ≤ n < n + 1 = W .n and W wW by Lemma 111, we have

(R′,R′) ∈ RJ∀α.αKW − n1 .

Let r be a relational interpretation that maps any world to the empty set. Without loss of generality, we can
suppose that {α}#ω(W −n1). Since ω(W −n1).∆ = ω∆ and ω∆ ` A from ∆ ` A, we have ω(W −n1) ` (A,A, r).
Thus,

(R′A,R′A) ∈ EJαKW ′

where W ′ = {α Z⇒ (A,A, r)} ] ω(W − n1). Since R′A −→n2 R and n2 = n − n1 < W ′.n and W ′ w W ′ by
Lemma 111, we have

(R,R) ∈ RJαKW ′ − n2 .

However, the relational interpretation r returns the empty set for any world, so there is a contradiction.

Lemma 148. If Γ1,Γ2 ` R : ∀α.A, then ωΓ1,Γ2 ` R : ∀α.A.

Proof. Straightforward by induction on the derivation of Γ1,Γ2 ` R : ∀α.A.

Lemma 149. Suppose that ∆ ` M : A and ∆ � ρ and ∀α ∈ dom(ρ) ∩ dom(∆). α0 ∈ ∆.

1. M  M ′ implies ρfst(M )  ρfst(M
′) and ρsnd(M )  ρsnd(M ′).
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2. M −→ M ′ implies ρfst(M ) −→ ρfst(M ′) and ρsnd(M ) −→ ρsnd(M ′).

Proof.

1. By case analysis on the reduction rule applied to derive M  M ′. It is easy to prove the conclusion if
M  M ′ is derived by the rules other than (R Closing).

Consider the case that M  M ′ is derived by (R Closing). Then, M = Λ◦〈β, !R 〉 and M ′ = !Λβ.R for
some β and R (i.e., Λ◦〈β, !R 〉  !Λβ.R is derived). Since ∆ ` Λ◦〈β, !R 〉 : A, we have

• ∆ = ∆1, β
1,∆2,

• A = !∀β.B , and

• ∆1, β
0,∆2 ` !R : !B

for some ∆1 and ∆2. β1 ∈ ∆ and the assumption ∆ � ρ implies β 6∈ ftv(ρ). β1 ∈ ∆ and the assumption
∀α ∈ dom(ρ) ∩ dom(∆). α0 ∈ ∆ implies β 6∈ dom(ρ). Thus, we have

• ρfst(M ) = Λ◦〈β, !ρfst(R) 〉  !Λβ.ρfst(R) = ρfst(!Λβ.R) and

• ρsnd(M ) = Λ◦〈β, !ρsnd(R) 〉  !Λβ.ρsnd(R) = ρsnd(!Λβ.R).

2. Straightforward by induction on the derivation of M −→ M ′.

Definition 32 (Normalizing Terms). A term M is normalizing if and only if the evaluation of M and that of any
term derived from M by applying operations allowed on its type (e.g., type substitution, result substitution, type
application, and term application) terminate.

Example 2 (Free Theorem for the Polymorphic Identity Type). Suppose that terms M1 and M2 are normalizing.
If Γ ` M1 : ∀α.α ( α and Γ ` M2 : ∀α.α ( α, then Γ ` M1 � M2 : ∀α.α ( α. Therefore, for any normalizing
term M and typing context Γ, Γ ` M : ∀α.α( α implies Γ ` Λα.λx .x ≈ M : ∀α.α( α.

Proof. Let (W , ς) ∈ GJΓK. It suffices to show that

(M1,M2)W ∈ EJ∀α.α( αKW .

Since M1 and M2 are normalizing, W .ρfst(M1) −→n11 R11 and W .ρsnd(M2) −→n21 R21 for some n11, n21, R11,
and R21. Let W1 wW such that n11 < W1.n. By the definition of E , it suffices to show that

(R11,R21)W1
∈ RJ∀α.α( αKW1 − n11 .

