Supplementary Material for "CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism"

Taro Sekiyama

National Institute of Informatics & SOKENDAI

1 Organization

This material provides the full definitions, auxiliary lemmas, and proofs that are omitted in our paper "CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism" at ICFP 2021. This is organized as follows.

Section [2](#page-1-0) presents the definitions. Section [2.1](#page-1-1) defines our CPS target language Λ^{open} and contextual equivalence of it. Section [2.2](#page-5-0) defines Curry-style CBV System F, referred to as λ_v^{\forall} in the paper. This section also provides a family of CBV full reductions and parallel reduction. Note that the CBV full reduction $\implies_{\beta\eta_v}$ in the paper is
described as \implies in this material. Section 2.3 presents the following transformations. Section 2.3.1 pr described as $\implies_{\beta_v \eta_v}$ in this material. Section [2.3](#page-7-0) presents the following transformations. Section [2.3.1](#page-7-1) provides our CPS transformation from N^{\forall} to Agpen (shown in Section 5 in the paper). Section 2.3.2 provide CPS transformation from λ_v^{\forall} to Λ^{open} (shown in Section 5 in the paper). Section [2.3.2](#page-7-2) provides the full definition of a variant $\langle \cdot \rangle$ of Plotkin's CBV CPS transformation for the untyped λ -calculus [\[1\]](#page-86-0). Section [2.3.3](#page-8-0) defines type erasure erase from Λ^{open} to (untyped) λ_v^{\forall} . Section [2.4](#page-9-0) defines the logical relation (shown in Section 6 in the paper).

Section [3](#page-12-0) provides the full proofs of the properties shown in the paper. Section [3.1](#page-12-1) proves type soundness of Λ open (Theorem [1\)](#page-26-0) with progress (Lemma [36\)](#page-23-0) and subject reduction (Lemma [40\)](#page-24-0). Section [3.2](#page-27-0) proves the properties concerning the reduction relations for λ_v^{\forall} . Note that Lemma 6 in the paper is shown as a corollary of Lemmas [53,](#page-29-0) [54,](#page-30-0) [63,](#page-32-0) and [64](#page-32-1) in this section. Section [3.3](#page-33-0) proves the properties concerning type erasure erase. Theorem [2](#page-38-0) shows its meaning preservation property. Section [3.4](#page-40-0) proves the type and meaning preservation properties of our CPS transformation from λ_v^{\forall} to Λ^{open} in Theorems [3](#page-43-0) and [4,](#page-45-0) respectively. Section [3.5](#page-46-0) proves the Fundamental Property (or, parametricity) of the logical relation (Theorem [5\)](#page-80-0) and soundness of the logical relation with respect to contextual equivalence (Theorem [6\)](#page-80-1). Section [3.6](#page-80-2) addresses a few partial free theorems.

2 Definition

 2.1 $\Lambda^{\rm open}$: CPS Target Language

2.1.1 Syntax

Variables x, y, z, f, k Type variables α, β, γ Base types ι ::= bool | int | ... **Types** A, B, C, D ::= $\alpha | \iota | A \rightarrow B | \forall \alpha.A | !A$ **Constants** c ::= true | false $|0| + |...$ Terms M ::= $x | c | \lambda x.M | M_1 M_2 |!M |$ let $x = M_1$ in $M_2 |$ $\nu\alpha$. $M \mid \Lambda^{\circ} \langle \alpha, M \rangle \mid \Lambda \alpha \cdot M \mid M A$ Values V ::= $c \mid \lambda x.M \mid !R \mid \Lambda \alpha.M$ **Results** R ::= $V | \nu \alpha$. R Extrusion contexts \mathbb{E} ::= [] $R_2 | \Lambda^{\circ} \langle \alpha, [] \rangle | [] A$ Evaluation contexts $E ::= [] M_2 | R_1 [] | let !x = [] in M_2 | \Lambda^{\circ} \langle \alpha, [] \rangle | [] A | \nu \alpha. [] |!]$ **Program contexts** \mathbb{C} ::= $[\;] \;] \lambda x.\mathbb{C} \, | \, \mathbb{C} \, M_2 \, | \, M_1 \mathbb{C} \, | \, \mathbb{C} \, |$ let $!x = \mathbb{C}$ in $M_2 \, |$ let $!x = M_1$ in $\mathbb{C} \, |$ $\nu\alpha.\mathbb{C} \mid \Lambda^{\circ}\langle \alpha,\mathbb{C} \rangle \mid \Lambda\alpha.\mathbb{C} \mid \mathbb{C} A$ Uses π ::= 0 | 1 | ω Typing contexts Γ $\Xi = \emptyset | \Gamma, x :^{\pi} A | \Gamma, \alpha^{\pi}$

Convention 1. We write Γ_1, Γ_2 for the concatenation of Γ_1 and Γ_2 . We use metavariable Δ for denoting typing contexts that consist only of α^{π} .

Convention 2. We write $\nu \overline{\alpha}$. M for $\nu \alpha_1$. \cdots $\nu \alpha_n$. M when $\overline{\alpha} = \alpha_1, \dots, \alpha_n$.

Definition 1 (Free variables and substitution). The sets ftv(A), ftv(M), and ftv(\mathbb{E}) of free type variables in a type A, a term M, and an evaluation context E are defined in a standard manner, respectively. The set fv (M) of free variables in a term [M] is also defined ordinarily.

Type substitution $B[A/\alpha]$ of A for α in B and term substitution $M[M'/x]$ of M' for free variable x in M are defined in a capture-avoiding manner as usual. The notable point of type substitution is that $(\Lambda^{\circ}(\beta, M))[A/\alpha]$ is defined if and only if $\beta[A/\alpha] = \gamma$ for some type variable γ (i.e., β is mapped to γ by $[A/\alpha]$ or $\beta \neq \alpha$) and, then, $\Lambda^{\circ} \langle \beta, M \rangle [A/\alpha] \stackrel{\text{def}}{=} \Lambda^{\circ} \langle \gamma, M[A/\alpha] \rangle.$

Definition 2. The set of uses $\{0, 1, \omega\}$ forms a commutative monoid equipped with an binary operation + such that:

- $\mathbf{0} + \pi = \pi + \mathbf{0} = \pi$ for any π ;
- $\omega + \pi = \pi + \omega = \omega$ for any π ; and
- $1+1 = \omega$.

We write $\pi_1 \leq \pi_2$ and $\pi_2 \geq \pi_1$ if and only if $\pi_1 + \pi = \pi_2$ for some π .

We also define the predicate $\Gamma_1 \leq \Gamma_2$ as the smallest relation satisfying the following rules.

$$
\overline{\emptyset} \leq \emptyset \qquad \frac{\Gamma_1 \leq \Gamma_2 \quad \pi_1 \leq \pi_2}{\Gamma_1, x :^{\pi_1} A \leq \Gamma_2, x :^{\pi_2} A} \qquad \frac{\Gamma_1 \leq \Gamma_2 \quad \pi_1 \leq \pi_2 \quad \pi_2 \neq \omega}{\Gamma_1, \alpha^{\pi_1} \leq \Gamma_2, \alpha^{\pi_2}}
$$

Definition 3 (Adding uses). Given a sequence of type variables $\overline{\alpha}$, $1\overline{\alpha}$ is a typing context obtained by adding the use 1 to each type variable in $\overline{\alpha}$. Formally, it is defined by induction on $\overline{\alpha}$, as follows.

$$
\begin{array}{ccc} {\bf 1}\langle\rangle&\stackrel{\mathrm{def}}{=}&\emptyset\\ {\bf 1}(\overline{\alpha},\beta)&\stackrel{\mathrm{def}}{=}&{\bf 1}\overline{\alpha},\beta^{\bf 1} \end{array}
$$

Assumption 1. We suppose that each constant c is assigned a closed first-order type ty(c) of the form $\iota_1 \to \ldots \to$ $\iota_n \multimap \iota_{n+1}$. We also suppose that, for any ι , there is the set \mathbb{K}_{ι} of constants of ι . For any constant c, ty(c) = ι if and only if $c \in \mathbb{K}_t$. The function ζ gives a denotation to pairs of constants. In particular, for any constants c_1 and c_2 : (1) $\zeta(c_1, c_2)$ is defined if and only if $ty(c_1) = \iota_0 \multimap A$ and $ty(c_2) = \iota_0$ for some ι_0 and A; and (2) if $\zeta(c_1, c_2)$ is defined, $\zeta(c_1, c_2)$ is a constant and $ty(\zeta(c_1, c_2)) = A$ where $ty(c_1) = \iota_0 \to A$.

Reduction rules $|M_1 \rightarrow M_2|$

$$
c_1(\nu \overline{\alpha}, c_2) \rightsquigarrow \nu \overline{\alpha}, \zeta(c_1, c_2) \quad (\text{R-CONST})
$$

\n
$$
(\lambda x.M) R \rightsquigarrow M[R/x] \quad (\text{R-BETA})
$$

\nlet $!x = \nu \overline{\alpha}, !R \text{ in } M \rightsquigarrow M[\nu \overline{\alpha}, R/x] \quad (\text{R-BANG})$
\n
$$
\Lambda^{\circ} \langle \alpha, !R \rangle \rightsquigarrow \Lambda \Delta R \quad (\text{R-CLOSING})
$$

\n
$$
(\Lambda \alpha.M) A \rightsquigarrow M[A/\alpha] \quad (\text{R-TBETA})
$$

Evaluation rules $|M_1 \rightarrow M_2|$

$$
\frac{M_1 \rightsquigarrow M_2}{M_1 \longrightarrow M_2} \quad \text{E_RED} \qquad \qquad \frac{M_1 \longrightarrow M_2}{E[M_1] \longrightarrow E[M_2]} \quad \text{E_EVAL} \qquad \qquad \frac{\alpha \notin \text{ftv}(\mathbb{E})}{\mathbb{E}[\nu \alpha. R] \longrightarrow \nu \alpha. \mathbb{E}[R]} \quad \text{E_Extra}
$$

2.1.2 Semantics

Definition 4. Relations $M_1 \rightarrow M_2$ and $M_1 \rightarrow M_2$ are the smallest relations satisfying the rules in Figure [1.](#page-2-0) **Definition 5** (Multi-step evaluation). Binary relation \rightarrow^* over terms is the reflexive and transitive closure of −→.

Definition 6 (Nonreducible terms). We write $M \rightarrow \hat{f}$ and only if there is no M' such that $M \rightarrow M'$.

2.1.3 Type System

Definition 7. Given a typing context Γ , $\omega \Gamma$ is a typing context obtained by induction on Γ as follows.

$$
\begin{array}{lll}\n\omega\emptyset & \stackrel{\text{def}}{=} & \emptyset \\
\omega(\Gamma, x : ``A) & \stackrel{\text{def}}{=} & \omega\Gamma, x : ``A \\
\omega(\Gamma, x : ``A) & \stackrel{\text{def}}{=} & \omega\Gamma, x : "A \quad (if \pi \neq \omega) \\
\omega(\Gamma, \alpha^{\pi}) & \stackrel{\text{def}}{=} & \omega\Gamma, \alpha^{\mathbf{0}}\n\end{array}
$$

Definition 8. Given a typing context Γ, its domain dom(Γ) is defined by induction on Γ as follows.

$$
dom(\emptyset) \stackrel{\text{def}}{=} \emptyset
$$

\n
$$
dom(\Gamma, x : \neg A) \stackrel{\text{def}}{=} \{x\} \cup dom(\Gamma)
$$

\n
$$
dom(\Gamma, \alpha^{\pi}) \stackrel{\text{def}}{=} \{\alpha\} \cup dom(\Gamma)
$$

Definition 9. Given typing contexts Γ_1 and Γ_2 , their merging typing context $\Gamma_1 + \Gamma_2$ is defined as follows.

$$
\varnothing + \varnothing \qquad \stackrel{\text{def}}{=} \varnothing
$$
\n
$$
(\Gamma_1, x : \pi_1 A) + (\Gamma_2, x : \pi_2 A) \stackrel{\text{def}}{=} (\Gamma_1 + \Gamma_2), x : \pi_1 + \pi_2 A
$$
\n
$$
(\Gamma_1, \alpha^{\pi_1}) + (\Gamma_2, \alpha^{\pi_2}) \qquad \stackrel{\text{def}}{=} (\Gamma_1 + \Gamma_2), \alpha^{\pi_1 + \pi_2} \quad (\text{if } \pi_1 + \pi_2 \neq \omega)
$$

Definition 10. We view Γ as a function that maps a variable to a type. $\Gamma(x) = A$ if and only if $x : \pi A \in \Gamma$ for some $\pi \neq 0$.

Definition 11. Well-formedness of typing contexts $\vdash \Gamma$ is the smallest relation satisfying the rules at the top of Figure [2.](#page-3-0) Well-formedness of types under typing contexts $\Gamma \vdash A$ holds if and only $ftv(A) \subseteq dom(\Gamma)$. Typing judgment $\Gamma \vdash M : A$ is the smallest relation satisfying the rules at the bottom of Figure [2.](#page-3-0)

Well-formedness rules $|\vdash \Gamma|$

` ∅ WF Empty ` Γ Γ ` A x 6∈ dom(Γ) ` Γ, x : ^π A WF Var ` Γ α 6∈ dom(Γ) π 6= ω ` ^Γ, α^π WF TyVar Typing rules Γ ` M : A ` Γ Γ ` x : Γ(x) T Var ` Γ Γ ` c : ty(c) T Const Γ, x : ¹ A ` M : B Γ ` λx .M : A (B T Abs Γ¹ ` M¹ : A (B Γ² ` M² : A Γ¹ + Γ² ` M¹ M² : B T App ` Γ ωΓ ` M : A Γ ` !M : !A T Bang Γ¹ ` M¹ : !B Γ2, x : ^ω B ` M² : A Γ¹ + Γ² ` let!x = M¹ in M² : A T LetBang Γ, α¹ ` M : A Γ ` A Γ ` να. M : A T Nu Γ1, α⁰ , Γ² ` M : !A Γ1, α1, Γ² ` Λ◦h α, M i : !∀α.A T Gen ` Γ ωΓ, α⁰ ` M : A T TAbs Γ ` M : ∀α.B Γ ` A T TApp

Figure 2: Type system.

 $\Gamma \vdash M \, A : B[A/\alpha]$

2.1.4 Contextual Equivalence

 $\Gamma \vdash \Lambda \alpha.M : \forall \alpha.A$

Definition 12. A context typing judgment $\mathbb{C} : (\Gamma \vdash A) \leadsto (\Gamma' \vdash A')$ is the smallest relation satisfying the inference rules in Figure [3.](#page-4-0)

Definition 13 (Contextual Equivalence). Contextual equivalence $\Gamma \vdash M_1 \approx_{\text{ctx}} M_2 : A$ is the formula that states that (1) $\Gamma \vdash M_1 : A$, (2) $\Gamma \vdash M_2 : A$, and (3) for any base type *ι*, constant c of *ι*, program context $\mathbb C$ such that $\mathbb{C} : (\Gamma \vdash A) \leadsto (\emptyset \vdash \iota), \mathbb{C}[M_1] \longrightarrow^* \nu \overline{\alpha_1}$ c for some $\overline{\alpha_1}$ if and only if $\mathbb{C}[M_2] \longrightarrow^* \nu \overline{\alpha_2}$ c for some $\overline{\alpha_2}$.

Context typing rules
$$
\boxed{C : (F + A) \rightsquigarrow (F' + A')}
$$
\n
$$
\boxed{|\cdot (F + A) \rightsquigarrow (F + A) \rightsquigarrow (F' + A')]}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F' + A' \rightsquigarrow B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + A' \rightsquigarrow B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + A' \rightsquigarrow B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + F'_{2} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + F'_{2} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + F'_{2} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + F'_{2} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + B')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F'_{1} + F'_{2} + A')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F', \alpha^{1} + A')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F' + A')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F', \alpha^{2} + A')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F', \alpha^{2} + A')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F', \alpha^{2} + A')}
$$
\n
$$
\boxed{C : (F + A) \rightsquigarrow (F', \alpha^{2} + A')}
$$
\n
$$
\boxed{C : (F + A) \rightsquig
$$

Figure 3: Typing of contexts.

Reduction rules

\n
$$
\begin{array}{cccc}\n e_1 & \searrow & e_1 \leadsto & e_2 \\
 & c_1 & c_2 \leadsto & \zeta(c_1, c_2) \\
 & & & (\lambda x. e) \ w \leadsto & \beta_v \ e[w/x] \\
 & & & (\lambda x. w \ x) \leadsto & \gamma_v \ w \ (x \notin f v \ (w))\n \end{array}
$$
\nEvaluation rules

\n
$$
\begin{array}{cccc}\n e_1 \longrightarrow_{F} e_2 \\
 & & e_1 \longrightarrow_{F} e_2 \\
 & & e_1 \longrightarrow_{F} e_2\n \end{array}
$$
\nParallel reduction rules

\n
$$
\begin{array}{cccc}\n e_1 \longrightarrow_{F} e_1' & & e_2 \longrightarrow_{F} e_2' \\
 & & e_1 \longrightarrow_{F} e_2' \\
 & & e_1 \longrightarrow_{F} e_2' \\
 & & e_1 \longrightarrow_{F} e_2\n \end{array}
$$
\nParallel reduction rules

\n
$$
\begin{array}{cccc}\n e_1 \rightarrow_{F} e_2' & & \frac{e_2 \longrightarrow_{F} e_2'}{w_1 e_2 \longrightarrow_{F} w_1 e_2'} \\
 & & & e_1 \rightarrow_{F} e_2 \\
 & & & e_1 \rightarrow_{F} e_2 & \frac{w_1 \rightarrow_{F} w_1}{w_1 e_2 \longrightarrow_{F} w_1 e_2'}\n \end{array}
$$

$$
\frac{e_1 \rightarrow_{\overline{N}} e_2 \quad w_1 \rightarrow_{\overline{N}} w_2 \quad \gamma_v \in \{N\}}{\lambda x \cdot w_1 x \Rightarrow_{\overline{N}} w_2} \quad P_BERTA
$$
\n
$$
\frac{w_1 \rightarrow_{\overline{N}} w_2 \quad x \notin fv \ (w_1) \quad \eta_v \in \{\overline{N}\}}{\lambda x \cdot w_1 x \Rightarrow_{\overline{N}} w_2} \quad P_ETA
$$
\n
$$
\frac{e_1 \rightarrow_{\overline{N}} e_2}{\lambda x \cdot w_1 x \Rightarrow_{\overline{N}} w_2} \quad P_ERTA
$$
\n
$$
\frac{e_1 \rightarrow_{\overline{N}} e_2}{\lambda x \cdot e_1 \Rightarrow_{\overline{N}} \lambda x \cdot e_2} \quad P_ABS
$$
\n
$$
\frac{e_{11} \rightarrow_{\overline{N}} e_{21} \quad e_{12} \Rightarrow_{\overline{N}} e_{22}}{e_{11} \cdot e_{12} \Rightarrow_{\overline{N}} e_{21} \cdot e_{22}} \quad P_APP
$$

Figure 4: Semantics.

- 2.2 λ $\stackrel{\forall}{v}$: Curry-style CBV System F
- 2.2.1 Syntax

Definition 14 (Free variables and substitution). Free type variables in a type and free variables in a term are defined in a standard manner. We write ftv (τ) for the set of free type variables in a type τ and fv (e) for the set of free variables in a term e. Type substitution $\tau_1[\tau_2/\alpha]$ of τ_2 for free type variable α in τ_1 and term substitution $e_1[e_2/x]$ of e_2 for free variable x in e_1 are defined in a capture-avoiding manner as usual.

2.2.2 Semantics

Definition 15 (Reduction symbol). The metavariable \aleph ranges over reduction symbols of β_v , η_v , and δ . We write $\aleph_1 \cdots \aleph_n$ for the sequence of the symbols $\aleph_1, \cdots, \aleph_n$ and abbreviate it to $\overline{\aleph}$ simply. We also write $\{\overline{\aleph}\}$ for viewing the sequence $\overline{\aleph}$ as a set by ignoring the order.

Definition 16 (Reduction). The reduction relation \leadsto_{\aleph} , indexed by the reduction symbol \aleph , is a binary relation over terms in λ_v^{\forall} defined by the rules at the top of Figure [4.](#page-5-1)

Definition 17 (Evaluation). The evaluation relation \longrightarrow_F is a binary relation over terms in λ_v^{\forall} and defined as the smallest relation that satisfies the rules at the middle of Figure [4.](#page-5-1) We write: $e_1 \longrightarrow_F^{0,1} e_2$ if and only if $e_1 = e_2$ or $e_1 \longrightarrow_F e_2$; $e_1 \longrightarrow_F \leq^2 e_2$ if and only if (1) $e_1 = e_2$, (2) $e_1 \longrightarrow_F e_2$, or (3) $e_1 \longrightarrow_F e$ and $e \longrightarrow_F e_2$ for some e ; and $e \rightarrow F$ if and only if there exists no term e' such that $e \rightarrow_F e'$. We write \rightarrow_F^* for the reflexive, transitive closures of \longrightarrow_F .

A term e gets stuck if and only if there exists some e' such that: (1) $e \rightarrow_F^* e'$, (2) $e' \nrightarrow_F$, and (3) e' is not a value.

Well-formedness rules $| \vdash \Theta$

$$
\frac{\vdash \Theta \quad \Theta \vdash \tau \quad x \notin \text{dom}(\Theta)}{\vdash \Theta, x : \tau} \qquad \qquad \frac{\vdash \Theta \quad \alpha \notin \text{dom}(\Theta)}{\vdash \Theta, \alpha}
$$

Typing rules $\Theta \vdash e : \tau$

$$
\frac{\Theta}{\Theta \vdash x : \Theta(x)} \qquad \frac{\Theta \vdash \Theta}{\Theta \vdash c : ty^{\rightarrow}(c)} \qquad \frac{\Theta, x : \tau_1 \vdash e : \tau_2}{\Theta \vdash \lambda x . e : \tau_1 \rightarrow \tau_2}
$$
\n
$$
\frac{\Theta \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Theta \vdash e_2 : \tau_1}{\Theta \vdash e_1 e_2 : \tau_2} \qquad \frac{\Theta, \alpha \vdash e : \tau}{\Theta \vdash e : \forall \alpha . \tau} \qquad \frac{\Theta \vdash e : \forall \alpha . \tau_2 \quad \Theta \vdash \tau_1}{\Theta \vdash e : \tau_2 [\tau_1/\alpha]}
$$

Figure 5: Type system.

Definition 18 (Full reduction). We define full reduction \implies ^x indexed by \aleph , which is a binary relation over terms in λ_v^{\forall} , by: $e_1 \mapsto_{\aleph} e_2$ if and only if there exist some C, e'_1 , and e'_2 such that $e_1 = \mathcal{C}[e'_1]$, $e_2 = \mathcal{C}[e'_2]$, and $e'_1 \leadsto_{\aleph} e'_2$.
We write \mapsto for the union of $\{\mapsto_{\aleph}\}^{\aleph}$ ($\{\stackrel{\sim}{\bowtie}\}$) We write $\Longrightarrow_{\overline{N}}$ for the union of $\{\Longrightarrow_{N'} |\ N' \in {\overline{N}}\}\}\.$ We write $\Longrightarrow_{\overline{N}}^*$ for the reflexive, transitive closures of $\Longrightarrow_{\overline{N}}$.

Definition 19 (Parallel reduction). We define parallel reduction $\Rightarrow_{\overline{N}}$ indexed by \overline{N} , which is a binary relation over terms in λ_v^{\forall} , as the smallest relation that satisfies the rules at the bottom of Figure [4.](#page-5-1) We write $\Rightarrow_{\overline{N}}^*$ for the reflexive, transitive closures of $\Rightarrow_{\overline{\aleph}}$.

2.2.3 Type System

Definition 20. Given a typing context Θ , its domain dom (Θ) is defined by induction on Θ as follows.

 $dom(\emptyset)$ $\stackrel{\text{def}}{=} \emptyset$ $dom(\Theta, x : \tau) \stackrel{\text{def}}{=} \{x\} \cup dom(\Theta)$ $dom(\Theta, \alpha)$ $\stackrel{\text{def}}{=} {\alpha} \cup dom(\Theta)$

Definition 21. We view Θ as a function that maps a variable to a type. $\Theta(x) = \tau$ if and only if $x : \tau \in \Theta$.

Definition 22. We give each constant c a first-order closed type $ty\rightarrow(c)$, which is the same as $ty(c)$ given in Assumption [1](#page-1-2) except that type constructor \multimap is replaced by \rightarrow .

Definition 23. Well-formedness of typing contexts $\vdash \Theta$ is the smallest relation that satisfies the rules at the top of Figure [5.](#page-6-0) Well-formedness of types under typing contexts $\Theta \vdash \tau$ holds if and only $ftv(\tau) \subseteq dom(\Theta)$. Typing judgment $\Theta \vdash e : \tau$ is the smallest relation that satisfies the rules at the bottom of Figure [5.](#page-6-0)

CPS transformation $\left| \begin{bmatrix} \Theta & \vdots & \tau \end{bmatrix} \right| \Rightarrow R$

$$
\frac{\vdash \Theta \quad x:\tau \in \Theta}{[\Theta \vdash x:\tau] \Rightarrow \Lambda \alpha.\lambda k.k!x} \quad \frac{\vdash \Theta}{[\Theta \vdash c:\ ty^{\rightarrow}(c)] \Rightarrow \Lambda \alpha.\lambda k.k[\![c:\ty^{\rightarrow}(c)]]} \quad \text{C-CONST}
$$
\n
$$
\frac{[\Theta, x:\tau_1 \vdash e:\tau_2] \Rightarrow R \quad y \text{ is fresh}}{[\Theta \vdash \lambda x.e:\tau_1 \rightarrow \tau_2] \Rightarrow \Lambda \alpha.\lambda k.k!(\lambda y.\text{let}!x = y \text{ in } R)} \quad \text{C-ABs}
$$
\n
$$
\frac{[\Theta \vdash e_1:\tau_1 \rightarrow \tau_2] \Rightarrow R_1 \quad [\Theta \vdash e_2:\tau_1] \Rightarrow R_2 \quad x \text{ is fresh}}{[\Theta \vdash e_1 e_2:\tau_2] \Rightarrow \Lambda \alpha.\lambda k.R_1 \alpha (\lambda x.R_2 \alpha (\lambda y.\text{let}!z = x \text{ in } z y \alpha k))} \quad \text{C-APP}
$$
\n
$$
\frac{[\Theta, \beta \vdash e:\forall \beta.\tau] \Rightarrow R}{[\Theta \vdash e:\forall \beta.\tau] \Rightarrow \Lambda \alpha.\lambda k.\nu\beta.R \alpha (\lambda x.k \alpha'(\beta, x))} \quad \text{C-TABs}
$$
\n
$$
\frac{[\Theta \vdash e:\forall \beta.\tau_2] \Rightarrow R \quad \Theta \vdash \tau_1}{[\Theta \vdash e:\tau_2[\tau_1/\beta]] \Rightarrow \Lambda \alpha.\lambda k.R \alpha (\lambda x.\text{let}!y = x \text{ in } k!(y[\![\tau_1]\!]_y))} \quad \text{C-TAPP}
$$

Figure 6: CPS transformation.

2.3 Translation

Convention 3. We use a metavariable χ for denoting variables or constants.

2.3.1 CPS Transformation: from λ_v^{\forall} to Λ^{open}

Definition 24. CPS transformations $\llbracket \tau \rrbracket$ of a type τ of terms and $\llbracket \tau \rrbracket$, of a type τ of values are defined by induction on τ , as follows.

$$
\begin{array}{rcl}\n[\![\tau]\!] & \stackrel{\text{def}}{=} & \forall \alpha. ([\![\tau]\!]_{\nu} \multimap \alpha) \multimap \alpha \quad (\alpha \notin \mathit{ftv}(\tau)) \\
[\![\alpha]\!]_{\nu} & \stackrel{\text{def}}{=} & \alpha \\
[\![\iota]\!]_{\nu} & \stackrel{\text{def}}{=} & \iota \\
[\![\tau_1 \to \tau_2]\!]_{\nu} & \stackrel{\text{def}}{=} & \cdot[\![\tau_1]\!]_{\nu} \multimap [\![\tau_2]\!] \\
[\![\forall \alpha. \tau]\!]_{\nu} & \stackrel{\text{def}}{=} & \forall \alpha. [\![\tau]\!]_{\nu}\n\end{array}
$$

CPS transformation $\llbracket \Theta \rrbracket$ of a typing context Θ is defined by induction on Θ , as follows.

$$
\begin{array}{ccc}\n[\![\emptyset]\!] & \stackrel{\text{def}}{=} & \emptyset \\
[\![\Theta, x : \tau]\!] & \stackrel{\text{def}}{=} & [\![\Theta]\!], x :^\omega [\![\tau]\!]_\mathtt{v} \\
[\![\Theta, \alpha]\!] & \stackrel{\text{def}}{=} & [\![\Theta]\!], \alpha^\mathbf{0}\n\end{array}
$$

CPS transformation $\llbracket \chi : \tau \rrbracket$ of χ of a type τ is defined by induction on τ , as follows.

$$
\begin{array}{rcl}\n\llbracket \chi : \iota \rrbracket & \stackrel{\text{def}}{=} & \mathop{!}\nolimits \chi \\
\llbracket \chi : \iota \to \tau \rrbracket & \stackrel{\text{def}}{=} & \mathop{!}\nolimits (\lambda x.\mathsf{let}\,!\,y = x \mathsf{ in}\, \mathsf{let}\, !z = \mathop{!}\nolimits(\chi\,y) \mathsf{ in}\, \Lambda \alpha.\lambda k.k \, \llbracket z : \tau \rrbracket) \quad (\text{where } k, x, y, z \notin \mathit{fv}\,(\chi))\n\end{array}
$$

Definition 25. CPS transformation $\|\Theta \vdash e : \tau\| \Rightarrow V$ of a typing judgment $\Theta \vdash e : \tau$ is the smallest relation satisfying the rules in Figure [6.](#page-7-3) In the rules of Figure [6,](#page-7-3) we assume that k and α are fresh, that is, $k, \alpha \notin dom(\Theta)$, $\alpha \notin \text{ftv}(\tau)$, and k and α do not occur in e as a free nor bound variable, respectively.

2.3.2 CPS Transformation: from λ_v^{\forall} to itself

Definition 26. CPS transformation $(\chi : \tau)$ of χ of a type τ is defined by induction on τ , as follows.

$$
\begin{array}{rcl}\n\left(\chi : \iota\right) & \stackrel{\text{def}}{=} & \chi \\
\left(\chi : \iota \to \tau\right) & \stackrel{\text{def}}{=} & \lambda x.(\lambda y. \lambda k. k \left(y : \tau\right))\left(\chi x\right) \quad \text{(where } k, x, y \notin \text{fv}\left(\chi\right))\n\end{array}
$$

CPS transformation $\{e\}$ of a term e in λ_v^{\forall} is defined by induction on e, as follows:

$$
\begin{array}{lll}\n\left(x\right) & \stackrel{\text{def}}{=} & \lambda k.k \, x \\
\left(c\right) & \stackrel{\text{def}}{=} & \lambda k.k \left(c: ty^{\rightarrow}(c)\right) \\
\left(\lambda x.e\right) & \stackrel{\text{def}}{=} & \lambda k.k \, \lambda x.\left(e\right) \\
\left(e_1 \, e_2\right) & \stackrel{\text{def}}{=} & \lambda k.\left(e_1\right) \left(\lambda x.\left(e_2\right) \left(\lambda y.x\, y\, k\right)\right)\n\end{array}
$$

where k is a variable that does not occur in e as a free variable nor a bound variable.

2.3.3 Type Erasure: from $\Lambda^{\rm open}$ to λ_v^{\forall}

Definition 27. Type erasure erase is a function that translates terms in Λ^{open} to untyped terms in λ_v^{\forall} , defined by induction on M as follows.

Definition 28. A term M is erasable if and only if, for any subterm $\Lambda \alpha M'$ in M, $M' = R$ for some R.

2.4 Logical Relation

Convention 4. We employ the following conventions.

- For sets S_1 and S_2 , we write $S_1 \# S_2$ to state that they are disjoint.
- The metavariable ρ ranges over interpretations, which are mappings that map type variables to triples of the form (A_1, A_2, r) ,
- The metavariable r ranges over relational interpretations, which are mappings that map worlds to sets of pairs of terms.
- The metavariable ς ranges over relational result substitutions, which are mappings that map variables to pairs of results.
- We write $dom(\rho)$ (resp. dom (ς)) for the set of free type variables (resp. free variables) mapped by ρ (resp. ς).
- We write $dom(r)$ for the set of worlds mapped by r.
- When $W = (n, \Delta, \rho)$, we write W .n for n, W . Δ for Δ , and W .p for ρ .
- For ρ_1 and ρ_2 such that $dom(\rho_1) \# dom(\rho_2)$, we write $\rho_1 \oplus \rho_2$ for the mapping that maps a type variable $\alpha \in dom(\rho_1)$ to $\rho_1(\alpha)$ and a type variable $\alpha \in dom(\rho_2)$ to $\rho_2(\alpha)$.
- We write ρ_{fst} and ρ_{snd} for capture-avoiding type substitutions that map a type variable α in dom(ρ) to A_1 and A_2 when $\rho(\alpha) = (A_1, A_2, r)$, respectively.
- When $\rho(\alpha) = (A_1, A_2, r)$, we write $\rho[\alpha]$ for the relational interpretation r.
- We write ρ_W^A for an interpretation $\{\alpha \mapsto (W.\rho_{fst}(A), W.\rho_{snd}(A), r)\}\)$ for some r.
- We write $\Delta_1 \perp \Delta_2$ if and only if $\Delta_1 + \Delta_2$ is well defined.
- We identify typing contexts Δ_1 and Δ_2 up to permutation (i.e., $\Delta, \alpha^{\pi_1}, \beta^{\pi_2}, \Delta'$ is identical with $\Delta, \beta^{\pi_2}, \alpha^{\pi_1}, \Delta'$) for simplifying the technical development. Because Δ contains only type variables, this identification does not change typability of terms.
- We write \longrightarrow^n for the n step evaluation.
- $\sum_{x\in I}\Delta_x$ stands for the typing context $\Delta_{x_1}+\cdots+\Delta_{x_n}$ given a family of typing contexts $\Delta_{x_1},\cdots,\Delta_{x_n}$ with a finite index set of variables $I = \{x_1, \cdots, x_n\}$. We also write $\exists \prod_{x \in I} \Delta_x$ to existentially quantify $\Delta_{x_1}, \cdots, \Delta_{x_n}$.
- dom₌₁(Γ) stands for the finite set of variables that are affine in typing context Γ.
- We write $\rho(\varsigma)$ for ς' such that: $dom(\varsigma') = dom(\varsigma)$; and, for any $x \in dom(\varsigma')$, $\varsigma'_{fst}(x) = \rho_{fst}(\varsigma_{fst}(x))$ and $\varsigma'_{\text{snd}}(x) = \rho_{\text{snd}}(\varsigma_{\text{snd}}(x)).$

Definition 29 (Logical Relation). A logical relation for Λ^{open} is defined in Figure [8](#page-11-0) with auxiliary definitions in Figure [7.](#page-10-0)

Figure 7: Objects appearing in logical relation.

$$
\mathcal{R}[\![\iota]\!] \begin{array}{ll}\nW & \stackrel{\text{def}}{=} \{(\nu\overline{\alpha_1}, c, \nu\overline{\alpha_2}, c) \in \text{Atom}\left[W, \iota\right]\}\n\end{array}\n\tag{Eq 1, B 1}\n\mathcal{R}[\![\alpha]\!] \begin{array}{ll}\nW & \stackrel{\text{def}}{=} \{(\kappa_1, R_2) \in \text{Atom}\left[W, A \multimap B\right] | \forall W' \sqsupseteq W, \forall (W_1, W_2) \ni W', W_1 \sqsupseteq W \implies \forall (R_1', R_2') \in \mathcal{R}[\![A]\!] \, \mathcal{W}_2, (R_1 R_1', R_2 R_2') \, \mathcal{W}_2 \in \mathcal{E}[\![B]\!] \, \mathcal{W}'\}.\n\end{array}
$$
\n
$$
\mathcal{R}[\![\forall \alpha.A]\!] \begin{array}{ll}\nW & \stackrel{\text{def}}{=} \{(\kappa_1, R_2) \in \text{Atom}\left[W, \forall \alpha.A\right] | \forall W' \sqsupseteq W, \forall B_1, B_2, r.\n\end{array}
$$
\n
$$
\mathcal{R}[\![!A]\!] \begin{array}{ll}\nW & \stackrel{\text{def}}{=} \{(\kappa_1, R_2) \in \text{Atom}\left[W, \forall A\right] | \forall W' \sqsupseteq W, \forall B_1, B_2, r.\n\end{array}
$$
\n
$$
\mathcal{R}[\![!A]\!] \begin{array}{ll}\nW & \stackrel{\text{def}}{=} \{(\kappa_1, R_2) \in \text{Atom}\left[W, 1A\right] | (\text{let } !x = R_1 \text{ in } x, \text{let } !x = R_2 \text{ in } x) \in \mathcal{E}[\![A]\!] \, \text{for } W' \}.\n\end{array}
$$
\n
$$
\mathcal{E}[\![A]\!] \begin{array}{ll}\nW & \stackrel{\text{def}}{=} \{(\kappa_1, R_2) \in \text{Atom}\left[W, 1A\right] | \forall W' \sqsupseteq W, \forall n < W'.n, \forall R_1.\n\end{array}
$$
\n
$$
\mathcal{E}[\![A]\!] \begin{array}{ll}\
$$

Figure 8: Logical relation.

3 Proofs

3.1 Type Soundness of $\Lambda^{\rm open}$

Lemma 1 (Uses as a commutative monoid).

- 1. $\pi_1 + \pi_2$ is well defined for any π_1 and π_2 .
- 2. $0 + \pi = \pi + 0 = \pi$ for any π .
- 3. $\pi_1 + (\pi_2 + \pi_3) = (\pi_1 + \pi_2) + \pi_3$ for any π_1 , π_2 , and π_3 .
- 4. $\pi_1 + \pi_2 = \pi_2 + \pi_1$ for any π_1 and π_2 .

Proof. 1. By definition.

2. By definition.

3. By case analysis on π_1 , π_2 , and π_3 .

Case $\pi_1 = \omega$: $\pi_1 + (\pi_2 + \pi_3) = \omega = \omega + \pi_3 = (\omega + \pi_2) + \pi_3 = (\pi_1 + \pi_2) + \pi_3$. Case $\pi_1 = \mathbf{0}$: $\pi_1 + (\pi_2 + \pi_3) = \pi_2 + \pi_3 = (\mathbf{0} + \pi_2) + \pi_3 = (\pi_1 + \pi_2) + \pi_3$. Case $\pi_1 = 1$ and $\pi_2 = \omega$: $\pi_1 + (\pi_2 + \pi_3) = \omega = \omega + \pi_3 = (\pi_1 + \pi_2) + \pi_3$. Case $\pi_1 = 1$ and $\pi_2 = 0$: $\pi_1 + (\pi_2 + \pi_3) = \pi_1 + \pi_3 = (\pi_1 + \pi_2) + \pi_3$. Case $\pi_1 = \pi_2 = 1$ and $\pi_3 = \omega$: $\pi_1 + (\pi_2 + \pi_3) = \omega = (\pi_1 + \pi_2) + \pi_3$. Case $\pi_1 = \pi_2 = 1$ and $\pi_3 = 0$: $\pi_1 + (\pi_2 + \pi_3) = \pi_1 + \pi_2 = (\pi_1 + \pi_2) + \pi_3$. Case $\pi_1 = \pi_2 = \pi_3 = 1$: $\pi_1 + (\pi_2 + \pi_3) = \omega = (\pi_1 + \pi_2) + \pi_3$.

4. By definition.

Lemma 2 (Associativity of merging typing contexts). $(\Gamma_1 + \Gamma_2) + \Gamma_3 = \Gamma_1 + (\Gamma_2 + \Gamma_3)$. *Proof.* By induction on Γ_3 . The cases for $\Gamma_3 = \Gamma'_3$, $x : \pi A$ and $\Gamma_3 = \Gamma'_3$, α^{π} rest on Lemma [1](#page-12-2) [\(3\)](#page-12-3). \Box **Lemma 3** (Commutativity of merging typing contexts). $\Gamma_1 + \Gamma_2 = \Gamma_2 + \Gamma_1$. *Proof.* By induction on Γ_1 with Lemma [1](#page-12-2) [\(4\)](#page-12-4). \Box Lemma 4. $\omega \Gamma + \omega \Gamma = \omega \Gamma$ *Proof.* Straightforward by induction on Γ. The proof depends on the fact that $\omega + \omega = \omega$ and $\mathbf{0} + \mathbf{0} = \mathbf{0}$. \Box **Lemma 5.** For any Γ , $\omega \omega \Gamma = \omega \Gamma$. Proof. Straightforward by induction on Γ. \Box Lemma 6. 1. If $\pi_1 = \omega$ or $\pi_2 = \omega$, then $\pi_1 + \pi_2 = \omega$. 2. if $\pi_1 + \pi_2 = 0$, then $\pi_1 = \pi_2 = 0$. 3. If $\pi_1 + \pi_2 + \pi_3 \neq \omega$, then $\pi_1 + \pi_3 \neq \omega$ and $\pi_2 + \pi_3 \neq \omega$.

 \Box

- 4. If $\pi + \mathbf{0} = \omega$, then $\pi = \omega$.
- 5. If $\pi_1 \neq 0$ nor $\pi_2 \neq 0$, then $\pi_1 + \pi_2 = \omega$.

Proof. 1. By definition.

2. Obvious.

3. By Lemma [1,](#page-12-2) it suffices to show $\pi_1 + \pi_3 \neq \omega$. Since $\pi_1 + \pi_2 + \pi_3 \neq \omega$, we can find $\pi_1 \neq \omega$ nor $\pi_3 \neq \omega$. If

Proof. Straightforward by induction on Γ_2 .

Lemma 15. Suppose that $\Gamma_1 \leq \Gamma_2$. $\vdash \Gamma_1$ if and only if $\vdash \Gamma_2$.

Proof. By induction on the derivation of $\Gamma_1 \leq \Gamma_2$ with Lemma [14.](#page-13-2) The right-to-left direction in the case for $\Gamma'_1, \alpha^{\pi_1} \leq \Gamma'_2, \alpha^{\pi_2}$ rests on the fact that, if $\pi_1 \leq \pi_2$ and $\pi_2 \neq \omega$, then $\pi_1 \neq \omega$. \Box

Lemma 16. If $\vdash \Gamma_1$ and $\vdash \Gamma_2$ and $\Gamma_1 + \Gamma_2$ is well defined, then $\vdash \Gamma_1 + \Gamma_2$.

Proof. By induction on the derivation of $\vdash \Gamma_1$ with Lemma [12.](#page-13-1) The case for (WF_TYVAR) relies on the fact that, if $(\Gamma_1, \alpha^{\pi_1}) + (\Gamma_2, \alpha^{\pi_2})$ is well defined, then $\pi_1 + \pi_2 \neq \omega$. \Box

Lemma 17. If $\Gamma \vdash M : A$, then $\vdash \Gamma$.

Proof. By induction on the typing derivation of $\Gamma \vdash M : A$. The cases for (T_App) and (T_LETBANG) rest on Lemma [16.](#page-13-3) The case for (T Gen) rests on Lemma [15.](#page-13-4) \Box

Lemma 18. If $\Gamma \vdash M : A$, then $\Gamma \vdash A$.

Proof. By induction on the typing derivation of $\Gamma \vdash M : A$. The case for (T_ABS) rests on Lemma [17.](#page-13-5) The cases for (T_APP) and (T_LETBANG) rest on Lemma [12.](#page-13-1) The cases for (T_BANG) and (T_TABS) rest on Lemma [9.](#page-13-0) The case for (T Gen) rests on Lemma [14.](#page-13-2) □

Lemma 19 (Idempotent typing contexts). Let Γ be a typing context such that, for any $\alpha^{\pi} \in \Gamma$, $\pi \neq \omega$. Then, there exists some Γ' such that $\Gamma + \Gamma' = \Gamma$.

Proof. We can construct such a Γ' by $f(\Gamma)$ where f is a function defined inductively on Γ as follows.

$$
f(\emptyset) \equiv \emptyset
$$

\n
$$
f(\Gamma, x : \pi A) \stackrel{\text{def}}{=} f(\Gamma), x : \mathbf{0} A
$$

\n
$$
f(\Gamma, \alpha^{\pi}) \stackrel{\text{def}}{=} f(\Gamma), \alpha^{\mathbf{0}}.
$$

It is easy to see $\Gamma + \Gamma' = \Gamma$.

Lemma 20 (Weakening). Suppose that $\vdash \Gamma_1, \Gamma_2$ and dom(Γ_2) \cap dom(Γ_3) = \emptyset .

- 1. If $\vdash \Gamma_1, \Gamma_3$, then $\vdash \Gamma_1, \Gamma_2, \Gamma_3$.
- 2. If $\Gamma_1, \Gamma_3 \vdash M : A$, then $\Gamma_1, \Gamma_2, \Gamma_3 \vdash M : A$.

Proof. 1. Straightforward by induction on the derivation of $\vdash \Gamma_1, \Gamma_3$ with case analysis on Γ_3 .

2. By induction on the typing derivation of $\Gamma_1, \Gamma_3 \vdash M : A$.

Case (T_VAR) and (T_CONST) : By the case (1) .

Case (T_ABs), (T_Nu), and (T_TAPP): By the $IH(s)$.

Case (T_App): We are given $\Gamma_{01}+\Gamma_{02} \vdash M_1 M_2 : A$ for some Γ_{01} , Γ_{02} , M_1 , and M_2 such that Γ_1 , $\Gamma_3 = \Gamma_{01}+\Gamma_{02}$ and $M = M_1 M_2$. By inversion,

• $\Gamma_{01} \vdash M_1 : B \multimap A$ and

• $\Gamma_{02} \vdash M_2 : B$

for some B. By Lemma [11,](#page-13-6) there are Γ_{11} , Γ_{12} , Γ_{31} , and Γ_{32} such that

- $\Gamma_{01} = \Gamma_{11}, \Gamma_{31},$
- $\Gamma_{02} = \Gamma_{12}, \Gamma_{32},$
- $\Gamma_1 = \Gamma_{11} + \Gamma_{12}$, and
- $\Gamma_3 = \Gamma_{31} + \Gamma_{32}$.

We can construct Γ'_2 such that $\Gamma_2 + \Gamma'_2 = \Gamma_2$ by Lemma [19,](#page-14-1) so $\vdash (\Gamma_{11} + \Gamma_{12}), (\Gamma_2 + \Gamma'_2)$ from $\vdash \Gamma_1, \Gamma_2$. Since $(\Gamma_{11} + \Gamma_{12}), (\Gamma_2 + \Gamma'_2) = (\Gamma_{11}, \Gamma_2) + (\Gamma_{12}, \Gamma'_2)$ by Lemma [7,](#page-13-7) we have $\vdash \Gamma_{11}, \Gamma_2$ and $\vdash \Gamma_{12}, \Gamma'_2$ by Lemma [13.](#page-13-8) We also find

- $dom(\Gamma_2) \cap dom(\Gamma_{31}) = \emptyset$ and
- $dom(\Gamma'_2) \cap dom(\Gamma_{32}) = \emptyset$

by Lemma [12](#page-13-1) and $dom(\Gamma_2) \cap dom(\Gamma_3) = \emptyset$. Thus, by the IHs,

- $\Gamma_{11}, \Gamma_2, \Gamma_{31} \vdash M_1 : B \multimap A$ and
- $\Gamma_{12}, \Gamma'_2, \Gamma_{32} \vdash M_2 : B.$

By (T_APP) ,

$$
(\Gamma_{11}, \Gamma_2, \Gamma_{31}) + (\Gamma_{12}, \Gamma'_2, \Gamma_{32}) \vdash M_1 M_2 : A.
$$

Since $(\Gamma_{11}, \Gamma_2, \Gamma_{31}) + (\Gamma_{12}, \Gamma'_2, \Gamma_{32}) = \Gamma_1, \Gamma_2, \Gamma_3$ by Lemma [7,](#page-13-7) we have the conclusion.

Case (T_BANG): We are given $\Gamma_1, \Gamma_3 \vdash !M' : !A'$ for some M' and A' such that $M = !M'$ and $A = !A'$. By inversion,

$$
\omega(\Gamma_1, \Gamma_3) \vdash M' : A'.
$$

Since $\vdash \Gamma_1, \Gamma_2$, we have $\vdash \omega(\Gamma_1, \Gamma_2)$ by Lemma [10.](#page-13-9) By Lemma [8,](#page-13-10) $\omega \Gamma_1, \omega \Gamma_3 \vdash M' : A'$ and $\vdash \omega \Gamma_1, \omega \Gamma_2$. Since $dom(\Gamma_2) \cap dom(\Gamma_3) = \emptyset$, we have

$$
dom(\omega\Gamma_2)\cap dom(\omega\Gamma_3)=\emptyset
$$

by Lemma [9.](#page-13-0) Thus, by the IH,

$$
\omega\Gamma_1, \omega\Gamma_2, \omega\Gamma_3 \vdash M': A'.
$$

By Lemma [8](#page-13-10) and (T_BANG),

$$
\Gamma_1, \Gamma_2, \Gamma_3 \vdash !M' : !A'.
$$

Note that we have $\vdash \Gamma_1, \Gamma_2, \Gamma_3$ by the case [\(1\)](#page-14-0).

Case (T_LETBANG): Similarly to the case for (T_APP) .

Case (T_GEN): We are given Γ_{01} , α^1 , $\Gamma_{02} \vdash \Lambda^{\circ} \langle \alpha, M' \rangle$: $\forall \alpha. A'$ for some Γ_{01} , Γ_{02} , α , M', and A' such that

- $\Gamma_1, \Gamma_3 = \Gamma_{01}, \alpha^1, \Gamma_{02},$
- $M = \Lambda^{\circ} \langle \alpha, M' \rangle$, and
- $A = \forall \alpha.A'.$

By inversion, $\Gamma_{01}, \alpha^0, \Gamma_{02} \vdash M' : !A'$. We perform case analysis on $\Gamma_1, \Gamma_3 = \Gamma_{01}, \alpha^1, \Gamma_{02}$.

Case $\Gamma_1 = \Gamma_{01}, \alpha^1, \Gamma'_{02}$ for some Γ'_{02} such that $\Gamma_{02} = \Gamma'_{02}, \Gamma_3$: We have

$$
\Gamma_{01}, \alpha^{\mathbf{0}}, \Gamma'_{02}, \Gamma_3 \vdash M' : !A' .
$$

Since $\vdash \Gamma_1, \Gamma_2$, we have $\vdash \Gamma_{01}, \alpha^1, \Gamma'_{02}, \Gamma_2$, so $\vdash \Gamma_{01}, \alpha^0, \Gamma'_{02}, \Gamma_2$ by Lemma [15.](#page-13-4) Thus, by the IH,

$$
\Gamma_{01}, \alpha^{\mathbf{0}}, \Gamma'_{02}, \Gamma_2, \Gamma_3 \vdash M' : !A'.
$$

By $(T_{\text{-GEN}})$, we have the conclusion

$$
\Gamma_{01}, \alpha^1, \Gamma'_{02}, \Gamma_2, \Gamma_3 \vdash \Lambda^{\circ} \langle \alpha, M' \rangle : \forall \alpha. A'.
$$

Case $\Gamma_3 = \Gamma'_{01}, \alpha^1, \Gamma_{02}$ for some Γ'_{01} such that $\Gamma_{01} = \Gamma_1, \Gamma'_{01}$: We have

$$
\Gamma_1, \Gamma'_{01}, \alpha^0, \Gamma_{02} \vdash M' : !A'.
$$

Since $dom(\Gamma_2) \cap dom(\Gamma_3) = \emptyset$, we have $dom(\Gamma_2) \cap dom(\Gamma'_{01}, \alpha^0, \Gamma_{02}) = \emptyset$ by Lemma [14.](#page-13-2) Thus, by the IH,

 $\Gamma_1, \Gamma_2, \Gamma'_{01}, \alpha^{\mathbf{0}}, \Gamma_{02} \vdash M' : !A'.$

By $(T_{\text{-}}GEN)$, we have the conclusion

$$
\Gamma_1, \Gamma_2, \Gamma'_{01}, \alpha^1, \Gamma_{02} \vdash \Lambda^{\circ} \langle \alpha, M' \rangle : \forall \alpha. A'.
$$

Case (T_TABS): We are given $\Gamma_1, \Gamma_3 \vdash \Lambda \alpha.M'$: $\forall \alpha.A'$ for some α , M', and A' such that $M = \Lambda \alpha.M'$ and $A = \forall \alpha.A'.$ By inversion, $\vdash \Gamma_1, \Gamma_3$ and $\omega(\Gamma_1, \Gamma_3), \alpha^0 \vdash M' : A'.$ Since $\vdash \Gamma_1, \Gamma_2$, we have $\vdash \omega(\Gamma_1, \Gamma_2)$ by Lemma [10.](#page-13-9) By Lemma [8,](#page-13-10) $\omega\Gamma_1, \omega\Gamma_3, \alpha^0 \vdash M' : A'$ and $\vdash \omega\Gamma_1, \omega\Gamma_2$. Since $dom(\Gamma_2) \cap dom(\Gamma_3) = \emptyset$, we have

$$
dom(\omega\Gamma_2)\cap dom(\omega\Gamma_3)=\emptyset
$$

by Lemma [9.](#page-13-0) Thus, by the IH,

 $\omega \Gamma_1, \omega \Gamma_2, \omega \Gamma_3, \alpha^0 \vdash M' : A'.$

By Lemma [8](#page-13-10) and (T_TABs) , we have the conclusion

 $\Gamma_1, \Gamma_2, \Gamma_3 \vdash \Lambda \alpha. M' : \forall \alpha. A'.$

Note that we have $\vdash \Gamma_1, \Gamma_2, \Gamma_3$ by the case [\(1\)](#page-14-0).

 \Box

Lemma 21. If $(\Gamma_1 + \Gamma_2) + \Gamma_3$ is well defined, then so are $\Gamma_1 + \Gamma_3$ and $\Gamma_2 + \Gamma_3$.

Proof. By induction on Γ_3 .

Case $\Gamma_3 = \emptyset$: Obvious because $\Gamma_1 = \Gamma_2 = \emptyset$.

- Case $\Gamma_3 = \Gamma'_3$, x :^{π_3} A: We can find $\Gamma_1 = \Gamma'_1$, x : π_1 A and $\Gamma_2 = \Gamma'_2$, x : π_2 A for some Γ'_1 , Γ'_2 , π_1 , and π_2 , and $(\Gamma'_1 + \Gamma'_2) + \Gamma'_3$ is well defined. Thus, by the IH, so are $\Gamma'_1 + \Gamma'_3$ and $\Gamma'_2 + \Gamma'_3$. By Lemma [1](#page-12-2) [\(1\)](#page-12-7), so are $(\Gamma'_1, x : \pi_1 \ A) + (\Gamma'_3, x : \pi_3 \ A) \text{ and } (\Gamma'_2, x : \pi_2 \ A) + (\Gamma'_3, x : \pi_3 \ A).$
- Case $\Gamma_3 = \Gamma'_3$, α^{π_3} : We can find $\Gamma_1 = \Gamma'_1$, α^{π_1} and $\Gamma_2 = \Gamma'_2$, α^{π_2} for some Γ'_1 , Γ'_2 , π_1 , and π_2 , and $(\Gamma'_1 + \Gamma'_2) + \Gamma'_3$ is well defined. Thus, by the IH, so are $\Gamma'_1 + \Gamma'_3$ and $\Gamma'_2 + \Gamma'_3$. By Lemma [6](#page-12-5) [\(3\)](#page-12-8), so are $(\Gamma'_1, \alpha^{\pi_1}) + (\Gamma'_3, \alpha^{\pi_3})$ and $(\Gamma'_2, \alpha^{\pi_2}) + (\Gamma'_3, \alpha^{\pi_3}).$

Lemma 22. If $\Gamma_1 + \Gamma_2 \leq \Gamma$, then there exist some Γ'_1 and Γ'_2 such that $\Gamma = \Gamma'_1 + \Gamma'_2$ and $\Gamma_1 \leq \Gamma'_1$ and $\Gamma_2 \leq \Gamma'_2$.

Proof. By induction on Γ.

Case $\Gamma = \emptyset$: We finish by letting $\Gamma'_1 = \emptyset$ and $\Gamma'_2 = \emptyset$.

Case $\Gamma = \Gamma', x : \pi'$ A: Since $\Gamma_1 + \Gamma_2 \leq \Gamma$, there exist some Γ_{01} , Γ_{02} , π_1 , and π_2 such that

- $\Gamma_1 = \Gamma_{01}, x :^{\pi_1} A,$
- $\Gamma_2 = \Gamma_{02}, x : \pi_2 A$,
- $\pi_1 + \pi_2 \leq \pi$, and
- $\Gamma_{01} + \Gamma_{02} \leq \Gamma'.$

By the IH, there exist some Γ'_{01} and Γ'_{02} such that

- $\Gamma' = \Gamma'_{01} + \Gamma'_{02},$
- $\Gamma_{01} \leq \Gamma'_{01}$, and
- $\Gamma_{02} \leq \Gamma'_{02}$.

If we have π'_1 and π'_2 such that

- \bullet $\pi_1 \leq \pi'_1,$
- $\pi_2 \leq \pi'_2$, and
- $\pi = \pi'_1 + \pi'_2,$

then we finish by letting $\Gamma'_1 = \Gamma'_{01}$, $x : \pi'_1 A$ and $\Gamma'_2 = \Gamma'_{02}$, $x : \pi'_2 A$. We find such π'_1 and π'_2 by case analysis on π_1 and π_2 .

