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1 Organization

This material provides the full definitions, auxiliary lemmas, and proofs that are omitted in our paper “CPS
Transformation with Affine Types for Call-By-Value Implicit Polymorphism” at ICFP 2021. This is organized as
follows.

Section [2| presents the definitions. Section defines our CPS target language A°P°" and contextual equivalence
of it. Section defines Curry-style CBV System F, referred to as A\Y in the paper. This section also provides a
family of CBV full reductions and parallel reduction. Note that the CBV full reduction F==-3,, in the paper is
described as =g, ,, in this material. Section [2.3| presents the following transformations. Section provides our
CPS transformation from AY to A°P°" (shown in Section 5 in the paper). Section m provides the full definition
of a variant (- of Plotkin’s CBV CPS transformation for the untyped A-calculus [I]. Section defines type
erasure erase from A°P°" to (untyped) AY. Section [2.4]defines the logical relation (shown in Section 6 in the paper).

Section [3] provides the full proofs of the properties shown in the paper. Section [3.1] proves type soundness of
A°Pe? (Theorem |1)) with progress (Lemma and subject reduction (Lemma [40)). Section proves the properties
concerning the reduction relations for AY. Note that Lemma 6 in the paper is shown as a corollary of Lemmas
and [64] in this section. Section proves the properties concerning type erasure erase. Theorem [2] shows
its meaning preservation property. Section proves the type and meaning preservation properties of our CPS
transformation from Y to A°P°" in Theorems [3| and {4} respectively. Section proves the Fundamental Property
(or, parametricity) of the logical relation (Theorem|5)) and soundness of the logical relation with respect to contextual
equivalence (Theorem @ Section addresses a few partial free theorems.



2 Definition

2.1 A°Pe?; CPS Target Language
2.1.1 Syntax
Variables z,vy,z,f,k Type variables «, [,y

Base types ::= bool | int | ...
Types A,B,C,D s=a|t|A— B|Va.A|lA
Constants ¢ = true | false |0 | + | ...
Terms M s=a || Az M| My My | 'M | let!le = My in Mo |
va.M | N{a,M) | Aa.M | M A
Values V s=c| .M |!R|Aa.M
Results R =V |vaR
Extrusion contexts E == [| Ry | X(e, [])] [] 4
Evaluation contexts F = [| My | Ry [] |letlz = [Jin Mz | A(a, []) ][] Alve. []|!]]

Program contexts C [ A2.C|CMy | M;C|!C|let!lz =Cin My |letlz = MyinC |
va.C|A{(a,C)| Aa.C|CA
Uses = =0]1|w

Typing contexts T 2=0|T,z:™ A|T,a"

Convention 1. We write I'1,T's for the concatenation of T'y and T's. We use metavariable A for denoting typing
contexts that consist only of a.

Convention 2. We write va. M for vay. - -va,. M when & = ay, -+, ay,.

Definition 1 (Free variables and substitution). The sets ftv(A), ftv(M), and ftv(E) of free type variables in a type
A, a term M, and an evaluation context E are defined in a standard manner, respectively. The set fo (M) of free
variables in a term [M)] is also defined ordinarily.

Type substitution B[A/a] of A for a in B and term substitution M[M'/z] of M’ for free variable x in M are
defined in a capture-avoiding manner as usual. The notable point of type substitution is that (A°{5, M ))[A/a] is
defined if and only if B[A/a] = ~ for some type variable v (i.e., B is mapped to v by [A/a] or B # «) and, then,

° def o
N(B, M)[A/a] = K(v, M[A/a]).
Definition 2. The set of uses {0,1,w} forms a commutative monoid equipped with an binary operation + such
that:

e 0+wm=mw+0=m for any w;
e wt+T=n+4+w=w for any 7; and
e 1+1 = w.

We write m1 < wo and 7o > w1 if and only if 7 + 7 = my for some 7.
We also define the predicate I'y < T's as the smallest relation satisfying the following rules.
Flgrg 7T1S7T2 F1SF2 7T1§7T2 7T27éw
D<o Mi,z:™ A<Tqy,z:™ A I',a™ <Ty, a™

Definition 3 (Adding uses). Given a sequence of type variables @, 1@ is a typing context obtained by adding the
use 1 to each type variable in &@. Formally, it is defined by induction on @, as follows.

1( )

)
1(@, B)
Assumption 1. We suppose that each constant c is assigned a closed first-order type ty(c) of the form 11 — ... —o
tn —o tnt1. We also suppose that, for any ¢, there is the set K, of constants of v. For any constant c, ty(c) = ¢ if
and only if ¢ € K,. The function { gives a denotation to pairs of constants. In particular, for any constants ¢; and
ca: (1) ¢(c1, ca) is defined if and only if ty(c1) = 1o — A and ty(cz) = o for some 1y and A; and (2) if {(c1, c2)
is defined, ((c1, c2) is a constant and ty(¢(c1, c2)) = A where ty(c1) = 1o — A.

def o _
= 1o,5"



Reduction rules

¢ (va.c2) ~ wva.((c,c2) (R-CONST)
(A.M)R ~» M[R/x] (R_-BETA)
let!lz =va.!RinM ~» M[va.R/x] (R-BANG)
N{a,!R) ~~ lAa.R (R_CLOSING)
(Aa. M)A ~ MJ[A/q] (R-TBETA)
Evaluation rules My, — My
My ~ My M, — M, a & ftu(E)
—— E_ E_E E_E
M b, CREP E[M)] — E[M)] VAL Ejva. R] — va.ER] X

Figure 1: Semantics.

2.1.2 Semantics
Definition 4. Relations My — My and My ~ My are the smallest relations satisfying the rules in Figure [1]

Definition 5 (Multi-step evaluation). Binary relation —* over terms is the reflexive and transitive closure of
—.

Definition 6 (Nonreducible terms). We write M —/~ if and only if there is no M’ such that M — M.

2.1.3 Type System

Definition 7. Given a typing context I', Wl is a typing context obtained by induction on I' as follows.

wl ey

wl z:“ A) e wl,z:“ A

wl,z:™4) ¥ whzPA (ifr #w)
w(l,a™) LT, a®

Definition 8. Given a typing context T, its domain dom(T) is defined by induction on T' as follows.

dom,(0) = 9
dom(T,z :™ A) Lo {z} U dom(T)

dom(T", ™) L {a} U dom(T)

Definition 9. Given typing contexts I'y and I's, their merging typing context I'y + I's is defined as follows.

0+0 def g
Tz A)+ e m A) (T 4Tz 07 4
(Fl,aﬂ1)+(1—‘27a7"2) déf (F1+1—\2)7a7r1+7r2 (Z'f7T1+7T2 # OJ)

Definition 10. We view I' as a function that maps a variable to a type. T'(x) = A if and only if x ™ A € T for
some ™ # 0.

Definition 11. Well-formedness of typing contexts & T is the smallest relation satisfying the rules at the top of
Figure [§  Well-formedness of types under typing contexts I = A holds if and only ftv(A) C dom(T). Typing
judgment T'H M : A is the smallest relation satisfying the rules at the bottom of Figure [3



Well-formedness rules

FD THFA z ¢ dom(T)

—  WF_EwmMmPTY

= FD,z:" A

Typing rules

FT

Tro (e VAR

Iz:'A-M:B

TF ool A o5 0B

FT wI'FM: A
I'HIM: 1A
Fa't-M:A THA

T'Fva. M: A

T_BANG

T_Nu

FT' wlLba®-M: A

I'Aa.M :Va.A T-TAps

FT' a g dom(l) 7 #w

WEF_VAR WF_TYVAR
FT, a7
-r T_ConNs
—_ _ T
Tk c:ty(e)
Fll—MliA—OB PQ}_MQZA
T_App
F1+F2|_M1M2:B
Fll_Mlt!B Fg,xle}_MgiA TL BANG
_LETBAN
P1+F2}_|et!$:MlinM22A
Fl,ao,I‘Q}—M:!A T GEN
T,al, Ty Ko, M) : Wad —F
I'EM:Va.B THA
T_TAPpp

' MA: B[A/q]

Figure 2: Type system.

2.1.4 Contextual Equivalence

Definition 12. A context typing judgment C: (T A) ~ (I" = A’) is the smallest relation satisfying the inference
rules in Figure [3

Definition 13 (Contextual Equivalence). Contextual equivalence T' = My =~ Mo @ A is the formula that states
that (1) T F My : A, (2) T+ My : A, and (3) for any base type ¢, constant ¢ of v, program context C such that
C:(THA) ~ 0k, C[M] —* vag. c for some a7 if and only if C[Ms] —* vag. ¢ for some .



Context typing rules ’(C (CEA)~ (T A)

C:(THA)~ (I",z:* A+ B

T_H T_
T @A) — @ ra C1-How N (OF A (T F A =B O L-ABS
C:TFHA) ~ T\ FA —B") THLFM: A
( )~ (I'] ) Ty M OT_Appl
Cll: (TF A) = (T, 1 T4+ B)
I M :A — B C:(TFA)~ (I 4) T/ C: (T F A) ~ (wI' - A7)
T_AprPpP2 T_
M,C:(TF A) = (T, + T, F BY) CT-Arp IC: (TF A) — (I' F 1A CT-Bane
C:(TFA)~ T\ H!B) ThoBFM:A OT LETB 1
letlz = Cin My - (T F A) w (I, + T, F A7) —LBTBANG
MEM:!'B C:(T'FA)~ Thz¥BFA) OT LetB 5
letlz = My inC : (I F A) ~ (I, + T} F A —LETBANG
C:(TFA)~ (o' FA) kA C:(T'F A) ~ (T, a0 T} 14/
( )~ (I, a ) OT Nu ( )~ (I', 0, T% ) OT_GEN
va.C: (THA)~ (I"F A7) N(a,C): (TF A) ~ (T),at,Th - Va. A7)
FD A e ) CHCEA) - (EYaB) TRA
_ B _
Aa.C: (T F A) —~ (I' F Vo A7) CA - (TF A) — (I' F B'[A"/a)) P

Figure 3: Typing of contexts.



Reduction rules €1 ~R €

1 c2 ~5 C(er, c2) (Az.e) w ~g, e[w/z] Az.wz)~y w (z & fo(w))

Evaluation rules el —>F €3

er~p ez NeE{0,3,} e1 —rp e €2 —F €
e —F €2 €1 e —F e{ €2 wy €2 —F Wy eé
Parallel reduction rules
e] 35 € w); Sg W e {X
P_REFL 1 TR =2 S B R P_BETA
ege (Az.e1) wy Sy ex{wn/z]
W g W L v (w e {X § e {R
1 Sxwe o & folw) me € R} o () P_DELTA
AT.w T g W c1 ¢ ~5 (e, e2)
e 33 € e11 =g € €19 3 €
AR b oagg 11 3x €21 €12 =y €22 P App
AT.e1 Sx AT.e2 €11 €12 3R €21 €22

Figure 4: Semantics.

2.2 \": Curry-style CBV System F
2.2.1 Syntax

Types T s=alv|n = | Var
Terms e n=z|c|Az.e] e e
Values w s=x|c|Az.e
Contexts C =[] | C|Ce]| e

Typing contexts © :=0|0,z:7|0,«

Definition 14 (Free variables and substitution). Free type variables in a type and free variables in a term are
defined in a standard manner. We write ftv(r) for the set of free type variables in a type T and fv (e) for the set
of free variables in a term e. Type substitution Ti[T2/a] of 7o for free type variable o in 71 and term substitution
e1]ea/x] of ex for free variable x in e, are defined in a capture-avoiding manner as usual.

2.2.2 Semantics

Definition 15 (Reduction symbol). The metavariable R ranges over reduction symbols of By, 1,, and 6. We write
Ny --- R, for the sequence of the symbols Ry, --- R, and abbreviate it to N simply. We also write {R} for viewing
the sequence N as a set by ignoring the order.

Definition 16 (Reduction). The reduction relation ~»y, indexed by the reduction symbol R, is a binary relation
over terms in N defined by the rules at the top of Figure .

Definition 17 (Evaluation). The evaluation relation —p is a binary relation over terms in AY and defined as the
smallest relation that satisfies the rules at the middle of Figure |Z| We write: e; — %! ey if and only if e; = ey
or e —p ea; €1 —p=2 ey if and only if (1) e = ez, (2) e1 —F €2, or (3) g —F € and e — ey for some e;
and e—~ r if and only if there exists no term e’ such that e —p e'. We write —%. for the reflexive, transitive
closures of — .

A term e gets stuck if and only if there exists some €’ such that: (1) e —5 €/, (2) =~ p, and (3) €' is not a
value.



Well-formedness rules

FO ©OF71 z & dom(©) FO a¢ dom(©)
() FOz:7 F O«
Typing rules
F o F o O,z:1 F e:my
OF z:0(x) OF c:ty~(c) Ok Are:m > 7
OFe:mm—>m OFe:m O,ake:T OFe:Varn, OFn
OF ee:m O F e:Var O F e:mn/q]

Figure 5: Type system.

Definition 18 (Full reduction). We define full reduction =y indezxed by X, which is a binary relation over terms
in Ay, by: e1 =y ez if and only if there exist some C, e, and ey such that ey = Cle]], ea = Clej], and €] ~y €.
We write /=5 for the union of {F=w | X" € {X}}. We write == for the reflezive, transitive closures of .

Definition 19 (Parallel reduction). We define parallel reduction =g indexed by R, which is a binary relation over
terms in A7, as the smallest relation that satisfies the rules at the bottom of Figure . We write :% for the reflexive,

v

transitive closures of 2.

2.2.3 Type System
Definition 20. Given a typing context ©, its domain dom(0©) is defined by induction on © as follows.

dom (0) Loyg
dom(©,z:7) e {z} U dom(©)
dom(0, ) def {a} U dom(O)

Definition 21. We view © as a function that maps a variable to a type. O(z) = 7 if and only if z:7 € O.

Definition 22. We give each constant ¢ a first-order closed type ty=—(c), which is the same as ty(c) given in
Assumption[1] except that type constructor —o is replaced by —.

Definition 23. Well-formedness of typing contexts = © is the smallest relation that satisfies the rules at the top
of Figure @ Well-formedness of types under typing contexts © + 7 holds if and only ftv(r) C dom(©). Typing
judgment © & e : 7 is the smallest relation that satisfies the rules at the bottom of Figure[5



CPS transformation ’ [OFe:7T]=R ‘

"0 wTe® C_VARr —9 C_ConsT
[OFz : 7] = AaXk.klz [OF c¢: ty7(c)] = Aa k.k[c: ty~(c)] -

[©,2:71Fe:w]=R uyisfresh
[OF Az.e : 1 = 1] = Aak.k!(Ay.letlz = yin R)

C_ABs

[OFe : 11 >m]=R [OFe : 7] = Ry =z isfresh

A
[OF e1e: ] = Aa k.Ria(Az.Rea(Ay.letlz =zinzyak)) C-App
0,5k e:
[©.5Fc:7]= R C_TABS
[OF e : VB.7] = Aa kvB. Ra(Az.k A{B,z))
OFe: V5. R ©F
[[ ¢ : VBm] = e C_TApp

[OFe: mn/fl]l = Ac k.Ra(Azletly =zink!(y [m1]v))
Figure 6: CPS transformation.

2.3 Translation

Convention 3. We use a metavariable x for denoting variables or constants.

2.3.1 CPS Transformation: from \Y to A°Pe?

Definition 24. CPS transformations [7] of a type T of terms and [7]v of a type T of values are defined by induction
on T, as follows.

Il % Va([r]y —a) —<a (a¢ fo(r))

], € «

[, =
def
[n—=nl = nl—[n]
Vo] %ef V. [7]v
CPS transformation [O] of a typing context © is defined by induction on ©, as follows.
[0 = 0
[©,z:7] def [e],z : [r]v
[0.0] = [©],a°
CPS transformation [x : 7] of x of a type T is defined by induction on 7, as follows.
De:d =
[x:t— 7] def Az.letly =zinlet!lz =(xy)inAa k.k[z:7]) (where k,z,y,z & fu(x))

Definition 25. CPS transformation [© F e : 7] = V of a typing judgment © &k e : 7 is the smallest relation
satisfying the rules in Figure @ In the rules of Figure@ we assume that k and « are fresh, that is, k,a & dom(0©),
a & ftu(r), and k and « do not occur in e as a free nor bound variable, respectively.

2.3.2 CPS Transformation: from \Y to itself

Definition 26. CPS transformation (x : 7)) of x of a type 7 is defined by induction on 7, as follows.

def
(x:t) = x

e Ar. Ay kE(y: 7)) (xz) (where k,x,y & fo(x))



CPS transformation (e|) of a term e in \Y is defined by induction on e, as follows:

(z) ¥ Xeka

() % Xek(c:ty (o))

(Az.e) % AekAz.(e)

(eres) 2 Mefer) Oz.(e2) Ny.zyk))

where k is a variable that does not occur in e as a free variable nor a bound variable.

2.3.3 Type Erasure: from A°P°® to )\

Definition 27. Type erasure erase is a function that translates terms in A°P°"™ to untyped terms in \Y, defined by
iduction on M as follows.

erase(r) Loy

erase(c) Lo

erase(Az. M) & Az.erase(M)

erase( My Mo) def erase( M) erase(Ms)
erase(!M) def erase(M)

erase(let!z = My in Ms) 2 (Ax.erase(My)) erase( M)
erase(va. M) o erase(M)

erase(A°(a, M )) Lf erase(M)

erase(Aa. M) def erase(M)

erase(M A) def erase(M)

Definition 28. A term M is erasable if and only if, for any subterm Aa.M’' in M, M’ = R for some R.



2.4 Logical Relation

Convention 4. We employ the following conventions.
o For sets Sy and S, we write S1 # So to state that they are disjoint.

o The metavariable p ranges over interpretations, which are mappings that map type variables to triples of the
form (Ala AQa T);

o The metavariable r ranges over relational interpretations, which are mappings that map worlds to sets of pairs
of terms.

e The metavariable ¢ ranges over relational result substitutions, which are mappings that map variables to pairs
of results.

o We write dom(p) (resp. dom (s)) for the set of free type variables (resp. free variables) mapped by p (resp. ).
o We write dom(r) for the set of worlds mapped by r.
o When W = (n, A, p), we write W.n for n, W.A for A, and W.p for p.

e For p1 and py such that dom(py) # dom(ps), we write p1 W py for the mapping that maps a type variable
a € dom(p1) to p1(a) and a type variable o € dom(pa) to pa(a).

o We write pgs; and psng for capture-avoiding type substitutions that map a type variable a in dom(p) to A1 and
Ay when p(a) = (A1, Aa, 1), respectively.

o When p(a) = (A1, Aa, ), we write p[a] for the relational interpretation r.
o We write p%, for an interpretation {a = (W.psi(A), Wopga(A), 1)} for some r.
o We write A1 LAy if and only if Ay + As is well defined.

o We identify typing contexts Ay and Ag up to permutation (i.e., A, o™, ™2 A’ is identical with A, 3™, a™  A’)
for simplifying the technical development. Because A contains only type variables, this identification does not
change typability of terms.

o We write —" for the n step evaluation.

o > o1 As stands for the typing context Ny, + --- + Ay, given a family of typing contexts Ay, - -+, Ay, with a
finite index set of variables I = {x,--- ,z,}. We also write 3 [] ., Ay to existentially quantify Ny, , -+, Ag, .

o dom—1(T") stands for the finite set of variables that are affine in typing context T'.

o We write p(s) for ¢’ such that: dom (") = dom (<); and, for any x € dom (s'), ¢'psi(x) = prsi(Spsi(2)) and
C/snd(z) = psnd(gsnd(x))'

Definition 29 (Logical Relation). A logical relation for A°P¢™ is defined in Figure @ with auxiliary definitions in
Figure[7

10



Atom [A, A17 AQ]

Atom"® [A, Al, Ag]

Atom [W, A]
World,,

Reln[Ah AQ]

(W, Wa) 2 W3
py W

wW

WQaq

S#HW

Wk (A1, Aa, 1)
W

(n+m7A7p)_m

» W
(Ri, R2)w

{(Ml,Mz) |A|_M1 ZAl N A"MQZAQ}
{(R1, R2) | (R1, R2) € Atom [A, Ay, Ao]}
Atom [WAv W'pfst(A)7 Wpsnd(A)]

{(m, A, p) € Nat x TypCtz x (TyVar — Type x Type x Rel,,) |
m < n AF(m, A p}

{r € (W :World,,) = P(Atom"™ [W.A, W.ps (A1), W.pgna(42)]) |
VW..V Wy 3 W, V(RhRg) S ’I“(Wl). (Rl,Rg)W2 € T(Wg)
AY W, p. pd W € dom(r) A dom(p) # ftu(A1) A dom(p) # ftv(42) =
r(pw W) < r(W)
AV W, a. {a} # ftv(41) AN {a} # ftv(A2) N W =
YV (R1, R2) € r(W@Qa). (va. Ry,va. Ry) € r(W)
AY W, a. {a}# W =
V(Rl,RQ) S T’(W) (I/OL.R17R2) € T(W) A (Rl,I/Oz. Rg) € ’I"(W)
}
Ua, 4, Reln[41, Ag]
wA such that dom(A) = dom(p)
{a & (P26 (P15t (), P25na (Prsna (@), prla]) | a € dom(p1)}
p2 ¥ p2(p1)
Uae dom(p) fto(psst (@) U ftv(psna(e))
{a = pla) | a € dom(p) N S}
Va € fto(plaomm) N dom(T). a® € T
A Ag. A = (Ay+A), Ag

FWi AE Wy A Win < Wan A
Jp. (W1.A 1(p)) > WaA A Wip = po Wap A WalA>p

Win = Won = Wan A Wi.A+ Wo.A = Wa. A A Wip= Wap= Wa.p
(W, W.A, pd W.p) (if dom(p)# W)

(W, w(W.A), W.p)

(W.n, (W.A, o), W.p) (if {a}# W)

S # dom(W.A) A S # dom(W.p)

W.AE A AN W.AEF Ay A r € Relw n[41, Ag]

dom( W .p) # dom(W.A) AVa € dom(W.p). W W.p(a)
(n, A, p)

W—-1

( W'pfst(R1)7 W'psnd(RQ))

Figure 7: Objects appearing in logical relation.
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R[] W = {(vay.c,vaz.c) € Atom[W, ]}

Rla] W = W.pa)(»W)
RIA—B]W ' {(R,Ry) € Atom [W,A—o B |[YW' I W.V (Wi, Wo) > W'. Wy I W =
V (R}, Ry) € R[A] Wa. (R, R}, Ry Rb)w+ € E[B] W'}
R[Vo. A] W © {(R1,Ry) € Atom W, Vo A] |V W' 3 W.V By, By, .
wW'F (B, Ba,r) A {a}#wW’' = (R1 B1, Re Ba)uw' € E[A]l{a & (B1,B2,7)} WwW'}
R[IA] W © {(R1,Ry) € Atom [W,!A] | (let!z = Ryinz,let!z = Ryinz) € E[A]wW}
E[A] W C (M, My) € Atom [W,A] [V W' I W.V¥n < W.n. VR

W/'pfst(Ml) —" Ry = 3 R,. W/'psnd(MQ) —* Ry A (Rl,RQ) € R[[A]] (WI— TL)}

g[r] W) 1AL, domy ) A
FWAT>W.p A WA= AJerEdomzl(F) A,
AVa™ e T. (37 >m. o™ € A)V (1 =0 A a € dom(W.p))
AVz:t A €T (se(n),sona(z)) € RIA](W.n, Ay, W.p)
AVz 2 AeT. (st(2) sona(z)) € RIAJwW}

'+ M1 j M2 A = 'k Ml | ANTHE M2 A A V(W,C) c g[[Fﬂ (gfst(Ml),Csnd(MQ))W c EHA]] w

F}_MleQZA = F"MleQZA/\F}_MQlelA

Figure 8: Logical relation.
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3 Proofs

3.1 Type Soundness of A°Pe"

Lemma 1 (Uses as a commutative monoid).
1. m + mo is well defined for any m and ms.
2.0+m=m+0=m7 for any 7.
3. 7+ (me +m3) = (w1 + m2) + 73 for any 71, w2, and 3.
4. m + 7 = o+ m for any m and ws.

Proof. 1. By definition.
2. By definition.
3. By case analysis on 71, w9, and 3.

Case mp = w: m + (me+73) =w=w+ 73 = (w+m) + 75 = (M + m2) + 73.
Case mp = 0: mp + (w2 + 73) = 2 + w5 = (0 + m2) + w5 = (71 + 7m2) + 73.
Casemp = land 1o = w: m + (M +73) =w =w + 73 = (71 + m2) + 73.
Case m = land mg = 0: w1 + (w2 + 73) = 71 + 73 = (M1 + ™2) + 73.

Case my =my =1 and 73 = w: 7 + (M2 + 73) = w = (71 + 72) + 73.

Case m =my =1 and w3 = 0: m1 + (w2 + 73) = M + w3 = (71 + 7m2) + 73.

Casemy=ma=m3=1: m + (m2 + 73) = w = (71 + m2) + 73.

4. By definition.

Lemma 2 (Associativity of merging typing contexts). (I'y +T'2) +T's = I'; + (I's + I's).
Proof. By induction on I's. The cases for I's = I's, z:™ A and I's = T';, o™ rest on Lemma .
Lemma 3 (Commutativity of merging typing contexts). I'y +T's = T's +T7.
Proof. By induction on I'y with Lemma .
Lemma 4. wl'+wl' = I
Proof. Straightforward by induction on I'. The proof depends on the fact that w4+ w = wand 0+ 0 = 0.
Lemma 5. For any T, wwl' = wl'.
Proof. Straightforward by induction on T'.
Lemma 6.
1. If m = w ormy = w, then m; + T = w.
2. if m +mo = 0, then my = mo = 0.
8. Ifmy +mo+ w3 # w, then my + 73 # w and T3 + T3 # w.
4. If t+0 = w, thenm = w.
5. Ifm # 0 norme # 0, then m + 73 = w.
Proof. 1. By definition.
2. Obvious.
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3. By Lemmal[] it suffices to show m1 + 73 # w. Since m + 72 + T3 # w, we can find 1 # w nor 73 # w. If
m = 1 and w3 = 1, then m + 72 + 73 = M2 + (1 + 1) = w, which is contradictory. Other remaining cases
are: m; = land 73 = 0; m; = 0 and w3 = 1; and m; = w3 = 0. In all of the cases, m + 13 # w.

4. Obvious.
5. If 1 = wor my = w, then m + 13 = w. Otherwise, m; = w5 = 1, so we have the conclusion.
O

Lemma 7. (I'1 +Ts), T's+T4) = (I'1,I'3) + (I'2,T4).
Proof. Straightforward by induction on I's. O
Lemma 8. w(I,TV) = wI,wI”.
Proof. By induction on I'. O
Lemma 9. dom(T') = dom(wT).
Proof. Both of the cases are shown by induction on T'. O
Lemma 10. If+- T, then - wl.
Proof. By induction on the derivation of - I' with Lemma [9] O
Lemma 11. IfTy + Ty = T, T%, then there are exist some I'11, T'1a, T'a1, and Tas such that

o 'y = I'11,To,

o 'y = I'gy, [y,

o I =T41 + D91, and

o I'y = T'ia +Tao.
Proof. By induction on T'%. O
Lemma 12. dom(T; +T3) = dom(T'1) = dom(Ts).
Proof. By induction on I'y. O

Lemma 13. IfF Ty + 15, then-T'1 and - Is.

Proof. By induction on I'y with Lemma [12} The case for (WF_TYVAR) relies on (the contraposition of) Lemma [f]
() 0

Lemma 14. IfTy < T, then dom(T'1) = dom(Ts).
Proof. Straightforward by induction on I's. O
Lemma 15. Suppose that I'y < Ts. F Ty if and only if - T's.

Proof. By induction on the derivation of I'y < T'y with Lemma [[4] The right-to-left direction in the case for
I, a™ <TY%,a™ rests on the fact that, if m < 7y and 7y # w, then m # w. O

Lemma 16. IfFTy and T and I'y + 'y is well defined, then - T'1 4+ T's.

Proof. By induction on the derivation of - I'y with Lemma The case for (WF_TYVAR) relies on the fact that,
if (T'1,a™) + (T'2,a™) is well defined, then m + 73 # w. O

Lemma 17. IfT'F M : A, then - T.

Proof. By induction on the typing derivation of I' -+ M : A. The cases for (T_ApP) and (T_LETBANG) rest on
Lemma The case for (T_GEN) rests on Lemma O
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Lemma 18. IfI'- M : A, thenT'+ A.

Proof. By induction on the typing derivation of I' = M : A. The case for (T_ABS) rests on Lemma The cases
for (T_APP) and (T_LETBANG) rest on Lemma[I2] The cases for (T_-BANG) and (T_TABS) rest on Lemmal[9] The
case for (T_GEN) rests on Lemma O

Lemma 19 (Idempotent typing contexts). Let I' be a typing context such that, for any o™ € T', 7 # w. Then,
there exists some I such that T + TV = T.

Proof. We can construct such a IV by f(T") where f is a function defined inductively on T' as follows.

£(0) =
fC,z:™A) = fO),z:
fTam) € AD),al.

It is easy tosee ' + TV = T. O
Lemma 20 (Weakening). Suppose that FT'1,Ts and dom(Iy) N dom(L's) = 0.

1. If+ 11,13, then FT'1,T'9, 5.

2. IfT'1,I'st M : A, thenT'1,T9,T's+ M : A.
Proof. 1. Straightforward by induction on the derivation of F I';,I's with case analysis on I's.

2. By induction on the typing derivation of I'1,I's - M : A.

Case (T_VAR) and (T_CONST): By the case ().
Case (T_ABS), (T_Nu), and (T_TAPP): By the IH(s).

Case (T_APP): Weare given I'g1+Tg2 b My My : A for some gy, T2, My, and My such that T'y, T's = T34+
and M = M; M,. By inversion,

e 'yt M;: B— A and
e 't My: B
for some B. By Lemma [I1] there are I'11, I'12, I's1, and I'sy such that
o I'or = I'11, 31,
o I'go = I'1p, 3o,
e 'y =T'y; +T'9, and
e I's = I'3; +I'so.

We can construct Ty such that T's +T% = T's by Lemma sobF (114 T12), (T2 +T%) from - T'y, T's. Since
(Fll + Flg), (FQ + F/Q) = (F117 Fg) + (Flg, Flz) by Lemma , we have Fll) FQ and F127 F/2 by Lemma
We also find

e dom(T3) N dom(T3;) = 0 and
o dom(T%) N dom(T'sy) = 0
by Lemma [12]and dom(I's) N dom(I'3) = 0. Thus, by the IHs,
o I'\1,I'5,'31 - My : B— A and
o I'12,T), Tz - My : B.
By (T_App),
(T11,T2,T31) + (T'12, 15, T'32) B My My : A.