Suppose that

• W2 wW1 − n11,

• ωW2 ` (A1,A2, r), and

• {α}#ωW2,

for some W2, A1, A2, and r. Then, it suffices to show that

(R11 A1,R21 A2)ωW2
∈ EJα( αK {α Z⇒ (A1,A2, r)} ] ωW2 .

Since M1 and M2 are normalizing, we have W2.ρfst(R11) A1 −→n12 R12 and W2.ρsnd(R21) A2 −→n22 R22 for some
n12, n22, R12, and R22. Let W3 w {α Z⇒ (A1,A2, r)} ] ωW2 such that n12 < W3.n. Then, it suffices to show that

(R12,R22)W3
∈ RJα( αKW3 − n12 .

Suppose that

• W4 wW3 − n12,
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• (W41,W42) cW4,

• W41 wW4, and

• (R′1,R
′
2) ∈ RJαKW42

for some W4, W41, W42, R′1, and R′2. Then, it suffices to show that

(R12 R′1,R22 R′2)W4
∈ EJαKW4 .

Since (R′1,R
′
2) ∈ RJαKW42, we have (R′1,R

′
2) ∈ W42.ρ[α](IW42). Since W42.ρ = W4.ρ and W4 w W3 − n12 w

W3 w {α Z⇒ (A1,A2, r)} ] ωW2, we have (R′1,R
′
2) ∈ r(IW42) by Lemmas 110 and 138.

Since M1 and M2 are normalizing, we have W4.ρfst(R12) R′1 −→n13 R13 and W4.ρsnd(R22) R′2 −→n23 R23 for
some n13, n23, R13, and R23. Let W5 wW4 such that n13 < W5.n. Then, it suffices to show that

(R13,R23)W5
∈ RJαKW5 − n13 .

Since W5 − n13 wW5 wW4 w {α Z⇒ (A1,A2, r)} ] ωW2, it suffices to show that

(W5.ρfst(R13),W5.ρsnd(R23)) ∈ r(IW5)

by Lemmas 110 and 138. Since W5 wW4 wW42 by Lemmas 118 and 110, monotonicity of the relational interpre-
tation r implies that it suffices to show that

(R13,R23) ∈ r(IW42) .

In what follows, let i ∈ {1, 2}. Let R′11 = W2.ρfst(R11) and R′21 = W2.ρsnd(R21) and n0 be the maximum
number between n11 + n12 + n13 + 1 and n21 + n22 + n23 + 1. Let W02 = (n0, W2.∆, W2.ρ). We have ωW2.∆ `
R′i1 : ∀α.α ( α by Lemmas 148 and 34. Thus, ωW2.∆ ` R′i1 � R′i1 : ∀α.α ( α by Theorem 5. Since
(ωW02, ∅) ∈ GJωW2.∆K, we have

(R′i1,R
′
i1) ∈ RJ∀α.α( αKωW02

by the definition and Lemma 113. Since W4 w {α Z⇒ (A1,A2, r)} ] ωW2, there exists some W ′
4 such that

• W ′
4 w ωW2 and

• W4 = W ′
4.ρ({α Z⇒ (A1,A2, r)}) ]W ′

4

by Lemma 138. Since (W41,W42) cW4, there exist some W ′
41 and W ′

42 such that

• W41 = W ′
4.ρ({α Z⇒ (A1,A2, r)}) ]W ′

41,

• W42 = W ′
4.ρ({α Z⇒ (B1,B2, r)}) ]W ′

42, and

• (W ′
41,W

′
42) cW ′

4.

Let

• W ′
i4 = (n0 − ni2, W ′

4.∆, W ′
4.ρ),

• W ′
i41 = (n0 − ni2, W ′

41.∆, W ′
4.ρ),

• W ′
i42 = (n0 − ni2, W ′

42.∆, W ′
4.ρ),

• A′1 = W42.ρfst(A1), and

• A′2 = W42.ρsnd(A2).