Case $\pi_1 = \omega$ or $\pi_2 = \omega$: We finish by letting $\pi'_1 = \pi_1$ and $\pi'_2 = \pi_2$ since $\pi = \omega$. Case $\pi_1 = 0$: We finish by letting $\pi'_1 = 0$ and $\pi'_2 = \pi$ since $\pi_2 \leq \pi$. Case $\pi_2 = 0$: We finish by letting $\pi'_1 = \pi$ and $\pi'_2 = 0$ since $\pi_1 \leq \pi$. Case $\pi_1 = \pi_2 = 1$: We finish by letting $\pi'_1 = \pi'_2 = 1$ since $\pi = \omega$.

Case $\Gamma = \Gamma', \alpha^{\pi}$: Since $\Gamma_1 + \Gamma_2 \leq \Gamma, \pi \neq \omega$ and there exist some Γ_{01} , Γ_{02} , π_1 , and π_2 such that

- $\Gamma_1 = \Gamma_{01}, \alpha^{\pi_1},$
- $\Gamma_2 = \Gamma_{02}, \alpha^{\pi_2},$
- $\pi_1 + \pi_2 \neq \omega$,
- $\pi_1 + \pi_2 \leq \pi$, and

• $\Gamma_{01} + \Gamma_{02} \leq \Gamma'.$

By the IH, there exist some Γ'_{01} and Γ'_{02} such that

- $\Gamma' = \Gamma'_{01} + \Gamma'_{02},$
- $\Gamma_{01} \leq \Gamma'_{01}$, and
- $\Gamma_{02} \leq \Gamma'_{02}$.

If we have π'_1 and π'_2 such that

- $\pi_1 \leq \pi'_1 \neq \omega$,
- $\pi_2 \leq \pi'_2 \neq \omega$, and
- $\pi = \pi'_1 + \pi'_2,$

then we finish by letting $\Gamma'_1 = \Gamma'_{01}$, $\alpha^{\pi'_1}$ and $\Gamma'_2 = \Gamma'_{02}$, $\alpha^{\pi'_2}$.

We find such π'_1 and π'_2 by case analysis on π_1 and π_2 .

Case $\pi_1 = \omega$, $\pi_2 = \omega$, or $\pi_1 = 1$ and $\pi_2 = 1$: Contradictory since $\pi_1 + \pi_2 = \omega$ but $\pi_1 + \pi_2 \neq \omega$ by the assumption.

Case $\pi_1 = 0$: We finish by letting $\pi'_1 = 0$ and $\pi'_2 = \pi$ since $\pi_2 \leq \pi$ and $\pi \neq \omega$. Case $\pi_2 = 0$: We finish by letting $\pi'_1 = \pi$ and $\pi'_2 = 0$ since $\pi_1 \leq \pi$ and $\pi \neq \omega$.

Lemma 23. If $\Gamma_1, \Gamma_2 \leq \Gamma$, then there exist some Γ'_1 and Γ'_2 such that $\Gamma = \Gamma'_1, \Gamma'_2$ and $\Gamma_1 \leq \Gamma'_1$ and $\Gamma_2 \leq \Gamma'_2$.

Proof. Straightforward by induction on Γ_2 .

Lemma 24. If $\Gamma_1 \leq \Gamma_2$, then $\omega \Gamma_1 \leq \omega \Gamma_2$.

Proof. By induction on Γ_1 .

Case $\Gamma_1 = \emptyset$: Obvious since $\Gamma_2 = \emptyset$.

Case $\Gamma_1 = \Gamma'_1, x :^{\pi_1} A$: By inversion of $\Gamma_1 \leq \Gamma_2$, there exist some Γ'_2 and π_2 such that

- $\Gamma_2 = \Gamma'_2, x : \pi_2 A$
- $\Gamma'_1 \leq \Gamma'_2$, and
- $\pi_1 \leq \pi_2$.

By the IH, $\omega\Gamma_1' \leq \omega\Gamma_2'$.

If $\pi_2 = \omega$, then we have $\omega \Gamma_1 \leq \omega \Gamma_2$ since $\omega \Gamma_2 = \omega \Gamma'_2$, $x : \omega A$ and $\omega \Gamma'_1 \leq \omega \Gamma'_2$.

Otherwise, if $\pi_2 \neq \omega$, then $\pi_1 \neq \omega$ since $\pi_1 \leq \pi_2$. Thus, $\omega\Gamma_1 = \omega\Gamma'_1$, $x :^0 A$ and $\omega\Gamma_2 = \omega\Gamma'_1$, $x :^0 A$, and we have the conclusion.

Case $\Gamma_1 = \Gamma'_1, \alpha^{\pi_1}$: By inversion of $\Gamma_1 \leq \Gamma_2$, there exist some Γ'_2 and π_2 such that $\Gamma_2 = \Gamma'_2, \alpha^{\pi_2}$ and $\Gamma'_1 \leq \Gamma'_2$. By the IH, $\omega\Gamma'_1 \leq \omega\Gamma'_2$. We have $\omega\Gamma_1 = \omega\Gamma'_1$, α^0 and $\omega\Gamma_2 = \omega\Gamma'_2$, α^0 , and also have $\omega\Gamma'_1$, $\alpha^0 \leq \omega\Gamma'_2$, α^0 . Thus, we have the conclusion.

Lemma 25 (Increasing uses). If $\Gamma_1 \vdash M : B$ and $\Gamma_1 \leq \Gamma_2$, then $\Gamma_2 \vdash M : B$.

Proof. By induction on the derivation of the typing judgment for M.

Case (T_VAR) and (T_CONST): By Lemma [15.](#page-13-4) Note that, for any π_1 and π_2 such that $\pi_1 \leq \pi_2$, if $\pi_1 \neq \mathbf{0}, \pi_2 \neq \mathbf{0}$ by Lemma $6(2)$.

 \Box

 \Box

Case (T_{ABS}) , (T_{NU}) , and (T_{APP}) : By the IH. (The cases for (T_{NU}) and (T_{APP}) use Lemma [14.](#page-13-2))

Case (T_APP) and $(T_LETBANG)$: We show the case for (T_APP) : the case for $(T_LETBANG)$ can be proven similarly.

We are given $\Gamma_{01} + \Gamma_{02} + M_1 M_2$: B for some Γ_{01} , Γ_{02} , M_1 , and M_2 such that $\Gamma_1 = \Gamma_{01} + \Gamma_{02}$ and $M = M_1 M_2$. By inversion, $\Gamma_{01} \vdash M_1 : C \multimap B$ and $\Gamma_{02} \vdash M_2 : C$ for some C. Since $\Gamma_1 \leq \Gamma_2$, we have $\Gamma_{01} + \Gamma_{02} \leq \Gamma_2$. By Lemma [22,](#page-16-0) there exist some Γ'_{01} and Γ'_{02} such that

- $\Gamma_2 = \Gamma'_{01} + \Gamma'_{02}$,
- $\Gamma_{01} \leq \Gamma'_{01}$, and
- $\Gamma_{02} \leq \Gamma'_{02}$.

By the IHs, $\Gamma'_{01} \vdash M_1 : C \multimap B$ and $\Gamma'_{02} \vdash M_2 : C$. Thus, by (T_APP), we have the conclusion.

- Case (T_BANG): We are given $\Gamma_1 \vdash !M' : !B'$ for some M' and B' such that $M = !M'$ and $B = !B'$. By inversion, $\vdash \Gamma_1$ and $\omega \Gamma_1 \vdash M' : B'.$
	- By Lemma [15,](#page-13-4) $\vdash \Gamma_2$. By Lemma [24,](#page-17-0) $\omega \Gamma_1 \leq \omega \Gamma_2$, so, by the IH, $\omega \Gamma_2 \vdash M' : B'$. Thus, we have the conclusion by $(T$ _BANG).
- Case (T_GEN): By Lemma [23,](#page-17-1) the IH, and the fact that $1 \leq \pi$ and $\pi \neq \omega$ imply $\pi = 1$ for any π .

Case (T_TABS): By Lemmas [15](#page-13-4) and [24,](#page-17-0) the IH, and (T_TABS), similarly to the case for (T_BANG).

Lemma 26. If $\Gamma + \Gamma'$ is well defined, then $\Gamma \leq \Gamma + \Gamma'$.

Proof. Straightforward by induction on Γ with the fact that $\pi_1 \leq \pi_1 + \pi_2$ for any π_1 and π_2 . \Box

Definition 30. We write $\pi | \Gamma$ if and only if $\Gamma = \omega \Gamma$ provided that $\pi = \omega$.

Lemma 27.

- 1. If $\vdash \Gamma_1, x : \pi A, \Gamma_2$, then $\vdash \Gamma_1, \Gamma_2$.
- 2. If $\Gamma_1, x : \mathbf{0}$ $A, \Gamma_2 \vdash M : B$, then $\Gamma_1, \Gamma_2 \vdash M : B$.

Proof. 1. Straightforward by induction on Γ_2 .

2. Straightforward by induction on the typing derivation. The cases for $(T_{\rm{VAR}})$, $(T_{\rm{CONST}})$, $(T_{\rm{BANG}})$, and (T TAbs) rest on case [\(1\)](#page-18-0). Further, the cases for (T Bang) and (T TAbs) rest on Lemma [8](#page-13-10) as well. The cases for (T_APP) and $(T_LETBANG)$ rest on Lemma [6](#page-12-5) [\(2\)](#page-12-9).

Lemma 28. If $\Gamma_1 + \Gamma_2$ is well defined, so is $\Gamma_1 + \omega \Gamma_2$.

Proof. Straightforward by induction on Γ_2 . The case for $\Gamma_2 = \Gamma'_2, \alpha^{\pi}$ rests on (the contraposition of) Lemma [6](#page-12-5) \Box [\(1\)](#page-12-6).

Lemma 29. If $\Gamma_1 = \omega \Gamma_1$, then $\omega(\Gamma_1 + \Gamma_2) = \omega \Gamma_1 + \omega \Gamma_2$.

Proof. By induction on Γ_1 .

Case $\Gamma_1 = \emptyset$: Obvious because $\Gamma_2 = \emptyset$.

 \Box

Case $\Gamma_1 = \Gamma'_1, x :^{\pi_1} A$: We have $\Gamma'_1 = \omega \Gamma'_1$. There exist some Γ'_2 and π_2 such that $\Gamma_2 = \Gamma'_2, x :^{\pi_2} A$.

$$
\omega(\Gamma_1 + \Gamma_2) = \omega((\Gamma'_1 + \Gamma'_2), x :^{\pi_1 + \pi_2} A)
$$

= $\omega(\Gamma'_1 + \Gamma'_2), x :^{\pi} A$ (where $\pi = \omega$ if $\pi_1 + \pi_2 = \omega$; otherwise, $\pi = 0$)
= $(\omega \Gamma'_1 + \omega \Gamma'_2), x :^{\pi} A$ (by the IH).

If $\pi_1 = \omega$ or $\pi_2 = \omega$, then $\pi_1 + \pi_2 = \omega$, so we finish by:

$$
(\omega\Gamma'_1+\omega\Gamma'_2), x : \pi A = (\omega\Gamma'_1+\omega\Gamma'_2), x : \omega A = \omega(\Gamma'_1, x : \pi A) + \omega(\Gamma'_2, x : \pi A).
$$

Otherwise, if $\pi_1 \neq \omega$ nor $\pi_2 \neq \omega$, then $\pi_1 = \mathbf{0}$ since $\Gamma_1 = \omega \Gamma_1$. Thus, $\pi_1 + \pi_2 = \pi_2 \neq \omega$, and so $\pi = \mathbf{0}$. Thus, we finish by:

$$
(\omega\Gamma'_1+\omega\Gamma'_2), x : \pi A = (\omega\Gamma'_1+\omega\Gamma'_2), x : \Phi A = \omega(\Gamma'_1, x : \pi A) + \omega(\Gamma'_2, x : \pi A).
$$

Case $\Gamma_1 = \Gamma'_1, \alpha^{\pi_1}$: We have $\Gamma'_1 = \omega \Gamma'_1$. There exist some Γ'_2 and π_2 such that $\Gamma_2 = \Gamma'_2, \alpha^{\pi_2}$. We finish by:

$$
\omega(\Gamma_1 + \Gamma_2) = \omega((\Gamma'_1 + \Gamma'_2), \alpha^{\pi_1 + \pi_2})
$$

\n
$$
= \omega(\Gamma'_1 + \Gamma'_2), \alpha^0
$$

\n
$$
= (\omega\Gamma'_1 + \omega\Gamma'_2), \alpha^0
$$
 (by the IH)
\n
$$
= (\omega(\Gamma'_1, \alpha^{\pi_1}) + \omega(\Gamma'_2, \alpha^{\pi_2})).
$$

Note that $\pi_1 + \pi_2 \neq \omega$, so $\pi_1 \neq \omega$ and $\pi_2 \neq \omega$ by (the contraposition of) Lemma [6](#page-12-5) [\(1\)](#page-12-6).

 \Box

Lemma 30 (Term substitution). Suppose that $\Gamma_{11} + \Gamma_{12}$ is well defined. If $\Gamma_{11} \vdash M_1 : A$ and $\Gamma_{12}, x : \pi A, \Gamma_2 \vdash$ $M_2 : B \text{ and } \pi | \Gamma_{11}, \text{ then } (\Gamma_{11} + \Gamma_{12}), \Gamma_2 \vdash M_2[M_1/x] : B.$

Proof. By induction on the typing derivation of Γ_{12} , $x : \pi A$, $\Gamma_2 \vdash M_2 : B$. We first show

$$
\vdash (\Gamma_{11} + \Gamma_{12}), \Gamma_2. \tag{1}
$$

By Lemma [17,](#page-13-5) we have $\vdash \Gamma_{11}$ and $\vdash \Gamma_{12}$, $x : \pi A$, Γ_2 . By Lemma [27](#page-18-1) [\(1\)](#page-18-0), $\vdash \Gamma_{12}$, Γ_2 . By Lemma [19,](#page-14-1) there exists some Γ'_2 such that $\Gamma_2 + \Gamma'_2 = \Gamma_2$. Since $\Gamma_{11} + \Gamma_{12}$ is well defined, we have $(\Gamma_{11} + \Gamma_{12}), \Gamma_2 = (\Gamma_{11} + \Gamma_{12}), (\Gamma'_2 + \Gamma_2) =$ $(\Gamma_{11}, \Gamma'_2) + (\Gamma_{12}, \Gamma_2)$ by Lemmas [3](#page-12-10) and [7.](#page-13-7) We have $\Gamma_{12}, \Gamma_2 \leq (\Gamma_{11}, \Gamma'_2) + (\Gamma_{12}, \Gamma_2)$ by Lemmas 3 and [26.](#page-18-2) Thus, $\vdash (\Gamma_{11}, \Gamma'_2) + (\Gamma_{12}, \Gamma_2)$ by Lemma [15,](#page-13-4) so $\vdash (\Gamma_{11} + \Gamma_{12}), \Gamma_2$ by Lemma [7.](#page-13-7)

We perform case analysis on the typing rule last applied to derive Γ_{12} , $x : \pi A$, $\Gamma_2 \vdash M_2 : B$.

Case (T_VAR): We are given Γ_{12} , $x : \pi A$, $\Gamma_2 \vdash y : B$ for some y such that $M_2 = y$ and $(\Gamma_{12}, x : \pi A, \Gamma_2)(y) = B$. Suppose that $x \neq y$, i.e., $M_2[M_1/x] = y$. It is easy to find $((\Gamma_{11} + \Gamma_{12}), \Gamma_2)(y) = B$. Thus, by [\(1\)](#page-19-0) and (T_VAR), we have the conclusion

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma_2 \vdash y : B.
$$

Otherwise, if $x = y$, then we have $M_2[M_1/x] = M_1$ and $B = A$. We have $\Gamma_{11} \leq \Gamma_{11} + \Gamma_{12}$ by Lemma [26,](#page-18-2) so $\Gamma_{11} + \Gamma_{12} \vdash M_1$: A by Lemma [25.](#page-17-2) By [\(1\)](#page-19-0) and Lemma [20](#page-14-2) [\(2\)](#page-14-3), we have the conclusion

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma_2 \vdash M_1 : A.
$$

Case $(T_{\text{-CONST}}): B_y(1)$ and $(T_{\text{-CONST}}).$

Case $(T \text{.} Abs)$, $(T \text{.} NU)$, and $(T \text{.} T \text{.} App)$: By the IH.

Case (T_App): We are given $\Gamma_1' + \Gamma_2' \vdash M_1'M_2': B$ for some $\Gamma_1', \Gamma_2', M_1'$, and M_2' such that $\Gamma_{12}, x : \pi A, \Gamma_2 = \Gamma_1' + \Gamma_2'$ and $M_2 = M'_1 M'_2$. By inversion, $\Gamma'_1 \vdash M'_1 : C \multimap B$ and $\Gamma'_2 \vdash M'_2 : C$ for some C. By Lemma [11,](#page-13-6)

$$
\Gamma_{12}, x: \pi A, \Gamma_2 = (\Gamma_{121} + \Gamma_{122}), (x: \pi A + x: \pi B), (\Gamma_{21} + \Gamma_{22})
$$

for some Γ_{121} , Γ_{122} , Γ_{21} , Γ_{22} , π_1 , and π_2 such that

- $\Gamma_{12} = \Gamma_{121} + \Gamma_{122}$,
- $\pi = \pi_1 + \pi_2$,
- $\Gamma_2 = \Gamma_{21} + \Gamma_{22}$
- $\Gamma'_1 = \Gamma_{121}, x :^{\pi_1} A, \Gamma_{21}, \text{ and}$
- $\Gamma'_2 = \Gamma_{122}, x : \pi_2 A, \Gamma_{22}.$

By Lemmas [3](#page-12-10) and [21,](#page-16-1) $\Gamma_{11} + \Gamma_{121}$ and $\Gamma_{11} + \Gamma_{122}$ are well defined since so is $\Gamma_{11} + \Gamma_{12}$.

By case analysis on π , π_1 , and π_2 .

Case $\pi = \omega$: Since $\pi | \Gamma_{11}$, we have $\pi_1 | \Gamma_{11}$ and $\pi_2 | \Gamma_{11}$. Thus, by the IHs,

$$
(\Gamma_{11} + \Gamma_{121}), \Gamma_{21} \vdash M'_1[M_1/x] : C \multimap B
$$
 and
\n $(\Gamma_{11} + \Gamma_{122}), \Gamma_{22} \vdash M'_2[M_1/x] : C.$

By (T_APP) and Lemma [7,](#page-13-7)

$$
((\Gamma_{11}+\Gamma_{121})+(\Gamma_{11}+\Gamma_{122})),(\Gamma_{21}+\Gamma_{22})\vdash (M'_1M'_2)[M_1/x]:B.
$$

Since $\pi | \Gamma_{11}$ and $\pi = \omega$, we have $\Gamma_{11} = \omega \Gamma_{11}$. Thus, $(\Gamma_{11} + \Gamma_{121}) + (\Gamma_{11} + \Gamma_{122}) = \Gamma_{11} + (\Gamma_{121} + \Gamma_{122})$ by Lemmas [2,](#page-12-11) [3,](#page-12-10) and [4.](#page-12-12) Since $\Gamma_{12} = \Gamma_{121} + \Gamma_{122}$ and $\Gamma_2 = \Gamma_{21} + \Gamma_{22}$, we have the conclusion

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma_2 \vdash (M'_1 M'_2)[M_1/x] : B.
$$

Case $\pi = \pi_1 = 1$ and $\pi_2 = 0$: We have $\pi_1 | \Gamma_{11}$. Thus, by the IH,

$$
(\Gamma_{11} + \Gamma_{121}), \Gamma_{21} \vdash M'_1[M_1/x]: C \multimap B.
$$

From the inversion of the typing derivation for M, we have Γ_{122} , $x :^{\mathbf{0}} A$, $\Gamma_{22} \vdash M'_2 : C$. Thus, Γ_{122} , $\Gamma_{22} \vdash M'_2 : C$ by Lemma [27](#page-18-1) [\(2\)](#page-18-3), and so

$$
\Gamma_{122}, \Gamma_{22} \vdash M'_2[M_1/x] : C
$$

because x does not occur free in M'_2 . By (T_APP) and Lemmas [7](#page-13-7) and [2,](#page-12-11) we have the conclusion

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma_2 \vdash (M'_1 M'_2)[M_1/x] : B.
$$

Case $\pi = \pi_2 = 1$ and $\pi_1 = 0$: Similarly to the above case.

Case $\pi = \pi_1 = \pi_2 = 0$: Since Γ_{12} , $x : 0$ $A, \Gamma_2 \vdash M'_1 M'_2 : B$, we have $\Gamma_{12}, \Gamma_2 \vdash M'_1 M'_2 : B$ by Lemma [27](#page-18-1) [\(2\)](#page-18-3). Since $\Gamma_{12}, \Gamma_2 \leq (\Gamma_{11} + \Gamma_{12}), \Gamma_2$ as discussed in the beginning of this proof, we have

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma_2 \vdash M'_1 M'_2 : B.
$$

by Lemma [25.](#page-17-2) Since x does not occur free in M'_1 nor M'_2 , we have the conclusion.

Case (T_BANG): We are given Γ_{12} , $x :^{\pi} A$, $\Gamma_2 \vdash !M' : !B'$ for some M' and B' such that $M_2 = !M'$ and $B = !B'$. By inversion, $\vdash \Gamma_{12}, x : \pi A, \Gamma_2$ and $\omega(\Gamma_{12}, x : \pi A, \Gamma_2) \vdash M' : B'$. By Lemma [8,](#page-13-10)

$$
\omega\Gamma_{12}, x :^{\pi'} A, \omega\Gamma_2 \vdash M' : B'
$$

for some π' such that: $\pi' = \omega$ if $\pi = \omega$; otherwise, $\pi' = 0$. We perform case analysis on π .

Case $\pi = \omega$: Since $\pi | \Gamma_{11}$, we have $\Gamma_{11} = \omega \Gamma_{11}$ and $\pi' | \Gamma_{11}$. Since $\Gamma_{11} + \Gamma_{12}$ is well defined, so is $\Gamma_{11} + \omega \Gamma_{12}$ by Lemma [28.](#page-18-4) Thus, by the IH,

 $(\Gamma_{11} + \omega \Gamma_{12}), \omega \Gamma_2 \vdash M'[M_1/x] : B'.$

Since $\Gamma_{11} = \omega \Gamma_{11}$, we have

$$
\omega((\Gamma_{11}+\Gamma_{12}),\Gamma_2)\vdash M'[M_1/x]:B'.
$$

by Lemmas [29](#page-18-5) and [8.](#page-13-10) By (1) and (T_BANG) , we have the conclusion

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma_2 \vdash !M'[M_1/x] : !B'.
$$

Case $\pi \neq \omega$: We have $\pi' = 0$, so

$$
\omega\Gamma_{12}, x: ^0 A, \omega\Gamma_2 \vdash M': B'.
$$

By Lemma [27](#page-18-1) [\(2\)](#page-18-3),

$$
\omega\Gamma_{12}, \omega\Gamma_2 \vdash M' : B'.
$$

Since $\vdash \Gamma_{12}, x : \pi A, \Gamma_2$, we have $\vdash \Gamma_{12}, \Gamma_2$ by Lemma [27](#page-18-1) [\(1\)](#page-18-0). Thus, by Lemma [8](#page-13-10) and (T_BANG),

$$
\Gamma_{12}, \Gamma_2 \vdash !M': !B'
$$

.

Since $\Gamma_{12}, \Gamma_2 \leq (\Gamma_{11} + \Gamma_{12}), \Gamma_2$, we have

$$
(\Gamma_{11}+\Gamma_{12}), \Gamma_2 \vdash !M': !B.
$$

by Lemma [25.](#page-17-2) Since x does not occur free in M' , we have the conclusion.

Case $(T \text{LETBANG})$: Similar to the case for $(T \text{APP})$.

Case (T_GEN): We are given $\Gamma'_1, \alpha^1, \Gamma'_2 \vdash \Lambda^{\circ} \langle \alpha, M' \rangle : \forall \alpha. C$ for some $\Gamma'_1, \Gamma'_2, \alpha, M'$, and C such that $\Gamma_{12}, x :^{\pi}$ $A, \Gamma_2 = \Gamma'_1, \alpha^1, \Gamma'_2$ and $M_2 = \Lambda^{\circ} \langle \alpha, M' \rangle$ and $B = \forall \alpha, C$. By inversion, $\Gamma'_1, \alpha^0, \Gamma'_2 \vdash M' : !C$. We perform case analysis on Γ_{12} , $x : \pi A$, $\Gamma_2 = \Gamma'_1$, α^1 , Γ'_2 .

Case $\Gamma_{12} = \Gamma'_1, \alpha^1, \Gamma''_2$ for some Γ''_2 : We can find that $\Gamma'_2 = \Gamma''_2, x : \pi A, \Gamma_2$. We have

$$
\Gamma'_1, \alpha^{\mathbf{0}}, \Gamma''_2, x : \pi A, \Gamma_2 \vdash M' : !C.
$$

Since $\Gamma_{11} + \Gamma_{12} = \Gamma_{11} + (\Gamma'_1, \alpha^1, \Gamma''_2)$ is well defined, we can find $\Gamma_{11} = \Gamma'_{11}, \alpha^0, \Gamma''_{11}$ for some Γ'_{11} and Γ''_{11} such that

$$
\Gamma_{11} + \Gamma_{12} = (\Gamma'_{11}, \alpha^0, \Gamma''_{11}) + (\Gamma'_{1}, \alpha^1, \Gamma''_{2}) = (\Gamma'_{11} + \Gamma'_{1}), \alpha^1, (\Gamma''_{11} + \Gamma''_{2}).
$$
\n(2)

It is found that

$$
\Gamma_{11}+(\Gamma'_1,\alpha^{\bm 0},\Gamma''_2)=(\Gamma'_{11},\alpha^{\bm 0},\Gamma''_{11})+(\Gamma'_1,\alpha^{\bm 0},\Gamma''_2)=(\Gamma'_{11}+\Gamma'_1),\alpha^{\bm 0},(\Gamma''_{11}+\Gamma''_2)
$$

is well defined. Thus, by the IH,

$$
(\Gamma_{11} + (\Gamma'_1, \alpha^0, \Gamma''_2)), \Gamma_2 \vdash M'[M_1/x] :: C ,
$$

i.e.,

$$
(\Gamma'_{11} + \Gamma'_1), \alpha^0, (\Gamma''_{11} + \Gamma''_2), \Gamma_2 \vdash M'[M_1/x] : !C.
$$

Thus, by $(T_{\text{-GEN}})$,

$$
(\Gamma'_{11} + \Gamma'_1), \alpha^1, (\Gamma''_{11} + \Gamma''_2), \Gamma_2 \vdash \Lambda^{\circ} \langle \alpha, M' \rangle [M_1/x] : \forall \alpha. C .
$$

By [\(2\)](#page-21-0), we have the conclusion

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma_2 \vdash \Lambda^{\circ} \langle \alpha, M' \rangle [M_1/x] : \forall \alpha. C .
$$

Case $\Gamma_2 = \Gamma_1'', \alpha^1, \Gamma_2'$ for some Γ_1'' : We can find that $\Gamma_1' = \Gamma_{12}, x :^{\pi} A, \Gamma_1''$. We have

$$
\Gamma_{12}, x : \pi A, \Gamma''_1, \alpha^0, \Gamma'_2 \vdash M' : !C
$$
.

Thus, by the IH,

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma''_1, \alpha^0, \Gamma'_2 \vdash M'[M_1/x] : !C.
$$

By (T_GEN) ,

$$
(\Gamma_{11} + \Gamma_{12}), \Gamma''_1, \alpha^1, \Gamma'_2 \vdash \Lambda^{\circ} \langle \alpha, M' \rangle [M_1/x] : !\forall \alpha. C .
$$

Since $\Gamma_2 = \Gamma_1'', \alpha^1, \Gamma_2',$ we have the conclusion.

Case (T_TABs) : Similar to the case for (T_BA) .

Lemma 31. $(\Gamma_1[A/\alpha] + \Gamma_2[A/\alpha]) = (\Gamma_1 + \Gamma_2)[A/\alpha].$

Proof. Straightforward by induction on Γ_1 .

Lemma 32. $(\omega \Gamma)[A/\alpha] = \omega(\Gamma[A/\alpha]).$

Proof. Straightforward by induction on Γ.

Lemma 33. If $\Gamma_1, \alpha^0, \Gamma_2 \vdash M : A$, then $M[B/\alpha]$ is well defined for any B.

Proof. Straightforward by induction on the typing derivation. The cases for (T_APP) and $(T_LEFBANG)$ rest on Lemma [6](#page-12-5) [\(2\)](#page-12-9). The cases for (T_{BANG}) and (T_{ABS}) rest on Lemma [8.](#page-13-10) The case for (T_{BEN}) rests on the assumption that the use given to α is 0. \Box

Lemma 34 (Type substitution).

- 1. If $\Gamma_1 \vdash A$ and $\vdash \Gamma_1, \alpha^0, \Gamma_2$, then $\vdash \Gamma_1, \Gamma_2[A/\alpha]$.
- 2. Suppose that, for any $\alpha^{\pi} \in \Gamma_1$, $\pi = 0$. If $\Gamma_1 \vdash A$ and $\Gamma_1, \alpha^0, \Gamma_2 \vdash M : B$, then $\Gamma_1, \Gamma_2[A/\alpha] \vdash M[A/\alpha]$: $B[A/\alpha].$

Proof. 1. Straightforward by induction on Γ_2 .

2. By induction on the typing derivation of $\Gamma_1, \alpha^0, \Gamma_2 \vdash M : B$. Note that $M[A/\alpha]$ is well defined by Lemma [33.](#page-22-0)

Case (T_VAR) and (T_CONST) : By the case (1) .

Case (T_ABS) , (T_NU) , and (T_TAPP) : By the IH.

Case (T_App): We are given $\Gamma_{01} + \Gamma_{02} \vdash M'_1 M'_2$: B for some Γ_{01} , Γ_{02} , M'_1 , and M'_2 such that $\Gamma_1, \alpha^0, \Gamma_2$ $\Gamma_{01} + \Gamma_{02}$ and $M = M'_1 M'_2$. By inversion, $\Gamma_{01} \vdash M'_1 : C \multimap B$ and $\Gamma_{02} \vdash M'_2 : C$ for some C. By Lemmas [11](#page-13-6) and [6](#page-12-5) [\(2\)](#page-12-9), there exist some Γ_{11} , Γ_{12} , Γ_{21} , and Γ_{22} such that

$$
\bullet \ \Gamma_1 = \Gamma_{11} + \Gamma_{12},
$$

- $\Gamma_2 = \Gamma_{21} + \Gamma_{22}$
- $\Gamma_{01} = \Gamma_{11}, \alpha^0, \Gamma_{21}, \text{ and}$
- $\Gamma_{02} = \Gamma_{12}, \alpha^0, \Gamma_{22}.$

Since $\Gamma_1 \vdash A$, we have $\Gamma_{11} \vdash A$ and $\Gamma_{12} \vdash A$ by Lemma [12.](#page-13-1) We can find that, for any $\alpha^{\pi} \in \Gamma_{11}$ or $\alpha^{\pi} \in \Gamma_{12}$, $\pi = 0$ by Lemma [6](#page-12-5) [\(2\)](#page-12-9). Thus, by the IHs, $\Gamma_{11}, \Gamma_{21}[A/\alpha] \vdash M_1'[A/\alpha] : C[A/\alpha] \multimap B[A/\alpha]$ and $\Gamma_{12}, \Gamma_{22}[A/\alpha] \vdash M'_2[A/\alpha] : C[A/\alpha]$. By (T_App) and Lemma [7,](#page-13-7)

$$
(\Gamma_{11} + \Gamma_{12}), (\Gamma_{21}[A/\alpha] + \Gamma_{22}[A/\alpha]) \vdash (M'_1 M'_2)[A/\alpha] : B[A/\alpha].
$$

Since $\Gamma_{11} + \Gamma_{12} = \Gamma_1$ and $(\Gamma_{21}[A/\alpha] + \Gamma_{22}[A/\alpha]) = (\Gamma_{21} + \Gamma_{22})[A/\alpha] = \Gamma_2[A/\alpha]$ by Lemma [31,](#page-22-2) we have the conclusion.

Case (T_BANG): We are given $\Gamma_1, \alpha^0, \Gamma_2 \vdash !M' : !B'$ for some M' and B' such that $M = !M'$ and $B = !B'$. By inversion, $\vdash \Gamma_1, \alpha^0, \Gamma_2$ and $\omega(\Gamma_1, \alpha^0, \Gamma_2) \vdash M' : B'$. By the case $(1), \vdash \Gamma_1, \Gamma_2[A/\alpha]$. By Lemma [8,](#page-13-10) $\omega\Gamma_1, \alpha^0, \omega\Gamma_2 \vdash M' : B'.$ Since $\omega\Gamma_1 \vdash A$ by Lemma [9,](#page-13-0) we have $\omega\Gamma_1, \omega\Gamma_2[A/\alpha] \vdash M'[A/\alpha] : B'[A/\alpha]$ by the IH. By Lemmas [32](#page-22-3) and [8,](#page-13-10) $\omega(\Gamma_1, \Gamma_2[A/\alpha]) \vdash M'[A/\alpha] : B'[A/\alpha]$. By (T_BANG), we have the conclusion

$$
\Gamma_1, \Gamma_2[A/\alpha] \vdash !M'[A/\alpha] : !B'[A/\alpha].
$$

Case (T_LETBANG): Similar to the case for (T_APP) .

- Case (T_GEN): We are given Γ_{01} , β^1 , $\Gamma_{02} \vdash \Lambda^{\circ} \langle \beta, M' \rangle$: $\forall \beta$.C for some Γ_{01} , Γ_{02} , β , M' , and C such that $\Gamma_1, \alpha^0, \Gamma_2 = \Gamma_{01}, \beta^1, \Gamma_{02} \text{ and } M = \Lambda^{\circ}\langle \beta, M'\rangle \text{ and } B = \forall \beta, C. \text{ By inversion, } \Gamma_{01}, \beta^0, \Gamma_{02} \vdash M': C.$
	- We perform case analysis on $\Gamma_1, \alpha^0, \Gamma_2 = \Gamma_{01}, \beta^1, \Gamma_{02}$.
	- Case $\Gamma_1 = \Gamma_{01}, \beta^1, \Gamma'_{02}$ for some Γ'_{02} : This is contradictory with the assumption that $\alpha^{\pi} \in \Gamma_1$ implies $\pi = 0$.

 \Box

Case $\Gamma_2 = \Gamma'_{01}, \beta^1, \Gamma_{02}$ for some Γ'_{01} : We have $\Gamma_{01} = \Gamma_1, \alpha^0, \Gamma'_{01}$, so $\Gamma_1, \alpha^0, \Gamma'_{01}, \beta^0, \Gamma_{02} \vdash M'$: !C. By the IH,

$$
\Gamma_1, \Gamma'_{01}[A/\alpha], \beta^{\mathbf{0}}, \Gamma_{02}[A/\alpha] \vdash M'[A/\alpha] : !C[A/\alpha].
$$

Thus, by $(T_{\text{-GEN}})$,

 $\Gamma_1, \Gamma'_{01}[A/\alpha], \beta^1, \Gamma_{02}[A/\alpha] \vdash \Lambda^{\circ}\langle \beta, M'\rangle[A/\alpha]: \forall \beta. (C[A/\alpha]).$

Since $\Gamma_1 \vdash A$, β does not occur free in A. Since $\alpha \neq \beta$, we have $\forall \beta \cdot (C[A/\alpha]) = (\forall \beta \cdot C)[A/\alpha]$. Thus, we have the conclusion.

Case (T_TABS): Similar to the case for (T_BANG). We are given $\Gamma_1, \alpha^0, \Gamma_2 \vdash \Lambda \beta M' : \forall \beta . B'$ for some M' and B' such that $M = \Lambda \beta M'$ and $B = \forall \beta B'.$ By inversion, $\vdash \Gamma_1, \alpha^0, \Gamma_2$ and $\omega(\Gamma_1, \alpha^0, \Gamma_2), \beta^0 \vdash M' : B'.$ By the case (1) , $\vdash \Gamma_1, \Gamma_2[A/\alpha]$. By Lemma [8,](#page-13-10) $\omega \Gamma_1, \alpha^0, \omega \Gamma_2, \beta^0 \vdash M' : B'$. Since $\omega \Gamma_1 \vdash A$ by Lemma [9,](#page-13-0) we have $\omega\Gamma_1, \omega\Gamma_2[A/\alpha], \beta^0 \vdash M'[A/\alpha] : B'[A/\alpha]$ by the IH. By Lemmas [32](#page-22-3) and [8,](#page-13-10) $\omega(\Gamma_1, \Gamma_2[A/\alpha]), \beta^0 \vdash$ $M'[A/\alpha] : B'[A/\alpha]$. By (T_TABS), we have

$$
\Gamma_1, \Gamma_2[A/\alpha] \vdash \Lambda \beta. M'[A/\alpha] : \forall \beta. B'[A/\alpha] .
$$

Since we can assume that $\beta \neq \alpha$ and $\beta \notin \text{ftv}(A)$ without loss of generality, we have the conclusion.

Lemma 35 (Canonical forms). Suppose that $\Gamma \vdash V : A$.

- 1. If $A = \iota$, then $V = c$ for some c such that $ty(c) = \iota$.
- 2. If $A = B \multimap C$, then:
	- $V = c$ for some c such that $ty(c) = B \rightarrow C$; or
	- $V = \lambda x.M$ for some x and M.
- 3. If $A = \forall \alpha, B$, then $V = \Lambda \alpha \Delta M$ for some M.
- 4. If $A = {}^{1}B$, then $V = {}^{1}R$ for some R.

Proof. Straightforward by case analysis on the typing rule applied last to derive $\Gamma \vdash V : A$.

Lemma 36 (Progress). If $\Delta \vdash M : A$, then:

- $M = R$ for some R; or
- $M \longrightarrow M'$ for some M' .

Proof. By induction on the typing derivation of $\Delta \vdash M : A$.

Case (T_{-VAR}): Contradictory.

Case (T_CONST), (T_ABS), and (T_TABS): M is a value.

Case (T_App): We are given $\Delta_1 + \Delta_2 + M_1 M_2$: A for some Δ_1 , Δ_2 , M_1 , and M_2 such that $\Delta = \Delta_1 + \Delta_2$ and $M = M_1 M_2$. By inversion, $\Delta_1 \vdash M_1 : B \multimap A$ and $\Delta_2 \vdash M_2 : B$ for some B.

By case analysis on the IHs for M_1 and M_2 .

Case $M_1 \longrightarrow M'_1$ for some M'_1 : By (E_EVAL).

Case $M_1 = R_1$ and $M_2 \longrightarrow M'_2$ for some R_1 and M'_2 : By (E_EVAL).

Case $M_1 = \nu \alpha$. R_1 and $M_2 = R_2$ for some α , R_1 , and R_2 : By (E_EXTR).

- Case $M_1 = V_1$ and $M_2 = R_2$ for some V_1 and R_2 : Since $\Delta_1 \vdash V_1 : B \multimap A$, $V_1 = \lambda x \cdot M_1'$ for some x and M_1' , or $V_1 = c_1$ for some c_1 such that $ty(c_1) = B \rightarrow A$ by Lemma [35.](#page-23-1)
	- If $V_1 = \lambda x.M$, then we have the conclusion by $(R_BETA)/(E_RED)$.

If $V_1 = c_1$, then, by Assumption [1,](#page-1-2) $B = \iota$ for some ι . Since $\Delta_2 \vdash R_2 : B$, we have $R_2 = \nu \overline{\alpha}$. c_2 for some $\overline{\alpha}$ and c_2 such that $ty(c_2) = \iota$ by Lemma [35.](#page-23-1) By Assumption [1,](#page-1-2) $\zeta(c_1, c_2)$ is well defined. Thus, we have the conclusion by $(R_{\text{-}CONST})/(E_{\text{-}RED}).$

 \Box

Case (T_BANG): We are given $\Delta \vdash !M_0 : !B$ for some M_0 and B such that $M = !M_0$ and $A = !B$. By inversion, $\omega\Delta \vdash M_0 : B$. By case analysis on the IH.

Case $M_0 \longrightarrow M'_0$ for some M'_0 : By (E_BANG).

Case $M_0 = R_0$ for some R_0 : We have the conclusion because $M = R_0$ is a value.

Case (T_LETBANG): Similar to the case for (T_APP). This case uses $(R_$ BANG) for reducing M.

Case (T_NU) : By the IH and (E_{EVAL}) .

Case (T_GEN): We are given $\Delta_1, \alpha^1, \Delta_2 \vdash \Lambda^{\circ} \langle \alpha, M_0 \rangle : \forall \alpha. B$ for some $\Delta_1, \Delta_2, \alpha, M_0$, and B such that $\Delta =$ $\Delta_1, \alpha^1, \Delta_2$ and $M = \Lambda^{\circ} \langle \alpha, M_0 \rangle$ and $A = \langle \forall \alpha, B \rangle$. By inversion, $\Delta_1, \alpha^0, \Delta_2 \vdash M_0 : B$. By case analysis on the IH.

Case $M_0 \longrightarrow M'_0$ for some M'_0 : By (E_EVAL).

Case $M_0 = \nu \beta$. R for some β and R: By (E_EXTR).

Case $M_0 = V$ for some V: By Lemma [35](#page-23-1) and $(R_CLOSING)/(E_RED)$.

Case (T_TApp): We are given $\Delta \vdash M_0 B$: $C[B/\alpha]$ for some M_0, B, C , and α such that $M = M_0 B$ and $A =$ $C[B/\alpha]$. By inversion, $\Delta \vdash M_0 : \forall \alpha$. C and $\Delta \vdash B$. By case analysis on the IH.

Case $M_0 \longrightarrow M'_0$ for some M'_0 : By (E_EVAL).

Case $M_0 = \nu \beta$. R_0 for some β and R_0 : By (E_EXTR).

Case $M_0 = V$ for some V: By Lemma [35](#page-23-1) and $(R_TBETA)/(E_RED)$.

Lemma 37. If $\vdash \Gamma, \alpha^{\pi}, \Delta$, then $\vdash \Gamma, \Delta$.

Proof. Straightforward by induction on Δ .

Lemma 38. If $\Gamma_1 + \Gamma_2$ is well defined, then $\omega \Gamma_1 + \Gamma_2 \leq \Gamma_1 + \Gamma_2$.

Proof. Straightforward by induction on Γ_1 .

Lemma 39.

- 1. If $\vdash \Gamma_1, \alpha^{\pi_1}, \beta^{\pi_2}, \Gamma_2$, then $\vdash \Gamma_1, \beta^{\pi_2}, \alpha^{\pi_1}, \Gamma_2$.
- 2. If $\Gamma_1, \alpha^{\pi_1}, \beta^{\pi_2}, \Gamma_2 \vdash M : A$, then $\Gamma_1, \beta^{\pi_2}, \alpha^{\pi_1}, \Gamma_2 \vdash M : A$.

Proof. 1. Straightforward by induction on Γ_2 .

2. Straightforward by induction on the typing derivation. The cases for (T_VAR) , (T_CONST) , (T_BANG) , and (T TAbs) rest on case [\(1\)](#page-24-1). Further, the cases for (T Bang) and (T TAbs) rest on Lemma [8](#page-13-10) as well. The cases for (T_APP) and $(T_LETBANG)$ rest on Lemma [6](#page-12-5) [\(2\)](#page-12-9).

Lemma 40 (Subject reduction).

- 1. If $\Delta \vdash M_1 : A$ and $M_1 \leadsto M_2$, then $\Delta \vdash M_2 : A$.
- 2. If $\Delta \vdash M_1 : A$ and $M_1 \longrightarrow M_2$, then $\Delta \vdash M_2 : A$.

Proof. 1. By case analysis on the typing rule applied last to derive $\Delta \vdash M_1 : A$.

Case (T_VAR): Contradictory.

Case $(T_{\rm \bullet}$ Const, $(T_{\rm \bullet}$, $(T_{\rm \bullet}$ Bang), $(T_{\rm \bullet}$ Nu), and $(T_{\rm \bullet}$ TAbs): No reduction rule to be applied.

 \Box

 \Box

 \Box

Case (T_App): We are given $\Delta_1 + \Delta_2 \vdash M'_1 M'_2$: A for some Δ_1 , Δ_2 , M'_1 , and M'_2 such that $\Delta = \Delta_1 + \Delta_2$ and $M_1 = M_1 M_2'$. By inversion, $\Delta_1 \vdash M_1' : B \multimap A$ and $\Delta_2 \vdash M_2' : B$ for some B. We perform case analysis on the reduction rules applicable to $M_1 = M'_1 M'_2$.

Case $(R_{\text{-CONST}})$: We have

- $M'_1 = c_1$,
- $M'_2 = \nu \overline{\alpha} \cdot c_2$,
- $M_2 = \nu \overline{\alpha} \cdot \zeta(c_1, c_2)$ (i.e., the reduction takes the form $c_1 \nu \overline{\alpha} \cdot c_2 \leadsto \nu \overline{\alpha} \cdot \zeta(c_1, c_2)$)

for some c_1, c_2 , and $\overline{\alpha}$. By inversion of the judgment $\Delta_1 \vdash c_1 : B \multimap A$, we have $ty(c_1) = B \multimap A$, so $ty(\zeta(c_1, c_2)) = A$ by Assumption [1.](#page-1-2) Since $\vdash \Delta$ by Lemma [17,](#page-13-5) we have the conclusion

$$
\Delta \vdash \nu \overline{\alpha}. \zeta(c_1, c_2): A
$$

by $(T_{\text{-CONST}})$ and $(T_{\text{-NU}})$.

Case $(R_$ BETA $)$: We have

- $M'_1 = \lambda x.M$,
- $M'_2 = R$, and
- $M_2 = M[R/x]$ (i.e., the reduction takes the form $(\lambda x.M) R \rightsquigarrow M[R/x])$

for some x, M, and R. By inversion of the judgment $\Delta_1 \vdash \lambda x.M : B \multimap A$, we can find $\Delta_1, x : B \vdash M$: A. By Lemmas [30](#page-19-1) and [3,](#page-12-10) we have the conclusion

$$
\Delta_1 + \Delta_2 \vdash M[R/x] : A .
$$

Case (T_LETBANG): We are given $\Delta_1 + \Delta_2$ \vdash let ! $x = M'_1$ in M'_2 : A for some Δ_1 , Δ_2 , x, M'_1 , and M'_2 such that $\Delta = \Delta_1 + \Delta_2$ and $M_1 = \text{let } !x = M'_1 \text{ in } M'_2$. By inversion, $\Delta_1 \vdash M'_1 : !B$ and $\Delta_2, x : ``B \vdash M'_2 : A$ for some B. Reduction rules applicable to $M_1 = \text{let } !x = M'_1$ in M'_2 are only (R_BANG). Thus,

- $M'_1 = \nu \overline{\alpha}$.! R and
- $M_2 = M_2'[\nu \overline{\alpha}, R/x]$ (i.e., the reduction takes the form let $x = \nu \overline{\alpha}$. R in $M_2' \rightsquigarrow M_2'[\nu \overline{\alpha}, R/x]$)

for some $\overline{\alpha}$ and R. By inversion of the judgment $\Delta_1 \vdash \nu \overline{\alpha}$. \overline{R} : B , we can find that $\overline{\alpha}$ do not occur in B and $\omega(\Delta_1, \Delta') \vdash R : B$ where $\Delta' = {\alpha_1}^1, \cdots, {\alpha_n}^1$ when $\overline{\alpha} = {\alpha_1}, \cdots {\alpha_n}$. By Lemma [25](#page-17-2) and (T_NU), $\omega\Delta_1 \vdash \nu\overline{\alpha}R : B$. By Lemmas [3](#page-12-10) and [28,](#page-18-4) $\omega\Delta_1 + \Delta_2$ is well defined. By Lemma [5,](#page-12-13) $\omega|\omega\Delta_1$. Thus, by Lemma [30,](#page-19-1)

$$
\omega\Delta_1+\Delta_2\vdash M'_2[\nu\overline{\alpha},R/x]:A\ .
$$

By Lemmas [38](#page-24-2) and [25,](#page-17-2) we have the conclusion

$$
\Delta_1 + \Delta_2 \vdash M_2'[\nu \overline{\alpha}, R/x] : A .
$$

Case (T_GEN): We are given $\Delta_1, \alpha^1, \Delta_2 \vdash \Lambda^{\circ} \langle \alpha, M' \rangle : \forall \alpha. B$ for some $\Delta_1, \Delta_2, \alpha, M'$, and B such that $\Delta = \Delta_1, \alpha^1, \Delta_2$ and $M_1 = \Lambda^{\circ} \langle \alpha, M' \rangle$ and $A = \forall \alpha, B$. By inversion, $\Delta_1, \alpha^0, \Delta_2 \vdash M' : !B$. Reduction rules applicable to $M_1 = \Lambda^{\circ} \langle \alpha, M' \rangle$ are only (R_CLOSING). Thus,

- $M' = !R$ and
- $M_2 = \Lambda \alpha R$ (i.e., the reduction takes the form $\Lambda^{\circ} \langle \alpha, R \rangle \rightsquigarrow \Lambda \alpha R$)

for some R. By inversion of $\Delta_1, \alpha^0, \Delta_2 \vdash !R : !B$, we have $\vdash \Delta_1, \alpha^0, \Delta_2$ and $\omega(\Delta_1, \alpha^0, \Delta_2) \vdash R : B$. By Lemmas [8,](#page-13-10) [39,](#page-24-3) and [5,](#page-12-13) $\omega\omega(\Delta_1, \Delta_2), \alpha^0 \vdash R : B$. By Lemmas [37](#page-24-4) and $10, \vdash \Delta_1, \Delta_2$ and $\vdash \omega(\Delta_1, \Delta_2)$. By (T_TABS) and (T_BANG), we have $\Delta_1, \Delta_2 \vdash !\Lambda \alpha.R : !\forall \alpha.B.$ By Lemma [20](#page-14-2) [\(2\)](#page-14-3), we have the conclusion

$$
\Delta_1, \alpha^1, \Delta_2 \vdash !\Lambda \alpha.R : !\forall \alpha.B .
$$

Case (T_TApp): We are given $\Delta \vdash M_1' B : C[B/\alpha]$ for some M_1' , B, C, and α such that $M_1 = M_1' B$ and $A = C[B/\alpha]$. By inversion, $\Delta \vdash M'_1 : \forall \alpha \ldotp C$ and $\Delta \vdash B$. Reduction rules applicable to $M_1 = M'_1 B$ are only (R_TBETA) . Thus, without loss of generality, we can suppose

- $M'_1 = \Lambda \alpha.M',$
- $M_2 = M'[B/\alpha]$ (i.e., the reduction takes the form $(\Lambda \alpha.M')B \rightsquigarrow M'[B/\alpha])$

for some M' .

By inversion of the judgment $\Delta \vdash \Lambda \alpha.M' : \forall \alpha. C$, we have $\omega\Delta$, $\alpha^0 \vdash M' : C$. Since $\Delta \vdash B$, we have $\omega\Delta \vdash B$ by Lemma [9.](#page-13-0) Thus, by Lemma [34](#page-22-4) [\(2\)](#page-22-5), $\omega\Delta \vdash M'[B/\alpha] : C[B/\alpha]$. Since $\omega\Delta \leq \Delta$, we have the conclusion

$$
\Delta \vdash M'[B/\alpha] : C[B/\alpha]
$$

by Lemma [25.](#page-17-2)

2. By induction on the derivation of $M_1 \longrightarrow M_2$ with case analysis on the evaluation rule applied last.

Case $(E_{\text{RED}}):$ By the case $(1).$

- Case (E_EVAL): We are given $E[M_1'] \longrightarrow E[M_2']$ for some E, M_1' , and M_2' such that $M_1 = E[M_1']$ and $M_2 = E[M'_2]$. By inversion, $M'_1 \longrightarrow M'_2$. We perform case analysis on the typing rule applied last to derive $\Delta \vdash M_1 : A$.
	- Case (T_VAR), (T_CONST), (T_ABS), and (T_TABS): Contradictory because there is no E such that $M_1 =$ $E[M_1']$.
	- Case (T_App): We are given $\Delta_1+\Delta_2 \vdash M_{11} M_{12}$: A for some Δ_1 , Δ_2 , M_{11} , and M_{12} such that $\Delta = \Delta_1+\Delta_2$ and $M_1 = M_{11} M_{12}$. By inversion, $\Delta_1 \vdash M_{11} : B \multimap A$ and $\Delta_2 \vdash M_{12} : B$ for some B. We perform case analysis on E.
		- Case $E = [] M_{12}$: We are given $M'_1 = M_{11}$. Since $\Delta_1 \vdash M'_1 : B \multimap A$ and $M'_1 \longrightarrow M'_2$, we have $\Delta_1 \vdash M'_2 : B \multimap A$ by the IH. By $(T \text{-}APP)$,

$$
\Delta_1 + \Delta_2 \vdash M'_2 M_{12} : A .
$$

Since $M'_2 M_{12} = E[M'_2] = M_2$, we have the conclusion.

Case $E = R_{11}$ [] for some R_{11} such that $R_{11} = M_{11}$: We are given $M'_1 = M_{12}$. Since $\Delta_2 \vdash M'_1$: B and $M'_1 \longrightarrow M'_2$, we have $\Delta_2 \vdash M'_2 : B$ by the IH. By (T_App),

$$
\Delta_1+\Delta_2\vdash R_{11} M_2':A.
$$

Since $R_{11} M_2' = E[M_2'] = M_2$, we have the conclusion.

Case (T_LETBANG), (T_GEN), (T_TAPP), (T_BANG), and (T_NU): Similar to the case for (T_APP).

- Case (E_EXTR): We are given $\mathbb{E}[\nu \alpha, R] \longrightarrow \nu \alpha$. $\mathbb{E}[R]$ for some \mathbb{E}, α , and R such that $M_1 = \mathbb{E}[\nu \alpha, R]$ and $M_2 = \nu \alpha \mathbb{E}[R]$ and $\alpha \notin f\mathcal{W}(\mathbb{E})$. We perform case analysis on the typing rule applied last to derive $\Delta \vdash M_1 : A$.
	- Case (T_VAR), (T_CONST), (T_ABS), (T_BANG), (T_LETBANG), (T_NU), and (T_TABS): Contradictory because there is no $\mathbb E$ such that $M_1 = \mathbb E[\nu \alpha, R].$
	- Case (T_App): We are given $\Delta_1+\Delta_2 \vdash M_{11} M_{12}$: A for some Δ_1 , Δ_2 , M_{11} , and M_{12} such that $\Delta = \Delta_1+\Delta_2$ and $M_1 = M_{11} M_{12}$. By inversion, $\Delta_1 \vdash M_{11} : B \multimap A$ and $\Delta_2 \vdash M_{12} : B$ for some B. By case analysis on E, we can find $E = [] R_{12}$ for some R_{12} such that $R_{12} = M_{12}$. We are also given $M_{11} = \nu \alpha$. R. By inversion of the judgment $\Delta_1 \vdash \nu \alpha$. $R : B \multimap A$, we have $\Delta_1, \alpha^1 \vdash R : B \multimap A$ and $\Delta_1 \vdash A$. By Lemmas [17](#page-13-5) and [12,](#page-13-1) $\vdash \Delta_2, \alpha^0$. Thus, by Lemma [20](#page-14-2) [\(2\)](#page-14-3), $\Delta_2, \alpha^0 \vdash R_{12} : B$. Thus, by (T_APP) and Lemma [7,](#page-13-7)

$$
(\Delta_1 + \Delta_2), \alpha^1 \vdash R R_{12} : A.
$$

Since $\Delta_1 + \Delta_2 \vdash A$ by Lemma [12,](#page-13-1) we have the conclusion

$$
\Delta_1 + \Delta_2 \vdash \nu \alpha. (R R_{12}) : A
$$

by (T_NU) .

Case $(T_{\text{-}}GEN)$, and $(T_{\text{-}}TAPP)$: Similar to the case for $(T_{\text{-}}APP)$.

Theorem 1 (Type soundness). If $\Delta \vdash M : A$ and $M \rightarrow^* M'$ and $M' \rightarrow^* h$, then $M' = R$ for some R such that $\Delta \vdash R : A$.

Proof. By induction on the number of the steps of $M \longrightarrow^* M'$.

If the number of the steps is zero, then $M = M'$. We have $\Delta \vdash M : A$ and $M \to A$, so M is a result by Lemma [36.](#page-23-0)

If the number of the steps is more than zero, we have $M \longrightarrow M''$ and $M'' \longrightarrow^* M'$ for some M'' . By Lemma [40,](#page-24-0) $\Delta \vdash M'' : A$. By the IH, we have the conclusion. \Box

 3.2 Properties of Reductions in λ_v^{\forall}

Lemma 41. If $w_1 \rightrightarrows_{\overline{\aleph}} w_2$, then $e[w_1/x] \rightrightarrows_{\overline{\aleph}} e[w_2/x]$.

Proof. Straightforward by induction on e.

Lemma 42. If $e_1 \rightrightarrows_{\overline{N}} e_2$ and $w_1 \rightrightarrows_{\overline{N}} w_2$, then $e_1[w_1/x] \rightrightarrows_{\overline{N}} e_2[w_2/x]$.

Proof. By induction on the derivation of $e_1 \rightrightarrows_{\overline{R}} e_2$.

Case (P_REFL): By Lemma [41.](#page-27-1)

Case (P_BETA): We are given $(\lambda y. e_1'') w_1'' \Rightarrow_{\overline{\aleph}} e_2'' [w_2''/y]$ for some y, e_1'', e_2'', w_1'' , and w_2'' such that $e_1 = (\lambda y. e_1'') w_1''$ and $e_2 = e_2''[w_2''/y]$. By inversion, $e_1'' \rightrightarrows_{\overline{R}} e_2''$ and $w_1'' \rightrightarrows_{\overline{R}} w_2''$ and $\beta_v \in {\overline{R}}$. Without loss of generality, we can suppose that $y \neq x$ and $y \notin fv(w_1) \cup fv(w_2)$.

By the IHs, $e''_1[w_1/x] \rightrightarrows_{\mathcal{R}} e''_2[w_2/x]$ and $w''_1[w_1/x] \rightrightarrows_{\mathcal{R}} w''_2[w_2/x]$. Thus, we have the conclusion

$$
e_1[w_1/x] = (\lambda y. e_1''[w_1/x]) w_1''[w_1/x] \implies e_2''[w_2/x][w_2''[w_2/x]/y] = e_2[w_2/x].
$$

Case (P_{ETA}) : By the IH.