Since (T'11,T,T31) + (T'12,T%,T32) = I'1, T3, T3 by Lemma [7} we have the conclusion.
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Case (T_BANG): We are given I'1,I's 1M’ : 1A’ for some M’ and A’ such that M = M’ and A = A'. By
inversion,

w(F]_,F?,) H MI : AI.

Since F I'1, Ty, we have - w(['1,T'3) by Lemma By Lemma (8] wl'y,wl's M’ : A" and F wI'1,wls.
Since dom(I'y) N dom(T's) = @, we have

dom(wl3) N dom(wls) = 0

by Lemma [9] Thus, by the IH,
wI‘l,wF%ng = M/ : A/.

By Lemma [§| and (T_BANG),
Fl,Fg,Fg F 'M/ . 'A,

Note that we have - I'1, T2, I's by the case .
Case (T_LETBANG): Similarly to the case for (T_APP).
Case (T_GEN): We are given I'g1,at, Toa = A°(a, M") : Wa. A" for some Tgq, To2, a, M’, and A’ such that
o FlaF3 = ].—‘0170117].—‘02,
e M = N{a,M'"), and
o A = WWa.A
By inversion, Iy, a®, Tgs = M’ : !A’. We perform case analysis on I'1,I's = g1, a*, Tos.
Case I'y = g1, al, T, for some I'fy, such that gy = Ty, ['3: We have
To1,a® Ty, Ts - M 14",
Since - I'y, T'a, we have - Tg1, at, Ty, T'a, so F Loy, a®, Ty, T by Lemma Thus, by the IH,
To1,a% Thy, o, T3 = M 2 1A
By (T_-GEN), we have the conclusion
Toi,at, Ty, To, T3 - N {a, M) : Wa. A,
Case I's = 'y, at, To for some I'fy; such that Iy = I'y,T'(;: We have
F17F61,040,F02 F M’ . 'A/

Since dom(I'2) N dom(T'3) = 0, we have dom(I'2) N dom(Tl;,a® Tps) = @ by Lemma [14 Thus, by
the TH,
Iy, 09,T5y,a% Doa b M A"

By (T_GEN), we have the conclusion
[, T, Thy,at Toa F A (a, M') : Wa. A

Case (T_TABS): We are given I'1,I's - Aa. M’ : Va. A" for some o, M’, and A’ such that M = Aa.M’ and
A = Va.A'. By inversion, - I';,T'3 and w(T'1,T'3),a® = M’ : A’. Since - I'y, Ty, we have - w(T'1,T'2) by
Lemma By Lemma wly,wls,a® = M : A" and  wl'y,wl. Since dom(T'2) N dom(T'3) = 0, we
have

dom(wl'y) N dom(wTl3) = 0

by Lemma [9] Thus, by the IH,
wl,wly, w3, a® - M’ : A'.

By Lemma [§| and (T_TABS), we have the conclusion
[y.T9.Ts F A M’ : Va. A,

Note that we have - I'1,T's,I's by the case .
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Lemma 21. If (T'y +T'y) + '3 is well defined, then so are 'y +T's and T'y + I's.
Proof. By induction on I's.
Case I's; = (: Obvious because I'j =T'y = 0.

Case I's = I'5,z:™ A: We can find Iy = T,z ™ A and I'y = T4,z :™ A for some I'}, T',, 71, and mo, and
(T} 4+ I'y) + I'y is well defined. Thus, by the IH, so are I'} + I'; and I') + I';. By Lemma [I] (), so are
(T, 2™ A) + (T4, 2™ A) and (T, 2 :™ A) + (T4, 2 ™ A).

Case I's = I';,a™: We can find I’y = I'},a™ and I'y = I'y, o™ for some I, I'y, 71, and 7o, and (I'] +T%) + T
is well defined. Thus, by the IH, so are I’} + I'; and I';, + I';. By Lemmal[6] (3)), so are ('}, a™) + (I';, &™) and
(3, ™) 4 (I'y, a™).

0
Lemma 22. IfT'y + Ty <T, then there exist some I} and T such that T = T} +T% and T’y < T and Ty <T%.
Proof. By induction on T'.
Case I' = (: We finish by letting I’} = @ and ', = 0.
CaseI' = IV, z :™ A: Since I'y + 'y < T, there exist some gy, I'g2, 71, and 7o such that
[ ] Fl = F017a: T A,
o 'y = Tgo,:™ A,
e T + 7o STI’, and
o I'oy + T <TV.
By the TH, there exist some I'{;; and I'y, such that
o I = TG + oy,
e I'p; <Tfy, and
o T'gy < T,
If we have 7] and 7} such that
® T S 7T17
o 7y < 7h, and
o T =T+,
then we finish by letting I} = T,z :™ A and Iy = Thy, z :™ A.
We find such 7} and 75 by case analysis on w1 and ms.
Case m; = w or m3 = w: We finish by letting 7} = m and 7 = 75 since 7 = w.
Case m; = 0: We finish by letting 77 = 0 and 75 = 7 since 7o < 7.
Case ma = 0: We finish by letting #j = 7 and 75, = 0 since 7m; < 7.
Case m; = m2 = 1: We finish by letting 7] = 74 = 1 since 7 = w.
Case I' = IV, a™: Since I'y + 'y <T', 7 # w and there exist some Ty, g2, 71, and o such that
L4 Fl = ]_"01’0[71'17
o I'y = Tpg, ™,

o T + T # w,

w1 + 7o < m, and
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o oy + T2 <T.
By the IH, there exist some I'j; and I'j, such that
o IV = F61 +F62»
[ F()l S F61, and
e ['gpp < F62
If we have 7] and 7} such that
o m < 7T£ 7é w,
o my < 7h # w, and
o T = m +7h,
then we finish by letting I, = T;,a™ and I, = Ty, a™.
We find such 7] and 7} by case analysis on 7; and 7.

Case m; = w, mp = w, or m; = 1 and my = 1: Contradictory since my + 7o = w but m; + M2 # w by the
assumption.

Case m; = 0: We finish by letting 7; = 0 and 75 = 7 since o < 7w and 7 # w.

Case ma = 0: We finish by letting 7; = 7 and 75, = 0 since m; < 7 and ™ # w.

Lemma 23. IfT'y,Ts <T, then there exist some T} and T, such that T = T},T% and T1 < T} and Ty <T%,.
Proof. Straightforward by induction on I's. O
Lemma 24. [fI'; <T'g, then wl'y < wls.
Proof. By induction on I'y.
Case I'y = 0: Obvious since I'y = 0.
Case I'y = I'},z ™ A: By inversion of I'; < T'g, there exist some I', and 7y such that

o'y =T% z:™ A,

o I} <T%, and

o 1 < o.

By the TH, wI'] < wI.
If 79 = w, then we have wl'y < wly since wly = wWI'y, ¥ A and WI'Y} < WI',.

Otherwise, if mo # w, then m; # w since 71 < mp. Thus, wl'; = wl', 7 :% A and wl'y = W,z % 4, and we
have the conclusion.

Case I'; = I'{,a™: By inversion of 'y < I'y, there exist some I'y and 72 such that 'y = I'y,a™ and '} <T%. By
the TH, wl'} < wl',. We have wl'; = wI,a® and wl'y = wl'h, a®, and also have wI'},a® < wI'y, a®. Thus, we
have the conclusion.

O
Lemma 25 (Increasing uses). IfT1F M : B and Ty <Tg, then ot M : B.
Proof. By induction on the derivation of the typing judgment for M.

Case (T_VAR) and (T_CONST): By Lemmall5| Note that, for any 71 and mo such that m < mo, if m # 0, w2 # 0
by Lemma |§| .
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Case (T_ABs), (T_NU), and (T_TAPP): By the IH. (The cases for (T_NU) and (T-TAPP) use Lemma [14])

Case (T_App) and (T_LETBANG): We show the case for (T_APP): the case for (T_LETBANG) can be proven
similarly.

We are given FOl +F02 H M1 M2 : B for some Fol, FOQ, Ml, and M2 such that Fl = FOl +F02 and M = Ml MQ.
By inversion, I'g; F My : C — B and I'gs = M5 : C for some C'. Since I'y < I's, we have I'gy + T'go < I's. By
Lemma [22] there exist some I'j; and I'j, such that

o I'y = Ty + 'y,
(] F()l < F61, and
o [y < F62.

By the THs, T'y; = My : C — B and T'{;, - M5 : C. Thus, by (T_APP), we have the conclusion.

Case (T-BANG): We are given I'y - !M’ : | B’ for some M’ and B’ such that M = !M’ and B = !B’. By inversion,
FTy and wl'y = M': B'.

By Lemma FT5. By Lemma wl'; < wly, so, by the IH, wl'ys = M’ : B’. Thus, we have the conclusion by
(T_BANG).

Case (T_GEN): By Lemma the TH, and the fact that 1 <7 and 7 # w imply 7 = 1 for any 7.
Case (T_-TABS): By Lemmas |15 and the IH, and (T_TABS), similarly to the case for (T_-BANG).

Lemma 26. IfT +T" is well defined, then T < T +T".
Proof. Straightforward by induction on I' with the fact that m; < my + mo for any 7 and ms. O
Definition 30. We write 7| T if and only if I' = wI' provided that 7 = w.
Lemma 27.
1. If T,z :™ ATy, then - T1,T5.
2. IfT1,2:9 ATy M : B, thenT1,To - M : B.
Proof. 1. Straightforward by induction on I's.

2. Straightforward by induction on the typing derivation. The cases for (T_VAR), (T_ConsT), (T_-BANG), and
(T_TABs) rest on case (I). Further, the cases for (T_-BANG) and (T_TABS) rest on Lemma [§] as well. The
cases for (T_APP) and (T_LETBANG) rest on Lemma [6] (2).

O
Lemma 28. [fT'; +T's is well defined, so is I'y + wl's.
Proof. Straightforward by induction on I's. The case for I's = Ty, o™ rests on (the contraposition of) Lemma |§|
(- O

Lemma 29. IfTy = wl'y, then w(T'; +T3) = wly + wls.
Proof. By induction on I'y.

Case I'; = 0: Obvious because I's = 0.
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Case Iy = I,z :™ A: We have I'} = wI'|. There exist some I}, and 7o such that 'y = I'y, 2 :™ A.

wli +Ts) = w(T)+T%),z ™7™ A)
= wl +T%),z:™ A (where 7 = w if m; + m2 = w; otherwise, 7 = 0)
= (W'} +wlf),z:™ A (by the IH).

If 1 = wor my = w, then m + 73 = w, so we finish by:

(W' +wlb),z:™ A = (Wl +wly), 2% A = w(l,z:™ A) +w(ly,z:™ A).
Otherwise, if 11 # w nor my # w, then m; = 0 since I'y = wI';. Thus, 7 + 72 = T2 # w, and so @ = 0. Thus,
we finish by:

(W) +wl), 2™ A = (Wl +wlf),z:° A = W@,z :™ A) +w(h, z:™ A).

Case I'y = I'},a™: We have I'j = wI']. There exist some I, and 72 such that I's = T'5, ™. We finish by:

GT1+T2) = wl(T]+T5),am+m)
= w() +T%),a°
= (I} +wl%),a® (by the IH)
= (W, 0™) +w(ly, a™)).

Note that 71 + 712 # w, so m # w and 7y # w by (the contraposition of) Lemma|§| .
O

Lemma 30 (Term substitution). Suppose that T'1q + 1o is well defined. If T'y1 F My @ A and T,z ™ A, Ty
M2 :Bandw ‘ F117 then (Fll + F12)71—‘2 F MQ[Ml/iC] . B.

Proof. By induction on the typing derivation of I'19,2 ™ A,To - My : B.
We first show

By Lemma we have FI'1; and - I'o, 2 ™ A,T's. By Lemma , FT15, 5. By Lemma there exists some
1-\/2 such that FQ + FI2 = FQ. Since Fll + Flg is well deﬁned, we have (Fll + Flg),rz = (Fll + F12)7 (1-\/2 + FQ) =
(T'11,T%) + (T'12,T3) by Lemmas nd We have T'15, Ty < (T'11,T%) + (T'12,T'2) by Lemmas 3| and Thus,
F(T11,T%) + (T'12,T'2) by Lemma so F (T'11 +T2), Ty by Lemmam

We perform case analysis on the typing rule last applied to derive I'yo, 2 :™ A, o+ My : B.

Case (T_VAR): We are given I'15, 2 :™ A,I's F y : B for some y such that My = y and (I'12,2:™ A, T'9)(y) = B.

Suppose that z # y, i.e., Ma[M;/z] = y. Tt is easy to find ((I'11+T12),T'2)(y) = B. Thus, by (1) and (T_VAR),
we have the conclusion
(T11 +T12), T2 Fy: B.

Otherwise, if z = y, then we have Ma[M;/z] = M; and B = A. We have I';; <T'y; + T3 by Lemma SO
I'y1 + T2 F My : A by Lemma By and Lemma , we have the conclusion

(T11 4+ T12),Ta b+ My = A,
Case (T-ConsT): By (1)) and (T_CONST).

Case (T-ABs), (T_Nu), and (T_TAPP): By the IH.

Case (T_ApPP): We are given I'} + T4 = M] My : B for some I}, Ty, My, and M, such that 'y, 2 :™ A, T = T} +T%
and My = M{ Mj. By inversion, I = M{: C — B and I', - M3 : C for some C. By Lemmal[11]

g,z :™ ATy = (T121 +Tig2), (x ™ A+ 2™ A), (T'a1 +Ta2)

for some F121, F122, le, F22, T, and T2 such that
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12 = Ti21 + T2,

& T = T + T,

o I'y = 'y + T,

o I = Tya1,2:™ A, T9y, and

!/ .
[ ] FQ = Flgg,x ;2 A,Fgg.

By Lemmas [3] and 21} T'1; + 191 and T'yy + [iao are well defined since so is T'yy + Tyo.

By case analysis on 7, 71, and .
Case m = w: Since 7 |I'11, we have mq |11 and 79 [T'11. Thus, by the IHs,
(T'11 4+ T121), 091 = M{[My/x]: C — B and
(T11 + T192),Tao F My[My/z] : C.
By (T-APp) and Lemma |7}
(P11 + Tiz1) + (Tux + Ti22)), (To1 + Ta2) = (M My)[My /2]« B.

Since 7 | F11 and T = w, we have Fu = wFH. Thus, (Fll + F121) + (Fll + F122) = F11 + (F121 + F122) by
Lemmas 2] 3] and [ Since T'y2 = T'ia1 + gz and 'y = T'gq + 'ao, we have the conclusion

(T11 + Ti2), To = (M] My)[M, /] : B.
Case m =m; = 1 and mo = 0: We have 71 |I'1;. Thus, by the IH,
(Fll +F121),F21 |— M{[Ml/m} : C — B.

From the inversion of the typing derivation for M, we have I'190, 7 :© A, To9 = My : C. Thus, 192, o2 = My : C

by Lemma , and so
Flgg,rgg = MQ/[Ml/Z] e

because x does not occur free in M4. By (T_APP) and Lemmas [7| and [2] we have the conclusion
(T11 +T12),To b (M{ My)[M:/z] : B.

Case m = o =1 and m; = 0: Similarly to the above case.

Case m = m; = 7o = 0: Since 'y, 7 :° A, T = M{ M} : B, we have I'15,'s - M{ M, : B by Lemma . Since
19,79 < (11 +T'12), Ty as discussed in the beginning of this proof, we have

(Fll + Flg),rz F Ml/ M2/ : B.
by Lemma Since z does not occur free in M{ nor My, we have the conclusion.

Case (T_BANG): We are given I'jo, 2z :™ A,T's F M’ : |B’ for some M’ and B’ such that My = !M’ and B = !B’.
By inversion, - I'1p,z ™ A,T's and w(I'12,z :™ A,T's) = M’ : B’. By Lemma [

’
wlg,z:™ Awly - M : B’
for some 7’ such that: 7’ = w if 7 = w; otherwise, 7 = 0. We perform case analysis on .

Case m = w: Since 7 |T'11, we have I';; = w13 and «' | T'yy. Since T’y + T'yo is well defined, so is I'1; + w12 by
Lemma [28] Thus, by the IH,
(Fll +(UF12),UJF2 - M/[M]_/a?] : B/.

Since I'y; = wl'11, we have
w((F11 + Flz),Fg) |_ M'[Ml/x] : B/.

by Lemmas [29| and |8} By and (T_BANG), we have the conclusion
(Fll + F12),F2 H 'M’[Ml/x] : 'BI
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Case m # w: We have 7’ = 0, so
wlia, 2% A,wls F M’ : B'.

By Lemma ,
wI‘lg,wFQ - MI : B/.

Since - I'1o,z :™ A, T2, we have F I'19, 'y by Lemma . Thus, by Lemma and (T_BANG),
Tyo, Ty 1M ;1B
Since I'12, Ty < (I'11 + T'12), T2, we have
(T11 4 T42), Do 1M 2 1B.
by Lemma[25] Since = does not occur free in M’, we have the conclusion.
Case (T_LETBANG): Similar to the case for (T_APP).

Case (T_GEN): We are given I'}, o, T = A°(a, M") : Wa.C for some I'}, T, a, M’ and C such that I'1p,z :™
ATy = TY,at,Th and My = A°(a, M') and B = Wa.C. By inversion, I'},a®,T% = M’ : 1C. We perform case
analysis on 1o,z :™ A, Ty = '}, o', T%.

Case I'12 = I'},at, T for some I'j: We can find that Ty = I'j,z :™ A, T5. We have
I, T 2™ ATy M :1C .

Since I'11 + 12 = Tyy + (T, at,T%) is well defined, we can find I'1; = T');,a°,T%; for some I'j; and I'/; such
that
Py +The = (Flllv aovrllll) + (Flla ala F/Z/) = (Flll + Fll)’al’ (Fllll + F/Q/) : (2)

It is found that
Fll + (F/D a07rl2/) = (Flllﬂ aO’ F/lll) + ( lhaO,]_-\/Q/) = ( /11 + F/l)a aoa (Fllll + Fg)
is well defined. Thus, by the TH,
(T11 + (1,0, 15)), Dy = M'[M /2] : 1C

i.e.,
(T}, +T9),a°%, (T, +T%),To = M'[M;/z] : 1 C .

Thus, by (T_-GEN),
(T +Th), 0, (P, +15), Dy = A( o, M')[My /2] : Wa.C .

By , we have the conclusion
(Ty1 4+ Ty2),To F A(a, M")[M;/z] : Wa.C .
Case 'y = I'/, o', T for some I'{: We can find that T} = T'12,z:™ A, T7. We have
Tig, 2™ AT, a® T M :1C .

Thus, by the IH,
(P11 +T12), T/, a®, Th = M'[ My /z] : 1 C .

By (T_GEN),
(T1y +T10), T, 0 Th = A, M Y[ My /2] : Wa.C .

Since 'y = I'Y, o, T, we have the conclusion.

Case (T_TABS): Similar to the case for (T_BANG).
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Lemma 31. (I'1[A/a] +T2[A/a]) = (T'1 +T9)[A/q].

Proof. Straightforward by induction on I';. O
Lemma 32. (wI')[A/a] = w(I'[4/q]).

Proof. Straightforward by induction on T'. O
Lemma 33. IfT'1,a°, o+ M : A, then M[B/a] is well defined for any B.

Proof. Straightforward by induction on the typing derivation. The cases for (T_APpP) and (T_LETBANG) rest on
Lemma [6] (2). The cases for (T_-BANG) and (T_-TABS) rest on Lemma The case for (T_GEN) rests on the
assumption that the use given to « is 0. O

Lemma 34 (Type substitution).
1. If Ty = A and - T1,a% Ty, then T, T2[A/al.

2. Suppose that, for any o™ € Ty, 7 = 0. IfT1 F A and T'1,a®, Ty = M : B, then I'1,T2[A/a] - M[A/a] :
B[A/a].

Proof. 1. Straightforward by induction on I's.
2. By induction on the typing derivation of I'y,a®, 'y - M : B. Note that M[A/a] is well defined by Lemma

Case (T_VAR) and (T_CONST): By the case ().

Case (T_ABs), (T_Nuv), and (T_-TApp): By the IH.

Case (T_APP): We are given I'g; + L2 = M{ M} : B for some T'gy, T2, M{, and M, such that T'y,a% Ty =
Lo1+T02 and M = M| M,. By inversion, T'g; = M{ : C — B and T'p2 - Mj : C for some C. By Lemmas
and@ , there exist some I'11, I'12, I'21, and I'sg such that

o 'y = I'1p + 1o,

o 'y = T'o1 + Iag,

e g1 = I'11,00 Ty, and

e Too = I'iz,a%, Ty,
Since I'y A, we have I'y;; H A and I';13 A by Lemma @ We can find that, for any o™ € I'1; or
a™ € I'ig, m = 0 by Lemmal6] (2). Thus, by the IHs, I'11, o1 [A/0] - M{[A/a] : C[A/a] — B[A/a] and
[ya,Tao[A/a] - Mj[A/a] : C[A/a]. By (T-APP) and Lemma [7]

(T11 +T12), (T21[A/a] + Ta2[A/a]) b (M{ M3)[A/a] : B[A/a].
Since Fll + Flg = Fl and (Fgl[A/Oé] + FQQ[A/O(]) = (Fgl + FQQ)[A/Q] = FQ[A/O[} by Lemma we have

the conclusion.

Case (T-BANG): We are given I'1,a% Ty - !M’ : |B’ for some M’ and B’ such that M = !M’ and B = !B’.
By inversion,  T'1,a% Ty and w(I'1,a® Te) = M’ : B’. By the case , F T'y,T2[A/a]. By Lemma
wl'y,a®,wly = M’ : B'. Since wl'; - A by Lemma@ we have wI'y,wla[A/a] = M'[A/a] : B'[A/a] by the
IH. By Lemmas [32) and [8} w(I'1,T's[A/a]) = M'[A/a] : B'[A/a). By (T_-BANG), we have the conclusion

I, Ts[A/a] FIM'[A/a] : \B'[A/q).

Case (T_LETBANG): Similar to the case for (T_APP).

Case (T_GEN): We are given g1, 3, Toa = A°{B, M') : WB.C for some g1, To2, 3, M’, and C such that
I'1,a% Ty = Tgy, B, Too and M = A°(B,M’) and B = VB.C. By inversion, I'gy, 3%, To2 - M’ : ! C.
We perform case analysis on I'1,a®, Ty = Tgq, 81, Too.

Case I'y = gy, 81,1, for some I'y,: This is contradictory with the assumption that o™ € Ty implies
T = 0.
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Case I'y = Ty, B, Loz for some I'y;: We have T'or = I't,a%, Ty, so I't, @, T, 8%, Toa = M’ : 1C. By the
TH,
Iy, 00, [4/a], 8%, Toz[A/a] b M'[A/a)] : 1C[A/al.
Thus, by (T_GEN),
Ty, T [A/a), B4, ToalA/a] - X°(8, M')[A/a] : WB.(C[A/a)).

Since I'; F A, B does not occur free in A. Since a # 3, we have WVG.(C[A/a]) = (IVB.C)[A/a]. Thus,
we have the conclusion.

Case (T-TABs): Similar to the case for (T_-BANG). We are given I'y,a®,T's - AB.M' : V3.B’ for some M’
and B’ such that M = AB.M' and B = Vj3.B’. By inversion, - I'1,a® Ty and w(T'y,a%,T5), 3% - M’ : B'.
By the case , FT,T2[A/a]. By Lemma wl',a®,wly, 8% - M’ : B’. Since wI'; - A by Lemma@
we have wl'y,wl'2[A/a), 8% F M'[A/a] : B'[A/a] by the TH. By Lemmas [32] and [8] w(T'1,T'2[4/a]), 3% F
M'[A/a] : B'[A/a]. By (T_-TABS), we have

Iy, T2[A/a] = AB.M'[A/a] : VB.B'[A]q] .

Since we can assume that 8 # « and 8 ¢ ftv(A) without loss of generality, we have the conclusion.

O
Lemma 35 (Canonical forms). Suppose that T = V : A.
1. If A =+, then V = ¢ for some ¢ such that ty(c) = ¢.
2. If A = B — C, then:
o V = ¢ for some ¢ such that ty(c) = B — C; or
o V = Xx.M for some x and M.
3. If A =Va.B, then V.= Aa.M for some M.
4. If A = 1B, then V = IR for some R.
Proof. Straightforward by case analysis on the typing rule applied last to derive I' = V : A. O

Lemma 36 (Progress). If A+ M : A, then:
e M = R for some R; or
o M — M’ for some M'.

Proof. By induction on the typing derivation of A+ M : A.

Case (T_VAR): Contradictory.

Case (T_ConsT), (T_ABs), and (T_TABS): M is a value.

Case (T_Aprp): We are given Ay + Ag = My My : A for some Ay, Ay, My, and My such that A = A; + Ay and
M = My M>. By inversion, A1 - M; : B — A and Ay F M : B for some B.
By case analysis on the IHs for M; and Ms.

Case My — M for some M{: By (E_EVAL).
Case My = Ry and My — M; for some R; and Mj: By (E_EVAL).

Case My = va. Ry and My = Rs for some a, R, and Rs: By (E_EXTR).

Case My = V7 and My = Ry for some V; and Ry: Since Ay + Vi : B — A, Vi = Az.M] for some z and M/,
or V1 = ¢ for some ¢; such that ty(c;) = B — A by Lemma
If Vi = Az.M, then we have the conclusion by (R_BETA)/(E_RED).
If Vi = ¢y, then, by Assumption[I} B = . for some ¢. Since Ay - Ry : B, we have Ry = va. ¢z for some
@ and ¢y such that ty(c2) = ¢ by Lemma By Assumption |1} {(¢1, ¢2) is well defined. Thus, we have the
conclusion by (R-ConsT)/(E_RED).
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Case (T_BANG): We are given A 1M : IB for some My and B such that M = My and A = !B. By inversion,
wA F My : B. By case analysis on the IH.

Case My — M for some Mj: By (E_BANG).

Case My = Ry for some Ry: We have the conclusion because M = Ry is a value.
Case (T_LETBANG): Similar to the case for (T_APP). This case uses (R_BANG) for reducing M.
Case (T_NU): By the IH and (E_EVAL).

Case (T_GEN): We are given Ay,al, Ay F A°{a, My) : Wa.B for some Ay, A, a, My, and B such that A =
Aot Ay and M = N(a,My) and A = Wa.B. By inversion, Ay, a®, Ay - My : !B. By case analysis on the
IH.

Case My — M for some M;: By (E_EVAL).
Case My = vfB. R for some 8 and R: By (E_EXTR).
Case My = V for some V: By Lemma [35 and (R-CLosING)/(E_RED).

Case (T-TAPP): We are given A - My B : C[B/a] for some My, B, C, and « such that M = My B and A =
C[B/a]. By inversion, A F My : Va.C and A + B. By case analysis on the TH.

Case My — M for some Mj: By (E_EVAL).
Case My = vf. Ry for some  and Ry: By (E_EXTR).
Case My = V for some V: By Lemma [35 and (R-TBETA)/(E_RED).

O
Lemma 37. IfFT,a" A, then T, A.
Proof. Straightforward by induction on A. O
Lemma 38. IfT'y + 1T is well defined, then wl'y +T9 < T'; +T's.
Proof. Straightforward by induction on I';. O

Lemma 39.

1. If Ty, a™,8™ Ty, then F Ty, 872, ™, T'5.

2. IfTy,a™, 8™ To M : A, thenT'1,5™,a™ ,To - M : A.
Proof. 1. Straightforward by induction on I's.

2. Straightforward by induction on the typing derivation. The cases for (T_VAR), (T_-ConsT), (T_BANG), and
(T_TABs) rest on case (I). Further, the cases for (T_BANG) and (T_TABS) rest on Lemma [§] as well. The
cases for (T_APP) and (T_LETBANG) rest on Lemma 6] (2)).

O

Lemma 40 (Subject reduction).
1. If AF My : A and My ~ Ms, then A+ My : A.
2. If AF- M, : A and My — M, then AF M : A.
Proof. 1. By case analysis on the typing rule applied last to derive A - M : A.

Case (T_VAR): Contradictory.
Case (T_ConsT), (T_ABs), (T_BANG), (T_Nv), and (T_TABs): No reduction rule to be applied.
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Case (T_APp): We are given Ay + Ay = M{ M} : A for some Ay, Ay, M{, and Mj such that A = A; + Ay
and My = M| M). By inversion, Ay - M{ : B — A and Ay F MJ : B for some B. We perform case
analysis on the reduction rules applicable to M; = M{ Mj.

Case (R_CoNsT): We have
o M| = ¢,
o M) = va. ca,
o My = va.((c1,c2) (ie., the reduction takes the form ¢; va. co ~ va. (e, c2))

for some ¢1, ¢, and @. By inversion of the judgment A; - ¢; : B — A, we have ty(c¢;) = B — A, so
ty(¢(c1, c2)) = A by Assumption[I] Since - A by Lemma[I7 we have the conclusion

AFva.((e,c): A

by (T_CoNnsT) and (T_NU).
Case (R_-BETA): We have
o M| = X\z.M,
e M) = R, and
e My = M[R/z] (i.e., the reduction takes the form (Az.M) R ~» M[R/z])

for some x, M, and R. By inversion of the judgment A; - Az.M : B — A, we can find A,z BF M :
A. By Lemmas [30] and [3] we have the conclusion

Case (T_LETBANG): We are given A; + Ay b letlz = M{in M, : A for some Ay, Ag, z, M{, and Mj such
that A = Ay 4+ Ag and My = let!lz = M]in MJ. By inversion, Ay = M{ : !B and A,z :¥ B+ Mj: A for
some B. Reduction rules applicable to M; = let!z = M{in Mj are only (R_BANG). Thus,

e M/ = va.IR and
e My = My[va. R/z] (i.e., the reduction takes the form let!lz = va.!Rin My ~ Mj[va. R/z])
for some @ and R. By inversion of the judgment A; F va.!R : !B, we can find that @ do not occur in
B and w(A;,A’) F R : B where A’ = a1,--- ;a,! when @ = ay,---a,. By Lemma and (T_Nv),
wA1 F va.R : B. By Lemmas |3 and wA1 + Ay is well defined. By Lemma [5] w|wA;. Thus, by
Lemma
WAL+ Ag = My[va. R/z) : A .

