
CPS Transformation with Affine
Types for Implicit Polymorphism

Taro Sekiyama
National Institute of Informatics

ICFP 2021

Takeshi Tsukada
Chiba University

Transforming programs into continuation-passing style (CPS)
𝝀𝝀𝝀𝝀.𝟒𝟒𝟒𝟒 + 𝝀𝝀 𝟎𝟎 ∶ 𝝉𝝉 = 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌.𝝀𝝀 𝟎𝟎 𝝀𝝀𝝀𝝀.𝒌𝒌 𝟒𝟒𝟒𝟒 + 𝝀𝝀 ∶ 𝝉𝝉

CPS transformation

CPS transformation
Transforming programs into continuation-passing style (CPS)

𝝀𝝀𝝀𝝀.𝟒𝟒𝟒𝟒 + 𝝀𝝀 𝟎𝟎 ∶ 𝝉𝝉 = 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌.𝝀𝝀 𝟎𝟎 𝝀𝝀𝝀𝝀.𝒌𝒌 𝟒𝟒𝟒𝟒 + 𝝀𝝀 ∶ 𝝉𝝉

Applications

Semantics of control operators Compiler IRs
𝓒𝓒 𝝀𝝀𝝀𝝀.𝒆𝒆 = 𝝀𝝀𝒌𝒌. 𝝀𝝀𝝀𝝀.𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌′.𝒌𝒌 𝝀𝝀 (𝝀𝝀𝝀𝝀. 𝝀𝝀)
𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝝀𝝀𝝀𝝀. 𝒆𝒆 = 𝝀𝝀𝒌𝒌. 𝝀𝝀𝝀𝝀.𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌′.𝒌𝒌′ 𝒌𝒌 𝝀𝝀 (𝝀𝝀𝝀𝝀. 𝝀𝝀)
𝐫𝐫𝐫𝐫𝐬𝐬𝐫𝐫𝐬𝐬 𝒆𝒆 = 𝝀𝝀𝒌𝒌.𝒌𝒌 (𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀)

CPS transformation with type preservation
Transforming programs into continuation-passing style (CPS)

𝝀𝝀𝝀𝝀.𝟒𝟒𝟒𝟒 + 𝝀𝝀 𝟎𝟎 ∶ 𝝉𝝉 = 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌.𝝀𝝀 𝟎𝟎 𝝀𝝀𝝀𝝀.𝒌𝒌 𝟒𝟒𝟒𝟒 + 𝝀𝝀 ∶ 𝝉𝝉

Applications

Fine-grained type systems
for control operators

Compiler verification
by typing IRs

𝚪𝚪;𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉;𝜷𝜷
𝚪𝚪, 𝐱𝐱: 𝝉𝝉 →⊥ ⊢ 𝒆𝒆 ∶⊥
𝚪𝚪 ⊢ 𝓒𝓒 𝝀𝝀𝝀𝝀.𝒆𝒆 ∶ 𝝉𝝉

Typed code Typed CPS IR Typed ASM

Semantics of control operators Compiler IRs
𝓒𝓒 𝝀𝝀𝝀𝝀.𝒆𝒆 = 𝝀𝝀𝒌𝒌. 𝝀𝝀𝝀𝝀.𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌′.𝒌𝒌 𝝀𝝀 (𝝀𝝀𝝀𝝀. 𝝀𝝀)
𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝝀𝝀𝝀𝝀. 𝒆𝒆 = 𝝀𝝀𝒌𝒌. 𝝀𝝀𝝀𝝀.𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌′.𝒌𝒌′ 𝒌𝒌 𝝀𝝀 (𝝀𝝀𝝀𝝀. 𝝀𝝀)
𝐫𝐫𝐫𝐫𝐬𝐬𝐫𝐫𝐬𝐬 𝒆𝒆 = 𝝀𝝀𝒌𝒌.𝒌𝒌 (𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀)

Established under value restriction [Harper&Lilibridge ‘94]
(polymorphic expressions in a source language must be values)

CPS transformation for polymorphism

Problem: Not applicable to implicitly polymorphic languages
 w/o value restriction (like OCaml)

This work
Research question (long-term)
Is it possible to define type-preserving CPS transformation

for implicit polymorphism without value restriction?