Case (P_DELTA): By the IH.

Case (P_ABS): By the IH.

Case (P_App): By the IHs.

Lemma 43. If $e_1 \longrightarrow_F e_2$, then $e_1[w/x] \longrightarrow_F e_2[w/x]$.

Proof. By induction on the derivation of $e_1 \longrightarrow_F e_2$.

Case c_1 $c_2 \rightarrow \delta$ ζ (c_1, c_2) : Obvious.

Case $(\lambda y. e') w' \rightsquigarrow_{\beta_v} e'[w'/x]$: We have $e_1 = (\lambda y. e') w'$ and $e_2 = e'[w'/y]$. Without loss of generality, we can suppose that $y \neq x$ and $y \notin fv(w)$. Then:

$$
e_1[w/x] = (\lambda y. e'[w/x]) w'[w/x] \longrightarrow_F e'[w/x][w'[w/x]/y] = e'[w'/y][w/x] = e_2[w/x].
$$

Case $e'_1 e'_2 \longrightarrow_F e''_1 e'_2$ and $e'_1 \longrightarrow_F e''_1$: We have $e_1 = e'_1 e'_2$ and $e_2 = e''_1 e'_2$. By the IH, $e'_1[w/x] \longrightarrow_F e''_1[w/x]$. Thus:

$$
e_1[w/x] = e'_1[w/x] e'_2[w/x] \longrightarrow_F e''_1[w/x] e'_2[w/x] = e_2[w/x] .
$$

Case $w'_1 e'_2 \longrightarrow_F w'_1 e''_2$ and $e'_2 \longrightarrow_F e''_2$: We have $e_1 = w'_1 e'_2$ and $e_2 = w'_1 e''_2$. By the IH, $e'_2[w/x] \longrightarrow_F e''_2[w/x]$. Thus:

$$
e_1[w/x] = w_1'[w/x] e_2'[w/x] \longrightarrow_F w_1'[w/x] e_2''[w/x] = e_2[w/x] .
$$

Lemma 44. If $e_1 \rightrightarrows_{\overline{\aleph_1}} e_2$ and $\{\overline{\aleph_1}\}\subseteq \{\overline{\aleph_2}\}\$, then $e_1 \rightrightarrows_{\overline{\aleph_2}} e_2$.

Proof. Straightforward by induction on the derivation of $e_1 \rightrightarrows_{\aleph_0} e_2$.

 \Box

 \Box

 \Box

Lemma 45. If $e_1 \Longrightarrow_{\overline{N}} e_2$, then $e_1 \rightrightarrows_{\overline{N}} e_2$.

Proof. By Lemma [44,](#page-27-2) it suffices to show that: for any e_1, e_2, \mathcal{C} , and $\aleph_0 \in {\overline{\mathbb{R}}}$, if $e_1 \rightarrow_{\aleph_0} e_2$, then $\mathcal{C}[e_1] \rightrightarrows_{\aleph_0} \mathcal{C}[e_2]$. We proceed by induction on \mathcal{C} .

Case $C = []$: By case analysis on \aleph_0 .

Case $\aleph_0 = \beta_v$: We can find $\mathcal{C}[e_1] = (\lambda x.e) w$ and $\mathcal{C}[e_2] = e[w/x]$ for some x, e, and w. We have $(\lambda x.e) w \rightrightarrows_{\beta_v}$ $e[w/x]$ by (P_REFL) and (P_BETA).

Case $\aleph_0 = \eta_v$: We can find $\mathcal{C}[e_1] = \lambda x \cdot w \cdot x$ and $\mathcal{C}[e_2] = w$ for some x and w such that $x \notin fv(w)$. We have $\lambda x. w x \rightrightarrows_{\eta_v} w$ by (P_REFL) and (P_ETA).

Case $\aleph_0 = \delta$: We can find $\mathcal{C}[e_1] = c_1 c_2$ and $\mathcal{C}[e_2] = \zeta(c_1, c_2)$ for some c_1 and c_2 . We have $c_1 c_2 \rightrightarrows \zeta(c_1, c_2)$ by $(P_{\text{-}REFL})$ and $(P_{\text{-}}DELTA)$.

Case $C = \lambda x.C'$: By the IH and (P_ABS).

Case $C = eC'$, $C' e$: By the IH, (P_REFL), and (P_APP).

 \Box

Lemma 46. If $e_1 \mapsto_{\overline{R}}^* e_2$, then $\mathcal{C}[e_1] \mapsto_{\overline{R}}^* \mathcal{C}[e_2]$ for any \mathcal{C} .

Proof. Straightforward by induction on the number of the steps of the reduction $e_1 \mapsto^*_{\overline{N}} e_2$. \Box

Lemma 47. If $e_1 \rightrightarrows_{\overline{N}} e_2$, then $e_1 \rightrightarrows_{\overline{N}}^* e_2$.

Proof. By induction on the derivation of $e_1 \rightrightarrows_{\overline{R}} e_2$.

Case (P_REFL): Obvious.

Case (P_BETA): We are given $(\lambda x . e'_1) w'_1 \rightrightarrows_{\overline{N}} e'_2[w'_2/x]$ for some x, e'_1, e'_2, w'_1 , and w'_2 such that $e_1 = (\lambda x . e'_1) w'_1$ and $e_2 = e'_2[w'_2/x]$. By inversion, $e'_1 \rightrightarrows_{\overline{\mathbb{N}}} e'_2$ and $w'_1 \rightrightarrows_{\overline{\mathbb{N}}} w'_2$ and $\beta_v \in {\overline{\mathbb{N}}}.$ By the IHs, $e'_1 \rightrightarrows_{\overline{\mathbb{N}}}^* e'_2$ and $w'_1 \rightrightarrows_{\overline{\mathbb{N}}}^* w'_2$. Thus:

$$
e_1 = (\lambda x. e'_1) w'_1 \Longrightarrow_{\mathbb{R}}^* (\lambda x. e'_2) w'_1 \Longrightarrow_{\mathbb{R}}^* (\lambda x. e'_2) w'_2 \Longrightarrow_{\mathbb{R}} e'_2[w'_2/x] = e_2
$$

by Lemma [46](#page-28-0) and $\beta_v \in {\overline{\mathbb{N}}}.$

Case (P_ETA): We are given $\lambda x. w_1 x \rightrightarrows_{\overline{N}} w_2$ for some x, w_1 , and w_2 such that $e_1 = \lambda x. w_1 x$ and $e_2 = w_2$. By inversion, $w_1 \rightrightarrows_{\overline{N}} w_2$ and $x \not\in fv(w_1)$ and $\eta_v \in {\overline{N}}$. By the IH, $w_1 \Longrightarrow_{\overline{N}}^* w_2$. Thus:

$$
e_1 = \lambda x \cdot w_1 \cdot x \Longrightarrow_{\overline{\aleph}} w_1 \Longrightarrow_{\overline{\aleph}}^* w_2 = e_2
$$

by $\eta_v \in {\overline{\mathbb{N}}}.$

Case (P_DELTA): We are given $c_1 c_2 \rightrightarrows_{\mathbb{R}} \zeta(c_1, c_2)$ for some c_1 and c_2 such that $e_1 = c_1 c_2$ and $e_2 = \zeta(c_1, c_2)$. By inversion, $\delta \in {\overline{\mathbb{N}}}$. Thus, we have the conclusion by δ -reduction.

Case (P Abs): By the IH and Lemma [46.](#page-28-0)

Case (P App): By the IHs and Lemma [46.](#page-28-0)

Lemma 48. If $w \rightrightarrows_{\overline{R}} e$, then e is a value.

Proof. Straightforward by case analysis on the derivation of $w \rightrightarrows_{\mathbb{R}} e$.

Lemma 49. Suppose that e_1 or e_2 is not a value. If $e_1 e_2 \rightrightarrows_{\overline{N}} e$, then there exist some e'_1 and e'_2 such that $e = e'_1 e'_2$ and $e_1 \rightrightarrows_{\overline{N}} e'_1$ and $e_2 \rightrightarrows_{\overline{N}} e'_2$.

Proof. Straightforward by case analysis on the derivation of $e_1 e_2 \rightrightarrows_{\overline{N}} e$.

 \Box

 \Box

Lemma 50. If $c \rightrightarrows_{\overline{N}} e$, then $e = c$.

Proof. Straightforward by case analysis on the derivation of $c \rightrightarrows_{\mathbb{R}} e$.

 \Box

Lemma 51. If $e_1 \rightrightarrows_{\overline{R}} e_2$ and $e_1 \rightharpoonup_F e'_1$, then there exists some e'_2 such that $e_2 \rightharpoonup_F^* e'_2$ and $e'_1 \rightharpoonup_{\overline{R}} e'_2$.

Proof. By induction on the derivation of $e_1 \longrightarrow_F e'_1$ with case analysis on that derivation.

- Case $(\lambda x.e)$ $w \rightsquigarrow_{\beta_v} e[w/x]$: We have $e_1 = (\lambda x.e) w$ and $e'_1 = e[w/x]$. We perform case analysis on $(\lambda x.e) w =$ $e_1 \rightrightarrows_{\overline{\aleph}} e_2.$
	- Case (P_REFL) and (P_APP): With Lemma [48,](#page-28-1) we have $e_2 = w_{21} w_{22}$ for some w_{21} and w_{22} such that $\lambda x . e \Rightarrow_{\overline{x}}$ w_{21} and $w \rightrightarrows_{\overline{N}} w_{22}$. By case analysis on $\lambda x.e \rightrightarrows_{\overline{N}} w_{21}$.
		- Case (P_REFL) and (P_ABS): We have $w_{21} = \lambda x.e_{21}$ for some e_{21} such that $e \rightrightarrows_{\mathcal{R}} e_{21}$. We have the conclusion by letting $e'_2 = e_{21}[w_{22}/x]$ because: $e_2 = w_{21} w_{22} = (\lambda x . e_{21}) w_{22} \longrightarrow_F e_{21}[w_{22}/x] = e'_2$; and $e'_1 = e[w/x] \right) \right)$ $e_{21}[w_{22}/x] = e'_2$ by Lemma [42.](#page-27-3)
		- Case (P_ETA): We have $e = w_{11} x$ for some w_{11} such that $w_{11} \rightrightarrows_{\mathbb{R}} w_{21}$ and $x \notin fv(w_{11})$. (We also have $\eta_v \in {\{\overline{\aleph}\}}$.) We have the conclusion by letting $e'_2 = w_{21} w_{22}$ because: $e_2 = w_{21} w_{22} = e'_2$; and $e'_1 = e'_2$ $e[w/x] = w_{11} w \implies w_{21} w_{22} = e'_2$ by (P_APP).
	- Case (P_BETA), (P_DELTA), and (P_APP): Contradictory.
	- Case (P_BETA): We have $e_2 = e'[w'/x]$ for some e' and w' such that $e \rightrightarrows_{\overline{N}} e'$ and $w \rightrightarrows_{\overline{N}} w'$. (We also have $\beta_v \in {\overline{\mathbb{N}}}$). We have the conclusion by letting $e'_2 = e'[w'/x]$ because: $e_2 = e'[w'/x] = e'_2$; and $e'_1 = e'_1$ $e[w/x] \rightrightarrows_{\mathbb{R}} e'[w'/x] = e'_2$ by Lemma [42.](#page-27-3)
	- Case (P_ETA), (P_DELTA), and (P_ABS): Contradictory.

Case c_1 $c_2 \rightarrow \delta$ ζ (c_1 , c_2): We have $e_1 = c_1 c_2$ and $e'_1 = \zeta$ (c_1 , c_2). By case analysis on c_1 $c_2 = e_1 \rightrightarrows_{\overline{N}} e_2$.

- Case (P_REFL) and (P_APP): We can find $e_2 = e_{21} e_{22}$ for some e_{21} and e_{22} such that $c_1 \rightrightarrows_{\overline{N}} e_{21}$ and $c_2 \rightrightarrows_{\overline{N}} e_{22}$. By Lemma [50,](#page-29-1) $e_{21} = c_1$ and $e_{22} = c_2$. We have the conclusion by letting $e'_2 = \zeta(c_1, c_2)$ because: $e_2 =$ $e_{21} e_{22} = c_1 c_2 \longrightarrow_F \zeta(c_1, c_2) = e'_2$; and $e'_1 = \zeta(c_1, c_2) \rightrightarrows_{\mathbb{R}} \zeta(c_1, c_2) = e'_2$ by (P_REFL).
- Case (P_DELTA): We are given $e_2 = \zeta(c_1, c_2)$. (We also have $\delta \in {\overline{\mathbb{R}}}$). We have the conclusion by letting $e'_2 = \zeta(c_1, c_2)$ because: $e_2 = \zeta(c_1, c_2) = e'_2$; and $e'_1 = \zeta(c_1, c_2) \rightrightarrows_{\overline{R}} \zeta(c_1, c_2) = e'_2$ by (P_REFL).
- Case (P_BETA), (P_ETA), and (P_ABS): Contradictory.
- Case $e_{11} e_{12} \longrightarrow_F e'_{11} e_{12}$ and $e_{11} \longrightarrow_F e'_{11}$: We have $e_1 = e_{11} e_{12}$ and $e'_{1} = e'_{11} e_{12}$. Since $e_1 = e_{11} e_{12} \rightrightarrows_{\overline{R}} e_2$, there exist some e_{21} and e_{22} such that $e_2 = e_{21} e_{22}$ and $e_{11} \rightrightarrows_{\overline{N}} e_{21}$ and $e_{12} \rightrightarrows_{\overline{N}} e_{22}$ by Lemma [49.](#page-28-2) By the IH, there exists some e'_{21} such that $e_{21} \longrightarrow_F^* e'_{21}$ and $e'_{11} \rightrightarrows_F e'_{21}$. We have the conclusion by letting $e'_{2} = e'_{21} e_{22}$ because: $e_2 = e_{21} e_{22} \longrightarrow_F^* e'_{21} e_{22} = e'_2$; and $e'_1 = e'_{11} e_{12} \longrightarrow_F^* e'_{21} e_{22} = e'_2$ by (P_App).
- Case $w_{11} e_{12} \longrightarrow_F w_{11} e'_{12}$ and $e_{12} \longrightarrow_F e'_{12}$: We have $e_1 = w_{11} e_{12}$ and $e'_{1} = w_{11} e'_{12}$. Since $e_1 = w_{11} e_{12} \rightrightarrows_{\overline{N}} e_2$, there exist some w_{21} and e_{22} such that $e_2 = w_{21} e_{22}$ and $w_{11} \rightrightarrows_{\overline{N}} w_{21}$ and $e_{12} \rightrightarrows_{\overline{N}} e_{22}$ by Lemmas [49](#page-28-2) and [48.](#page-28-1) By the IH, there exists some e'_{22} such that $e_{22} \longrightarrow_F^* e'_{22}$ and $e'_{12} \rightrightarrows_{\mathbb{R}} e'_{22}$. We have the conclusion by letting $e'_{2} = w_{21} e'_{22}$ because: $e_2 = w_{21} e_{22} \longrightarrow_F^* w_{21} e_{22}' = e_2';$ and $e_1' = w_{11} e_{12}' \longrightarrow_F^* w_{21} e_{22}' = e_2'$ by (P_App).

$$
\Box
$$

Lemma 52. If $e_1 \rightrightarrows_{\overline{R}} e_2$ and $e_1 \rightharpoonup_{F}^* e'_1$, then there exists some e'_2 such that $e_2 \rightharpoonup_{F}^* e'_2$ and $e'_1 \rightharpoonup_{\overline{R}}^* e'_2$.

Proof. By induction on the number of the steps of $e_1 \longrightarrow_F^* e'_1$.

If the number of the steps is zero, then $e_1 = e'_1$, so we have the conclusion by letting $e'_2 = e_2$.

If the number of the steps is more than zero, there exists some e''_1 such that $e_1 \longrightarrow_F e''_1 \longrightarrow_F^* e'_1$. By Lemma [51,](#page-29-2) there exists some e''_2 such that $e_2 \longrightarrow_F^* e''_2$ and $e''_1 \rightrightarrows_{\overline{R}} e''_2$. By the IH, there exists some e'_2 such that $e''_2 \longrightarrow_F^* e'_2$ and $e'_1 \rightrightarrows_{\overline{R}} e'_2$. Since $e_2 \rightrightarrows_{\overline{F}}^* e''_2 \rightrightarrows_{\overline{F}}^* e'_2$, we have the conclusion. П

Lemma 53. If $e_1 \Longrightarrow_{\overline{\aleph}}^* e_2$ and $e_1 \longrightarrow_{F}^* e_1'$, then there exists some e_2' such that $e_2 \longrightarrow_{F}^* e_2'$ and $e_1' \Longrightarrow_{\overline{\aleph}}^* e_2'$.

Proof. By induction on the number of the steps of $e_1 \mapsto \frac{*}{\aleph} e_2$.

If the number of the steps is zero, then $e_1 = e_2$, so we have the conclusion by letting $e'_2 = e'_1$.

If the number of the steps is more than zero, then there exists some e such that $e_1 \mapsto_{\overline{N}} e \mapsto_{\overline{N}}^* e_2$. By Lemmas [45](#page-28-3) and [52,](#page-29-3) there exists some e' such that $e \longrightarrow_F^* e'$ and $e'_1 \rightrightarrows_{\overline{R}} e'$. By the IH, there exists some e'_2 such that $e_2 \longrightarrow_F^* e_2'$ and $e' \implies_F^* e_2'$. Since $e_1' \implies_F^* e'$, we have $e_1' \implies_F^* e'$ by Lemma [47.](#page-28-4) Thus, we have the conclusion because $e'_1 \Longrightarrow_{\mathbf{\overline{N}}}^* e' \Longrightarrow_{\mathbf{\overline{N}}}^* e'_2$. \Box

Lemma 54. If $w \mapsto_{\overline{N}}^* e$, then e is a value.

Proof. By induction on the number of the steps of $w \mapsto \frac{*}{\aleph} e$.
If the number of the steps is zero, then $w = e$, so we have

If the number of the steps is zero, then $w = e$, so we have the conclusion.

Otherwise, if the number of the steps is more than zero, then there exists some e' such that $w \mapsto_{\overline{N}} e' \mapsto_{\overline{N}}^* e$. By Lemmas [45](#page-28-3) and [48,](#page-28-1) e' is a value. Thus, by the IH, e is a value.

Lemma 55. If $e \rightrightarrows_{\overline{N}} w$, then there exists some w' such that $e \rightharpoonup_F^* w'$ and $w' \rightrightarrows_{\overline{N}} w$.

Proof. By induction on the derivation of $e \rightrightarrows_{\overline{\mathbf{w}}} w$.

- Case (P_REFL): We are given $e = w$. We have the conclusion by letting $w' = w$ because $e = w \rightarrow_F^* w = w'$; and $w' = w \implies_{\mathbf{\overline{N}}} w$ by (P_REFL).
- Case (P_BETA): We are given $(\lambda x . e_1) w_1 \rightrightarrows_{\overline{R}} e_2[w_2/x]$ for some x, e_1, e_2, w_1 , and w_2 such that $e = (\lambda x . e_1) w_1$ and $w = e_2[w_2/x]$. By inversion, $e_1 \rightrightarrows_{\overline{N}} e_2$ and $w_1 \rightrightarrows_{\overline{N}} w_2$ and $\beta_v \in {\overline{N}}$. Since $e_2[w_2/x] = w$ is a value, e_2 is also a value. By the IH, there exists some w'_1 such that $e_1 \longrightarrow_F^* w'_1$ and $w'_1 \rightrightarrows_{\overline{N}} e_2$.

We have the conclusion by letting $w' = w'_1[w_1/x]$ because: $e = (\lambda x.e_1) w_1 \longrightarrow_F e_1[w_1/x] \longrightarrow_F^* w'_1[w_1/x] = w'$ by Lemma [43;](#page-27-4) and $w' = w'_1[w_1/x] \rightrightarrows_{\overline{N}} e_2[w_2/x] = w$ by Lemma [42.](#page-27-3)

- Case (P_ETA): We are given $\lambda x \cdot w_1 x \rightrightarrows_{\overline{N}} w$ for some x and w_1 such that $e = \lambda x \cdot w_1 x$. We have the conclusion by letting $w' = \lambda x \cdot w_1 x$.
- Case (P_DELTA): We are given $c_1 c_2 \rightrightarrows_{\overline{N}} \zeta(c_1, c_2)$ for some c_1 and c_2 such that $e = c_1 c_2$ and $w = \zeta(c_1, c_2)$. We have the conclusion by letting $w' = \zeta(c_1, c_2)$.
- Case (P_ABS): We are given $\lambda x . e_1 \rightrightarrows_{\overline{R}} \lambda x . e_2$ for some x, e_1 , and e_2 such that $e = \lambda x . e_1$ and $w = \lambda x . e_2$. We have the conclusion by letting $w' = \lambda x \cdot e_1$.

Case (P App): Contradictory.

Lemma 56. If $e \rightrightarrows_{\overline{R}} e_1 e_2$, then there exist some e'_1 and e'_2 such that $e \rightharpoonup_{F}^* e'_1 e'_2$ and $e'_1 \rightharpoonup_{\overline{R}}^* e_1$ and $e'_2 \rightharpoonup_{\overline{R}}^* e_2$.

Proof. By induction on $e \rightrightarrows_{\overline{R}} e_1 e_2$.

Case (P_REFL): We are given $e = e_1 e_2$. Obvious by letting $e'_1 = e_1$ and $e'_2 = e_2$.

Case (P_BETA): We are given $(\lambda x. e_1'') w_1'' \rightrightarrows_{\overline{R}} e_2'' [w_2''/x]$ for some $x, e_1'', e_2'', w_1'',$ and w_2'' such that $e = (\lambda x. e_1'') w_1''$ and $e_1 e_2 = e_2'' [w_2''/x]$. By inversion, $e_1'' \rightrightarrows_{\overline{R}} e_2''$ and $w_1'' \rightrightarrows_{\overline{R}} w_2''$ and $\beta_v \in {\overline{R}}$. We can see $e_2'' = e_{21}'' e_{22}''$ for some e''_{21} and e'_{22} such that $e_1 = e''_{21}[w''_2/x]$ and $e_2 = e''_{22}[w''_2/x]$. Since $e''_1 \rightrightarrows_{\bar{R}} e''_2 = e''_{21}e''_{22}$, there exist some e''_{11} and e''_{12} such that $e''_1 \rightharpoonup_{\bar{F}} e''_{11}e''_{12}$ and $e''_{12} \rightharpoonup_{\bar{R}}$ have the conclusion by letting $e'_1 = e''_{11}[w''_1/x]$ and $e'_2 = e''_2[w''_1/x]$ because: $e = (\lambda x . e''_1) w''_1 \rightarrow_F e''_1[w''_1/x] \rightarrow_F^* e''_2[w''_1/x] \rightarrow_F^* e'''_1[w''_1/x] \rightarrow_F^* e'''_2[w''_1/x] \rightarrow_F^* e'''_2[w''_1/x] \rightarrow_F^* e'''_2[w''_1/x] \rightarrow_F^* e'''_2[w''_1/x] \rightarrow_F^* e'''_2[w''_1/x] \rightarrow_F^* e'''$ $(e''_{11} e''_{12})[w''_1/x] = e'_1 e'_2$; $e'_1 = e''_{11}[w''_1/x] \Rightarrow_{\overline{N}} e''_{21}[w''_2/x] = e_1$ by Lemma [42;](#page-27-3) and $e'_2 = e''_{12}[w''_1/x] \Rightarrow_{\overline{N}} e''_{22}[w''_2/x] = e_2$ by Lemma [42.](#page-27-3)

Case (P_ETA), (P_DELTA), and (P_ABS): Contradictory.

Case (P App): Obvious.

 \Box

Lemma 57. If $w \rightrightarrows_{\overline{N}} \lambda x.e$, then, for any w' , $w w' \rightrightarrows_{\overline{F}} (\lambda x.e') w'$ for some e' such that $e' \rightrightarrows_{\overline{N}} e$.

- *Proof.* By induction on the derivation of $w \rightrightarrows_{\overline{N}} \lambda x.e.$
- Case (P_REFL): Obvious by letting $e' = e$.
- Case $(P_{\text{-BETA}})$, $(P_{\text{-DEITA}})$, and $(P_{\text{-APP}})$: Contradictory.
- Case (P_ETA): We are given $\lambda y.w''y \rightrightarrows_{\mathbb{R}} \lambda x.e$ for some y and w'' such that $w = \lambda y.w''y$. By inversion, $w'' \rightrightarrows_{\mathbb{R}} \lambda x.e$ and $y \notin fv(w'')$. By the IH, there exists some e' such that $w''w' \longrightarrow_F^* (\lambda x.e') w'$ and $e' \rightrightarrows_{\overline{R}} e$. We have the conclusion because: $w w' = (\lambda y.w'' y) w' \longrightarrow_F w'' w' \longrightarrow_F^* (\lambda x.e') w'.$

Case (P_ABS): Obvious.

 \Box

Lemma 58. Let $w_2 = c$ or x. If $w_1 \rightrightarrows_{\overline{N}} w_2$, then $w_1 w \rightarrow_{F}^* w_2 w$ for any w.

Proof. By induction on the derivation of $w_1 \rightrightarrows_{\overline{N}} w_2$.

Case (P_REFL): Obvious.

Case (P_BETA), (P_DELTA), (P_ABS), and (P_APP): Contradictory.

Case (P_ETA): We are given $\lambda y. w_1' y \rightrightarrows_{\mathbb{R}} w_2$ for some y and w_1' such that $w_1 = \lambda y. w_1' y$. By inversion, $w_1' \rightrightarrows_{\mathbb{R}} w_2$ and $y \notin fv(w_1')$. By the IH, $w_1' w \longrightarrow_F^* w_2 w$. We have the conclusion because: $w_1 w = (\lambda y. w_1' y) w \longrightarrow_F^* w_1' w \longrightarrow_F^* w_2 w$. $w_2 w.$

 \Box

 \Box

Lemma 59. Suppose that e_1 does not get stuck. If $e_1 \rightrightarrows_{\mathbb{R}} e_2$ and $e_2 \rightarrow_{F} e'_2$, then there exists some e'_1 such that $e_1 \longrightarrow_F^* e'_1$ and $e'_1 \rightrightarrows_{\overline{R}} e'_2$.

Proof. By induction on the derivation of $e_2 \longrightarrow_F e'_2$ with case analysis on that derivation.

- Case $(\lambda x.e)$ $w \rightsquigarrow_{\beta_v} e[w/x]$: We have $e_2 = (\lambda x.e)$ w and $e'_2 = e[w/x]$. Since $e_1 \rightrightarrows_{\overline{N}} e_2 = (\lambda x.e) w$, there exist some w_{11} and w_{12} such that $e_1 \longrightarrow_F^* w_{11} w_{12}$ and $w_{11} \rightrightarrows_R \lambda x.e$ and $w_{12} \rightrightarrows_R w$ by Lemmas [56](#page-30-1) and [55.](#page-30-2) By Lemma [57,](#page-31-0) there exists some e_{11} such that $w_{11} w_{12} \longrightarrow_F^* (\lambda x. e_{11}) w_{12}$ and $e_{11} \rightrightarrows_{\overline{R}} e$. Thus, we have the conclusion by letting e'_1 $e_{11}[w_{12}/x]$ because: $e_1 \longrightarrow_F^* w_{11} w_{12} \longrightarrow_F^* (\lambda x. e_{11}) w_{12} \longrightarrow_F e_{11}[w_{12}/x] = e'_1$; and $e'_1 = e_{11}[w_{12}/x] \Longrightarrow_R^* e[w/x] = e'_2$ by Lemma [42.](#page-27-3)
- Case c_1 $c_2 \rightarrow \delta$ ζ (c_1 , c_2): We have $e_2 = c_1 c_2$ and $e'_2 = \zeta$ (c_1 , c_2). Since $e_1 \rightrightarrows_{\overline{N}} e_2 = c_1 c_2$, there exist some w_{11} and w_{12} such that $e_1 \longrightarrow_F^* w_{11} w_{12}$ and $w_{11} \rightrightarrows_{\overline{R}}^{\overline{C}} c_1$ and $w_{12} \rightrightarrows_{\overline{R}}^{\overline{C}} c_2$ by Lemmas [56](#page-30-1) and [55.](#page-30-2) By Lemma [58,](#page-31-1) $w_{11} w_{12} \longrightarrow_F^* c_1 w_{12}$. Since e_1 does not get stuck and $e_1 \longrightarrow_F^* c_1 w_{12}$, we have $w_{12} = c'_2$ for some c'_2 such that $\zeta(c_1, c'_2)$ is well defined. Since $c_2' = w_{12} \rightrightarrows_{\mathbb{R}} c_2$, we can see $c_2' = c_2$. Thus, we have the conclusion by letting $e_1' = \zeta(c_1, c_2)$ because: $e_1 \longrightarrow_F^* c_1 w_{12} = c_1 c_2 \longrightarrow_F \zeta(c_1, c_2) = e'_1$; and $e'_1 = \zeta(c_1, c_2) \Longrightarrow_{\overline{N}} \zeta(c_1, c_2) = e'_2$ by (P_REFL).
- Case e_{21} $e_{22} \longrightarrow_F e'_{21}$ e_{22} and $e_{21} \longrightarrow_F e'_{21}$: We have $e_2 = e_{21}$ e_{22} and $e'_{2} = e'_{21}$ e_{22} . Since $e_1 \rightrightarrows_{\overline{N}} e_2 = e_{21}$ e_{22} , there exist some e_{11} and e_{12} such that $e_1 \longrightarrow_F^* e_{11} e_{12}$ and $e_{11} \rightrightarrows_F^* e_{21}$ and $e_{12} \rightrightarrows_F^* e_{22}$ by Lemma [56.](#page-30-1) By the IH, there exists some e'_{11} such that $e_{11} \longrightarrow_F^* e'_{11}$ and $e'_{11} \rightrightarrows_F e'_{21}$. We have the conclusion by letting $e'_{1} = e'_{11} e_{12}$ because: $e_1 \longrightarrow_F^* e_{11} \overline{e_{12}} \longrightarrow_F^* e'_{11} \overline{e_{12}} = e'_1;$ and $e'_1 = e'_{11} \overline{e_{12}} \implies_{\overline{R}}^* e'_{21} \overline{e_{22}} = e'_2$ by (P_App).
- Case $w_{21} e_{22} \longrightarrow_F w_{21} e'_{22}$ and $e_{22} \longrightarrow_F e'_{22}$: We have $e_2 = w_{21} e_{22}$ and $e'_{2} = w_{21} e'_{22}$. Since $e_1 \rightrightarrows_{\mathcal{R}} e_2 = w_{21} e_{22}$, there exist some w_{11} and e_{12} such that $e_1 \longrightarrow_F^* w_{11} e_{12}$ and $w_{11} \rightrightarrows_{\overline{N}} w_{21}$ and $e_{12} \rightrightarrows_{\overline{N}} e_{22}$ by Lemmas [56](#page-30-1) and [55.](#page-30-2) By the IH, there exists some e'_{12} such that $e_{12} \longrightarrow_F^* e'_{12}$ and $e'_{12} \rightrightarrows_F e'_{22}$. We have the conclusion by letting $e'_1 = w_{11} e'_{12}$ because: $e_1 \longrightarrow_F^* w_{11} e_{12} \longrightarrow_F^* w_{11} e'_{12} = e'_1$; and $e'_1 = w_{11} e'_{12} \implies_W^* w_{21} e'_{22} = e'_2$ by (P_App).

Lemma 60. Suppose that e_1 does not get stuck. If $e_1 \rightrightarrows_{\overline{R}} e_2$ and $e_2 \longrightarrow_F^* e'_2$, then there exists some e'_1 such that $e_1 \longrightarrow_F^* e'_1$ and $e'_1 \rightrightarrows_{\overline{R}} e'_2$.

Proof. By induction on the number of the steps of $e_2 \longrightarrow_F^* e'_2$.

If the number of the steps is zero, then $e_2 = e'_2$, so we have the conclusion by letting $e'_1 = e_1$.

If the number of the steps is more than zero, there exists some e_2'' such that $e_2 \longrightarrow_F e_2'' \longrightarrow_F^* e_2'$. By Lemma [59,](#page-31-2) there exists some e''_1 such that $e_1 \longrightarrow_F^* e''_1$ and $e''_1 \rightrightarrows_F e''_2$. Since e_1 does not get suck, e''_1 does not either. Thus, by the IH, there exists some e'_1 such that $e''_1 \longrightarrow^*_{F} e'_1$ and $e'_1 \implies_{\overline{R}} e'_2$. Since $e_1 \longrightarrow^*_{F} e''_1 \longrightarrow^*_{F} e'_1$, we have the conclusion.

Lemma 61. If e_1 does not get stuck and $e_1 \rightrightarrows_{\overline{R}} e_2$ and $e_2 \nightharpoonup_F$, then e_2 is a value.

Proof. By induction on e_2 .

If e_2 is a value, then we have the conclusion.

Otherwise, we show a contradiction. Suppose that e_2 is not a value, i.e., $e_2 = e_{21} e_{22}$ for some e_{21} and e_{22} . Since $e_1 \rightrightarrows_{\overline{\aleph}} e_2 = e_{21} e_{22}$, there exist some e_{11} and e_{12} such that $e_1 \rightrightarrows_{\overline{\aleph}} e_{11} e_{12}$ and $e_{11} \rightrightarrows_{\overline{\aleph}} e_{21}$ and $e_{12} \rightrightarrows_{\overline{\aleph}} e_{22}$ by Lemma [56.](#page-30-1) Since e_1 does not get stuck, e_{11} does not either. Since $e_{21} e_{22} = e_2 \rightarrow F$, we have $e_{21} \rightarrow F$. Thus, by the IH, $e_{21} = w_{21}$ for some w_{21} . Since $e_{11} \rightrightarrows_{\overline{R}} e_{21} = w_{21}$, there exists some w_{11} such that $e_{11} \rightrightarrows_{\overline{F}}^* w_{11}$ and $w_{11} \rightrightarrows_{\overline{R}} w_{21}$ by Lemma [55.](#page-30-2) Thus, $e_1 \longrightarrow_F^* e_{11} e_{12} \longrightarrow_F^* w_{11} e_{12}$. Since e_1 does not get stuck, e_{12} does not either. Since $w_{21} e_{22} = e_2 \rightarrow F$, we have $e_{22} \rightarrow F$. Thus, by the IH, $e_{22} = w_{22}$ for some w_{22} . Since $e_{12} \rightrightarrows_{\mathcal{R}} e_{22} = w_{22}$, there exists some w_{12} such that $e_{12} \longrightarrow_F^* w_{12}$ and $w_{12} \rightrightarrows_{\overline{N}} w_{22}$ by Lemma [55.](#page-30-2) Thus, $e_1 \longrightarrow_F^* w_{11} e_{12} \longrightarrow_F^* w_{11} w_{12}$. By case analysis on w_{21} .

Case $w_{21} = \lambda x \cdot e_{21}'$: Contradictory because $e_2 \to e_F$ by the assumption but $e_2 = (\lambda x \cdot e_{21}') w_{22}$ can be evaluated.

Case $w_{21} = c_1$ or x: Since $w_{11} \rightrightarrows_{\overline{N}} w_{21}$, we have $c_1 \longrightarrow_F^* w_{11} w_{12} \longrightarrow_F^* w_{21} w_{12}$ by Lemma [58.](#page-31-1)

If $w_{21} = x$, then contradictory to the assumption that e_1 does not get stuck.

Otherwise, if $w_{21} = c_1$, then, since e_1 does not get stuck, we can see $w_{12} = c_2$ for some c_2 such that $\zeta(c_1, c_2)$ is well defined, and $w_{21} w_{12} = c_1 c_2 \rightsquigarrow_{\delta} \zeta(c_1, c_2)$. Since $c_2 = w_{12} \rightrightarrows_{\overline{N}} w_{22}$, we have $w_{22} = c_2$ by Lemma [50.](#page-29-1) Thus, $e_2 = w_{21} w_{22} = c_1 c_2 \longrightarrow_F \zeta(c_1, c_2)$, which is contradictory to the assumption that $e_2 \nightharpoondown \rightarrow_F \zeta(c_1, c_2)$,

 \Box

Lemma 62. If e_1 does not get stuck and $e_1 \Longrightarrow_{\overline{R}} e_2$, then e_2 does not either.

Proof. Suppose that e_2 gets stuck, i.e., there exists some e'_2 such that $e_2 \longrightarrow_F^* e'_2$ and $e'_2 \nrightarrow_F$ and e'_2 is not a value. By Lemmas [45](#page-28-3) and [60,](#page-31-3) there exists some e'_1 such that $e_1 \longrightarrow_F^* e'_1$ and $e'_1 \rightrightarrows_F e'_2$. Since e_1 does not get stuck, e'_1 does not either. By Lemma [61,](#page-32-2) e'_2 is a value, which is contradictory to the assumption that e'_2 is not a value. □

Lemma 63. Suppose that e_1 does not get stuck. If $e_1 \mapsto^*_{\mathbb{R}} e_2$ and $e_2 \rightarrow^*_{F} e'_2$, then there exists some e'_1 such that $e_1 \longrightarrow_F^* e'_1$ and $e'_1 \Longrightarrow_F^* e'_2$.

Proof. By induction on the number of the steps of $e_1 \mapsto \frac{*}{\aleph} e_2$.

If the number of the steps is zero, then $e_1 = e_2$, so we have the conclusion by letting $e'_1 = e'_2$.

If the number of the steps is more than zero, then there exists some e such that $e_1 \Longrightarrow_{\mathbb{R}}^* e \Longrightarrow_{\mathbb{R}}^* e_2$. By Lemma [62,](#page-32-3) e does not get stuck. Thus, by the IH, there exists some e' such that $e \rightarrow^*_{\mathbb{F}} e'$ and $e' \mapsto^*_{\mathbb{F}} e'_2$. Since $e_1 \mapsto^*_{\mathbb{F}} e$, we have a \Rightarrow a by Lamma 45. By Lamma 60, there exists some e' such that $e \rightarrow^*_{\math$ have $e_1 \rightrightarrows_{\overline{N}} e$ by Lemma [45.](#page-28-3) By Lemma [60,](#page-31-3) there exists some e'_1 such that $e_1 \rightharpoonup_{\overline{F}}^* e'_1$ and $e'_1 \rightharpoonup_{\overline{N}}^* e'$. By Lemma [47,](#page-28-4) $e'_1 \Longrightarrow_{\overline{\aleph}}^* e'$. Thus, we have the conclusion because $e'_1 \Longrightarrow_{\overline{\aleph}}^* e' \Longrightarrow_{\overline{\aleph}}^* e'_2$. Г

Lemma 64. If e does not get stuck and $e \mapsto^*_{\overline{N}} w$, then $e \longrightarrow^*_{F} w'$ for some w' such that $w' \mapsto^*_{\overline{N}} w$.

Proof. By induction on the number of the steps of $e \mapsto \frac{*}{\aleph} w$.

If the number of the steps is zero, then $e = w$, so we have the conclusion by letting $w' = w$.

If the number of the steps is more than zero, then there exists some e'' such that $e \mapsto \frac{e}{\lambda} e' \mapsto \frac{e}{\lambda} w$. By Lemma [62,](#page-32-3) e" does not get stuck. Thus, by the IH, there exists some w" such that $e'' \to_{F}^{*} w''$ and $w'' \Longrightarrow_{\mathbb{R}}^{*} w$. By Lemmas [45](#page-28-3) and [60,](#page-31-3) there exists some e' such that $e \longrightarrow_F^* e'$ and $e' \rightrightarrows_{\overline{N}} w''$. By Lemma [55,](#page-30-2) there exists some w' such that $e' \longrightarrow_F^* w'$ and $w' \rightrightarrows_{\overline{\aleph}} w''$. By Lemma [47,](#page-28-4) $w' \rightrightarrows_{\overline{\aleph}}^* w''$. Now, we have the conclusion because: $e \longrightarrow_F^* e' \longrightarrow_F^* w'$; and $w' \mapsto^*_{\overline{\aleph}} w'' \mapsto^*_{\overline{\aleph}} w$. \Box

3.3 Type Erasure

Lemma 65. For any erasable result R, erase(R) is a value in λ_v^{\forall} .

Proof. By induction on R. If $R = \Lambda \alpha M$ for some α and M, then $M = R'$ for some R' because R is erasable. Thus, erase(R) = erase(R') is a value by the IH. \Box

Lemma 66. For any M_1 , M_2 , and x, erase(M_1)[erase(M_2)/x] = erase(M_1 [M_2 /x]).

Proof. By induction on M_1 .

Case $M_1 = y$: Obvious.

Case $M_1 = c$: Obvious.

Case $M_1 = \lambda y.M_1'$: Without loss of generality, we can suppose that $y \neq x$ and y does not occur free in M_2 and erase (M_2) . Then:

$$
\begin{array}{lcl} \textsf{erase}(M_1)[\textsf{erase}(M_2)/x] & = & (\lambda y.\textsf{erase}(M'_1))[\textsf{erase}(M_2)/x] \\ & = & \lambda y.(\textsf{erase}(M'_1)[\textsf{erase}(M_2)/x]) \\ & = & (\lambda y.\textsf{erase}(M'_1[M_2/x])) \quad \text{(by the IH)} \\ & = & \textsf{erase}(\lambda y. M'_1[M_2/x]) \\ & = & \textsf{erase}(M_1[M_2/x]) \\ & = & \textsf{erase}(M_1[M_2/x]) \ . \end{array}
$$

Case $M_1 = M_{11} M_{12}$: By the IHs.

Case $M_1 = M'_1$: By the IH,

$$
\mathsf{erase}(M_1)[\mathsf{erase}(M_2)/x] = \mathsf{erase}(M_1')[\mathsf{erase}(M_2)/x] = \mathsf{erase}(M_1'[M_2/x]) = \mathsf{erase}(!M_1'[M_2/x]) = \mathsf{erase}(M_1[M_2/x])
$$

Case $M_1 = \text{let}!y = M_{11}$ in M_{12} : Without loss of generality, we can suppose that $y \neq x$ and y does not occur free in M_2 and erase(M_2). Then:

$$
\begin{array}{rcl} \texttt{erase}(M_1)[\texttt{erase}(M_2)/x] & = & ((\lambda y.\texttt{erase}(M_{12}))\,\texttt{erase}(M_{11}))[\texttt{erase}(M_2)/x] \\ & = & (\lambda y.\texttt{(erase}(M_{12})[\texttt{erase}(M_2)/x]))\,\texttt{erase}(M_{11})[\texttt{erase}(M_2)/x] \\ & = & (\lambda y.\texttt{erase}(M_{12}[M_2/x]))\,\texttt{erase}(M_{11}[M_2/x]) \quad \text{(by the IHs)} \\ & = & \texttt{erase}(\texttt{let} \, !y = M_{11}[M_2/x] \, \text{in} \, M_{12}[M_2/x]) \\ & = & \texttt{erase}(M_1[M_2/x]) \ . \end{array}
$$

Case $M_1 = \nu \alpha$. M'_1 : By the IH.

Case $M_1 = \Lambda^{\circ} \langle \alpha, M'_1 \rangle$: By the IH.

Case $M_1 = \Lambda \alpha \cdot M_1'$: By the IH.

Case $M_1 = M'_1 A$: By the IH.

Lemma 67. For any M, A, and α , erase($M[A/\alpha]$) = erase(M).

Proof. Straightforward by induction on M.

Lemma 68. If M_1 is erasable and $M_1 \rightsquigarrow M_2$, then $\text{erase}(M_1) = \text{erase}(M_2)$ or $\text{erase}(M_1) \rightsquigarrow_N \text{erase}(M_2)$ for some $\aleph \in {\beta_v, \delta}.$

Proof. By case analysis on the reduction rule applied to derive $M_1 \rightsquigarrow M_2$.

Case (R_CONST): By δ -reduction.

 \Box

Case (R_BETA): We are given $(\lambda x.M) R \rightsquigarrow M [R/x]$ for some x, M, and R such that $M_1 = (\lambda x.M) R$ and $M_2 = M[R/x]$. Since M_1 is erasable, so is R. Thus, by Lemma [65,](#page-33-1) erase (R) is a value in λ_v^{\forall} . Thus:

 $\mathsf{erase}(M_1) = (\lambda x.\mathsf{erase}(M))\, \mathsf{erase}(R) \leadsto_{\beta_v} \mathsf{erase}(M)[\mathsf{erase}(R)/x] \,\, .$

By Lemma [66,](#page-33-2) erase $(M)[$ erase $(R)/x] =$ erase $(M[R/x]) =$ erase (M_2) . Thus, we have the conclusion.

Case (R_BANG): We are given let $x = \nu \overline{\alpha}$. \overline{R} in $M \rightsquigarrow M[\nu \overline{\alpha}$. $R/x]$ for some $x, \overline{\alpha}$, R , and M such that $M_1 =$ let $!x = \nu \overline{\alpha}$. $!R$ in M and $M_2 = M[\nu \overline{\alpha}, R/x]$. By Lemma [65,](#page-33-1) erase $(\nu \overline{\alpha}, R)$ is a value in λ_v^{\forall} . Thus:

$$
\text{erase}(M_1) = (\lambda x.\text{erase}(M))\,\text{erase}(\nu \overline{\alpha}, R) \leadsto_{\beta_v} \text{erase}(M)[\text{erase}(\nu \overline{\alpha}, R)/x]\enspace .
$$

By Lemma [66,](#page-33-2) erase (M) [erase $(\nu \overline{\alpha} R)/x$] = erase $(M[\nu \overline{\alpha} R/x])$ = erase (M_2) . Thus, we have the conclusion.

- Case (R_CLOSING): We are given $\Lambda^{\circ} \langle \alpha, R \rangle \sim \Lambda \alpha R$ for some α and R such that $M_1 = \Lambda^{\circ} \langle \alpha, R \rangle$ and $M_2 =$! $\Lambda \alpha$.*R*. By definition, erase(M_1) = erase(M_2).
- Case (R_TBETA): We are given $(\Lambda \alpha M) A \rightsquigarrow M[A/\alpha]$ for some α , M, and A such that $M_1 = (\Lambda \alpha M) A$ and $M_2 = M[A/\alpha]$. We have the conclusion by:

$$
\mathsf{erase}(M_1) = \mathsf{erase}(M) = \mathsf{erase}(M[A/\alpha]) = \mathsf{erase}(M_2)
$$

with Lemma [67.](#page-33-3)

Lemma 69. If M_1 is erasable and $M_1 \longrightarrow M_2$, then $\mathsf{erase}(M_1) \longrightarrow_F^{0,1} \mathsf{erase}(M_2)$.

Proof. By induction on the derivation of $M_1 \longrightarrow M_2$.

Case $(E_{\text{RED}}):$ By Lemma [68.](#page-33-4)

Case (E_EVAL): We are given $E[M_1'] \longrightarrow E[M_2']$ for some E, M_1' , and M_2' such that $M_1 = E[M_1']$ and $M_2 = E[M_2']$. By inversion, we have $M'_1 \longrightarrow M'_2$.

By the IH, erase $(M'_1) \longrightarrow_F^{0,1}$ erase (M'_2) . We perform case analysis on E.

Case $E = [] M$: We have $M_1 = M'_1 M$ and $M_2 = M'_2 M$. Since erase $(M'_1) \longrightarrow_F^{0,1}$ erase (M'_2) , we have the conclusion by:

$$
\text{erase}(M_1) = \text{erase}(M_1')\, \text{erase}(M) \longrightarrow_F {}^{0,1}\, \text{erase}(M_2')\, \text{erase}(M) = \text{erase}(M_2) \,\, .
$$

Case $E = R$ []: We have $M_1 = RM_1'$ and $M_2 = RM_2'$. Since M_1 is erasable, so is R. Thus, by Lemma [65,](#page-33-1) erase(R) is a value in λ_v^{\forall} . Since erase(M'_1) $\longrightarrow_F^{0,1}$ erase(M'_2), we have the conclusion by:

$$
\text{erase}(M_1) = \text{erase}(R) \, \text{erase}(M_1') \longrightarrow_F {}^{0,1} \, \text{erase}(R) \, \text{erase}(M_2') = \text{erase}(M_2) \,\, .
$$

Case $E = \text{let } !x = []$ in M : We have $M_1 = \text{let } !x = M'_1$ in M and $M_2 = \text{let } !x = M'_2$ in M . Since $\textsf{erase}(M'_1) {\longrightarrow}_F {}^{0,1}$ erase(M'_2), we have the conclusion by:

$$
\text{erase}(M_1) = (\lambda x.\text{erase}(M))\, \text{erase}(M_1') \longrightarrow_F^{0,1} (\lambda x.\text{erase}(M))\, \text{erase}(M_2') = \text{erase}(M_2)\,\,.
$$

Case $E = \Lambda^{\circ} \langle \beta, | \rangle$, $\langle | A, \nu \alpha, | \rangle$, and $\langle | \rangle$: We have the conclusion by:

$$
\text{erase}(M_1) = \text{erase}(M_1') \longrightarrow_F {}^{0,1} \text{ erase}(M_2') = \text{erase}(M_2)
$$

with the IH erase $(M_1') \longrightarrow_F^{0,1}$ erase $(M_2').$

Case (E_EXTR): We are given $\mathbb{E}[\nu\beta, R] \longrightarrow \nu\beta$. $\mathbb{E}[R]$ for some \mathbb{E}, β , and R such that $M_1 = \mathbb{E}[\nu\beta, R]$ and $M_2 =$ $\nu\beta$. $\mathbb{E}[R]$ and $\alpha \notin f\mathcal{U}(\mathbb{E})$.

We show that $erase(M_1) = erase(M_2)$ by case analysis on E.

Case $\mathbb{E} = [R_2 : \text{We find } M_1 = (\nu \beta, R) R_2 \text{ and } M_2 = \nu \beta, (R R_2).$ We have the conclusion by:

erase (M_1) = erase $((\nu\beta. R) R_2)$ = erase $(R R_2)$ = erase $(\nu\beta. (R R_2))$ = erase (M_2) .

Case $\mathbb{E} = \Lambda^{\circ} \langle \gamma, \lceil \rceil \rangle$ and $\lceil \rceil A$: We have the conclusion by:

 $\text{erase}(M_1) = \text{erase}(\mathbb{E}[\nu\beta, R]) = \text{erase}(\nu\beta, R) = \text{erase}(R) = \text{erase}(\mathbb{E}[R]) = \text{erase}(\nu\beta, \mathbb{E}[R]) = \text{erase}(M_2)$.

Lemma 70. If R is erasable and $\Delta \vdash R : \forall \alpha.A$, then, for any B, R B $\longrightarrow^* R'$ for some R' such that erase(R) = erase (R') .

Proof. By induction on the derivation of $\Delta \vdash R : \forall \alpha.A$.

Case (T_VAR): Contradictory.

- Case (T_CONST), (T_ABS), and (T_BANG): Contradictory because the type of R is a polymorphic type.
- Case (T_App), (T_TApp), (T_LETBANG), and (T_GEN): Contradictory because terms accepted by those typing rules are not results.
- Case (T_Nu): We are given $\Delta \vdash \nu \beta$. $R_0 : \forall \alpha.A$ for some β and R_0 such that $R = \nu \beta$. R_0 . By inversion, $\Delta, \beta^1 \vdash$ R_0 : $\forall \alpha.A.$ Without loss of generality, we can suppose that $\beta \notin ftv(B)$.

By the IH, $R_0 B \longrightarrow^* R''$ for some R'' such that $\textsf{erase}(R_0) = \textsf{erase}(R'')$. By $(\textsf{E_EVAL})$, $\nu\beta$. $(R_0 B) \longrightarrow^* \nu\beta$. R'' . We have the conclusion by letting $R' = \nu \beta$. R'' because: $R B = (\nu \beta, R_0) B \longrightarrow \nu \beta$. $(R_0 B) \longrightarrow^* \nu \beta$. $R'' = R'$; and $\textsf{erase}(R) = \textsf{erase}(R_0) = \textsf{erase}(R'') = \textsf{erase}(\nu\beta\ldotp R'') = \textsf{erase}(R')\ldotp$

Case (T_TABs): We are given $\Delta \vdash \Lambda \alpha. R_0 : \forall \alpha. A$ for some Δ , Δ , and R_0 such that $R = \Lambda \alpha. R_0$. Note that the body of the type abstraction is a result because R is erasable. We have the conclusion by letting $R' = R_0[B/\alpha]$ because: $R B = (\Lambda \alpha. R_0) B \longrightarrow R_0[B/\alpha] = R'$ by $(\text{R_TBERTA})/(\text{E_RED})$; and $\textsf{erase}(R) = \textsf{erase}(R_0) = \textsf{erase}(R')$ by Lemma [67.](#page-33-3)

Lemma 71. If $\Delta \vdash R : A$, then $\Lambda^{\circ} \langle \alpha, R \rangle \longrightarrow^* R'$ for some R' such that $\text{erase}(R) = \text{erase}(R').$

Proof. By induction on the derivation of $\Delta \vdash R$: !A.

Case (T_VAR): Contradictory.

- Case (T_CONST), (T_ABS), and (T_TABS): Contradictory because the type of R is !A.
- Case (T_App), (T_LETBANG), (T_TApp), and (T_GEN): Contradictory because terms accepted by those typing rules are not results.
- Case (T_BANG): We are given $\Delta \vdash !R_0 : !A$ for some R_0 such that $R = !R_0$. We have the conclusion by letting $R' = \Lambda \alpha R_0$ because: $\Lambda^{\circ} \langle \alpha, R \rangle = \Lambda^{\circ} \langle \alpha, R_0 \rangle \longrightarrow \Lambda \alpha R_0 = R'$; and erase $(R) = \text{erase}(R_0) = \text{erase}(\Lambda \alpha R_0) = \text{erase}(\Lambda \alpha R_0)$ $\mathsf{erase}(R').$
- Case (T_Nu): We are given $\Delta \vdash \nu \beta$. R_0 : !A for some β and R_0 such that $R = \nu \beta$. R_0 . By inversion, $\Delta, \beta^1 \vdash R_0$: !A. Without loss of generality, we can suppose that $\beta \neq \alpha$.

By the IH, $\Lambda^{\circ} \langle \alpha, R_0 \rangle \longrightarrow^* R''$ for some R'' such that $\textsf{erase}(R_0) = \textsf{erase}(R'')$. By $(\textsf{E_EVAL}), \nu\beta, \Lambda^{\circ} \langle \alpha, R_0 \rangle \longrightarrow^* R''$ $\nu\beta$. R''. We have the conclusion by letting $R' = \nu\beta$. R'' because: $\Lambda^{\circ}\langle\alpha, R\rangle = \Lambda^{\circ}\langle\alpha, \nu\beta, R_0\rangle \longrightarrow \nu\beta$. $\Lambda^{\circ}\langle\alpha, R_0\rangle \longrightarrow^*$ $\nu\beta$. $R'' = R';$ and erase $(R) = \text{erase}(R_0) = \text{erase}(R'') = \text{erase}(R').$

Lemma 72. If M is erasable and $M \longrightarrow M'$, then M' is also erasable.

 \Box

 \Box
Proof. Straightforward by induction on the evaluation derivation of $M \longrightarrow M'$. The case for (E_RED) depends on the fact that substitution preserves erasability (which can be proven easily using the fact that substitution for a variable in a result produces a result). \Box

Lemma 73. Suppose that M is erasable. If $\Delta \vdash M : A$ and erase(M) is a value, then $M \rightarrow^* R$ for some R such that erase(R) = erase(M).

Proof. By induction on the typing derivation for M.

Case (T_VAR): Contradictory.

Case (T_CONST), (T_ABS), and (T_TABS): Obvious by letting $R = M$.

Case (T_App): Contradictory because erase (M) is not a value.

Case (T_BANG): We are given $\Delta \vdash !M' : !B$ for some M' and B such that $M = !M'$ and $A = !B$. By inversion, $\omega \Delta \vdash M' : B.$

Since erase(M) = erase(M'), we find erase(M') is a value. Since M is erasable, so is M'. Thus, by the IH, $M' \longrightarrow^* R'$ for some R' such that erase(R') = erase(M'). We have the conclusion by letting $R = \mathcal{R}'$ because: $M = !M' \longrightarrow^* !R' = R$ by (E_EVAL) ; and erase $(R) = \text{erase}(R') = \text{erase}(M') = \text{erase}(M)$.

Case (T_LETBANG): Contradictory because erase (M) is not a value.

Case (T_NU): We are given $\Delta \vdash \nu \alpha$. M': A for some α and M' such that $M = \nu \alpha$. M'. By inversion, $\Delta, \alpha^1 \vdash M'$: A.

Since erase(M) = erase(M'), we find erase(M') is a value. Since M is erasable, so is M'. Thus, by the IH, $M' \longrightarrow^* R'$ for some R' such that erase(R') = erase(M'). We have the conclusion by letting $R = \nu \alpha$. R' because: $M = \nu \alpha$. $M' \longrightarrow^* \nu \alpha$. $R' = R$ by (E_EVAL); and erase(R) = erase(R') = erase(M') = erase(M).

Case (T_GEN): We are given $\Delta_1, \alpha^1, \Delta_2 \vdash \Lambda^{\circ} \langle \alpha, M' \rangle : \forall \alpha. B$ for some $\Delta_1, \Delta_2, \alpha, M'$, and B such that $\Delta =$ $\Delta_1, \alpha^1, \Delta_2$ and $M = \Lambda^{\circ} \langle \alpha, M' \rangle$ and $A = \forall \alpha, B$. By inversion, $\Delta_1, \alpha^0, \Delta_2 \vdash M' : !B$.

Since erase(M) = erase(M'), we find erase(M') is a value. Since M is erasable, so is M'. Thus, by the IH, $M' \longrightarrow^* R'$ for some R' such that erase(R') = erase(M'). We also have $\Delta_1, \alpha^0, \Delta_2 \vdash R' : !B$ by Lemma [40.](#page-24-0) By Lemma [71,](#page-35-0) $\Lambda^{\circ}(\alpha, R') \longrightarrow^* R$ for some R such that erase(R') = erase(R). We have the conclusion by: $M = \Lambda^{\circ} \langle \alpha, M' \rangle \longrightarrow^* \Lambda^{\circ} \langle \alpha, R' \rangle \longrightarrow^* R$; and erase $(R) = \text{erase}(R') = \text{erase}(M') = \text{erase}(M)$.