By Lemmas 38 and we have the conclusion
Al + AQ = MQ/[VE R/lﬂ} AL

Case (T_GEN): We are given Ay, o, Ay = A°(a, M') : Wa.B for some Ay, A, o, M’, and B such that
A = A0t Ay and My = A{a,M') and A = Wa.B. By inversion, Ay, a® Ay = M’ : !B. Reduction
rules applicable to M; = A°(«, M') are only (R_CLOSING). Thus,

e M’ = !R and
e My = !Aa.R (i.e., the reduction takes the form A°(a,!R) ~ !Aa.R)
for some R. By inversion of Aj,a% Ay 1R : !B, we have - Ay, a% Ay and w(A1,a° As) - R : B. By
Lemmas and ww(A1,A2),a® - R : B. By Lemmas and F A1, Ay and F w(Aq,As). By
(T_TABS) and (T_BANG), we have Ay, Ay F!Aa.R : Wa.B. By Lemma [20] (2), we have the conclusion
Ar,al, Ay F1Aa.R : Va.B .

Case (T_TAPP): We are given A F M{ B : C[B/a] for some M{, B, C, and « such that M; = M{ B and
A = C[B/a]. By inversion, A - M{ : Va.C and A F B. Reduction rules applicable to M; = M{ B are
only (R_TBETA). Thus, without loss of generality, we can suppose

o M| = Aa.M’,
e My = M’[B/a] (i.e., the reduction takes the form (Aa.M’) B ~~ M'[B/al)
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for some M’.

By inversion of the judgment A - Aa. M’ : Va.C, we have wA,a® - M’ : C. Since A F B, we have wA - B
by Lemma[9] Thus, by Lemma[34] [2), wA - M’'[B/a] : C[B/a]. Since wA < A, we have the conclusion

A+ M'[B/a): C[B/a]

by Lemma

2. By induction on the derivation of M; — M, with case analysis on the evaluation rule applied last.

Case (E_RED): By the case ().

Case (E_EvAL): We are given E[M{] — FE[Mj] for some E, M{, and M, such that M; = E[M]] and
M, = E[MJj]. By inversion, M{ — M,. We perform case analysis on the typing rule applied last to
derive A - M : A.

Case (T_VAR), (T_ConsT), (T_ABS), and (T_TABs): Contradictory because there is no E such that M; =
E[M].

Case (T_APp): We are given A1+Ay = My My : A for some Ay, Ay, M1, and Mjs such that A = Aj+As
and My = My, Mis. By inversion, Ay - My, : B — A and Ay - M : B for some B. We perform case
analysis on F.

Case F = [| Mya: We are given M{ = Mj;. Since Ay + M{ : B — A and M{ — M, we have
A1+ M : B —o A by the IH. By (T_APP),

A1+A2FM2/M122A.

Since My My = E[Mj] = Ms, we have the conclusion.

Case F = Ry [] for some Ry such that Ry; = Mj;: We are given M{ = Mj,. Since Ao - M{ : B
and M{ — M, we have Ay MJ : B by the IH. By (T_APpp),

A1+A2|_R11M2/IA.

Since Ry; Mj = E[Mj] = M>, we have the conclusion.
Case (T_LETBANG), (T_GEN), (T_TAPP), (T_BANG), and (T_NU): Similar to the case for (T_APP).
Case (E_EXTR): We are given E[va. R] — va.E[R] for some E, «, and R such that M; = E[va. R] and
M; = va.E[R] and o ¢ ftv(E). We perform case analysis on the typing rule applied last to derive
AF M : A
Case (T_VAR), (T_ConsT), (T_ABS), (T_-BANG), (T_LETBANG), (T_NU), and (T_TABs): Contradictory
because there is no E such that M; = E[va. R].

Case (T_App): We are given A1+Ay = My Mg : A for some Ay, Ao, M1, and Mis such that A = Aj+As
and My = My, Mi5. By inversion, A1 F My, : B — A and As - M5 : B for some B. By case analysis
on E, we can find E = [] Rz for some Rjo such that Ri3 = Mjs. We are also given My; = va. R.
By inversion of the judgment A; - va. R : B — A, we have Aj,a' W R: B — A and A; - A. By
Lemmas [17| and F Az,a®. Thus, by Lemma [20] [2), As,a® = Ri» : B. Thus, by (T-App) and
Lemmal[7]

(Al + Az),al = RR12 D A

Since A1 + Ay F A by Lemma we have the conclusion
Al + Ag Fra. (Rng) : A

by (T_NU).
Case (T_GEN), and (T-TAPP): Similar to the case for (T_APP).
O

Theorem 1 (Type soundness). If A M : A and M —* M' and M’ —/~, then M' = R for some R such that
AFR:A.
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Proof. By induction on the number of the steps of M —* M’.

If the number of the steps is zero, then M = M’. We have A+ M : A and M —%, so M is a result by
Lemma, [36

If the number of the steps is more than zero, we have M — M" and M” —* M’ for some M". By Lemma40]
AF M": A. By the IH, we have the conclusion. O
3.2 Properties of Reductions in \Y
Lemma 41. If wy =g we, then elw;/z] S e[wa/x].
Proof. Straightforward by induction on e. O
Lemma 42. If e; = e2 and wy =g we, then e [wy/z] Sx e2wp/x].
Proof. By induction on the derivation of e; =g eo.

Case (P_REFL): By Lemma [41]

Case (P_BETA): We are given (Ay.e{') w{’ =g ey [wy'/y] for some y, ef, €, wy’, and wy such that e; = (Ay.e') wy
and ey = e}[w) /y]. By inversion, e] = €j and w] =z wj and B, € {R}. Without loss of generality, we can
suppose that y # z and y & fo(w1) U fo (we).

By the IHs, ef'[wi/z] =g ey [wa /2] and w{'[wi/z] =5 wy [w/z]. Thus, we have the conclusion

erfwi/z] = (Ay.e' [w/2]) wy' [wi /7] S €3 [wa/x][wy [wa /2] /y] = ea[wa/x] .

Case (P_ETA): By the IH.

(
Case (P_DELTA): By the IH.
Case (P_ABS): By the IH.

(

Case (P_ApP): By the IHs.

O
Lemma 43. If e —F eq, then ej[w/z] —p ex[w/z].
Proof. By induction on the derivation of e; —p es.
Case ¢1 ¢3 ~5 ((c1, ¢2): Obvious.
Case (\y.€¢/) w’' ~»g, €'[w'/z]: We have e; = (Ay.¢/)w’ and e, = e€'[w'/y]. Without loss of generality, we can
suppose that y # z and y ¢ fv (w). Then:
erfw/z] = (Ay.e'[w/z]) w'[w/z] —p e'[w/z][w'[w/z]/y] = €'l /y][w/z] = ex]w/x] .
Case e; e, —rp ef e5 and ef —p ef: We have e = e1 e} and ea = e¢f 5. By the IH, ej[w/z] —p e [w/z].
Thus:
erfw/z] = ei[w/z] esw/z] —r ef[w/z] e5[w/x] = es[w/a] .
Case wy ¢ —p wi ef and e) —r eff: We have e; = wj e} and ex = wy ej. By the IH, ej[w/z] —F ef [w/z].
Thus:
erfw/z] = wilw/z] es[w/z] —p wilw/z] &) [w/z] = exw/x] .
O
Lemma 44. If ¢; =g, 62 and N} C {Ny}, then e =g, e
Proof. Straightforward by induction on the derivation of e; =y, es. O
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Lemma 45. If ¢; == e, then e; 2 ea.

Proof. By Lemma it suffices to show that: for any e, ez, C, and Ry € {N}, if e; ~y, €a, then C[e1] =y, Clea].
We proceed by induction on C.

Case C = []: By case analysis on Ng.

Case g = (,: We can find Cle;] = (Az.e) w and Clez] = e[w/z] for some z, e, and w. We have (Az.e) w =3,
elw/z] by (P_REFL) and (P_BETA).

Case N9 = n,: We can find C[e;] = Az.wx and Clez] = w for some x and w such that z & fv(w). We have
Az.wz =, w by (P_REFL) and (P_ETA).

Case Ng = §: We can find C[e1] = ¢1 ¢ and Cles] = ((¢1, ¢2) for some ¢; and ¢a. We have ¢; ¢a =5 ((c1, ¢2) by
(P_REFL) and (P_DELTA).

Case C = Az.C": By the IH and (P_ABS).
Case C = e(C’, C' e: By the IH, (P_REFL), and (P_APP).

Lemma 46. If e1 = e2, then Clei] = Clea] for any C.

Proof. Straightforward by induction on the number of the steps of the reduction e; =% ea. O
Lemma 47. If e; S e, then e tz)% es.

Proof. By induction on the derivation of e; = eo.

Case (P_REFL): Obvious.

Case (P_BETA): We are given (Az.e]) w] 3 e5[ws/z] for some z, e, €5, wy, and wj such that e; = (Az.e]) w] and
es = eb[w)/z]. By inversion, e] =y €, and w{ =z w) and B, € {N}. By the IHs, ¢ =y e and wi =4 ws.
Thus:

e1 = (Az.e)) wi =5 (Ar.e) wy F=5 (AT.€5) wy F=yp eafwy /7] = e

by Lemma and 3, € {N}.

Case (P_ETA): We are given A\z.w; = we for some z, w;, and w, such that e, = Az.w; z and e; = wy. By
inversion, wy =z wp and « & fv (wi) and 7, € {R}. By the IH, w; F=>5 wo. Thus:

el = AT.Wy T >y Wy t:>§ Wy = e

by n, € {R}.

Case (P_DELTA): We are given ¢; ca =g ((c1, ¢2) for some ¢; and ¢ such that e; = ¢ ¢z and e; = ((c1, ¢2). By
inversion, § € {N}. Thus, we have the conclusion by §-reduction.

Case (P_ABS): By the IH and Lemma [16]
Case (P_APP): By the IHs and Lemma

Lemma 48. If w =g e, then e is a value.
Proof. Straightforward by case analysis on the derivation of w = e. O

Lemma 49. Suppose that ey or ey is not a value. If ey e =g e, then there exist some e] and ey such that e = €] €)
and e; S €] and e; Sy €5.

Proof. Straightforward by case analysis on the derivation of e; e; =g e. O
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Lemma 50. If c=ge, thene = c.

Proof. Straightforward by case analysis on the derivation of ¢ =g e. O
Lemma 51. If ey =g e2 and ey — e, then there exists some ey such that e; —7 €5 and e] =g e3.

Proof. By induction on the derivation of e; —F e] with case analysis on that derivation.

Case (A\z.e) w ~g, e[w/z]: We have e; = (Az.e)w and e] = e[w/z]. We perform case analysis on (Az.e)w =
€1 :ﬁg €.

Case (P_REFL) and (P_App): With Lemma we have e; = wpy wyy for some wy; and wpo such that Az.e =2
w1 and w =g waz. By case analysis on Az.e =g wa1.

Case (P_REFL) and (P_ABS): We have wa; = Az.ep; for some ep; such that e=ie2;. We have the conclusion
by letting e; = eo1[woa/x] because: ey = wo1 wag = (Ar.€21) Wo2 —>p e21[wn2 /2] = €5; and e] = e[w/z] 3x
e21[wn2/7] = €} by Lemma [42]

Case (P_ETA): We have e = wj; # for some wy; such that wy; =g w1 and © € fv (wi1). (We also have
ny € {X}.) We have the conclusion by letting e, = wo; woy because: ey = woy woy = €}; and e] =
elw/x] = wiy w S w1 w2 = €5 by (P_APP).

Case (P_BETA), (P_DELTA), and (P_APP): Contradictory.

Case (P_BETA): We have e; = e[w’/z] for some €’ and w’ such that e =g €’ and w =g w’. (We also have
B, € {X}). We have the conclusion by letting e}, = e'[w’/z] because: e; = e'[w'/z] = eb; and e] =
elw/z] =y €'[w’/z] = ej by Lemma [42]

Case (P_ETA), (P_DELTA), and (P_ABSs): Contradictory.

Case c1 ¢ ~5 ((c1,¢2): We have e; = ¢ ¢ and e] = ((c1, ¢2). By case analysis on ¢ c; = e = e2.

Case (P_REFL) and (P_APP): We can find e; = ep; ez2 for some ep; and ez such that ¢; S ez and ¢ = e2o.
By Lemma ea1 = ¢ and exs = ¢3. We have the conclusion by letting e = ((c1, ca) because: es =
€21 €22 = €1 €2 —p ((c1, c2) = ey; and €] = ((c1, ¢2) 2 ((c1, ¢2) = €5 by (P_REFL).

Case (P_DELTA): We are given e; = ((c1,c2). (We also have § € {R}). We have the conclusion by letting
ey = ((c1, c2) because: ez = ((c1, c2) = e3; and e] = ((e1, ¢2) S ((c1, c2) = e by (P_REFL).

Case (P_BETA), (P_ETA), and (P_ABs): Contradictory.

Case €11 €12 —p €]y e12 and e;1 —p ef;: We have e; = ey ej2 and e] = ef; ej2. Since e; = ey1 e12 = €2, there
exist some ey and epo such that e; = ez 2 and e;1 = €21 and ejp S exn by Lemma@ By the TH, there
exists some e3; such that e;; — 7} e3; and ej; =g €3;. We have the conclusion by letting e; = ej; ez2 because:

/ /. /N | ! —_— !
ex = €1 €22 — €y €22 = €55 and e] = e €13 =y € €22 = €3 by (P_APP).

Case wi1 e1g —p wiy €5 and eja —>p e]5: We have e; = wiy e12 and e] = wyy ej,. Since e = wiy €12 S €2,
there exist some w1 and ess such that ex = w1 €22 and w1 Sz wor and e12 2 ez by Lemmasand By the
IH, there exists some ej, such that ess —7} 55 and ej, =z e55. We have the conclusion by letting €5 = wo; €5,
because: ey = wa1 €20 — 7} W1 €59 = €5; and e} = wiy €]y = Wa1 €5y = €5 by (P_APP).

O
Lemma 52. If e; = e2 and e; — 7 €], then there exists some ey such that ex —} €5 and e] = e5.

Proof. By induction on the number of the steps of e; —7% ef.

If the number of the steps is zero, then e = e], so we have the conclusion by letting e} = es.

If the number of the steps is more than zero, there exists some e;’ such that e; — g e/ — % ¢;. By Lemma
there exists some ey such that e; — 7 e and e = €. By the IH, there exists some ej such that ey — 7 e5 and
e} Sg ey Since ep — 7} ey — 7} €3, we have the conclusion. O

Lemma 53. If e1 =% ez and e1 —F ef, then there exists some ej such that ez —7% €5 and e] =% €5.
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Proof. By induction on the number of the steps of e; iz}% €.

If the number of the steps is zero, then e; = ey, so we have the conclusion by letting e} = e;.

If the number of the steps is more than zero, then there exists some e such that e; =g e lz)% es. By
Lemmas 45| and there exists some e’ such that e —7 ¢’ and e; =g ¢’. By the IH, there exists some ej such
that eo — 7 €5 and e’ =% e5. Since e} =g ¢/, we have e] =5 e’ by Lemma Thus, we have the conclusion
because e] =5 €’ F=1 €5 O

Lemma 54. Ifw i:>§ e, then e is a value.

Proof. By induction on the number of the steps of w i:>§ e.

If the number of the steps is zero, then w = e, so we have the conclusion.

Otherwise, if the number of the steps is more than zero, then there exists some e’ such that w = €’ l:)g €.
By Lemmas [45( and e’ is a value. Thus, by the IH, e is a value. O

Lemma 55. If e =g w, then there exists some w’ such that e —75 w' and v’ =g w.
Proof. By induction on the derivation of e =g w.

Case (P_REFL): We are given e = w. We have the conclusion by letting w’ = w because e = w —§ w = w';
and w’ = w =g w by (P_REFL).

Case (P_BETA): We are given (Az.ey) w; =g e2[wg/x] for some z, e1, ez, wi, and wy such that e = (Az.e;) wy and
w = ex[w/x]. By inversion, e; =g e2 and wy =g we and 3, € {R}. Since ex[wn/z] = w is a value, ey is also a
value. By the IH, there exists some wj such that e; —} w{ and w{ = €.

We have the conclusion by letting w’ = wj[w;/z] because: e = (Az.e1) wy —p e1[wn /2] —F wi[wi/z] = w’ by
Lemma and w' = wi[w; /2] S e2[wa/2] = w by Lemma

Case (P_ETA): We are given Az.w; 2 =g w for some 2 and w; such that e = Az.w; 2. We have the conclusion by
letting w’ = Az.wq .

Case (P_DELTA): We are given c; ¢; =g ((c1, ¢2) for some ¢; and c; such that e = ¢ ¢ and w = ((¢1, ¢2). We
have the conclusion by letting w’ = ((¢1, ¢2).

Case (P_ABs): We are given Az.e; Sg Az.eg for some z, e1, and e such that e = Az.e; and w = Az.e;. We have
the conclusion by letting w’ = Az.e;.

Case (P_APP): Contradictory.

O
Lemma 56. If e =g e1 €2, then there exist some e] and €5 such that e —7, e] €5 and e] = €1 and e) 2 €.
Proof. By induction on e = e; ea.
Case (P_REFL): We are given e = ej ea. Obvious by letting €] = e; and e} = es.

Case (P_BETA): We are given (Az.ef') wi’ =y €3 [wy /x] for some z, ef, ey, wi’, and wy such that e = (Az.ef’) wy’
and e e; = ef[wl/z]. By inversion, e} =z e and w{ =z w) and 8, € {R}. We can see e} = e}, ef, for some
ey and ejy such that e = e [wy/z] and e; = ey, [wy /x]. Since e’ =ey = €3] e5y, there exist some e’} and efy
such that e — T} ef) efy and ef); =ged; and efy=igedy by the IH. By Lemmafd3] ef'[wy’ /z]—7 (ef) efy)[w) /z]. We
have the conclusion by letting e = ef;[wy/z] and e) = efy[wi’/z] because: e = (Az.ef) wi —p el [w] /2] —F
(e efy)[wfl /2] = ¢] e ¢f = ey [uf' /2] =5 ¢y [t /a] = e1 by Lemma [} and ef = efy[wf'/2] =i efplul! /2] = 5
by Lemma

Case (P_ETA), (P_DELTA), and (P_ABS): Contradictory.
Case (P_ApP): Obvious.
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Lemma 57. If w =g Az.e, then, for any w', ww' —5 (Az.e’) w’ for some e’ such that e’ =g e.
Proof. By induction on the derivation of w =z Az.e.

Case (P_REFL): Obvious by letting ¢’ = e.

Case (P_BETA), (P_DELTA), and (P_APP): Contradictory.

Case (P_ETA): We are given \y.w” y=gAz.e for some y and w” such that w = Ay.w” y. By inversion, w” =g\z.e
X X
and y v (w'). By the IH, there exists some ¢’ such that w” w’ —% (Az.e’) w’ and e’ =5 e. We have the
F X
conclusion because: ww’ = (Ay.w” y) w' —p w”" W —% Az.e) w'.

Case (P_ABSs): Obvious.

Lemma 58. Let wy = c or x. If wy =g wa, then wy w —5 wp w for any w.
Proof. By induction on the derivation of w; =g wo.

Case (P_REFL): Obvious.

Case (P_BETA), (P_DELTA), (P_ABS), and (P_APP): Contradictory.

Case (P_ETA): We are given Ay.wj y Sgwe for some y and wi such that w; = Ay.wj y. By inversion, w{ =g w2 and
y & fo(wy). By the IH, wj w —% we w. We have the conclusion because: w; w = (A\y.wj y) w —p wj w —%
Wo W.

O

Lemma 59. Suppose that ey does not get stuck. If ey = e2 and e —F €5, then there exists some e such that
e1 —p €1 and €] =y es.

Proof. By induction on the derivation of e; —> ¢ €} with case analysis on that derivation.

Case (Az.e) w ~g, e[w/z]: We have e; = (Az.e) w and e5 = e[w/z]. Since e; S €2 = (Az.e) w, there exist some
wyy and w2 such that e; — 5 wi1 w12 and w11 =gAz.e and wip =g w by LemmaslB_El andlg_gl By Lemma@ there
exists some ej; such that wi; wig —% (Az.e11) wiz and egq =y e. Thus, we have the conclusion by letting e] =
e11[wi2/x] because: ey — 5 w11 wiz —f (Az.e11) w2 — g enr[wiz/z] = e; and e} = ey [wi2/x] Sxelw/z] = €

by Lemma

Case ¢1 ¢a ~+5 ((c1, c2): Wehave ea = ¢1 ¢ and €5 = ((c1, ¢c2). Since e; 2gea = ¢; ¢2, there exist some wy; and wio
such that e; —% w1y w1z and w1 e and wiz =g o by Lemmas[56and 55 By Lemma 58] w1y w1z —7 ¢1 wia.
Since e; does not get stuck and e; —% ¢1 wi2, we have wio = ¢} for some ¢} such that {(c1, ¢5) is well defined.
Since ¢y = wi2 =g ¢2, We can see ¢y = cz. Thus, we have the conclusion by letting e; = ((c1, c2) because:
er —p crwiz = ¢ g —p ((c1, c2) = ef; and e] = ((c1, c2) =g (e, c2) = € by (P_REFL).

Case e eg2 — €51 €22 and ez; —> 5 eg;: We have e = ez1 €22 and ey = ey epo. Since e; =g ez = €1 €2, there
exist some e;; and ejp such that e —7% e11 €12 and e;; =g €21 and e = eg2 by Lemma By the TH, there
exists some e]; such that e;; — 7} e]; and ej; =g e3;. We have the conclusion by letting e; = e]; e;2 because:
e1 —p €11 e12 — €1 12 = e; and e] = €] €12 =y €y, €22 = €5 by (P_ApPP).

Case Wo1 €29 — F W21 €é2 and €29 —F 6522 We have €y = Wyl €22 and eé = W21 6&2. Since e1 :ﬁg €2 = W21 €29,
there exist some w1 and ej2 such that e; —5 wi1 €12 and w11 =g wor and ej2 = €22 by Lemmas @ and @
By the IH, there exists some e, such that ejs —} ef, and ejy =g e5,. We have the conclusion by letting
ey = wi e}, because: e; — w1 €12 —p Wiy e, = e; and e} = wy1 €]y S wa1 ey = ey by (P_APP).

O

Lemma 60. Suppose that e; does not get stuck. If ey =g ex and e; — 7} e5, then there exists some €] such that
e1 — €1 and €] 2y es.
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Proof. By induction on the number of the steps of e; —% 5.

If the number of the steps is zero, then e; = e}, so we have the conclusion by letting e; = e;.

If the number of the steps is more than zero, there exists some ey such that es — g ¢f — 5 e5. By Lemma
there exists some e’ such that e; —7 e’ and e’ =z ey. Since e; does not get suck, ey’ does not either. Thus, by the
IH, there exists some ej such that ey’ —7 e} and e] = e5. Since e; —7 e —} €], we have the conclusion. [

Lemma 61. If e; does not get stuck and e; =g ez and eo— p, then es is a value.

Proof. By induction on es.

If e; is a value, then we have the conclusion.

Otherwise, we show a contradiction. Suppose that ey is not a value, i.e., e = e ego for some ez and egs.
Since e; S e2 = e21 €22, there exist some e;; and ejp such that e — % e11 e12 and e =g e21 and ej2 =g €22 by
Lemma, Since e; does not get stuck, e;; does not either. Since e eao = ea—~ g, we have ey;—~ p. Thus,

by the IH, €21 = W21 for some wa1 .- Since €11 :§§ €21 = W21, there exists some w11 such that €11 —>*F w11 and
w11 g w1 by Lemma |5_3} Thus, e; —% €11 €12 —> % w1 e12. Since e; does not get stuck, e;o does not either.
Since woy €22 = ea—/~ p, we have exp—/+ . Thus, by the IH, ez = wp for some wyy. Since ez =g €22 = wag,

there exists some wi2 such that e;p —7% wi2 and wy2 =g wee by Lemma Thus, e —5 w11 €12 —F Wit Wia2.
By case analysis on wo;.

Case wy; = Az.ehy: Contradictory because e;—~ r by the assumption but es = (Az.e};) wes can be evaluated.

Case w1 = c1 or x: Since wi; S we1, we have e; —% w11 wig —F W21 w12 by Lemma
If ws1 = =z, then contradictory to the assumption that e; does not get stuck.

Otherwise, if wa; = ¢1, then, since e; does not get stuck, we can see wi2 = ¢ for some ¢z such that ((eq, ¢a) is
well defined, and wa wia = ¢1 ¢a ~5 ((c1, c2). Since ca = wia = wo2, We have wyy = ¢ by Lemma Thus,
ey = way Wog = ¢1 ca — p ((c1, ¢2), which is contradictory to the assumption that es—~ p.

O
Lemma 62. If e; does not get stuck and e; =>g ez, then ey does not either.

Proof. Suppose that ex gets stuck, i.e., there exists some e} such that e; — % e} and e},—~ r and e} is not a value.
By Lemmas [45|and |60, there exists some e such that e; — 7 €] and e] =g e5. Since e; does not get stuck, e] does
not either. By Lemma e} is a value, which is contradictory to the assumption that e} is not a value. O

Lemma 63. Suppose that e; does not get stuck. If e; tz}% e2 and ey —% b, then there exists some e} such that
e1 —p el and e] =1 €.

Proof. By induction on the number of the steps of e; 3:>§ €.

If the number of the steps is zero, then e; = ey, so we have the conclusion by letting e; = 5.

If the number of the steps is more than zero, then there exists some e such that e; =>ye t:>§ ez. By Lemma
e does not get stuck. Thus, by the IH, there exists some e’ such that e — % ¢’ and ¢’ =5 ey. Since e; = e, we
have e; = e by Lemma [15] By Lemma [60} there exists some €] such that e; —7} ef and ef =g ¢’. By Lemma [47]
e; F=>5 ¢’. Thus, we have the conclusion because ej =% e’ =1 €;. O

Lemma 64. If e does not get stuck and e =5 w, then e —3 w’ for some w’ such that w' =% w.

Proof. By induction on the number of the steps of e == w.

If the number of the steps is zero, then e = w, so we have the conclusion by letting w’ = w.

If the number of the steps is more than zero, then there exists some e” such that eF=e” =w. By Lemma
e does not get stuck. Thus, by the IH, there exists some w” such that ¢” —7% w” and w” =% w. By Lemmas
and there exists some e’ such that e —7} ¢’ and ¢/ =g w”. By Lemma there exists some w’ such that
¢/ —} w and w’ =gz w”. By Lemma w' =% w"”. Now, we have the conclusion because: e —p ¢’ —% w';
and w' =L w" =T w. O
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3.3 Type Erasure

Lemma 65. For any erasable result R, erase(R) is a value in \Y.

Proof. By induction on R. If R = Aa.M for some o and M, then M = R’ for some R’ because R is erasable.
Thus, erase(R) = erase(R’) is a value by the TH. O

Lemma 66. For any My, M, and x, erase(M;)[erase(Mz)/x] = erase(M;[Ma/z]).
Proof. By induction on Mj.

Case M; = y: Obvious.

Case M; = c¢: Obvious.

Case My = Ay.M{: Without loss of generality, we can suppose that y # z and y does not occur free in My and
erase(Mz). Then:
erase(M)[erase(Ms)/x] = (Ay.erase(M]))[erase(Ms)/x]
Ay.(erase(M])[erase(Ms)/x])
(Ay.erase(M{[Mz/z])) (by the IH)
erase(\y. M{[Ms/z])
= erase(M;[My/z]) .

Case My, = M1 Mi5: By the IHs.
Case M; = !M{: By the IH,

erase( M, ) [erase(Ms)/z] = erase(M;)[erase(Ms)/z] = erase(M/[Ms/z]) = erase(!M|[Ms/x]) = erase(M;[Mz/x]) .

Case My, = let!y = Mjyin My2: Without loss of generality, we can suppose that y # z and y does not occur free
in My and erase(Ms). Then:

erase(M)[erase(Ms) /] ((Ay.erase(Mi2)) erase(Myy))[erase(Ms) /]
(Ay.(erase(Mo)[erase(Ms)/x])) erase( My )[erase(Ms)/ x]
= (Ay.erase(Mia[Ms/x])) erase(My1[Ms/x]) (by the IHs)
erase(let 'y = M11 [MQ/Z'] in M12[M2/(ED

= erase(M[Ms/z]) .

Case M; = va. M{: By the IH.
Case M; = A°(a, M{): By the IH.
Case M; = Aa.M{: By the IH.
Case M; = M{ A: By the IH.

Lemma 67. For any M, A, and «, erase(M[A/a]) = erase(M).
Proof. Straightforward by induction on M. O

Lemma 68. If My is erasable and My ~» M, then erase(M;) = erase(Ms) or erase(M;) ~y erase(Ms) for some

R e {0}
Proof. By case analysis on the reduction rule applied to derive My ~» M.

Case (R_CONST): By d-reduction.
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Case (R_BETA): We are given (Az.M)R ~» M[R/z] for some z, M, and R such that M; = (Az.M)R and
M, = M[R/z]. Since M is erasable, so is R. Thus, by Lemma erase(R) is a value in A\Y. Thus:

erase(M;) = (Az.erase(M)) erase(R) ~»p, erase(M )[erase(R)/z] .
By Lemma [66] erase(M)[erase(R)/z] = erase(M[R/z]) = erase(M,). Thus, we have the conclusion.

Case (R-BANG): We are given letlz = va.!RinM ~» M[va. R/z] for some z, @, R, and M such that M; =
let!z = va.!|Rin M and My = M[va. R/z]. By Lemma (65, erase(va. R) is a value in AY. Thus:

erase(M;) = (Az.erase(M)) erase(va. R) ~»g, erase(M )[erase(va. R)/z] .
By Lemma [66} erase(M)[erase(vai. R)/xz] = erase(M[va. R/z]) = erase(Ms). Thus, we have the conclusion.

Case (R_CLOSING): We are given A°(«,!R) ~ !Aa.R for some « and R such that M; = A°(«,!R) and My =
'Aa.R. By definition, erase(M;) = erase(Ms).

Case (R_TBETA): We are given (Aa.M)A ~» M[A/a] for some «, M, and A such that M; = (Aa.M) A and
My, = M[A/a]. We have the conclusion by:

erase(M;) = erase(M) = erase(M[A/a]) = erase(Ms)

with Lemma

Lemma 69. If M is erasable and My — Mo, then erase(M;) — %1 erase(My).
Proof. By induction on the derivation of My — M.
Case (E_RED): By Lemma

Case (E_EvAL): We are given E[M{] — E[Mj] for some F, M{, and Mj such that M; = E[M]] and My = E[Mj)].
By inversion, we have M{ — M.