Further, Let ri be a function that maps a well-formed world W to a set

{ (να1. (ρ ]W ).ρfst(R
′
i), να2. (ρ ]W ).ρsnd(R′i)) | ∃β, γ1, γ2. {α1} = {β, γ1} ∧ {α2} = {β, γ2} ∧

{γ1, γ2}#(ρ ]W @β) ∧ ρ ]W @β wW ′
i42 ∧

({β} ∪ dom(ρ)) # ftv(A′i) } .

We show that ri ∈ RelωW ′
i4.n[A′i ,A

′
i ]. In the proof of it, let
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• ρ and β such that ({β} ∪ dom(ρ)) # ftv(A′i),

• W be a world such that `W and ρ ]W @β wW ′
i42,

• γ1 and γ2 such that {γ1, γ2}#(ρ ]W @β),

• α1 and α2 such that {α1} = {β, γ1} and {α2} = {β, γ2}, and

• (να1. (ρ ]W ).ρfst(R
′
i), να2. (ρ ]W ).ρsnd(R′i)) ∈ ri(W ).

Let’s go to the proof.

• We show that ri(W ) ∈ P(Atomres [W .∆,W .ρfst(A
′
i),W .ρsnd(A′i)]).

It suffices to show that

– W .∆ ` να1. (ρ ]W ).ρfst(R′i) : W .ρfst(A
′
i) and

– W .∆ ` να2. (ρ ]W ).ρsnd(R′i) : W .ρsnd(A′i).

Since (R′1,R
′
2) ∈ r(IW42) and W42.∆ = W ′

42.∆ = W ′
i42.∆, we have

W ′
i42.∆ ` R′i : A′i .

Since ρ ]W @β wW ′
i42, there exists some ρ0 such that

– ` ρ ]W @β,

– (ρ ]W @β).∆, †(ρ0) Ï W ′
i42.∆,

– (ρ ]W @β).ρ = ρ0 ◦W ′
i42.ρ, and

– W ′
i42.∆ � ρ0.

Since (ρ ]W @β).∆, †(ρ) Ï W ′
i42.∆, there exists some ∆1 and ∆2 such that

(ρ ]W @β).∆, †(ρ) = (W ′
i42.∆ + ∆1),∆2 .

Thus, there exist some ∆421, ∆422, ∆11, ∆21, and ∆22 such that

– W ′
i42.∆ = ∆421, ω∆422,

– ∆1 = ∆11, ω∆422,

– ∆2 = ∆21, ω∆22,

– (ρ ]W @β).∆ = (∆421 + ∆11),∆21, and

– dom(ρ0) = dom(ω∆422, ω∆22).

Thus, we have
∆421, ω∆422 ` R′i : A′i .

By Lemma 20,
∆421, ω∆422, ω∆21 ` R′i : A′i .

Since ` ρ ]W @β, we have

∀α′ ∈ dom(ρ0). (ρ ]W @β).∆ ` ρ0fst(α
′) ∧ (ρ ]W @β).∆ ` ρ0snd(α′) .

Thus, with W ′
i42.∆ � ρ0, we have

– ∆421, ω∆21 ` ρ0fst(R
′
i) : ρ0fst(A

′
i) and

– ∆421, ω∆21 ` ρ0snd(R′i) : ρ0snd(A′i).

Since α′ ∈ dom(W ′
i42.ρ) does not occur in R′1, R′2, A′1, nor A′2 by Lemma 114, noting that ρ0 ◦W ′

i42.ρ =
(ρ ]W @β).ρ, we have

84



– ∆421, ω∆21 ` (ρ ]W @β).ρfst(R
′
i) : (ρ ]W @β).ρfst(A′i) and

– ∆421, ω∆21 ` (ρ ]W @β).ρsnd(R′i) : (ρ ]W @β).ρsnd(A′i).

Since dom(ρ) # ftv(A′i), we have

– ∆421, ω∆21 ` (ρ ]W @β).ρfst(R
′
i) : W .ρfst(A′i) and

– ∆421, ω∆21 ` (ρ ]W @β).ρsnd(R′i) : W .ρsnd(A′i).