Case (T_TApp): We are given $\Delta \vdash M'B : C[B/\alpha]$ for some M', B, C, and α such that $M = M'B$ and $A =$ $C[B/\alpha]$. By inversion, $\Delta \vdash M' : \forall \alpha$.C.

Since erase(M) = erase(M'), we find erase(M') is a value. Since M is erasable, so is M'. Thus, by the IH, $M' \longrightarrow^* R'$ for some R' such that erase(R') = erase(M'). By Lemma [40,](#page-24-0) $\Delta \vdash R' : \forall \alpha$.C. By Lemma [72,](#page-35-1) R' is erasable. Thus, by Lemma [70,](#page-35-2) $R'B \longrightarrow^* R$ for some R such that $\text{erase}(R') = \text{erase}(R)$. We have the conclusion because: $M = M' B \longrightarrow^* R' B \longrightarrow^* R$; and erase $(R) = \text{erase}(R') = \text{erase}(M') = \text{erase}(M)$.

 \Box

Lemma 74. If $\Delta_1 \vdash R_1 : A \multimap B$ and $\Delta_2 \vdash R_2 : A$ and R_2 is erasable and erase($R_1 R_2$) $\leadsto_R e$ for some $\aleph \in \{\beta_v, \delta\}$, then $R_1 R_2 \longrightarrow^* M$ for some M such that erase $(M) = e$.

Proof. By induction on the derivation of $\Delta_1 \vdash R_1 : A \multimap B$ with case analysis on the typing rule applied last to derive Δ_1 \vdash R₁ : A \multimap B.

Case (T_VAR), (T_APP), (T_BANG), (T_LETBANG), (T_GEN), (T_TABS), and (T_TAPP): Contradictory.

Case (T_CONST): We are given $\Delta_1 \vdash c_1 : ty(c_1)$ for some c_1 such that $R_1 = c_1$ and $A \multimap B = ty(c_1)$. By Assumption [1,](#page-1-0) $A = \iota$ for some ι . Since $\Delta_2 \vdash R_2 : \iota$, we have $R_2 = \nu \overline{\alpha}$. c_2 for some $\overline{\alpha}$ and c_2 such that $ty(c_2) = \iota$ by Lemma [35.](#page-23-0) Again by Assumption [1,](#page-1-0) $\zeta(c_1, c_2)$ is well defined, and $R_1 R_2 = c_1 \nu \overline{\alpha}$. $c_2 \rightarrow \nu \overline{\alpha}$. $\zeta(c_1, c_2)$ by $(R_{\text{-}}\text{Consr})/(E_{\text{-}}\text{RED})$. We also have erase $(R_1 R_2) = c_1 c_2 \leadsto_R e$, so $e = \zeta(c_1, c_2)$. Since $\zeta(c_1, c_2)$ is a constant, we have erase($\nu\overline{\alpha}$. $\zeta(c_1, c_2)$) = $\zeta(c_1, c_2)$. Thus, we have the conclusion by letting $M = \nu\overline{\alpha}$. $\zeta(c_1, c_2)$.

- Case (T_Abs): We have $R_1 = \lambda x.M_1$ for some x and M_1 . By (R_BETA)/(E_RED), $R_1 R_2 \longrightarrow M_1[R_2/x]$. Let $M =$ $M_1[R_2/x]$. Since R_2 is erasable, erase (R_2) is a value by Lemma [65.](#page-33-0) Thus, erase $(R_1\,R_2)=(\lambda x.$ erase $(M_1))$ erase $(R_2)\rightsquigarrow_{\aleph}$ erase(M_1)[erase(R_2)/x] = e. By Lemma [66,](#page-33-1) e = erase($M_1[R_2/x]$) = erase(M). Thus, we have the conclusion.
- Case (T_Nu): We are given $\Delta_1 \vdash \nu \alpha$. R'_1 : $A \multimap B$ for some α and R'_1 such that $R_1 = \nu \alpha$. R'_1 . By inversion, $\Delta_1, \alpha^1 \vdash R_1' : A \multimap B$. By $(\text{R_EXTR})/(\text{E_RED}), R_1 R_2 \implies \nu\alpha$. $(R_1' R_2)$. Since $\textsf{erase}(R_1' R_2) = \textsf{erase}(R_1 R_2) \leadsto_R e$, there exists some M' such that $R'_1 R_2 \longrightarrow^* M'$ and erase(M') = e by the IH. We have the conclusion by letting $M = \nu \alpha$. M' because: $R_1 R_2 = (\nu \alpha \cdot R_1') R_2 \longrightarrow \nu \alpha \cdot (R_1' R_2) \longrightarrow^* \nu \alpha$. $M' = M$; and erase $(M) = \text{erase}(M') = e$.

 \Box

Lemma 75. Suppose that M_1 and M_2 are erasable. If $\Delta_1 \vdash M_1 : A \multimap B$ and $\Delta_2 \vdash M_2 : A$ and erase($M_1 M_2$) $\leadsto_R e$ for some $\aleph \in {\beta_v, \delta}$, then $M_1 M_2 \longrightarrow^* M$ for some M such that erase(M) = e.

Proof. Since erase($M_1 M_2$) = erase(M_1) erase(M_2) and erase($M_1 M_2$) $\leadsto_R e$, we find erase(M_1) and erase(M_2) are values. Thus, by Lemma [73,](#page-36-0) there exist some R_1 and R_2 such that

- $M_1 \longrightarrow^* R_1$ and erase(R_1) = erase(M_1), and
- $M_2 \longrightarrow^* R_2$ and erase(R_2) = erase(M_2).

We also have $\Delta_1 \vdash R_1 : A \multimap B$ and $\Delta_2 \vdash R_2 : A$ by Lemma [40.](#page-24-0) Since erase($R_1 R_2$) = erase($M_1 M_2$), we have erase($R_1 R_2$) \rightsquigarrow ₈, e. By Lemma [72,](#page-35-1) R_2 is erasable. Thus, by Lemma [74,](#page-36-1) there exists some M such that $R_1 R_2 \rightarrow^* M$ and erase(M) = e. Since $M_1 M_2 \longrightarrow^* R_1 M_2 \longrightarrow^* R_1 R_2 \longrightarrow^* M$, we have the conclusion. □

Lemma 76. Suppose that M_1 is erasable. If $\Delta_1 \vdash M_1$: !B and $\Delta_2, x : \omega \cdot B \vdash M_2$: A and erase(let $!x =$ M_1 in M_2) \rightsquigarrow _N e for some $\aleph \in \{\beta_v, \delta\}$, then let $!x = M_1$ in $M_2 \longrightarrow^* M$ for some M such that erase(M) = e.

Proof. Since $(\lambda x.\text{erase}(M_2))$ erase $(M_1) = \text{erase}(\text{let } !x = M_1 \text{ in } M_2) \rightsquigarrow_R e$, we can find erase (M_1) is a value. Thus, by Lemma [73,](#page-36-0) $M_1 \longrightarrow^* R_1$ for some R_1 such that erase(R_1) = erase(M_1). We also have $\Delta_1 \vdash R_1$: !B by Lemma [40.](#page-24-0) By Lemma [35,](#page-23-0) $R_1 = \nu \overline{\alpha}$. R'_1 for some $\overline{\alpha}$ and R'_1 . Now, we have the conclusion by letting $M = M_2[\nu \overline{\alpha}, R'_1/x]$ because:

- let $!x = M_1$ in $M_2 \longrightarrow^*$ let $!x = R_1$ in $M_2 =$ let $!x = \nu \overline{\alpha}$. $!R'_1$ in $M_2 \longrightarrow M_2[\nu \overline{\alpha} \cdot R'_1/x]$; and
- $\bullet \;\; \textsf{erase}(M) = \textsf{erase}(M_2[\nu \overline{\alpha},R'_1/x]) = \textsf{erase}(M_2)[\textsf{erase}(\nu \overline{\alpha},R'_1)/x] = \textsf{erase}(M_2)[\textsf{erase}(R_1)/x] = \textsf{erase}(M_2)[\textsf{erase}(M_1)/x] = \textsf{erase}(M_1)/x$ e with Lemma [66](#page-33-1) and the fact that $(\lambda x.\text{erase}(M_2))$ erase $(M_1) \rightsquigarrow_R e$, so $e = \text{erase}(M_2)[\text{erase}(M_1)/x]$.

 \Box

Lemma 77. Suppose that M_1 is erasable. If $\Delta \vdash M_1$: A and erase(M_1) \leadsto_R e for $\aleph \in {\beta_v, \delta}$, then there exists some M_2 such that $M_1 \longrightarrow^* M_2$ and erase(M_2) = e.

Proof. By induction on the typing derivation of $\Delta \vdash M_1 : A$.

Case (T_VAR): Contradictory.

Case (T_CONST) and (T_ABS): Contradictory because there is no reduction allowing erase(M_1) \rightsquigarrow_R e.

Case (T_TABs): Since M_1 is erasable, we have $M_1 = \Lambda \alpha \cdot R$ for some α and erasable R. By Lemma [65,](#page-33-0) erase(R) is a value in λ_v^{\forall} . Thus, there is no reduction allowing $\mathsf{erase}(R) = \mathsf{erase}(M_1) \leadsto_{\aleph} e$.

Case (T App): By Lemma [75.](#page-37-0)

Case (T_BANG): We are given $\Delta \vdash !M_1': !B$ for some M_1' and B such that $M_1 = !M_1'$ and $A = !B$. By inversion, $\omega\Delta \vdash M'_1$: B. We have erase (M'_1) = erase $(M_1) \leadsto_R e$. Since M_1 is erasable, so is M'_1 . Thus, by the IH, $M'_1 \longrightarrow^* M'_2$ for some M'_2 such that erase(M'_2) = e. We have the conclusion by letting $M_2 = M'_2$ because: $M_1 = !M'_1 \longrightarrow^* !M'_2 = M_2$ by (E_EVAL); and erase(M_2) = erase(M'_2) = e.

Case (T_LETBANG): By Lemma [76.](#page-37-1)

Case (T_Nu): We are given $\Delta \vdash \nu \alpha$. M'_1 : A for some α and M'_1 such that $M_1 = \nu \alpha$. M'_1 . By inversion, $\Delta, \alpha^1 \vdash$ M_1' : A. We have $\mathsf{erase}(M_1') = \mathsf{erase}(M_1) \leadsto_R e$. Since M_1 is erasable, so is M_1' . Thus, by the IH, $M_1' \longrightarrow^* M_2'$ for some M'_2 such that erase(M'_2) = e. We have the conclusion by letting $M_2 = \nu \alpha$. M'_2 because: $M_1 = \nu \alpha$. $M'_1 \longrightarrow^*$ $\nu \alpha$. $M'_2 = M_2$ by (E_EVAL); and erase(M_2) = erase(M'_2) = e.

Case $(T_{\text{-}}GEN)$ and $(T_{\text{-}}TAPP)$: By the IH, similarly to the cases of $(T_{\text{-}}BANG)$ and $(T_{\text{-}}NU)$.

 \Box

Lemma 78. Suppose that M_1 is erasable. If $\Delta \vdash M_1$: A and erase(M_1) \rightarrow $_F$ e, then there exists some M_2 such that $M_1 \longrightarrow^* M_2$ and erase $(M_2) = e$.

Proof. By induction on the derivation of $\Delta \vdash M_1$: A with case analysis on the typing rule last to derive $\Delta \vdash M_1$: A.

Case (T_VAR): Contradictory.

- Case (T_CONST) and (T_ABS): Contradictory because there is no reduction allowing erase(M_1) $\longrightarrow_F e$.
- Case (T_TABS): Since M_1 is erasable, we have $M_1 = \Lambda \alpha.R$ for some α and erasable R. By Lemma [65,](#page-33-0) erase(R) = erase(M_1) is a value in λ_v^{\forall} . Thus, there is no reduction allowing erase(M_1) $\longrightarrow_F e$, so there is a contradiction.
- Case (T_App): We are given $\Delta_1 + \Delta_2 + M_{11} M_{12}$: A for some Δ_1 , Δ_2 , M_{11} , and M_{12} such that $\Delta = \Delta_1 + \Delta_2$ and $M_1 = M_{11} M_{12}$. By inversion, $\Delta_1 \vdash M_{11} : B \multimap A$ and $\Delta_2 \vdash M_{12} : B$ for some B. We perform case analysis on how the evaluation erase(M_{11}) erase(M_{12}) = erase(M_1) $\longrightarrow_F e$ proceeds.

Case erase(M_{11}) erase(M_{12}) $\rightsquigarrow_{\aleph} e$ for some $\aleph \in {\beta_v, \delta}$: By Lemma [77.](#page-37-2)

- Case erase(M_{11}) $\longrightarrow_F e_1$ and $e = e_1$ erase(M_{12}): Since $\Delta_1 \vdash M_{11}$: $B \multimap A$ and M_{11} is erasable, there exists some M_{21} such that $M_{11} \longrightarrow^* M_{21}$ and erase(M_{21}) = e_1 by the IH. We have the conclusion by letting $M_2 = M_{21} M_{12}$ because: $M_1 = M_{11} M_{12} \longrightarrow^* M_{21} M_{12} = M_2$; and erase (M_2) = erase (M_{21}) erase (M_{12}) = e_1 erase $(M_{12})=e$.
- Case erase(M_{11}) = w_1 and erase(M_{12}) $\longrightarrow_F e_2$ and $e = w_1 e_2$: Since erase(M_{11}) is a value and M_{11} is erasable, there exists some R_{11} such that $M_{11} \longrightarrow^* R_{11}$ and erase (R_{11}) = erase (M_{11}) by Lemma [73.](#page-36-0) By the IH on M_{12} , there exists some M_{22} such that $M_{12} \longrightarrow^* M_{22}$ and erase(M_{22}) = e_2 . We have the conclusion by letting $M_2 = R_{11} M_{22}$ because: $M_1 = M_{11} M_{12} \longrightarrow^* R_{11} M_{12} \longrightarrow^* R_{11} M_{22} = M_2$; and erase(M_2) = erase($R_{11} M_{22}$) = erase(M_{11}) $e_2 = e$.

Case $(T_{-}BANG)$, $(T_{-}NU)$, $(T_{-}TAPP)$, and $(T_{-}GEN)$: By the IH and $(E_{-}EVAL)$.

Case (T_LETBANG): We are given $\Delta_1 + \Delta_2$ | let $!x = M_{11}$ in M_{12} : A for some Δ_1 , Δ_2 , x, M_{11} , and M_{12} such that $\Delta = \Delta_1 + \Delta_2$ and $M_1 = \text{let } !x = M_{11}$ in M_{12} . By inversion, $\Delta_1 \vdash M_{11}$: !B and $\Delta_2, x : W B \vdash M_{12}$: A for some B. We perform case analysis on how the evaluation $(\lambda x.\text{erase}(M_{12}))$ erase $(M_{11}) = \text{erase}(M_1) \longrightarrow_F e$ proceeds.

Case $(\lambda x.\text{erase}(M_{12}))$ erase $(M_{11}) \rightsquigarrow_R e$ for some $\aleph \in {\beta_v, \delta}$: By Lemma [77.](#page-37-2)

Case erase(M_{11}) $\longrightarrow_F e_1$ and $e = (\lambda x.\text{erase}(M_{12})) e_1$: By the IH, there exists some M_{21} such that $M_{11} \longrightarrow^* M_{21}$ and erase(M_{21}) = e_1 . We have the conclusion by letting M_2 = let $x = M_{21}$ in M_{12} because: M_1 = let $x =$ M_{11} in $M_{12} \longrightarrow^*$ let $!x = M_{21}$ in $M_{12} = M_2$; and erase $(M_2) = (\lambda x.\text{erase}(M_{12}))$ erase $(M_{21}) = (\lambda x.\text{erase}(M_{12}))$ $e_1 =$ e.

 \Box

Theorem 2 (Meaning preservation of type erasure). Suppose that M is erasable.

- 1. If $M \longrightarrow^* M'$, then $\mathsf{erase}(M) \longrightarrow^*_{F} \mathsf{erase}(M')$. Furthermore, if M' is a result, then $\mathsf{erase}(M')$ is a value.
- 2. If $\Delta \vdash M : A$ and erase $(M) \longrightarrow_F^* e$, then $M \longrightarrow^* M'$ for some M' such that erase $(M') = e$. Furthermore, if $e = w$, then $M' \longrightarrow^* R$ for some R such that erase(R) = w.

Proof. 1. We first show that $M \longrightarrow^* M'$ implies $\mathsf{erase}(M) \longrightarrow^*_{F} \mathsf{erase}(M')$ by induction on the number of the steps of $M \longrightarrow^* M'$.

If the number of the steps is zero, i.e., $M = M'$, then we have the conclusion because $\mathsf{erase}(M) \longrightarrow_F^* \mathsf{erase}(M) =$ erase $(M^{\prime}).$

If the number of the steps is more than zero, there exists some M'' such that $M \longrightarrow M'' \longrightarrow^* M'$. We have the conclusion because $\mathsf{erase}(M) \longrightarrow_F^{0,1}\mathsf{erase}(M'') \longrightarrow_F^* \mathsf{erase}(M')$ by Lemmas [69](#page-34-0) and [72](#page-35-1) and the IH.

Finally, by Lemma [72,](#page-35-1) M' is erasable. Thus, if $M' = R$ for some R, then erase(R) is a value by Lemma [65.](#page-33-0) Thus, we have the conclusion.

2. We first show that there exists a desired M' by induction on the number of the steps of erase $(M) \longrightarrow_F^* e$.

If the number of the steps is zero, i.e., erase(M) = e, then we have the conclusion by letting $M' = M$.

If the number of the steps is more than zero, there exists some e'' such that $\mathsf{erase}(M) \longrightarrow_F e'' \longrightarrow_F^* e$. By Lemma [78,](#page-38-0) there exists some M'' such that $M \longrightarrow^* M''$ and erase(M'') = e''. By Lemma [40,](#page-24-0) $\Delta \vdash M''$: A. By Lemma [72,](#page-35-1) M'' is erasable. Thus, by the IH, $M'' \longrightarrow^* M'$ for some M' such that erase(M') = e. M' is a desired term since $M \longrightarrow^* M'' \longrightarrow^* M'$.

Next, we show that, if $\textsf{erase}(M') = w$, then $M' \longrightarrow^* R$ for some R such that $\textsf{erase}(R) = w$. Since $\Delta \vdash M' : A$ by Lemma [40](#page-24-0) and M' is erasable by Lemma [72,](#page-35-1) this is proven by Lemma [73.](#page-36-0)

 \Box

Lemma 79. Suppose that V_2 is erasable. If $\Delta_1 \vdash V_1 : A \multimap B$ and $\Delta_2 \vdash V_2 : A$, then erase($V_1 V_2$) $\longrightarrow_F e$ for some e.

Proof. By inversion of $\Delta_1 \vdash V_1 : A \multimap B$.

- Case (T_CONST): We are given $\Delta_1 \vdash c_1 : ty(c_1)$ for some c_1 such that $V_1 = c_1$ and $A \multimap B = ty(c_1)$. By Assumption [1,](#page-1-0) $A = \iota$ for some ι . By inversion of $\Delta_2 \vdash V_2 : \iota$, we can find $V_2 = c_2$ for some c_2 such that $ty(c_2) = \iota$. Thus, by Assumption [1](#page-1-0) and Definition [22,](#page-6-0) erase($V_1 V_2$) = $c_1 c_2 \longrightarrow_F \zeta(c_1, c_2)$.
- Case (T_Abs): We are given $V_1 = \lambda x.M_1$ for some x and M_1 . Since erase(V_1) = $\lambda x.\text{erase}(M_1)$ and erase(V_2) is a value by Lemma [65,](#page-33-0) we have the conclusion by letting $e = \text{erase}(M_1)[\text{erase}(V_2)/x]$ because: $\text{erase}(V_1 V_2) =$ $(\lambda x.\text{erase}(M_1))$ erase $(V_2) \longrightarrow_F \text{erase}(M_1)$ [erase $(V_2)/x$] = e.

Otherwise: Contradictory.

 \Box

Lemma 80. Suppose that R_2 is erasable. If $\Delta_1 \vdash V_1 : A \multimap B$ and $\Delta_2 \vdash R_2 : A$, then erase($V_1 R_2$) $\longrightarrow_F e$ for some e.

Proof. By induction on the derivation of $\Delta_2 \vdash R_2 : A$.

Case (T_VAR), (T_APP), (T_LETBANG), (T_TAPP), and (T_GEN): Contradictory.

Case (T_CONST), (T_ABS), (T_BANG), and (T_TABS): By Lemma [79.](#page-39-0)

Case (T_Nu): We are given $\Delta_2 \vdash \nu \alpha$. R'_2 : A for some α and R'_2 such that $R_2 = \nu \alpha$. R'_2 . By inversion, $\Delta, \alpha^1 \vdash R'_2$: A. By the IH, erase($V_1 R_2'$) $\longrightarrow_F e$ for some e. Since erase($V_1 R_2'$) = erase($V_1 R_2$), we have the conclusion.

 \Box

Lemma 81. Suppose that R_2 is erasable. If $\Delta_1 \vdash R_1 : A \multimap B$ and $\Delta_2 \vdash R_2 : A$, then erase($R_1 R_2$) $\longrightarrow_F e$ for some e.

Proof. By induction on the derivation of $\Delta_1 \vdash R_1 : A \multimap B$.

Case (T_VAR), (T_APP), (T_BANG), (T_LETBANG), (T_GEN), (T_TABS), and (T_TAPP): Contradictory.

Case (T_CONST) and (T_ABS): By Lemma [80.](#page-39-1)

Case (T_Nu): We are given $\Delta_1 \vdash \nu \alpha$. R'_1 : $A \multimap B$ for some α and R'_1 such that $R_1 = \nu \alpha$. R'_1 . By inversion, $\Delta, \alpha^1 \vdash R_1' : A \multimap B$. By the IH, erase $(R_1'R_2) \longrightarrow_F e$ for some e. Since erase $(R_1'R_2)$ = erase $(R_1 R_2)$, we have the conclusion.

Lemma 82. Suppose that M is erasable. If $\Delta \vdash M : A$ and $\mathsf{erase}(M) \nrightarrow F$, then $\mathsf{erase}(M)$ is a value in λ_v^{\forall} .

Proof. By induction on the derivation of $\Delta \vdash M : A$.

Case (T_VAR): Contradictory.

Case $(T_{\text{-}CONST})$ and $(T_{\text{-}ABS})$: Obvious.

Case (T_App): We are given $\Delta_1 + \Delta_2 + M_1 M_2$: A for some Δ_1 , Δ_2 , M_1 , and M_2 such that $\Delta = \Delta_1 + \Delta_2$ and $M = M_1 M_2$. By inversion, $\Delta_1 \vdash M_1 : B \multimap A$ and $\Delta_2 \vdash M_2 : B$ for some B.

Since erase(M_1) erase(M_2) = erase(M) \rightarrow $_F$, we can find erase(M_1) \rightarrow $_F$. Thus, by the IH, erase(M_1) is a value. By Lemma [73,](#page-36-0) $M_1 \longrightarrow^* R_1$ for some R_1 such that erase(R_1) = erase(M_1). Since erase(M_1) is a value and erase(M_1) erase(M_2) \rightarrow $_F$, we can find erase(M_2) \rightarrow $_F$. Thus, by the IH, erase(M_2) is a value. By Lemma [73,](#page-36-0) $M_2 \longrightarrow^* R_2$ for some R_2 such that erase(R_2) = erase(M_2).

By Lemma [40,](#page-24-0) $\Delta_1 \vdash R_1 : B \multimap A$ and $\Delta_2 \vdash R_2 : B$. By Lemma [72,](#page-35-1) R_2 is erasable. By Lemma [81,](#page-39-2) erase(M) = erase($M_1 M_2$) = erase($R_1 R_2$) $\longrightarrow_F e$ for some e. However, it is contradictory to the assumption that erase $(M) \rightarrow F$.

Case (T_BANG), (T_NU) , (T_GEN) , and (T_TAPP) : By the IH.

Case (T_LETBANG): We are given $\Delta_1 + \Delta_2$ \vdash let $!x = M_1$ in $M_2 : A$ for some Δ_1 , Δ_2 , x, M_1 , and M_2 such that $\Delta = \Delta_1 + \Delta_2$ and $M = \text{let } !x = M_1$ in M_2 . By inversion, $\Delta_1 \vdash M_1 : !B$ and $\Delta_2, x : ``B \vdash M_2 : A$ for some B.

Since $(\lambda x.\text{erase}(M_2))$ erase $(M_1) = \text{erase}(M) \rightarrow F$, we can find erase $(M_1) \rightarrow F$. Thus, by the IH, erase (M_1) is a value. Thus, we have $\textsf{erase}(M) = (\lambda x.\textsf{erase}(M_2)) \textsf{erase}(M_1) \longrightarrow_F \textsf{erase}(M_2)[\textsf{erase}(M_1)/x]$, which is contradictory to the assumption that erase $(M) \rightarrow F$.

Case (T_TABs): Since M is erasable, $M = \Lambda \alpha \cdot R$ for some α and erasable R. By Lemma [65,](#page-33-0) erase(M) = erase(R) is a value in λ_v^{\forall} .

 \Box

 \Box

Lemma 83. If M is erasable and $\Delta \vdash M : A$, then erase(M) does not get stuck.

Proof. Suppose that erase(M) gets stuck, i.e., there exists some e such that erase(M) $\longrightarrow_F^* e$ and $e \nrightarrow F$ and e is not a value. By Theorem [2,](#page-38-1) there exists some M' such that $M \longrightarrow^* M'$ and erase $(M') = e$. By Lemma [40,](#page-24-0) $\Delta \vdash M' : A$. By Lemma [72,](#page-35-1) M' is erasable. Since erase(M') = $e \rightarrow F$, we can find e is a value by Lemma [82.](#page-40-0) However, it is contradictory to the assumption that e is not a value. \Box

3.4 CPS Transformation for λ_v^{\forall}

3.4.1 Type Preservation

Lemma 84. For any τ , $ftv(\tau) = ftv(\llbracket \tau \rrbracket) = ftv(\llbracket \tau \rrbracket_{v}).$

Proof. Straightforward by induction on τ .

Lemma 85. For any Θ , $dom(\Theta) = dom(\Theta)$.

Proof. Straightforward by induction on Θ.

Lemma 86. If $\vdash \Theta$, then $\vdash \llbracket \Theta \rrbracket$.

Proof. Straightforward by induction on the derivation of $\vdash \Theta$ with Lemmas [84](#page-40-1) and [85.](#page-40-2)

 \Box

 \Box

Lemma 87. For any Θ , $\llbracket \Theta \rrbracket = \omega(\llbracket \Theta \rrbracket)$.

Proof. Straightforward by induction on Θ.

Lemma 88. For any Θ and x, if $\Theta(x)$ is well defined, then $\llbracket \Theta(x) \rrbracket_v = \llbracket \Theta \rrbracket(x)$.

Proof. Obvious.

Lemma 89. If $[\Theta \vdash e : \tau] \Rightarrow R$, then $\vdash \Theta$ and $\Theta \vdash \tau$.

Proof. Straightforward by induction on the derivation of $\left[\Theta \vdash e : \tau\right] \Rightarrow R$.

Lemma 90. For any τ_1 , τ_2 , and α , $[\![\tau_1]\!]_{\mathbf{v}}[[\![\tau_2]\!]_{\mathbf{v}}/\alpha] = [\![\tau_1[\tau_2/\alpha]\!]_{\mathbf{v}}.$

Proof. By induction on τ_1 .

Case $\tau_1 = \beta$, *ι*: Obvious.

Case $\tau_1 = \tau_{11} \rightarrow \tau_{12}$:

$$
\begin{array}{rcl}\n[\![\tau_1]\!]_{\mathbf{v}}\left[\![\tau_2]\!]_{\mathbf{v}}/\alpha\right] & = & \left(\left[\![\tau_{11}\!]_{\mathbf{v}} \right]_{\mathbf{v}} \sim \forall \beta. \left(\left[\![\tau_{12}\!]_{\mathbf{v}} \sim \beta\right) \sim \beta\right) \left[\![\tau_2]\!]_{\mathbf{v}}/\alpha\right] \quad (\beta \notin \mathit{ftv}(\tau_{12})) \\
& = & \left(\left[\![\tau_{11}\!]_{\mathbf{v}}\left[\![\tau_2]\!]_{\mathbf{v}}/\alpha\right]\right) \sim \forall \beta. \left(\left(\left[\![\tau_{12}\!]_{\mathbf{v}}\!]\right]_{\mathbf{v}}\left[\![\tau_2]\!]_{\mathbf{v}}/\alpha\right]\right) \sim \beta\right) \sim \beta \\
& & \text{(since we can suppose } \beta \neq \alpha \text{ and } \beta \notin \mathit{ftv}(\tau_2) = \mathit{ftv}(\left[\![\tau_2]\!]_{\mathbf{v}}) \text{ (Lemma 84) w.l.o.g.)} \\
& = & \left[\![\tau_{11}[\tau_2/\alpha]\!]_{\mathbf{v}} \sim \forall \beta. \left(\left[\![\tau_{12}[\tau_2/\alpha]\!]_{\mathbf{v}} \sim \beta\right) \sim \beta \right) \sim \beta \quad \text{(by the IHs)} \\
& = & \left[\![\tau_{11}[\tau_2/\alpha]\!]_{\mathbf{v}} \right. \\
& = & \left[\![\tau_1[\tau_2/\alpha]\!]_{\mathbf{v}} \right. \\
& = & \left[\![\tau_1[\tau_2/\alpha]\!]_{\mathbf{v}} \right. \\
& \end{array}
$$

Case $\tau_1 = \forall \beta \ldotp \tau_0$: Without loss of generality, we can suppose that $\beta \neq \alpha$ and $\beta \notin \text{ftv}(\tau_2) = \text{ftv}([\tau_2]_v)$ (Lemma [84\)](#page-40-1). Then: J
ΓΠΙΚ ΠΙΙ ΔΙΩ ΔΙΑ ΤΩ ΤΙ ΔΙ

$$
\begin{array}{rcl}\n\llbracket \tau_1 \rrbracket_{\mathbf{v}} \llbracket \tau_2 \rrbracket_{\mathbf{v}}/\alpha \rrbracket & = & (\forall \beta. \llbracket \tau_0 \rrbracket_{\mathbf{v}}) \llbracket \tau_2 \rrbracket_{\mathbf{v}}/\alpha \rrbracket \\
& = & \forall \beta. \llbracket \tau_0 \rrbracket_{\mathbf{v}} \llbracket \tau_2 \rrbracket_{\mathbf{v}}/\alpha \rrbracket) \\
& = & \forall \beta. \llbracket \tau_0 \llbracket \tau_2 \rrbracket_{\mathbf{v}} \quad \text{(by the IH)} \\
& = & \llbracket \forall \beta. \tau_0 \llbracket \tau_2/\alpha \rrbracket_{\mathbf{v}} \quad \text{(by the IH)} \\
& = & \llbracket \tau_1 \llbracket \tau_2/\alpha \rrbracket_{\mathbf{v}} \, .\n\end{array}
$$

Lemma 91. If $\omega \Gamma, \alpha^0 \vdash M : A$, then $\omega \Gamma \vdash \Lambda \alpha.M : \forall \alpha.A$.

Proof. By Lemma [5,](#page-12-0) $\omega \omega \Gamma$, $\alpha^0 \vdash M : A$. By Lemma [17,](#page-13-0) $\vdash \omega \Gamma$. Thus, by (T_TABS), we have the conclusion. \Box **Lemma 92.** If $\llbracket \Theta \rrbracket$, $\alpha^0 \vdash M : A$, then $\llbracket \Theta \rrbracket \vdash \Lambda \alpha.M : \forall \alpha.A$.

Proof. By Lemmas [87](#page-41-0) and [91.](#page-41-1)

Lemma 93. Suppose that $\llbracket x : \tau \rrbracket$ is well defined. Let A be a type obtained by replacing \rightarrow in τ by \rightarrow . Then, $x: \omega A \vdash \llbracket x : \tau \rrbracket : !\llbracket \tau \rrbracket_{\mathtt{v}}.$

Proof. By induction on the derivation of $\llbracket x : \tau \rrbracket$.

Case $\llbracket x : \iota \rrbracket = !x$: We have $\tau = A = \iota$. We have the conclusion $x : \omega \iota \vdash !x : !\iota$.

Case $[x : \iota \to \tau^r] = !(\lambda x'.let \, y = x' \text{ in} let \, !z = !(x \, y) \text{ in} \, \Lambda \alpha. \lambda k. k \, [z : \tau^r]$: We have $\tau = \iota \to \tau'$ and $A = \iota \to B$ for some B obtained by replacing \rightarrow in τ' by \rightarrow . By the IH,

$$
z: \sim B \vdash [z:\tau']]: [[\tau']_v .
$$

Thus,

$$
x: \omega \iota \to B \vdash !(\lambda x'.\text{let } !y = x' \text{ in } \text{let } !z = !(x y) \text{ in } \Lambda \alpha.\lambda k. k \llbracket z : \tau' \rrbracket) : !(l\iota \to \forall \alpha.(!\llbracket \tau' \rrbracket_{\text{v}} \to \alpha) \to \alpha)
$$

with Lemma[s20](#page-14-0) [\(2\)](#page-14-1) and [91.](#page-41-1) Since $[\![\tau]\!]_{\mathbf{v}} = [\![\iota \to \tau']\!]_{\mathbf{v}} = !\iota \to \forall \alpha. (![\![\tau']\!]_{\mathbf{v}} \to \alpha) \to \alpha$, we have the conclusion.

 \Box

 \Box

 \Box

 \Box

 \Box

Lemma 94. For any c, $\emptyset \vdash [c : ty^{\rightarrow}(c)] : [[ty^{\rightarrow}(c)]_{v}$.

Proof. It is easy to show that $[[c : ty[→](c)]]$ is well defined by induction on $ty[→](c)$. By case analysis on $[[c : ty[→](c)]]$. Case $\llbracket c : \iota \rrbracket = !c$: We have $ty^{\rightarrow}(c) = \iota$. We have the conclusion $\emptyset \vdash !c : !\iota$ by (T_CONST) and (T_BANG).

Case $\llbracket c : \iota \to \tau \rrbracket = !(\lambda x.\text{let}!y = x \text{ in } \text{let}!z = !(c y) \text{ in } \Lambda \alpha.\lambda k.k \llbracket z : \tau \rrbracket)$: We have $ty^{\rightarrow}(c) = \iota \to \tau$, so $ty(c) = \iota \to \Delta$ for some A obtained by replacing \rightarrow in τ by \rightarrow (Definition [22\)](#page-6-0). By Lemma [93,](#page-41-2)

$$
z: \overset{\omega}{\cdot} A \vdash [\! [z : \tau] \!] : ! [\! [\tau] \!]_{\mathtt{v}}.
$$

Thus,

$$
\emptyset \vdash !(\lambda x.\mathsf{let}!y = x \mathsf{ in } \mathsf{let}!z = !(c y) \mathsf{ in } \Lambda\alpha.\lambda k.k \mathopen{[z:\tau]}): !(!\iota \multimap \forall \alpha .(!\mathopen{[|{\tau}]}_v \multimap \alpha) \multimap \alpha) .
$$

with Lemma[s20](#page-14-0) [\(2\)](#page-14-1) and [91.](#page-41-1) Since $[[ty^{\rightarrow}(c)]_{\mathbf{v}} = [t \rightarrow \tau]_{\mathbf{v}} = 't \rightarrow \forall \alpha. (![\tau]_{\mathbf{v}} \rightarrow \alpha) \rightarrow \alpha$, we have the conclusion.

Lemma 95. If $\mathbb{I} \Theta \vdash e : \tau \mathbb{I} \Rightarrow R$, then $\mathbb{I} \Theta \mathbb{I} \vdash R : \mathbb{I} \tau \mathbb{I}$.

Proof. By induction on the derivation of $\left[\Theta \vdash e : \tau\right] \Rightarrow R$.

Case (C_VAR): We are given $[\Theta \vdash x : \Theta(x)] \Rightarrow \Lambda \alpha.\lambda k.k!x$ for some x, k, and α such that $e = x$ and $\tau = \Theta(x)$ and $R = \Lambda \alpha \lambda k \cdot k!x$. By inversion, $\vdash \Theta$, so $\vdash \llbracket \Theta \rrbracket$ by Lemma [86.](#page-40-3) Without loss of generality, we can suppose that $\alpha \notin dom(\Theta) = dom(\Theta)$ (Lemma [85\)](#page-40-2).

The conclusion we have to show is

$$
[\![\Theta]\!] \vdash \Lambda \alpha.\lambda k.k \, !x : \forall \alpha. (!\! [\![\Theta(x)]\!]_v \multimap \alpha) \multimap \alpha .
$$

By Lemma [92,](#page-41-3) it suffices to show that

$$
[\![\Theta]\!], \alpha^{\mathbf{0}} \vdash \lambda k.k!x : (![\![\Theta(x)]\!])_{\mathtt{v}} \multimap \alpha \bigr) \multimap \alpha .
$$

We have $[\Theta] = \omega([\Theta])$ by Lemma [87](#page-41-0) and $\vdash [\Theta], \alpha^0, k : \pi : [\Theta(x)]_y \to \alpha$ for any π by Lemmas [84](#page-40-1) and [85.](#page-40-2) Thus,
the typing rules (T VAP) and (T BANG) can be applied and it suffices to show that $[\Theta](x) = [\Theta(x)]$ which the typing rules (T_VAR) and (T_BANG) can be applied, and it suffices to show that $[\Theta](x) = [\Theta(x)]_v$, which is shown by Lemma [88.](#page-41-4)

Case (C_CONST): We are given $\left[\Theta \vdash c : ty^{\rightarrow}(c)\right] \Rightarrow \Lambda \alpha.\lambda k.k \left[\left[c : ty^{\rightarrow}(c)\right]\right]$ for some c, k, and α . By inversion, $\vdash \Theta$. The conclusion we have to show is

 $\llbracket \Theta \rrbracket \vdash \Lambda \alpha. \lambda k. k \llbracket c : ty^{\rightarrow}(c) \rrbracket : \forall \alpha. (\llbracket ty^{\rightarrow}(c) \rrbracket_{\mathtt{v}} \rightarrow \alpha) \rightarrow \alpha.$

By Lemma [94,](#page-42-0)

$$
\emptyset \vdash [c : ty^{\rightarrow}(c)]]: [[ty^{\rightarrow}(c)]_{v}.
$$

Thus, we have the conclusion by Lemmas [86,](#page-40-3) [20](#page-14-0) (2) , [92,](#page-41-3) $(T$ _{NAR}), (T_APP) , and (T_ABB) .

Case (C_Abs): We are given $[\Theta \vdash \lambda x.e' : \tau_1 \rightarrow \tau_2] \Rightarrow \Lambda \alpha. \lambda k.k! (\lambda y.\text{let } !x = y \text{ in } R')$ for some $x, y, e', R', \tau_1, \tau_2, \alpha$, and k. By inversion, $[\Theta, x : \tau_1 \vdash e' : \tau_2] \Rightarrow R'$ and y is fresh.

The conclusion we have to show is

 $[\![\Theta]\!] \vdash \Lambda \alpha . \lambda k. k$! $(\lambda y.$ let! $x = y$ in R') : $\forall \alpha$. $(![\![\tau_1 \rightarrow \tau_2]\!]$ _v $\multimap \alpha) \multimap \alpha$.

By the IH,

 $[\![\Theta]\!], x : \omega [\![\tau_1]\!]_{\mathrm{v}} \vdash R' : [\![\tau_2]\!]$.

By Lemmas [17](#page-13-0) and [20](#page-14-0) [\(2\)](#page-14-1),

 $[\![\Theta]\!], y :^{\mathbf{0}}![\![\tau_1]\!]_{\mathbf{v}}, x :^{\omega}[\![\tau_1]\!]_{\mathbf{v}} \vdash R' : [\![\tau_2]\!]$.

Thus, by (T_VAR), (T_LETBANG), (T_ABS), and (T_BANG) with $\omega([\Theta]) = [\Theta]$ by Lemma [87,](#page-41-0)

$$
[\![\Theta]\!] \vdash !(\lambda y.\mathsf{let}!x = y \mathsf{ in } R') : !(![\![\tau_1]\!]_v \multimap [\![\tau_2]\!]) = ![\![\tau_1 \to \tau_2]\!]_v.
$$

Thus, we have the conclusion by (T_VAR) , (T_APP) , (T_ABB) , and Lemma [92.](#page-41-3)

Case (C_App): We are given $[\Theta \vdash e_1 e_2 : \tau] \Rightarrow \Lambda \alpha . \lambda k . R_1 \alpha (\lambda x . R_2 \alpha (\lambda y . \text{let}! z = x \text{ in } z y \alpha k))$ for some e_1, e_2, R_1 ,

 R_2, α, x, y, z , and k. By inversion, $\llbracket \Theta \vdash e_1 : \tau_0 \to \tau \rrbracket \Rightarrow R_1$ and $\llbracket \Theta \vdash e_2 : \tau_0 \rrbracket \Rightarrow R_2$ for some τ_0 , and x is fresh. The conclusion we have to show is

$$
[\![\Theta]\!] \vdash \Lambda \alpha.\lambda k. R_1 \alpha (\lambda x. R_2 \alpha (\lambda y. \mathsf{let}! z = x \mathsf{ in} z y \alpha k)) : \forall \alpha. ([\![\tau]\!]_\mathtt{v} \multimap \alpha) \multimap \alpha.
$$

By the IHs:

$$
\begin{aligned}\n\llbracket \Theta \rrbracket &\vdash R_1 : \forall \alpha. (\llbracket \tau_0 \to \tau \rrbracket_{\mathbf{v}} \to \alpha) \to \alpha \\
\llbracket \Theta \rrbracket &\vdash R_2 : \forall \alpha. (\llbracket \tau_0 \rrbracket_{\mathbf{v}} \to \alpha) \to \alpha .\n\end{aligned}
$$

Since $\|\Theta\| = \|\Theta\| + \|\Theta\|$ by Lemmas [87](#page-41-0) and [5,](#page-12-0) it suffices to show that

$$
[\![\Theta]\!], \alpha^{\mathbf{0}}, k :^{1}![\!] \tau \rrbracket_{\mathbf{v}} \longrightarrow \alpha, x :^{1}![\![\tau_0 \to \tau]\!], y :^{1}![\!] \tau_0 \rrbracket_{\mathbf{v}} \vdash \mathsf{let} !z = x \mathsf{ in } z \mathsf{ y} \alpha \mathsf{ k} : \alpha
$$

by (T_TAPP) , $(T_A BS)$, $(T_A PP)$, and Lemmas [20](#page-14-0) [\(2\)](#page-14-1) and [92.](#page-41-3) We have

$$
[\![\tau_0 \to \tau]\!]_{\mathbf{v}} = ![\![\tau_0]\!]_{\mathbf{v}} \multimap \forall \beta . (![\![\tau]\!]_{\mathbf{v}} \multimap \beta) \multimap \beta
$$

for some $\beta \notin ftv(\tau) = ftv(\lVert \tau \rVert_{\nu})$ (Lemma [84\)](#page-40-1). Thus, we have the derivation of the judgment above by (T_VAR), $(T_APP), (T_TAPP),$ and $(T_LETBANG).$

Case (C TABs): We are given $[\Theta \vdash e : \forall \beta.\tau_0] \Rightarrow \Lambda \alpha.\lambda k.\nu\beta$. $R' \alpha (\lambda x. k \Lambda^{\circ} \langle \beta, x \rangle)$ for some β , α , τ_0 , k, R', and x.
By inversion $[\Theta \beta \vdash e : \tau] \rightarrow P'$ By inversion, $[\![\Theta, \beta \vdash e : \tau_0\!] \Rightarrow R'.$

The conclusion we have to show is

$$
[\![\Theta]\!] \vdash \Lambda \alpha.\lambda k.\nu \beta.\,R'\,\alpha\,(\lambda x.k\,\Lambda^{\circ}\langle \beta,x \rangle) : \forall \alpha.((\forall \beta. [\![\tau_0]\!]_v) \multimap \alpha) \multimap \alpha.
$$

By the IH, $[\Theta], \beta^0 \vdash R' : \forall \alpha.([\lbrack \lbrack \tau_0 \rbrack]_{\nu} \multimap \alpha) \multimap \alpha$ where $\alpha \notin \text{ftv}(\tau_0) = \text{ftv}(\lbrack \tau_0 \rbrack]_{\nu})$ (Lemma [84\)](#page-40-1). Since $[\Theta] = \text{Fd}(\lbrack \tau_0 \rbrack]_{\nu}$ $\llbracket \Theta \rrbracket + \llbracket \Theta \rrbracket$ by Lemmas [87](#page-41-0) and [5,](#page-12-0) it suffices to show that

$$
[\![\Theta]\!], \alpha^{\mathbf{0}}, k :^{1}!(\forall\beta. [\![\tau_0]\!]_{\mathbf{v}}) \multimap \alpha, \beta^{\mathbf{1}}, x :^{1}![\![\tau_0]\!]_{\mathbf{v}} \vdash k \Lambda^{\circ}\langle \beta, x \rangle : \alpha
$$

by (T_ABS) , (T_NU) , (T_AAPP) , $(T_A PP)$, and [20](#page-14-0) [\(2\)](#page-14-1) and [92.](#page-41-3) In turn, it suffices to show that

$$
[\![\Theta]\!], \alpha^{\mathbf{0}}, k :^{\mathbf{0}}!(\forall \beta. [\![\tau_0]\!]_{\mathbf{v}}) \multimap \alpha, \beta^{\mathbf{1}}, x :^{\mathbf{1}}![\![\tau_0]\!]_{\mathbf{v}} \vdash \Lambda^{\circ} \langle \beta, x \rangle : !(\forall \beta. [\![\tau_0]\!]_{\mathbf{v}})
$$

by (T_APP) . By (T_VAR) and (T_GER) , we can derive this judgment.

Case (C_TApp): We are given $\|\Theta \vdash e : \tau_2[\tau_1/\beta]\| \Rightarrow \Lambda \alpha.\lambda k.R' \alpha (\lambda x.\text{let}!y = x \text{ in } k!(y \|\tau_1\|_v))$ for some $\tau_1, \tau_2, \beta, \alpha$, k, x, and R'. By inversion, $[\Theta \vdash e : \forall \beta.\tau_2] \Rightarrow R'$ and $\Theta \vdash \tau_1$.

The conclusion we have to show is

$$
[\![\Theta]\!] \vdash \Lambda \alpha.\lambda k.R' \alpha (\lambda x.\mathsf{let}!y = x \mathsf{ in } k!(y [\![\tau_1]\!]_{\mathtt{v}})) : \forall \alpha. ([\![\tau_2[\tau_1/\beta]]\!]_{\mathtt{v}} \multimap \alpha) \multimap \alpha.
$$

By the IH, $[\Theta] \vdash R' : \forall \alpha. ((\forall \beta. [\tau_2]_{\mathbf{v}}) \neg \alpha) \neg \alpha$ where $\alpha \notin ftv(\tau_2) = [\tau_2]_{\mathbf{v}}$ (Lemma [84\)](#page-40-1). We have $\omega([\Theta]) = [\![\Theta]\!]$ by Lemma [87](#page-41-0) and $\llbracket \Theta \rrbracket = \llbracket \Theta \rrbracket + \llbracket \Theta \rrbracket$ by Lemma [5.](#page-12-0) Thus, with Lemma [92,](#page-41-3) it suffices to show that

$$
\llbracket \Theta \rrbracket, \alpha^{\mathbf{0}}, k : \mathbf{0} : \llbracket \tau_2[\tau_1/\beta] \rrbracket_{\mathbf{v}} \multimap \alpha, x : \mathbf{0} : (\forall \beta. \llbracket \tau_2 \rrbracket_{\mathbf{v}}), y : \omega \ \forall \beta. \llbracket \tau_2 \rrbracket_{\mathbf{v}} \vdash y \llbracket \tau_1 \rrbracket_{\mathbf{v}} : \llbracket \tau_2[\tau_1/\beta] \rrbracket_{\mathbf{v}}.
$$

Since $\Theta \vdash \tau_1$, we have $\llbracket \Theta \rrbracket \vdash \llbracket \tau_1 \rrbracket_v$ by Lemmas [85](#page-40-2) and [84.](#page-40-1) Thus, by (T_VAR) and (T_TAPP),

$$
\llbracket \Theta \rrbracket, \alpha^{\mathbf{0}}, k : \Omega^{\mathbf{0}} : \llbracket \tau_2[\tau_1/\beta] \rrbracket_{\mathbf{v}} \longrightarrow \alpha, x : \Omega^{\mathbf{0}} : (\forall \beta. \llbracket \tau_2 \rrbracket_{\mathbf{v}}), y : \omega \ \forall \beta. \llbracket \tau_2 \rrbracket_{\mathbf{v}} \vdash y \llbracket \tau_1 \rrbracket_{\mathbf{v}} : \llbracket \tau_2 \rrbracket_{\mathbf{v}} [\llbracket \tau_1 \rrbracket_{\mathbf{v}}/\beta] .
$$

By Lemma [90,](#page-41-5) we finish.

Lemma 96. If $\Theta \vdash e : \tau$, then $\Theta \vdash e : \tau \Rightarrow R$ for some R.

Proof. Straightforward by induction on the derivation of $\Theta \vdash e : \tau$.

Theorem 3 (Type preservation of CPS transformation for λ_v^{\forall}). If $\Theta \vdash e : \tau$, then there exists some R such that $\llbracket \Theta \vdash e : \tau \rrbracket \Rightarrow R \text{ and } \llbracket \Theta \rrbracket \vdash R : \llbracket \tau \rrbracket.$

Proof. By Lemmas [96](#page-43-0) and [95.](#page-42-1)

 \Box

 \Box

3.4.2 Meaning Preservation

Lemma 97. erase($[\![\chi:\tau]\!]$) $\Longrightarrow_{\eta_v}^* (\!\!|\chi:\tau|\!)$.

Proof. By induction on τ . There are two cases we have to consider for τ by case analysis on the definition of $\llbracket \chi : \tau \rrbracket$. Case $\tau = \iota$: We have the conclusion by:

$$
erase([\![\chi:\tau]\!]) = erase(!\chi) = \chi = (\![\chi:\tau]\!).
$$

Case $\tau = \iota \to \tau'$: We have the conclusion by:

$$
\begin{array}{rcl}\n\texttt{erase}([\![\chi:\tau]\!]) & = & \texttt{erase}([\{\lambda x.\texttt{let}\, !\, y=x\, \texttt{in}\, \texttt{let}\, !\, z= !(\chi\, y)\, \texttt{in}\, \Lambda\alpha.\lambda k. k\, [\![z:\tau']\!])) & (k,x,y,z\notin f v\, (\chi))\\
& = & \lambda x. (\lambda y. (\lambda z.\lambda k. k\, \texttt{erase}([\![z:\tau']\!])) (\chi\, y))\, x\\
& \longmapsto_{\eta\circ}^* & \lambda x. (\lambda y. (\lambda z.\lambda k. k\, (\![z:\tau']\!)) (\chi\, y))\, x & (\text{by the IH})\\
& \longmapsto_{\eta\circ}^* & \lambda x. (\lambda z.\lambda k. k\, (\![z:\tau']\!)) (\chi\, x) \\
& = & (\chi:\iota \to \tau') \\
& = & (\chi:\tau\,)\, .\n\end{array}
$$

Lemma 98. If $[\Theta \vdash e : \tau] \Rightarrow R$, then $\textsf{erase}(R) \Longrightarrow_{\beta_v \eta_v}^* (\{e\}).$

Proof. By induction on the derivation of $\left[\Theta \vdash e : \tau\right] \Rightarrow R$.

Case (C_VAR): We are given $[\Theta \vdash x : \Theta(x)] \Rightarrow \Lambda \alpha. \lambda k. k! x$ for some x, k, and α . We have the conclusion by:

$$
\begin{array}{rcl}\n\text{erase}(R) & = & \text{erase}(\Lambda \alpha. \lambda k. k \, !x) \\
 & = & \lambda k. k \, x \\
 & = & \left(\int x \, \right) .\n\end{array}
$$

- Case (C_CONST): We are given $\llbracket \Theta \vdash c : ty^{\rightarrow}(c) \rrbracket \Rightarrow \Lambda \alpha. \lambda k. k \llbracket c : ty^{\rightarrow}(c) \rrbracket$ for some c, α , and k. We have the conclusion by Lemma [97.](#page-44-0)
- Case (C_ABs): We are given $[\Theta \vdash \lambda x.e' : \tau_1 \to \tau_2] \Rightarrow \Lambda \alpha.\lambda k.k! (\lambda y.\text{let } !x = y \text{ in } R')$ for some $x, y, k, e', \alpha, \tau_1, \tau_2$, and R'. By inversion, $[\![\Theta, x : \tau_1 \vdash e' : \tau_2]\!] \Rightarrow R'$ and y is fresh. We have the conclusion by:

$$
\begin{array}{rcl}\n\text{erase}(R) & = & \text{erase}(\Lambda \alpha. \lambda k. k. !(\lambda y. \text{let} ! x = y \text{ in } R')) \\
& = & \lambda k. k \left(\lambda y. (\lambda x. \text{erase}(R')) y \right) \\
& \longmapsto^*_{\beta_v \eta_v} & \lambda k. k \left(\lambda y. (\lambda x. (e') \text{I}) y \right) \quad \text{(by the IH)} \\
& \longmapsto^*_{\eta_v} & \lambda k. k \left(\lambda x. (e') \text{I} \right) \\
& = & \left(\lambda x. e' \text{I} \right) .\n\end{array}
$$

Case (C_App): We are given $\llbracket \Theta \vdash e_1 \ e_2 : \tau \rrbracket \Rightarrow \Lambda \alpha . \lambda k . R_1 \alpha (\lambda x . R_2 \alpha (\lambda y . \text{let} ! z = x \text{ in } z y \alpha k))$ for some e_1, e_2, k, x , y, z, α , R_1 , and R_2 . By inversion, $\llbracket \Theta \vdash e_1 : \tau_0 \to \tau \rrbracket \Rightarrow R_1$ and $\llbracket \Theta \vdash e_2 : \tau_0 \rrbracket \Rightarrow R_2$ for some τ_0 , and x is fresh. We have the conclusion by:

$$
\begin{array}{rcl}\n\texttt{erase}(R) & = & \texttt{erase}(\Lambda \alpha . \lambda k . R_1 \alpha \left(\lambda x . R_2 \alpha \left(\lambda y . \texttt{let} \, ! z = x \, \texttt{in} \, z \, y \, \alpha \, k \right) \right)) \\
& = & \lambda k . \texttt{erase}(R_1) \left(\lambda x . \texttt{erase}(R_2) \left(\lambda y . (\lambda z . z \, y \, k \, x \right) \right) \\
& \Longrightarrow^*_{\beta_v \eta_v} & \lambda k . (\ell \, e_1) \left(\lambda x . (\ell \, e_2) \left(\lambda y . (\lambda z . z \, y \, k \, x \right) \right) \quad \text{(by the IHs)} \\
& \Longrightarrow_{\beta_v} & \lambda k . (\ell \, e_1) \left(\lambda x . (\ell \, e_2) \left(\lambda y . x \, y \, k \right) \right) \\
& = & (\ell_1 \, e_2) \, .\n\end{array}
$$

Case (C.TAbs): We are given $[\Theta \vdash e : \forall \beta.\tau'] \Rightarrow \Lambda \alpha.\lambda k.\nu \beta.\ R'\alpha(\lambda x.k\Lambda^{\circ}(\beta, x))$ for some $\beta, \alpha, \tau', k, x$, and $R'.$
By inversion $[\Theta \beta \vdash e : \tau'] \rightarrow P'$. We have the conclusion by: By inversion, $[\![\Theta, \beta \vdash e : \tau']\!] \Rightarrow R'$. We have the conclusion by:

$$
\begin{array}{rcl}\n\text{erase}(R) & = & \text{erase}(\Lambda \alpha. \lambda k. \nu \beta. \ R' \alpha \left(\lambda x. k \ \Lambda^{\circ} \langle \beta, x \rangle\right)) \\
& = & \lambda k.\text{erase}(R') \left(\lambda x. k \ x\right) \\
& \Longrightarrow^*_{\beta_v \eta_v} & \lambda k. (\ e \parallel (\lambda x. k \ x) \quad \text{(by the IH)} \\
& \Longrightarrow_{\eta_v} & \lambda k. (\ e \parallel k \quad \text{(note that } e \text{ is a value})\n\end{array}
$$

Case (C_TAPP): We are given $[\Theta \vdash e : \tau_2[\tau_1/\beta]] \Rightarrow \Lambda \alpha.\lambda k.R' \alpha (\lambda x.\text{let}!y = x \text{ in } k!(y [\tau_1]_v))$ for some $\tau_1, \tau_2, \beta, \alpha$, k, x, y, and R'. By inversion, $[\Theta \vdash e : \forall \beta.\tau_2] \Rightarrow R'$. We have the conclusion by:

$$
\begin{array}{lcl} \mathsf{erase}(R) & = & \mathsf{erase}(\Lambda \alpha.\lambda k.R' \alpha \left(\lambda x.\mathsf{let} \, ! \, y = x \, \mathsf{in} \, k \, ! \left(y \, \llbracket \tau_1 \rrbracket_{\mathtt{v}} \right) \right)) \\ & = & \lambda k.\mathsf{erase}(R') \left(\lambda x. (\lambda y. k \, y) \, x \right) \\ & \longmapsto^*_{\beta_v \eta_v} & \lambda k. (\ell \, e \, \mathsf{I}) \left(\lambda x. (\lambda y. k \, y) \, x \right) \quad \text{(by the IH)} \\ & \longmapsto^*_{\eta_v} & (\ell \, \mathsf{I}) \quad \text{(note that } e \, \text{is a value)} \ . \end{array}
$$

Definition 31. The function $\Psi(w)$ returns a value in λ_v^{\forall} , defined as follows:

$$
\Psi(c) \stackrel{\text{def}}{=} (c : ty^{\rightarrow}(c))
$$

$$
\Psi(\lambda x.e) \stackrel{\text{def}}{=} \lambda x. (e)
$$

We write $w \Rightarrow R$ if and only if $\text{erase}(R) \Longrightarrow_{\beta_v \eta_v}^* \Psi(w)$.