By the IH, erase(M{) — " erase(Mj). We perform case analysis on E.

Case E = [] M: We have M; = M{M and My = MjM. Since erase(M]) — "' erase(M;), we have the
conclusion by:

erase(M;) = erase( M) erase(M) — "' erase(M,) erase(M) = erase( M) .

Case E = R[]: We have M; = RM] and My = R M. Since M is erasable, so is R. Thus, by Lemma
erase(R) is a value in \Y. Since erase(M{) — %! erase(M3), we have the conclusion by:

erase(M,) = erase(R) erase(M]) — 1" erase(R) erase(M;) = erase(Ms) .

Case E = let!z = [] in M: Wehave M; = let!z = M]in M and My = let!z = M} in M. Since erase(M{)— %!
erase(M;), we have the conclusion by:

erase(M;) = (Az.erase(M)) erase(M]) — "' (\z.erase(M)) erase( M) = erase(My) .
Case E = N°(B,[] ), [] 4, va. [], and ![]: We have the conclusion by:
erase(M;) = erase(M]) — %! erase(M;) = erase(Ms)
with the IH erase(M{) — "' erase(M;).

Case (E_EXTR): We are given E[vS. R] — vf.E[R] for some E, 8, and R such that M; = E[vS. R] and M, =
vB.E[R] and o & ftv(E).

We show that erase(M;) = erase(Mz) by case analysis on E.
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Case E = [] Re: We find M; = (vB8.R) Ry and My = vfB. (R Ry). We have the conclusion by:
erase(M;) = erase((v8. R) Ry) = erase(R Ry) = erase(vS. (R Rz)) = erase(M>) .
Case E = N°(~, []) and [] A: We have the conclusion by:
erase(M;) = erase(E[vS. R]) = erase(v. R) = erase(R) = erase(E[R]) = erase(v3.E[R]) = erase(M>) .

O

Lemma 70. If R is erasable and A+ R :Va.A, then, for any B, RB —* R’ for some R’ such that erase(R) =
erase(R’).

Proof. By induction on the derivation of A+ R : Va. A.
Case (T_VAR): Contradictory.
Case (T_ConsT), (T-ABs), and (T_BaNG): Contradictory because the type of R is a polymorphic type.

Case (T_App), (T_TApp), (T_LETBANG), and (T_GEN): Contradictory because terms accepted by those typing
rules are not results.

Case (T_NU): We are given A F v3. Ry : Va. A for some 3 and Ry such that R = vj3. Ry. By inversion, A, 3! -
Ry : Va. A. Without loss of generality, we can suppose that 5 ¢ ftv(B).

By the IH, Ry B —* R’ for some R" such that erase(Ry) = erase(R"). By (E_EvAL), v3.(Ry B) —* vp3.R".
We have the conclusion by letting R' = vf3. R” because: RB = (vf. Ry) B — vf.(Ry B) —™* v3.R" = R/;
and erase(R) = erase(Ry) = erase(R") = erase(v. R"") = erase(R').

Case (T_TABS): We are given A F Aa.Ry : Va. A for some A, A, and Ry such that B = Aa.Ry. Note that the
body of the type abstraction is a result because R is erasable. We have the conclusion by letting R’ = Ry[B/q]
because: R B = (Aa.Ry) B — Ry[B/a] = R’ by (R-TBETA)/(E_RED); and erase(R) = erase(Ry) = erase(R’)
by Lemma

O
Lemma 71. If At R:!A, then X{a, R) —* R’ for some R’ such that erase(R) = erase(R’).
Proof. By induction on the derivation of A+ R :1A.
Case (T_VAR): Contradictory.
Case (T_ConsT), (T_ABS), and (T_TABs): Contradictory because the type of R is !A.

Case (T_App), (T_LETBANG), (T_TAPP), and (T_GEN): Contradictory because terms accepted by those typing
rules are not results.

Case (T_BANG): We are given A - IRy : 1A for some Ry such that R = !Ry. We have the conclusion by letting
R’ = lAa.Rg because: A°{a,R) = N°(«a,!Ry) — !Aa.Ry = R’; and erase(R) = erase(Ry) = erase(!Aa.Ry) =
erase(R’).

Case (T_NU): We are given A - vf3. Ry : ! A for some 8 and Ry such that R = vj3. Ry. By inversion, A, 31 - Ry : 1 A.
Without loss of generality, we can suppose that 8 # a.

By the IH, A°(«, Ry) —* R’ for some R” such that erase(Ry) = erase(R”). By (E_EVAL), v3. AX°(«a, Ry) —*
vf3. R”. We have the conclusion by letting R’ = v3. R” because: A°(«, R) = N°(«a,vB8.Ry) — vB. N°{«a, Ry) —*
vB.R" = R’; and erase(R) = erase(R) = erase(R") = erase(R’).

O

Lemma 72. If M is erasable and M — M’, then M’ is also erasable.
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Proof. Straightforward by induction on the evaluation derivation of M — M’. The case for (E_RED) depends
on the fact that substitution preserves erasability (which can be proven easily using the fact that substitution for
a variable in a result produces a result). O

Lemma 73. Suppose that M is erasable. If A+ M : A and erase(M) is a value, then M —* R for some R such
that erase(R) = erase(M).

Proof. By induction on the typing derivation for M.

Case (T_VAR): Contradictory.

Case (T_ConsT), (T_ABs), and (T_TABs): Obvious by letting R = M.
Case (T_App): Contradictory because erase(M) is not a value.

Case (T_BANG): We are given A - IM’ : IB for some M’ and B such that M = !M’ and A = !B. By inversion,
wAF M : B.

Since erase(M) = erase(M’), we find erase(M’) is a value. Since M is erasable, so is M’'. Thus, by the IH,
M’ —* R’ for some R’ such that erase(R’) = erase(M’). We have the conclusion by letting R = !R’ because:
M ='M' —* IR’ = R by (E_EVAL); and erase(R) = erase(R’) = erase(M’) = erase(M).

Case (T_LETBANG): Contradictory because erase(M) is not a value.

Case (T_NU): We are given A - va. M’ : A for some o and M’ such that M = va. M’. By inversion, A, ol = M’ :
A.

Since erase(M) = erase(M’), we find erase(M’) is a value. Since M is erasable, so is M’'. Thus, by the IH,
M’ —* R’ for some R’ such that erase(R’) = erase(M’). We have the conclusion by letting R = va. R’
because: M =va. M’ —* va. R’ = R by (E_EVAL); and erase(R) = erase(R’) = erase(M') = erase(M).

Case (T_GEN): We are given Ay,al, Ay F A°{a, M) : Wa.B for some Ay, Ag, a, M’, and B such that A =
Aot Ag and M = A°{a, M') and A = Wa.B. By inversion, Ay,a% Ay - M’ : B.
Since erase(M) = erase(M’), we find erase(M’) is a value. Since M is erasable, so is M'. Thus, by the IH,
M’ —* R’ for some R’ such that erase(R’) = erase(M’). We also have Ay,a° Ay - R’ : !B by Lemma
By Lemma N(a,R") —* R for some R such that erase(R’) = erase(R). We have the conclusion by:
M=NK{a,M") —* N(a,R') —* R; and erase(R) = erase(R’) = erase(M') = erase(M).

Case (T-TApPP): We are given A - M’ B : C[B/a] for some M', B, C, and « such that M = M'B and A =
C[B/a]. By inversion, A+ M’ : Va.C.
Since erase(M) = erase(M’), we find erase(M’) is a value. Since M is erasable, so is M’. Thus, by the IH,
M’ —* R’ for some R’ such that erase(R’) = erase(M’). By Lemma[i0} A - R’ : Va.C. By Lemmal[72] R’ is
erasable. Thus, by Lemmal[70] R’ B —* R for some R such that erase(R’) = erase(R). We have the conclusion
because: M = M' B —* R’ B —* R; and erase(R) = erase(R') = erase(M’) = erase(M).

O

Lemma 74. IfA1F Ry : A— B and Ay b Ry : A and Ry is erasable and erase( Ry Ry) ~>x e for some R € {8,,4},
then Ry Ry —* M for some M such that erase(M) = e.

Proof. By induction on the derivation of A; F Ry : A — B with case analysis on the typing rule applied last to
derive A1 - R; : A — B.

Case (T_VAR), (T_AppP), (T_BANG), (T_LETBANG), (T_GEN), (T_TABs), and (T_TAppP): Contradictory.

Case (T_ConsT): We are given Ay b+ ¢; : ty(cy) for some ¢; such that Ry = ¢ and A — B = ty(c1). By
Assumption|l, A = ¢ for some ¢. Since Ag b Ry : ¢, we have Ry = va@. ¢ for some @ and ¢; such that ty(c) = ¢
by Lemma Again by Assumption |1, {(c1, ¢2) is well defined, and R; Ry = ¢y va@. ¢ — va.((c1, ¢c2) by
(R-ConsT)/(E_RED). We also have erase(Ry R3) = ¢1 ca ~x ¢, 50 e = ((c1, ¢2). Since ((c1, ¢2) is a constant,
we have erase(va. ((c1, ¢2)) = ((c1, c2). Thus, we have the conclusion by letting M = va. ((c1, ¢a).

37



Case (T-ABS): We have Ry = Az.M; for some z and M;. By (R-BETA)/(E_RED), Ry Ry — M;[R2/z]. Let M =
M;[R;/z]. Since Ry is erasable, erase(Ry) is a value by Lemmal[65] Thus, erase( Ry Rp) = (Az.erase(M)) erase(Ra)~y
erase(M)[erase(R;)/z] = e. By Lemmal66] ¢ = erase(M;[R;/x]) = erase(M). Thus, we have the conclusion.

Case (T_NU): We are given A1 - va.R] : A — B for some « and R} such that Ry = va. R]. By inversion,
Aj,al - R] : A — B. By (R_EXTR)/(E_RED), Ry Ry — va. (R} Rg). Since erase(R] Ry) = erase(R; Ry)~ne,
there exists some M’ such that Rf Rs —* M’ and erase(M’) = e by the TH. We have the conclusion by letting
M = va. M’ because: Ry Ry = (va. R]) Ry — va. (R} Ry) —* va. M’ = M; and erase(M) = erase(M') = e.

O

Lemma 75. Suppose that My and My are erasable. If A1+ My : A — B and Aq b My : A and erase(M; M)~y e
for some R € {B,,0}, then My My —* M for some M such that erase(M) = e.

Proof. Since erase(M; My) = erase(M;)erase(Ms) and erase(M; Ms) ~~x e, we find erase(M;) and erase(Ms;) are
values. Thus, by Lemma there exist some R; and Rs such that

e M; —* R; and erase(R;) = erase(M;), and
e My —* Ry and erase(Rs) = erase(Ms).

We also have Ay F Ry : A — B and As F Ry : A by Lemma Since erase(Ry Re) = erase(M; Ms), we have
erase(Ry Ry)~ne. By Lemma Ry is erasable. Thus, by Lemma there exists some M such that By Ry —* M
and erase(M) = e. Since My My —* Ry My —* Ry Ro —* M, we have the conclusion. O

Lemma 76. Suppose that My is erasable. If Ay = My : !B and Ag,x ¥ B+ My : A and erase(let!z =
My in My) ~y e for some X € {8,,0}, then let\x = Myin My —* M for some M such that erase(M) = e.

Proof. Since (A\z.erase(Ms)) erase(M;) = erase(let!x = M in M) ~»y e, we can find erase(M;) is a value. Thus, by
Lemma M; —* R, for some R; such that erase(R;) = erase(M;). We also have A1 + Ry : !B by Lemma
By Lemma Ry = va.!Ry for some @ and R{. Now, we have the conclusion by letting M = Msy[va. R}/z]
because:

o letlz = Myin My —* letlez = Ry in My = letlz = va. |R} in My — Ms[va. R /x]; and

o erase(M) = erase(Ms[va. R} /x]) = erase(Ms)[erase(va. Ry)/xz] = erase(Ms)[erase(R;)/xz] = erase(Ms)[erase(My)/x] =
e with Lemma [66] and the fact that (A\z.erase(M;))erase(M;) ~x €, so e = erase(Ms)[erase(M;)/z].

O

Lemma 77. Suppose that My is erasable. If A+ My : A and erase(M;) ~>x e for X € {B,,0}, then there exists
some My such that My —* M and erase(Msy) = e.

Proof. By induction on the typing derivation of A+ M : A.
Case (T_VAR): Contradictory.
Case (T_ConsT) and (T_ABS): Contradictory because there is no reduction allowing erase(M;) ~y e.

Case (T_TABs): Since M, is erasable, we have M; = A«.R for some o and erasable R. By Lemma [65] erase(R) is
a value in Y. Thus, there is no reduction allowing erase(R) = erase(M;) ~x e.

Case (T_APP): By Lemma [75]

Case (T_BANG): We are given A - 1M/ : |B for some M{ and B such that M; = !M{ and A = !|B. By inversion,
wA + M{ : B. We have erase(M]) = erase(M;) ~»x e. Since M is erasable, so is M{. Thus, by the IH,
M —* M, for some M, such that erase(M;) = e. We have the conclusion by letting My = M, because:
My =M] —* IMj = M, by (E_EVAL); and erase(Ms) = erase(M3) = e.

Case (T_LETBANG): By Lemma [76]
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Case (T_NU): We are given A + va. M| : A for some a and M| such that M; = va. M{. By inversion, A, o'
M : A. We have erase(M/) = erase(M) ~»x e. Since M is erasable, so is M{. Thus, by the IH, M{ —* M, for
some M, such that erase(MJ) = e. We have the conclusion by letting Ms = va. Mj because: My = va. M{ —*
va. My = My by (E_EVAL); and erase(Ms) = erase(M3) = e.

Case (T_GEN) and (T_TAppP): By the TH, similarly to the cases of (T_BANG) and (T_Nuv).
O

Lemma 78. Suppose that My is erasable. If A+ My : A and erase(My) —F e, then there exists some My such
that My —* My and erase(Ms) = e.

Proof. By induction on the derivation of A = M; : A with case analysis on the typing rule last to derive A - M; : A.
Case (T_VAaR): Contradictory.
Case (T_ConsT) and (T_ABs): Contradictory because there is no reduction allowing erase(M;) — 5 e.

Case (T_TABS): Since M is erasable, we have M; = Aa.R for some o and erasable R. By Lemma [65] erase(R) =
erase(M;) is a value in AY. Thus, there is no reduction allowing erase(M;) — F e, so there is a contradiction.

Case (T_App): We are given Ay + Ay b Myy Mo : A for some Ay, Ag, My, and Mjs such that A = A; + As and
M, = M, Mys. By inversion, Ay + My, : B — A and As - My : B for some B. We perform case analysis on
how the evaluation erase(Mi) erase(Mi2) = erase(M;) —>F e proceeds.

Case erase( M) erase(M;2) ~y € for some R € {f3,,}: By Lemma [77]

Case erase(M;1) —r e and e = ey erase(Mi2): Since Ay B My : B — A and My, is erasable, there exists
some Ms; such that My; —* My and erase(Ma1) = e; by the IH. We have the conclusion by letting
M2 = M21 M12 because: M1 = M11 M12 —* le M12 = MQ; and erase(MQ) = erase(le)erase(Mlg) =
ey erase(Miz) = e.

Case erase(M;1) = wy and erase(M12) —p e2 and e = wy ep: Since erase(Mpq) is a value and M, is erasable,
there exists some Ry; such that Myy —* Ry and erase(R;1) = erase(Miq) by Lemma

By the IH on Mg, there exists some Mao such that Mis —* Mas and erase(Maz) = es. We have the
conclusion by letting My = Rq1 Myy because: My = My Mis —* Riy Mis —* Ri1 Moy = MQ; and
erase(Ms) = erase(Ry1 Mas) = erase(Mi1) ex = e.

Case (T_Banc), (T_Nu), (T_TAPP), and (T_GEN): By the IH and (E_EvAL).

Case (T_LETBANG): We are given A; + Ag F let!lz = My in Myy : A for some Ay, Ag, x, M1, and M such that
A = Ay + Ag and My = let!lz = My in M5, By inversion, Ay = Myp : !B and Ag, x :“ B+ Mjs : A for some
B. We perform case analysis on how the evaluation (Az.erase(Mj2)) erase(Mi;) = erase(M;) — r e proceeds.
Case (A\z.erase(Mi2)) erase(M;y) ~ e for some X € {$3,,6}: By Lemma [77]

Case erase(M11) —r €1 and e = (Az.erase(Mi2)) e1: By the IH, there exists some Ma; such that My —* My
and erase(Ms1) = e;. We have the conclusion by letting My = let!lx = May in Mo because: My = letlz =
Mi1in Mys —* letle = My in Mya = Ma; and erase(Ms) = (Az.erase(Mio)) erase(Ma1) = (Az.erase(Mia)) 1 =
e.

Theorem 2 (Meaning preservation of type erasure). Suppose that M is erasable.
1. If M —* M’, then erase(M) —% erase(M’). Furthermore, if M' is a result, then erase(M’) is a value.

2. If A+ M : A and erase(M) —% e, then M —* M’ for some M’ such that erase(M') = e. Furthermore, if
e = w, then M' —* R for some R such that erase(R) = w.
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Proof. 1. We first show that M —* M’ implies erase(M ) —7% erase(M') by induction on the number of the
steps of M —* M'.

If the number of the steps is zero, i.e., M = M’, then we have the conclusion because erase(M )—*.erase(M) =
erase(M’).

If the number of the steps is more than zero, there exists some M" such that M — M" —* M’. We have
the conclusion because erase(M) — %! erase(M") —%. erase(M’) by Lemmas |69| and [72| and the TH.

Finally, by Lemma M’ is erasable. Thus, if M’ = R for some R, then erase(R) is a value by Lemma
Thus, we have the conclusion.

2. We first show that there exists a desired M’ by induction on the number of the steps of erase(M) — 7 e.
If the number of the steps is zero, i.e., erase(M) = e, then we have the conclusion by letting M’ = M.

If the number of the steps is more than zero, there exists some e” such that erase(M) —p €/ —}. e. By
Lemma [78] there exists some M” such that M —* M" and erase(M") = e”. By Lemma[i0] A - M” : A.
By Lemma |72} M" is erasable. Thus, by the IH, M” —* M’ for some M’ such that erase(M’) = e. M’ is
a desired term since M —* M —* M.

Next, we show that, if erase(M’) = w, then M’ —* R for some R such that erase(R) = w. Since AF M': A
by Lemma [40| and M’ is erasable by Lemma this is proven by Lemma
O

Lemma 79. Suppose that Vo is erasable. If Ay - Vi : A — B and Ay - Vo i A, then erase(Vy Vo) — 5 e for

some e.
Proof. By inversion of Ay - V3 : A — B.

Case (T_CONST): We are given Ay F ¢; : ty(er) for some ¢; such that V3 = ¢; and A — B = ty(cy). By
Assumption [I} A = ¢ for some ¢. By inversion of As F V5 : ¢, we can find Vo = ¢y for some ¢y such that
ty(cz) = v. Thus, by Assumption [1] and Definition 22] erase( Vi Va) = ¢1 o —r ((c1, c2).

Case (T_ABS): We are given Vi = Azx.M; for some x and M;. Since erase(Vy) = Az.erase(M;) and erase(Vs) is
a value by Lemma we have the conclusion by letting e = erase(M;)[erase(V2)/z] because: erase(Vy V) =
(Ax.erase(M)) erase( Vy) — p erase(M;)[erase( V2)/z] = e.

Otherwise: Contradictory.
O

Lemma 80. Suppose that Ry is erasable. If Ay - Vi : A — B and Ay - Rs : A, then erase(Vi Re) —r e for
some e.

Proof. By induction on the derivation of As - Ry : A.
Case (T_VAR), (T_App), (T_LETBANG), (T_TAPP), and (T_GEN): Contradictory.
Case (T_ConsTt), (T-ABs), (T-BANG), and (T_TABs): By Lemma 79|

Case (T_NU): We are given Ay b va. RS @ A for some « and R} such that Re = va. R). By inversion, A, o' - R} :
A. By the IH, erase(V; R}) —F e for some e. Since erase(V; R}) = erase( V7 Rz), we have the conclusion.

O

Lemma 81. Suppose that Ry is erasable. If Ay - Ry : A — B and Ay b Ry : A, then erase(Ry Ry) —p e for
some e.

Proof. By induction on the derivation of A1 - Ry : A — B.
Case (T_VAR), (T_AppP), (T_BANG), (T_LETBANG), (T_GEN), (T_TABs), and (T_TAPpP): Contradictory.
Case (T_ConsT) and (T_ABs): By Lemma [80]

40



Case (T_Nu): We are given Ay - va. R} : A — B for some « and Rj such that Ry = va.R]. By inversion,
A ol Ry : A — B. By the IH, erase(R] Ry) —r e for some e. Since erase(R] Ry) = erase(R; Ry), we have
the conclusion.

O
Lemma 82. Suppose that M is erasable. If A= M : A and erase(M)—/+ r, then erase(M) is a value in \Y.
Proof. By induction on the derivation of A+ M : A.
Case (T_VAR): Contradictory.
Case (T_ConsT) and (T_ABS): Obvious.

Case (T_Aprpr): We are given Ay + Ag = My My : A for some Ay, Ay, My, and My such that A = A; + Ay and
M = My M. By inversion, A1 = My : B — A and Ay - Ms : B for some B.

Since erase(M;) erase(Ms;) = erase(M)—~ g, we can find erase(M;)—~ p. Thus, by the IH, erase(M;) is a value.
By Lemma M; —* R, for some R; such that erase(R;) = erase(M;). Since erase(M;) is a value and
erase(M;) erase(Ms)—~ F, we can find erase(M2)—~ r. Thus, by the IH, erase(Ms) is a value. By Lemma
My —* Ry for some Ry such that erase(Ry) = erase(Mo).

By Lemma Al F R : B — Aand Ay Ry : B. By Lemma R, is erasable. By Lemma
erase(M) = erase(M; M;) = erase(Ry Ry) —F e for some e. However, it is contradictory to the assumption
that erase(M)—~ F.

Case (T_BaNG), (T_Nu), (T_GEN), and (T_TAPP): By the IH.

Case (T_LETBANG): We are given Ay + Ay b letlz = Myin My : A for some Ay, Ay, z, My, and M, such that
A = A;+ Ay and M = let!lz = My in My. By inversion, Ay = My : !B and Ay, z:“ B+ My : A for some B.

Since (Az.erase(Ms))erase(M;) = erase(M)—~ p, we can find erase(M;)—~ p. Thus, by the IH, erase(M;) is a
value. Thus, we have erase(M) = (A\x.erase(Ms)) erase(M;) — p erase( My )[erase(M;)/x], which is contradictory
to the assumption that erase(M)—~ f.

Case (T_TABS): Since M is erasable, M = Aa.R for some « and erasable R. By Lemmal65] erase(M) = erase(R)
is a value in AY.

O
Lemma 83. If M is erasable and A+ M : A, then erase(M) does not get stuck.

Proof. Suppose that erase(M) gets stuck, i.e., there exists some e such that erase(M) —7% e and e—~ r and e
is not a value. By Theorem [2| there exists some M’ such that M —* M’ and erase(M’) = e. By Lemma
AF M : A By Lemma M’ is erasable. Since erase(M’) = e—~ r, we can find e is a value by Lemma
However, it is contradictory to the assumption that e is not a value. O

3.4 CPS Transformation for )\’
3.4.1 Type Preservation

Lemma 84. For any 7, ftv(7) = ftv([r]) = fto([7]v)-

Proof. Straightforward by induction on 7. O
Lemma 85. For any ©, dom(©) = dom([O]).

Proof. Straightforward by induction on ©. O
Lemma 86. IfF ©, then I [O].

Proof. Straightforward by induction on the derivation of - © with Lemmas [84] and [8] O
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Lemma 87. For any O, [O] = w([O]).

Proof. Straightforward by induction on ©. O
Lemma 88. For any © and z, if ©(x) is well defined, then [O(z)], = [O](z).

Proof. Obvious. O
Lemma 89. If[OF e : 7] = R, thent © and © + 1.

Proof. Straightforward by induction on the derivation of [©@ F e : 7] = R. O
Lemma 90. For any 11, 72, and «, [11]v[[72]v/a] = [ri[r2/a]]v-

Proof. By induction on 7.

Case 71 = (3, ¢: Obvious.

Case 11 = 711 — Ti2:

[n]vll]v/a] = (ra]v — VB.(m2ly — B) — B)[[r2]v/a] (B & ftv(712))
= W[rulllrlv/a]) — VB.(([r2lv[[7e]v/a]) — B) — B
(since we can suppose 8 # « and 8 & ftv(rz) = ftv([2]v) (Lemma[84) w.lo.g.)
= ![rulr/a]ly — VB.([r2[r2/a]]v — 8) — B (by the IHs)
[r11[m2/a] = Ti2[r2/ 0]y

= [nlr/d] .

Case 71 = Vf3.70: Without loss of generality, we can suppose that 8 # a and 8 ¢ ftv(r2) = ftv([72]+) (Lemmal[84).

Then:

[nilvllelv/al = (VB.[ro])([72]v/e]
VB.([rolv[[m2lv/e)
= VB.[mlr/a]]y (by the TH)
[VB.7o[r2/ ]

= [nlr/alv -
O
Lemma 91. Ifwl,a®F M : A, then wI' - Aa. M : Va. A.
Proof. By Lemma wwl',a® - M : A. By Lemma F wI'. Thus, by (T_TABS), we have the conclusion. O
Lemma 92. If[0],a° M : A, then [O] - Aa.M : Va.A.
Proof. By Lemmas [S7] and O

Lemma 93. Suppose that [z : 7] is well defined. Let A be a type obtained by replacing — in 7 by —. Then,
z: AF [z 7] 7).

Proof. By induction on the derivation of [z : 7].
Case [z : ¢] = !z: We have 7 = A = 1. We have the conclusion z :* ¢ !z : li.

Case [z:¢— 7] = (A’ letly = z'inlet!lz = Nz y)inAaAk.k [z : 7']): We have T = + = 7" and A = + — B for
some B obtained by replacing — in 7’ by —o. By the IH,

z¥ BE[z:7]: "] -
Thus,
1 — BE!(Ax'letly =zinlet!z =z y)in Aa k.k [z : 7']) : (It —o Va.(I[7']v — @) — )

with Lemmag20]| (2) and Since [7]v = [t = 7]y = It — Va.(![7']v — @) —o @, we have the conclusion.
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Lemma 94. For any c, 0+ [c: ty™ ()] : [ty (c)]v-
Proof. Tt is easy to show that [c : ty™ (c)] is well defined by induction on ¢y~ (c). By case analysis on [c : ty™(c)].
Case [c : 1] = !¢: We have ty~(c) = t. We have the conclusion @) - !¢ : v by (T_CoNsT) and (T_BANG).

Case [c:t—= 7] = l(Az.letly =xinlet!z = (cy)in Ao k.k [z : 7]): We have ty~7(¢) = ¢t — 7,80 ty(c) = 1 — A
for some A obtained by replacing — in 7 by — (Definition . By Lemma

2 AR [z:7] ] -
Thus,
D1 Azletly = zinletlz = (cy)in Aak.k [z : 7]) : (e — Va.([7]y — @) — ) .
with Lemmag20] (2) and Since [ty (¢)]v = [t = 7]v =1t — Va.(![7]y — &) —o «, we have the conclusion.
O

Lemma 95. If[OF e : 7] = R, then [O] F R : [7].
Proof. By induction on the derivation of [O e : 7] = R.

Case (C_VAR): We are given [O© F z : O(z)] = Aa.\k.k !z for some z, k, and « such that e = z and 7 = O(x)
and R = Aa.Ak.k!z. By inversion, b O, so - [O] by Lemma Without loss of generality, we can suppose
that o ¢ dom(©) = dom([©]) (Lemma [35)).

The conclusion we have to show is
[O] F AaAk.klz : Va.([O(2)]y — a) — .
By Lemma it suffices to show that
[e],a® - Ak.kz : (1[O(z)]y — a) —o o .
We have [O] = w([©]) by Lemma[87 and - [0],a®, k :™ 1[O(z)], —o a for any 7 by Lemmas [84 and Thus,

the typing rules (T_VAR) and (T_BANG) can be applied, and it suffices to show that [O](z) = [©(z)]v, which
is shown by Lemma

Case (C_CONST): We are given [© F ¢ : ty~(¢)] = Aa. k.k[c: ty~ (c)] for some c, k, and . By inversion, - ©.
The conclusion we have to show is
[O] F AaXk.k[c:ty~ ()] : Ve.(ty 7 (¢)]y — @) — « .
By Lemma [04]
OF [c: ty= ()] Tt~ ()l
Thus, we have the conclusion by Lemmas @, (T_VAR), (T_APp), and (T_ABs).

Case (C_ABS): We are given [O F Az.e’ : 71 = ] = Aa. k.k!(Ay.letlz = yin R') for some z, y, ¢/, R, 71, 72, «,
and k. By inversion, [©,z:7 F €' : 2] = R’ and y is fresh.

The conclusion we have to show is
[0] F AaXk.k!(Ay.let!z = yin R") : Va.({[r1 — 2]y — @) — .

By the TH,
[©],z: [ri]v F R : [r2] -

By Lemmas|17| and ,
el vy :° [ri]v,z = [1]v - R : [r2] -
Thus, by (T_VAR), (T_LETBANG), (T_ABS), and (T_BANG) with w([©]) = [©] by Lemma 87}

O] F!(\yletlz = yin R') : 1([m1]y — [2]) = [m1 = 7=]v -
Thus, we have the conclusion by (T_VAR), (T_ApP), (T_ABS), and Lemma
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Case (C_APP): We are given [O F e1 €3 : 7] = Aa. k. Ry a(Ax.Ryar(Ay.let!lz = zinzyak)) for some e;, e, Ry,
Ry, a, z, y, z, and k. By inversion, [OF e; : 79 — 7] = Ry and [O F ey : 79] = Rs for some 79, and z is fresh.

The conclusion we have to show is
[O] F AaXk.Ry oo (Ax.Roae(Ayletlz =zinzyak)) : Va.(r]y —a) - a .

By the IHs:
[O] F Ry :Va.([ro = 7]y — @) — «
[O] F Rs : Va.(![ro]v —0 @) — .