By Lemmas 20 and 25,

– (W @(β, γ1)).∆ ` (ρ ]W @β).ρfst(R′i) : W .ρfst(A
′
i) and

– (W @(β, γ2)).∆ ` (ρ ]W @β).ρsnd(R′i) : W .ρsnd(A′i).

Since {β} # ftv(A′i) and {β}#W and ` W , we have ∀β′ ∈ {β}. β 6∈ ftv(W .ρfst(A′i)) ∪ ftv(W .ρsnd(A′i)).
Further, {γ1, γ2}# dom(∆421, ω∆21) implies {γ1, γ2}# (ftv(W .ρfst(A

′
i)) ∪ ftv(W .ρsnd(A′i))) by Lemma 18.

Thus, we have the conclusion

– W .∆ ` να1. (ρ ]W @β).ρfst(R
′
i) : W .ρfst(A′i) and

– W .∆ ` να2. (ρ ]W @β).ρsnd(R′i) : W .ρsnd(A′i)

by (T Nu).

• Monotinicity. Let W ′ wW . We show that

(να1. (ρ ]W ).ρfst(R
′
i), να2. (ρ ]W ).ρsnd(R′i))W ′ ∈ ri(W

′) .

Without loss of generality, we can suppose that dom(ρ)#W ′ and {β}#W ′ and {γ1, γ2}#W ′. Then, by
Lemmas 130, 137, and 110, we have ρ ]W ′@β w ρ ]W @β wW ′

i42. Thus, we have

(να1. (ρ ]W ′).ρfst(R′i), να2. (ρ ]W ′).ρsnd(R′i)) ∈ ri(W ′) .

By Lemma 114, we have the conclusion.

• Irrelevance. Let W ′ and ρ′ such that W = ρ′ ]W ′ and dom(ρ′) # ftv(A′i). We have

(να1. (ρ ] (ρ′ ]W ′)).ρfst(R
′
i), να2. (ρ ] (ρ′ ]W ′)).ρsnd(R′i)) ∈ ri(ρ

′ ]W ′) .

Since dom(ρ′) # ftv(A′i), we have

(να1. ((ρ ] ρ′) ]W ′).ρfst(R′i), να2. ((ρ ] ρ′) ]W ′).ρsnd(R′i)) ∈ ri(W
′) .

Thus, we have the conclusion.

• Let W ′ and α′ such that W = W ′@α′ and {α′}# ftv(A′i) and `W ′. We have

(να1. (ρ ] (W ′@α′)).ρfst(R
′
i), να2. (ρ ] (W ′@α′)).ρsnd(R′i)) ∈ ri(W

′@α′) .

Since {α′}# ftv(A′i), we have

(να′. να1. (ρ ]W ′).ρfst(R′i), να
′. να2. (ρ ]W ′).ρsnd(R′i)) ∈ ri(W

′) .

• Let α′ such that {α′}#W . Without loss of generality, we can suppose that {α′}# (dom(ρ) ∪ {β}). Then,
we have

– (να′. να1. (ρ ]W ).ρfst(R
′
i), να2. (ρ ]W ).ρsnd(R′i)) ∈ ri(W ) and

– (να1. (ρ ]W ).ρfst(R′i), να
′. να2. (ρ ]W ).ρsnd(R′i)) ∈ ri(W ).

Thus, we have ωW ′
i4 ` (A′i ,A

′
i , ri). Now, we have the following.

• (R′i1,R
′
i1) ∈ RJ∀α.α( αKωW02.
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• ωW ′
i4 w ωW02 because ωW ′

4 w ωW2 by Lemmas 112 and 5 with W ′
4 w ωW2.

• ωW ′
i4 ` (A′i ,A

′
i , ri), and

• {α}#ωW ′
i4.

Thus, we have
(R′i1 Ai ,R

′
i1 Ai)ωW ′

i4 ∈ EJα( αK {α Z⇒ (Ai ,Ai , ri)} ] ωW ′
i4 .