Corollary 1 (Meaning preservation of (\cdot)). For any e:

- 1. if $e \longrightarrow_F^* w$, then $\langle e \rangle (\lambda x.x) \longrightarrow_F^* \Psi(w)$; and
- 2. if $\{e\}(\lambda x.x) \longrightarrow_F^* w'$, then $e \longrightarrow_F^* w$ for some w such that $w' = \Psi(w)$.

Proof. By the indifference and simulation properties of (\cdot) , jointly with the equivalence of the small-step and big-step CBV semantics for λ^{\vee} , all of which have been proven by Plotkin [1]. big-step CBV semantics for λ_v^{\forall} , all of which have been proven by Plotkin [\[1\]](#page-86-0).

Lemma 99. If $\left[\Theta \vdash e : \tau\right] \Rightarrow R$, then R is erasable.

Proof. Straightforward by induction on the derivation of $\left[\Theta \vdash e : \tau\right] \Rightarrow R$.

Theorem 4 (Meaning preservation of CPS transformation for λ_v^{\forall}). Suppose that $[\![\emptyset \vdash e : \tau]\!] \Rightarrow R$.

1. If $e \longrightarrow_F^* w$, then $R![\tau]_v(\lambda x.x) \longrightarrow^* R'$ for some R' such that $w \Rightarrow R'.$

2. If $R\ddot{v}$ $\Vert \tau \Vert_v (\lambda x.x) \longrightarrow^* R'$, then $e \longrightarrow_F^* w$ for some w such that $w \Rightarrow R'$.

Proof. 1. By Corollary [1,](#page-45-0) $\left(e \right) (\lambda x.x) \longrightarrow_F^* \Psi(w)$. By Lemmas [98](#page-44-1) and [46,](#page-28-0)

$$
\mathsf{erase}(R) \, (\lambda x.x) \Longrightarrow_{\beta_v \eta_v}^* \, (e) \, (\lambda x.x) \; .
$$

By Lemma [95,](#page-42-1) $\emptyset \vdash R : \forall \alpha. (\llbracket \tau \rrbracket_{\mathbf{v}} \negthinspace \sim \alpha) \negthinspace \negthinspace \sim \alpha$ for any α (note that $\emptyset \vdash \llbracket \tau \rrbracket_{\mathbf{v}}$ by Lemmas [89](#page-41-6) and [84\)](#page-40-1). Thus, $\emptyset \vdash R![\![\tau]\!]_{\mathbf{v}}(\lambda x.x) : [\![\tau]\!]_{\mathbf{v}}$. Further, we can find R erasable by Lemma [99.](#page-45-1) Thus, erase $(R![\![\tau]\!]_{\mathbf{v}}(\lambda x.x)) =$ erase (R) $(\lambda x.x)$ does not get stuck by Lemma [83.](#page-40-4) By Lemma [63,](#page-32-0) there exists some e' such that erase (R) $(\lambda x.x) \longrightarrow_F^*$ e' and $e' \mapsto_{\beta_v \eta_v}^* \Psi(w)$. Since $\text{erase}(R) (\lambda x.x)$ does not get stuck, e' does not either. Thus, by Lemma [64,](#page-32-1) there exists some w such that $e' \longrightarrow_F^* w'$ and $w' \Longrightarrow_{\beta_v \eta_v}^* \Psi(w)$. That is, $\mathsf{erase}(R) (\lambda x.x) \longrightarrow_F^* w'$ and $w' \Longrightarrow_{\beta_v \eta_v}^* \Psi(w)$.
Since *P* is crossable. Theorem 2 implies *P* $\mathbb{F}_{\beta_v \eta_v}^* \Psi(w) \longrightarrow_F^* P'$ for some *P'* such that Since R is erasable, Theorem [2](#page-38-1) implies $R![\![\tau]\!]_v^{\tau}(\lambda x.x) \longrightarrow^* R'$ for some R' such that erase(R') = w^2 . Since erase(R') = $w' \mapsto_{\beta_v \eta_v}^* \Psi(w)$, we have $w \Rightarrow R'$.

2. We can find R erasable by Lemma [99.](#page-45-1) Thus, Theorem [2](#page-38-1) implies erase(R) $(\lambda x.x) = \text{erase}(R \,!\, [\![\tau]\!]_{\mathbf{v}} (\lambda x.x)) \longrightarrow^*_{F}$ erase(R'). Note that erase(R') is a value. By Lemmas [98](#page-44-1) and [46,](#page-28-0) erase(R)($\lambda x.x$) = erase(R :[[T]], $(\lambda x.x)$] = F
erase(R'). Note that erase(R') is a value. By Lemmas 98 and 46, erase(R)($\lambda x.x$) $\Longrightarrow_{\beta_{u}\eta_{v}}^{\ast}$ (e)(value, $e' = w'$ for some w' by Lemma [54.](#page-30-0) Thus, $\left(\begin{array}{c} e \end{array}\right) (\lambda x.x) \longrightarrow_{F}^{*} w'.$ By Corollary [1,](#page-45-0) $e \longrightarrow_{F}^{*} w$ for some w such that $w' = \Psi(w)$. Since $\text{erase}(R') \Longrightarrow_{\beta_v \eta_v}^* e' = w' = \Psi(w)$, we have $w \Rightarrow R'.$

 \Box

 \Box

3.5 Parametricity and Soundness of the Logical Relation with respect to Contextual Equivalence

Lemma 100. $If \vdash \Delta, then \omega \Delta \leq \Delta.$

Proof. Straightforward by induction on Δ .

Lemma 101. If $\vdash \Delta$, then $\Delta + \omega \Delta = \Delta$.

Proof. Straightforward by induction on Δ .

Lemma 102. If $\Delta_1 \perp \Delta_2$, then $\omega(\Delta_1 + \Delta_2) = \omega \Delta_1 = \omega \Delta_2$.

Proof. Straightforward by induction on Δ_1 .

Lemma 103. If $\Delta_1 \perp \Delta_2$, then $\Delta_1 \leq \Delta_1 + \Delta_2$ and $\Delta_2 \leq \Delta_1 + \Delta_2$.

Proof. Straightforward by induction on Δ_1 .

Lemma 104. If $\Delta_1 \leq \Delta_2$ and $\Delta_2 \perp \Delta$, then $\Delta_1 \perp \Delta$ and, further, $\Delta_1 + \Delta \leq \Delta_2 + \Delta$.

Proof. It suffices to show that, for any π_1 , π_2 , and π , if $\pi_1 \leq \pi_2$ and $\pi_2 + \pi \neq \omega$, then $\pi_1 + \pi \neq \omega$ and $\pi_1 + \pi \leq \pi_2 + \pi$. To show the former, suppose that $\pi_1 + \pi = \omega$. Since $\pi_1 \leq \pi_2$, there exists some π' such that $\pi_1 + \pi' = \pi_2$. Since $\pi_2 + \pi \neq \omega$, we have $\pi_1 + \pi' + \pi \neq \omega$. Since $\pi_1 + \pi = \omega$, we have $\omega + \pi' \neq \omega$ with Lemma [1.](#page-12-1) This is contradictory with the definition of uses. Thus, we have $\pi_1 + \pi \neq \omega$.

Furthermore, since $\pi_1 + \pi' = \pi_2$ for some π' , we have $\pi_1 + \pi \leq \pi_2 + \pi$. \Box

Lemma 105. For any n, Δ_1 , Δ_2 , and ρ such that $dom(\Delta_1) = dom(\Delta_2)$, $\vdash (n, \Delta_1, \rho)$ if and only if $\vdash (n, \Delta_2, \rho)$. In particular, for any W , $\vdash W$ if and only if $\vdash \omega W$.

Proof. It is straightforward to show the first property. The second property is shown by the first one and Lemma [9.](#page-13-1)

Lemma 106. For any ρ_1 , ρ_2 , and ρ_3 ,

$$
\rho_1 \circ (\rho_2 \circ \rho_3) = (\rho_1 \circ \rho_2) \circ \rho_3.
$$

Proof. By:

$$
\rho_1 \circ (\rho_2 \circ \rho_3) = \rho_1 \uplus \rho_1(\rho_2 \uplus \rho_2(\rho_3)) \n= \rho_1 \uplus \rho_1(\rho_2) \uplus \rho_1(\rho_2(\rho_3)) \n= \rho_1 \uplus \rho_1(\rho_2) \uplus (\rho_1 \uplus \rho_1(\rho_2))(\rho_3) \n= (\rho_1 \circ \rho_2) \uplus (\rho_1 \circ \rho_2)(\rho_3) \n= (\rho_1 \circ \rho_2) \circ \rho_3 .
$$

Lemma 107. $\Delta \gg \Delta$ for any Δ .

Proof. Because $\Delta + \omega \Delta = \Delta$ by Lemma [101.](#page-46-0)

Lemma 108. If $\Delta_1 \gg \Delta_2$, then $\Delta_1, \Delta \gg \Delta_2, \Delta$.

Proof. Since $\Delta_1 \gg \Delta_2$, there exists some Δ'_1 and Δ'_2 such that $\Delta_1 = (\Delta_2 + \Delta'_1), \Delta'_2$. By Lemma [101,](#page-46-0) $\Delta + \omega \Delta = \Delta$. Thus, $\Delta_1, \Delta = (\Delta_2 + \Delta'_1), \Delta'_2, \Delta = ((\Delta_2, \Delta) + (\Delta'_1, \omega \Delta)), \Delta'_2$. This means that $\Delta_1, \Delta \gg \Delta_2, \Delta$ holds. \Box

Lemma 109. If $\Delta_1 \ge \Delta_2$ and $\Delta_2 \ge \Delta_3$, then $\Delta_1 \ge \Delta_3$.

Proof. Since $\Delta_1 \gg \Delta_2$, there exist some Δ'_1 and Δ'_2 such that $\Delta_1 = (\Delta_2 + \Delta'_1), \Delta'_2$. Since $\Delta_2 \gg \Delta_3$, there exist some Δ_1'' and Δ_2'' such that $\Delta_2 = (\Delta_3 + \Delta_1''), \Delta_2''$. Thus, we have

$$
\Delta_1 = (\Delta_2 + \Delta'_1), \Delta'_2 = (((\Delta_3 + \Delta''_1), \Delta''_2) + \Delta'_1), \Delta'_2.
$$

Since $((\Delta_3 + \Delta_1''), \Delta_2'') \perp \Delta_1'$, there exist some Δ_{11}' and Δ_{12}' such that

 \Box

 \Box

 \Box

 \Box

 \Box

П

• $\Delta'_1 = \Delta'_{11}, \Delta'_{12}$ and

•
$$
((\Delta_3 + \Delta_1''), \Delta_2'') + \Delta_1' = (\Delta_3 + \Delta_1'' + \Delta_{11}'), (\Delta_2'' + \Delta_{12}').
$$

We also have

$$
(((\Delta_3 + \Delta_1''), \Delta_2'') + \Delta_1'), \Delta_2' = ((\Delta_3 + \Delta_1'' + \Delta_{11}'), (\Delta_2'' + \Delta_{12}')), \Delta_2' = (\Delta_3 + (\Delta_1'' + \Delta_{11}')), (\Delta_2'' + \Delta_{12}'), \Delta_2'.
$$

Thus, we have $\Delta_1 \gg \Delta_3$.

Lemma 110. If $W_1 \supseteq W_2$ and $W_2 \supseteq W_3$, then $W_1 \supseteq W_3$.

Proof. $W_1 \cdot n \leq W_3 \cdot n$ and $\vdash W_1$ and $\vdash W_3$ hold obviously. Since $W_1 \sqsupseteq W_2$, there exists some ρ_{12} such that

- $W_1.\Delta, \dagger(\rho_{12}) \gg W_2.\Delta,$
- $W_1.\rho = \rho_{12} \circ W_2.\rho$, and
- $W_2.\Delta \succ \rho_{12}$.

Since $W_2 \supseteq W_3$, there exists some ρ_{23} such that

- $W_2.\Delta, \dagger(\rho_{23}) \gg W_3.\Delta,$
- $W_2.\rho = \rho_{23} \circ W_3.\rho$, and
- $W_3.\Delta \succ \rho_{23}$.

Let $\rho_{123} = \rho_{12} \circ \rho_{23}$. We have the conclusion by the following.

- Since $W_1 \rho = \rho_{12} \circ W_2 \rho$ and $W_2 \rho = \rho_{23} \circ W_3 \rho$, we have $W_1 \rho = \rho_{123} \circ W_3 \rho$ by Lemma [106.](#page-46-1)
- By Lemmas [108](#page-46-2) and [109,](#page-46-3) $W_1.\Delta, \dagger(\rho_{123}) = W_1.\Delta, \dagger(\rho_{123}) \gg W_2.\Delta, \dagger(\rho_{23}) \gg W_3.\Delta$
- We show that $W_3.\Delta \succ \rho_{123}$. Let $\alpha \in \text{ftv}(\rho_{123}|_{\text{dom}(W_3.\Delta)}) \cap \text{dom}(W_3.\Delta)$.

We first show that $\alpha \in dom(W_2.\Delta)$. Since $W_2.\Delta, \dagger(\rho_{23}) \gg W_3.\Delta$ and $\alpha \in dom(W_3.\Delta)$, we have $\alpha \in$ $dom(W_2.\Delta) \cup dom(\rho_{23})$. To show $\alpha \in dom(W_2.\Delta)$, it suffices to prove that $\alpha \notin dom(\rho_{23})$. $\vdash W_1$ implies $dom(W_1.\Delta) \# dom(W_1.\rho)$. We have $\alpha \in dom(W_1.\Delta)$ since $\alpha \in ftv(\rho_{123}|_{dom(W_3.\Delta)})$ and $W_1.\rho = \rho_{123} \circ W_3.\rho$ and $\vdash W_1$. Thus, $\alpha \notin dom(W_1, \rho) \supseteq dom(\rho_{23})$.

Next, we show that $\alpha \in \text{ftv}(\rho_{12}|_{dom(W_2,\Delta)}) \cup \text{ftv}(\rho_{23}|_{dom(W_3,\Delta)})$. Since $\alpha \in \text{ftv}(\rho_{123}|_{dom(W_3,\Delta)})$, we can find that $\alpha \in \text{ftv}(\rho_{12}|_{\text{dom}(W_3,\Delta)})$ or $\alpha \in \text{ftv}(\rho_{12}(\rho_{23})|_{\text{dom}(W_3,\Delta)}).$

Case $\alpha \in \text{ftv}(\rho_{12}|_{dom(W_3,\Delta)})$: Since $W_2.\Delta, \dagger(\rho_{23}) \gg W_3.\Delta$, we have $dom(W_3.\Delta) \subseteq dom(W_2.\Delta) \cup dom(\rho_{23})$. Thus, $\alpha \in \text{ftv}(\rho_{12}|_{\text{dom}(W_2,\Delta)\cup\text{dom}(\rho_{23})})$. Since $W_1.\rho = \rho_{12} \circ W_2.\rho = \rho_{12} \circ (\rho_{23} \circ W_3.\rho)$, we have $\text{dom}(\rho_{12}) \#$ $dom(\rho_{23})$. Thus, $\alpha \in \text{ftv}(\rho_{12}|_{\text{dom}(W_2,\Delta)})$.

Case $\alpha \in \text{ftv}(\rho_{12}(\rho_{23})|_{\text{dom}(W_3,\Delta)})$: We can find $\alpha \in \text{ftv}(\rho_{23}|_{\text{dom}(W_3,\Delta)})$ or $\alpha \in \text{ftv}(\rho_{12}|_{\text{ftv}(\rho_{23}|_{\text{dom}(W_3,\Delta)})).$

Case $\alpha \in \text{ftv}(\rho_{23}|_{\text{dom}(W_3,\Delta)})$: It is what we have to prove.

Case $\alpha \in \text{ftv}(\rho_{12}|_{\text{ftv}(\rho_{23}|_{\text{dom}(W_3,\Delta)}))$: Since $\vdash W_2$, we have $\text{ftv}(\rho_{23}|_{\text{dom}(W_3,\Delta)}) \subseteq \text{ftv}(\rho_{23}) \subseteq \text{dom}(W_2,\Delta)$. Thus, $\alpha \in \text{ftv}(\rho_{12}|_{\text{dom}(W_2,\Delta)}).$

We show that $\alpha^0 \in W_3.\Delta$.

If $\alpha \in ftv(\rho_{12}|_{dom(W_2,\Delta)})$, then $W_2.\Delta \succ \rho_{12}$ and $\alpha \in dom(W_2.\Delta)$ implies $\alpha^0 \in W_2.\Delta$. Since $W_2.\Delta, \dagger(\rho_{23}) \gg$
 $W_2 \Delta$ and $\alpha \in dom(W_2,\Delta)$ we have $\alpha^0 \in W_2.\Delta$ $W_3.\Delta$ and $\alpha \in \text{dom}(W_3.\Delta)$, we have $\alpha^0 \in W_3.\Delta$.

Otherwise, if $\alpha \in \text{ftv}(\rho_{23}|_{\text{dom}(W_3,\Delta)})$, then $W_3.\Delta \succ \rho_{23}$ and $\alpha \in \text{dom}(W_3.\Delta)$ implies $\alpha^0 \in W_3.\Delta$.

Lemma 111. If \vdash W, then $W \sqsupseteq W$.

Proof. Obvious by letting $\rho = \emptyset$; note that $W.\Delta \gg W.\Delta$ by Lemma [107.](#page-46-4)

 \Box

 \Box

Lemma 112. If $W_1 \supseteq W_2$, then $\omega W_1 \supseteq \omega W_2$.

Proof. Since $W_1 \supseteq W_2$, there exist some ρ such that

- $W_1.\Delta, \dagger(\rho) \gg W_2.\Delta,$
- $W_1.\rho = \rho \circ W_2.\rho$, and
- $W_2.\Delta \succ \rho$.

Since $\omega W_i = (W_i \cdot n, \omega(W_i \cdot \Delta), W_i \cdot \rho)$ for $i \in \{1, 2\}, W_1 \sqsupseteq W_2$ implies:

- $\vdash \omega W_1$ and $\vdash \omega W_2$ by Lemma [105;](#page-46-5)
- $\omega W_1.n \leq \omega W_2.n$; and
- $\omega W_1 \cdot \rho = \rho \circ \omega W_2 \cdot \rho$

 $\omega W_2.\Delta \succ \rho$ holds obviously.

Thus, it suffices to show that

$$
\omega(W_1.\Delta), \dagger(\rho) \gg \omega(W_2.\Delta) .
$$

Since $(W_1.\Delta, \dagger(\rho)) \gg W_2.\Delta$, there exist some Δ and Δ_0 such that $W_1.\Delta, \dagger(\rho) = (W_2.\Delta + \Delta), \Delta_0$. Since $\omega(W_1.\Delta)$ assigns the use 0 to all the type variables, $\omega(W_1.\Delta), \dagger(\rho) = \omega(W_1.\Delta, \dagger(\rho)) = \omega((W_2.\Delta + \Delta), \Delta_0) =$ $(\omega(W_2.\Delta) + \omega\Delta) + \omega\Delta_0$. Thus, we have the conclusion. П

Lemma 113. If \vdash W and $(M_1, M_2) \in Atom[W, A]$, then $M_1 = W \cdot \rho_{\text{fst}}(M_1)$ and $M_2 = W \cdot \rho_{\text{snd}}(M_2)$.

Proof. Since $(M_1, M_2) \in \text{Atom}[W, A]$, we have $W \Delta \vdash M_1 : W \cdot \rho_{\text{fst}}(A)$ and $W \Delta \vdash M_2 : W \cdot \rho_{\text{snd}}(A)$. Since $\vdash W$, we have $dom(W \Delta) \neq dom(W \rho)$. Thus, the type variables in $dom(W \rho)$ do not occur free in M_1 and M_2 , so we have the conclusion. П

Lemma 114. Suppose that $W_1 \supseteq W_2$.

- For any α , $W_1. \rho_{\text{fst}}(\alpha) = W_1. \rho_{\text{fst}}(W_2. \rho_{\text{fst}}(\alpha))$ and $W_1. \rho_{\text{snd}}(\alpha) = W_1. \rho_{\text{snd}}(W_2. \rho_{\text{snd}}(\alpha)).$
- $(M_1, M_2) \in Atom[W_2, A]$ implies $(M_1, M_2)_{W_1} \in Atom[W_1, A]$.

Proof.

• We show only $W_1.\rho_{\text{fst}}(\alpha) = W_1.\rho_{\text{fst}}(W_2.\rho_{\text{fst}}(\alpha))$; the other equation is shown similarly. Obvious if $\alpha \notin \text{dom}(W_2,\rho)$.

Suppose that $\alpha \in dom(W_2, \rho)$. Since $W_1 \supseteq W_2$, there exist some ρ such that $W_1 \cdot \rho = \rho \circ W_2 \cdot \rho$. Since $\alpha \in$ $dom(W_2.\rho)$, we have $W_1.\rho_{\text{fst}}(\alpha) = \rho_{\text{fst}}(W_2.\rho_{\text{fst}}(\alpha))$. Since $W_1 \supseteq W_2$ implies $\vdash W_2$, we have $dom(W_2.\Delta) \#$ $dom(W_2,\rho)$ and $W_2.\Delta \vdash W_2.\rho_{\rm fst}(\alpha)$. Thus, $W_2.\rho_{\rm fst}(\alpha) = W_2.\rho_{\rm fst}(W_2.\rho_{\rm fst}(\alpha))$. Hence

$$
W_1 \cdot \rho_{\rm fst}(\alpha) = \rho_{\rm fst}(W_2 \cdot \rho_{\rm fst}(\alpha)) = \rho_{\rm fst}(W_2 \cdot \rho_{\rm fst}(W_2 \cdot \rho_{\rm fst}(\alpha))) = W_1 \cdot \rho_{\rm fst}(W_2 \cdot \rho_{\rm fst}(\alpha))
$$

• Suppose that $(M_1, M_2) \in$ Atom $[W_2, A]$. We show only $W_1 \Delta \vdash W_1 \rho_{\text{fst}}(M_1)$: $W_1 \rho_{\text{fst}}(A)$; the other judgment can be shown similarly.

By definition, $W_2.\Delta \vdash M_1 : W_2.\rho_{\text{fst}}(A)$. Since $W_1 \sqsupseteq W_2$, there exists some ρ such that:

 $- W_1 \Delta, \dagger(\rho) \gg W_2 \Delta;$ – $W_1.\rho = \rho \circ W_2.\rho;$ and

$$
- W_2.\Delta \succ \rho.
$$

Since $W_1.\Delta, \dagger(\rho) \gg W_2.\Delta$, there exist some Δ'_1 and Δ'_2 such that $W_1.\Delta, \dagger(\rho) = (W_2.\Delta + \Delta'_1), \Delta'_2$. Further, there exist some Δ_{21} , Δ_{22} , Δ'_{11} , Δ'_{21} , and Δ'_{22} such that

$$
- W_2.\Delta = \Delta_{21}, \omega \Delta_{22},
$$

$$
-\Delta'_1 = \Delta'_{11}, \omega \Delta_{22},
$$

\n
$$
-\Delta'_2 = \Delta'_{21}, \omega \Delta'_{22},
$$

\n
$$
-\overline{W}_1 \cdot \Delta = (\Delta_{21} + \Delta'_{11}), \Delta'_{21}, \text{ and}
$$

\n
$$
-\dagger(\rho) = \omega \Delta_{22}, \omega \Delta'_{22}.
$$

Since $\dagger(\rho) = \omega \Delta_{22}, \omega \Delta'_{22}$, we can take ρ_1 and ρ_2 such that

$$
-\rho = \rho_1 \uplus \rho_2,
$$

\n
$$
-\text{ dom}(\rho_1) = \text{dom}(\omega \Delta_{22}), \text{ and}
$$

\n
$$
-\text{ dom}(\rho_2) = \text{dom}(\omega \Delta'_{22}).
$$

Let Δ_{211} and Δ_{212} be typing contexts such that

$$
-\Delta_{21} = \Delta_{211}, \omega \Delta_{212} \text{ and}
$$

$$
-\forall \alpha \in \text{dom}(\Delta_{211}). \ \alpha^1 \in \Delta_{211}.
$$

Since $W_2.\Delta \vdash M_1 : W_2.\rho_{\text{fst}}(A)$, we have $W_2.\Delta, \omega \Delta_{21}' \vdash M_1 : W_2.\rho_{\text{fst}}(A)$ by Lemma [20.](#page-14-0) Since $W_2.\Delta =$ $\Delta_{21}, \omega \Delta_{22} = \Delta_{211}, \omega \Delta_{212}, \omega \Delta_{22}$, we have

$$
\Delta_{211}, \omega \Delta_{212}, \omega \Delta_{22}, \omega \Delta'_{21} \vdash M_1 : W_2. \rho_{\text{fst}}(A) . \tag{3}
$$

Since $W_1 \supseteq W_2$ implies $\vdash W_1$, we have $\forall \alpha \in dom(\rho_1)$. $W_1 \Delta \vdash \rho_{1\text{fst}}(\alpha)$. Since $W_1 \Delta = (\Delta_{21} + \Delta'_{11}), \Delta'_{21} =$ $((\Delta_{211}, \omega \Delta_{212}) + \Delta'_{11}), \Delta'_{21}$, we have

$$
\forall \alpha \in \text{dom}(\rho_1). \ \Delta_{211}, \omega \Delta_{212}, \omega \Delta'_{21} \vdash \rho_{1\text{fst}}(\alpha) \ .
$$

Since $W_2.\Delta \succ \rho$ and $dom(\rho_1) = dom(\omega \Delta_{22}) \subseteq dom(W_2.\Delta)$, we have $\forall \alpha \in ftv(\rho_1) \cap dom(W_2.\Delta)$. $\alpha^0 \in$ $W_2.\Delta$. Since

– $W_2.\Delta = \Delta_{211}, \omega \Delta_{212}, \omega \Delta_{22}$ and $-\forall \alpha \in dom(\Delta_{211}). \alpha^1 \in \Delta_{211} \subseteq W_2.\Delta,$

we have $ftv(\rho_1) \cap dom(\Delta_{211}) = \emptyset$. Thus,

$$
\forall \alpha \in \text{dom}(\rho_1). \ \omega \Delta_{212}, \omega \Delta'_{21} \vdash \rho_{1\text{fst}}(\alpha) \ . \tag{4}
$$

By Lemma [34](#page-22-0) with the judgments [\(3\)](#page-49-0) and [\(4\)](#page-49-1), noting $dom(\rho_1) = dom(\omega \Delta_{22})$, we have

$$
\Delta_{211}, \omega \Delta_{212}, \omega \Delta'_{21} \vdash \rho_{1\text{fst}}(M_1) : \rho_{1\text{fst}}(W_2. \rho_{\text{fst}}(A)) .
$$

Since $dom(\rho_2) = dom(\omega \Delta'_{22})$, we have $dom(\rho_2) \#(dom(\Delta_{211}, \omega \Delta_{212}, \omega \Delta'_{21}))$. Thus, noting $\Delta_{21} = \Delta_{211}, \omega \Delta_{212}$, we have

 $\Delta_{21}, \omega \Delta'_{21} \vdash \rho_{\text{fst}}(M_1) : \rho_{\text{fst}}(W_2. \rho_{\text{fst}}(A))$.

Since $W_1.\Delta = (\Delta_{21} + \Delta'_{11}), \Delta'_{21}$, we have

$$
W_1.\Delta \vdash \rho_{\rm fst}(M_1) : \rho_{\rm fst}(W_2.\rho_{\rm fst}(A))
$$

by Lemma [25.](#page-17-0) Since $(M_1, M_2) \in$ Atom $[W_2, A]$ and $\vdash W_2$ (implied by $W_1 \sqsupseteq W_2$), we have

$$
W_1.\Delta \vdash \rho_{\text{fst}}(W_2.\rho_{\text{fst}}(M_1)) : \rho_{\text{fst}}(W_2.\rho_{\text{fst}}(A))
$$

by Lemma [113.](#page-48-0) Since $W_1 \cdot \rho = \rho \circ W_2 \cdot \rho$, we have

$$
W_1.\Delta \vdash W_1.\rho_{\rm fst}(M_1): W_1.\rho_{\rm fst}(A) ,
$$

which is what is required to show.

Lemma 115. If $W_1 \supseteq W_2$ and $(R_1, R_2) \in W_2 \cdot \rho[\alpha](\blacktriangleright W_2)$, then $(R_1, R_2)_{W_1} \in W_1 \cdot \rho[\alpha](\blacktriangleright W_1)$.

Proof. Since $W_1 \supseteq W_2$, there exists some ρ such that $W_1 \cdot \rho = \rho \circ W_2 \cdot \rho$. Let $(A_1, A_2, r) = W_2 \cdot \rho(\alpha), B_1 = \rho_{\text{fst}}(A_1)$, and $B_2 = \rho_{\text{snd}}(A_2)$. By definition, $W_1 \cdot \rho(\alpha) = (B_1, B_2, r)$. $W_1 \supseteq W_2$ implies $\blacktriangleright W_1 \supseteq W_2$. Since $(R_1, R_2) \in r(\blacktriangleright$ W_2 , monotonicity of r implies $(R_1, R_2)_{W_1} \in r(\blacktriangleright W_1)$. Thus, we have the conclusion. П

Lemma 116. Suppose that $W_1 \supseteq W_2$.

1. If $(R_1, R_2) \in \mathcal{R}[[A]] \ W_2$, then $(R_1, R_2)_{W_1} \in \mathcal{R}[[A]] \ W_1$.

2. If $(M_1, M_2) \in \mathcal{E}[[A]] \, W_2$, then $(M_1, M_2)_{W_1} \in \mathcal{E}[[A]] \, W_1$.

Proof. By induction on A. Note that $(R_1, R_2) \in \text{Atom}[W_2, A]$ implies $(R_1, R_2)_{W_1} \in \text{Atom}[W_1, A]$ by Lemma [114.](#page-48-1) We first show the first property and then the second property by assuming that the first holds.

1. We first consider $(R_1, R_2) \in \mathcal{R}[\![A]\!]$ W₂ implies $(R_1, R_2)_{W_1} \in \mathcal{R}[\![A]\!]$ W₁. We proceed by case analysis on A.

Case $A = \iota$: Obvious.

Case $A = \alpha$: Let $(R_1, R_2) \in \mathcal{R}[\alpha] \cup N_2$. By definition, $(R_1, R_2) \in W_2$. $\rho[\alpha] (\blacktriangleright W_2)$. By Lemma [115,](#page-50-0) we have $(R_1, R_2)_{W_1} \in W_1 \cdot \rho[\alpha](\blacktriangleright W_1)$. Thus, $(R_1, R_2)_{W_1} \in \mathcal{R}[\![\alpha]\!] \cdot W_1$.

Case $A = B \multimap C$: Let $(R_1, R_2) \in \mathcal{R}[[B \multimap C]] \mid W_2$. It suffices to show that $(R_1, R_2)_{W_1} \in \mathcal{R}[[B \multimap C]] \mid W_1$, that is, for any $W' \sqsupseteq W_1$, $(W'_1, W'_2) \supseteq W'$, R'_1 , and R'_2 such that

- $W'_1 \sqsupseteq W_1$ and
- $(R'_1, R'_2) \in \mathcal{R}[\![B]\!] \ W'_2,$

it suffices to show that

$$
(R_1 R'_1, R_2 R'_2)_{W'} \in \mathcal{E}[[C]] W'
$$

.

Since $W' \supseteq W_1 \supseteq W_2$ and $W'_1 \supseteq W_1 \supseteq W_2$, we have $W' \supseteq W_2$ and $W'_1 \supseteq W_2$ by Lemma [110.](#page-47-0) Since further

- $(R_1, R_2) \in \mathcal{R}[[B \multimap C]] \, W_2$
- $(W'_1, W'_2) \supset W'$, and
- $(R'_1, R'_2) \in \mathcal{R}[\![B]\!] \ W'_2,$

we have the conclusion.

Case $A = \forall \alpha, B$: Let $(R_1, R_2) \in \mathcal{R}[\forall \alpha, B] \mathbb{W}_2$. It suffices to show that $(R_1, R_2)_{W_1} \in \mathcal{R}[\forall \alpha, B] \mathbb{W}_1$, that is, for any $W' \rightrightarrows W_1$, and C_1 , C_2 , and r such that $\omega W' \vdash (C_1, C_2, r)$ and $\{\alpha\} \# \omega W'$, it suffices to show that

 $(R_1 C_1, R_2 C_2)_{\omega W'} \in \mathcal{E}[B] \{ \alpha \Rightarrow (C_1, C_2, r) \} \forall \omega W'$.

Since $W' \supseteq W_1$ and $W_1 \supseteq W_2$, we have $W' \supseteq W_2$ by Lemma [110.](#page-47-0) Since further

- $(R_1, R_2) \in \mathcal{R}[\forall \alpha.B \mid W_2]$
- $\omega W' \vdash (C_1, C_2, r)$, and
- $\{\alpha\}\#\omega W',$

we have the conclusion.

Case $A = 1B$: By the IH with Lemma [112.](#page-48-2)

- 2. Let $(M_1, M_2) \in \mathcal{E}[[A]] \ W_2$. We show $(M_1, M_2)_{W_1} \in \mathcal{E}[[A]] \ W_1$. Suppose that $W' \supseteq W_1$ and $W' \cdot \rho_{\text{fst}}(W_1 \cdot \rho_{\text{fst}}(M_1)) \longrightarrow^n$
Be for some $W' \circ \rho \leq W' \circ \rho_{\text{c}}$ and P_1 . Then, it suffices to show that th R_1 for some W' , $n \leq W'$.n, and R_1 . Then, it suffices to show that there exist some R_2 such that
	- $W'.\rho_{\text{snd}}(W_1.\rho_{\text{snd}}(M_2)) \longrightarrow^* R_2$ and
	- \bullet $(R_1, R_2) \in \mathcal{E}[[A]] (W' n)$

Since $W' \supseteq W_1$, we have $W' \cdot \rho_{\rm fst}(W_1 \cdot \rho_{\rm fst}(M_1)) = W' \cdot \rho_{\rm fst}(M_1)$ and $W' \cdot \rho_{\rm snd}(W_1 \cdot \rho_{\rm snd}(M_1)) = W' \cdot \rho_{\rm snd}(M_1)$ by Lemma [114.](#page-48-1) Since $W_1 \supseteq W_2$, we have $W' \supseteq W_2$ by Lemma [110.](#page-47-0) Thus, since $(M_1, M_2) \in \mathcal{E}[\![A]\!] W_2$, we have the conclusion.

 \Box

 \Box

Lemma 117. For any W and Δ , if \vdash W and dom(Δ)#W, then $(W.n, (W.\Delta, \Delta), W.\rho) \sqsupseteq W$. *Proof.* Obvious because $W.\Delta, \Delta \gg W.\Delta$ and $\vdash (W.n, (W.\Delta, \Delta), W.\rho)$ from $\vdash W$ and $dom(\Delta) \# W$.

Lemma 118. For any W and Δ , if \vdash W and $W.\Delta \leq \Delta$, then $(W.n, \Delta, W.\rho) \sqsupseteq W$.

Proof. Obvious because $\Delta \gg W.\Delta$ from $W.\Delta \leq \Delta$, and $\vdash (W.n, \Delta, W.\rho)$ from $\vdash W$ with Lemma [14.](#page-13-2) \Box

Lemma 119. If $W_1 \supseteq W_2$ and $(W_2, \varsigma) \in \mathcal{G}[\Gamma]$, then $(W_1, W_1, \rho(\varsigma)) \in \mathcal{G}[\Gamma]$. Furthermore, if $W_1 \cdot \rho = W_2 \cdot \rho$, then $\varsigma = W_1.\rho(\varsigma).$

Proof. Since $(W_2, \varsigma) \in \mathcal{G}[\Gamma],$ we have

- $\bullet \vdash W_2$,
- $\Gamma \succ W_2.\rho$, and
- there exist some Δ and $\prod_{x \in dom_{=1}(\Gamma)} \Delta_x$ such that:

$$
- W_2.\Delta = \Delta + \sum_{x \in dom = 1} \Gamma \Delta_x;
$$

- $-$ for any $\alpha^{\pi} \in \Gamma$, $\exists \pi' \geq \pi$. $\alpha^{\pi'} \in \Delta$ or $\pi = 0 \land \alpha \in dom(W_2 \cdot \rho)$;
- $-$ for any $x: A \in Γ$, $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[[A]](W_2.n, \Delta_x, W_2.p);$ and
- $-$ for any $x: \omega A \in \Gamma$, $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[[A]] \omega W_2$.

Since $W_1 \supseteq W_2$, there exists some ρ such that

- $W_1.\rho = \rho \circ W_2.\rho,$
- $W_1.\Delta, \dagger(\rho) \gg W_2.\Delta$, and
- $W_2.\Delta \succ \rho$.

Thus, there exist some Δ' and Δ'_0 such that $W_1.\Delta, \dagger(\rho) = (W_2.\Delta + \Delta'), \Delta'_0$. Since $W_2.\Delta = \Delta + \sum_{x \in dom_{=1}(\Gamma)} \Delta_x$, there exist some Δ_1 , Δ_2 , $\prod_{x \in dom_{=1}(\Gamma)} \Delta_{1,x}$, Δ'_1 , Δ'_{01} , and Δ'_{02} such that

- $\Delta = \Delta_1, \omega \Delta_2$,
- $\Delta_x = \Delta_{1,x}, \omega \Delta_2$ for any $x \in dom_{=1}(\Gamma)$,
- $\Delta' = \Delta'_1, \omega \Delta_2,$
- $\Delta'_0 = \Delta'_{01}, \omega \Delta'_{02},$
- $W_1.\Delta = (\Delta_1 + \sum_{x \in dom_{=1}(\Gamma)} \Delta_{1,x} + \Delta'_1), \Delta'_{01}$, and

$$
\bullet \ \dagger(\rho) \,=\, \omega \Delta_2, \omega \Delta'_{02}.
$$

Let $\Delta_3 = (\Delta_1 + \Delta'_1), \Delta'_{01}$ and $\Delta_{3,x} = \Delta_{1,x}, \omega \Delta'_{01}$ for $x \in dom_{=1}(\Gamma)$. Further, let $\varsigma_1 = W_1 \cdot \rho(\varsigma)$. We show $(W_1, \varsigma_1) \in \mathcal{G}[\![\Gamma]\!]$ in what follows.

- We have $\vdash W_1$ from $W_1 \sqsupseteq W_2$.
- We have $W_1.\Delta = \Delta_3 + \sum_{x \in dom_{=1}(\Gamma)} \Delta_{3,x}$.

• We show that $\Gamma \succ W_1 \cdot \rho$, i.e., let $\alpha \in ftv(W_1 \cdot \rho|_{dom(\Gamma)}) \cap dom(\Gamma)$ and then show that $\alpha^0 \in \Gamma$.

We first show that $\alpha \in dom(W_2.\Delta)$ by contradiction. Suppose that $\alpha \notin dom(W_2.\Delta)$. Since $\alpha \in$ $dom(\Gamma), (W_2, \varsigma) \in \mathcal{G}[\Gamma]$ implies $\alpha \in dom(W_2, \rho)$. $\vdash W_1$ and $dom(W_1, \rho) = dom(\rho) \cup dom(W_2, \rho)$ implies $dom(W_1.\Delta) \# (dom(\rho) \cup dom(W_2.\rho))$. $\vdash W_1$ and $\alpha \in ftv(W_1.\rho)$ implies $\alpha \in dom(W_1.\Delta)$. Thus, there is a contradiction.

Next, we show that $\alpha \in \text{ftv}(\rho|_{dom(W_2,\Delta)}) \cup \text{ftv}(W_2,\rho|_{dom(\Gamma)})$. Since $\alpha \in \text{ftv}(W_1,\rho|_{dom(\Gamma)})$ and $W_1,\rho =$ $\rho \circ W_2 \cdot \rho$, we have $\alpha \in \text{ftv}(\rho|_{\text{dom}(\Gamma)}) \cup \text{ftv}(\rho(W_2 \cdot \rho)|_{\text{dom}(\Gamma)}).$

Case $\alpha \in \text{ftv}(\rho|_{dom(\Gamma)}): (W_2, \varsigma) \in \mathcal{G}[\Gamma]$ implies $\forall \alpha \in \text{dom}(\Gamma)$. $\alpha \in \text{dom}(W_2.\Delta) \cup \text{dom}(W_2.\rho)$. Thus, $\alpha \in \text{ftv}(\rho|_{\text{dom}(W_2,\Delta)\cup\text{dom}(W_2,\rho)})$. Since $W_1.\rho = \rho \circ W_2.\rho$ is well defined, we have $\text{dom}(\rho) \# \text{dom}(W_2.\rho)$. Thus, $\alpha \in \text{ftv}(\rho|_{\text{dom}(W_2,\Delta)}).$

Case $\alpha \in \text{ftv}(\rho(W_2.\rho)|_{\text{dom}(\Gamma)})$: We have $\alpha \in \text{ftv}(W_2.\rho|_{\text{dom}(\Gamma)}) \cup \text{ftv}(\rho|_{\text{ftv}(W_2.\rho|_{\text{dom}(\Gamma)})})$. Case $\alpha \in \text{ftv}(W_2.\rho|_{\text{dom}(\Gamma)})$: We have what is required to prove. Case $\alpha \in \text{ftv}(\rho|_{\text{ftv}(W_2,\rho|_{\text{dom}(\Gamma)}))$: $\vdash W_2$ implies $\text{ftv}(W_2,\rho) \subseteq \text{dom}(W_2,\Delta)$. Thus, $\alpha \in \text{ftv}(\rho|_{\text{dom}(W_2,\Delta)})$.

We show that $\alpha^0 \in \Gamma$.

If $\alpha \in \text{ftv}(\rho|_{\text{dom}(W_2,\Delta)})$, then $W_2.\Delta \succ \rho$ and $\alpha \in \text{dom}(W_2.\Delta)$ implies $\alpha^0 \in W_2.\Delta$. $\vdash W_2$ implies $\alpha \notin$ $dom(W_2, \rho)$. Let $\alpha^{\pi} \in \Gamma$. $(W_2, \varsigma) \in \mathcal{G}[\Gamma]$ implies $\alpha^{\pi'} \in \Delta$ for some $\pi' \geq \pi$. Since $\Delta \leq W_2 \Delta$ and $\alpha^0 \in W_2 \Delta$ we have $\pi' = 0$. Since $0 = \pi' > \pi$ we have $\pi = 0$. $\alpha^0 \in W_2.\Delta$, we have $\pi' = 0$. Since $0 = \pi' \geq \pi$, we have $\pi = 0$.

Otherwise, if $\alpha \in \text{ftv}(W_2.\rho|_{\text{dom}(\Gamma)})$, then $\Gamma \succ W_2.\rho$ and $\text{dom}(\Gamma)$ implies $\alpha^0 \in \Gamma$.

• For $\alpha^{\pi} \in \Gamma$, suppose that $\forall \pi' \geq \pi$. $\alpha^{\pi'} \notin \Delta_3$. We show that $\pi = \mathbf{0} \land \alpha \in \text{dom}(W_1, \rho)$. Since $\alpha^{\pi} \in \Gamma$, we can perform case analysis on $\exists \pi' \geq \pi$. $\alpha^{\pi'} \in \Delta$ or $\pi = 0 \land \alpha \in dom(W_2 \cdot \rho)$ (which is implied by $(W_2, \varsigma) \in \mathcal{G}[\![\Gamma]\!]$).

Case $\exists \pi' \geq \pi$. $\alpha^{\pi'} \in \Delta$: Since $\Delta = \Delta_1, \omega \Delta_2$, we proceed by case analysis on $\alpha^{\pi'} \in \Delta_1$ or $\alpha^{\pi'} \in \omega \Delta_2$.

Case $\alpha^{\pi'} \in \Delta_1$: Since $\Delta_3 = (\Delta_1 + \Delta'_1), \Delta'_{01}$, we have $\alpha^{\pi''} \in \Delta_3$ for some $\pi'' \geq \pi'$. Since $\pi' \geq \pi$, we have $\pi'' \geq \pi$. However, we have assumed $\forall \pi' \geq \pi$. $\alpha^{\pi'} \notin \Delta_3$. Thus, there is a contradiction.

Case $\alpha^{\pi'} \in \omega\Delta_2$: Since $\pi' \geq \pi$, We have $\pi' = \pi = 0$. Since $\dagger(\rho) = \omega\Delta_2, \omega\Delta'_{02}$, we have $\alpha \in dom(\rho)$. Since $W_1 \rho = \rho \circ W_2 \rho$, we have $\alpha \in dom(W_1 \rho)$.

Case $\pi = 0 \land \alpha \in dom(W_2, \rho)$: Since $W_1, \rho = \rho \circ W_2, \rho$, we have $\alpha \in dom(W_1, \rho)$.

• Let $x: A \in \Gamma$.

We first show that $(W_1.n, \Delta_{3,x}, W_1.\rho) \sqsupseteq (W_2.n, \Delta_x, W_2.\rho).$

- $\vdash (W_1.n, \Delta_{3,x}, W_1.\rho)$ and $\vdash (W_2.n, \Delta_x, W_2.\rho)$ by Lemma [105](#page-46-5) with $\vdash W_1$ and $\vdash W_2$ and $dom(W_1.\Delta)$ $dom(\Delta_{3,x})$ and $dom(W_2.\Delta) = dom(\Delta_x)$.
- We have $W_1.n \leq W_2.n$ by $W_1 \sqsupset W_2$.
- $-$ We have $\Delta_{3,x},\dagger(\rho)=\Delta_{1,x}, \omega\Delta'_{01}, \omega\Delta_2, \omega\Delta'_{02}\gg \Delta_{1,x}, \omega\Delta_2=\Delta_x.$
- We have $W_1.\rho = \rho \circ W_2.\rho$.
- We show that $\Delta_x > \rho$. Let $\alpha \in \text{ftv}(\rho|_{\text{dom}(\Delta_x)}) \cap \text{dom}(\Delta_x)$. Since $\text{dom}(\Delta_x) = \text{dom}(W_2.\Delta)$, we have $\alpha^0 \in W_2.\Delta$ by $W_2.\Delta \succ \rho$. Since $\Delta_x \leq W_2.\Delta$, we have $\alpha^0 \in \Delta_x$.

Thus, since $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}\llbracket A \rrbracket (W_2 \ldots, \Delta_x, W_2 \ldots \rho),$ we have

$$
(\varsigma_{\rm fst}(x), \varsigma_{\rm snd}(x))_{W_1} \in \mathcal{R}[\![A]\!](W_1 \cdot n, \Delta_{3,x}, W_1 \cdot \rho)
$$

by Lemma [116.](#page-50-1) Thus,

$$
(\varsigma_{1\text{fst}}(x),\varsigma_{1\text{snd}}(x)) \in \mathcal{R}[\![A]\!](W_1.n,\Delta_{3,x},W_1.\rho) .
$$

• Let $x: \mathcal{A} \in \Gamma$. We have had $(\varsigma_{\rm fst}(x), \varsigma_{\rm snd}(x)) \in \mathcal{R}\llbracket A \rrbracket \omega W_2$. Since $\omega W_1 \sqsupseteq \omega W_2$ by Lemma [112,](#page-48-2) we have

 $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x))_{\omega W_1} \in \mathcal{R}\llbracket A \rrbracket \omega W_1$

by Lemma [116.](#page-50-1) Thus,

 $(\zeta_{1\text{fst}}(x), \zeta_{1\text{snd}}(x)) \in \mathcal{R}\llbracket A \rrbracket \omega W_1$.

If $W_1 \cdot \rho = W_2 \cdot \rho$, then $\varsigma = W_1 \cdot \rho(\varsigma)$ by Lemma [113.](#page-48-0)

Lemma 120. If $\Gamma \vdash x : A$, then $\Gamma \vdash x \preceq x : A$.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma]$ and $W' \sqsupseteq W$ such that $0 \lt W'.n$. Then, it suffices to show that

$$
(\varsigma_{\mathrm{fst}}(x),\varsigma_{\mathrm{snd}}(x))_{W'} \in \mathcal{R}[\![A]\!]\,W' .
$$

By Lemma [119,](#page-51-0) $(W', W', \rho(\varsigma)) \in \mathcal{G}[\![\Gamma]\!]$. Since $\Gamma \vdash x : A$, we have $x : \pi A \in \Gamma$ for some $\pi \neq \mathbf{0}$. By case analysis on π

Case $\pi = 0$: Contradictory.

Case $\pi = 1$: Since $(W', W', \rho(\varsigma)) \in \mathcal{G}[\Gamma],$ we have $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x))_{W'} \in \mathcal{R}[A](W', n, \Delta, W', \rho)$ for some $\Delta \leq W' \Delta$. $W'.\Delta$. By Lemmas [118,](#page-51-1) [116,](#page-50-1) and [113,](#page-48-0) we have the conclusion.

Case $\pi = \omega$: Since $(W', W', \rho(\varsigma)) \in \mathcal{G}[\Gamma],$ we have $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x))_{W'} \in \mathcal{R}[\![A]\!] \omega W'$. We also have $W \sqsupseteq \omega W$ by Lemmas [100](#page-46-6) and [118.](#page-51-1) Thus, we have the conclusion by Lemmas [116](#page-50-1) and [113.](#page-48-0)

 \Box

Lemma 121. If $\Gamma \vdash c : ty(c)$, then $\Gamma \vdash \nu \overline{\alpha_1} \ldotp c \preceq \nu \overline{\alpha_2} \ldotp c : ty(c)$ for any $\overline{\alpha_1}$ and $\overline{\alpha_2}$.

Proof. By structural induction on $ty(c)$. Let $(W, \varsigma) \in \mathcal{G}[\![\Gamma]\!]$ and $W' \sqsupseteq W$ such that $0 \lt W'.n$. It suffices to show that

$$
(\nu \overline{\alpha_1}, c, \nu \overline{\alpha_2}, c) \in \mathcal{R}[[ty(c)]] W' .
$$

If $ty(c) = \iota$ for some ι , we have $(\nu \overline{\alpha_1}, c, \nu \overline{\alpha_2}, c) \in \mathcal{R}[\iota] \ W'$ by definition. Thus, we have the conclusion. If $ty(c) = \iota$ \sim A for some ι and A, then it suffices to show that, for any W'', W_1 , W_2 , R'_1 , and R'_2 , if

- \bullet $W'' \sqsupseteq W'$,
- $(W_1, W_2) \supseteq W'',$
- $W_1 \sqsupseteq W'$, and
- $(R'_1, R'_2) \in \mathcal{R}[\![\iota]\!] \ W_2,$

then

$$
((\nu\overline{\alpha_1}. c) R'_1, (\nu\overline{\alpha_2}. c) R'_2) \in \mathcal{E}[\![A]\!] W''.
$$

Since $(R'_1, R'_2) \in \mathcal{R}[[t]] W_2$, we have $R'_1 = \nu \overline{\beta_1}$, c' and $R'_2 = \nu \overline{\beta_2}$, c' for some $\overline{\beta_1}$, $\overline{\beta_2}$, and c' such that $ty(c') = \iota$. By Assumption [1,](#page-1-0) for $i \in \{1,2\}$, there exists some n_i such that $(\nu \overline{\alpha_i}, c) R'_i \longrightarrow^{n_i} \nu \overline{\alpha_i} \dots \nu \overline{\beta_i} \dots \zeta(c, c')$, and $\Gamma \vdash \zeta(c, c') : A$. Let $W''' \sqsupseteq W''$ and $n_1 < W'''$. Then it suffices to show that

$$
(\nu \overline{\alpha_1} \cdot \nu \overline{\beta_1} \cdot \zeta(c, c'), \nu \overline{\alpha_2} \cdot \nu \overline{\beta_2} \cdot \zeta(c, c')) \in \mathcal{R}\llbracket A \rrbracket (W''' - n_1) .
$$

By the IH,

 $\Gamma \vdash \nu \overline{\alpha_1} \ldotp \nu \overline{\beta_1} \ldotp \zeta(c, c') \preceq \nu \overline{\alpha_2} \ldotp \nu \overline{\beta_2} \ldotp \zeta(c, c') : A$.

Since $(W, \varsigma) \in \mathcal{G}[\Gamma]$ and $W''' - n_1 \supseteq W'' \supseteq W'' \supseteq W' \supseteq W$, we have $(W''' - n_1, W''', \rho(\varsigma)) \in \mathcal{G}[\Gamma]$ by Lemmas [110](#page-47-0) and [119.](#page-51-0) Thus, we have

$$
(\nu \overline{\alpha_1} \cdot \nu \overline{\beta_1} \cdot \zeta(c, c'), \nu \overline{\alpha_2} \cdot \nu \overline{\beta_2} \cdot \zeta(c, c')) \in \mathcal{E}[A](W''' - n_1) .
$$

Since $n_1 \, \langle W''' \rangle \, n$, we have $0 \, \langle W''' \rangle \, n - n_1$. Thus, we have the conclusion.

Lemma 122. If $(W, \varsigma) \in \mathcal{G}[\Gamma]$ and $(R_1, R_2) \in \mathcal{R}[\![A]\!](W.n, \Delta, W.\rho)$ and $W.\Delta \perp \Delta$, then

$$
((W.n, W.\Delta + \Delta, W.\rho), \varsigma \uplus \{x \mapsto R_1, R_2\}) \in \mathcal{G}[\Gamma, x : A].
$$

Proof. $(W, \varsigma) \in \mathcal{G}[\Gamma]$ implies $\vdash W$. By Lemma [102,](#page-46-7) $dom(W.\Delta) = dom(\Delta)$. Thus, by Lemma [105,](#page-46-5) $\vdash (W.n, W.\Delta + \Delta, W.o)$. The remaining part is obvious by definition. Δ , $W.\rho$). The remaining part is obvious by definition.

Lemma 123. If $\Gamma, x : A \vdash M_1 \preceq M_2 : B$, then $\Gamma \vdash \lambda x.M_1 \preceq \lambda x.M_2 : A \multimap B$.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma]$. By definition and Lemma [114,](#page-48-1) it suffices to show that, for any W' , W'' , W_1 , W_2 , R'_1 , and R'_1 and R'_2 , if

- $W' \sqsupseteq W$,
- \bullet 0 < W'.n,
- \bullet $W'' \sqsupseteq W'$,
- $(W_1, W_2) \supseteq W'',$
- $W_1 \sqsupseteq W'$, and
- $(R'_1, R'_2) \in \mathcal{R}[\![A]\!]$ W_2 ,

then

$$
\left(\zeta_{\rm fst}(\lambda x.M_1) R'_1, \zeta_{\rm snd}(\lambda x.M_2) R'_2\right)_{W''} \in \mathcal{E}\llbracket B \rrbracket W''.
$$

Let $W''' \supseteq W''$ such that $W''' \cdot \rho_{\text{fst}}(\zeta_{\text{fst}}(\lambda x. M_1) R_1') \longrightarrow^n R_1$ for some $n \langle W''' \rangle$ and R_1 . Then, it suffices to show that there exists some R'_2 such that

- $W''' \cdot \rho_{\text{snd}}(\zeta_{\text{snd}}(\lambda x. M_2) R_2') \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[B]] \; (W''' n).$

Since $(W, \varsigma) \in \mathcal{G}[\Gamma]$ and $W_1 \supseteq W' \supseteq W$ and $W_1 \cdot \rho = W'' \cdot \rho$, we have $(W_1, W'' \cdot \rho(\varsigma)) \in \mathcal{G}[\Gamma]$ by Lemmas [110](#page-47-0) and [119.](#page-51-0) Since $(W_1, \tilde{W}_2) \supseteq W''$ and $(R'_1, R'_2) \in \mathcal{R}[[A]] W_2$, we have $(W'', W'', \rho(\varsigma) \cup \{x \mapsto R'_1, R'_2\}) \in \mathcal{G}[[\Gamma, x :^\mathbf{1} A]]$ by Lemma [122.](#page-53-0) Since Γ , $x: A \vdash M_1 \preceq M_2 : B$, we have

$$
(\varsigma_{\rm fst}(M_1[R'_1/x]), \varsigma_{\rm snd}(M_2[R'_2/x]))_{W''} \in \mathcal{E}[\![B]\!]
$$
 W''.

Since $W''', \rho_{\text{fst}}(\zeta_{\text{fst}}(\lambda x. M_1) R_1') \longrightarrow^n R_1$, we can find $W'''', \rho_{\text{fst}}(\zeta_{\text{fst}}(M_1[R_1'/x])) \longrightarrow^{n_1} R_1$ for some $n_1 < n$. Since $W''' \sqsupseteq W''$ and $n_1 < n < W'''$.n, there exists some R_2 such that

- $W''' \cdot \rho_{\text{snd}}(\varsigma_{\text{snd}}(M_2[R'_2/x])) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[B]] (W''' n_1).$

We have $W''' \cdot \rho_{\text{snd}}(\zeta_{\text{snd}}(\lambda x. M_2) R_2') \longrightarrow W''' \cdot \rho_{\text{snd}}(\zeta_{\text{snd}}(M_2[R_2/x])) \longrightarrow^* R_2$. Since $W''' - n \sqsupseteq W''' - n_1$, we have $(R_1, R_2) \in \mathcal{R}[[B]] (W''' - n)$ by Lemmas [116](#page-50-1) and [113.](#page-48-0) \Box

Lemma 124. If $(W, \varsigma) \in \mathcal{G}[\Gamma_1 + \Gamma_2],$ then there exist some W_1 and W_2 such that

- $(W_1, \varsigma) \in \mathcal{G}[\![\Gamma_1]\!],$
- $(W_2, \varsigma) \in \mathcal{G}[\Gamma_2],$ and
- \bullet $(W_1, W_2) \supseteq W$.