Since [©] = [O] + [©] by Lemmas [87] and [5] it suffices to show that
[e],a° k :* [r]y — a,z :* 1o = 7]v, y : ro]w Fletlz =zinzyak: a
by (T_TAPpp), (T_ABS), (T_APP), and Lemmas and We have
[0 = 7]v = [ro]v — VB.(7]y — B) — 5

for some 8 ¢ ftv(r) = ftv([r]y) (Lemma [84]). Thus, we have the derivation of the judgment above by (T_VAR),
(T_App), (T_TAPP), and (T_LETBANG).

Case (C_TABS): We are given [O F e : VB.70] = Aa. k.vB. R a(Ax.k N°(S,2)) for some S, a, 79, k, R, and .
By inversion, [©,8F e : 79] = R’

The conclusion we have to show is
[O] F Aa X k.vB. R a M.k N(B,z)) : Va.(\(VB.[10]v) —o ) —o v .

By the IH, [0],8° F R’ : Va.(![r0]y — @) — a where o ¢ ftv(mo) = ftv([r0]v) (Lemma . Since [©] =
[©] + [©] by Lemmas [87] and [5} it suffices to show that

[6],a® &k W(VB.[ro]v) — o, 8%,z M Wro]y F K A°(B,2)
by (T-ABs), (T_Nu), (T_-TApP), (T_ApP), and 20| (2) and [02] In turn, it suffices to show that
[6],a° k2 1(VB.[ro]v) —o @, B, 2 ro]y F A°(B, 2 ) - ((VB.[ro]v)
by (T_ApP). By (T_VAR) and (T_GEN), we can derive this judgment.

Case (C_TAPP): We are given [O F e : mo[r1/f]] = Aa k.R a(Ax.letly = zink!(y [11]v)) for some 7, 72, B, «,
k, z, and R’. By inversion, [O F ¢ : VB.73] = R’ and © F 7.

The conclusion we have to show is
[O] F AaXk.R a(Azletly = zink !y [11]v)) : Va.([r2[m/B]]v — @) — « .

By the IH, [O©] F R : Va.(\(VB.[72]v) —o @) — o where o & ftv(72) = [72]v (Lemmal[g4). We have w([O]) = [O]
by Lemma [87 and [©] = [O] + [©] by Lemma 5] Thus, with Lemma [92] it suffices to show that

[e],a° k ° [ra[ri/B]]v —o a,z 2 W(VB.[r]v), y = VB.[]w F y [11]v : [72[m1/B]]v -
Since © + 71, we have [O] F [r1], by Lemmas [85 and [84 Thus, by (T_VAR) and (T_TAPP),
[[9]]7 0407 k :0 ![[7—2[7—1/5]]]v —oQ,T :0 !(Vﬁ'[[7—2ﬂv)a Y ¥ vﬁ'[[7—2ﬂv F Yy [[Tlﬂv : [[T2Hv[[[7_1]]v/ﬁ} .
By Lemma [90, we finish.

Lemma 96. IfO F e:7, then [©F e : 7] = R for some R.
Proof. Straightforward by induction on the derivation of © F e : 7. O

Theorem 3 (Type preservation of CPS transformation for AY). If © & e : 7, then there exists some R such that
[OFe:7]= R and [O] F R : [7].

Proof. By Lemmas [96] and O
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3.4.2 Meaning Preservation
Lemma 97. erase([x : 7]) =, (x:7).
Proof. By induction on 7. There are two cases we have to consider for 7 by case analysis on the definition of [[x : 7].

Case 7 = «: We have the conclusion by:
erase([x : 7]) = erase(!x) = x =(x: 7) .
Case 7 = ¢ — 7’: We have the conclusion by:

erase([x : 7]) erase(!(Az.letly = zinlet!lz = (x y)inAa k.k [z : 7'])) (k,z,y,2z & fu(x))

Az.(Ay.(Az. k. kerase([[z 7N (xy)) =

t_:>f7v Az.(Ay.(Az. Ak, k(] 7)) (xy))z (by the IH)
=y, AC.(AzAkE(z:7')) (x2)

= (x:e—1)

= (x:7) -

Lemma 98. If[OF e : 7] = R, then erase(R) =} , (e).
Proof. By induction on the derivation of [O e : 7] = R.
Case (C_VAR): We are given [© F z : O(z)] = Aa.Ak.k !z for some z, k, and a. We have the conclusion by:

erase(R) erase(Aa.\k.klx)
= Akkz

= (z).

Case (C_CoNsT): We are given [O F ¢ : ty~(c)] = Aark.k]c : ty7(c)] for some ¢, a, and k. We have the
conclusion by Lemma [97]

Case (C_ABS): We are given [O F A\z.¢’ : 71 — 1] = Aa. k. k!(Ay.let!le = yin R’) for some z, y, k, ¢, a, 11, T2,
and R’. By inversion, [©,z:7 F ¢’ : 3] = R’ and y is fresh. We have the conclusion by:

erase(R) = erase(Aa.Ak.k(Ay.letlz = yin R))
= Ak (Ay.(Az. erase(R’)) Y)
b, Ak (Ay. ()\x (e'))y) (by the IH)
=, ARE(Az. ()
= (Az.e') .

Case (C_App): We are given [OF e; ez : 7] = Aa k.Rya(Az.Ro o (Ay.let!z = zinz y a k)) for some ey, e, k, x,
Y, 2, «, Ry, and Rs. By inversion, [© F ¢ : 79 — 7] = R; and [O© F ey : 19] = R for some 79, and z is fresh.
We have the conclusion by:

erase(R) = erase(Aa. k. Ry a(Ax. Ry (Ay.letlz = zinzyak)))
= Ak.erase(Ry) (Az.erase(Rs) (\y.(A\z.zy k) x))
Bone  Ak-ler) (Az.(e2) (A\y.(Az.zy k) z)) (by the IHs)
=3, g\k(] elbl) Az.(e2) Ay.zyk))
= €1 €2 .

Case (C_TABS): We are given [0© e : VB.7'] = Aa kvB. R a(Az.k X°(8,z)) for some 8, o, 7/, k, z, and R'.
By inversion, [©,8+F e : 7/] = R’. We have the conclusion by:

erase(R) = erase(Aa. A k.vB. R a(Ax.k X (B,2)))
= Mk.erase(R') (A\z.k )
=50, Akle) (Az.kz) (by the IH)
=, Ak(e)k
=, (e) (note that e is a value) .
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Case (C_TAPP): We are given [© F e : 7[m1/0]] = Aa.Xk.R a(Azletly = zink!(y [m1]y)) for some 11, 72, 8, a,
k, z, y, and R'. By inversion, [© F e : V8.73] = R’. We have the conclusion by:

erase(R) = erase(Aa Ak.R oo (Az let!ly = zink !(y [71]v)))
= Ak.erase(R') (Az.(Ay.k y) z)
=50, Ak-(e) (Az.(Ay.ky)z) (by the IH)
=7 (e) (note that e is a value) .

Definition 31. The function V(w) returns a value in \Y, defined as follows:

V() T (e:ty7(e))
U(Az.e) o Az.(e)

We write w = R if and only if erase(R) =73 , ¥ (w).
Corollary 1 (Meaning preservation of (-])). For any e:
1. if e —F w, then (e)) (A\z.z) —% ¥(w); and
2. 4f (e) (A\z.x) — % w', then e —% w for some w such that w' = ¥(w).

Proof. By the indifference and simulation properties of (-], jointly with the equivalence of the small-step and
big-step CBV semantics for A7, all of which have been proven by Plotkin [I]. O

Lemma 99. If[OF e : 7] = R, then R is erasable.
Proof. Straightforward by induction on the derivation of [© F e : 7] = R. O
Theorem 4 (Meaning preservation of CPS transformation for \Y). Suppose that [D e : 7] = R.
1. If e —% w, then R[]y (Az.x) —* R’ for some R’ such that w = R’.
2. If R[]y (Az.x) —* R', then e —% w for some w such that w = R’'.
Proof. 1. By Corollary[1} (e) (Az.z) —% ¥(w). By Lemmas [98 and
erase(R) (\z.7) =}, (e) (A\z.7) .

By Lemma [95 @ + R : Va.(![r]y — a) — « for any a (note that ) - ![r], by Lemmas and [84)).
Thus, @ - R[]y (Az.z) : /[r],. Further, we can find R erasable by Lemma [99} Thus, erase(R![7], (Az.z)) =
erase(R) (Az.z) does not get stuck by Lemma|[83] By Lemmal[63} there exists some ¢’ such that erase(R) (Az.z)— 7,
e/ and e’ I:>5 1o Y(w). Since erase( ) ()\:1: x) does not get stuck, ¢’ does not either. Thus, by Lemma there
exists some w’ such that ¢’ —pw" and w'=7% =~ W(w). That is, erase(R) (\z.7) —pw’ and w ':>ﬁun U(w).
Since R is erasable, Theorem [2] implies R ![7] ()\x z) —* R for some R’ such that erase(R’) = w’. Since
erase(R') = w' =} , V(w), we have w = R'.

2. We can find R erasable by Lemma [99] Thus, Theorem [2] implies erase(R) (Az.z) = erase(R![7]y (Az.2)) —%
erase(R’). Note that erase(R’) is a value. By Lemmas [98] and erase(R) (Az.x) t:ﬁ;mv (e) (\z.z). By
Lemma there exists some e’ such that (e)) (Az.z) —7F €’ and erase(R’) F=7,n, €+ Since erase(R’) is a
value, e = w’ for some w’ by Lemma [54] Thus, (e D()\ZE z) —% w'. By Corollary' e —7 w for some w
such that w’ = W(w). Since erase(R') =3 , € = w' = ¥(w), we have w = R'.

O
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3.5 Parametricity and Soundness of the Logical Relation with respect to Contextual
Equivalence

Lemma 100. If+ A, then wA < A.

Proof. Straightforward by induction on A. O
Lemma 101. IfF A, then A +wA = A.

Proof. Straightforward by induction on A. O
Lemma 102. If Ay LAy, then w(A1 + As) = wA; = wAs.

Proof. Straightforward by induction on Aj. O
Lemma 103. If Aj 1 Ag, then Ay < A; + Ay and Ay < Ay + As.

Proof. Straightforward by induction on A;. O
Lemma 104. If Ay < As and Ay LA, then A1 LA and, further, A1 + A < Ay + A

Proof. Tt suffices to show that, for any w1, mo, and 7, if 711 < 7wy and ma+7 # w, then M 4+7 # w and m14+7 < To+7.
To show the former, suppose that 7y + 7 = w. Since m; < o, there exists some 7’ such that m + 7' = mo.
Since mo + 7 # w, we have m; + 7' + 7 # w. Since 1 + T = w, we have w + ' # w with Lemma |1} This is
contradictory with the definition of uses. Thus, we have m; + 7 # w.
Furthermore, since m; + 7' = my for some 7/, we have my + 7 < mo + . O

Lemma 105. For any n, Ay, Az, and p such that dom(Ay) = dom(Az), F (n, Ay, p) if and only if = (n, Ag, p).
In particular, for any W, = W if and only if F wW.

Proof. Tt is straightforward to show the first property. The second property is shown by the first one and Lemma [9}

0
Lemma 106. For any p1, p2, and ps,
pro(pzops) = (propz)ops .
Proof. By:
pro(pzops) = p1Wpi(p2 W p2(ps))
= p1Yp1(p2) Wp1(p2(ps))
= p1Epi(p2) W (p1 W p1(p2))(ps)
= (p1op2) W (p1op2)(ps)
= (p1op2)ops .
O
Lemma 107. A > A for any A.
Proof. Because A + wA = A by Lemma [I01] a

Lemma 108. If Ay > As, then Ay, A > Ag, A.

Proof. Since Aq 3 Ao, there exists some A} and A} such that A; = (Ay+Af), A}, By Lemma[l0I A+wA = A.
Thus, A1, A = (Ay+ A)), AL A = ((Ag, A) + (A],wA)), A}, This means that Ay, A > Ay, A holds. O

Lemma 109. If Ay > Ag and Ag > Ag, then Ay > Ags.

Proof. Since A; 3 Ag, there exist some A} and A} such that Ay = (A + Af), AL, Since Ay > Ag, there exist
some Af and AJ such that Ay = (Az + AY), AY. Thus, we have

Ay = (Ag+ A1), A% = (((As + A7), A3) + A7), A

Since ((As + AY), AY) LAY, there exist some A}, and Af, such that
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o A} = A}, Al, and

o ((As+ A7), A7) + Ay = (As + A7 + AYy), (A7 + Aly).
We also have

(((As + AY), Ay) + A1), Ay = ((As + AT + AYy), (Ay + AL)), Ay = (Ag + (A7 + A1), (Ay + Ap), Ay
Thus, we have A; > Ag. O
Lemma 110. If Wy 3 Wy and Wo 3 W3, then Wi 3 Ws.
Proof. Wi.n < Ws.n and = Wp and F W3 hold obviously. Since Wy J W, there exists some p1o such that

o Wi A T(p12) > Wa A,

o Wi.p = p1a0 Wa.p, and

o Wo.A> pio.
Since Wy J W3, there exists some pa3 such that

o Wo.A T(pas) > Ws.A,

o Ws.p = pazo Wi.p, and

o W3.A > po3.

Let p123 = p12 0 p23. We have the conclusion by the following.

e Since Wy.p = prz o Wa.p and Wa.p = pa3 o Wa.p, we have Wi.p = p1a3 0 Wa.p by Lemma [T06]

e By Lemmas[108|and [109] Wi.A, 1(p123) = Wi.A, 1(p12), T(p23) > Wa. A, 1(pas) > Ws.A

e We show that W3.A%p123. Let a € ftv(p123|d0m(W3.A)) N dOm(WgA)

We first show that a« € dom(W5.A). Since Wa.A,{(p23) > Ws.A and o € dom(W5.A), we have o €
dom(Wa.A) U dom(pes). To show o € dom(W5.A), it suffices to prove that o ¢ dom(pes). = Wi implies
dom(W1.A) # dom(Wy.p). We have v € dom(W1.A) since a € ftv(p123|dgom(wy.a)) and Wi.p = prazo Ws.p
and - Wy. Thus, a &€ dom(Wi.p) 2 dom(pas).

Next, we show that o € ftv(p12|dom(ws.a)) U ftv(p2s]dom(ws.a)). Since o € ftv(p123]dom(w;.a)), we can find
that a € fto(p12|dom(ws.a)) or & € ftu(pi2(p23)|dom(ws.a))-

Case a € ftv(pi2]dom(w,.a)): Since Wo A, 1(p23) > W3.A, we have dom(W3.A) C dom(W.A) U dom(pa3).
Thus, @ € ftv(p12|dom(Wa.A) U dom(psz))- Since Wi.p = prao Wa.p = p1ao(pazo Wa.p), we have dom(p12) #
dom(p23). Thus, a € ftv(pi2|dom(w,.a))-

Case o € ftv(p12(p23)|dom(ws.4)): We can find a € ftv(pasldom(ws.a)) or & € fto(pr2lfiv(paslsomwy a)))-
Case a € ftv(pa3|dgom(w,.a)): It is what we have to prove.

Case a € flo(p12]ftv(pas|om(wy ay))7 Since = Wa, we have ftv(pas|aom(ws.a)) € ftv(pes) © dom(Wa.A).
Thus, a € ftv(pi2|aom(w.a))-

We show that a® € W5.A.

If a € ftv(pizldom(ws.a)), then Wa.A>p1p and o € dom(W,.A) implies a® € Wy A. Since WA, 1(p23) >
W3.A and a € dom(W3.A), we have a® € W3.A.

Otherwise, if o € ftv(p2s|dom(ws.a)), then W3.A> py3 and a € dom(Ws.A) implies a® € Ws.A.

Lemma 111. If- W, then W J W.
Proof. Obvious by letting p = ); note that W.A > W.A by Lemmam O
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Lemma 112. If Wy 3 Wy, then w Wy J wWs.
Proof. Since Wy 3 W, there exist some p such that
o Wi A T(p) > Wa A,
o Wi.p = po Wy.p, and
o Wy.A>p.
Since wW; = (W;.n, w(W;.A), W,.p) for i € {1,2}, W; 3 W5 implies:
e - wW; and F w Wy by Lemma [TI05}
e wiWin < wWsy.n; and
e wWi.p =powWsp

w W5.A > p holds obviously.
Thus, it suffices to show that
w(W1.A), 1(p) > w(Wa.A) .

Since (W1.A,1(p)) > Wa.A, there exist some A and Ay such that Wi.A,1(p) = (Wa.A + A),Ag. Since
w(W1.A) assigns the use 0 to all the type variables, w(W1.A),1(p) = w(W1.A,1(p)) = w((Wa2.A + A),Ag) =
(w(W2.A) + wA) + wAg. Thus, we have the conclusion. O

Lemma 113. If- W and (My, My) € Atom[W, A], then My = W.pg,(My) and My = W.pg,.(Ma).

Proof. Since (My, M2) € Atom [W, A], we have W.AF My : W.pg, (A) and W.AF My : W.pg 4(A). Since - W,
we have dom(W.A) # dom (W .p). Thus, the type variables in dom(W.p) do not occur free in M; and Ma, so we
have the conclusion. O

Lemma 114. Suppose that Wy 3 Ws.
e For any o, Wl-pfst(a) = Wl'pfst(WQ'pfst(a)) and Wl'psnd(a) = Wl'psnd( WQ'psnd(a))'
o (M, M) € Atom[Wa, A] implies (My, Ma)w, € Atom|[Wy, A].

Proof.

o We show only Wi.ppy(a) = Wi.pg(Wa.pe (@0)); the other equation is shown similarly.
Obvious if a & dom(Wa.p).

Suppose that a € dom(Wa.p). Since Wi J Wy, there exist some p such that Wi.p = po Wa.p. Since o €
dom(Wa.p), we have Wi.ppi(a) = pise( Wa.pge (@)). Since Wi I Wo implies = Wa, we have dom(Wa.A) #
dom(Wy.p) and Wo. A+ Wo.ppy (@), Thus, Wo.ppy (@) = Wa.pg ( Wa.pe («0)). Hence

W1 pge (@) = prst (Wa-prsp (@) = prst (W pgee (Waprs (1)) = Wi pge (Wapgei ()

e Suppose that (M, M2) € Atom [Ws, A]. We show only Wi.A b Wi.pge (M1) @ Wi.pgg (A); the other judgment
can be shown similarly.

By definition, Wa.A F My : Wa.pey (A). Since Wi 3 Wa, there exists some p such that:

- WlAaT(p) > W2-A;
— Wi.p = po Ws.p; and
- WQ.A>-p.

Since W1.A,1(p) > Wa.A, there exist some A} and A} such that W1.A {(p) = (Wa.A + A}), AL, Further,
there exist some Agy, Aga, Ay, A, and Al, such that

— Wa.A = Ao, wAo,,
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- All = A/117WA22,

— Ay = Ay, wAy,

- WlA = (Agl —|—A/11),A/21, and
— 1(p) = wAzz, wA),.

Since 1(p) = wAge, wAl,, we can take p; and ps such that

— p = p14Yp,
— dom(p1) = dom(wAss), and
— dom(pa) = dom(wAl,).

Let Asy1 and Agys be typing contexts such that

— Ao = Agyq,wAg1 and
—VYa € dOm(Agll). al € A211~

Since Wa.A + My @ Wa.pg(A), we have Wo.A,wAL = My : Wa.pg(A) by Lemma 20] Since Wo.A =
Ao1,wAgz = Agi1,wAs12,wAgz, we have

Agll,wAglg,wAgg,wA/Ql = M1 : WQ'pfst(A) . (3)

Since Wi 3 Wy implies = Wy, we have Va € dom(p1). Wi.A F prg (). Since Wi.A = (Ag + Aly), AL =
((Ag11,wA212) + Aly), Ab;, we have

Va € dom(pr). Aai1,wAoia, wAh F prp (@) .

Since Wa.A > p and dom(p1) = dom(wAaa) C dom(Wa.A), we have Va € ftv(p1) N dom(W2.A). a° €
Ws.A. Since

— Wo.A = Agy1, w13, wAy; and
—VYa € dom(Agu). al € A211 - WQ.A,

we have ftv(p1) N dom(Az;1) = 0. Thus,
Va € dom(py). w1, wAh F pre () . (4)
By Lemma [34 with the judgments (3)) and [4)), noting dom(p1) = dom(wAss), we have
Ag11,WA212, wAY) F prpg (M) = prgg(Wapr (A))

Since dom(p2) = dom(wAlL,), we have dom(p2)#(dom(Ag11, wAs1a,wAl)). Thus, noting Ag; = Agyy, wAsys,
we have

Ao1,wAyy = prst(M1) ¢ prse(Wa-pi (4)) -
Since Wi.A = (Agy + A1), Ab;, we have

WA & pre(My) = prse( Wa.prge (A))
by Lemma Since (M, My) € Atom [Ws, A] and + Ws (implied by Wy 3 W), we have
Wi A E prse(Wa-pree (M) < pise(Wa-pg (A))
by Lemma [[13] Since Wi.p = po Wa.p, we have
Wi A F Whppe (M) © Whpee (A)

which is what is required to show.
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Lemma 115. If Wi 3 Ws and (R1, R2) € Wa.pla](»Wa), then (R1, Ra)w, € Wi.pla](»W7).

Proof. Since Wi 3 Wa, there exists some p such that Wy.p = po Wa.p. Let (A1, Ao, 1) = Wa.p(a), B1 = pgst(41),
and By = pgna(A4sz). By definition, Wi.p(a) = (By, Ba,r). Wi 3 W, implies » Wy J» Ws. Since (R, R2) € r(»
W3), monotonicity of r implies (R1, R2)w, € r(» W1). Thus, we have the conclusion. O

Lemma 116. Suppose that Wi 3 Ws.
1. If (Rl,RQ) S R[[AH Ws, then (Rl,RQ)Wl S R[[A]] Wi.
2. [f (Ml,MQ) S g[[AH WQ, then (M17M2)W1 € g[[AH Wy.

Proof. By induction on A. Note that (R1, Rz) € Atom [Wa, A] implies (R1, Re)w, € Atom[W;, A] by Lemma (114
We first show the first property and then the second property by assuming that the first holds.

1. We first consider (R, Re2) € R[A] W2 implies (R1, R2)w, € R[A] Wi. We proceed by case analysis on A.

Case A = : Obvious.

Case A = a: Let (Ry, Ry) € R[a] Wa. By definition, (R1, Ry) € Wa.pa](» W2). By Lemma[I15] we have
(R1,R2)Wl S Wl.p[a](>W1). Thus, (Rl,RQ)Wl S R[[ozﬂ Wi.

Case A = B — C: Let (R1,R2) € R[B —o C] Ws. It suffices to show that (R, R2)w, € R[B — C] Wy,
that is, for any W’ 3 Wy, (W{, W) W', R}, and Rj such that

e W/ 1 W; and

o (Ry, Ry) € R[B] W3,
it suffices to show that

(Rl i,RQRé)W/ € (‘:[[Cﬂ w'.

Since W/ J Wy 3 Wy and Wy 3 Wy O3 Wa, we have W' 1 Wy and W{ J W by Lemma Since
further

° (Rl,Rz) S 'R,[[B —o C]] Wa,

o (W), W3)> W', and

o (R, Ry) € R[B] W3,
we have the conclusion.

Case A = Va.B: Let (R1, R2) € R[Va.B] Way. It suffices to show that (R1, Re)w, € R[Va.B] Wi, that is,
for any W' J Wy, and C, Cs, and r such that w W' F (Cy, C,r) and {a}#w W', it suffices to show that

(Rl Cl,RQ CQ)UJW/ S 8[[3]] {a = (01, CQ,?")}H’JWW/ .

Since W' 3 Wy and Wy 3 Wy, we have W’ J W, by Lemma Since further
[ (Rl,Rg) € R[[VO(B]] Wa,
e wW'lE (Cy, Cy,r), and
o {a}#wW’,
we have the conclusion.
Case A = |B: By the IH with Lemma[T12]
2. Let (M, M) € E[A] Wa. We show (M, Ma)w, € E[A] Wi. Suppose that W’ 3 Wy and W'.pp (Wh.pgee (M) —™
R, for some W', n < W'.n, and R;. Then, it suffices to show that there exist some Rs such that
hd W/'psnd(Wl'psnd(MQD —" Ry and
° (Rl, RQ) € g[[AH (W/ — n)
Since W' | Wl’ we have W/'pfst(Wl'pfst(Ml)) = W,'pfst(Ml) and Wl'psnd(Wl'psnd(Ml)) W/'psnd(Ml)

by Lemma Since Wi 3 Ws, we have W/ J W, by Lemma Thus, since (M, My) € E[A] Wa, we
have the conclusion.
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Lemma 117. For any W and A, if b W and dom(A)# W, then (W.n, (W.AA), W.p) I W.

Proof. Obvious because W.A; A > W.A and - (W.n, (W.A,A), W.p) from - W and dom(A)#W. O
Lemma 118. For any W and A, if = W and W.A < A, then (W.n, A, W.p) I W.
Proof. Obvious because A - W.A from W.A <A jand F (W.n, A, W.p) from - W with Lemma O

Lemma 119. If Wy J Ws and (Wa,s) € G[I'], then (Wi, Wi.p(s)) € G[I']. Furthermore, if Wi.p = Wa.p, then
s = Wip(s).

Proof. Since (Wa,s) € G[I'], we have
o Wg,
o I'> Ws.p, and

e there exist some A and [] A, such that:

2 € dom—1 (T)
— WoA = A+ Zwedom=1(f‘) Ay
—forany o™ € I, 37’ >m. o™ € Aorm =0 A o € dom(Wa.p);

— forany z:' A € T, (t(), ssna(z)) € R[A] (Wa.n, Ay, Wa.p); and
— forany . :“ A € T, (st(2), Ssna(z)) € R[A] w Wa.

Since Wy 3 Wy, there exists some p such that

o Wi.p = po Wa.p,

o Wi.A T(p) > Wa.A, and

o Wy Ax>p.

Thus, there exist some A" and Aj such that Wi.A, 7(p) = (W2.A+A"), Aj. Since Wo.A = A+30 oy (r) Da,
there exist some Aq, Ag, [] ry A1z, Al, Ajy, and Ag, such that

e A= Ala("JAQa

z € dom—1(

o Ay = Ay 5, wAy for any z € dom=1(T),

o A = Al wAo,

o A = Ay,

Wi.A = (A1 + 3 cdom_y () Are + A1), Ajy, and
o 1(p) = wha,wiy.

Let Az = (A1 + A7), Ap; and Az, = Ay 4, wAf; for £ € dom=1(T"). Further, let ¢ = Wi.p(s).
We show (Wi,61) € G[I'] in what follows.

e We have H W; from W; 3 Ws.

e We have W;.A = Az + Zzedom:1(F) Ag’z-

e We show that I' > Wi.p, i.e., let a € fto(W1.plgom(r)) N dom(I") and then show that a® eT.

We first show that o € dom(W5.A) by contradiction. Suppose that o ¢ dom(W2.A). Since a €
dom(T"), (Wa,s) € G[I'] implies a € dom(Wa.p). & Wy and dom(Wi.p) = dom(p) U dom(Wa.p) im-
plies dom(W1.A) # (dom(p) U dom(Wa.p)). = Wy and a € fto(Wy.p) implies o € dom(W;.A). Thus, there
is a contradiction.

Next, we show that a € ftv(plaom(wz.a)) U flv(Wa.plaomry). Since a € fto(Wi.plgomry) and Wi.p =
po Wa.p, we have o € fto(plaom(r)) U fto(p(Wa.p)ldom(r))-
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Case a € ftv(plaom(r)): (Wa,s) € G[I'] implies Vo € dom(I"). a € dom(W2.A) U dom(Wz.p). Thus,
a € fto(plaom(We.A)U dom(Wa.p))- Since Wi.p = po Wa.p is well defined, we have dom(p) # dom(Wx.p).
Thus, @ € ftv(plaom(w,.a))-

Case a € ftu(p(W2.p)|gomry): We have o € fto(Wa.p|gomry) U ftv(p|ft1,(WQ.pMm(F))).

Case a € ftu(Wa.plgomry): We have what is required to prove.
Case a € ftv(p|ftv(WQ.p|d0m(F))): F Wa implies ftv(Wa.p) C dom(Ws.A). Thus, a € ftv(plaom(w,.a))-

We show that a® € T.

If a € flv(plaom(ws.a)), then Wo.A > p and a € dom(W>.A) implies a® € Wo.A. F W, implies o ¢
dom(Wa.p). Let ™ € T. (Wa,q) € G[I'] implies a™ € A for some ' > 7. Since A < Wy.A and
a® € W;y.A, we have 7’ = 0. Since 0 = 7' > 7, we have 7 = 0.

Otherwise, if o € fto(Wa.p|gom(r)), then I' > Wa.p and dom(T") implies a® eT.

e For o™ € I, suppose that Vo' > 7. o™ ¢ As. We show that 7 = 0 A o € dom(Wi.p).
Since a™ € T, we can perform case analysis on 37’ > 7. o™ € Aorm =0 A a € dom(W,.p) (which is
implied by (Wa,<) € G[I']).
Case 37’ > m. a™ € A: Since A = A1,wA,, we proceed by case analysis on o € A or o™ € wAs.

Case a™ € A;: Since Az = (A1 + AY), Afy, we have o™ € Ay for some 7 > 7', Since ' > 7, we have
7' > 7. However, we have assumed V7' > 7. ™ ¢ As. Thus, there is a contradiction.

Case a™ € wAy: Since ' > m, We have n/ = m = 0. Since {(p) = wAs,wA),, we have o € dom(p).
Since Wi.p = po Wa.p, we have a € dom(Wy.p).

Casem = 0 A a € dom(Ws.p): Since Wy.p = po Wa.p, we have a € dom(Wj.p).

o Let z:1 A €T
We first show that (Wi.n, Az 5, Wi.p) J (Wa.n, Ay, Wa.p).

— F(Win, Az, Wip) and - (Wan, Ay, Wa.p) by Lemmawith F W; and - Wy and dom(W;.A) =
dom(Ag ;) and dom(Wa.A) = dom(A,).

— We have Wi.n < Wo.n by Wy 3 Wa.
— We have As ;, 1(p) = A1 5, wAfy, wAg, WAy > A1 g, wAg = Ay
— We have Wi.p = po Wa.p.

— We show that A, > p. Let a € ftv(plioma,)) N dom(A,). Since dom(Ay;) = dom(W,.A), we have
a® € Wa.A by Wa.A > p. Since A, < Wa.A, we have a® € A,.