Since we have found R′i1 Ai −→ni2 Ri2, we have

• ωW ′
i4.ρfst(R

′
i1) Ai −→ni2 ωW ′

i4.ρfst(Ri2)

• ωW ′
i4.ρsnd(R′i1) Ai −→ni2 ωW ′

i4.ρsnd(Ri2)

by Lemma 149 with ωW ′
i4 w ωW02. Thus,

(Ri2,Ri2)ωW ′
i4
∈ RJα( αK (({α Z⇒ (Ai ,Ai , ri)} ]W ′

i4)− ni2)

by the definition of E with W ′
i4 w ωW ′

i4 by Lemma 118. We have the following.

• {α Z⇒ (Ai ,Ai , ri)} ]W ′
i4 w {α Z⇒ (Ai ,Ai , ri)} ]W ′

i4 by Lemma 111.

• ({α Z⇒ (Ai ,Ai , ri)}]W ′
i41, {α Z⇒ (Ai ,Ai , ri)}]W ′

i42) c {α Z⇒ (Ai ,Ai , ri)}]W ′
i4 from (W ′

41,W
′
42) cW ′

4.

• {α Z⇒ (Ai ,Ai , ri)}]W ′
i41 w {α Z⇒ (Ai ,Ai , ri)}]W ′

i4 by Lemma 137 with W ′
i41 wW ′

i4, which is implied
by W ′

41 w W ′
4; W ′

41 w W ′
4 is implied by Lemma 138 with W ′

4.ρ({α Z⇒ (A1,A2, r)}) ]W ′
41 = W41 w W4 =

W ′
4.ρ({α Z⇒ (A1,A2, r)}) ]W ′

4.

• (R′i ,R
′
i) ∈ RJαK {α Z⇒ (Ai ,Ai , ri)}]W ′

i42 because we can find that ({α Z⇒ (Ai ,Ai , ri)} ]W ′
i42).ρfst(R

′
i) =

({α Z⇒ (Ai ,Ai , ri)} ]W ′
i42).ρsnd(R′i) = R′i by {α}# ftv(R′i) and Lemma 113.

Thus, we have
(Ri2 R′i ,Ri2 R′i)W ′

i4 ∈ EJαK {α Z⇒ (Ai ,Ai , ri)} ]W ′
i4 .

Because type substitution does not change the number of evaluation steps, we can find that W ′
i4.ρfst(Ri2) R′i

terminates by ni3 steps. We have had W ′
i4.ρfst(R12) R′1 −→n13 R13 and W ′

i4.ρsnd(R22) R′2 −→n23 R23. Since
{α Z⇒ (Ai ,Ai , r)} ]W ′

i4 wW ′
i4 wW ′

i42 by Lemmas 118, 139, and 110, the definition of R at α implies

Ri3 = ναi . (ρi ] {α Z⇒ (Ai ,Ai , ri)} ]W ′
i4).ρfst(R

′
i)

for some αi and ρi such that there exist some βi and γi such that

• {αi} = {βi , γi},

• {γi}#(ρi ] {α Z⇒ (Ai ,Ai , ri)} ]W ′
i4@βi),

• ρi ] {α Z⇒ (Ai ,Ai , ri)} ]W ′
i4@βi wW ′

i42, and

• ({βi} ∪ dom(ρi)) # ftv(A′i).

Since W ′
i42.∆ ` R′i : A′i , we have ftv(R′i) ⊆ dom(W ′

i42.∆) = dom(W ′
i4.∆). Thus,

Ri3 = ναi .W
′
i4.ρfst(R

′
i) .

Further, by Lemma 113,
Ri3 = ναi .R

′
i .

Since {βi}#({α Z⇒ (Ai ,Ai , ri)} ]W ′
i4) and {γi}#({α Z⇒ (Ai ,Ai , ri)} ]W ′

i4), we have {αi} = {βi , γi}#W42.
Since (R′1,R

′
2) ∈ r(IW42), we have the conclusion

(να1.R
′
1, να2.R

′
2) ∈ r(IW42)

by the fourth condition of Reln on r.
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