Proof. Since $(W, \varsigma) \in \mathcal{G}[\Gamma_1 + \Gamma_2],$ we have

- $\bullet \vdash W,$
- $\Gamma_1 + \Gamma_2 \succ W.\rho$, and
- there exist some Δ' and $\prod_{x \in dom_{=1}(\Gamma_1 + \Gamma_2)} \Delta_x$ such that

-
$$
W.\Delta = \Delta' + \sum_{x \in dom_{=1}(\Gamma_1 + \Gamma_2)} \Delta_x
$$
,
\n- $\forall \alpha^{\pi} \in \Gamma$. $(\exists \pi' \ge \pi, \alpha^{\pi'} \in \Delta') \lor (\pi = \mathbf{0} \land \alpha \in dom(W.\rho)),$
\n- $\forall x : A \in \Gamma$. $(\varsigma_{fst}(x), \varsigma_{snd}(x)) \in \mathcal{R}[\![A]\!](W.n, \Delta_x, W.\rho)$, and
\n- $\forall x : \omega A \in \Gamma$. $(\varsigma_{fst}(x), \varsigma_{snd}(x)) \in \mathcal{R}[\![A]\!](\omega W)$.

For $i \in \{1,2\}$ and $x \in dom_{=1}(\Gamma_i)$, let $\Delta_{i,x} = \Delta_x$ if $x \in dom_{=1}(\Gamma_1 + \Gamma_2)$, and otherwise $\Delta_{i,x} = \omega \Delta'$. We also build Δ'_i for $i \in \{1,2\}$ as follows:

- if $\alpha^1 \in \Delta'$ and $\alpha^1 \in \Gamma_i$, then $\alpha^1 \in \Delta'_i$;
- if $\alpha^1 \in \Delta'$ and $\alpha^0 \in \Gamma_i$ and $\alpha^1 \in \Gamma_{2-i}$, then $\alpha^0 \in \Delta'_i$;
- if $\alpha^1 \in \Delta'$ and $\alpha^0 \in \Gamma_1 + \Gamma_2 \vee \alpha \notin dom(\Gamma_1 + \Gamma_2)$, then $\alpha^0 \in \Delta'_1$ and $\alpha^1 \in \Delta'_2$; and
- if $\alpha^0 \in \Delta'$, then $\alpha^0 \in \Delta'_i$.

Then, we can find $\Delta'_i \perp \sum_{x \in dom_{i-1}(\Gamma_i)} \Delta_{i,x}$ for $i \in \{1,2\}$: for any α , if $\alpha^1 \in \Delta'_i$, then $\alpha^1 \in \Delta'_i$; since $\Delta' \bot \sum_{x \in dom_{=1}(\Gamma_1 + \Gamma_2)} \Delta_x$, we have $\alpha^0 \in \Delta_x$.

Let $i \in \{1,2\}$ and $W_i = (W.n, \Delta'_i + \sum_{x \in dom_{i=1}(\Gamma_i)} \Delta_{i,x}, W.\rho)$. We show that $(W_1, W_2) \supset W$, i.e., $W_1.\Delta +$ $W_2.\Delta = W.\Delta$. First, we have the following.

- $\Delta' = \Delta'_1 + \Delta'_2$. If $\alpha^0 \in \Delta'$, then $\alpha^0 \in \Delta'_1$ and $\alpha^0 \in \Delta'_2$; If $\alpha^1 \in \Delta'$, then only either of Δ'_1 and Δ'_2 has α^1 .
- We have

$$
\begin{array}{lll}\n\omega\Delta' + \sum_{x \in dom_{=1}(\Gamma_1 + \Gamma_2)} \Delta_x \\
= & \omega\Delta' + \sum_{x \in dom_{=1}(\Gamma_1) \cap dom_{=1}(\Gamma_1 + \Gamma_2)} \Delta_{1,x} + \sum_{x \in dom_{=1}(\Gamma_2) \cap dom_{=1}(\Gamma_1 + \Gamma_2)} \Delta_{2,x} \\
= & \omega\Delta' + \sum_{x \in dom_{=1}(\Gamma_1)} \Delta_{1,x} + \sum_{x \in dom_{=1}(\Gamma_2)} \Delta_{2,x}\n\end{array}
$$

Thus,

$$
W.\Delta = \Delta' + \sum_{x \in dom_{=1}(r_{1}+r_{2})} \Delta_{x}
$$

= $\Delta'_{1} + \Delta'_{2} + \omega \Delta' + \sum_{x \in dom_{=1}(r_{1}+r_{2})} \Delta_{x}$
= $\Delta'_{1} + \Delta'_{2} + \omega \Delta' + \sum_{x \in dom_{=1}(r_{1})} \Delta_{1,x} + \sum_{x \in dom_{=1}(r_{2})} \Delta_{2,x}$
= $\Delta'_{1} + \sum_{x \in dom_{=1}(r_{1})} \Delta_{1,x} + \Delta'_{2} + \sum_{x \in dom_{=1}(r_{2})} \Delta_{2,x}$
= $W_{1}.\Delta + W_{2}.\Delta$.

Finally, we show that $(W_i, \varsigma) \in \mathcal{G}[\![\Gamma_i]\!].$

- We have $\vdash W_i$ by Lemma [105](#page-46-5) with $\vdash W$ and $dom(W.\Delta) = dom(W_i.\Delta)$ (which is shown by Lemma [102\)](#page-46-7).
- We show that $\Gamma_i > W_i \cdot \rho$. Let $\alpha \in ftv(W_i \cdot \rho|_{dom(\Gamma_i)}) \cap dom(\Gamma_i)$. Since $W_i \cdot \rho = W \cdot \rho$ and $dom(\Gamma_i) = dom(\Gamma_{i+1} \Gamma_i) \cdot \Gamma_{i+1} \cdot \Gamma_{i+2}$. We implies $\alpha^0 \in \Gamma_{i+1} \cdot \Gamma_{i+1}$. $dom(\Gamma_1 + \Gamma_2), \Gamma_1 + \Gamma_2 \succ W.\rho$ implies $\alpha^0 \in \Gamma_1 + \Gamma_2$. Thus, $\alpha^0 \in \Gamma_i$.
- Let $\alpha^1 \in \Gamma_i$. Since $\alpha^1 \in \Gamma_1 + \Gamma_2$, we have $\alpha^1 \in \Delta'$ from $(W, \varsigma) \in \mathcal{G}[\![\Gamma_1 + \Gamma_2]\!]$. By the definition of Δ'_i , $\alpha^{\mathbf{1}} \in \Delta'_i.$
- Let $\alpha^0 \in \Gamma_i$.

If $\alpha \in dom(\Delta')$, then $\alpha \in dom(\Delta'_i)$. Thus, there exists some $\pi' \geq \pi$ such that $\alpha^{\pi'} \in \Delta'_i$. Otherwise, if $\alpha \notin dom(\Delta')$, then, since $(W, \varsigma) \in \mathcal{G}[\Gamma_1 + \Gamma_2], \alpha \in dom(W, \rho) = dom(W_i, \rho)$.

- Let $x: A \in \Gamma_i$. We show $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}\llbracket A \rrbracket(W.n, \Delta_{i,x}, W.\rho)$. If $x: A \in \Gamma_1 + \Gamma_2$, then $\Delta_{i,x} = \Delta_x$. Thus, $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}\llbracket A \rrbracket (W.n, \Delta_{i,x}, W.\rho)$ from $(W, \varsigma) \in \mathcal{C}\llbracket \Gamma_1 + \Gamma_2 \rrbracket$ $\mathcal{G}[\![\Gamma_1 + \Gamma_2]\!]$. Otherwise, if $x : \mathcal{A} \in \Gamma_1 + \Gamma_2$, then $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[\![A]\!] \omega W$ from $(W, \varsigma) \in \mathcal{G}[\![\Gamma_1 + \Gamma_2]\!]$. Since $\omega \Delta' = \Delta_{i,x}$ by definition, we have the conclusion.
- Let $x: \mathcal{A} \in \Gamma_i$. Since $\omega W_1 = \omega W_2 = \omega W$, it suffices to show that $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[\![A]\!] \omega W$, which is shown by $(W \cap \varsigma) \in \mathcal{C}[\![\Gamma_{\succ} + \Gamma_{\succ}]\!]$ shown by $(W, \varsigma) \in \mathcal{G}[\![\Gamma_1 + \Gamma_2]\!]$.

 \Box

Lemma 125. If $\Gamma_1 \vdash M_{11} \preceq M_{21}$: $A \multimap B$ and $\Gamma_2 \vdash M_{12} \preceq M_{22}$: A and $\Gamma_1 \perp \Gamma_2$, then $\Gamma_1 + \Gamma_2 \vdash M_{11} M_{12} \preceq M_{22}$ $M_{21} M_{22} : B.$

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma_1 + \Gamma_2]$. By the definition and Lemma [114,](#page-48-1) suppose that

- $W' \sqsupseteq W$,
- $n \lt W'.n$, and
- $W'.\rho_{\rm fst}(\varsigma_{\rm fst}(M_{11} M_{12})) \longrightarrow^n R_1$

for some W' , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- $W'.\rho_{\text{snd}}(\zeta_{\text{snd}}(M_{21} M_{22})) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[B]] (W' n).$

By Lemma [119,](#page-51-0) $(W', W', \rho(\varsigma)) \in \mathcal{G}[\Gamma_1 + \Gamma_2]$. By Lemma [124,](#page-54-0) there exist some W_1 and W_2 such that

- $(W_1, W', \rho(\varsigma)) \in \mathcal{G}[\![\Gamma_1]\!],$
- $(W_2, W', \rho(\varsigma)) \in \mathcal{G}[\![\Gamma_2]\!],$ and
- \bullet $(W_1, W_2) \supseteq W'.$

Since $\Gamma_1 \vdash M_{11} \preceq M_{21} : A \multimap B$ and $W_1 \cdot \rho = W' \cdot \rho$ (from $(W_1, W_2) \supseteq W'$), we have

$$
(\varsigma_{\mathrm{fst}}(M_{11}), \varsigma_{\mathrm{snd}}(M_{21}))_{W_1} \in \mathcal{E}[[A \multimap B]] \ W_1 .
$$

Since $\Gamma_2 \vdash M_{12} \preceq M_{22}$: A and $W_2 \rho = W' \rho$, we have

$$
(\varsigma_{\rm fst}(M_{12}), \varsigma_{\rm snd}(M_{22}))_{W_2} \in \mathcal{E}\llbracket A \rrbracket W_2.
$$

Since $W' \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(M_{11} M_{12})) \longrightarrow^n R_1$, we can find $W_1 \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(M_{11})) \longrightarrow^{n_1} R_{11}$ and $W_2 \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(M_{12})) \longrightarrow^{n_2}$ R_{12} for some R_{11}, R_{12}, n_1 , and n_2 such that $n_1 + n_2 < n$; note that $W_1 \cdot \rho = W_2 \cdot \rho = W' \cdot \rho$. Since $W_1 \cdot n = W_2 \cdot n = n$, there exist some R_{21} and R_{22} such that

- $W_1.\rho_{\text{snd}}(\zeta_{\text{snd}}(M_{21})) \longrightarrow^* R_{21}$
- $W_2.\rho_{\text{snd}}(\zeta_{\text{snd}}(M_{22})) \longrightarrow^* R_{22}$
- $(R_{11}, R_{21}) \in \mathcal{R}[[A] \sim B]] (W_1 n_1)$, and
- $(R_{12}, R_{22}) \in \mathcal{R}[[A]] (W_2 n_2).$

Since $W_2 - n_1 - n_2 \supseteq W_2 - n_2$, we have $(R_{12}, R_{22}) \in \mathcal{R}[\![A]\!](W_2 - n_1 - n_2)$ by Lemmas [116](#page-50-1) and [113.](#page-48-0) Since $(W_1, W_2) \ni W'$, we have $(W_1 - n_1 - n_2, W_2 - n_1 - n_2) \ni W' - n_1 - n_2$. Further, by Lemma [118,](#page-51-1) $W' - n_1 - n_2 \supseteq W'$ $W_1 - n_1 - n_2$. Since $W_1 - n_1 - n_2 \supseteq W_1 - n_1$, we have $W' - n_1 - n_2 \supseteq W_1 - n_1$ by Lemma [110.](#page-47-0) Now, we have

- $(R_{11}, R_{21}) \in \mathcal{R}[[A] \multimap B]] (W_1 n_1),$
- $(R_{12}, R_{22}) \in \mathcal{R}[\![A]\!](W_2 n_1 n_2),$
- $W' n_1 n_2 \sqsupset W_1 n_1$.
- $(W_1 n_1 n_2, W_2 n_1 n_2) \supseteq W' n_1 n_2$, and
- $W_1 n_1 n_2 \sqsupseteq W_1 n_1$.

Thus, by the definition of \mathcal{R} ,

$$
(R_{11} R_{12}, R_{21} R_{22}) \in \mathcal{E}[\![B]\!] \ W' - n_1 - n_2 \ .
$$

Since

$$
W'.\rho_{\text{fst}}(\varsigma_{\text{fst}}(M_{11} M_{12})) \longrightarrow^{n_1} R_{11} W'.\rho_{\text{fst}}(\varsigma_{\text{fst}}(M_{12}))
$$

$$
\longrightarrow^{n_2} R_{11} R_{12}
$$

$$
\longrightarrow^{n_3} R_1
$$

for some $n_3 = n - n_1 - n_2$, there exists some R_2 such that

- $R_{21} R_{22} \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[B]] (W' n).$

Note that $n_3 < W'.n - n_1 - n_2$. We have

$$
W'.\rho_{\text{snd}}(\varsigma_{\text{snd}}(M_{21} M_{22})) \longrightarrow^* R_{21} W'.\rho_{\text{snd}}(\varsigma_{\text{snd}}(M_{22}))
$$

$$
\longrightarrow^* R_{21} R_{22}
$$

$$
\longrightarrow^* R_2.
$$

Thus, we have the conclusion.

Lemma 126. If $(W, \varsigma) \in \mathcal{G}[\Gamma],$ then $(\omega W, \varsigma) \in \mathcal{G}[\omega \Gamma].$

Proof. By induction on Γ. Note that: since $(W, \varsigma) \in \mathcal{G}[\Gamma],$ we have $\vdash W$, which implies $\vdash \omega W$ by Lemma [105;](#page-46-5) and $\omega \Gamma \succ \omega W . \rho$.

Case $\Gamma = \emptyset$: Obvious.

Case $\Gamma = \Gamma', \alpha^{\pi}$: We have $(W, \varsigma) \in \mathcal{G}[\![\Gamma']\!]$. By the IH, $(\omega W, \varsigma) \in \mathcal{G}[\![\omega \Gamma']\!]$. By the definition of \mathcal{G} , we have $(\omega W) . \Delta = \Delta' + \sum_{x \in dom_{=1}(\omega \Gamma')} \Delta'_x$ for some Δ' and $\prod_{x \in dom_{=1}(\omega \Gamma')} \Delta'_x$.

Then, it suffices to show that, for any α , if $\alpha \notin dom(\Delta')$, then $\alpha \in dom(W.\rho)$.

Suppose that $\alpha \notin dom(\Delta')$. By Lemmas [12](#page-13-3) and [9,](#page-13-1) $\alpha \notin dom(W \Delta)$. Since $(W, \varsigma) \in \mathcal{G}[\Gamma', \alpha^{\pi}]$, we can find $\pi = \Omega$ (if $\pi \neq 0$ then $\alpha \in dom(W \Delta)$) and $\alpha \in dom(W \Delta)$. $\pi = 0$ (if $\pi \neq 0$, then $\alpha \in dom(W.\Delta)$) and $\alpha \in dom(W.\rho)$.

Case $\Gamma = \Gamma', x : \pi A$: We have $(W, \varsigma) \in \mathcal{G}[\![\Gamma']\!]$. By the IH, $(\omega W, \varsigma) \in \mathcal{G}[\![\omega \Gamma']\!]$.

If $\pi = 1$ or $\pi = 0$, then we have $(\omega W, \varsigma) \in \mathcal{G}[\![\omega \Gamma', x : 0] \, A]\!] = \mathcal{G}[\![\omega(\Gamma', x : 0] \, A)]$ by the definition of \mathcal{G} and $(\omega W, \varsigma) \in \mathcal{G}[\![\omega \Gamma', 0] \, A]\!]$ $(\omega W, \varsigma) \in \mathcal{G}[\![\omega \Gamma']\!]$.

Otherwise, suppose that $\pi = \omega$. Then, it suffices to show that

 $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}\llbracket A \rrbracket \omega \omega W$.

Since $(W, \varsigma) \in \mathcal{G}[\Gamma', x : \mathcal{A}],$ we can find $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[\![A]\!] \omega W$. Since $\omega \omega W = \omega W$ by Lemma [5,](#page-12-0) we have the conclusion have the conclusion.

Lemma 127. If $\vdash \Gamma$ and $\omega \Gamma \vdash M_1 \preceq M_2 : A$, then $\Gamma \vdash !M_1 \preceq !M_2 : !A$.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma]$. It suffices to show that

$$
(\varsigma_{\mathrm{fst}}(!M_1), \varsigma_{\mathrm{snd}}(!M_2))_W \in \mathcal{E}[[!A]]W .
$$

Suppose that

- $W' \supseteq W$,
- $n \, < \, W'.n$, and
- $W'.\rho_{\rm fst}(\varsigma_{\rm fst}(!M_1)) \longrightarrow^n R_1$

for some W' , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- $W'.\rho_{\text{snd}}(\zeta_{\text{snd}}(!M_2)) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[!A]] (W' n).$

Since $(W, \varsigma) \in \mathcal{G}[\![\Gamma]\!]$, Lemmas [119](#page-51-0) and [126](#page-57-0) imply $(\omega W', W'. \rho(\varsigma)) \in \mathcal{G}[\![\omega \Gamma]\!]$. Since $\omega \Gamma \vdash M_1 \preceq M_2 : A$, we have

$$
(\varsigma_{\mathrm{fst}}(M_1), \varsigma_{\mathrm{snd}}(M_2))_{W'} \in \mathcal{E}[\![A]\!]\,\omega W' .
$$

Since $W' \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(lM_1)) \longrightarrow^n R_1$ and $W' \cdot \rho = \omega W' \cdot \rho$, we can find $\omega W' \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(M_1)) \longrightarrow^n R'_1$ for some R'_1 such $R_1 = \mathcal{R}'_1$. Thus, by the definition of \mathcal{E} , there exists some R'_2 such that

 \Box

- $\omega W'.\rho_{\text{snd}}(\zeta_{\text{snd}}(M_2)) \longrightarrow^* R'_2$ and
- $(R'_1, R'_2) \in \mathcal{R}[\![A]\!](\omega W' n).$

Let $R_2 = \mathbb{R}_2'$. Now, it suffices to show that $(\mathbb{R}_1', \mathbb{R}_2') \in \mathcal{R}[[\mathbb{R}_1''] \mid (W'-n)]$. By definition, it suffices to show that

$$
(\text{let } !x = !R'_1 \text{ in } x, \text{let } !x = !R'_2 \text{ in } x) \in \mathcal{E}[\![A]\!]\omega(W'-n) .
$$

Let $W'' \sqsupseteq \omega(W' - n)$ and suppose that $1 \lt W''$. Then, it suffices to show that

$$
(R'_1, R'_2)_{W''} \in \mathcal{R}[\![A]\!](W'' - 1) .
$$

Since $(R'_1, R'_2) \in \mathcal{R}[[A]](\omega W' - n)$ and $W'' - 1 \supseteq W'' \supseteq \omega(W' - n) = \omega W' - n$, we have the conclusion by Lemmas [110](#page-47-0) and [116.](#page-50-1)

Lemma 128. If $\Gamma_1 \vdash M_{11} \preceq M_{21}$: B and Γ_2 , $x : B \vdash M_{12} \preceq M_{22}$: A, then $\Gamma_1 + \Gamma_2 \vdash$ let $x = M_{11}$ in $M_{12} \preceq$ let $!x = M_{21}$ in M_{22} : A.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma_1 + \Gamma_2]$. It suffices to show that

$$
(\varsigma_{\rm fst}(\mathsf{let}!x=M_{11}\mathsf{in} M_{12}),\varsigma_{\rm snd}(\mathsf{let}!x=M_{21}\mathsf{in} M_{22}))_W\in\mathcal{E}\llbracket A\rrbracket W.
$$

Suppose that

- $W' \supseteq W$,
- $n \lt W'.n$, and
- $W \cdot \rho_{\text{fct}}(\varsigma_{\text{fst}}(\text{let } !x = M_{11} \text{ in } M_{12})) \longrightarrow^n R_1$

for some W' , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- $W'.\rho_{\text{snd}}(\varsigma_{\text{snd}}(\text{let } !x = M_{21} \text{ in } M_{22})) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[A]] (W' n).$

Since $(W, \varsigma) \in \mathcal{G}[\Gamma_1 + \Gamma_2]$ and $W' \sqsupseteq W$, we have $(W', W', \rho(\varsigma)) \in \mathcal{G}[\Gamma_1 + \Gamma_2]$ by Lemma [119.](#page-51-0) Lemma [124](#page-54-0) implies that there exist some W_1 and W_2 such that

- $(W_1, W', \rho(\varsigma)) \in \mathcal{G}[\![\Gamma_1]\!],$
- $(W_2, W', \rho(\varsigma)) \in \mathcal{G}[\![\Gamma_2]\!],$ and
- \bullet $(W_1, W_2) \supseteq W'.$

Note that $W' \cdot \rho = W_1 \cdot \rho = W_2 \cdot \rho$. Since $\Gamma_1 \vdash M_{11} \preceq M_{21} : B$, we have

$$
(\varsigma_{\rm fst}(M_{11}), \varsigma_{\rm snd}(M_{21}))_{W_1} \in \mathcal{E}[[!B]] \, W_1 \, .
$$

Since $W'.\rho_{\text{fst}}(\varsigma_{\text{fst}}(\text{let } !x = M_{11} \text{ in } M_{12})) \longrightarrow^* R_1$, we can find that

• $W'.\rho_{\rm fst}(\varsigma_{\rm fst}(M_{11})) \longrightarrow^{n_1} \nu\overline{\alpha_1}. \, !R'_{11},$

 $\bullet \;\; W'.\rho_{\rm fst}(\varsigma_{\rm fst}(\text{let}~!x=M_{11}~\text{in}~M_{12})) \longrightarrow^{n_1} \; W'.\rho_{\rm fst}(\varsigma_{\rm fst}(\text{let}~!x=\nu\overline{\alpha_1}.\,!R_{11}'~\text{in}~M_{12})) \longrightarrow^{1} \; W'.\rho_{\rm fst}(\varsigma_{\rm fst}(M_{12}[\nu\overline{\alpha_1}.\,R_{11}'/x]))$

for some $\overline{\alpha_1}$, R'_{11} , and n_1 . Thus, by the definitions of $\mathcal E$ and $\mathcal R$, there exist some $\overline{\alpha_2}$ and R'_{21} such that

- $W_1.\rho_{\text{snd}}(\varsigma_{\text{snd}}(M_{21})) \longrightarrow^* \nu\overline{\alpha_2}. \mathbb{R}'_{21}$ and
- $(\nu \overline{\alpha_1} \ldotp R'_{11}, \nu \overline{\alpha_2} \ldotp R'_{21}) \in \mathcal{R}[\![B]\!] \omega(W_1 n_1 1).$

Note that $n_1+1 \leq n \leq W'.n = W_1.n.$ Since $(W_1, W_2) \supset W'$, we have $\omega W_1 = \omega W_2$. Thus, $(\nu \overline{\alpha_1} \cdot R'_{11}, \nu \overline{\alpha_2} \cdot R'_{21}) \in$ $\mathcal{R}[\![B]\!] \omega(W_2 - n_1 - 1)$. Since $(W_2, W'.\rho(\varsigma)) \in \mathcal{G}[\![\Gamma_2]\!]$, we have $(W_2 - n_1 - 1, W'.\rho(\varsigma)) \in \mathcal{G}[\![\Gamma_2]\!]$ by Lemmas [119](#page-51-0) and 113. Thus by the definition of \mathcal{C} [113.](#page-48-0) Thus, by the definition of \mathcal{G} ,

$$
(W_2 - n_1 - 1, W'.\rho(\varsigma) \uplus \{x \mapsto \nu\overline{\alpha_1}. R'_{11}, \nu\overline{\alpha_2}. R'_{21}\}) \in \mathcal{G}[\Gamma_2, x : \omega B].
$$

Since Γ_2 , $x : \omega B \vdash M_{12} \preceq M_{22}$: A and $W_2 \rho = W' \rho$, we have

$$
(\varsigma_{\rm fst}(M_{12}[\nu\overline{\alpha_1}, R'_{11}/x]), \varsigma_{\rm snd}(M_{22}[\nu\overline{\alpha_2}, R'_{21}/x]))_{W_2-n_1-1} \in \mathcal{E}[\![A]\!](W_2-n_1-1) .
$$

Since $W' \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(\text{let } !x = M_{11} \text{ in } M_{12})) \longrightarrow^{n_1+1} W' \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(M_{12}[\nu \overline{\alpha_1}, R'_{11}/x])) \longrightarrow^{n-n_1-1} R_1$, there exists some R_2 such that

- $W'.\rho_{\text{snd}}(\zeta_{\text{snd}}(M_{22}[\nu\overline{\alpha_2}, R'_{21}/x])) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[A]] (W_2 n)$.

Now, we have the conclusion because:

$$
W'.\rho_{\text{snd}}(\varsigma_{\text{snd}}(\text{let } !x = M_{21} \text{ in } M_{22})) \longrightarrow^* W'.\rho_{\text{snd}}(\varsigma_{\text{snd}}(\text{let } !x = \nu \overline{\alpha_2}. !R'_{21} \text{ in } M_{22}))
$$

\n
$$
\longrightarrow W'.\rho_{\text{snd}}(\varsigma_{\text{snd}}(M_{22}[\nu \overline{\alpha_2}. R'_{21}/x]))
$$

\n
$$
\longrightarrow^* R_2
$$

and

•

• since $(R_1, R_2) \in \mathcal{R}[\![A]\!](W_2 - n)$ and $W' - n \sqsupseteq W_2 - n$ by Lemma [118,](#page-51-1) we have $(R_1, R_2) \in \mathcal{R}[\![A]\!](W' - n)$ by Lemmas [116](#page-50-1) and [113.](#page-48-0)

Lemma 129. For any $\pi \leq 1$, If $\vdash W$ and $\{\alpha\} \# W$, then $\vdash (W.n, (W.\Delta, \alpha^{\pi}), W.\rho)$.

Proof. The conclusion is shown by the following.

- $dom(W.\rho) \# dom(W.\Delta, \alpha^{\pi})$ because $\{\alpha\} \# W$.
- Let $\beta \in dom(W.\rho)$. Since $W.\Delta \vdash W.\rho_{\text{fst}}(\beta)$ and $W.\Delta \vdash W.\rho_{\text{snd}}(\beta)$, we have $W.\Delta, \alpha^{\pi} \vdash W.\rho_{\text{fst}}(\beta)$ and $W.\Delta, \alpha^{\pi} \vdash W.\rho_{\text{snd}}(\beta).$

 \Box

 \Box

Lemma 130. Suppose that $\{\alpha\} \# W_1$ and $\{\alpha\} \# W_2$. If $W_1 \sqsupseteq W_2$ and $\pi \leq 1$, then $(W_1 \cdot n, (W_1 \cdot \Delta, \alpha^{\pi}), W_1 \cdot \rho) \sqsupseteq W_1$ $(W_2.n, (W_2.\Delta, \alpha^{\pi}), W_2.\rho).$

Proof. Let $W_1' = (W_1 \cdot n, (W_1 \cdot \Delta, \alpha^{\pi}), W_1 \cdot \rho)$ and $W_2' = (W_2 \cdot n, (W_2 \cdot \Delta, \alpha^{\pi}), W_2 \cdot \rho)$. Since $W_1 \sqsupseteq W_2$, we have

- $\bullet \vdash W_1$ and $\vdash W_2$,
- $W_1.n \le W_2.n$,
- there exists some ρ such that
	- $W_1 \Delta, \dagger(\rho) \gg W_2 \Delta,$ $- W_1. \rho = \rho \circ W_2. \rho,$
	- ^W2.[∆] ^ρ.

We have the conclusion by the following.

- $\vdash W'_1$ and W'_2 by Lemma [129](#page-59-0) with $\vdash W_1$ and $\vdash W_2$.
- $W_1.\Delta, \alpha^{\pi}, \dagger(\rho) \gg W_2.\Delta, \alpha^{\pi}$ since $W_1.\Delta, \dagger(\rho) \gg W_2.\Delta$.

• We show that $W_2' \Delta \succ \rho$. Let $\beta \in ftv(\rho|_{dom(W_2' \Delta)}) \cap dom(W_2' \Delta)$. Since $\{\alpha\} \# W_1$ and $\vdash W_1$, we have $\alpha \notin \text{ftv}(\rho) \cup \text{dom}(\rho)$. Thus, $\beta \in \text{ftv}(\rho|_{\text{dom}(W_2,\Delta)}) \cap \text{dom}(W_2,\Delta)$. Thus, $W_2.\Delta \succ \rho$ implies $\beta^0 \in W_2.\Delta$, so $\beta^0 \in W_2.\Delta$. $\beta^0 \in W_2.\Delta, \alpha^{\pi} = W'_2.\Delta.$

 \Box

Lemma 131. If \vdash W and $\{\alpha\}$ # ftv(A), then:

- $(R_1, R_2) \in \mathcal{R}[\![A]\!]$ W $@ \alpha$ implies $(\nu \alpha, R_1, \nu \alpha, R_2) \in \mathcal{R}[\![A]\!]$ W; and
- $(M_1, M_2) \in \mathcal{E}[[A]] \, W \mathbb{Q}(\alpha)$ implies $(\nu \alpha, M_1, \nu \alpha, M_2) \in \mathcal{E}[[A]] \, W$.

Proof. By induction on A. We first consider the first property on R and then the second one on E with the first property.

• Let $(R_1, R_2) \in \mathcal{R}[\![A]\!]$ W $@ \alpha$. We show $(\nu \alpha, R_1, \nu \alpha, R_2) \in \mathcal{R}[\![A]\!]$ W by case analysis on A.

Case $A = \iota$: By definition.

Case $A = \beta$: Let $(B_1, B_2, r) = W \cdot \rho(\beta)$. Since $(R_1, R_2) \in \mathcal{R}[\beta] \cdot W \mathcal{Q}(\alpha)$, we have $(R_1, R_2) \in r(\blacktriangleright (W \mathcal{Q}(\alpha)))$ by definition. Since $\beta \in dom(W.\rho)$ and $\vdash W$, we have $W.\Delta \vdash B_1$ and $W.\Delta \vdash B_2$ and $r \in Rel_{W,n}[B_1, B_2]$. Since $W \otimes \alpha$ is well defined, we have $\{\alpha\} \# W$, so $\{\alpha\} \# \text{ftv}(B_1)$ and $\{\alpha\} \# \text{ftv}(B_2)$. We also have $\vdash W$ from \vdash W. Thus, by the third condition on $r \in \text{Rel}_{W,n}[B_1, B_2]$ about extension with fresh type variables, $(\nu \alpha, R_1, \nu \alpha, R_2) \in r(\blacktriangleright W)$. Thus, we have $(\nu \alpha, R_1, \nu \alpha, R_2) \in \mathcal{R}[\![\beta]\!] W$.

Case $A = B \rightarrow C$: Suppose that

$$
- W' \sqsupseteq W,
$$

$$
- (W_1, W_2) \supseteq W',
$$

- $W_1 \sqsupseteq W$, and
- $(R'_1, R'_2) \in \mathcal{R}[\![B]\!] \ W_2$

for some W' , W_1 , W_2 , R'_1 , and R'_2 , and then it suffices to show that

 $((\nu \alpha. R_1) R'_1, (\nu \alpha. R_2) R'_2)_{W'} \in \mathcal{E}[\![C]\!] W'.$

Since $W' \cdot \rho_{\text{fst}}((\nu \alpha. R_1) R_1') \longrightarrow W' \cdot \rho_{\text{fst}}(\nu \alpha. (R_1 R_1'))$ and $W' \cdot \rho_{\text{snd}}((\nu \alpha. R_2) R_2') \longrightarrow W' \cdot \rho_{\text{snd}}(\nu \alpha. (R_2 R_2')),$ it suffices to show that

$$
((\nu \alpha. R_1 R'_1), (\nu \alpha. R_2 R'_2))_{W'} \in \mathcal{E}[\![C]\!] \, W'
$$

by Lemmas [116](#page-50-1) and [113.](#page-48-0) Since $\{\alpha\}\#W$, we can suppose that $\{\alpha\}\#W'$ without loss of generality. Since

- $-(R_1, R_2) \in \mathcal{R}[[B \multimap C]] W @ \alpha$
- $W' @ \alpha \supset W @ \alpha$ by Lemma [130](#page-59-1) with $W' \supset W$,
- $W_1@ \alpha \supseteq W @ \alpha$ by Lemma [130](#page-59-1) with $W_1 \supseteq W$,
- $(W_1@ \alpha, (W_2.n, (W_2.\Delta, \alpha^0), W_2.\rho)) \supseteq W'@ \alpha$ (from $(W_1, W_2) \supseteq W'$), and
- $-(R'_1, R'_2) \in \mathcal{R}[\![B]\!](W_2 \cdot n, (W_2 \cdot \Delta, \alpha^0), W_2 \cdot \rho)$ by Lemmas [117,](#page-51-2) [116,](#page-50-1) and [113,](#page-48-0)

we have

$$
(R_1 R'_1, R_2 R'_2)_{W' \mathbb{Q}_\alpha} \in \mathcal{E}[[C]] W' \mathbb{Q}_\alpha.
$$

By the IH with $\vdash W'$ implied by $W' \sqsupseteq W$, we have the conclusion

$$
(\nu\alpha. R_1 R'_1, \nu\alpha. R_2 R'_2)_{W'} \in \mathcal{E}[[C]]W'.
$$

Case $A = \forall \beta.B$: Suppose that

 $- W' \sqsupset W$. $- \omega W' \vdash (C_1, C_2, r)$, and $-$ { β }#ω W'

for some W' , C_1 , C_2 , and r , and then it suffices to show that

$$
((\nu\alpha.\,R_1)\,C_1,(\nu\alpha.\,R_2)\,C_2)_{\omega\,W'}\,\in\,\mathcal{E}\llbracket B\rrbracket\,\{\beta\,\Rightarrow\,(C_1,C_2,r)\}\,\forall\,\omega\,W'\;.
$$

Since $\omega W' \cdot \rho_{\rm fst}((\nu \alpha. R_1) C_1) \longrightarrow \omega W' \cdot \rho_{\rm fst}(\nu \alpha. (R_1 C_1))$ and $\omega W' \cdot \rho_{\rm snd}((\nu \alpha. R_2) C_2) \longrightarrow \omega W' \cdot \rho_{\rm snd}(\nu \alpha. (R_2 C_2)),$ it suffices to show that

$$
(\nu\alpha. R_1 C_1, \nu\alpha. R_2 C_2)_{\omega W'} \in \mathcal{E}[B] \{\beta \Rightarrow (C_1, C_2, r)\} \uplus \omega W'
$$

by Lemmas [116](#page-50-1) and [113.](#page-48-0) Since $\{\alpha\}\# W$, we can suppose that $\{\alpha\}\# \omega W'$ without loss of generality. Since

 $(R_1, R_2) \in \mathcal{R}[\forall \beta.B] W \mathbb{Q} \alpha$ – $W' @ \alpha \supseteq W @ \alpha$ by Lemma [130](#page-59-1) with $W' \supseteq W$, and – $\omega(W' @ \alpha) \vdash (C_1, C_2, r) \text{ from } W' \vdash (C_1, C_2, r),$

we have

 $(R_1 C_1, R_2 C_2)_{\omega(W' \circledcirc \alpha)} \in \mathcal{E}[[B]] \{ \beta \mapsto (C_1, C_2, r) \} \uplus \omega(W' \circledcirc \alpha)$.

By Lemma [118,](#page-51-1) $\{\beta \mapsto (C_1, C_2, r)\} \uplus (\omega W') @ \alpha \sqsupseteq {\beta \mapsto (C_1, C_2, r)} \uplus \omega(W' @ \alpha)$. By Lemmas [116](#page-50-1) and [113,](#page-48-0) we have

 $(R_1 C_1, R_2 C_2)_{(\omega W') \otimes \alpha} \in \mathcal{E}[\![B]\!] \{\beta \mapsto (C_1, C_2, r)\} \uplus (\omega W') \otimes \alpha.$

Since we can suppose that $\alpha \neq \beta$ without loss of generality, we have $\{\alpha\} \# \text{ftv}(B)$. We also have \vdash $\{\beta \mapsto (C_1, C_2, r)\}\oplus \omega W'$ by Lemma [105](#page-46-5) with $\vdash W'$ and $\omega W' \vdash (C_1, C_2, r)$. Thus, by the IH, we have the conclusion

$$
(\nu\alpha. R_1 C_1, \nu\alpha. R_2 C_2)_{\omega W'} \in \mathcal{E}[\![B]\!](\beta \Rightarrow (C_1, C_2, r)\} \uplus \omega W'
$$

.

Case $A = B$: It suffices to show that $(\nu \alpha, R_1, \nu \alpha, R_2) \in \mathcal{R}[[B] \mid W$, that is,

$$
(\text{let } !x = \nu \alpha. R_1 \text{ in } x, \text{let } !x = \nu \alpha. R_2 \text{ in } x) \in \mathcal{E}[\![B]\!] \omega W .
$$

By Lemma [35,](#page-23-0) there exist some $\overline{\beta_1}$, $\overline{\beta_2}$, R'_1 , and R'_2 such that

 $-R_1 = \nu \overline{\beta_1}$. $!R'_1$ and $-R_2 = \nu \overline{\beta_2}$.! R'_2 .

Suppose that

-
$$
W' \sqsupseteq \omega W
$$
,
\n- 1 $\langle W', n \rangle$, and
\n- $W', \rho_{\text{fst}}(\text{let } !x = \nu \alpha, \nu \overline{\beta_1}.!R'_1 \text{ in } x) \longrightarrow W', \rho_{\text{fst}}(\nu \alpha, \nu \overline{\beta_1}.R'_1)$

for some W' and n, and then it suffices to show that

$$
(\nu \alpha. \nu \overline{\beta_1}. R'_1, \nu \alpha. \nu \overline{\beta_2}. R'_2)_{W'} \in \mathcal{E}[\![B]\!](W'-1) .
$$

Since $(R_1, R_2) \in \mathcal{R}[[B] \mid W \mathcal{Q} \alpha]$, we have $(\nu \overline{\beta_1} \cdot R_1', \nu \overline{\beta_2}, R_2') \in \mathcal{R}[B] \mid (\omega(W \mathcal{Q} \alpha) - 1)$. Since $\vdash W$, we have $\vdash \omega W - 1$ by Lemma [105.](#page-46-5) Thus, by the IH, we have

$$
(\nu \alpha. \nu \overline{\beta_1}. R'_1, \nu \alpha. \nu \overline{\beta_2}. R'_2) \in \mathcal{R}[\![B]\!](\omega W - 1) .
$$

Since $W' \sqsupseteq \omega W$, we have $W' - 1 \sqsupseteq \omega W - 1$. Thus, we have the conclusion by Lemma [116.](#page-50-1)

• Let $(M_1, M_2) \in \mathcal{E}[\![A]\!]$ W $@ \alpha$. We show $(\nu \alpha, M_1, \nu \alpha, M_2) \in \mathcal{E}[\![A]\!]$ W with the first property. Suppose that

 $- W' \sqsupset W$, $- n < W'.n$, and $- W'.\rho_{\rm fst}(\nu \alpha. M_1) \longrightarrow^n R_1$

for some W' , n, and R_1 , and the it suffices to show that there exists some R_2 such that

-
$$
W'
$$
. $\rho_{\text{snd}}(\nu \alpha, M_2) \longrightarrow^* R_2$ and

$$
- (R_1, R_2) \in \mathcal{R}[\![A]\!](W' - n).
$$

By the semantics, $R_1 = \nu \alpha$. R'_1 for some R'_1 such that $W'.\rho_{\rm fst}(M_1) \longrightarrow^n R'_1$. Since $\{\alpha\}\# W$, we can suppose that $\{\alpha\}\# W'$ without loss of generality. Thus, $W' @ \alpha \supseteq W @ \alpha$ by Lemma [130](#page-59-1) with $W' \supseteq W$. Since $(M_1, M_2) \in \mathcal{E}[\![A]\!]$ W $@{\alpha}$, Lemma [116](#page-50-1) implies that there exists some R'_2 such that

-
$$
W'
$$
. $\rho_{\text{snd}}(M_2) \longrightarrow^* R'_2$ and
- $(R'_1, R'_2) \in \mathcal{R}[\![A]\!]$ $W'@{\alpha - n}$.

By the first property on $\mathcal R$ with $\vdash W' - n$ implied by $W' \sqsupseteq W$, we have the conclusion $(\nu \alpha. R'_1, \nu \alpha. R'_2) \in$ $\mathcal{R}\llbracket A\rrbracket \left(W'-n\right)$ where let $R_2 = \nu \alpha$. R'_2 .

 \Box

Lemma 132. If $\{\alpha\} \# W$ and $(W, \varsigma) \in \mathcal{G}[\Gamma],$ then $(W @ \alpha, \varsigma) \in \mathcal{G}[\Gamma, \alpha^1].$

Proof. Since $(W, \varsigma) \in \mathcal{G}[\Gamma],$ we have

- $\bullet \vdash W,$
- $\Gamma \succ W.\rho$,
- there exist some Δ and $\prod_{x \in dom_{=1}(\Gamma)} \Delta_x$ such that

$$
- W.\Delta = \Delta + \sum_{x \in dom_{=1}(\Gamma)} \Delta_x,
$$

\n
$$
- \forall \beta^{\pi} \in \Gamma. (\exists \pi' \geq \pi. \beta^{\pi'} \in \Delta) \lor (\pi = \mathbf{0} \land \beta \in dom(W.\rho)),
$$

\n
$$
- \forall x : A \in \Gamma. (s_{fst}(x), s_{snd}(x)) \in \mathcal{R}[\![A]\!](W.n, \Delta_x, W.\rho), \text{and}
$$

\n
$$
- \forall x : \mathcal{A} \in \Gamma. (s_{fst}(x), s_{snd}(x)) \in \mathcal{R}[\![A]\!] \omega W.
$$

Let $\Delta_0 = \Delta, \alpha^1$ and $\Delta_{0,x} = \Delta_x, \alpha^0$. We have $W.\Delta, \alpha^1 = \Delta_0 + \sum_{x \in dom_{=1}(\Gamma)} \Delta_{0,x}$. We have $(W @ \alpha, \varsigma) \in \mathcal{G}[\![\Gamma, \alpha^1]\!]$ by the following.

- \vdash W $@ \alpha$ by Lemma [129.](#page-59-0)
- We show that $\Gamma, \alpha^1 \succ (W \tImes \alpha) \cdot \rho$. Let $\beta \in \text{ftv}((W \tImes \alpha) \cdot \rho|_{\text{dom}(\Gamma, \alpha^1)}) \cap \text{dom}(\Gamma, \alpha^1)$. Since $\{\alpha\} \# W$ and $\vdash W$ and $(W @ \alpha) \cdot \rho = W \cdot \rho$, we have $\alpha \notin dom((W @ \alpha) \cdot \rho) \cup ftv((W @ \alpha) \cdot \rho)$. Thus, $\beta \in ftv(W \cdot \rho|_{dom(\Gamma)}) \cap dom(\Gamma)$, and so $\Gamma \succ W.\rho$ implies $\beta^{\mathbf{0}} \in \Gamma$.
- \bullet $\alpha^1 \in \Delta_0$.
- $\forall x : A \in \Gamma, \alpha^1$. $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}\llbracket A \rrbracket (W.n, \Delta_{0,x}, W.\rho)$ by Lemmas [117,](#page-51-2) [116,](#page-50-1) and [113.](#page-48-0)
- $\forall x : M \in \Gamma, \alpha^1$. $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[\![A]\!] \omega(W \textcircled{a} \alpha)$ because, since $\omega(W \textcircled{a} \alpha) \sqsupseteq \omega W$ by Lemma [117](#page-51-2) with $\vdash \omega W$, it is proven by Lemmas [116](#page-50-1) and [113.](#page-48-0)

 \Box

Lemma 133. If $\Gamma, \alpha^1 \vdash M_1 \preceq M_2 : A$ and $\Gamma \vdash A$, then $\Gamma \vdash \nu \alpha$. $M_1 \preceq \nu \alpha$. $M_2 : A$.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma]$. It suffices to show that

$$
(\varsigma_{\rm fst}(\nu\alpha. M_1), \varsigma_{\rm snd}(\nu\alpha. M_2))_W \in \mathcal{E}\llbracket A \rrbracket W .
$$

Suppose that

- $W' \sqsupseteq W$,
- $n \lt W'.n$, and
- $W.\rho_{\text{fst}}(\varsigma_{\text{fst}}(\nu\alpha, M_1)) \longrightarrow^n R_1$

for some W' , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- $W'.\rho_{\text{snd}}(\zeta_{\text{snd}}(\nu \alpha, M_2)) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[\![A]\!](W' n).$

Without loss of generality, we can suppose that $\{\alpha\} \# W'$. Since $(W, \varsigma) \in \mathcal{G}[\Gamma]$ and $W' \sqsupseteq W$, we have $(W', W'.\rho(\varsigma)) \in \mathcal{G}[\![\Gamma]\!]$ by Lemma [119.](#page-51-0) Thus, by Lemma [132,](#page-62-0)

$$
(W' @ \alpha, W'.\rho(\varsigma)) \in \mathcal{G}[\![\Gamma, \alpha^1]\!].
$$

Since $\Gamma, \alpha^1 \vdash M_1 \prec M_2 : A$, we have

$$
(\varsigma_{\rm fst}(M_1), \varsigma_{\rm snd}(M_2))_{W'} \in \mathcal{E}\llbracket A \rrbracket W' @ \alpha .
$$

Since $W'.\rho_{\text{fst}}(\varsigma_{\text{fst}}(\nu\alpha, M_1)) \longrightarrow^n R_1$, there exists some R'_1 such that

- $W'.\rho_{\text{fst}}(\varsigma_{\text{fst}}(M_1)) \longrightarrow^n R'_1$ and
- $R_1 = \nu \alpha$. R'_1 .

Thus, there exists some R'_2 such that

- $W'.\rho_{\text{snd}}(\zeta_{\text{snd}}(M_2)) \longrightarrow^* R'_2$ and
- $(R'_1, R'_2) \in \mathcal{R}[\![A]\!](W' @ \alpha n).$

Since $\Gamma \vdash A$, we have $\alpha \notin ftv(A)$. We also have $\vdash W' - n$ from $W' \sqsupseteq W$. Thus, by Lemma [131,](#page-60-0) $(\nu \alpha. R'_1, \nu \alpha. R'_2) \in$ $\mathcal{R}\llbracket A\rrbracket(W'-n)$. We have the conclusion by letting $R_2 = \nu \alpha$. R'_2 . since $W'.\rho_{\text{snd}}(\varsigma_{\text{snd}}(\nu \alpha, M_2)) \longrightarrow^* \nu \alpha$. R'_2 . □

Lemma 134. If $(W, \varsigma) \in \mathcal{G}[\Gamma_1, \alpha^1, \Gamma_2],$ then there exist some Δ_1 and Δ_2 such that

- $W.\Delta = \Delta_1, \alpha^1, \Delta_2$ and
- $((W.n, (\Delta_1, \alpha^0, \Delta_2), W.\rho), \varsigma) \in \mathcal{G}[\![\Gamma_1, \alpha^0, \Gamma_2]\!].$

Proof. Let $\Gamma = \Gamma_1, \alpha^1, \Gamma_2$. Since $(W, \varsigma) \in \mathcal{G}[\Gamma],$ we have

- $\bullet \vdash W$,
- $\Gamma \succ W.\rho,$
- there exist some Δ and $\prod_{x \in dom_{=1}(\Gamma)} \Delta_x$ such that

$$
- W.\Delta = \Delta + \sum_{x \in dom_{=1}(\Gamma)} \Delta_x,
$$

\n
$$
- \forall \beta^{\pi} \in \Gamma. (\exists \pi' \ge \pi. \beta^{\pi'} \in \Delta) \lor (\pi = \mathbf{0} \land \beta \in dom(W.\rho)),
$$

\n
$$
- \forall x : A \in \Gamma. (s_{fst}(x), s_{snd}(x)) \in \mathcal{R}[[A]] (W.n, \Delta_x, W.\rho), \text{and}
$$

\n
$$
- \forall x : \omega' A \in \Gamma. (s_{fst}(x), s_{snd}(x)) \in \mathcal{R}[[A]] \omega W.
$$

Since $\alpha^1 \in \Gamma$, we have $\alpha^1 \in \Delta$. Let Δ'_1 and Δ'_2 such that $\Delta = \Delta'_1, \alpha^1, \Delta'_2$.

Let $\Delta' = \Delta'_1, \alpha^0, \Delta'$ and $W' = (W.n, \Delta' + \sum_{x \in dom_{=1}(\Gamma_1, \alpha^0, \Gamma_2)} \Delta_x, W.\rho)$. Since $\Delta \perp \Delta_x$, we have $\alpha^0 \in \Delta_x$. Thus, $\alpha^0 \in W'.\Delta$.

Finally, $(W', \varsigma) \in \mathcal{G}[\![\Gamma_1, \alpha^0, \Gamma_2]\!]$ is shown by the following.

- \vdash W' by Lemma [105](#page-46-5) with \vdash W.
- $\Gamma_1, \alpha^0, \Gamma_2 \succ W.\rho$ holds obviously because $dom(\Gamma_1, \alpha^0, \Gamma_2) = dom(\Gamma)$ and $\Gamma \succ W.\rho$.
- $\alpha^0 \in \Delta'$.

Lemma 135. If $\vdash W$ and $\{\alpha\}\#\omega W$ and $\omega W \vdash (A_1, A_2, r)$, then $\{\alpha \Leftrightarrow (A_1, A_2, r)\} \uplus \omega W \sqsupseteq \omega(W @ \alpha)$.

Proof. We have the conclusion by the following.

- We show that $\vdash \omega(W @ \alpha)$. By Lemmas [9](#page-13-1) and [105](#page-46-5) with $\vdash W$, we have $\vdash \omega W$. By Lemma [129](#page-59-0) with $\{\alpha\} \# \omega W$, we have $\vdash \omega(W @ \alpha)$.
- $\bullet \vdash \{\alpha \mapsto (A_1, A_2, r)\}\uplus \omega W$ by definition with $\vdash \omega W$ and $\omega W \vdash (A_1, A_2, r)$ and $\{\alpha\}\#\omega W$.
- We have $\omega W.\Delta, \dagger({\alpha \Rightarrow (A_1, A_2, r)}) = \omega W.\Delta, \alpha^0 \gg \omega W.\Delta, \alpha^0 = \omega(W @ \alpha).\Delta$ by Lemma [5.](#page-12-0)
- We have $\{\alpha \mapsto (A_1, A_2, r)\}\cup \omega W.\rho = \{\alpha \mapsto (A_1, A_2, r)\}\circ \omega W.\rho$ because $\{\alpha\}\#\omega W$ and $\vdash W$.
- $\omega(W @ \alpha) \Delta \succ \{\alpha \mapsto (A_1, A_2, r)\}\$ holds obviously because $\omega(W @ \alpha) \Delta$ assigns the use 0 to all the bound type variables.

 \Box

 \Box

Lemma 136. If $W_1 \supseteq W_2$ and $\forall \alpha \in dom(\rho)$. $W_2 \vdash \rho(\alpha)$, then $\forall \alpha \in dom(W_1 \cdot \rho(\rho))$. $W_1 \vdash W_1 \cdot \rho(\rho)(\alpha)$.

Proof. Let $\alpha \in dom(\rho) = dom(W_1 \cdot \rho(\rho)), (A_1, A_2, r) = \rho(\alpha), B_1 = W_1 \cdot \rho_{\text{fst}}(A_1), \text{ and } B_2 = W_1 \cdot \rho_{\text{snd}}(A_2).$ We have $W_1 \cdot \rho(\rho)(\alpha) = (B_1, B_2, r)$. It suffices to show that $W_1 \vdash (B_1, B_2, r)$, which is proven below.

• We show that $W_1.\Delta \vdash B_1$; $W_1.\Delta \vdash B_2$ can be proven similarly.

Since $B_1 = W_1 \cdot \rho_{\text{fst}}(A_1) = W_1 \cdot \rho_{\text{fst}}(\rho_{\text{fst}}(\alpha))$, it suffices to show that $ftv(W_1 \cdot \rho) \subseteq dom(W_1 \cdot \Delta)$ and $ftv(\rho)$ $dom(W_1.\rho) \subseteq dom(W_1.\Delta).$

We have $ftv(W_1.\rho) \subseteq dom(W_1.\Delta)$ since $\vdash W_1$ implied by $W_1 \supseteq W_2$.

We show that $ftv(\rho) \setminus dom(W_1.\rho) \subseteq dom(W_1.\Delta)$. Let $\beta \in ftv(\rho) \setminus dom(W_1.\rho)$. By the assumption $\forall \alpha \in dom(\rho)$. $W_2 \vdash \rho(\alpha)$, we have $ftv(\rho) \subseteq dom(W_2.\Delta)$. Thus, $\beta \in dom(W_2.\Delta) \setminus dom(W_1.\rho)$. Since $W_1 \supseteq W_2$, there exists some ρ' such that

 $-W_1.\Delta, \dagger(\rho') \gg W_2.\Delta$ and $- W_1. \rho = \rho' \circ W_2. \rho.$

 $W_1.\Delta, \dagger(\rho') \gg W_2.\Delta$ implies $dom(W_2.\Delta) \subseteq dom(W_1.\Delta) \cup dom(\rho').$ Thus, $\beta \in (dom(W_1.\Delta) \cup dom(\rho'))$ dom($W_1.\rho$). $W_1.\rho = \rho' \circ W_2.\rho$ implies $dom(\rho') \subseteq dom(W_1.\rho)$. Thus, $\beta \in dom(W_1.\Delta)$.

• We show that $r \in \text{Rel}_{W_1,n}[B_1,B_2]$. By the assumption $\forall \alpha \in dom(\rho)$. $W_2 \vdash \rho(\alpha)$, we have $r \in \text{Rel}_{W_2,n}[A_1,A_2]$. Thus, $r \in \text{Rel}_{W_2,n}[B_1,B_2]$ by definition. Since $W_1.n \leq W_2.n$, we can view $r \in \text{Rel}_{W_1,n}[B_1,B_2]$.

Lemma 137. If $W_1 \supseteq W_2$ and $dom(\rho) \# W_1$ and $\vdash \rho \uplus W_2$, then $W_1 \cdot \rho(\rho) \uplus W_1 \supseteq \rho \uplus W_2$.

Proof. Since $W_1 \supseteq W_2$, we have the following.

- $\bullet \vdash W_1$ and $\vdash W_2$,
- $W_1.n \leq W_2.n$, and
- there exists some ρ' such that
	- $-W_1.\Delta, \dagger(\rho') \gg W_2.\Delta,$
	- $W_1 \rho = \rho' \circ W_2 \rho$, and
	- $W_2 \Delta \succ \rho'.$

Let $W'_1 = W_1 \cdot \rho(\rho) \cup W_1$. The conclusion $W'_1 \sqsupseteq \rho \cup W_2$ is shown in what follows, where ρ' is the intermediate interpretation mapping.

• We show that $\vdash W_1'$.

- We show that $dom(W_1'\Delta) \# dom(W_1'\rho)$. Since $\vdash W_1$, we have $dom(W_1 \cdot \rho) \# dom(W_1 \cdot \Delta)$. By the assumption $dom(\rho) \# W_1$, we have $dom(\rho) \# dom(W_1 \cdot \rho)$ and $dom(\rho) \# dom(W_1 \cdot \Delta)$. The first property implies that W'_1 is well defined. The second property implies $dom(W'_1.\rho) = (dom(\rho) \cup dom(W_1.\rho)) \#$ $dom(W_1.\Delta) = dom(W'_1.\Delta).$
- Let $\alpha \in dom(W'_1, \rho)$. We show that $W'_1 \vdash W'_1, \rho(\alpha)$. Since $\alpha \in dom(W'_1, \rho)$, we have $\alpha \in dom(\rho)$ or $\alpha \in dom(W_1, \rho)$. Case $\alpha \in dom(\rho)$: By $\vdash W_1$. Case $\alpha \in dom(\rho)$: We have $W_1 \vdash W_1.\rho(\rho)(\alpha)$ by Lemma [136](#page-64-0) with $W_1 \sqsupseteq W_2$ and $\vdash \rho \uplus W_2$. Thus, $W_1' \vdash W_1.\rho(\rho)(\alpha) = W_1'.\rho(\alpha).$
- $\bullet \vdash \rho \uplus W_2$ by the assumption.
- $W'_1.n = W_1.n \le W_2.n = (\rho \uplus W_2).n.$
- $W'_1.\Delta, \dagger(\rho') = W_1.\Delta, \dagger(\rho') \gg W_2.\Delta = (\rho \uplus W_2).\Delta.$
- We show that $W'_1.\rho = \rho' \circ (\rho \oplus W_2.\rho)$. We have $ftv(\rho) \neq dom(W_2.\rho)$ because $ftv(\rho) \subseteq dom(W_2.\Delta)$ by $\vdash \rho \uplus W_2$, and $dom(W_2.\Delta) \# dom(W_2.\rho)$ by $\vdash W_2$. Thus:

$$
W'_1. \rho = W_1. \rho(\rho) \uplus W_1. \rho
$$
 (by definition)
\n
$$
= (\rho' \circ W_2. \rho)(\rho) \uplus (\rho' \circ W_2. \rho)
$$
 (since $W_1. \rho = \rho' \circ W_2. \rho$)
\n
$$
= (\rho' \uplus \rho'(W_2. \rho))(\rho) \uplus \rho' \uplus \rho'(W_2. \rho)
$$

\n
$$
= \rho'(\rho) \uplus \rho' \uplus \rho'(W_2. \rho)
$$
 (since $ftv(\rho) \# dom(W_2. \rho)$)
\n
$$
= \rho' \uplus \rho'(\rho \uplus W_2. \rho)
$$

\n
$$
= \rho' \circ (\rho \uplus W_2. \rho).
$$

 \Box

• We have $(\rho \oplus W_2).\Delta \succ \rho'$ because $W_2.\Delta \succ \rho'$ and $(\rho \oplus W_2).\Delta = W_2.\Delta$.