Thus, since (St (%), ssna (7)) € R[A] (Wa.n, A,, Wa.p), we have
(Stst (), Ssna(2)) wy, € R[A] (Wi.n, As 5, Wi.p)

by Lemma [I16] Thus,
(S18¢(2), S16na(2)) € RIA] (Win, As e, Wip) .

e Let z:* A € T. We have had (stst (), Ssna(2)) € R[A]w Wa. Since wW; I wWs by Lemma [112] we have
(gfst(m)y gsnd(m))wwl S R[[A]] WWI

by Lemma [I16] Thus,
(S18t(2), S16na(2)) € R[AJw W .

If Wi.p = Wa.p, then ¢ = Wj.p(s) by Lemma [113] O
Lemma 120. IfT'Fz: A, thenTFz <z: A.
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Proof. Let (W,s) € G[I'] and W' 3 W such that 0 < W’.n. Then, it suffices to show that

(gfst($)7§snd(x))W' S R[[A]] W’ .

By Lemma (W', W'p(s)) € G[TI']. Since T+ z : A, we have 2 :™ A € T for some 7 # 0. By case analysis on
.

Case m = 0: Contradictory.

Case m = 1: Since (W', W'.p(s)) € G[I'], we have (ctst(2), Gsna(z))wr € R[A] (W'.n, A, W'.p) for some A <
W’'.A. By Lemmas and we have the conclusion.

Case m = w: Since (W', W’.p(s)) € G[I'], we have (¢t(), Gena(2))wr € R[A]JwW'. We also have W J wW by
Lemmas and Thus, we have the conclusion by Lemmas and

O
Lemma 121. IfT'F c¢: ty(c), then T Fvag. ¢ X vag. ¢ : ty(c) for any a7 and as.

Proof. By structural induction on ty(c). Let (W,<) € G[I'] and W’ 23 W such that 0 < W’.n. It suffices to show
that
(vaq. c,vag.c) € Rty(c)] W' .

If ty(c) = ¢ for some ¢, we have (vaq. ¢,vaz. ¢) € R[] W’ by definition. Thus, we have the conclusion.
If ty(c) = + — A for some ¢ and A, then it suffices to show that, for any W" Wy, Wy, R}, and R}, if

o« W' W,
o (Wl, WQ) B) WH,
e Wy I W/, and

(R1, By) € R[] W,

then
((vay. c) Ry, (vag. ¢) RY) € E[A] W' .

Since (R{, R}) € R[] Wa, we have R] = vf1. ¢ and Ry = vf3,. ¢ for some f1, B2, and ¢’ such that ty(¢’) = ¢. By
Assumption [1} for 4 € {1,2}, there exists some n; such that (va;. ¢) R} —™ vag.vB;.¢(c,¢'), and T' I ((c, ¢') : A.
Let W 3 W" and ny < W' .n. Then it suffices to show that

(vag.vB1.C(c, '), vaz. vBs.((c, ') € RIAJ (W —m) .

By the TH, B B
I'Fvar.vBi.C(c, ') 2 vag.vBs.((e,c'): A .

Since (W,s) € G[I'] and W —ny 3 W” 3 W’ 3 W' 23 W, we have (W"" — ny, W"”.p(s)) € G[I'] by
Lemmas and Thus, we have

(vag.vBr.C(c, '), vaz. vBs.((c, ') € E[AJ (W —mny) .
Since n; < W' .n, we have 0 < W"'.n — ny. Thus, we have the conclusion. O
Lemma 122. If (W,s) € G[I'] and (R1, R2) € R[A] (W.n, A, W.p) and W.ALA, then
(W, WA+A, Wop),cw{z = Ry, R}) € G[T,z:* A] .

Proof. (W,s) € G[I'] implies - W. By Lemmal[102 dom(W.A) = dom(A). Thus, by Lemmal[l05] - (W.n, W.A+
A, W.p). The remaining part is obvious by definition. O

Lemma 123. IfT,z:Y A+ M; < My : B, then T - Az.M; < A\x.My: A — B.
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Proof. Let (W,<) € G[I']. By definition and Lemma it suffices to show that, for any W', W”, Wy, Wa, Rj,
and Rj, if

o W W,

e 0 < W,

o W' W/,

o (Wy, W) W”,

o Wy I W', and

(R1, Ry) € R[A] W2,

then
(§fst()\$.M1)Rl17§snd()\l'.M2) RIQ)WH S SHB]] WH .

Let W' 3 W such that W' .pe (st (Az. M1) Ry) —™ Ry for some n < W' .n and R;. Then, it suffices to show
that there exists some R} such that

o W pend(Ssna(Az. M) Ry) —* Ry and
o (Ri,Ry) € R[B](W" — n).

Since (W,<) € G[I'] and Wy I W' 2 W and Wy.p = W”.p, we have (Wi, W”.p(c)) € G[I'] by Lemmas [110]
and[[19] Since (Wi, Wa) W and (R}, Ry) € R[A] Wa, we have (W", W".p(s)W{z = R}, Ry}) € G[T,z :* 4]
by Lemma[122] Since T',z :* A+ My < M, : B, we have

(Cfst(Ml[Rll/x})vgsnd(MZ[Ré/x]))W” € 5[[3]] w".

Since W' .pe (stst (Ax.M1) R}) —™ Ry, we can find W' .pe (st (M1 [R}/x])) —™ Ry for some ny < n.
Since W' 3 W' and ny < n < W' .n, there exists some Ry such that

o W pna(Ssna(Ma[R/z])) —" Ry and
o (Ri,Ry) € R[B(W" —m).

We have W' .pgq(Ssna(Ax. M) RY) — W' .poq(Ssnd (Ma[RS/2])) —* Ro. Since W' —n J W' — ny, we have
(Ri,Rs) € R[B](W" — n) by Lemmas [116] and [L13] O

Lemma 124. If (W,s) € G[I'1 + 3], then there exist some Wi and Wy such that
o (W1,5) € G,
o (Wa,¢) € G[I'2], and
o (Wi, Wa)> W.
Proof. Since (W,¢) € G[I'1 4+ T's]], we have
oW,
o I'y + 5> W.p, and
o there exist some A" and [, ¢ som_, (1, 41,) Da such that
- WA = A+ 3 caomer (T 41) Do
—Vam el.Ax >ma" € A)V (r =0 A ac dom(W.p)),

—Vz:' A eT. (spe(2),sna(z)) € RIA](W.n, Ay, W.p), and
—Vz:¥AeT. (sst(x),snd(z)) € RIAJwW.
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For i € {1,2} and z € dom—1(I';), let A; , = A, if ¢ € dom—1(I'1 +T'9), and otherwise A; , = wA'.
We also build A/, for i € {1,2} as follows:

e if a' € A’ and o' € T, then o € A;

e ifal € A’and a® € T; and o' € T'y_;, then a® € A/;

eifal € A’anda® € T1 + T3 V a € dom(T1 +T3), then a® € A} and o' € Al; and
e if a® € A/, then a® € A

Then, we can find AJLYS ;. ) Qis for @ € {1,2}: for any a, if o' € Aj, then o' € A’; since
AL Zzedomzl(f‘lJer) A, we have a® € A,.
Let i € {1,2} and W; = (W.n, AL+ >

r) Az, W.p). We show that (W, Wa) © W, ie., Wi.A +
Wy.A = W.A. First, we have the following.

z€dom—1(

o A" = AL+ AL Ifa® € A’, then a® € A} and ® € AL; If o' € A’, then only either of A} and A, has ol.

e We have
wA' + Zacedomzl(l"l—i-FQ) Az
_ /
= wA'+ Zzedomzl(rl) N dom=1(T'14+T2) Arg + ZzGdomzl(Fz) N dom—1(T'14T2) Az
I
= wA + Zxédom:l(rl) Al,x + Zxedom:l(l—é) AQ’x
Thus,

WA = A+ erdomzl(r‘l_;’_[‘z) Ay
/1 + A/2 +wA" + Zzedomzl(F1+F2) Az
Al + Ay +wA + erdom=1(F1) Are + Zwedom:ﬂrz) Az
A/l + Zzedom:1(F1) Al,z + AI2 + Zzedomzl(Fz) A2,z
Wi.A + Wo A .

Finally, we show that (W;,<) € G[I';].

e We have - W; by Lemma [105| with = W and dom(W.A) = dom(W;.A) (which is shown by Lemma [102).

e We show that T'; > Wi.p. Let a € flu(Wi.plaomr,)) N dom(I';). Since Wi.p = W.p and dom(Tl';) =
dom(T'y +T3), T'y + Ty > W.p implies a® € T’y + 'y. Thus, a® € T.

e Let o' € I';. Since o' € 'y + 'y, we have o' € A’ from (W,s) € G[I'; + I's]. By the definition of A/,
ot € AL

o Let o° € I;.
If a € dom(A'), then o € dom(A}). Thus, there exists some 7/ > 7 such that o™ € A’
Otherwise, if @ € dom(A’), then, since (W,s) € G[I'1 + 2], o € dom(W.p) = dom(W;.p).

o Let z:1 A € T';. We show (ts¢(7), ssna(2)) € R[A] (W.n, A, 4, W.p).

Ifz:* A € Ty + 7T, then A, , = A,. Thus, (st(2),na(z)) € RIA](W.n, A4, W.p) from (W,s) €
GgIry + T2

Otherwise, if z ¥ A € TI'y + I'y, then (sge(2),6ma(z)) € R[AJwW from (W,s) € G[I'1 +I'2]. Since
wA" = A, ; by definition, we have the conclusion.

o Let z:¥ A € T';. Since wW; = wWo =wW, it suffices to show that (¢st(z), sna(z)) € R[A]w W, which is
shown by (W,¢) € G[I'1 +I'3].

O

Lemma 125. [f Fl F M11 = M21 : A — B and Fg - M12 = M22 : A and FlLFQ, then Fl + Fg - Mll M12 =
Mgl M22 . B.

56



Proof. Let (W,s) € G[I'1 +I's]. By the definition and Lemmam suppose that
« W IW,
e n < Wi.n,and
o W pg(Sst(Miy Mi2)) —" Ry
for some W', n, and R;, and then it suffices to show that there exists some Ry such that
o W .pena(Ssna(May Mas)) —* Ry and
o (Ri,Rs) € R[B] (W' —n).
By Lemma[I19] (W', W'.p(s)) € G[I'1 +I'z]. By Lemma [124] there exist some W; and W5 such that
o (Wi, W'p(s)) € G[I],
o (W, W .p(s)) € G[I'2], and
o (W, Ws) > W'
Since I'y - My; <X Moy : A — B and Wy.p = W'.p (from (Wy, W5) © W’), we have
(tst (M1), Ssnd (M21))w, € E[A — B] Wy .
Since I'y - Mys < Moy : A and Wa.p = W'.p, we have
(stst (Mi2), Ssna(Ma2)) w, € E[A] Wa .

Since W’.pg (st (M11 Mi2)) —™ Ry, we can find Wi.pp (St (M11)) —™ Rip and Wa.pp (St (Mr2)) —™2
Ry for some Ri1, Ry2, nq, and ng such that n; + ny < n; note that Wi.p = Wa.p = W'.p. Since Wi.n = Wa.n = n,
there exist some Ro; and Ras such that

o Wi.pgna(Ssnd(Ma21)) —* Rox,
o Wa.pgnq(Ssna(Ma2)) —* Rao,
e (Ry1,Ry1) € R[A — B] (W; —ny), and
o (Ria, Ra2) € R[A] (W2 — m2).

Since Wa — ny — ng J Wy — ng, we have (Ry2, Raa) € R[A] (W3 — ny — n2) by Lemmas and Since
(W, Wa) W', we have (W) — ny — ng, Wo — ny — ng) W’ — ny — ng. Further, by Lemma (118, W' — n; — ng 3
Now, we have

Wi — ny — ng. Since Wi — ny — ng 3 Wi — ng, we have W’/ — ny — ng 3 Wi — nqy by Lemma
o (Ri1,R21) € R[A — B (W; — my),
o (Ry2, Rao) € R[A] (W3 — ny — ng),
o W' —ny—ny J Wy — nyq.
o (Wy—ny—mg, Wo—ng —ng) D W —ny — ng, and
o Wy —ny—ny 3 Wy —ny.

Thus, by the definition of R,
(R11 Ri2, Ro1 Ro2) € E[B] W' —ny —ny .

Since
W' pget (St (M11 M)  —™  Rix Wopg (Sist(Mi2))
—" Ry1 Ria
—" Ry

for some n3 = n — ny; — ng, there exists some Ry such that
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L] R21 R22 —* R2 and
e (R, Ry) € R[B] (W' —n).
Note that ng < W’'.n — n1 — ny. We have

W' psna(Ssnd (Mo Maz)) Ror W'.pgna(Ssnd(Maz))

— ¥

—*  Ra1 Rao

—* R2 .

Thus, we have the conclusion. O

Lemma 126. If (W,s) € G[I'], then (wW,s) € G[wIT].

Proof. By induction on I'. Note that: since (W,¢) € G[I'], we have - W, which implies - w W by Lemma m;
and wl' > w W.p.

Case I' = (): Obvious.

Case I' = I'",a™: We have (W,s) € G[I"]. By the IH, (wW,s) € G[wI"]. By the definition of G, we have
(WW). A=A+ A for some A" and [, ¢ jom_, (wrr) A%

Then, it suffices to show that, for any «, if @ € dom(A’), then a € dom(W .p).

Suppose that o & dom(A’). By Lemmas [[2]and [9] o & dom(W.A). Since (W,c) € G[I",a™], we can find

m =0 (ifr # 0, then a € dom(W.A)) and o € dom(W.p).

z€dom—1 (wI)

CaseI' = TI",z:™ A: We have (W,¢) € G[I"]. By the IH, (wW,s) € G[wI"].

If 7 = 1orm = 0, then we have (WW,s) € G[wI",z :© A] = GJw(I',z :™ A)] by the definition of G and
(WW,s) € GwI].

Otherwise, suppose that 7 = w. Then, it suffices to show that
(gfst(x)a gsnd(l')) S R[A]] wwW .

Since (W,s) € G[I',z = A], we can find (Sgt(2), ssna(z)) € R[AJwW. Since wwW = wW by Lemmal5] we
have the conclusion.

O
Lemma 127. IfFT and wI' My < M : A, then T 1My <My :1A.
Proof. Let (W,s) € G[I']. It suffices to show that
(stst ('M7), ssna(!M2))w € E[VA] W .
Suppose that
o W W,
e n < W.n,and
o W'opg(Sese(IM1)) —" Ry
for some W', n, and Ry, and then it suffices to show that there exists some Ry such that
o W .pa(Sna(!Mz)) —* Ry and
o (R, Ry) € R[IA] (W' —n).
Since (W,<) € G[I'], Lemmas[119] and [126] imply (w W', W'.p(s)) € G[wI]. Since wI = M; < My : A, we have
(stst (M1), ssna(Ma)) wr € E[AJw W' .

Since W'.pp(stst(1M1)) —™ Ry and W'.p = wW’.p, we can find wW’.pg (st (M1)) —™ R} for some R} such
Ry = !R}. Thus, by the definition of £, there exists some R} such that
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o wW’ pga(Ssna(Ma)) —* R} and
o (R|,R}) € R[A] (wW' —n).
Let Ry = !R). Now, it suffices to show that (!R],!R}) € R[!A] (W’ — n). By definition, it suffices to show that
(let!lz =Rjinz,let!lz =!R)inz) € E[A]Jw(W' —n) .
Let W"” Jw(W’' — n) and suppose that 1 < W"”.n. Then, it suffices to show that
(R}, B wo € RIAJ (W — 1) .

Since (Ri,R}) € R[A](wW’' —n) and W’ —1 3 W J w(W' —n) = wW’' — n, we have the conclusion by
Lemmas [I10] and [IT6 O

Lemma 128. If Fl F M11 j M21 : !B and FQ,I “ B M12 j M22 : A, then Fl +F2 Fletly = M11 in M12 j
let!z = M21 in M22 : A

Proof. Let (W,¢) € G[I'1 + I'y]. It suffices to show that
(stst(letlz = Myyin Mia), ssna(let!e = Moy in Mao))w € E[A] W .

Suppose that

e W IIW,

e n < W.n,and

o W.pe(sest(let!le = Mypin Mys)) —™ Ry
for some W', n, and Ry, and then it suffices to show that there exists some R such that

o W .pa(ssna(let!s = Moy in Mag)) —* Ra and

e (R, Ry) € R[A] (W' —n).

Since (W,s) € G[T'1+T2] and W' 3 W, we have (W', W' .p(s)) € G[I'1 + 2] by Lemma Lemma [124]implies
that there exist some W; and W5 such that

o (W, Wp(c)) € G,

o (W, W .p(s)) € G[I'2], and

o (Wy, Ws)> W'
Note that W'.p = Wy.p = Wh.p. Since I'1 F M1 < Moy : !B, we have

(stst (M11), Ssnd (Ma21)) wy, € E['B] Wh .

Since W' .pgy (stst(let !z = My in Mya)) —* Ry, we can find that

o W'opg(ctse (M11)) —™ van. 1Ry,

o W . ppi(sese(let!s = Myyin Myo)) —™ W' .pp (sest(let !z = vaq. |Ryy in Mya)) — W' pp (st (Maa[van. Ry, /x]))
for some a7, R};, and ny. Thus, by the definitions of £ and R, there exist some @z and R}, such that

o Wi.pgna(Ssna(Ma1)) —* vag. |R); and

o (var. R|,,vas. Ryy) € R[B]w(Wi —m —1).
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Note that 1 +1 < n < W'.n = Wy.n. Since (Wi, Wa) W', we have w W) = wWs. Thus, (vag. R, vas. R),) €
R[B]w(Wz —my —1). Since (Wa, W.p(s)) € G[I'2], we have (Wo —ny — 1, W/.p(s)) € G[I'2] by Lemmas[I19 and
Thus, by the definition of G,

(Wo—m — 1, W.p(s)w{z = vag. R}y, vaz. Ry, }) € G[l2,2:¥ B] .
Since 'y, x :“ BF Mis < Mo : A and Wo.p = W'.p, we have
(Stst (Mag[var. Ry /x]), Gsna(Maz[vaz. Ry, /2])) wy—ny—1 € E[A] (Wo —m — 1) .

Since W'.pp (stse(let !z = Myqin Myg)) —™+ W ope (S (Mio[var. Ry, /x])) —™~™1~1 Ry, there exists some Ry
such that

b W/~psnd(§snd(M22 [V@ RIQI/Z])) —" Ry and
(] (Rl,Rg) S R[[A]](Wg—n)
Now, we have the conclusion because:

W’.psnd(gsnd(let lz = M21 in MQQ)) n (gsnd(let lz = Vas. 'Rél in MQQ))

— w’ Psnd

— W/'psnd(gsnd(MQQ [VTQ Rél/x}))
—* R2

and

e since (Ry, Ry) € R[A] (W2 —n) and W' —n 3 W, — n by Lemma [I18] we have (R, Rz) € R[A] (W' — n)
by Lemmas and

O
Lemma 129. For anym <1, If = W and {a}# W, then = (W.n, (W.A,a™), W.p).
Proof. The conclusion is shown by the following.
o dom(W.p) # dom(W.A,a™) because {a}# W.

e Let 8 € dom(W.p). Since W.AF W.pe(8) and W.A F W.pg4(8), we have W.A o™ = W.pg(8) and
W.A Q™ F W.p,q(B).

0
Lemma 130. Suppose that {a}# Wi and {a}#Ws. If Wi 3 Wy and w < 1, then (Wi.n, (Wi.A,a™), Wi.p) 3
(Wam, (Wo A, ™), Wa.p).

Proof. Let W] = (Wyi.n, (W1.A,a™), Wi.p) and Wy = (Wa.n, (Wa.A,a™), Wa.p). Since Wi 3 W, we have
o - Wi and - W,
o Win < Wy,
e there exists some p such that

- WlAaT(p) > WQ-A7
— Wip = po Wap,
- WQA > p.

We have the conclusion by the following.
e b W/ and WJ by Lemmawith F Wi and = Ws.
o Wi.A ™, 1(p) > Wa.A o™ since Wi.A,1(p) > Wa A.
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e We show that W3.A> p. Let 8 € ftv(plaom(wy.a)) N dom(W5.A). Since {a}# Wy and = Wi, we have
a & ftu(p) U dom(p). Thus, B € ftv(plaom(w,.a)) N dom(Wa.A). Thus, Wa.A > p implies 3% € Wa.A, so
BO S WQ.A7O[7F = WQ/A

O
Lemma 131. If- W and {a} # ftv(A), then:
e (R, Ry) € R[A] WQ« implies (va. Ry, va. Ry) € R[A] W; and
o (M, M) € E[A] WQa implies (va. My, va. M) € E[A] W.
Proof. By induction on A. We first consider the first property on R and then the second one on £ with the first
property.
o Let (R1, R2) € R[A] WQa. We show (va. Ry, va. Ry) € R[A] W by case analysis on A.

Case A = 1: By definition.

Case A = f8: Let (By, Ba,r) = W.p(B). Since (R1, R2) € R[S] WQa, we have (R, R2) € r(»(WQa)) by
definition. Since 8 € dom(W.p) and - W, we have W.A + B; and W.A + By and r € Relw ,[B1, Ba].
Since WQq is well defined, we have {a}# W, so {a} # ftv(By) and {a} # ftv(Bsz). We also have F» W
from F W. Thus, by the third condition on r € Rely ,,[B1, Bz] about extension with fresh type variables,
(va. Ry, va. Ry) € r(»W). Thus, we have (va. Ry,va. Ry) € R[B] W.

Case A = B — (': Suppose that

- W/ ; Wa
- (Wh WQ) D) le
— W1 3 W, and
— (R1, Ry) € R[B] W2
for some W', Wy, Wa, R{, and R}, and then it suffices to show that

((va. Ry) Ry, (va. Ry) Ry)wr € E[C] W' .

Since W' .pg((va. Ry) R)) — W' .pg(va. (Ry RY)) and W’ .pg q((va. Ry) Ry) — W' .pgq(va. (R RY)),
it suffices to show that
((va. Ry RY), (va. Ry RY))wr € E[C] W'
by Lemmas and Since {a}# W, we can suppose that {a}# W' without loss of generality. Since
— (R1,Rs) € R[B — C] WQ«
— W'@Qa J WQa by Lemmawith w' 3w,
— Wi@Qa J W@Qa by Lemma [130| with W, J W,
— (WQa, (Wa.n, (Wa.A,a), Wa.p))  W'Qa (from (Wi, Wa) W), and
— (R;, Ry) € R[B](Wa.n, (Wa.A,a®), Wa.p) by Lemmas[117} [L16] and [113]
we have

(Rl Ri, Ry Ré)W’@a € g[[CH W' .
By the TH with = W’ implied by W’ 3 W, we have the conclusion

(z/a.Rl Ri,ya. R> RIQ)W/ S g[[C]] w' .

Case A = VB.B: Suppose that
- WaIw,
—wW’'F (Cy, Cayr), and
- {B}#w W’
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for some W', C1, Cs, and r, and then it suffices to show that
((Va. Rl) y, (ua. Rg) CQ)UJW/ S 5[[3]] {6 = (01, CQ,T)} WwW' .

Since w W' .pe ((va. Ry) C1) — wW' . pe(va. (R C1)) and w W’ .p g ((va. Ry) Co) — wW'.pgq(va. (Ry Cy)),
it suffices to show that

(UOz.Rl C1,va. Ry CQ)WW’ S g[[BH {ﬁ = (Cl, 02,7")} WwW'

by Lemmas and Since {a}# W, we can suppose that {a}#w W’ without loss of generality. Since
— (R1, R2) € R[VB.B] WQ«
— W'@Qa J WQa by Lemmawith W’ 3 W, and
— w(W'Qa) F (Cy, Co,r) from W't (Cy, Cy, 1),

we have
(B1 C1, Rz C2)y(wraa) € E[BI{B = (C1, Co,7)} Ww(W'Qa) .

By Lemma [118] {8 = (Ci, Co,7)} W (wW')@a D {B = (C, Co,7)} Ww(W'Qa). By Lemmas [116] and
we have
(Rl ClaRQ CQ)(wW’)@oc S g[[B]] {B = (017 CQ,T)} W (WW/)@Q .

Since we can suppose that o # [ without loss of generality, we have {a} # ftv(B). We also have +
{8 & (C1, Cy,r)} WwW’' by Lemma[l05| with = W’ and w W' & (Cy, Cs, 7). Thus, by the IH, we have the
conclusion

(Va. Ry Cy,va. Ry Cg)wwl S g[[BH {ﬁ = (01, 02,7“)} WwW’ .

Case A = |B: It suffices to show that (va. Ry,va. Ry) € R[!B] W, that is,
(let!z = va. Ryinz,letls = va. Ryinz) € E[BJwW .

By Lemma there exist some Sy, B2, R}, and R} such that
— Ry = vB1. R} and
— Ry = vBs.\R).
Suppose that
- W 3IJwW,
-1 < W'.n,and
— W pg(let!ls = va.vBi. IR inz) — W' .pp(va.vpr. RY)

for some W’ and n, and then it suffices to show that
(va.vBy. Ry, va.vBy. RY)wr € E[B] (W' —1) .

Since (Ry, Ra) € R[!B] WQa, we have (vB3;1. R}, vB2. Ry) € R[B] (w(W@a) — 1). Since - W, we have
FwW —1 by Lemma [I05] Thus, by the IH, we have

(va.vBy. Ry, va.vBs. Ry) € R[B] (WW —1) .
Since W’ JwW, we have W’ —1 J wW — 1. Thus, we have the conclusion by Lemma [116
o Let (M, M) € E[A] WQa. We show (va. My, va. Ma) € EJA] W with the first property. Suppose that
- WaIw,

—n < W .n,and
— W' pg (va. My) —™ Ry

for some W', n, and R;, and the it suffices to show that there exists some Ry such that

— W .pga(va. My) —* Ry and
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— (R17R2) S R[[A]] (WI— n)

By the semantics, Ry = va. R for some Rj such that W’.pg, (M) —™ R1. Since {a}# W, we can suppose
that {a}# W’ without loss of generality. Thus, W/Qa J W@« by Lemma with W/ 3 W. Since
(My, M) € E[A] WQa, Lemma implies that there exists some Rj such that

— W ipgpq(Mz) —* R} and
— (R}, R)) € R[A] WQ« — n.

By the first property on R with W’ — n implied by W’ 3 W, we have the conclusion (va. Rj,va. R)) €
R[A] (W’ — n) where let Ry = va. Rj.

O
Lemma 132. If {a}# W and (W,s) € G[I'], then (WQa,<) € G[I', a'].
Proof. Since (W,<) € G[I'], we have
o W,
o I'>- W.p,

e there exist some A and [] A, such that

z € dom=1(I")
— WA = A+Zzed0m=1(r) A.’I,‘?

— VBT el 3n > 7 € A)V (r =0A B e dom(W.p)),
—Vz:t AeT. (s(),sna(z)) € R[A] (W.n, A, W.p), and

—Vz:¥ A el (¢u(z),sna(z)) € RIAJwW.

Let Ag = Aot and Ag, = Ay, a® We have W.A o = A, +Zz€dom:1(F) AV
We have (WQa,s) € G[I',a'] by the following.

e - WQ@a by Lemma [129]

e We show that I', al> (W@a).p. Let 8 € Jto((WQa).p| gom(r,a1y) N dom(T',al). Since {a}# W and - W and
(W@a).p = W.p, we have a ¢ dom((W@Qa).p) U fto((W@Qa).p). Thus, 8 € fto(W.plgomry) N dom(T),
and so I' » W.p implies 8° € T.

(] al € Ao.
o Vz:t A €T, ol (ui(2), Sna(z)) € RIA](W.n, Aoz, W.p) by Lemmas[117} [116] and [113]

o Vr:¥ A €T ar. (su(2),sna(z)) € R[A]w(WQa) because, since w(W@Qa) J wW by Lemma with
FwW, it is proven by Lemmas and

O
Lemma 133. IfTla'F M, < My: A and T A, then T - va. My < va. My : A.
Proof. Let (W,s) € G[I']. It suffices to show that
(stst (V. My), ssna(va. Mo))w € E[A] W .
Suppose that
o W W,
e n < W.n,and

o W.pe(stst(va. My)) —™ Ry
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for some W', n, and Ry, and then it suffices to show that there exists some Ry such that
o W' . pendq(Ssna(va. Ma)) —* Ry and
o (Rl,Rg) c R[[A]] (W/ — TL)

Without loss of generality, we can suppose that {a}#W’'. Since (W,s) € G[I'] and W’ J W, we have
(W', W' .p(s)) € G[I'] by Lemma Thus, by Lemma [132]

(W'aa, W.p(s)) € G[T',a'] .
Since F,Ozl - Ml j M2 : A7 we have
(stst (M), ssna(Ma)) wr € E[A] WQa .

Since W'.pgy (st (v My)) —™ Ry, there exists some R such that

o W' pgy(St(Mr)) —™ R} and

e R = va.Rj.
Thus, there exists some R} such that

o W/'psnd(gsnd(MQ)) —* Rl2 and

o (R}, R}) € R[A](W'Qa — n).

Since I' - A, we have a ¢ ftv(A). We also have = W’ —n from W' 23 W. Thus, by Lemma[131] (va. R}, va. R}) €
RIA] (W’ — n). We have the conclusion by letting Ry = va. R}. since W'.p.q(Ssna(va. Ma)) —* va. Rj. O

Lemma 134. If (W,c) € G[I'y,al, T3], then there exist some Ay and Ag such that
e W.A = A, al,Ay and
o (W.n, (A1,a% Ag), W.p),s) € G[I'1,a® T5].
Proof. Let T' = I'y, o, T'y. Since (W,c) € G[I'], we have
o W,
o I'> W.p,

e there exist some A and [] (ry A such that

T € dom=1

- W.A = A+Zmedomzl(r) A,
— VBT el. 3a>m. " € A)V (r =0 A B € dom(W.p)),
—Vz:t A eT. (st(2),sna(z)) € RIA](W.n, A, W.p), and
—Vz:¥ A eT. (¢t(2),sna(z)) € R[IAJwW.
Since ol € T, we have a' € A. Let A} and A} such that A = A}, o, AL.
Let A’ = Al,a® A’ and W' = (W, A"+ (F'1,00,T) A, W.p). Since ALA,, we have a® € A,.

Thus, a® € W'.A.
Finally, (W’,<) € G[I'1,a° '] is shown by the following.

redom—_1
e - W' by Lemma [105] with - W.

e I'1,a% 'y > W.p holds obviously because dom(I'1,a®,T'y) = dom(T) and T > W .p.

o al e A,
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Lemma 135. Ift W and {a}#wW and wW - (A1, Az, 1), then {a & (A1, Ao, m)}WwW Jw(Waa).
Proof. We have the conclusion by the following.

e We show that - w(W@a). By Lemmas[9 and [L05| with - W, we have - w W. By Lemma[129| with {a}#w W,
we have F w(WQa).

F{a = (41, A2, 1)} wW by definition with - wW and wW I (A1, A2, 1) and {a}#Hw W.
We have w W. A, 1({a & (A1, A2,7)}) =wW.A,a® > wW.Aa® = w(WQa).A by Lemma

We have {a & (A1, A2, 1)} WwW.p = {a & (A1, A2,7)} cwW.p because {a}#wW and - W.

w(Waa).A>{a = (41, Az,r)} holds obviously because w(WQa).A assigns the use 0 to all the bound type
variables.

O
Lemma 136. If Wy O3 Wy and Vo € dom(p). Wa t p(a), then Vo € dom(Wi.p(p)). Wit Wi.p(p)(a).

Proof. Let a € dom(p) = dom(Wi.p(p)), (A1, A2,7) = pla), By = Wi.pg (A1), and By = Wi.pgq(A2). We
have Wi.p(p)(«) = (By, Ba, 7). It suffices to show that Wi F (By, B2, ), which is proven below.

e We show that Wi.A F By; Wi.AF By can be proven similarly.

Since By = Wi.ppi (A1) = Wipg (psse (), it suffices to show that ftu(Wy.p) C dom(W;i.A) and ftu(p) \
dom(Wy.p) C dom(Wi.A).

We have fto(Wi.p) C dom(W;.A) since = Wi implied by Wy, 3 Wa.

We show that ftv(p) \ dom(Wi.p) C dom(W1.A). Let € ftv(p) \ dom(Wi.p). By the assumption
Va € dom(p). Wa = p(a), we have fto(p) C dom(W2.A). Thus, 5 € dom(Ws.A) \ dom(Wi.p). Since
W1 3 Wa, there exists some p’ such that

— Wi.A(p') > Wa A and
— Wi.p = p' o Wap.

Wi.A1(p") > Wa.A implies dom(Ws.A) C dom(W1.A) U dom(p'). Thus, 8 € (dom(W7.A) U dom(p’)) \
dom(Wy.p). Wi.p = p' o Wa.p implies dom(p’) C dom(Wi.p). Thus, 8 € dom(W;.A).

e We show that r € Relw, ,,[B1, Bz]. By the assumption Va € dom(p). Wa F p(a), we have r € Relw, n[A41, A2].
Thus, r € Relw,.»[B1, B2] by definition. Since Wi.n < Wa.n, we can view r € Relw, »[Bi1, Ba].

O
Lemma 137. If Wi 3 Wy and dom(p)# W1 and - pW Wa, then Wi.p(p) W Wy O pw W,
Proof. Since Wy 3 W5, we have the following.
e F Wy and F Wy,
e Wi.n < Wh.n, and
e there exists some p’ such that

- WlAvT(pl) > W2~Aa
— Wi.p = p' o Wa.p, and
- WQA > p/.

Let W] = Wi.p(p) W Wi. The conclusion Wy J p & W5 is shown in what follows, where p’ is the intermediate
interpretation mapping.

e We show that - W/.
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— We show that dom(W].A) # dom(W/{.p). Since b Wi, we have dom(Wi.p) # dom(W;1.A). By the
assumption dom(p)# Wi, we have dom(p) # dom(Wi.p) and dom(p) # dom(W;.A). The first property
implies that W/ is well defined. The second property implies dom(W/.p) = (dom(p) U dom(Wi.p)) #
dom(W1.A) = dom(W].A).

— Let a € dom(W{.p). We show that W] F W/.p(a).

Since o € dom(W/.p), we have o € dom(p) or o € dom(Wy.p).

Case a € dom(p): By F Wi.

Case a € dom(p): We have Wy F Wi.p(p)(«) by Lemma with Wip J Wy and F pW Wa. Thus,
W/ Wip(p)(a) = Wi.p(a).

F pw W5 by the assumption.

Win=Win < Won=(pw Wa).n.
W{A, J[(p/) = Wl.A,T(p/) > We A = (pH'J WQ)A

e We show that Wi.p = p' o (pW Wa.p). We have ftv(p) # dom(Wa.p) because ftv(p) C dom(Wa.A) by
Fpw Wa, and dom(W2.A) # dom(Wa.p) by = Wa. Thus:

Wi.p = Wiplp)w Wip (by definition)
= (p' o Wa.p)(p) & (p' © Wa.p) (since Wi.p = p’ o Wa.p)
= (P W (Wa.p))(p) Wp' & p' (Wa.p)
= pp)Yp' o' (Wa.p) (since ftv(p) # dom(Ws.p))

P Yo (pW Wa.p)
= po(py Wap).

e We have (pW Wa).A > p’ because Wa.A> p' and (pW Wa). A = W A.

Lemma 138. If Wi O pW Wa, then there exists some W such that W{ 3 Wo and W1 = W{.p(p)w W/.
Proof. Since W1 J p Wy, we have

o Wyand - pW W,

e Win < (pwW Wa).n = Wa.n, and

e there exists some p’ such that (note that (pW Wa). A = Wy A):

- WlA,T(p/) > WQA,
= Wip = p'o(pWw Wa.p); and
— (pw Wa).A = WA p.

Let Wll = (Wl.n, Wl.A, p,O WQ,D)
We first show that W] J W, with p’ as the intermediate interpretation mapping.

e We show that - /.

— We show that dom(W/{.A)# dom(W/.p). By the definition of WY, it suffices to show that dom(W;.A) #
(dom(p’) U dom(Ws.p)). Since = Wy and Wy.p = p’ o (pW Wa.p), we have dom(Wy.A) # (dom(p’) U
dom(p) U dom(Ws.p)).

— We show that Va € dom(W{.p). W{ = W{.p(c«). This is proven by F W7 and Wi.p = p' o (p W Wa.p).
e We have - W5 by - pw Wh.
o Wiin=Wy.n < Wan.
o WA T(p) = Wi.AT(p') > Wa Al
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o W/.p = p' o Wa.p by definition.
e We have Wy A > p'.

Next, we show that Wy, = W{.p(p) W W{. Tt suffices to show that Wi.p = W{.p(p) W W{.p. Noting that
ftv(p) # dom(Wa.p) because ftv(p) C dom(Wy.A) and dom(Ws.A) # dom(Wa.p) by F p W Wa, we have:

Wip = p'o(p¥ Wap)

P W (p) W p' (Wa.p)

p'(p)Wp o Wap

(0" & o (Waup))(p) W p' o Wap (since ftu(p) # dom(Wz.p))
(p' o Wa.p)(p) W p' o Wap

Wi.p(p)w Wi.p.

Lemma 139. Ift W and dom(p)#W andVa € dom(p). Wt p(«a), then pd W I W.
Proof. We have the conclusion by the following, where p is used as the intermediate interpretation mapping.
e We have - W by the assumption.

e We show that - pw W.
Since = W and dom(p)# W, we have dom((p W W).A) = dom(W.A) # (dom(p) U dom(W.p)) = dom((p W
W).p).
Let « € dom((pW W).p). If @« € dom(p), then we have W + p(a) by the assumption. Otherwise, if
a € dom(W.p), then = W implies W = W.p(«). Thus, in either case, pd W F (pw W).p(cx).

e We have Wi.n = (pw W).n.

e We have (p W).A, 1(p) = W.A,1(p) > W.A by Lemma [9]

e We have (pW W).p = pw W.p.

o We show that W.A > p. It suffices to show that dom(p) # dom(W.A), which is implied by dom(p)# W.

Lemma 140. If dom(p) # ftv(4),
1. R[A]lpw W C R[A] W and
2. E[A]lpw W C E[A] W.

Proof. By induction on A. We first consider the first case and then show the second case with the first property.
1. Let (Ry,R2) € R[A] pw W. We show that (R, R2) € R[A] W. By case analysis on A.

Case A = 1: Obvious.

Case A = a: Since (Ry, R2) € R[a] p W, we have (Ry, Ra) € (pW W).p[a](»(pw W)). Since dom(p)#{a},
we have (R, Re) € W.pla](»w(pWw W)). Let (By, Ba,r) = W.p(a). Since pW W is well defined, we have
dom(p)# W. Since (pw W).AF By and (pW W).A = By, we have dom(p) # ftv(By) and dom(p) # ftv(Bz).
Thus, by the irrelevance condition on W.p[a] = r € Relw .,[B1, B2, we have (R1, R2) € W.pla](» W).
Thus, (R1, R2) € Rla] W.

Case A = B —o (': Suppose that
« W IW,
o (W1, Wo) > W/,
e Wy d W, and
* (R, R;) € R[B] W,
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for some W', Wiy, Ws, R}, and R}, and then it suffices to show that
(Rl RQ,RQ Ré)wl S 5[[Cﬂ w’ .
Without loss of generality, we can suppose that dom(p)# W'. Since W/ 3 W and Wy J W, Lemma
implies
o Wi.p(p)w W Jpw W and
o Wip(p)w Wiy Jpw W
Since Wy.p = W'.p from (W, Wa) W', we have

W'p(p)w Wy Dpy W .
Since (Wy, W) W', we have
(W .p(p)w Wy, Wip(p)w Wa) D W i.p(p)w W'.

We have the following.
e - Wy by Lemma [105| with = W', which is implied by W’ J W.
o dom(W'.p(p))# W since dom(W'.p(p))# W', which is implied by well-definedness of W'.p(p) W W'.
o Va € dom(W'.p(p)). Wa b W'.p(p)(a) since b W' .p(p) W W', which is implied by W'.p(p)w W' 3
py .

Thus, by Lemma (139
W'.p(p) & Wo I Wy .

Since (R}, R}) € R[B] Wa, we have
(Ry, Ry) € R[B] W'.p(p) & W

by Lemmas [116] and [T13] Note that dom(p) # dom(W>.A) D ftv(R}) U ftv(RY). Since
e (R, Ry) € R[B — C] pW W (which further implies dom(p) # (ftv(R1) U ftv(R2))),
e Wiplp)w W Jpw W,
o (W.p(p)w Wi, W.p(p) & Wa) > W'.p(p)w W',
o Wi.p(p)w Wy Jdpw W, and
o (Ri,Ry) € R[B] W'.p(p)w Wa,

we have

(B1 Ry, Re Ry) wr ppyowr € E[C] W' op(p)w W'
Since dom(p) # (ftv(R1) U ftv(R}) U ftv(R2) U ftv(R})), we have

(Rl Ri,RQ RIQ)W/ S g[[CH W’.p(p) TR
Since dom(p) # ftv(B — C) implies dom(W’.p(p)) # ftv(C'), we have the conclusion
(Rl Ri, Ry Ré)wl S (‘:[C]] w’

by the IH.

Case A = Va.B: Suppose that

e W W,
o wW’'F (Cy, Ca,r), and
o {a}H#w W’

for some W', Oy, Cs, and r, and then it suffices to show that
(Rl C1, Ry Cg)wwl S g[[B]] {Oé = (01, CQ,?“)} WwW' .

Without loss of generality, we can suppose that dom(p)# W’ and dom(p) # {«a}. We have the following.
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° (Rl,RQ) S R[[VO&B]]pH'J W.

e W.p(p)w W J pw W by Lemma [I37 with W’ J W.

o w(Wip(p)w W) E (Cy, Co,r) from wW’' + (Cy, Co, 7).

o {a}#w(W' .p(p)w W) from {a}#w W’ and dom(p) # {a}.
Thus, we have

(R1 C1, Ry Co)u(wrp(pywwry € E[Bl{a & (C1, Co,7)} Ww (W .p(p) W W)
Since dom(p) # (ftv(R1) U ftv(Re) U ftv(Ch) U ftv(Cs)), we have
(R1 C1, Ry Cg)wwl S gﬂB]] W/.p(p) ) ({a = (Cl, 0277”)} H’JUJW/) .

Since dom(p) # ftv(Va.B) and dom(p) # {«} implies dom(W'.p(p)) = dom(p) # ftv(B), we have the
conclusion
(Ry C1, Ro Cg)ww/ S g[[Bﬂ {a = (Cl, 0277")} Ww W’

by the IH.
Case A = |B: By the IH.

. Let (My, M) € E[A] pw W. We show that (My, Ma) € E[A] W. Suppose that

o WIW,
e n < W,
° Wl'pfst(Ml) —" Ry

for some W', n, and R;, and then it suffices to show that there exists some Ry such that

o W .p,a(My) —* Rs and
o (R17R2) € RHA]] (W’ — TL)

Without loss of generality, we can suppose that dom(p)# W'. Since W’ J W, we have
Wiplp)w W Jpw W
by Lemma [I37 Since (M, Mz) € E[A] p&w W, we have dom(p) # dom(W.A) D ftv(My) U ftv(My). Thus,

o (Wip(p)& W).pgi(M1) = W'.pg (M) and
o (Wip(p)& W).ppg(Mz2) = W'.pgq(Ma).

We have the following.

o (My, M) € E[A] pw W.

o Wip(p)wy W Jpuw W.

e n < W= (W.oplp)wW)n.

o (W(0) & W').pyy, (M) = W' (M) —" .

Thus, there exists some Ry such that

o (Wp(p) 8 W').poa(Ma) = W.pog(Mz) —* Ry and
o (Ri,Rs) € R[A](W'.p(p)w W') — n.

Since dom(p) # ftv(A) implies dom(W'.p(p)) # ftv(A), we have the conclusion
(Rl,Rz) S R[[A]] (W’ - n)

by the first property on R.
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Lemma 141. IfT;,a% To - My < My : 1A, then Ty, Y, To b A°(a, My ) < N°(a, My ) : V. A.
Proof. Let (W,s) € G[I'y,at, T3] It suffices to show that
(Stst (A7 ( v, M1 ), Gona (A, M2 ) w € E[Va. A] W .

Suppose that

e Wi JW,

e n < Win, and

o Wi.ppi(sest (N, My ))) —™ Ry
for some Wi, n, and Ry, and then it suffices to show that there exists some Ry such that

o Wipga(Ssna(A{a, My))) —* Ry and

o (R1,Rs) € R[Wa.A] (W1 — n).

Since (W,s) € G[I'1,a',T2] and Wy O W, we have (Wi, Wi.p(s)) € G[I'1,a', T3] by Lemma Lemma [134]
implies that there exist some Wy, A;, and As such that

o Wi.A = Ay,al, Ay, and
o W/ = (Wi, (A1,a% As), Wi.p),
o (W, Wi.p(s)) € G[I'1,a®,Ts].
Note that Wy.p = W{.p and Wi.n = W{.n. Since I'1,a% Ty = M; < M, : |A, we have
(Stst (M1), sna (M) wy € EVA] WY .
Since Wi.pg (sest (A°{ o, My ))) —™ Ry, there exist some By, Rf, and n; < n such that
o Wi.pp (st (M) —™ vB;1. R} and
o Wipp (st (N, My ))) —™ N°(a,vBy. IR ) —" "™ v 1Aa.R] = Ry.
Since W{.p = Wi.pand n < Wi.n = W{.n, we can find that there exist some B2 and R} such that
o W{.pga(Ssna(M2)) —* vB2. 1R} and
o (VP1.!R},vB2.1RY) € RIIA] (W] — my).

Thus, we have o o
Wi .pgnq(Ssna(X(a, Mo ))) —* A, vB. 1R ) —* vB2. A RY .

We let Ry = vf35.!Aa.R,. Then, it suffices to show that
(vB1. ARy, vBa. A RY) € R[IVa. A] (W — n) .
By definition, it suffices to show that, for any Ws such that Wo Jw(W; —n) and 1 < Wa.n,
(vB1. ARy, vBa. A RY) w, € R[Va.A] (Wa —1) .
By alpha-renaming the type variable a bound in A to a fresh type variable +, it suffices to show that

(vBy. Aa. Ry, vBy. Aa. Ry w, € R[Vy.Aly/a]] (We —1) .
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Let W3 3 Wy — 1 and suppose that w W3 &= (B, Bz, r) for some B;, By, and r. Without loss of generality, we can
suppose that {y}#w W3 and that the type variables 3; and (3 do not occur free in B; and By, respectively. Then,
it suffices to show that

((vBr- A RY) By, (V2. AonRy) Ba)ww, € E[A[y/al]{y = (B, B2,r)} WwWs .
Let Wy 3{y & (B, B2,7)} JwWs and suppose that 1 < Wy.n, and then it suffices to show that
(vBr. Ry[B1/o],vBs. By[Ba/a))w, € R[A[y/e]] (Ws—1) .
Since (vfB1. Ry, vBa.1RY) € R[IA] (W] —ny) and 1 < Wan <wWin —n < W/.n — n,, we have
(vBy. Ry, vBa. RY) € RIAJw(W{ —ny —1) .

Let

® D Wl~p|dom(1"1,a1,1"2)a

e p2 = Wi-plaom(wy.p)\ dom(Ty,at,Iy)s and
o W = (Wi.n, W{.A, p1).
Since W/.n = Win and W{.p = Wi.p = p1 W ps, we have po W W' = W/. Thus, we have
(vB1. Ry, vB2. RY) € R[A] po Ww(W{ —mny —1) .

Since I';,a®, Ty - M; < M, : !A implies I'1,a%, Ty F M; : !A, we have I';,a%, Ty - A by Lemma Thus,
dom(ps) # dom(T'1,a® T5) D ftv(A). Hence, by Lemmam

(vB1. Ry, vB2. RY) € R[A]Jw(W] —ny —1) .

Since (Wl, Wi.p(s)) € G[T'1,at, T3], we have I'1,at, Ty > Wy.p. Thus, o ¢ Jto(W1.pldom(ry,a1,rs)) = ftv(p1) =
fto(W{".p). Hence, noting that we can suppose {7} # dom(W{".A) = dom(W{.A) = dom(A1,a®, Ay) without loss
of generahty, by alpha-renaming the type variable « in the above formula to v, we have

(VB Rily/al,vBa. Ryly/a]) € RIAly/allw((Win, (A1,7°, A2), p1) —m —1) .

Let W{" = (Wyi.n, (W].A,4°), Wi.p). By applying Lemmabu-,m7 and-W1th
Wi = (Win, (W).A,9°), p1Yp2)
2 (Wi, (WA, 1(pa),y %), p1)  (by Lemmal[135)
3 (Win, (W].A4%), p ) (by Lemma [117)
= (Wi, (A1,0°% 89,79%), p1)
3 (Win, (A1,7°,A9), p1) (by Lemma|117)) ,

we have
(vB1- Ri[v/al, vBa. Ry[y/a]) € R[A[y/a]]w(W]" —n —1) .

Since n; < n, we have
ng Wg—lg WgQw(Wl—n)Qw(Wl—nl—l)zw(W{—nl—l).

Thus, by Lemmas [T10] and [f]
wW3 :’(JJ(W 777,171)

By Lemma [I30}
w(Ws@y) DJw(W" —ny — 1) .

Since = W3 and {v}#w W3 and w W5 b (By, By, r), we have

{’Y = (BlvBQ7T)} H—JWWB - w(W?)@’Y)
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by Lemma [I35] Thus, by Lemma [T10]
{v & (B, B,r)} WowWs Jw(W" —ny — 1) .
Thus, by Lemma [T16]
(vB1. Ri[Bi/a],vBs. Ry[Ba/a)ww, € R[Aly/a][{y & (Bi, B2, 1)} WwWs .

Since Wy —13 Wy 3 {y & (B1, Ba,7)} W wWs, we have the conclusion by Lemmas 110} [116, and

Lemma 142. If Wy 3 W, then Wi.p(Wa.p(p)) = Wi.p(p) for any p.

Proof. Let a € dom(p) and (A1, A2,7) = p(a). Since Wy O Wy, there exists some p’ such that
o WA {(p") > Wa.A and
e Wip = p o Wsp.

It suffices to show that Wi.pg (Wa.ppi (A1) = Wipg(A1); Wipga(Wa.pgna(A2)) = Wi.pq(Az) is proven
similarly. Noting that W7 3 W, implies - Ws, we have:

Wipg (A1) = P (Wa.pg (A1) (since Wi.p = p’ o Wa.p)
P it (Waprse (Wa.pei (A1) (since dom(Wa.p) # dom(Wa.A) implied by - Wa)

Wi pget (Wa.ppgp (A1) -
O

Lemma 143. Let « be a type variable, A be a type, and r be a function that, given a world W, returns R[A] (W .n+
1, W.A, W.p), and p = {a = (A, A,r)}. Suppose that {a} # ftv(A).

For any W and A, ift W and {a}#W and W F W.p(p)(«), then:

o RIATW.p(p)w W = R[A'[A/a]] W; and

o E[A | W.p(p)w W = E[A[A/a]] W.
Proof. By induction on A’.

e We first show that R[A'] W.p(p)w W = R[A'[4/a]] W.

Case A’ = 11 Obvious since A’ = A'[A/a] = ..
Case A’ = a: We first show that R[A] W.p(p)w W = R[A] W. Since {a}# ftv(A), we have R[A] W.p(p)W

W C R[A] W by Lemma [140} By Lemmas and and {a}# W, we have R[A] W C
RIA] W.p(p)w W.

Thus, we have

RI[ATW.p(p)w W r(»(W.p(p) & W))
R[A] W.p(p) & W
R[A] W

= R[A[Afa]] W .

Case A’ = f for some 8 # a: We have
RIATW.p(p)d W =R[B] W.p(p)s W = (W.p(p)& W).p[B](»(W.p(p) s W)) = W.p[B](»(W.p(p)& W)) .

Let (By, Ba,r") = W.p(B). Since = W, we have

— W.AF B,
— W.AF By, and
— 7’ € Relw.n[Bl,Bg].
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Since {a}# W, we have {a} # (ftv(B1) U ftv(Bz)). Thus, the irrelevance condition on ' € Rely ,,[Bi, Ba]
implies ' (»(W.p(p) W W)) C r'(»W). Since »(W.p(p) W W) JI»W by Lemma we have r'(» W) C
' (»(W.p(p) & W)) by monotonicity of r’, Lemma [[13} and {a}# W. Thus,

W.plBl(-(W.p(p) & W) = 1" (:(W.p(p) & W)) =r'(»W) .

Since
(W) = W.p[Bl(w W) =R[F] W = R[A'[A/a]] W,
we have the conclusion R[A'] W.p(p)w W = R[A'[A/a]] W.
Case A’ = B’ — (C":
— We show that R[B’ — C'] W.p(p)w W C R[(B' — C")[A/a]] W.
Let (Ry, R2) € R[B' — C'] W.p(p)W W. To prove (R, R2) € R[(B' — C')[A/«a]] W, suppose that
x Wo I W,
x (W, Wa) © Wy, and
«* Wy J W, and
x (R}, R) € R[B'[A/a]] Wsa.
for some Wy, Wy, Wa, R}, and R}, and then it suffices to show that

(RL R}, Ry R))w, € E[C'[A/a]] W, .

We can suppose that {a}# W, without loss of generality.
By Lemmal[l37with Wo 2 W, Wy J W, and = W.p(p)w W, noting Wo.p = Wi.p by (Wi, Wa) W,
we have

x Wo.p(p) W Wo 2 W.p(p)w W and

x Wo.p(p)w Wy 3 Wop(p)w W.
Since (Wq, W) © Wy, we have

x (Wo.p(p)w Wh, Wo.p(p) W Wa) D Woh.p(p) & Wy.
We have the following.

* (Ry, Ry) € R[B'[A/a]] Wa.

« {a}# Wy since {a}# Wy and (W1, Wa) D W.

* = Wy by Lemmawith F Wy and (Wy, Wa)  Wy.

x Wo b Wa.p(p)(a) because Wy = Wo.p(p)(«), which is implied by = Wy.p(p) W Wy from Wo.p(p) @

Wo d Wop(p)w W.
Thus, by the IH, we have
(Ry, Ry) € R[B'] Wa.p(p) & W .

Since

* (R1,Ry) € R[B' — C']| W.p(p)w W,

* Wo.p(p)w Wo I W.p(p)w W,

* Wo.p(p)w Wi I W.p(p)w W,

x (Wo.p(p)w Wi, Wo.p(p) W Wa) 2 Wo.p(p) W Wy, and

x (R}, RS) € R[B'] Wo.p(p) & Wy (note that Wa.p = Wy.p),
noting that {a}# Wy, we have

(Rl Ri,RQ R/Q)Wo S 5[[0/]] Wop(p) W Wy .
By the IH, we have the conclusion
(R1 Rll, Ry Ré)wo S 5[[0’[14/0[]]] Wy .

— We show that R[(B’ — C")[A/a]] W C R[B" — C'] W.p(p)w W.
Let (Ry, Ry) € R[(B’' — C")[A/a]] W. To prove (Ry, Re) € R[B' — C'] W.p(p) W W, suppose that
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Case

x Wod Wop(p)w W,
* (I/Vl7 Wg) 5> Wy, and
x« Wy J Wop(p)w W, and
x (R}, R}) € R[B'] Wa.
for some Wy, Wy, Wa, R, and R}, and then it suffices to show that

(Rl R/17R2 R;)WO € g[[C/]] Wo .

By Lemma [I3§ with Wo 3 W.p(p) & W and Wi 3 W.p(p) & W, there exist some W] and Wy such
that

x« Wi W,
- Wo = Wiplp)w W,
« W{J W, and
x Wy = Wi.p(p)w W.
Since (Wy, Wa) Wy, there exists some W such that
x Wy = Wi.p(p)w Wy and
x (W], Wg) o W.
Note that Wi.p = Wy.p = Wy.p. We have the following.
x (R, R,) € R[B'] Wy.p(p) & W3 since (R}, Ry) € R[B'] Wa and Wy = W{.p(p) ¥ Wy and
(Wi, W3) > Wg.
* F W4 by Lemma [105] with = W{ (from Wj 3 W) and (W], W3) > W{.
* {a}# Wy because {a}# W] (from - Wy) and (W], W3) o W{.
x Wy b W3.p(p)(a) because = W{.p(p) W Wy and Wi.p = Wi.p.
Thus, by the IH, we have
(Ry, Ry) € R[B'[A/a]] W .
We also have the following.
x (Ry,Ry) € R[(B' — C")[A/a]] W.
« W3 W,
x W{ 3 W, and
x (W], Wg) o W.
Thus,
(R1 Rll,Rz RIQ)WO/ S 5[[0,[14/01]]] W(; .
Noting a does not occur free in Ry, R}, Rg, nor R}, since = W] and {a}# W} and W+ W{.p(p)(a),
the IH implies the conclusion
(R1 Rll,Rg RQ)WO S (S[[C/]] W .
A’ = VB.B":
We show that R[VS.B'] W.p(p)w W C R[(VB.B")[A/a]] W.
Let (R1, Ry) € R[VB.B'] W.p(p) W W. We show that (Ry, R2) € R[(VS.B')[A/a]] W. Without loss
of generality, we can suppose that {8} # (ftv(A) U {a} U ftv(p)) and {8}# W. Suppose that
x* Wo d W,
x wWy (B, B2, 1), and
* {BY#Wo

for some Wy, B, By, and rg, and then it suffices to show that
(R1 Bl, Ry BQ)wWO S 5[3/[14/0[]]] WOI

where W) = {8 = (B, Ba,70)} W wWy. Without loss of generality, we can suppose that {a}# Wp.
Since Wy 3 W, we have Wo.p(p) & Wy 3 W.p(p) W W by Lemma [I37 Since Wy & (By, Bz, 1), we
have Wy.p(p) W Wy b (By, Ba, o). Since (R1, R2) € R[VB.B'] W.p(p) W W, we have

(R1 B1, Ry Bo) wy p(pysw, € E[B']{B = (B1, Ba,ro)} & (w(Wo.p(p) & Wo))
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Since {8} # ftv(p), we have
{8 = (B1,Ba,m0)} & (w(Wo.p(p) & Wo)) = We.p(p) & W -
Since a and 8 do not occur in Ry, Rs, By, nor By, we have
(R1 B1, Rs Ba)ww, € E[B'] Wy.p(p)w Wy .

We have the following.
* F W{ since - w Wy by Lemmawith F Wo (from Wy 3 W) and w Wy b (By, By, 10).
* {a}# W] since @ # B and {a}# Wp.
x Wi E Wi.p(«) because E Wy.p(p) W Wy from Wy.p(p) W Wy I W.p(p)w W.

Thus, by the TH, we have the conclusion

(Rl Bl,RQ BQ)WWO S g[[BI[A/Oé]ﬂ W(; .
— We show that R[(V5.B')[A/a]] W C R[VE.B'] W.p(p)w W.
Let (R1, Ry) € R[(VS.B')[A/a]] W. We show that (Ry, Re) € R[VB.B'] W.p(p) W W. Suppose that
* Wod Wop(p)w W,
x wWy (B, Ba, 1), and
x {B}tw W,

for some Wy, B, By, and rg, and then it suffices to show that
(Rl Bl, Ry BQ)WWO S 5[[3’]} {,B = (B1, Bg,’l“o)} HwWy .

Since Wo 3 W.p(p) W W, there exists some W] such that

x Wi 3 W and

* Wo = Wo.p(p)®w Wy
by Lemmal[I38 Since w Wy = (By, B2,70), we have w W{ = (By, B2, 70). Since (Ry, R2) € R[(VB.B')[A/a]] W
and {8}#w W] (from {B}#w W), we have

(R1 Bl,RQ Bg)wwé (S 5[3/[14/0(]]] {5 = (Bl,BQ,’/‘Q)}LﬂwWO/ .

Let W' = {8 = (B, Ba,70)} WwWj. We have the following.
* = W' since w W{ by Lemma [105| with - W] and w W & (B, Bz, ro).
* {aj# W',
x W' W .p(p)(a) because = W{.p(p) & W.
Thus, by the TH,
(R1 B, Ry BQ)UJW(; € S[[B/]] W’.p(p) ww .
Since {a} # (ftv(R1) U ftv(R2) U ftv(By) U ftv(By)) and we can suppose that {8} # ftv(p) without
loss of generality, we have the conclusion
(R1 Bi, Ry B2>wWO S g[[Blﬂ {ﬁ = (Bl, Bgﬂ”o)} (] wWép(p) ] wWé .
Case A’ = |B’: By the IH with Lemma [105}
e Next, we consider E[A'] W.p(p)w W = E[A'[A/a]] W.
— We show that E[A'] W.p(p)w W C E[A'[A/a]] W
Let (M, Ms) € E[A'] W.p(p) W W. We show that (M, Ma) € E[A'[A/a]] W. Suppose that
* W' 3 W,
x n < W.n,and
x Wpee(My) —" Ry

for some W', n, and Ry, and then it suffices to show that there exists some Ry such that
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* W' pga(Mz) —* R and
x (R1,Ra) € R[A'[A/a]] (W' —n).