Lemma 138. If $W_1 \supseteq \rho \uplus W_2$, then there exists some W'_1 such that $W'_1 \supseteq W_2$ and $W_1 = W'_1 \cdot \rho(\rho) \uplus W'_1$.

Proof. Since $W_1 \supseteq \rho \oplus W_2$, we have

- $\vdash W_1$ and $\vdash \rho \uplus W_2$,
- $W_1.n \leq (\rho \boxplus W_2).n = W_2.n$, and
- there exists some ρ' such that (note that $(\rho \oplus W_2).\Delta = W_2.\Delta$):
	- $-W_1.\Delta, \dagger(\rho') \gg W_2.\Delta;$
	- $W_1 \cdot \rho = \rho' \circ (\rho \boxplus W_2 \cdot \rho);$ and
	- $(\rho \boxplus W_2).\Delta = W_2.\Delta \succ \rho'.$

Let $W'_1 = (W_1.n, W_1.\Delta, \rho' \circ W_2.\rho).$ We first show that $W'_1 \sqsupseteq W_2$ with ρ' as the intermediate interpretation mapping.

- We show that $\vdash W_1'$.
	- We show that $dom(W'_1 \Delta) \# dom(W'_1 \rho)$. By the definition of W'_1 , it suffices to show that $dom(W_1 \Delta) \#$ $dom(\rho') \cup dom(W_2.\rho)$. Since $\vdash W_1$ and $W_1.\rho = \rho' \circ (\rho \uplus W_2.\rho)$, we have $dom(W_1.\Delta) \# (dom(\rho') \cup dom(\rho'))$ $dom(\rho) \cup dom(W_2,\rho)).$
	- We show that $\forall \alpha \in dom(W'_1, \rho)$. $W'_1 \vdash W'_1, \rho(\alpha)$. This is proven by $\vdash W_1$ and $W_1, \rho = \rho' \circ (\rho \uplus W_2, \rho)$.
- We have $\vdash W_2$ by $\vdash \rho \uplus W_2$.
- $W'_1.n = W_1.n \le W_2.n$.
- $W'_1.\Delta, \dagger(\rho') = W_1.\Delta, \dagger(\rho') \gg W_2.\Delta.$
- $W'_1 \cdot \rho = \rho' \circ W_2 \cdot \rho$ by definition.
- We have $W_2.\Delta \succ \rho'.$

Next, we show that $W_1 = W'_1 \cdot \rho(\rho) \cup W'_1$. It suffices to show that $W_1 \cdot \rho = W'_1 \cdot \rho(\rho) \cup W'_1 \cdot \rho$. Noting that $ftv(\rho) \neq dom(W_2 \cdot \rho)$ because $ftv(\rho) \subseteq dom(W_2 \cdot \Delta)$ and $dom(W_2 \cdot \Delta) \neq dom(W_2 \cdot \rho)$ by $\vdash \rho \uplus W_2$, we have:

$$
W_1 \cdot \rho = \rho' \circ (\rho \uplus W_2 \cdot \rho)
$$

\n
$$
= \rho' \uplus \rho'(\rho) \uplus \rho'(W_2 \cdot \rho)
$$

\n
$$
= \rho'(\rho) \uplus \rho' \circ W_2 \cdot \rho
$$

\n
$$
= (\rho' \uplus \rho'(W_2 \cdot \rho))(\rho) \uplus \rho' \circ W_2 \cdot \rho \quad (\text{since } \text{ftv}(\rho) \# \text{ dom}(W_2 \cdot \rho))
$$

\n
$$
= (\rho' \circ W_2 \cdot \rho)(\rho) \uplus \rho' \circ W_2 \cdot \rho
$$

\n
$$
= W'_1 \cdot \rho(\rho) \uplus W'_1 \cdot \rho .
$$

 \Box

 \Box

Lemma 139. If $\vdash W$ and dom(ρ)#W and $\forall \alpha \in dom(\rho)$. W $\vdash \rho(\alpha)$, then $\rho \uplus W \sqsupseteq W$.

Proof. We have the conclusion by the following, where ρ is used as the intermediate interpretation mapping.

- We have \vdash W by the assumption.
- We show that $\vdash \rho \uplus W$.

Since $\vdash W$ and $dom(\rho) \# W$, we have $dom((\rho \oplus W) \Delta) = dom(W \Delta) \# (dom(\rho) \cup dom(W \Delta)) = dom((\rho \oplus$ W). ρ).

Let $\alpha \in dom((\rho \oplus W) \cdot \rho)$. If $\alpha \in dom(\rho)$, then we have $W \vdash \rho(\alpha)$ by the assumption. Otherwise, if $\alpha \in dom(W.\rho)$, then $\vdash W$ implies $W \vdash W.\rho(\alpha)$. Thus, in either case, $\rho \not\uplus W \vdash (\rho \not\uplus W).\rho(\alpha)$.

- We have $W_1.n = (\rho \boxplus W) . n$.
- We have $(\rho \oplus W) \Delta$, $\dagger(\rho) = W \Delta$, $\dagger(\rho) \gg W \Delta$ by Lemma [9.](#page-13-1)
- We have $(\rho \oplus W) \cdot \rho = \rho \oplus W \cdot \rho$.
- We show that $W.\Delta > \rho$. It suffices to show that $dom(\rho) \# dom(W.\Delta)$, which is implied by $dom(\rho) \# W$.

Lemma 140. If $dom(\rho) \# \text{ftv}(A)$,

- 1. $\mathcal{R}[\![A]\!] \rho \uplus W \subseteq \mathcal{R}[\![A]\!] \; W \; and$
- 2. $\mathcal{E}[A] \rho \uplus W \subseteq \mathcal{E}[A] W$.

Proof. By induction on A. We first consider the first case and then show the second case with the first property.

- 1. Let $(R_1, R_2) \in \mathcal{R}\llbracket A \rrbracket \rho \uplus W$. We show that $(R_1, R_2) \in \mathcal{R}\llbracket A \rrbracket W$. By case analysis on A.
	- Case $A = \iota$: Obvious.

Case $A = \alpha$: Since $(R_1, R_2) \in \mathcal{R}[\alpha] \rho \oplus W$, we have $(R_1, R_2) \in (\rho \oplus W) \cdot \rho[\alpha] (\blacktriangleright (\rho \oplus W))$. Since $dom(\rho) \# {\alpha}$, we have $(R_1, R_2) \in W$. $\rho[\alpha](\blacktriangleright (\rho \oplus W))$. Let $(B_1, B_2, r) = W$. $\rho(\alpha)$. Since $\rho \oplus W$ is well defined, we have $dom(\rho) \# W$. Since $(\rho \uplus W) \Delta \vdash B_1$ and $(\rho \uplus W) \Delta \vdash B_2$, we have $dom(\rho) \# ftv(B_1)$ and $dom(\rho) \# ftv(B_2)$. Thus, by the irrelevance condition on $W.\rho[\alpha] = r \in \text{Rel}_{W,n}[B_1, B_2]$, we have $(R_1, R_2) \in W.\rho[\alpha]$ $(\blacktriangleright W)$. Thus, $(R_1, R_2) \in \mathcal{R}[\![\alpha]\!]$ W.

Case $A = B \rightarrow C$: Suppose that

- $W' \sqsupseteq W$,
- \bullet $(W_1, W_2) \supset W'$,
- $W_1 \sqsupset W$, and
- $(R'_1, R'_2) \in \mathcal{R}[\![B]\!]$ W_2

for some W' , W_1 , W_2 , R'_1 , and R'_2 , and then it suffices to show that

$$
(R_1 R'_1, R_2 R'_2)_{W'} \in \mathcal{E}[[C]] W' .
$$

Without loss of generality, we can suppose that $dom(\rho) \# W'$. Since $W' \supseteq W$ and $W_1 \supseteq W$, Lemma [137](#page-64-1) implies

- $W'.\rho(\rho) \uplus W' \sqsupseteq \rho \uplus W$ and
- $W_1.\rho(\rho) \boxplus W_1 \sqsupseteq \rho \boxplus W$

Since $W_1 \rho = W' \rho$ from $(W_1, W_2) \supset W'$, we have

$$
W'.\rho(\rho) \uplus W_1 \sqsupseteq \rho \uplus W .
$$

Since $(W_1, W_2) \supseteq W'$, we have

$$
(W'.\rho(\rho) \uplus W_1, W'.\rho(\rho) \uplus W_2) \supseteq W'.\rho(\rho) \uplus W'.
$$

We have the following.

- $\bullet \vdash W_2$ by Lemma [105](#page-46-5) with $\vdash W'$, which is implied by $W' \sqsupseteq W$.
- $dom(W'.\rho(\rho)) \# W_2$ since $dom(W'.\rho(\rho)) \# W'$, which is implied by well-definedness of $W'.\rho(\rho) \oplus W'.$
- $\forall \alpha \in dom(W'.\rho(\rho)).$ $W_2 \vdash W'.\rho(\rho)(\alpha)$ since $\vdash W'.\rho(\rho) \uplus W',$ which is implied by $W'.\rho(\rho) \uplus W' \supseteq$ $\rho \uplus W$.

Thus, by Lemma [139,](#page-66-0)

$$
W'.\rho(\rho) \uplus W_2 \sqsupseteq W_2 .
$$

Since $(R'_1, R'_2) \in \mathcal{R}[\![B]\!]$ W_2 , we have

$$
(R'_1, R'_2) \in \mathcal{R}[\![B]\!]\ W'.\rho(\rho) \uplus W_2
$$

by Lemmas [116](#page-50-1) and [113.](#page-48-0) Note that $dom(\rho) \neq dom(W_2.\Delta) \supseteq frv(R'_1) \cup frv(R'_1)$. Since

- $(R_1, R_2) \in \mathcal{R}[[B \multimap C]] \rho \oplus W$ (which further implies $dom(\rho) \# (fv(R_1) \cup fv(R_2))$),
- $W'.\rho(\rho) \uplus W' \sqsupseteq \rho \uplus W$,
- \bullet $(W'.\rho(\rho) \uplus W_1, W'.\rho(\rho) \uplus W_2) \supset W'.\rho(\rho) \uplus W',$
- $W'.\rho(\rho) \uplus W_1 \sqsupseteq \rho \uplus W$, and
- \bullet $(R'_1, R'_2) \in \mathcal{R}[\![B]\!]$ $W'.\rho(\rho) \uplus W_2$,

we have

$$
(R_1 R'_1, R_2 R'_2)_{W', \rho(\rho) \oplus W'} \in \mathcal{E}[[C]] W', \rho(\rho) \oplus W'.
$$

Since $dom(\rho) \# (fv(R_1) \cup ftv(R'_1) \cup ftv(R_2) \cup ftv(R'_2)),$ we have

$$
(R_1 R'_1, R_2 R'_2)_{W'} \in \mathcal{E}[[C]] W'.\rho(\rho) \uplus W'
$$

.

Since $dom(\rho) \# ftv(B \multimap C)$ implies $dom(W'.\rho(\rho)) \# ftv(C)$, we have the conclusion

$$
(R_1 R_1', R_2 R_2')_{W'} \in \mathcal{E}[\![C]\!] \, W'
$$

by the IH.

Case $A = \forall \alpha.B$: Suppose that

- $W' \sqsupseteq W$,
- $\omega W' \vdash (C_1, C_2, r)$, and
- $\{\alpha\}\#\omega W'$

for some W' , C_1 , C_2 , and r , and then it suffices to show that

$$
(R_1 C_1, R_2 C_2)_{\omega W'} \in \mathcal{E}[\![B]\!](\alpha \Rightarrow (C_1, C_2, r) \} \uplus \omega W'.
$$

Without loss of generality, we can suppose that $dom(\rho) \# W'$ and $dom(\rho) \# {\alpha}$. We have the following.

- $(R_1, R_2) \in \mathcal{R}[\forall \alpha. B] \rho \oplus W$.
- $W'.\rho(\rho) \uplus W' \sqsupseteq \rho \uplus W$ by Lemma [137](#page-64-1) with $W' \sqsupseteq W$.
- $\omega(W'.\rho(\rho) \oplus W') \vdash (C_1, C_2, r)$ from $\omega W' \vdash (C_1, C_2, r)$.
- $\{\alpha\}\#\omega(W'.\rho(\rho) \cup W')$ from $\{\alpha\}\#\omega W'$ and $dom(\rho) \#\{\alpha\}.$

Thus, we have

$$
(R_1 C_1, R_2 C_2)_{\omega(W', \rho(\rho) \oplus W')} \in \mathcal{E}\llbracket B \rrbracket \{ \alpha \mapsto (C_1, C_2, r) \} \oplus \omega(W', \rho(\rho) \oplus W')
$$

Since $dom(\rho) \# (fv(R_1) \cup ftv(R_2) \cup ftv(C_1) \cup ftv(C_2))$, we have

$$
(R_1 C_1, R_2 C_2)_{\omega W'} \in \mathcal{E}[B] W'.\rho(\rho) \uplus (\{\alpha \mapsto (C_1, C_2, r)\} \uplus \omega W').
$$

Since $dom(\rho) \# ftv(\forall \alpha.B)$ and $dom(\rho) \# {\alpha}$ implies $dom(W'.\rho(\rho)) = dom(\rho) \# ftv(B)$, we have the conclusion

 $(R_1 C_1, R_2 C_2)_{\omega W'} \in \mathcal{E}[[B]] \{\alpha \Leftrightarrow (C_1, C_2, r)\} \uplus \omega W'$

by the IH.

Case $A = \mathcal{B}$: By the IH.

2. Let $(M_1, M_2) \in \mathcal{E}[\![A]\!] \rho \uplus W$. We show that $(M_1, M_2) \in \mathcal{E}[\![A]\!] W$. Suppose that

- $W' \sqsupseteq W$,
- \bullet n < W'.n,
- $W'.\rho_{\rm fst}(M_1) \longrightarrow^n R_1$

for some W' , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- $W'.\rho_{\text{snd}}(M_2) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[A]] (W' n).$

Without loss of generality, we can suppose that $dom(\rho) \# W'$. Since $W' \sqsupseteq W$, we have

$$
W'.\rho(\rho) \uplus W' \sqsupseteq \rho \uplus W
$$

by Lemma [137.](#page-64-1) Since $(M_1, M_2) \in \mathcal{E}[A] \rho \oplus W$, we have $dom(\rho) \# dom(W \Delta) \supseteq frv(M_1) \cup frv(M_2)$. Thus,

- \bullet $(W', \rho(\rho) \uplus W') \cdot \rho_{\text{fst}}(M_1) = W' \cdot \rho_{\text{fst}}(M_1)$ and
- $(W'.\rho(\rho) \uplus W') . \rho_{\rm snd}(M_2) = W'.\rho_{\rm snd}(M_2).$

We have the following.

- $(M_1, M_2) \in \mathcal{E}[[A]] \rho \uplus W$.
- $W'.\rho(\rho) \uplus W' \sqsupseteq \rho \uplus W$.
- $n \le W'.n = (W'.\rho(\rho) \oplus W').n$.
- $(W'.\rho(\rho) \oplus W')\cdot \rho_{\rm fst}(M_1) = W'\cdot \rho_{\rm fst}(M_1) \longrightarrow^n R_1.$

Thus, there exists some R_2 such that

- $(W'.\rho(\rho) \oplus W').\rho_{\text{snd}}(M_2) = W'.\rho_{\text{snd}}(M_2) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[\![A]\!](W', \rho(\rho) \uplus W') n.$

Since $dom(\rho) \# ftv(A)$ implies $dom(W' \cdot \rho(\rho)) \# ftv(A)$, we have the conclusion

$$
(R_1,R_2) \in \mathcal{R}[\![A]\!](W'-n)
$$

by the first property on \mathcal{R} .

Lemma 141. If $\Gamma_1, \alpha^0, \Gamma_2 \vdash M_1 \preceq M_2 : !A$, then $\Gamma_1, \alpha^1, \Gamma_2 \vdash \Lambda^{\circ} \langle \alpha, M_1 \rangle \preceq \Lambda^{\circ} \langle \alpha, M_2 \rangle : ! \forall \alpha.A$.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\![\Gamma_1, \alpha^1, \Gamma_2]\!]$. It suffices to show that

$$
(\varsigma_{\rm fst}(\Lambda^{\circ}\langle \alpha, M_1 \rangle), \varsigma_{\rm snd}(\Lambda^{\circ}\langle \alpha, M_2 \rangle))_W \in \mathcal{E}[\![\forall \alpha. A]\!] W .
$$

Suppose that

- $W_1 \square W$,
- \bullet $n \lt W_1.n$, and
- $W_1.\rho_{\rm fst}(\mathcal{S}_{\rm fst}(\Lambda^{\circ}\langle \alpha, M_1 \rangle)) \longrightarrow^n R_1$

for some W_1 , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- $W_1.\rho_{\text{snd}}(S_{\text{snd}}(\Lambda^{\circ}\langle \alpha, M_2 \rangle)) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[\forall \alpha. A]] (W_1 n).$

Since $(W, \varsigma) \in \mathcal{G}[\Gamma_1, \alpha^1, \Gamma_2]$ and $W_1 \sqsupseteq W$, we have $(W_1, W_1, \rho(\varsigma)) \in \mathcal{G}[\Gamma_1, \alpha^1, \Gamma_2]$ by Lemma [119.](#page-51-0) Lemma [134](#page-63-0) implies that there exist some W'_1 , Δ_1 , and Δ_2 such that

- $W_1.\Delta = \Delta_1, \alpha^1, \Delta_2$, and
- $W'_1 = (W_1 \cdot n, (\Delta_1, \alpha^0, \Delta_2), W_1 \cdot \rho),$
- $(W'_1, W_1, \rho(\varsigma)) \in \mathcal{G}[\![\Gamma_1, \alpha^0, \Gamma_2]\!].$

Note that $W_1 \cdot \rho = W'_1 \cdot \rho$ and $W_1 \cdot n = W'_1 \cdot n$. Since $\Gamma_1, \alpha^0, \Gamma_2 \vdash M_1 \preceq M_2 : A$, we have

$$
(\varsigma_{\rm fst}(M_1), \varsigma_{\rm snd}(M_2))_{W'_1} \in \mathcal{E}[\![!A]\!] \, W'_1 \, .
$$

Since $W_1 \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(\Lambda^{\circ} \langle \alpha, M_1 \rangle)) \longrightarrow^n R_1$, there exist some $\overline{\beta_1}$, R'_1 , and $n_1 < n$ such that

- $W_1.\rho_{\rm fst}(\varsigma_{\rm fst}(M_1)) \longrightarrow^{n_1} \nu \overline{\beta_1}$. $!R'_1$ and
- $W_1. \rho_{\text{fst}}(\varsigma_{\text{fst}}(\Lambda^{\circ} \langle \alpha, M_1 \rangle)) \longrightarrow^{n_1} \Lambda^{\circ} \langle \alpha, \nu \overline{\beta_1}. \cdot R_1' \rangle \longrightarrow^{n-n_1} \nu \overline{\beta_1}. \cdot \Lambda \alpha. R_1' = R_1.$

Since $W'_1.\rho = W_1.\rho$ and $n < W_1.n = W'_1.n$, we can find that there exist some $\overline{\beta_2}$ and R'_2 such that

- $W'_1.\rho_{\text{snd}}(\zeta_{\text{snd}}(M_2)) \longrightarrow^* \nu \overline{\beta_2}$. $!R'_2$ and
- $(\nu \overline{\beta_1} \cdot \, !R'_1, \nu \overline{\beta_2} \cdot \, !R'_2) \in \mathcal{R}[[!A]] \, (\, W'_1 n_1).$

 \overline{L}

Thus, we have

$$
W_1'.\rho_{\text{snd}}(S_{\text{snd}}(\Lambda^{\circ} \langle \alpha, M_2 \rangle)) \longrightarrow^* \Lambda^{\circ} \langle \alpha, \nu \overline{\beta_2}.!R'_2 \rangle \longrightarrow^* \nu \overline{\beta_2}.!\Lambda \alpha. R'_2.
$$

We let $R_2 = \nu \overline{\beta_2}$. $! \Lambda \alpha R_2'$. Then, it suffices to show that

$$
(\nu \overline{\beta_1}. \, !\Lambda \alpha. R'_1, \nu \overline{\beta_2}. \, !\Lambda \alpha. R'_2) \in \mathcal{R}[[\forall \alpha. A]] \, (W_1 - n) \, .
$$

By definition, it suffices to show that, for any W_2 such that $W_2 \sqsupseteq \omega(W_1 - n)$ and $1 \lt W_2.n$,

$$
(\nu \overline{\beta_1} \cdot \Lambda \alpha. R'_1, \nu \overline{\beta_2} \cdot \Lambda \alpha. R'_2)_{W_2} \in \mathcal{R}[\![\forall \alpha. A]\!](W_2 - 1) .
$$

By alpha-renaming the type variable α bound in A to a fresh type variable γ , it suffices to show that

$$
(\nu \overline{\beta_1}.\ \Lambda \alpha. R'_1, \nu \overline{\beta_2}.\ \Lambda \alpha. R'_2)_{W_2} \in \mathcal{R}[\![\forall \gamma. A[\gamma/\alpha]\!]] \, (W_2 - 1) \ .
$$

Let $W_3 \supseteq W_2 - 1$ and suppose that $\omega W_3 \vdash (B_1, B_2, r)$ for some B_1 , B_2 , and r. Without loss of generality, we can suppose that $\{\gamma\}\#\omega W_3$ and that the type variables $\overline{\beta_1}$ and $\overline{\beta_2}$ do not occur free in B_1 and B_2 , respectively. Then, it suffices to show that

 $((\nu\overline{\beta_1}.\,\Lambda\alpha.R'_1) B_1,(\nu\overline{\beta_2}.\,\Lambda\alpha.R'_2) B_2)_{\omega W_3} \in \mathcal{E}[\![A[\gamma/\alpha]]\!]\{\gamma \mapsto (B_1,B_2,r)\}\,\forall\omega W_3.$

Let $W_4 \supseteq {\gamma \mapsto (B_1, B_2, r)} \cup W_3$ and suppose that $1 \langle W_4 \ldots \rangle$, and then it suffices to show that

$$
(\nu \overline{\beta_1} \cdot R_1'[B_1/\alpha], \nu \overline{\beta_2} \cdot R_2'[B_2/\alpha])_{W_4} \in \mathcal{R}[\![A[\gamma/\alpha]]\!](W_4-1) .
$$

Since $(\nu \overline{\beta_1} \cdot R_1', \nu \overline{\beta_2} \cdot R_2') \in \mathcal{R}[[!A]] (W_1' - n_1)$ and $1 \langle W_2.n \leq \omega W_1.n - n \langle W_1'.n - n_1, w \rangle$ have

$$
(\nu \overline{\beta_1}, R'_1, \nu \overline{\beta_2}, R'_2) \in \mathcal{R}[\![A]\!]\omega(W'_1 - n_1 - 1) .
$$

Let

- \bullet $\rho_1 = W_1 \cdot \rho|_{dom(\Gamma_1, \alpha^1, \Gamma_2)},$
- $\rho_2 = W_1 \cdot \rho|_{dom(W_1, \rho) \setminus dom(\Gamma_1, \alpha^1, \Gamma_2)}$, and
- $W''_1 = (W_1 \cdot n, W'_1 \cdot \Delta, \rho_1).$

Since $W'_1 \cdot n = W_1 \cdot n$ and $W'_1 \cdot \rho = W_1 \cdot \rho = \rho_1 \oplus \rho_2$, we have $\rho_2 \oplus W''_1 = W'_1$. Thus, we have

$$
(\nu \overline{\beta_1}. R'_1, \nu \overline{\beta_2}. R'_2) \in \mathcal{R}[\![A]\!] \rho_2 \uplus \omega(W''_1 - n_1 - 1) .
$$

Since $\Gamma_1, \alpha^0, \Gamma_2 \vdash M_1 \preceq M_2$: !A implies $\Gamma_1, \alpha^0, \Gamma_2 \vdash M_1$: !A, we have $\Gamma_1, \alpha^0, \Gamma_2 \vdash A$ by Lemma [18.](#page-14-2) Thus, $dom(\rho_2) \# dom(\Gamma_1, \alpha^0, \Gamma_2) \supseteq frv(A)$. Hence, by Lemma [140,](#page-66-1)

$$
(\nu\overline{\beta_1}.R'_1,\nu\overline{\beta_2}.R'_2) \in \mathcal{R}\llbracket A\rrbracket \omega(W''_1-n_1-1).
$$

Since $(W_1, W_1, \rho(\varsigma)) \in \mathcal{G}[\![\Gamma_1, \alpha^1, \Gamma_2]\!]$, we have $\Gamma_1, \alpha^1, \Gamma_2 \succ W_1, \rho$. Thus, $\alpha \notin \text{ftv}(W_1, \rho|_{\text{dom}(\Gamma_1, \alpha^1, \Gamma_2)}) = \text{ftv}(\rho_1) =$
 $\text{ftv}(W' \alpha)$. Honey noting that we gap suppose $\{\alpha\}$ + dam($W'' \alpha$) = dam($\text{ftv}(W''_1.\rho)$. Hence, noting that we can suppose $\{\gamma\} \# \text{ dom}(W''_1.\Delta) = \text{dom}(W'_1.\Delta) = \text{dom}(\Delta_1, \alpha^0, \Delta_2)$ without loss of generality, by alpha-renaming the type variable α in the above formula to γ , we have

$$
(\nu\overline{\beta_1}.R'_1[\gamma/\alpha], \nu\overline{\beta_2}.R'_2[\gamma/\alpha]) \in \mathcal{R}[\![A[\gamma/\alpha]]\!]\omega((W_1.n, (\Delta_1,\gamma^0,\Delta_2), \rho_1)-n_1-1) .
$$

Let $W_1''' = (W_1 \cdot n, (W_1' \cdot \Delta, \gamma^0), W_1 \cdot \rho)$. By applying Lemmas [110,](#page-47-0) [112,](#page-48-2) [116,](#page-50-1) and [113](#page-48-0) with

$$
W_1''' = (W_1.n, (W_1'.\Delta, \gamma^0), \rho_1 \uplus \rho_2)
$$

\n
$$
\supseteq (W_1.n, (W_1'.\Delta, \dagger(\rho_2), \gamma^0), \rho_1) \text{ (by Lemma 135)}
$$

\n
$$
\supseteq (W_1.n, (W_1'.\Delta, \gamma^0), \rho_1) \text{ (by Lemma 117)}
$$

\n
$$
= (W_1.n, (\Delta_1, \alpha^0, \Delta_2, \gamma^0), \rho_1)
$$

\n
$$
\supseteq (W_1.n, (\Delta_1, \gamma^0, \Delta_2), \rho_1) \text{ (by Lemma 117)},
$$

we have

$$
(\nu \overline{\beta_1} \cdot R_1'[\gamma/\alpha], \nu \overline{\beta_2} \cdot R_2'[\gamma/\alpha]) \in \mathcal{R}[\![A[\gamma/\alpha]]\!]\omega(W_1''' - n_1 - 1) .
$$

Since $n_1 < n$, we have

$$
W_3 \sqsupseteq W_2 - 1 \sqsupseteq W_2 \sqsupseteq \omega(W_1 - n) \sqsupseteq \omega(W_1 - n_1 - 1) = \omega(W_1' - n_1 - 1) \; .
$$

Thus, by Lemmas [110,](#page-47-0) [112,](#page-48-2) and [5,](#page-12-0)

$$
\omega W_3 \sqsupseteq \omega(W_1' - n_1 - 1) \ .
$$

By Lemma [130,](#page-59-1)

$$
\omega(W_3@ \gamma) \sqsupseteq \omega(W_1''' - n_1 - 1) \ .
$$

Since $\vdash W_3$ and $\{\gamma\}\#\omega W_3$ and $\omega W_3 \vdash (B_1, B_2, r)$, we have

$$
\{\gamma \mapsto (B_1, B_2, r)\} \uplus \omega W_3 \sqsupseteq \omega(W_3 \mathbb{Q}\gamma)
$$

by Lemma [135.](#page-64-2) Thus, by Lemma [110,](#page-47-0)

$$
\{\gamma \mapsto (B_1, B_2, r)\} \uplus \omega W_3 \sqsupseteq \omega(W_1''' - n_1 - 1) .
$$

Thus, by Lemma [116,](#page-50-1)

$$
(\nu \overline{\beta_1} \cdot R_1'[B_1/\alpha], \nu \overline{\beta_2} \cdot R_2'[B_2/\alpha]) \omega W_3 \in \mathcal{R}[[A[\gamma/\alpha]] \{ \gamma \mapsto (B_1, B_2, r) \} \uplus \omega W_3 .
$$

Since $W_4 - 1 \supseteq W_4 \supseteq {\gamma \mapsto (B_1, B_2, r)} \oplus \omega W_3$, we have the conclusion by Lemmas [110,](#page-47-0) [116,](#page-50-1) and [114.](#page-48-1)

Lemma 142. If $W_1 \supseteq W_2$, then $W_1 \cdot \rho(W_2 \cdot \rho(\rho)) = W_1 \cdot \rho(\rho)$ for any ρ .

Proof. Let $\alpha \in dom(\rho)$ and $(A_1, A_2, r) = \rho(\alpha)$. Since $W_1 \supseteq W_2$, there exists some ρ' such that

- $W_1.\Delta, \dagger(\rho') \gg W_2.\Delta$ and
- $W_1.\rho = \rho' \circ W_2.\rho.$

It suffices to show that $W_1.\rho_{\rm fst}(W_2.\rho_{\rm fst}(A_1)) = W_1.\rho_{\rm fst}(A_1); W_1.\rho_{\rm snd}(W_2.\rho_{\rm snd}(A_2)) = W_1.\rho_{\rm snd}(A_2)$ is proven similarly. Noting that $W_1 \supseteq W_2$ implies $\vdash W_2$, we have:

$$
W_1.\rho_{\text{fst}}(A_1) = \rho'_{\text{fst}}(W_2.\rho_{\text{fst}}(A_1)) \qquad \text{(since } W_1.\rho = \rho' \circ W_2.\rho) \n\rho'_{\text{fst}}(W_2.\rho_{\text{fst}}(W_2.\rho_{\text{fst}}(A_1))) \qquad \text{(since } dom(W_2.\rho) \# dom(W_2.\Delta) \text{ implied by } \vdash W_2) \nW_1.\rho_{\text{fst}}(W_2.\rho_{\text{fst}}(A_1)) .
$$

 \Box

Lemma 143. Let α be a type variable, A be a type, and r be a function that, given a world W, returns $\mathcal{R}[[A]]$ (W.n+ 1, W. Δ , W. ρ), and $\rho = {\alpha \mapsto (A, A, r)}$. Suppose that ${\alpha} \neq ftv(A)$.

For any W and A' , if \vdash W and $\{\alpha\}$ #W and $W \vdash W.\rho(\rho)(\alpha)$, then:

- $\mathcal{R}[\![A']\!]$ $W.\rho(\rho) \uplus W = \mathcal{R}[\![A'[A/\alpha]]\!]$ W ; and
- $\mathcal{E}[A'] \ W.\rho(\rho) \ \forall \ W = \mathcal{E}[A'[A/\alpha]] \ W.$

Proof. By induction on A' .

• We first show that $\mathcal{R}[\![A']\!]$ $W.\rho(\rho) \uplus W = \mathcal{R}[\![A' [A/\alpha]\!]$ W .

Case $A' = \iota$: Obvious since $A' = A'[A/\alpha] = \iota$.

Case $A' = \alpha$: We first show that $\mathcal{R}[\![A]\!] W \cdot \rho(\rho) \cup W = \mathcal{R}[\![A]\!] W$. Since $\{\alpha\} \# \text{ftv}(A)$, we have $\mathcal{R}[\![A]\!] W \cdot \rho(\rho) \cup W$ $W \subseteq \mathcal{R}[\![A]\!] W$ by Lemma [140.](#page-66-1) By Lemmas [139,](#page-66-0) [116,](#page-50-1) and [113](#page-48-0) and $\{\alpha\}\# W$, we have $\mathcal{R}[\![A]\!] W \subseteq$ $\mathcal{R}[\![A]\!] W . \rho(\rho) \uplus W$.

Thus, we have

$$
\mathcal{R}\llbracket A'\rrbracket \; W.\rho(\rho) \uplus W = r(\blacktriangleright (W.\rho(\rho) \uplus W))
$$

=
$$
\mathcal{R}\llbracket A\rrbracket \; W.\rho(\rho) \uplus W
$$

=
$$
\mathcal{R}\llbracket A\rrbracket \; W
$$

=
$$
\mathcal{R}\llbracket A'[\![A/\alpha]\!] \; W.
$$

Case $A' = \beta$ for some $\beta \neq \alpha$: We have

 $\mathcal{R}\llbracket A'\rrbracket W.\rho(\rho) \uplus W = \mathcal{R}\llbracket \beta \rrbracket W.\rho(\rho) \uplus W = (W.\rho(\rho) \uplus W).\rho[\beta] (\blacktriangleright (W.\rho(\rho) \uplus W)) = W.\rho[\beta] (\blacktriangleright (W.\rho(\rho) \uplus W))$. Let $(B_1, B_2, r') = W \cdot \rho(\beta)$. Since $\vdash W$, we have $- W \Delta \vdash B_1$, – *W*.∆ \vdash *B*₂, and

 $- r' \in \text{Rel}_{W.n}[B_1, B_2].$
Since $\{\alpha\}\# W$, we have $\{\alpha\}\# (ftv(B_1) \cup ftv(B_2))$. Thus, the irrelevance condition on $r' \in \text{Rel}_{W,n}[B_1, B_2]$ implies $r'(\blacktriangleright (W \cdot \rho(\rho) \oplus W)) \subseteq r'(\blacktriangleright W)$. Since $\blacktriangleright (W \cdot \rho(\rho) \oplus W) \sqsupseteq \blacktriangleright W$ by Lemma [139,](#page-66-0) we have $r'(\blacktriangleright W) \subseteq$ $r'(\blacktriangleright (W.\rho(\rho) \uplus W))$ by monotonicity of r', Lemma [113,](#page-48-0) and $\{\alpha\} \# W$. Thus,

$$
W. \rho[\beta](\blacktriangleright (W. \rho(\rho) \boxplus W)) = r'(\blacktriangleright (W. \rho(\rho) \boxplus W)) = r'(\blacktriangleright W) .
$$

Since

$$
r'(\blacktriangleright W) = W.\rho[\beta](\blacktriangleright W) = \mathcal{R}[\![\beta]\!] \ W = \mathcal{R}[\![A'[A/\alpha]\!] \ W \ ,
$$

we have the conclusion $\mathcal{R}[\![A']\!]$ $W.\rho(\rho) \oplus W = \mathcal{R}[\![A'[A/\alpha]]\!]$ W .

Case $A' = B' \multimap C'$:

– We show that $\mathcal{R}[[B] \multimap C'] \parallel W \cdot \rho(\rho) \cup W \subseteq \mathcal{R}[[B' \multimap C'] \mid A/\alpha]] \parallel W$.
Let $(B, B_1) \subset \mathcal{R}[[B'] \multimap C'] \parallel W \cdot \rho(\rho) \sqcup W$. To prove $(B, B_1) \subset \mathcal{R}[[C'] \multimap C'] \parallel W \cdot \rho(\rho) \vdots$ Let $(R_1, R_2) \in \mathcal{R}[[B' \multimap C']] \mid W \cdot \rho(\rho) \cup W$. To prove $(R_1, R_2) \in \mathcal{R}[[B' \multimap C'] [A/\alpha]] \mid W$, suppose that

- ∗ $W_0 \supseteq W$,
- ∗ (W_1, W_2) ∋ W_0 , and
- ∗ $W_1 \sqsupset W$, and
- * $(R'_1, R'_2) \in \mathcal{R}[[B'[A/\alpha]]][W_2]$.

for some W_0 , W_1 , W_2 , R'_1 , and R'_2 , and then it suffices to show that

 $(R_1 R'_1, R_2 R'_2)_{W_0} \in \mathcal{E}[[C'[A/\alpha]]] W_0.$

We can suppose that $\{\alpha\} \# W_0$ without loss of generality.

By Lemma [137](#page-64-0) with $W_0 \supseteq W$, $W_1 \supseteq W$, and $\vdash W.\rho(\rho) \uplus W$, noting $W_0.\rho = W_1.\rho$ by $(W_1, W_2) \supseteq W_0$, we have

- \ast W₀. $\rho(\rho)$ ⊎ W₀ \supseteq W_. $\rho(\rho)$ ⊎ W and
- \ast $W_0.\rho(\rho) \uplus W_1 \sqsupseteq W.\rho(\rho) \uplus W$.

Since $(W_1, W_2) \supseteq W_0$, we have

 $*$ ($W_0.\rho(\rho) \oplus W_1$, $W_0.\rho(\rho) \oplus W_2$) $\supset W_0.\rho(\rho) \oplus W_0$.

We have the following.

- * $(R'_1, R'_2) \in \mathcal{R}[[B'[A/\alpha]]][W_2]$.
- $* {\alpha} \# W_2$ since ${\alpha} \# W_0$ and $(W_1, W_2) \supset W_0$.
- $*$ ⊦ W_2 by Lemma [105](#page-46-0) with \vdash W_0 and $(W_1, W_2) \supseteq W_0$.
- $* W_2 \vdash W_2 \cdot \rho(\rho)(\alpha)$ because $W_0 \vdash W_0 \cdot \rho(\rho)(\alpha)$, which is implied by $\vdash W_0 \cdot \rho(\rho) \uplus W_0$ from $W_0 \cdot \rho(\rho) \uplus$ $W_0 \sqsupseteq W.\rho(\rho) \uplus W.$

Thus, by the IH, we have

$$
(R'_1, R'_2) \in \mathcal{R}[\![B']\!]\ W_2 . \rho(\rho) \uplus W_2 .
$$

Since

- * $(R_1, R_2) \in \mathcal{R}[[B' \multimap C']] W . \rho(\rho) \uplus W,$
 W , $\phi(x) \cup W$, $\exists W$, $\phi(x) \cup W$
- ∗ $W_0.\rho(\rho) \boxplus W_0 \sqsupseteq W.\rho(\rho) \boxplus W,$
- \ast $W_0.\rho(\rho) \uplus W_1 \sqsupseteq W.\rho(\rho) \uplus W$,
- $*(W_0 \cdot \rho(\rho) \oplus W_1, W_0 \cdot \rho(\rho) \oplus W_2) \supseteq W_0 \cdot \rho(\rho) \oplus W_0$, and
- $*(R'_1, R'_2) \in \mathcal{R}[[B']] W_0. \rho(\rho) \uplus W_2 \text{ (note that } W_2. \rho = W_0. \rho),$

noting that $\{\alpha\}\#W_0$, we have

$$
(R_1 R'_1, R_2 R'_2)_{W_0} \in \mathcal{E}[[C']] W_0. \rho(\rho) \uplus W_0.
$$

By the IH, we have the conclusion

$$
(R_1 R'_1, R_2 R'_2)_{W_0} \in \mathcal{E}[[C'[A/\alpha]]] W_0.
$$

– We show that $\mathcal{R}[[B' \multimap C')] [A/\alpha]] W \subseteq \mathcal{R}[[B' \multimap C'] W \cdot \rho(\rho) \cup W$.
Let $(B, B_1) \subset \mathcal{R}[[B'] \multimap C'] [A/\alpha]] W$. To prove $(B, B_1) \subset \mathcal{R}[[B']$. Let $(R_1, R_2) \in \mathcal{R}[(B' \multimap C') [A/\alpha]] W$. To prove $(R_1, R_2) \in \mathcal{R}[B' \multimap C'] W . \rho(\rho) \cup W$, suppose that \ast $W_0 \sqsupseteq W.\rho(\rho) \uplus W,$

- $∗$ (W_1, W_2) ∋ W_0 , and
- \ast W₁ \sqsupseteq W . $\rho(\rho) \uplus$ W, and
- * $(R'_1, R'_2) \in \mathcal{R}[[B']] W_2.$

for some W_0 , W_1 , W_2 , R'_1 , and R'_2 , and then it suffices to show that

$$
(R_1 R'_1, R_2 R'_2)_{W_0} \in \mathcal{E}[[C']] W_0 .
$$

By Lemma [138](#page-65-0) with $W_0 \sqsupseteq W \cdot \rho(\rho) \oplus W$ and $W_1 \sqsupseteq W \cdot \rho(\rho) \oplus W$, there exist some W'_0 and W'_1 such that

- $*$ $W'_0 \sqsupseteq W$,
- * $W_0 = W'_0 \cdot \rho(\rho) \boxplus W'_0,$

∗ $W'_1 \sqsupseteq W$, and

* $W_1 = W'_1 \cdot \rho(\rho) \oplus W'_1$.

Since $(W_1, W_2) \supseteq W_0$, there exists some W'_2 such that

∗ $W_2 = W'_0 . \rho(\rho) \oplus W'_2$ and

$$
\ast\ \left(\,W'_1,\,W'_2\right)\,\ni\,W'_0.
$$

Note that $W'_1 \cdot \rho = W'_2 \cdot \rho = W'_0 \cdot \rho$. We have the following.

- $*(R'_1, R'_2) \in \mathcal{R}[[B']] \ W'_2 \cdot \rho(\rho) \cup W'_2$ since $(R'_1, R'_2) \in \mathcal{R}[[B']] \ W_2$ and $W_2 = W'_0 \cdot \rho(\rho) \cup W'_2$ and $(W'_1, W'_2) \supseteq W'_1$ $(W'_1, W'_2) \supset W'_0.$
- ∗ $\vdash W_2'$ by Lemma [105](#page-46-0) with $\vdash W_0'$ (from $W_0' \sqsupseteq W$) and $(W_1', W_2') \Supset W_0'$.
- * $\{\alpha\} \# W_2'$ because $\{\alpha\} \# W_0'$ (from $\vdash W_0$) and $(W_1', W_2') \supseteq W_0'.$
- ∗ W'_2 ⊢ $W'_2.ρ(ρ)(α)$ because ⊢ $W'_0.ρ(ρ) ⊕ W'_0$ and $W'_0.ρ = W'_2.ρ.$

Thus, by the IH, we have

$$
(R'_1, R'_2) \in \mathcal{R}[\![B'[A/\alpha]\!]] \ W'_2.
$$

We also have the following.

* $(R_1, R_2) \in \mathcal{R}[[B' \multimap C')] [A/\alpha]] W.$ $*$ $W'_0 \sqsupseteq W$, ∗ $W'_1 \sqsupseteq W$, and * $(W'_1, W'_2) \supset W'_0.$

Thus,

$$
(R_1 R'_1, R_2 R'_2)_{W'_0} \in \mathcal{E}[[C'[A/\alpha]]] W'_0.
$$

Noting α does not occur free in R_1 , R'_1 , R_2 , nor R'_2 , since $\vdash W'_0$ and $\{\alpha\}\# W'_0$ and $W'_0 \vdash W'_0 \cdot \rho(\rho)(\alpha)$, the IH implies the conclusion

$$
(R_1 R'_1, R_2 R'_2)_{W_0} \in \mathcal{E}[[C']] W_0 .
$$

Case $A' = \forall \beta . B'$:

– We show that $\mathcal{R}[\![\forall \beta, B']\!] \, W \cdot \rho(\rho) \uplus W \subseteq \mathcal{R}[\![(\forall \beta, B')\!] \, A/\alpha] \, \] \, W.$
Let $(P, P) \subset \mathcal{R}[\![\forall \beta, B']\!] \, W$ and $\alpha) \uplus W$. We show that (P, P)

Let $(R_1, R_2) \in \mathcal{R}[\nabla \beta B']$ $W \cdot \rho(\rho) \oplus W$. We show that $(R_1, R_2) \in \mathcal{R}[\nabla \beta B'] [A/\alpha]]$ W. Without loss of generality we are suppose that $\{\beta\} \pm (f\alpha(A) + f\alpha(A))$ and $\{\beta\} \pm W$. Suppose that of generality, we can suppose that $\{\beta\} \# (fv(A) \cup \{\alpha\} \cup fv(\rho))$ and $\{\beta\} \# W$. Suppose that

- ∗ $W_0 \supseteq W$,
- * $\omega W_0 \vdash (B_1, B_2, r_0)$, and

∗ {β}#W⁰

for some W_0 , B_1 , B_2 , and r_0 , and then it suffices to show that

$$
(R_1\,B_1, R_2\,B_2)_{\omega\,W_0} \in \mathcal{E}[B'[A/\alpha]]\,W'_0
$$

where $W'_0 = \{\beta \mapsto (B_1, B_2, r_0)\} \uplus \omega W_0$. Without loss of generality, we can suppose that $\{\alpha\} \# W_0$.
Since $W_0 = W_0 = W_0$ bays $W_0 = \alpha(\alpha) \uplus W_0 = \alpha(\alpha) \uplus W_0$ for α and α is $W_0 = \alpha(\alpha) \# W_0$. Since $W_0 \supseteq W$, we have $W_0 \cdot \rho(\rho) \cup W_0 \supseteq W \cdot \rho(\rho) \cup W$ by Lemma [137.](#page-64-0) Since $W_0 \vdash (B_1, B_2, r_0)$, we have $W_0 \cdot \rho(\rho) \oplus W_0 \vdash (B_1, B_2, r_0)$. Since $(R_1, R_2) \in \mathcal{R}[\nabla \beta . B'] \mid W \cdot \rho(\rho) \oplus W$, we have

$$
(R_1 B_1, R_2 B_2)_{W_0, \rho(\rho) \oplus W_0} \in \mathcal{E}[B'] \{\beta \Rightarrow (B_1, B_2, r_0)\} \oplus (\omega(W_0, \rho(\rho) \oplus W_0))
$$

Since $\{\beta\}$ # $ftv(\rho)$, we have

$$
\{\beta \mapsto (B_1, B_2, r_0)\} \uplus (\omega(W_0 \cdot \rho(\rho) \uplus W_0)) = W'_0 \cdot \rho(\rho) \uplus W'_0.
$$

Since α and β do not occur in R_1 , R_2 , B_1 , nor B_2 , we have

$$
(R_1 B_1, R_2 B_2)_{\omega W_0} \in \mathcal{E}[B'] \, W'_0. \rho(\rho) \uplus W'_0 \, .
$$

We have the following.

- $*$ ⊢ W₀' since ⊢ ωW_0 by Lemma [105](#page-46-0) with ⊢ W₀ (from $W_0 \sqsupseteq W$) and $\omega W_0 \vdash (B_1, B_2, r_0)$.
- * $\{\alpha\}$ # W'_0 since $\alpha \neq \beta$ and $\{\alpha\}$ # W_0 .
- $*$ W'₀ ⊢ W'₀. $\rho(\alpha)$ because ⊢ W₀. $\rho(\rho)$ ⊎ W₀ from W₀. $\rho(\rho)$ ⊎ W₀ \supseteq W. $\rho(\rho)$ ⊎ W.

Thus, by the IH, we have the conclusion

$$
(R_1 B_1, R_2 B_2)_{\omega W_0} \in \mathcal{E}[B'[A/\alpha]] W'_0.
$$

- We show that $\mathcal{R}[(\forall \beta.B')[A/\alpha]] \mid W \subseteq \mathcal{R}[\forall \beta.B'] \mid W \cdot \rho(\rho) \cup W$.
Let $(P, P) \subseteq \mathcal{R}[\forall \beta.B'] \mid W$ We show that (P, P) .
	- Let $(R_1, R_2) \in \mathcal{R}[[\forall \beta B')] [A/\alpha]] W$. We show that $(R_1, R_2) \in \mathcal{R}[[\forall \beta B']] W \cdot \rho(\rho) \oplus W$. Suppose that \ast $W_0 \supseteq W.\rho(\rho) \uplus W,$
		- * $\omega W_0 \vdash (B_1, B_2, r_0)$, and
	- ∗ {β}#ωW⁰

for some W_0 , B_1 , B_2 , and r_0 , and then it suffices to show that

$$
(R_1 B_1, R_2 B_2)_{\omega W_0} \in \mathcal{E}[B'] \{ \beta \Rightarrow (B_1, B_2, r_0) \} \uplus \omega W_0 .
$$

Since $W_0 \sqsupseteq W.\rho(\rho) \uplus W$, there exists some W'_0 such that

- ∗ $W'_0 \sqsupseteq W$ and
- * $W_0 = W'_0 \cdot \rho(\rho) \oplus W'_0$

by Lemma [138.](#page-65-0) Since $\omega W_0 \vdash (B_1, B_2, r_0)$, we have $\omega W_0' \vdash (B_1, B_2, r_0)$. Since $(R_1, R_2) \in \mathcal{R}[[(\forall \beta.B')] [A/\alpha]] W$ and $\{\beta\} \# \omega W_0'$ (from $\{\beta\} \# \omega W_0$), we have

 $(R_1 B_1, R_2 B_2)_{\omega W'_0} \in \mathcal{E}[B'[A/\alpha]] \{ \beta \Leftrightarrow (B_1, B_2, r_0) \} \uplus \omega W'_0.$

Let $W' = {\beta \mapsto (B_1, B_2, r_0)} \uplus \omega W'_0$. We have the following.

∗ \vdash W' since $\omega W_0'$ by Lemma [105](#page-46-0) with \vdash W₀' and $\omega W_0' \vdash (B_1, B_2, r_0)$.

$$
* \ \{\alpha\}\# W',
$$

* $W' \vdash W'.\rho(\rho)(\alpha)$ because $\vdash W'_0.\rho(\rho) \uplus W'_0.$

Thus, by the IH,

$$
(R_1 B_1, R_2 B_2)_{\omega W'_0} \in \mathcal{E}[\![B']\!] \ W'.\rho(\rho) \uplus W'
$$

.

Since $\{\alpha\}$ # $(ftv(R_1) \cup ftv(R_2) \cup ftv(B_1) \cup ftv(B_2))$ and we can suppose that $\{\beta\}$ # $ftv(\rho)$ without loss of generality, we have the conclusion

$$
(R_1 B_1, R_2 B_2)_{\omega W_0} \in \mathcal{E}[B'] \{\beta \Rightarrow (B_1, B_2, r_0)\} \uplus \omega W'_0 \cdot \rho(\rho) \uplus \omega W'_0.
$$

Case $A' = 1B'$: By the IH with Lemma [105.](#page-46-0)

- Next, we consider $\mathcal{E}[A']] W . \rho(\rho) \uplus W = \mathcal{E}[A'[A/\alpha]] W$.
	- We show that $\mathcal{E}[\![A']\!] W . \rho(\rho) \uplus W \subseteq \mathcal{E}[\![A'[A/\alpha]\!] \!] W$ Let $(M_1, M_2) \in \mathcal{E}[\![A']\!]$ $W \cdot \rho(\rho) \oplus W$. We show that $(M_1, M_2) \in \mathcal{E}[\![A'[A/\alpha]]\!]$ W . Suppose that ∗ $W' \sqsupseteq W$, $* n < W'.n$, and * $W'.\rho_{\text{fst}}(M_1) \longrightarrow^n R_1$

for some W' , n, and R_1 , and then it suffices to show that there exists some R_2 such that

∗ $W'.\rho_{\text{snd}}(M_2) \longrightarrow^* R_2$ and * $(R_1, R_2) \in \mathcal{R}[\![A' [A/\alpha]]\!](W' - n).$

Without loss of generality, we can suppose that $\{\alpha\} \# W'$. Thus, we can suppose that α does not occur in R_1 . Further, since $W' \sqsupseteq W$, we have

$$
W'.\rho(\rho) \uplus W' \sqsupseteq W.\rho(\rho) \uplus W
$$

by Lemma [137.](#page-64-0) Since $(M_1, M_2) \in \mathcal{E}[[A']] \ W. \rho(\rho) \oplus W$, there exists some R_2 such that

∗ $W'.\rho_{\text{snd}}(M_2) \longrightarrow^* R_2$ and

* $(R_1, R_2) \in \mathcal{R}\llbracket A' \rrbracket ((W'.\rho(\rho) \uplus W') - n)$

(note that α does not occur in M_2). We have the following.

 $* \vdash W' - n$ since $W' \sqsupset W$.

$$
\ast \ \{\alpha\}\#(\,W'-n).
$$

 $*$ $W' - n \vdash (W' - n) \cdot \rho(\rho)(\alpha)$ since $\vdash W' \cdot \rho(\rho) \cup W'$ which is implied by $W' \cdot \rho(\rho) \cup W' \sqsupseteq W \cdot \rho(\rho) \cup W'$. Thus, by the first property on \mathcal{R} , we have the conclusion $(R_1, R_2) \in \mathcal{R}[[A'(A/\alpha]](W'-n)$.

– We show that $\mathcal{E}[A'(A/\alpha]] W \subseteq \mathcal{E}[A''] W . \rho(\rho) \oplus W$

Let $(M_1, M_2) \in \mathcal{E}[\![A'[A/\alpha]]\!] \mid W$. We show that $(M_1, M_2) \in \mathcal{E}[\![A']\!] \mid W \cdot \rho(\rho) \cup W$. Suppose that

 \ast $W_0 \sqsupseteq W.\rho(\rho) \uplus W,$

$$
\ast \enspace n \ < \ W_0.n, \text{ and }
$$

 \ast $W_0.\rho_{\rm fst}(M_1) \longrightarrow^n R_1$

for some W_0 , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- ∗ $W_0.\rho_{\rm snd}(M_2) \longrightarrow^* R_2$ and
- * $(R_1, R_2) \in \mathcal{R}[\![A']\!](W_0 n).$

Since $W_0 \supseteq W \cdot \rho(\rho) \cup W$, Lemma [138](#page-65-0) implies that there exists some W'_0 such that

- ∗ $W'_0 \sqsupseteq W$ and
- * $W_0 = W'_0 \cdot \rho(\rho) \boxplus W'_0$.

Since $(M_1, M_2) \in \mathcal{E}[[A'/A/\alpha]] || W$ and $n < W_0 \cdot n = W'_0 \cdot n$ and we can suppose that α does not occur free in M_1 and M_2 , there exists some R_2 such that

- \ast $W_0.\rho_{\rm smd}(M_2) \longrightarrow^* R_2$ and
- * $(R_1, R_2) \in \mathcal{R}[\![A' [A/\alpha]]\!](W'_0 n).$

We have the following.

- $*$ \vdash $W'_0 n$ since $W'_0 \sqsupseteq W$.
- * $\{\alpha\}$ # $(W'_0 n)$.

 $* W'_0 - n \vdash (W'_0 - n) \cdot \rho(\rho)(\alpha)$ since $\vdash W'_0 \cdot \rho(\rho) \uplus W'_0$ which is implied by $W'_0 \cdot \rho(\rho) \uplus W'_0 \sqsupseteq W \cdot \rho(\rho) \uplus W$. Thus, by the first property on R , we have the conclusion

$$
(R_1, R_2) \in \mathcal{R}[\![A']\!](W'_0. \rho(\rho) \uplus W'_0) - n) .
$$

 \Box

Lemma 144. If $\{\alpha\}\#\omega W$ and $(\omega W, \varsigma) \in \mathcal{G}[\![\omega]\!]$ and $\omega W \vdash (A_1, A_2, r)$, then $(\{\alpha \mapsto (A_1, A_2, r)\} \uplus \omega W, \varsigma) \in \mathcal{G}[\![\omega]\!]$ $\mathcal{G}[\![\omega\Gamma,\alpha^{\mathbf{0}}]\!]$.

Proof. Since $(\omega W, \varsigma) \in \mathcal{G}[\![\omega]\!]$, we have the following.

- $\bullet \vdash \omega W$.
- $\omega \Gamma \succ \omega W . \rho$.
- $\forall \beta \in dom(\omega \Gamma)$. $(\exists \pi, \beta^{\pi} \in \omega W.\Delta) \vee \beta \in dom(\omega W.\rho)$, and
- $\forall x : \mathcal{A} \in \omega\Gamma$. $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[\![A]\!] \omega \omega W = \mathcal{R}[\![A]\!] \omega W$ (by Lemma [5\)](#page-12-0).

Let $W' = {\alpha \mapsto (A_1, A_2, r)} \cup \omega W$. We have the conclusion $(W', \varsigma) \in \mathcal{G}[\omega \Gamma, \alpha^0]$ by the following.