Without loss of generality, we can suppose that {«}# W’. Thus, we can suppose that o does not occur
in R;. Further, since W' 3 W, we have

W'.p(p) & W' 3 W.p(p)w W

by Lemma [I37 Since (M;, Ma) € E[A'] W.p(p) & W, there exists some Ry such that
* W .pgpa(Mz) —* Ro and
* (By, Rp) € RIAT((W'.p(p) & W) —n)

(note that o does not occur in M;). We have the following.

* W' —nsince W 3 W.

* {a}# (W' —n).

x W' —nk (W —n).p(p)(a) since - W'.p(p)w W' which is implied by W'.p(p)w W’ I W.p(p)w W.
Thus, by the first property on R, we have the conclusion (Ry, R2) € R[A'[A/a]] (W' — n).
We show that E[A'[A/a]] W C E[A'] W.p(p) W W
Let (M, Ms) € E[A'[A/a]] W. We show that (My, Ma) € E[A'] W.p(p) w W.

Suppose that

« Wo 3 Wop(p)w W,

* n < Wy.n, and

* Wo.pp (M) —™ Ry
for some Wy, n, and R;, and then it suffices to show that there exists some Ry such that

* Wo.pena(Mz) —* Ry and

* (R1, R2) € R[A'](Wo — n).

Since Wy 3 W.p(p)w W, Lemma implies that there exists some W{ such that

* Wy J W and

x Wo = Wi.p(p)w Wy.

Since (My, M3) € E[A'[A/a]] W and n < Wy.n = W{.n and we can suppose that o does not occur free
in My and M,, there exists some Ry such that

* Wo.pgna(Mz) —* Ry and

* (Ry,Ra) € R[A'[A/a]] (W] — n).
We have the following.

* = W35 —n since Wj 3 W.

x {a}#(Wy —n).

x Wi—nt (W5—n).p(p)(a) since b W{.p(p) W W which is implied by Wg.p(p)w Wy I W.p(p)w W.
Thus, by the first property on R, we have the conclusion

(B, Rp) € RIATT ((Wg.p(p) & Wg) —n) .

O

Lemma 144. If {a}#wW and (wW,s) € G[wI'] and wW + (Aq, Ao, 1), then ({a & (A1, A2, 7)) WwW,q) €

Proof. Since (wW,s) € G[wI'], we have the following.

o FwIV.

o wl'>wW.p.
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e V3 € dom(wl'). 3m. p7 € wW.A) V B € dom(wW.p), and

o V¥ A€ wl (¢st(2),Sna(2)) € R[AJww W = R[A]Jw W (by Lemma [5)).

Let W = {a & (A1, A2,7)} WwW. We have the conclusion (W’,<) € GJwTI',a®] by the following.

o - W since F wW and wW F (41, Aa, 7).

o wI',a® > W’ .p because wI', a® assigns the use 0 to all the bound type variables.

e V3 € dom(wl',a®). (F7w. B € W'.A) V (B € dom(W'.p)).

o Vz:¥ A€ wl a® (sut(z),sna(z)) € R[AJwW' by Lemm and [L13| with (st (2), sna (7)) € R[A]w W
and wW’' J wwW = wW, which is obtained by Lemma with W 3 wW. W' 3 wW is proven by
Lemma [[39

O
Lemma 145. If-T and wl,a® - M; < My : A, then T F Aa. My < Aa. M, : Vo A.

Proof. Let (W,s) € G[I']. It suffices to show that
(stst (A M), Ssna(Aa. Ma)) € E[Va. A] W .
Let Wy 3O W such that 0 < Wi.n. It suffices to show that
(stst (M. M), Gena (M. Ma)) w, € R[Va. A] Wy .

Suppose that

o Wy 3 Wy,

o wWyt (By, By, 1), and

o {a}#wWs,
for some Ws, By, By, and r, and then it suffices to show that

(stst (M. My) By, ssnd(Aa. Ma) Ba)ww, € E[A]{a = (By, B2, 1)} WwWs .

Suppose that

o W3 J{a = (B1,Bs,r)} WwWs,

e 0<n < Ws.n, and

o Ws.ppy(stst (A My) By) —™ Ry
for some W3, n, and Ry, and then it suffices to show that there exists some Ry such that

o Ws.p4nd(Ssnd(Aco.Ma) By) —* Ry and

e (Ry,Ry) € R[A] (W5 — n).
Since Wi.pg (Stst (Aa.M7) By) —™ Ry, we can find

Ws.pget (Stst (M. My) By) — Wa.pgi (stst (Mi[B1/a])) —" "1 Ry .
Then, it suffices to show that
(Stst (Mi[B1/al), Gsna(Ma[Ba/a])) w, € E[A] (W3 —1) .

Since W3 3 {«a = (B1, Ba,r)} WwWa, there exists some W4 such that
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o Wi JwWs
° W3 = Wép({a = (Bl,BQ7T)})H'J Wé and

by Lemmam Since (W,s) € G[I'] and Wo J Wy 3 W, we have (W, Wa.p(s)) € G[I'] by Lemmas and

Noting that wWa.p = Wa.p, by Lemma (wWa,wWa.p(s)) € GwI']. Since Wi —1 J Wi 3 wWa,
119

we have (W3, Wi.p(s)) € G[wI'] by Lemmas [119| and By Lemmas and b} (wWyg, Wi.p(s)) € GwIT].
Since Wy J wWs and wWa & (By, Ba,r), we have W4 F Wi.p({a & (B1, B2, 7)}) (), ie,, wWi F wWi.p({a =
(B1, B2,7)})(cx), by Lemma [136] Thus, by Lemma [144]

(@Wip({a & (Br, Bo,r)}) Ww Wi, Wip(s)) € GlwT,a] .

Since wI',a® - My < M, : A, we have

(Stst (M1[B1/0]), ssna(Ma[Ba/a]))wwy € E[A] (wW3.p({a & (By, By,r)}) WwWs) .

Since « can be supposed not to occur free in By, Bs, nor ¢, and wWs = w(Wi.p({a = (Bi,B2,7)}) W Wy) =
wWi.p({a & (B, Ba,7)}) WwWs, we have

(Stst (M1 B /), Gona(M2[Ba /o)) wy € E[A]wWs .

Since W3 —1 JwWs —1 3 wWs by Lemma we have the conclusion by Lemmas and O
Lemma 146. If {a7,az}# W, then:

o (Ry,R2) € R[A] W implies (vag. Ry, vas. Ry) € R[A] W; and
o (M, M) € E[A] W implies (var. My, vaz. My) € E[A] W.

Proof. By induction on A. We first consider the first property on R and then the second one on £ with the first
property.

o Let (R1, Re) € R[A] W. We show (vag. Ry,vas. Ry) € R[A] W by case analysis on A.

Case A = 1: By definition.

Case A = f8: Let (By, B2,1) = W.p(B). Since (R, R2) € R[B] W, we have (Ry, Ry) € r(» W) by defini-
tion. It suffices to show that (vag. Ry, vas. Ry) € r(»W). Since - W, we have r € Relw ,[Bi, B2]. Thus,
the conclusion is implied by the fourth condition on Rely ,,[B1, B2] since {a7,az}# W.

Case A = B — (': Suppose that
—waw,
— (W, W) > W/,
— W7 3 W, and
— (By, Ry) € R[B] W
for some W', Wy, Ws, R{, and R}, and then it suffices to show that

((vag. Ry) Ry, (vaz. Ro) Ry)wr € E[C] W' .

We can find that W’.pg ((vag. R1) R)) —™ W'.pg(vag. (Ry RY)) for some n, and W'.pg 4((vaz. Re) Ry) —*
W' . pena(vaz. (Re RS)). Then, it suffices to show that

(vag. (R1 Ry),vag. (Re RY))wr € E[C] W’

by Lemmas and Without loss of generality, we can suppose that {a1,az}# W’. Since (R, Ry) €
R[B — C] W, we have
(Rl Ri, Ro Ré)W/ € SHCH w'.

By the IH, we have the conclusion.
Case A = VfB.B: Suppose that
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- WwWaw,
—wW’'F (Cy, Cayr), and
— {B}#w W’
for some W', Cy, Cs, and r, and then it suffices to show that

((Vch Rl) 01,(V0172. Rg) CQ)WW/ S g[[Bﬂ {5 = (Cl, CQ,’I“)} WwW'.

Since W'.pe((vag. Ry) C1) —" W' .pg(var. (R C1)) for some n, and W' .p,4((vaz. Re) Co) —*
W' pena(Vaz. (Ry Cy)), it suffices to show that

(Vail. (R1 Cl),ung. (RQ Cg))wwl S g[[B]] {6 = (Cl, CQ,T)} Ww W’

by Lemmas and Without loss of generality, we can suppose that {a7, az}# W’. Since (Ry, Re) €
R[VB.B] W, we have

(Rl C1, Ry CQ)WW’ S g[[BH {5 = (01702,7")}HﬂwW/.

Since we can suppose that 8 ¢ {a7, @z} without loss of generality, we have {a7,03}#({8 & (Cy, Ca,7)}W
wW'). Thus, by the IH, we have the conclusion.

Case A = |B: Tt suffices to show that (vag. Ry, vas. Ry) € R[!B] W, that is,
(let!'z = vag. Ryinz,let!lz = vaz. Ryinz) € E[BJwW .

By Lemma there exist some f;, B2, R}, and R} such that
— Ry = vf1.\R} and
— Ry = vfs.!R).
Let W/ 3 wW such that 1 < W'.n. We have
— W' .pg(letls = vag.vBi. IR inz) — W' .pg (var.vpr. Ry) and
— W ipgqlletls = vagz. vBs. |Rying) — W' .pg4(vaz.vBs. RY).
Thus, it suffices to show that

(vaq.vpy. Ry, vag. vBs. RY)w € R[B] (W' —1) .

Since (Ry, R2) € R[!B] W, we have (vBi. R}, vBs. Ry)w: € R[B] (W' —1). By the IH, we have the

conclusion.

o Let (M, My) € E[JA] W. We show that (vag. My, vas. My) € E[A] W with the first property. Suppose that
- W aIWw,
—n < W.n, and
— W' .pg(vag. M) —™ Ry

for some W', n, and R;, and the it suffices to show that there exists some Ry such that

— W' pgna(vag. My) —* Ry and
— (R1, R2) € R[A] (W' —n).

By the semantics, Ry = vag. R} for some R] such that W' .pg (M) —™ Rj. Since (M, Ms) € E[JA] W
and W' J W, there exists some R such that

— W pgqa(Mz) —* R} and
— (R}, Ry) € R[A] W' — n.

By the first property on R, we have the conclusion (vag. R,vas. R,) € R[A] (W’ — n) where let Ry =
vai. R,
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Lemma 147. IfTH M; X My :Va.B and T F A, thenTH M; A <X My A: B[A/q].
Proof. Let (W,s) € G[T']. It suffices to show that
(st (M1 A), ssna(M2 A))w € E[BIA/a]] W .
Suppose that
o W W,
e n < W.n,and
o Wopg(ctse (M1 A)) —" By
for some W', n, and Ry, and then it suffices to show that there exists some Ry such that
o W . pena(ssnda(Mz A)) —* R and
e (R1,Ry) € R[B[A/a]] (W' —n).
Since W'.pp (st (My A)) —™ Ry, we can find that there exist some 31, M, and n; such that
o W' pp(sist (M) —™ vBi. Aa. M| and
o W' pp (st (Mg A)) —™ (vB1. Aa.M]) W' .ppi(A) —"2 vB1. M{[W'.pi(A)/a] —"~"™17"2 Ry for some ny

note that we can suppose that type variables 31 do not occur in W’.pg, (A) without loss of generality).
fst

Since (W,s) € G[I'] and W’ 3 W, we have (W', W'.p(s)) € G[I'] by Lemma [119] Since I' - M; < M, : Va.B,
we have
(Stst (M), Ssna(Ma))wr € E[Va.B] W'

Since W'.pp (sest(M1)) —™ vB1. Aa.M{ and ny < n < W'.n, there exist some (B2 and Mj such that
e psnd(Ssnd(Ms)) —* vBs. Aa. M and
o (VB1. Aa. M|, vBy. Aa. M3) € R[Va.B] (W' — my).

Let Ay = W/ .pg(A), and A2 = W'.p,q(A). Since T' = A and (W', W .p(s)) € G[I'], we have W/.A F+ A,
and W/.A F As. Let r be a function given in Lemma for a and A, that is, given a world Wy, r returns
R[[A]] (WOTL + 1, I/V().A7 Wop) By

e Lemma (for monotonicity),

e Lemma (for the irrelevance condition on Rel,),
e Lemma (for the third condition on Rel,,), and
e Lemma (for the fourth condition on Rel,,),

we have w(W' — ny) & (Ay, A2, 7). Since (vf1. Aa.M],vBy. Aa.M}) € R[Va.B] W' — n; and we can suppose that
{a}#w(W' — ny) without loss of generality, we have

((UE AO(M{) Ay, (VE AO{Mé) Ag) S SHB]] {Oé = (Al, AQ,T)} W W(W/ - nl)

with Lemma m Further, we have - w(W’ — n;) by Lemma with = W’ implied by W’ 3 W. Since
W(W, - nl)p({a = (A,A,T')}) = {0[ = (A17A27T)}3 we have

((vBi. Aa. M) Ay, (vBa. Aa. M3) A3) € E[B[A/a]]w(W' — ny)

by Lemma Since (vB1. Aa.M{) Ay —"™ v3;. M{[A1/a] —" "™ ~"2 Ry we can find that there exists some Ry
such that
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o W .ppi(Ssna(Ma A)) —* (vfa. Aa.M}) Ay —* Ry and

e (R, Ry) € E[BIA/a]JwW' — n.
Since W' —n JwW'’ — n by Lemma [I18] we have the conclusion by Lemmas and O
Theorem 5 (Parametricity / Fundamental Property). If ' M : A, thenTH M ~ M : A
Proof. It suffices to show that ' - M < M : A, which is shown by induction on the typing derivation of ' - M : A

withe the compatibility lemmas (Lemmas and . O

Theorem 6 (Soundness with respect to Contextual Equivalence). If ' My ~ My : A, then T H M =~ M : A

Proof. Let ¢ be a base type, ¢ be a constant of ¢, and C be a context such that C : (I' H A) ~ (0 F ¢). Now, we
suppose that C[M;] —™ vaq. ¢ for some n and a7, and then show that C[M;] —* vag. ¢ for some az; the reverse
direction can be proven in a similar way. By induction on the typing derivation of C with the compatibility lemmas

(Lemmas [120] [121], [123] [125] [127] [128] [133] . [145] -, we have () - C[M;] < C[Mz] : ¢; note that, for any I, M,

A THM: Aimplies ' M < M : A (which is shown in a way similar to parametricity). Let W = (n+ 1, 0, 0).
Since (W,0) € G[0], we have (C[M], (C[Mg]) € &[] W. Since C[M;] —™ vaq. ¢, there exists some Ry such that

o C[My] —* Ry and
o (vag.c,Ry) € R[] (W —n).

By the definition of R, we have Ry = vam. ¢ for some as. O

3.6 Examples of Free Theorems

Example 1 (Free Theorem for the Empty Type). If A+ M : Va.a and A+ A, then there exists no result R such
that M A —* R.

Proof. Assume that M A —"™ R for some n and R. Since A F M : Va.a, we have A F M < M : Va.a by
Theorem [} Let W = (n+1, A, §)). We have (W,0) € G[A] by definition. Thus, (M, M) € E[Va.a] W. Since
M A —" R, there exist some R’, n;, and ny such that

o M —™ R,
e A —™ R, and
e N = N+ No.
Sincemy <n<n+1=W.mnmand W I W by Lemma [L11] we have
(R',R) € R[Va.a] W —ny .

Let r be a relational interpretation that maps any world to the empty set. Without loss of generality, we can
suppose that {a}#w(W —ny). Since w(W —n1).A = wA and WA F A from A+ A, we have w(W —ny) F (4, 4,r).
Thus,

(RPA R A) € E[a] W'

where W' = {a & (4,A,7)} Ww(W —ng). Since A —"™ Rand g =n—n; < Wi.nand W 3 W' by
Lemma (111} we have
(R,R) € Rla] W' —ny .

However, the relational interpretation r returns the empty set for any world, so there is a contradiction. O
Lemma 148. IfT'1,ToF R:Va.A, then wl';,ToF R :Va.A.
Proof. Straightforward by induction on the derivation of I';,I's - R : Va. A. O
Lemma 149. Suppose that A= M : A and A> p andVa € dom(p) N dom(A). a® € A.

1. M ~ M’ implies pgss(M) ~ ppt(M') and pspa(M) ~ pspa(M').
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2. M — M’ implies pgss(M) — ppt(M') and pspa(M) — psna(M').
Proof.

1. By case analysis on the reduction rule applied to derive M ~» M’. It is easy to prove the conclusion if
M ~~ M’ is derived by the rules other than (R_-CLOSING).

Consider the case that M ~» M’ is derived by (R_CLOSING). Then, M = A°(5,!R) and M’ = !AS.R for
some 3 and R (i.e., A°(B,!R) ~ IAB.R is derived). Since A F A°(8,!R) : A, we have

o A = A17617A25
e A = WB.B, and
« A B% A FIR:IB

for some Ay and Ap. 81 € A and the assumption A > p implies 3 ¢ ftv(p). AL € A and the assumption
Va € dom(p) N dom(A). a® € A implies B ¢ dom(p). Thus, we have

o pet(M) = N(B,ptst(R)) ~ 1AB.pgst(R) = prst ({AS.R) and
b psnd(M) = Ao<ﬂ7 !pSnd(R) > ~ !Aﬂ-psnd(R) = psnd(!Aﬂ'R)'
2. Straightforward by induction on the derivation of M — M’.

O

Definition 32 (Normalizing Terms). A term M is normalizing if and only if the evaluation of M and that of any
term derived from M by applying operations allowed on its type (e.g., type substitution, result substitution, type
application, and term application) terminate.

Example 2 (Free Theorem for the Polymorphic Identity Type). Suppose that terms My and My are normalizing.
IfT'F M :Vaao — a and ' F My : Va.ao — «, then I' = My < Ms : YVa.ao — . Therefore, for any normalizing
term M and typing context T', T = M : Va.ao — o implies T'F Aadz.x =~ M : Va.ao —o .

Proof. Let (W,¢) € G[I']. It suffices to show that
(M, My)w € E[Na.a —a] W .

Since M; and My are normalizing, W.pg (M) —™ Ry and W.pgq(Mz) —™2 Ro; for some nq1, no1, R,
and Rop. Let W7 O W such that ny; < Wi.n. By the definition of £, it suffices to show that

(Ri1, Ro1)w, € R[Va.ao — o] Wy — nyq .
Suppose that
o Wy J Wi —nu,
o wWsyk (A1, As,r), and

[ {a}#w WQ,
for some Wy, Ay, As, and r. Then, it suffices to show that

(Ru A1, Roq Ag)ww2 S 5[[a—oa]] {a = (Al,AQ,’I“)}L‘HwWQ .

Since M; and M, are normalizing, we have Wa.pe(R11) A1 —™2 Rys and Wa.pg,q(Ra21) As —™2 Ry for some
N12, Na2, R12, and Ray. Let W3 J{a & (A1, Aa,7r)} Ww W such that njs < Wi.n. Then, it suffices to show that

(a2, Ro2)wy € Rlov —o af W3 — a2 .

Suppose that

o Wy d Ws— nio,
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o (Wyr, Wia) 3 Wiy,
o Wy 3O Wy, and
o (Ry, Ry) € Rlo] Wiz
for some Wy, Wy, Wya, R}, and R). Then, it suffices to show that
(Ria R}, Ry RY)w, € E[a] Wy .

Since (R, Ry) € R[a] Wiz, we have (R}, R,) € Waz.p[a](» Wa2). Since Wyo.p = Wy.p and Wy T W3 — g 3
Wi 2 {a & (A1, As,1)} WwWs, we have (R{, R)) € r(»Wy2) by Lemmas [I10] and [138]

Since My and M, are normalizing, we have Wy.pg(R12) RY —™3 Ry3 and Wy.pgq(Ra2) R, —™3 R for
some n13, N3, Ri3, and Ro3. Let W5 J Wy such that ny3 < Ws.n. Then, it suffices to show that

(Ri3, Ra3) wy € Rla] Ws —my3 .
Since W5 — 3 3 W5 3 Wy J {a = (A1, Aa, 1)} WwWs, it suffices to show that
(Ws.pge(R13), Ws.psna(f23)) € r(»Ws)

by Lemmas and Since W5 3 Wy 3 Wy by Lemmas and [110] monotonicity of the relational interpre-
tation r implies that it suffices to show that

(Ri3, Ra3) € r(»Wiya) .

In what follows, let ¢ € {1,2}. Let R{; = Wa.pg(R11) and Ry = Wa.pgq(Re1) and ng be the maximum
number between 111 + 11y + nq5 + 1 and nay + nog + ngg + 1. Let Woa = (ng, Wa.A, Wa.p). We have w Wa. A +
R';1 : Ya.a — a by Lemmas and Thus, wWs.A + R';1 2 R';1 : Ya.a — a by Theorem Since
(wWo2,0) € GwWs.A], we have

(R/ﬂ, R/ﬂ) S R[[VOL.O( —o Oé]]wWOQ

by the definition and Lemma [113] Since Wy J {o = (A1, A2,7)} W w Wa, there exists some W such that
e W,/ JwWW, and
o Wy = Wip({a = (A1,A2,7)}H) W W]
by Lemma [I38 Since (W1, Wi2) 3 Wy, there exist some Wy, and Wj, such that
o Wy = Wip({a = (A1, As,m)}) W Wy,
o Wy = Wip({a & (B, Bs,r)}) W Wy, and
o (Wi, Wip) > Wj.
Let
o Wiy = (ng — ni2, Wi.A, Wi.p),
o Wi = (no — miz, Wii.A, Wi.p),
o Wias = (ng — ni2, Wiy A, Wyi.p),
o A = Wiya.pei(A471), and
o AL = Wia.pgnq(A2).

Further, Let r; be a function that maps a well-formed world W to a set

{ (var. (pw W).pe (R, vas. (p& W).pq(RY) | 38,71,% {aa} = {B,71} A {az} = {8,72} A
{772 #(pw WQB) A py WQSB T Wiga A
({8} U dom(p)) # ftu(A}) } .

We show that r; € Rel,wr.,.n[4}, A}]. In the proof of it, let
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p and f such that ({8} U dom(p)) # ftv(A%),

e W be a world such that - W and pw WQB I W40,

e 71 and 73 such that {77, 32 }#(p W W@gp),

e @y and @z such that {a7} = {8,731} and {az} = {3,%2}, and

o (var. (p¥ W).pp(B), vam. (p¥ W).pg,q(R7)) € ri(W).
Let’s go to the proof.

o We show that r,(W) € P(Atom™ [W.A, W.pg (AL), W.pgna(45)]).
It suffices to show that

— WA VAT (08 W) (RD) : Wopp (A7) and

- W.AFvaz. (pW W).pq(RE) : W.pga(AL).
Since (R}, R}) € r(»Wy2) and Wya A = W/, A = W'iys.A, we have

W/Z‘42.A - R; : A; .

Since pW W@B J W',49, there exists some pg such that

—Fpw Wag,

— (pw WQB).A, 1(po) > Wiz,

— (p¥ W@B).p = pgo W'isz.p, and

- W/i42.A > Po-
Since (pwW WQB).A,1(p) 3= W'i2.A, there exists some A; and Ay such that

(pw WQB).A t(p) = (Wiaz. A+ A1), Ay .

Thus, there exist some A4217 A422, AH, Azl, and AQQ such that

— Whiaa. A = Ayor,wyao,

— A1 = A1, wAy0,

— Ay = Agy,wAy,

— (pw WQ}B).A = (Age1 + A11),Agy, and

— dom(po) = dom(wAyaz,wAss).

Thus, we have
Ayor,wAuoo b R 2 Al

By Lemma
Ago1,wAy90, w1 F R - A}

Since - p W W@p3, we have
Va' € dom(po). (0¥ WQAB).AF pogy (') A (p& WQB).AF pogua(e) -
Thus, with W/';42.A > pg, we have

— A1, w21 = poggy (R]) + pogs; (A7) and
— Ayo1,wA21 F pogna(R) : posna(A7)-

Since o’ € dom(W'42.p) does not occur in Ry, Rj, A}, nor A by Lemma noting that pg o W'i40.p =
(pwW W@g).p, we have
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— Ay, wAg F
- A421, wAoy

p¥ WQB).pp (R]) : (pW WQB).pp (A]) and
P& WGB).p,a(RL) : (0® WB).p,q(A))

%), we have

Since dom(p) # ftv
— Ago1,wAo F (pw WQB). Pt (R7) = Wopg (A}) and
- A421,LUA21 (pU W@B)psnd(R;,) : W'psnd(A/i)'

By Lemmas 20] and [25]
— (Wa(B,7)).AF (p& WQB).pe, (R]) : W.pg(4]) and
= (WQ(B,72)).AF (p& WQAS).pg,q(R]) + W.penq (A7)

Since {8} # ftv(A}) and {B}# W and = W, we have V3 € {B}. B & fto(W.pw(AL)) U fto(W.pgq(AL)).

Further, {71, 72} # dom(A421,wA21) implies {71, 72} # (fto(W.pg (A7) U ftv(W.pena(47))) by Lemma
Thus, we have the conclusion

WA v (0 WEB).pg (RL) - Wopgy (A7) and
— W.AFvaz. (pw WQAg).p, 4 (R : W.pgq(4))

by (T_Nu).

(
(
(4
(

e Monotinicity. Let W’ 3 W. We show that
(1. (9 W)y (RL), 5. (08 W).pg (R we € s W)

Without loss of generality, we can suppose that dom(p)# W' and {BY# W' and {71,72}# W’'. Then, by
Lemmas and we have pW W'QB J pW WQSB I W'yys. Thus, we have

(var. (pW W').pg (RY), vag. (08 W').pgq(R))) € ri( W) .
By Lemma [114] we have the conclusion.

e Irrelevance. Let W’ and p’ such that W = p' W W’ and dom(p’) # ftv(A}). We have
(var. (pW (0 W W')).p (RY), vaz. (p W (p" & W)).pga(R))) € ri(p'w W) .
Since dom(p') # ftv(A}), we have
(var. ((pWp') W W').pp.(Ry),vaz. (pWp') W W).p, 4(R:)) € mi( W) .
Thus, we have the conclusion.
e Let W’ and o such that W = W'Q«' and {o'} # ftv(A4}) and F W'. We have
(1. (9 (W'00)). g (R, v (09 (W/Ga")) 1 (RD) € o WGY)
Since {a’'} # ftv(A%), we have

(vl VL (p ) W').py (R, v vz (018 W),y (RL)) € ri( W) .

e Let o such that {a’}# W. Without loss of generality, we can suppose that {a/} # (dom(p) U {B}). Then,
we have

— (o v (0 W)y (R, v5. (019 W).p () € ro(W) and
(VAT (P W).ppy (R, v 3. (018 W).ppa(BD) € 7o( W),

Thus, we have wW';4 - (A}, AL, ;). Now, we have the following.
(] (Rlﬂ, Rlﬂ) S R[[Va.a —o a]] w Wosa.
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o wW';y JwWpyy because w W, J w W, by Lemmas and [5| with W) J w Ws.
o wW' iyt (Al AL r;), and
[ ] {a}#wW’M.

Thus, we have
(R/il Ai, R/il Ai)wW’1,4 S 5[[04 —o Oé]] {Oé = (Az, A,’,T,L')} &JWW/M .

Since we have found R’;; A; —™2 R;s, we have
o WWispge(Ri1) Ai —"™2 wW'is.pge(Riz)
o wW iy.ppa(Ri1) Ai —™2 wW'ig.pgna(Ri2)
by Lemma [149] with w W';4 3 w Wye. Thus,
(Riz, Ri2)ow,, € Rla—a] (({a = (A, Ajyri)} e Wig) — nia)
by the definition of £ with W';y JwW'yy by Lemma We have the following.
e {ae (A, Ayr)}w Wiy J{a = (4;, A, i)W Wiy by Lemmam
o {abe (A, A, r)Y W i, {a & (A, A1) JWW o) D {a & (A, Ay JO W iy from (W), Wiy) D W]

e {ae (A, Ayr) YW Wiy J{a e (A, Ajyr) W Wiy by Lemmawith W';41 3 W';4, which is implied
by Wi, 2 Wj; Wi, 3 W is implied by Lemma [I38 with W{.p({o = (A1, A2, 7)}) W Wiy = Wy I Wy =
Wip({a & (A1, A2, )} W W,

o (R;,R;) € Rla]{a & (Ai, Ai, i)} W' i42 because we can find that ({o & (As, Ay, 7))} 8 WWisa).pe (RS) =

K3

a B (A Ay r) YW W), (R = R by {a} # ftv(R)) and Lemma [113
snd % [ 0

Thus, we have
(Rig R;, R;o R;)W/14 S S[[a]] {a = (Al, Ai,n‘)} (] WIZ'4 .

Because type substitution does not change the number of evaluation steps, we can find that W’4.p5(Ri2) R}
terminates by n;3 steps. We have had W';4.pp (R12) By —™2 Riz and W/ i4.peq(Rae2) RS —™3 Ras. Since
{a & (4;,A;,r)} W Wy 3 Wiy 3 Wiyo by Lemmas and the definition of R at « implies

Riz = vai. (piW{a & (i, Ai,ri) bW Wia).pg (RY)

for some @; and p; such that there exist some 3; and #; such that

o {@i} = {87}

o (Tt (piW{a B (Ai, Airi)} W Wis@B;),

e pi{a = (A;, Ay} W W iu@B; 3 Wiy, and

o ({Bi} U dom(py)) # fro(47).
Since W42 A+ RL . A%, we have ftv(R) C dom(W'42.A) = dom(W';4.A). Thus,

Ris = vag. W ig.pe(R)) .

Further, by Lemma |113
R;3 = vag. R; .

Since {B;}#({a & (A, Aj,r)}w W'iy) and {77 }#({a = (A, Ai,r) W W), we have {a;} = {8, Vi }# Waz.
Since (Rf, R}) € r(»Waz), we have the conclusion

(vaq. Ry, vag. Ry) € r(»Wys)

by the fourth condition of Rel,, on r.
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