- $\vdash W'$ since $\vdash \omega W$ and $\omega W \vdash (A_1, A_2, r)$.
- $\omega \Gamma, \alpha^0 > W'.\rho$ because $\omega \Gamma, \alpha^0$ assigns the use **0** to all the bound type variables.
- $\bullet \ \forall \beta \in \text{dom}(\omega \Gamma, \alpha^{\mathbf{0}}). (\exists \pi. \ \beta^{\pi} \in W'.\Delta) \ \lor \ (\beta \in \text{dom}(W'.\rho)).$
- $\forall x : M \in \omega \Gamma, \alpha^0$. $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[[A]] \omega W'$ by Lemmas [116](#page-50-0) and [113](#page-48-0) with $(\varsigma_{\text{fst}}(x), \varsigma_{\text{snd}}(x)) \in \mathcal{R}[[A]] \omega W$
and $\omega W' \supset \omega W = \omega W$ which is obtained by Lemma 112 with $W' \supset \omega W = \omega W$ is proven by and $\omega W' \supseteq \omega \omega W = \omega W$, which is obtained by Lemma [112](#page-48-1) with $W' \supseteq \omega W$. $W' \supseteq \omega W$ is proven by Lemma [139.](#page-66-0)

 \Box

Lemma 145. If $\vdash \Gamma$ and $\omega \Gamma, \alpha^0 \vdash M_1 \preceq M_2 : A$, then $\Gamma \vdash \Lambda \alpha.M_1 \preceq \Lambda \alpha.M_2 : \forall \alpha.A$.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma]$. It suffices to show that

$$
(\varsigma_{\rm fst}(\Lambda \alpha.M_1), \varsigma_{\rm snd}(\Lambda \alpha.M_2))_W \in \mathcal{E}[\![\forall \alpha.A]\!] W .
$$

Let $W_1 \supseteq W$ such that $0 \lt W_1.n$. It suffices to show that

$$
(\varsigma_{\rm fst}(\Lambda\alpha.M_1),\varsigma_{\rm snd}(\Lambda\alpha.M_2))_{W_1} \in \mathcal{R}[\forall \alpha.A \mid W_1].
$$

Suppose that

- $W_2 \sqsupseteq W_1$,
- $\omega W_2 \vdash (B_1, B_2, r)$, and
- $\{\alpha\}\#\omega W_2$,

for some W_2 , B_1 , B_2 , and r , and then it suffices to show that

$$
(\varsigma_{\rm fst}(\Lambda \alpha.M_1) B_1, \varsigma_{\rm snd}(\Lambda \alpha.M_2) B_2)_{\omega W_2} \in \mathcal{E}[\![A]\!](\alpha \Leftrightarrow (B_1, B_2, r)) \cup \omega W_2.
$$

Suppose that

- $W_3 \sqsupseteq {\alpha \Leftrightarrow (B_1, B_2, r)} \uplus \omega W_2$,
- \bullet 0 < n < W₃.n, and
- $W_3.\rho_{\rm fst}(\zeta_{\rm fst}(\Lambda \alpha.M_1) B_1) \longrightarrow^n R_1$

for some W_3 , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- $W_3.\rho_{\text{snd}}(\zeta_{\text{snd}}(\Lambda \alpha.M_2) B_2) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[A]] (W_3 n).$

Since $W_3.\rho_{\text{fst}}(\zeta_{\text{fst}}(\Lambda \alpha.M_1) B_1) \longrightarrow^n R_1$, we can find

$$
W_3.\rho_{\rm fst}(\varsigma_{\rm fst}(\Lambda\alpha.M_1) B_1) \longrightarrow W_3.\rho_{\rm fst}(\varsigma_{\rm fst}(M_1[B_1/\alpha])) \longrightarrow^{n-1} R_1.
$$

Then, it suffices to show that

$$
(\varsigma_{\rm fst}(M_1[B_1/\alpha]), \varsigma_{\rm snd}(M_2[B_2/\alpha]))_{W_3} \in \mathcal{E}\llbracket A \rrbracket (W_3 - 1) .
$$

Since $W_3 \sqsupseteq {\alpha \mapsto (B_1, B_2, r)} \cup \omega W_2$, there exists some W'_3 such that

- $W'_3 \sqsupseteq \omega W_2$
- $W_3 = W'_3 \cdot \rho({\alpha \Rightarrow (B_1, B_2, r)}) \cup W'_3$ and

by Lemma [138.](#page-65-0) Since $(W, \varsigma) \in \mathcal{G}[\![\Gamma]\!]$ and $W_2 \sqsupseteq W_1 \sqsupseteq W$, we have $(W_2, W_2. \rho(\varsigma)) \in \mathcal{G}[\![\Gamma]\!]$ by Lemmas [110](#page-47-0) and [119.](#page-51-0) Noting that $\omega W_2 \cdot \rho = W_2 \cdot \rho$, by Lemma [126,](#page-57-0) $(\omega W_2, \omega W_2 \cdot \rho(s)) \in \mathcal{G}[\![\omega]\!]$. Since $W'_3 - 1 \sqsupseteq W'_3 \sqsupseteq \omega W_2$, we have $(W'_1, W'_2, \rho(s)) \in \mathcal{G}[\![\omega]\!]$. we have $(W_3', W_3', \rho(\varsigma)) \in \mathcal{G}[\![\omega\Gamma]\!]$ by Lemmas [119](#page-51-0) and [114.](#page-48-2) By Lemmas [126](#page-57-0) and [5,](#page-12-0) $(\omega W_3', W_3', \rho(\varsigma)) \in \mathcal{G}[\![\omega\Gamma]\!]$.
Since $W' \supseteq \iota W$, and $\iota W \models (B, B, \pi)$ we have $W' \models W'$ of $(\omega \mapsto (B, B, \pi))$ (a) i.e., $\iota W' \models \iota W'$ Since $W_3' \rightrightarrows \omega W_2$ and $\omega W_2 \vdash (B_1, B_2, r)$, we have $W_3' \vdash W_3' \cdot \rho(\{\alpha \Rightarrow (B_1, B_2, r)\})(\alpha)$, i.e., $\omega W_3' \vdash \omega W_3' \cdot \rho(\{\alpha \Rightarrow (B_1, B_2, r)\})(\alpha)$ (B_1, B_2, r))(α), by Lemma [136.](#page-64-1) Thus, by Lemma [144,](#page-75-0)

$$
(\omega W'_3. \rho(\{\alpha \mapsto (B_1, B_2, r)\}) \uplus \omega W'_3, W'_3. \rho(\varsigma)) \in \mathcal{G}[\![\omega\Gamma, \alpha^0]\!].
$$

Since $\omega \Gamma, \alpha^0 \vdash M_1 \preceq M_2 : A$, we have

$$
(\varsigma_{\rm fst}(M_1[B_1/\alpha]), \varsigma_{\rm snd}(M_2[B_2/\alpha]))_{\omega W'_3} \in \mathcal{E}[\![A]\!](\omega W'_3. \rho(\{\alpha \Leftrightarrow (B_1, B_2, r)\}) \uplus \omega W'_3).
$$

Since α can be supposed not to occur free in B_1 , B_2 , nor ς , and $\omega W_3 = \omega(W_3' \cdot \rho(\{\alpha \mapsto (B_1, B_2, r)\}) \uplus W_3') =$ $\omega W'_3. \rho(\{\alpha \mapsto (B_1, B_2, r)\}) \uplus \omega W'_3$, we have

$$
(\varsigma_{\rm fst}(M_1[B_1/\alpha]), \varsigma_{\rm snd}(M_2[B_2/\alpha]))_{W_3} \in \mathcal{E}[\![A]\!]\,\omega W_3.
$$

Since $W_3 - 1 \sqsupseteq \omega W_3 - 1 \sqsupseteq \omega W_3$ by Lemma [118,](#page-51-1) we have the conclusion by Lemmas [110,](#page-47-0) [116,](#page-50-0) and [113.](#page-48-0) \Box

Lemma 146. If $\{\overline{\alpha_1}, \overline{\alpha_2}\}\# W$, then:

- $(R_1, R_2) \in \mathcal{R}\llbracket A \rrbracket W$ implies $(\nu \overline{\alpha_1}, R_1, \nu \overline{\alpha_2}, R_2) \in \mathcal{R}\llbracket A \rrbracket W$; and
- $(M_1, M_2) \in \mathcal{E}[\![A]\!]$ W implies $(\nu \overline{\alpha_1} \cdot M_1, \nu \overline{\alpha_2} \cdot M_2) \in \mathcal{E}[\![A]\!]$ W.

Proof. By induction on A. We first consider the first property on R and then the second one on E with the first property.

• Let $(R_1, R_2) \in \mathcal{R}[\![A]\!]$ W. We show $(\nu \overline{\alpha_1}, R_1, \nu \overline{\alpha_2}, R_2) \in \mathcal{R}[\![A]\!]$ W by case analysis on A.

Case $A = \iota$: By definition.

Case $A = \beta$: Let $(B_1, B_2, r) = W \cdot \rho(\beta)$. Since $(R_1, R_2) \in \mathcal{R}[\beta] \ W$, we have $(R_1, R_2) \in r(\blacktriangleright W)$ by definition. It suffices to show that $(\nu \overline{\alpha_1}. R_1, \nu \overline{\alpha_2}. R_2) \in r(\blacktriangleright W)$. Since $\vdash W$, we have $r \in \text{Rel}_{W,n}[B_1, B_2]$. Thus, the conclusion is implied by the fourth condition on Rel_{W.n}[B₁, B₂] since $\{\overline{\alpha_1}, \overline{\alpha_2}\}\#W$.

Case $A = B \rightarrow C$: Suppose that

 $- W' \sqsupset W$, $(W_1, W_2) \supseteq W'$, $-W_1 \sqsupset W$, and $- (R'_1, R'_2) \in \mathcal{R}[\![B]\!] \ W_2$

for some W' , W_1 , W_2 , R'_1 , and R'_2 , and then it suffices to show that

$$
((\nu\overline{\alpha_1}.R_1)R'_1,(\nu\overline{\alpha_2}.R_2)R'_2)_{W'}\in \mathcal{E}[[C]]W'.
$$

We can find that $W'.\rho_{\rm fst}((\nu\overline{\alpha_1}.R_1)R'_1) \longrightarrow^n W'.\rho_{\rm fst}(\nu\overline{\alpha_1}.(R_1R'_1))$ for some n, and $W'.\rho_{\rm snd}((\nu\overline{\alpha_2}.R_2)R'_2) \longrightarrow^*$ $W'.\rho_{\text{snd}}(\nu \overline{\alpha_2}.(R_2 R_2')).$ Then, it suffices to show that

$$
(\nu \overline{\alpha_1}. (R_1 R'_1), \nu \overline{\alpha_2}. (R_2 R'_2))_{W'} \in \mathcal{E}[[C]] W'
$$

by Lemmas [116](#page-50-0) and [113.](#page-48-0) Without loss of generality, we can suppose that $\{\overline{\alpha_1}, \overline{\alpha_2}\}\# W'$. Since $(R_1, R_2) \in$ $\mathcal{R}[[B] \multimap C[[W, we have$

 $(R_1 R'_1, R_2 R'_2)_{W'} \in \mathcal{E}[[C]] W'.$

By the IH, we have the conclusion.

Case $A = \forall \beta.B:$ Suppose that

-
$$
W' \sqsupseteq W
$$
,
\n- $\omega W' \vdash (C_1, C_2, r)$, and
\n- $\{\beta\} \# \omega W'$

for some W' , C_1 , C_2 , and r , and then it suffices to show that

 $((\nu\overline{\alpha_1}. R_1) C_1, (\nu\overline{\alpha_2}. R_2) C_2)_{\omega W'} \in \mathcal{E}[\![B]\!](\beta \Rightarrow (C_1, C_2, r)\} \uplus \omega W'$.

Since $W' \cdot \rho_{\rm fst}((\nu \overline{\alpha_1} \cdot R_1) C_1) \longrightarrow^n W' \cdot \rho_{\rm fst}(\nu \overline{\alpha_1} \cdot (R_1 C_1))$ for some n, and $W' \cdot \rho_{\rm snd}((\nu \overline{\alpha_2} \cdot R_2) C_2) \longrightarrow^*$ $W'.\rho_{\text{snd}}(\nu \overline{\alpha_2}.(R_2 C_2))$, it suffices to show that

 $(\nu\overline{\alpha_1}.(R_1 C_1), \nu\overline{\alpha_2}.(R_2 C_2))_{\omega W'} \in \mathcal{E}\llbracket B \rrbracket {\{\beta \mapsto (C_1, C_2, r)\}\}\ \omega W'$

by Lemmas [116](#page-50-0) and [113.](#page-48-0) Without loss of generality, we can suppose that $\{\overline{\alpha_1}, \overline{\alpha_2}\}\# W'$. Since $(R_1, R_2) \in$ $\mathcal{R}[\![\forall \beta.B]\!]$ W, we have

$$
(R_1 C_1, R_2 C_2)_{\omega W'} \in \mathcal{E}[\![B]\!](\beta \Rightarrow (C_1, C_2, r) \} \uplus \omega W'.
$$

Since we can suppose that $\beta \notin {\overline{\alpha_1}, \overline{\alpha_2}}$ without loss of generality, we have ${\overline{\alpha_1}, \overline{\alpha_2}}$ $\#\{\beta \mapsto (C_1, C_2, r)\}\$ $\omega W'$). Thus, by the IH, we have the conclusion.

Case $A = B$: It suffices to show that $(\nu \overline{\alpha_1}, R_1, \nu \overline{\alpha_2}, R_2) \in \mathcal{R}[[B] \ W$, that is,

$$
(\text{let } !x = \nu \overline{\alpha_1}. R_1 \text{ in } x, \text{let } !x = \nu \overline{\alpha_2}. R_2 \text{ in } x) \in \mathcal{E}[\![B]\!] \omega W .
$$

By Lemma [35,](#page-23-0) there exist some $\overline{\beta_1}$, $\overline{\beta_2}$, R'_1 , and R'_2 such that

$$
- R_1 = \nu \overline{\beta_1} \cdot \beta_1' \text{ and}
$$

$$
- R_2 = \nu \overline{\beta_2} \cdot \beta_2'.
$$

Let $W' \sqsupseteq \omega W$ such that $1 \lt W'.n$. We have

 $- W' \cdot \rho_{\rm fst}(\text{let } !x = \nu \overline{\alpha_1} \cdot \nu \overline{\beta_1} \cdot !R'_1 \text{ in } x) \longrightarrow W' \cdot \rho_{\rm fst}(\nu \overline{\alpha_1} \cdot \nu \overline{\beta_1} \cdot R'_1) \text{ and}$ $- W'.\rho_{\text{snd}}(\mathsf{let}!x = \nu\overline{\alpha_2}.\nu\overline{\beta_2}.\mathsf{!}R'_2\,\mathsf{in}\,x) \longrightarrow W'.\rho_{\text{snd}}(\nu\overline{\alpha_2}.\nu\overline{\beta_2}.\,R'_2).$

Thus, it suffices to show that

$$
(\nu \overline{\alpha_1} \cdot \nu \overline{\beta_1} \cdot R_1', \nu \overline{\alpha_2} \cdot \nu \overline{\beta_2} \cdot R_2')_{W'} \in \mathcal{R}[\![B]\!](W'-1) .
$$

Since $(R_1, R_2) \in \mathcal{R}[[B] \mid W$, we have $(\nu \overline{\beta_1}, R'_1, \nu \overline{\beta_2}, R'_2)_{W'} \in \mathcal{R}[[B] \mid (W'-1)$. By the IH, we have the conclusion.

• Let $(M_1, M_2) \in \mathcal{E}[[A]]$ W. We show that $(\nu \overline{\alpha_1}, M_1, \nu \overline{\alpha_2}, M_2) \in \mathcal{E}[[A]]$ W with the first property. Suppose that

$$
- W' \supseteq W,
$$

\n
$$
- n \lt W'.n, \text{ and}
$$

\n
$$
- W'.\rho_{\text{fst}}(\nu \overline{\alpha_1}.M_1) \longrightarrow^n R_1
$$

for some W' , n, and R_1 , and the it suffices to show that there exists some R_2 such that

-
$$
W' \cdot \rho_{\text{snd}}(\nu \overline{\alpha_1} \cdot M_2) \longrightarrow^* R_2
$$
 and
- $(R_1, R_2) \in \mathcal{R}[[A]] (W' - n)$.

By the semantics, $R_1 = \nu \overline{\alpha_1}$. R'_1 for some R'_1 such that $W' \text{·} \rho_{\text{fst}}(M_1) \longrightarrow^n R'_1$. Since $(M_1, M_2) \in \mathcal{E}[A]$ W and $W' \sqsupseteq W$, there exists some R'_2 such that

-
$$
W' \cdot \rho_{\text{snd}}(M_2) \longrightarrow^* R'_2
$$
 and
- $(R'_1, R'_2) \in \mathcal{R}[[A]] W' - n$.

By the first property on \mathcal{R} , we have the conclusion $(\nu \overline{\alpha_1} \cdot R_1', \nu \overline{\alpha_2} \cdot R_2') \in \mathcal{R}[[A]] (W' - n)$ where let $R_2 = \nu \overline{\alpha_1} R_1'$ $\nu \overline{\alpha_2}$. R'_2 .

Lemma 147. If $\Gamma \vdash M_1 \preceq M_2 : \forall \alpha . B \text{ and } \Gamma \vdash A$, then $\Gamma \vdash M_1 A \preceq M_2 A : B[A/\alpha]$.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma]$. It suffices to show that

$$
(\varsigma_{\rm fst}(M_1 A), \varsigma_{\rm snd}(M_2 A))_W \in \mathcal{E}[\![B[A/\alpha]\!]] W .
$$

Suppose that

- $W' \supseteq W$,
- $n \, < \, W'.n$, and
- $W'.\rho_{\rm fst}(\varsigma_{\rm fst}(M_1 A)) \longrightarrow^n R_1$

for some W' , n, and R_1 , and then it suffices to show that there exists some R_2 such that

- $W'.\rho_{\text{snd}}(\zeta_{\text{snd}}(M_2 A)) \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{R}[[B]A/\alpha]]$ $(W'-n)$.

Since $W' \cdot \rho_{\text{fst}}(\varsigma_{\text{fst}}(M_1 A)) \longrightarrow^n R_1$, we can find that there exist some $\overline{\beta_1}$, M'_1 , and n_1 such that

- $W'.\rho_{\rm fst}(\varsigma_{\rm fst}(M_1)) \longrightarrow^{n_1} \nu \overline{\beta_1}.\Lambda \alpha.M'_1$ and
- $W'.\rho_{\rm fst}(\varsigma_{\rm fst}(M_1 A)) \longrightarrow^{n_1} (\nu \overline{\beta_1}.\Lambda \alpha.M'_1) W'.\rho_{\rm fst}(A) \longrightarrow^{n_2} \nu \overline{\beta_1}.\ M'_1[W'.\rho_{\rm fst}(A)/\alpha] \longrightarrow^{n-n_1-n_2} R_1$ for some n_2 (note that we can suppose that type variables $\overline{\beta_1}$ do not occur in $W'.\rho_{\text{fst}}(A)$ without loss of generality).

Since $(W, \varsigma) \in \mathcal{G}[\Gamma]$ and $W' \sqsupseteq W$, we have $(W', W', \rho(\varsigma)) \in \mathcal{G}[\Gamma]$ by Lemma [119.](#page-51-0) Since $\Gamma \vdash M_1 \preceq M_2 : \forall \alpha.B$, we have

$$
(\varsigma_{\rm fst}(M_1), \varsigma_{\rm snd}(M_2))_{W'} \in \mathcal{E}[\![\forall \alpha.B]\!]\;W'.
$$

Since $W'.\rho_{\text{fst}}(\varsigma_{\text{fst}}(M_1)) \longrightarrow^{n_1} \nu \overline{\beta_1}$. $\Lambda \alpha.M'_1$ and $n_1 < n < W'.n$, there exist some $\overline{\beta_2}$ and M'_2 such that

- $\rho_{\text{snd}}(\zeta_{\text{snd}}(M_2)) \longrightarrow^* \nu \overline{\beta_2}$. $\Lambda \alpha. M'_2$ and
- $(\nu \overline{\beta_1} \cdot \Lambda \alpha \cdot M_1', \nu \overline{\beta_2}, \Lambda \alpha \cdot M_2') \in \mathcal{R}[\forall \alpha \cdot B] \cdot (W' n_1).$

Let $A_1 = W'.\rho_{\text{fst}}(A)$, and $A_2 = W'.\rho_{\text{snd}}(A)$. Since $\Gamma \vdash A$ and $(W', W'.\rho(\varsigma)) \in \mathcal{G}[\Gamma]$, we have $W'.\Delta \vdash A_1$ and $W' \Delta \vdash A_2$. Let r be a function given in Lemma [143](#page-71-0) for α and A, that is, given a world W_0 , r returns $\mathcal{R}\llbracket A\rrbracket(W_0.n+1, W_0.\Delta, W_0.\rho)$. By

- Lemma [116](#page-50-0) (for monotonicity),
- Lemma [140](#page-66-1) (for the irrelevance condition on Rel_n),
- Lemma [131](#page-60-0) (for the third condition on Rel_n), and
- Lemma [146](#page-77-0) (for the fourth condition on Rel_n),

we have $\omega(W' - n_1) \vdash (A_1, A_2, r)$. Since $(\nu \overline{\beta_1}, \Lambda \alpha. M'_1, \nu \overline{\beta_2}, \Lambda \alpha. M'_2) \in \mathcal{R}[\nabla \alpha. B]$ $W' - n_1$ and we can suppose that $\{\alpha\}\#\omega(W' - n_1)$ without loss of generality, we have

$$
((\nu\overline{\beta_1}.\Lambda\alpha.M'_1) A_1, (\nu\overline{\beta_2}.\Lambda\alpha.M'_2) A_2) \in \mathcal{E}[\![B]\!](\alpha \Rightarrow (A_1, A_2, r)\} \uplus \omega(W'-n_1)
$$

with Lemma [113.](#page-48-0) Further, we have $\vdash \omega(W' - n_1)$ by Lemma [105](#page-46-0) with $\vdash W'$ implied by $W' \sqsupseteq W$. Since $\omega(W - n_1) \cdot \rho(\{\alpha \mapsto (A, A, r)\}) = \{\alpha \mapsto (A_1, A_2, r)\},\$ we have

$$
((\nu\overline{\beta_1}, \Lambda \alpha. M'_1) A_1, (\nu\overline{\beta_2}, \Lambda \alpha. M'_2) A_2) \in \mathcal{E}[B[A/\alpha]] \omega(W'-n_1)
$$

by Lemma [143.](#page-71-0) Since $(\nu \overline{\beta_1} \cdot \Lambda \alpha M_1') A_1 \longrightarrow^{n_2} \nu \overline{\beta_1} \cdot M_1' [A_1/\alpha] \longrightarrow^{n-n_1-n_2} R_1$, we can find that there exists some R_2 such that

- $W'.\rho_{\rm fst}(\zeta_{\rm snd}(M_2 A)) \longrightarrow^* (\nu \overline{\beta_2}.\Lambda \alpha.M'_2) A_2 \longrightarrow^* R_2$ and
- $(R_1, R_2) \in \mathcal{E}[[B]A/\alpha]] \omega W' n.$

Since $W' - n \supseteq \omega W' - n$ by Lemma [118,](#page-51-1) we have the conclusion by Lemmas [116](#page-50-0) and [113.](#page-48-0)

Theorem 5 (Parametricity / Fundamental Property). If $\Gamma \vdash M : A$, then $\Gamma \vdash M \approx M : A$

Proof. It suffices to show that $\Gamma \vdash M \preceq M : A$, which is shown by induction on the typing derivation of $\Gamma \vdash M : A$ withe the compatibility lemmas (Lemmas [120,](#page-52-0) [121,](#page-53-0) [123,](#page-53-1) [125,](#page-55-0) [127,](#page-57-1) [128,](#page-58-0) [133,](#page-62-0) [141,](#page-69-0) [145,](#page-76-0) and [147\)](#page-79-0). \Box

Theorem 6 (Soundness with respect to Contextual Equivalence). If $\Gamma \vdash M_1 \approx M_2 : A$, then $\Gamma \vdash M \approx_{ctx} M : A$

Proof. Let ι be a base type, c be a constant of ι , and $\mathbb C$ be a context such that $\mathbb C : (\Gamma \vdash A) \leadsto (\emptyset \vdash \iota)$. Now, we suppose that $\mathbb{C}[M_1] \longrightarrow^n \nu \overline{\alpha_1}$. c for some n and $\overline{\alpha_1}$, and then show that $\mathbb{C}[M_2] \longrightarrow^* \nu \overline{\alpha_2}$. c for some $\overline{\alpha_2}$; the reverse direction can be proven in a similar way. By induction on the typing derivation of $\mathbb C$ with the compatibility lemmas (Lemmas [120,](#page-52-0) [121,](#page-53-0) [123,](#page-53-1) [125,](#page-55-0) [127,](#page-57-1) [128,](#page-58-0) [133,](#page-62-0) [141,](#page-69-0) [145,](#page-76-0) [147\)](#page-79-0), we have $\emptyset \vdash \mathbb{C}[M_1] \preceq \mathbb{C}[M_2]$: *ι*; note that, for any Γ, M, A, $\Gamma \vdash M : A$ implies $\Gamma \vdash M \prec M : A$ (which is shown in a way similar to parametricity). Let $W = (n + 1, \emptyset, \emptyset)$. Since $(W, \emptyset) \in \mathcal{G}[\![\emptyset]\!]$, we have $(\mathbb{C}[M_1], \mathbb{C}[M_2]) \in \mathcal{E}[\![\iota]\!]$ W. Since $\mathbb{C}[M_1] \longrightarrow^n \nu \overline{\alpha_1}$. c, there exists some R_2 such that

- $\mathbb{C}[M_2] \longrightarrow^* R_2$ and
- $(\nu \overline{\alpha_1}, c, R_2) \in \mathcal{R}[\![\iota]\!](W n).$

By the definition of R, we have $R_2 = \nu \overline{\alpha_2}$. c for some $\overline{\alpha_2}$.

3.6 Examples of Free Theorems

Example 1 (Free Theorem for the Empty Type). If $\Delta \vdash M : \forall \alpha . \alpha$ and $\Delta \vdash A$, then there exists no result R such that $M A \longrightarrow^* R$.

Proof. Assume that $MA \longrightarrow^n R$ for some n and R. Since $\Delta \vdash M : \forall \alpha.\alpha$, we have $\Delta \vdash M \prec M : \forall \alpha.\alpha$ by Theorem [5.](#page-80-0) Let $W = (n + 1, \Delta, \emptyset)$. We have $(W, \emptyset) \in \mathcal{G}[\Delta]$ by definition. Thus, $(M, M) \in \mathcal{E}[\forall \alpha \alpha] W$. Since $M A \longrightarrow^n R$, there exist some R', n_1 , and n_2 such that

- $M \longrightarrow^{n_1} R'$,
- $R' A \longrightarrow^{n_2} R$, and
- $n = n_1 + n_2$.

Since $n_1 \leq n \leq n+1 = W.n$ and $W \sqsupseteq W$ by Lemma [111,](#page-47-1) we have

$$
(R', R') \in \mathcal{R}[\![\forall \alpha . \alpha]\!] \ W - n_1 \ .
$$

Let r be a relational interpretation that maps any world to the empty set. Without loss of generality, we can suppose that $\{\alpha\}\#\omega(W-n_1)$. Since $\omega(W-n_1)\Delta = \omega\Delta$ and $\omega\Delta \vdash A$ from $\Delta \vdash A$, we have $\omega(W-n_1) \vdash (A, A, r)$. Thus,

$$
(R' A, R' A) \in \mathcal{E}[\![\alpha]\!]
$$
 W'

where $W' = \{\alpha \mapsto (A, A, r)\} \uplus \omega(W - n_1)$. Since $R' A \longrightarrow^{n_2} R$ and $n_2 = n - n_1 < W'.n$ and $W' \supseteq W'$ by Lemma [111,](#page-47-1) we have

$$
(R,R)\in \mathcal{R}[\![\alpha]\!]\;W'-n_2\;.
$$

 \Box However, the relational interpretation r returns the empty set for any world, so there is a contradiction.

Lemma 148. If $\Gamma_1, \Gamma_2 \vdash R : \forall \alpha.A$, then $\omega \Gamma_1, \Gamma_2 \vdash R : \forall \alpha.A$.

Proof. Straightforward by induction on the derivation of $\Gamma_1, \Gamma_2 \vdash R : \forall \alpha.A$.

Lemma 149. Suppose that $\Delta \vdash M : A$ and $\Delta \succ \rho$ and $\forall \alpha \in dom(\rho) \cap dom(\Delta)$. $\alpha^0 \in \Delta$.

1. $M \rightsquigarrow M'$ implies $\rho_{fst}(M) \rightsquigarrow \rho_{fst}(M')$ and $\rho_{snd}(M) \rightsquigarrow \rho_{snd}(M')$.

 \Box

 \Box

 \Box

2. $M \longrightarrow M'$ implies $\rho_{fst}(M) \longrightarrow \rho_{fst}(M')$ and $\rho_{snd}(M) \longrightarrow \rho_{snd}(M')$.

Proof.

1. By case analysis on the reduction rule applied to derive $M \rightarrow M'$. It is easy to prove the conclusion if $M \rightsquigarrow M'$ is derived by the rules other than (R_CLOSING).

Consider the case that $M \to M'$ is derived by (R_CLOSING). Then, $M = \Lambda^{\circ}(\beta, !R)$ and $M' = !\Lambda\beta.R$ for some β and R (i.e., $\Lambda^{\circ}(\beta,!R) \rightsquigarrow \Lambda^{\circ}(\beta,R)$ is derived). Since $\Delta \vdash \Lambda^{\circ}(\beta,!R) : A$, we have

- \bullet $\Delta = \Delta_1, \beta^1, \Delta_2,$
- $A = \forall \beta, B$, and
- Δ_1 , β^0 , $\Delta_2 \vdash !R : !B$

for some Δ_1 and Δ_2 . $\beta^1 \in \Delta$ and the assumption $\Delta \succ \rho$ implies $\beta \notin ftv(\rho)$. $\beta^1 \in \Delta$ and the assumption $\forall \alpha \in \mathcal{A}$ and α and Δ_2 . $\beta^1 \in \Delta$ and Δ_3 . $\forall \alpha \in \text{dom}(\rho) \cap \text{dom}(\Delta)$. $\alpha^0 \in \Delta$ implies $\beta \notin \text{dom}(\rho)$. Thus, we have

- $\rho_{\text{fst}}(M) = \Lambda^{\circ} \langle \beta, !\rho_{\text{fst}}(R) \rangle \rightsquigarrow ! \Lambda \beta. \rho_{\text{fst}}(R) = \rho_{\text{fst}}(! \Lambda \beta. R)$ and
- $\rho_{\text{snd}}(M) = \Lambda^{\circ} \langle \beta, ! \rho_{\text{snd}}(R) \rangle \rightsquigarrow !\Lambda \beta.\rho_{\text{snd}}(R) = \rho_{\text{snd}}(! \Lambda \beta. R).$
- 2. Straightforward by induction on the derivation of $M \longrightarrow M'$.

Definition 32 (Normalizing Terms). A term M is normalizing if and only if the evaluation of M and that of any term derived from M by applying operations allowed on its type (e.g., type substitution, result substitution, type application, and term application) terminate.

Example 2 (Free Theorem for the Polymorphic Identity Type). Suppose that terms M_1 and M_2 are normalizing. If $\Gamma \vdash M_1 : \forall \alpha . \alpha \multimap \alpha$ and $\Gamma \vdash M_2 : \forall \alpha . \alpha \multimap \alpha$, then $\Gamma \vdash M_1 \preceq M_2 : \forall \alpha . \alpha \multimap \alpha$. Therefore, for any normalizing term M and typing context Γ , $\Gamma \vdash M : \forall \alpha . \alpha \multimap \alpha$ implies $\Gamma \vdash \Lambda \alpha . \lambda x . x \approx M : \forall \alpha . \alpha \multimap \alpha$.

Proof. Let $(W, \varsigma) \in \mathcal{G}[\Gamma]$. It suffices to show that

$$
(M_1, M_2)_W \in \mathcal{E}[\![\forall \alpha . \alpha -\infty \alpha]\!] W .
$$

Since M_1 and M_2 are normalizing, $W.\rho_{\text{fst}}(M_1) \longrightarrow^{n_{11}} R_{11}$ and $W.\rho_{\text{snd}}(M_2) \longrightarrow^{n_{21}} R_{21}$ for some n_{11} , n_{21} , R_{11} , and R_{21} . Let $W_1 \supseteq W$ such that $n_{11} < W_1 \ldots$ By the definition of \mathcal{E} , it suffices to show that

$$
(R_{11}, R_{21})_{W_1} \in \mathcal{R}[\![\forall \alpha . \alpha \multimap \alpha]\!] \ W_1 - n_{11} .
$$

Suppose that

- $W_2 \sqsupseteq W_1 n_{11}$
- $\omega W_2 \vdash (A_1, A_2, r)$, and
- $\{\alpha\}\#\omega W_2$,

for some W_2 , A_1 , A_2 , and r. Then, it suffices to show that

$$
(R_{11} A_1, R_{21} A_2)_{\omega W_2} \in \mathcal{E}[\![\alpha \multimap \alpha]\!] \{\alpha \mapsto (A_1, A_2, r)\} \uplus \omega W_2.
$$

Since M_1 and M_2 are normalizing, we have $W_2.\rho_{\rm{fst}}(R_{11}) A_1 \longrightarrow^{n_{12}} R_{12}$ and $W_2.\rho_{\rm{snd}}(R_{21}) A_2 \longrightarrow^{n_{22}} R_{22}$ for some n_{12}, n_{22}, R_{12} , and R_{22} . Let $W_3 \supseteq {\alpha \Leftrightarrow (A_1, A_2, r)} \cup \omega W_2$ such that $n_{12} < W_3$. Then, it suffices to show that

$$
(R_{12}, R_{22})_{W_3} \in \mathcal{R}[\![\alpha - \alpha \,]\!] \, W_3 - n_{12} \; .
$$

Suppose that

• $W_4 \supseteq W_3 - n_{12}$,

- $(W_{41}, W_{42}) \supseteq W_4$,
- $W_{41} \sqsupseteq W_4$, and
- $(R'_1, R'_2) \in \mathcal{R}[\![\alpha]\!]$ W_{42}

for some W_4 , W_{41} , W_{42} , R'_1 , and R'_2 . Then, it suffices to show that

$$
(R_{12} R'_1, R_{22} R'_2)_{W_4} \in \mathcal{E}[\![\alpha]\!]
$$
W₄.

Since $(R'_1, R'_2) \in \mathcal{R}[\![\alpha]\!]$ W_{42} , we have $(R'_1, R'_2) \in W_{42}$, $\rho[\![\alpha]\!]$ $\blacktriangleright W_{42}$. Since W_{42} , $\rho = W_4$, ρ and $W_4 \sqsupseteq W_3 - n_{12} \sqsupseteq W_4$. $\rho = W_4$, ρ and $W_4 \sqsupseteq W_3 - n_{12} \sqsupseteq W_4$. $W_3 \rightrightarrows {\alpha \mapsto (A_1, A_2, r)} \uplus \omega W_2$, we have $(R_1, R_2') \in r(\blacktriangleright W_{42})$ by Lemmas [110](#page-47-0) and [138.](#page-65-0)
Since M, and M, are permulizing we have $W_4 \circ (B_4) P_4'$, $W_{43} P_5$ and $W_6 \circ$

Since M_1 and M_2 are normalizing, we have $W_4 \cdot \rho_{\rm{fst}}(R_{12}) R'_1 \longrightarrow^{n_{13}} R_{13}$ and $W_4 \cdot \rho_{\rm{snd}}(R_{22}) R'_2 \longrightarrow^{n_{23}} R_{23}$ for some n_{13} , n_{23} , R_{13} , and R_{23} . Let $W_5 \supseteq W_4$ such that $n_{13} < W_5$. Then, it suffices to show that

$$
(R_{13}, R_{23})_{W_5} \in \mathcal{R}[\![\alpha]\!]
$$
W₅ - n₁₃.

Since $W_5 - n_{13} \sqsupseteq W_5 \sqsupseteq W_4 \sqsupseteq {\alpha \mapsto (A_1, A_2, r)} \uplus \omega W_2$, it suffices to show that

$$
(W_5.\rho_{\rm fst}(R_{13}), W_5.\rho_{\rm snd}(R_{23})) \in r(\blacktriangleright W_5)
$$

by Lemmas [110](#page-47-0) and [138.](#page-65-0) Since $W_5 \supseteq W_4 \supseteq W_{42}$ by Lemmas [118](#page-51-1) and [110,](#page-47-0) monotonicity of the relational interpretation r implies that it suffices to show that

$$
(R_{13}, R_{23}) \in r(\blacktriangleright W_{42}) \ .
$$

In what follows, let $i \in \{1,2\}$. Let $R'_{11} = W_{2} \cdot \rho_{\text{fst}}(R_{11})$ and $R'_{21} = W_{2} \cdot \rho_{\text{snd}}(R_{21})$ and n_0 be the maximum number between $n_{11} + n_{12} + n_{13} + 1$ and $n_{21} + n_{22} + n_{23} + 1$. Let $W_{02} = (n_0, W_2.\Delta, W_2.\rho)$. We have $\omega W_2.\Delta \vdash$ R'_{i1} : $\forall \alpha \alpha \rightarrow \alpha$ by Lemmas [148](#page-80-1) and [34.](#page-22-0) Thus, $\omega \tilde{W_2} \Delta \vdash R'_{i1} \preceq R'_{i1}$: $\forall \alpha \alpha \rightarrow \alpha$ by Theorem [5.](#page-80-0) Since $(\omega W_{02}, \emptyset) \in \mathcal{G}[\![\omega W_2 \Delta]\!],$ we have

$$
(R'_{i1}, R'_{i1}) \in \mathcal{R}[\![\forall \alpha . \alpha \multimap \alpha]\!]
$$

by the definition and Lemma [113.](#page-48-0) Since $W_4 \sqsupseteq {\alpha \implies (A_1, A_2, r)} \cup W_2$, there exists some W'_4 such that

- $W'_4 \sqsupseteq \omega W_2$ and
- $W_4 = W'_4 \cdot \rho(\{\alpha \mapsto (A_1, A_2, r)\}) \uplus W'_4$

by Lemma [138.](#page-65-0) Since $(W_{41}, W_{42}) \supseteq W_4$, there exist some W'_{41} and W'_{42} such that

- $W_{41} = W'_4 \cdot \rho(\{\alpha \mapsto (A_1, A_2, r)\}) \uplus W'_{41},$
- $W_{42} = W'_4 \cdot \rho(\{\alpha \implies (B_1, B_2, r)\}) \oplus W'_{42}$, and
- $(W_{41}', W_{42}') \supseteq W_4'.$

Let

- $W'{}_{i4} = (n_0 n_{i2}, W'_4.\Delta, W'_4.\rho),$
- $W'_{i41} = (n_0 n_{i2}, W'_{41}.\Delta, W'_{4}.\rho),$
- $W'_{i42} = (n_0 n_{i2}, W'_{42}.\Delta, W'_{4}.\rho),$
- $A'_1 = W_{42} \cdot \rho_{\text{fst}}(A_1)$, and
- $A'_2 = W_{42} \cdot \rho_{\rm snd}(A_2)$.

Further, Let r_i be a function that maps a well-formed world W to a set

 $\{ (\nu \overline{\alpha_1}. (\rho \oplus W).\rho_{\rm fst}(R'_i), \nu \overline{\alpha_2}.(\rho \oplus W).\rho_{\rm snd}(R'_i)) \mid \exists \overline{\beta}, \overline{\gamma_1}, \overline{\gamma_2}. \{\overline{\alpha_1}\} = \{\overline{\beta}, \overline{\gamma_1}\} \wedge \{\overline{\alpha_2}\} = \{\overline{\beta}, \overline{\gamma_2}\} \wedge$ ${\overline{\gamma_1}}, {\overline{\gamma_2}}\#(\rho \boxplus W@\overline{\beta}) \;\wedge\; \rho \boxplus W@\overline{\beta} \sqsupseteq {W'}_{i42} \;\wedge\;$ $(\{\overline{\beta}\} \cup \text{dom}(\rho)) \text{#} \text{ftv}(A'_i) \}.$

We show that $r_i \in \text{Rel}_{\omega W'_{i4}.n}[A'_i, A'_i]$. In the proof of it, let

- ρ and $\overline{\beta}$ such that $(\{\overline{\beta}\} \cup dom(\rho)) \text{# } \text{ftv}(A_i'),$
- W be a world such that $\vdash W$ and $\rho \uplus W @ \overline{\beta} \supseteq W'_{i42}$,
- $\overline{\gamma_1}$ and $\overline{\gamma_2}$ such that $\{\overline{\gamma_1}, \overline{\gamma_2}\}\#(\rho \oplus W \mathbb{O}\overline{\beta}),$
- $\overline{\alpha_1}$ and $\overline{\alpha_2}$ such that $\{\overline{\alpha_1}\} = \{\overline{\beta}, \overline{\gamma_1}\}$ and $\{\overline{\alpha_2}\} = \{\overline{\beta}, \overline{\gamma_2}\}$, and
- $(\nu \overline{\alpha_1}.(\rho \uplus W). \rho_{\rm fst}(R'_i), \nu \overline{\alpha_2}.(\rho \uplus W). \rho_{\rm snd}(R'_i)) \in r_i(W).$

Let's go to the proof.

- We show that $r_i(W) \in \mathcal{P}(\text{Atom}^{\text{res}}[W.\Delta, W.\rho_{\text{fst}}(A_i'), W.\rho_{\text{snd}}(A_i')])$. It suffices to show that
	- $W.\Delta \vdash \nu \overline{\alpha_1}. (\rho \uplus W). \rho_{\rm fst}(R'_i) : W.\rho_{\rm fst}(A'_i)$ and
	- $W.\Delta \vdash \nu \overline{\alpha_2}. (\rho \uplus W).\rho_{\text{snd}}(R'_i) : W.\rho_{\text{snd}}(A'_i).$

Since $(R'_1, R'_2) \in r(\blacktriangleright W_{42})$ and $W_{42}.\Delta = W'_{42}.\Delta = W'_{442}.\Delta$, we have

$$
{W'}_{i42}.\Delta \vdash R'_i : A'_i \ .
$$

Since $\rho \cup W @ \overline{\beta} \supseteq W'_{i42}$, there exists some ρ_0 such that

 $- \vdash \rho \uplus W @ \overline{\beta},$ $(\rho \boxplus W \mathbb{Q} \overline{\beta}).\Delta, \dagger(\rho_0) \gg W'{}_{i42}.\Delta,$ $(\rho \boxplus W \mathbb{Q} \overline{\beta}) \cdot \rho = \rho_0 \circ W'{}_{i42} \cdot \rho$, and $- W'_{i42}.\Delta \succ \rho_0.$

Since $(\rho \oplus W \mathbb{Q}\overline{\beta})\Delta$, $\dagger(\rho) \gg W'{}_{i42}\Delta$, there exists some Δ_1 and Δ_2 such that

$$
(\rho \boxplus W \mathbb{Q}\overline{\beta}).\Delta, \dagger(\rho) = (W'_{i42}.\Delta + \Delta_1), \Delta_2.
$$

Thus, there exist some Δ_{421} , Δ_{422} , Δ_{11} , Δ_{21} , and Δ_{22} such that

-
$$
W'_{i42}.\Delta = \Delta_{421}, \omega \Delta_{422},
$$

\n- $\Delta_1 = \Delta_{11}, \omega \Delta_{422},$
\n- $\Delta_2 = \Delta_{21}, \omega \Delta_{22},$
\n- $(\rho \uplus W \mathbb{Q}\overline{\beta}).\Delta = (\Delta_{421} + \Delta_{11}), \Delta_{21},$ and
\n- $dom(\rho_0) = dom(\omega \Delta_{422}, \omega \Delta_{22}).$

Thus, we have

$$
\Delta_{421}, \omega \Delta_{422} \vdash R'_i : A'_i .
$$

By Lemma [20,](#page-14-0)

$$
\Delta_{421}, \omega \Delta_{422}, \omega \Delta_{21} \vdash R'_i : A'_i .
$$

Since $\vdash \rho \uplus W \mathbb{Q} \overline{\beta}$, we have

$$
\forall \alpha' \in \text{dom}(\rho_0). \ (\rho \oplus W \mathbb{Q}\overline{\beta}).\Delta \vdash \rho_{0\text{fst}}(\alpha') \ \wedge \ (\rho \oplus W \mathbb{Q}\overline{\beta}).\Delta \vdash \rho_{0\text{snd}}(\alpha') \ .
$$

Thus, with $W'_{i42}.\Delta \succ \rho_0$, we have

 $- \Delta_{421}, \omega \Delta_{21} \vdash \rho_{0fst}(R'_i) : \rho_{0fst}(A'_i)$ and $- \Delta_{421}, \omega \Delta_{21} \vdash \rho_{0 \text{snd}}(R'_i) : \rho_{0 \text{snd}}(A'_i).$

Since $\alpha' \in dom(W'_{i42}.\rho)$ does not occur in R'_1 , R'_2 , A'_1 , nor A'_2 by Lemma [114,](#page-48-2) noting that $\rho_0 \circ W'_{i42}.\rho =$ $(\rho \oplus W \mathbb{Q} \overline{\beta}).\rho$, we have

- $\Delta_{421}, \omega \Delta_{21} \vdash (\rho \uplus W \mathbb{Q} \overline{\beta}). \rho_{\rm fst}(R'_i) : (\rho \uplus W \mathbb{Q} \overline{\beta}). \rho_{\rm fst}(A'_i)$ and
- $\Delta_{421}, \omega \Delta_{21} \vdash (\rho \uplus W \mathbb{Q} \overline{\beta}). \rho_{\text{snd}}(R_i') : (\rho \uplus W \mathbb{Q} \overline{\beta}). \rho_{\text{snd}}(A_i').$

Since $dom(\rho) \# ftv(A'_i)$, we have

 $- \Delta_{421}, \omega \Delta_{21} \vdash (\rho \uplus W \mathbb{Q} \overline{\beta}). \rho_{\rm fst}(R'_i) : W.\rho_{\rm fst}(A'_i)$ and $- \Delta_{421}, \omega \Delta_{21} \vdash (\rho \uplus W \mathbb{Q} \overline{\beta}). \rho_{\text{snd}}(R'_i) : W.\rho_{\text{snd}}(A'_i).$

By Lemmas [20](#page-14-0) and [25,](#page-17-0)

- (W^o($\overline{\beta}$, $\overline{\gamma_1}$).∆ ⊢ (ρ ⊎ W^o $\overline{\beta}$). $\rho_{\text{fst}}(R'_i)$: W. $\rho_{\text{fst}}(A'_i)$ and $(W @(\overline{\beta}, \overline{\gamma_2})) \Delta \vdash (\rho \uplus W @ \overline{\beta}) \cdot \rho_{\text{snd}}(R'_i) : W \cdot \rho_{\text{snd}}(A'_i).$

Since $\{\overline{\beta}\}\# \text{ftv}(A_i')$ and $\{\overline{\beta}\}\# W$ and $\vdash W$, we have $\forall \beta' \in \{\overline{\beta}\}\$. $\beta \notin \text{ftv}(W.\rho_{\text{fst}}(A_i')) \cup \text{ftv}(W.\rho_{\text{snd}}(A_i')).$ Further, $\{\overline{\gamma_1}, \overline{\gamma_2}\} \# dom(\Delta_{421}, \omega \Delta_{21})$ implies $\{\overline{\gamma_1}, \overline{\gamma_2}\} \# (ftv(W. \rho_{\rm{fst}}(A_i')) \cup ftv(W. \rho_{\rm{snd}}(A_i')))$ by Lemma [18.](#page-14-1) Thus, we have the conclusion

$$
- W.\Delta \vdash \nu \overline{\alpha_1}. (\rho \uplus W \mathbb{Q} \overline{\beta}). \rho_{\rm fst}(R'_i) : W.\rho_{\rm fst}(A'_i) \text{ and}
$$

$$
- W.\Delta \vdash \nu \overline{\alpha_2}. (\rho \uplus W \mathbb{Q} \overline{\beta}). \rho_{\rm snd}(R'_i) : W.\rho_{\rm snd}(A'_i)
$$

by (T_NU) .

• Monotinicity. Let $W' \sqsupseteq W$. We show that

$$
(\nu \overline{\alpha_1}. (\rho \uplus W). \rho_{\mathrm{fst}}(R'_i), \nu \overline{\alpha_2}. (\rho \uplus W). \rho_{\mathrm{snd}}(R'_i))_{W'} \in r_i(W') .
$$

Without loss of generality, we can suppose that $dom(\rho) \# W'$ and $\{\overline{\beta}\}\# W'$ and $\{\overline{\gamma_1}, \overline{\gamma_2}\}\# W'$. Then, by Lemmas [130,](#page-59-0) [137,](#page-64-0) and [110,](#page-47-0) we have $\rho \cup W' \mathbb{Q} \overline{\beta} \supseteq \rho \cup W \mathbb{Q} \overline{\beta} \supseteq W'_{i42}$. Thus, we have

 $(\nu \overline{\alpha_1}.(\rho \uplus W').\rho_{\rm fst}(R_i'), \nu \overline{\alpha_2}.(\rho \uplus W').\rho_{\rm snd}(R_i')) \in r_i(W')$.

By Lemma [114,](#page-48-2) we have the conclusion.

• Irrelevance. Let W' and ρ' such that $W = \rho' \oplus W'$ and $dom(\rho') \# ftv(A'_i)$. We have

$$
(\nu\overline{\alpha_1}.\,(\rho\uplus (\rho'\uplus W')).\rho_\text{fst}(R'_i),\nu\overline{\alpha_2}.\,(\rho\uplus (\rho'\uplus W')).\rho_\text{snd}(R'_i))\,\in\, r_i(\rho'\uplus W')\;.
$$

Since $dom(\rho') \# ftv(A'_i)$, we have

$$
(\nu \overline{\alpha_1}. ((\rho \uplus \rho') \uplus W'). \rho_{\mathrm{fst}}(R'_i), \nu \overline{\alpha_2}. ((\rho \uplus \rho') \uplus W'). \rho_{\mathrm{snd}}(R'_i)) \in r_i(W') .
$$

Thus, we have the conclusion.

• Let W' and α' such that $W = W' @ \alpha'$ and $\{\alpha'\}\# f\mathit{tv}(A'_i)$ and $\vdash W'$. We have

$$
(\nu \overline{\alpha_1}. (\rho \uplus (W' @ \alpha')) . \rho_{\mathrm{fst}}(R_i'), \nu \overline{\alpha_2}. (\rho \uplus (W' @ \alpha')) . \rho_{\mathrm{snd}}(R_i')) \in r_i(W' @ \alpha') .
$$

Since $\{\alpha'\}\# \text{ftv}(A_i'),$ we have

$$
(\nu\alpha'.\nu\overline{\alpha_1}.(\rho\uplus W').\rho_{\rm fst}(R'_i),\nu\alpha'.\nu\overline{\alpha_2}.(\rho\uplus W').\rho_{\rm snd}(R'_i))\in r_i(W').
$$

• Let α' such that $\{\alpha'\}\# W$. Without loss of generality, we can suppose that $\{\alpha'\}\# (dom(\rho) \cup \{\overline{\beta}\})$. Then, we have

$$
- (\nu \alpha'. \nu \overline{\alpha_1}. (\rho \boxplus W). \rho_{\text{fst}}(R'_i), \nu \overline{\alpha_2}. (\rho \boxplus W). \rho_{\text{snd}}(R'_i)) \in r_i(W) \text{ and}
$$

$$
- (\nu \overline{\alpha_1}. (\rho \boxplus W). \rho_{\text{fst}}(R'_i), \nu \alpha'. \nu \overline{\alpha_2}. (\rho \boxplus W). \rho_{\text{snd}}(R'_i)) \in r_i(W).
$$

Thus, we have $\omega W'_{i4} \vdash (A'_i, A'_i, r_i)$. Now, we have the following.

• $(R'_{i1}, R'_{i1}) \in \mathcal{R}[\forall \alpha . \alpha \multimap \alpha] \omega W_{02}.$

- $\omega W'_{i4} \sqsupseteq \omega W_{02}$ because $\omega W'_4 \sqsupseteq \omega W_2$ by Lemmas [112](#page-48-1) and [5](#page-12-0) with $W'_4 \sqsupseteq \omega W_2$.
- $\omega W'{}_{i4} \vdash (A'_i, A'_i, r_i)$, and
- $\{\alpha\}\#\omega W'_{i4}.$

Thus, we have

 $(R'_{i1} A_i, R'_{i1} A_i)_{\omega W'_{i4}} \in \mathcal{E}[\![\alpha \multimap \alpha]\!] \{\alpha \mapsto (A_i, A_i, r_i)\} \uplus \omega W'_{i4} .$

Since we have found $R'_{i1} A_i \longrightarrow^{n_{i2}} R_{i2}$, we have

- $\bullet \ \omega \, W'{}_{i4}.\rho_{\mathrm{fst}}(R'{}_{i1}) A_i \longrightarrow^{n_{i2}} \omega \, W'{}_{i4}.\rho_{\mathrm{fst}}(R_{i2})$
- $\omega W'_{i4}.\rho_{\rm snd}(R'_{i1}) A_i \longrightarrow^{n_{i2}} \omega W'_{i4}.\rho_{\rm snd}(R_{i2})$

by Lemma [149](#page-80-2) with $\omega W'{}_{i4} \sqsupseteq \omega W_{02}$. Thus,

$$
(R_{i2}, R_{i2})_{\omega W'_{i4}} \in \mathcal{R}[\![\alpha \multimap \alpha]\!] \left((\{\alpha \mapsto (A_i, A_i, r_i)\} \uplus W'_{i4}) - n_{i2} \right)
$$

by the definition of $\mathcal E$ with $W'{}_{i4} \sqsupseteq \omega W'{}_{i4}$ by Lemma [118.](#page-51-1) We have the following.

- $\{\alpha \mapsto (A_i, A_i, r_i)\} \uplus W'_{i4} \sqsupseteq {\alpha \mapsto (A_i, A_i, r_i)} \uplus W'_{i4}$ by Lemma [111.](#page-47-1)
- $({\alpha \Rightarrow (A_i, A_i, r_i)}\}$ ⊎ $W'_{i41}, {\alpha \Rightarrow (A_i, A_i, r_i)}$ ⊎ W'_{i42}) ∋ { $\alpha \Rightarrow (A_i, A_i, r_i)$ } ⊎ W'_{i4} from (W'_{41}, W'_{42}) ∋ W'_{4} .
- $\{\alpha \mapsto (A_i, A_i, r_i)\} \uplus W'_{i41} \sqsupseteq {\alpha \mapsto (A_i, A_i, r_i)} \uplus W'_{i4}$ by Lemma [137](#page-64-0) with $W'_{i41} \sqsupseteq W'_{i4}$, which is implied
by $W' \sqsupseteq W'$. W' $\sqsupseteq W'$ is implied by Lemma 138 with W'_{i4} ($\{\alpha \mapsto (A_i, A_i, r_i)\} \uplus W'_{i4} \sqsupseteq W'_{$ by $W'_{41} \supseteq W'_{4}$; $W'_{41} \supseteq W'_{4}$ is implied by Lemma [138](#page-65-0) with $W'_{4} \cdot \rho(\{\alpha \mapsto (A_1, A_2, r)\}) \uplus W'_{41} = W_{41} \supseteq W_{4} = W'_{41} \cup W'_{41}$ $W'_4.\rho(\{\alpha \mapsto (A_1, A_2, r)\}) \uplus W'_4.$
- $(R'_i, R'_i) \in \mathcal{R}[\![\alpha]\!]$ $\{\alpha \mapsto (A_i, A_i, r_i)\}$ $\uplus W'_{i42}$ because we can find that $(\{\alpha \mapsto (A_i, A_i, r_i)\}$ $\uplus W'_{i42})$. $\rho_{\text{fst}}(R'_i)$ = $({\alpha \Rightarrow (A_i, A_i, r_i)} \uplus W'_{i42}) \cdot \rho_{\text{snd}}(R'_i) = R'_i$ by ${\alpha} \neq \text{ftv}(R'_i)$ and Lemma [113.](#page-48-0)

Thus, we have

$$
(R_{i2} R'_{i}, R_{i2} R'_{i})_{W'_{i4}} \in \mathcal{E}[\![\alpha]\!](\alpha \Leftrightarrow (A_{i}, A_{i}, r_{i})\} \uplus W'_{i4}.
$$

Because type substitution does not change the number of evaluation steps, we can find that W'_{i4} . $\rho_{\rm fst}(R_{i2}) R'_{i4}$ terminates by n_{i3} steps. We have had $W'{}_{i4}.\rho_{\rm fst}(R_{12}) R'_1 \longrightarrow^{n_{13}} R_{13}$ and $W'{}_{i4}.\rho_{\rm snd}(R_{22}) R'_2 \longrightarrow^{n_{23}} R_{23}$. Since $\{\alpha \mapsto (A_i, A_i, r)\}\,\uplus\, W'_{i4} \sqsupseteq\,W'_{i4} \sqsupseteq\,W'_{i42}$ by Lemmas [118,](#page-51-1) [139,](#page-66-0) and [110,](#page-47-0) the definition of $\mathcal R$ at α implies

$$
R_{i3} = \nu \overline{\alpha_i}. (\rho_i \uplus {\alpha \mapsto (A_i, A_i, r_i)} \uplus W'_{i4}). \rho_{\rm fst}(R'_i)
$$

for some $\overline{\alpha_i}$ and ρ_i such that there exist some $\overline{\beta_i}$ and $\overline{\gamma_i}$ such that

- $\bullet \ \{\overline{\alpha_i}\} = \{\beta_i, \overline{\gamma_i}\},\$
- ${\overline{\{\gamma_i\}}\#(\rho_i \uplus {\alpha \Rightarrow (A_i, A_i, r_i)\}\uplus W'_{i4} \mathbb{Q} \overline{\beta_i})},$
- $\rho_i \uplus {\alpha \mapsto (A_i, A_i, r_i)} \uplus W'_{i4} \stackrel{\frown}{\Box} W'_{i42}$, and
- $(\{\overline{\beta_i}\}\cup dom(\rho_i)) \# \text{ftv}(A'_i).$

Since $W'_{i42}.\Delta \vdash R'_i : A'_i$, we have $ftv(R'_i) \subseteq dom(W'_{i42}.\Delta) = dom(W'_{i4}.\Delta)$. Thus,

$$
R_{i3} = \nu \overline{\alpha_i}. \ W'_{i4}.\rho_{\rm fst}(R'_i) .
$$

Further, by Lemma [113,](#page-48-0)

$$
R_{i3} = \nu \overline{\alpha_i}. R'_i
$$

.

Since $\{\overline{\beta_i}\}\#(\{\alpha \mapsto (A_i, A_i, r_i)\}\,\,\forall\,\, W'_{i4})$ and $\{\overline{\gamma_i}\}\#(\{\alpha \mapsto (A_i, A_i, r_i)\}\,\,\forall\,\, W'_{i4})$, we have $\{\overline{\alpha_i}\} = \{\overline{\beta_i}, \overline{\gamma_i}\}\,\,\forall\,\, W_{42}$. Since $(R'_1, R'_2) \in r(\blacktriangleright W_{42})$, we have the conclusion

$$
(\nu \overline{\alpha_1}. \, R_1', \nu \overline{\alpha_2}. \, R_2') \, \in \, r(\blacktriangleright W_{42})
$$

by the fourth condition of Rel_n on r.

 \Box

References

[1] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci., 1(2):125-159, 1975.