Contribution (short-term)
Showing it is possible for the implicit version of System F

𝒆𝒆𝟏𝟏 ↦ 𝒆𝒆𝟒𝟒
𝜦𝜦𝜶𝜶. 𝒆𝒆𝟏𝟏 ↦ 𝜦𝜦𝜶𝜶. 𝒆𝒆𝟒𝟒

Equivalent to allowing the reduction

Review: CPS transformation

𝝀𝝀𝝀𝝀. 𝒆𝒆 = 𝝀𝝀𝒌𝒌.𝒌𝒌 𝝀𝝀𝝀𝝀. 𝒆𝒆

𝝀𝝀 = 𝝀𝝀𝒌𝒌.𝒌𝒌 𝝀𝝀

𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 = 𝝀𝝀𝒌𝒌. 𝒆𝒆𝟏𝟏 (𝝀𝝀𝝀𝝀. 𝒆𝒆𝟒𝟒 𝝀𝝀𝝀𝝀.𝝀𝝀 𝝀𝝀 𝒌𝒌)

Factorizing CPS transformation [Danvy’92]

1. Naming intermediate results of computation

2. Sequencing computation by lifting redexes

3. Making continuations explicit

𝝀𝝀 (𝐥𝐥𝐫𝐫𝐬𝐬 𝝀𝝀 = 𝒆𝒆𝟏𝟏 𝐬𝐬𝐢𝐢 𝒆𝒆𝟒𝟒) ⟹ 𝐥𝐥𝐫𝐫𝐬𝐬 𝝀𝝀 = 𝒆𝒆𝟏𝟏 𝐬𝐬𝐢𝐢 𝝀𝝀 𝒆𝒆𝟒𝟒

𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 ⟹ 𝐥𝐥𝐫𝐫𝐬𝐬 𝝀𝝀 = 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 𝐬𝐬𝐢𝐢 𝝀𝝀

Factorizing CPS transformation [Danvy’92]

1. Naming intermediate results of computation

2. Sequencing computation by lifting redexes

3. Making continuations explicit

𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 ⟹ 𝐥𝐥𝐫𝐫𝐬𝐬 𝝀𝝀 = 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 𝐬𝐬𝐢𝐢 𝝀𝝀

𝝀𝝀 (𝐥𝐥𝐫𝐫𝐬𝐬 𝝀𝝀 = 𝒆𝒆𝟏𝟏 𝐬𝐬𝐢𝐢 𝒆𝒆𝟒𝟒) ⟹ 𝐥𝐥𝐫𝐫𝐬𝐬 𝝀𝝀 = 𝒆𝒆𝟏𝟏 𝐬𝐬𝐢𝐢 𝝀𝝀 𝒆𝒆𝟒𝟒

Redex lifting as source-level reduction
[Sabry+’92]

This rule conflicts with implicit polymorphism due to
evaluation contexts where the hole □ appears under 𝚲𝚲
(like 𝚲𝚲𝜶𝜶.□)

𝑬𝑬 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 ↦ 𝝀𝝀𝝀𝝀: 𝝉𝝉.𝑬𝑬 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒
where 𝑬𝑬 is an evaluation context such that 𝝀𝝀 ∉ 𝝀𝝀𝒇𝒇 𝑬𝑬

Instantiate by 𝑬𝑬′ 𝚲𝚲𝜶𝜶.□

𝑬𝑬 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 ↦ 𝝀𝝀𝝀𝝀: 𝝉𝝉.𝑬𝑬 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒

Redex lifting as source-level reduction
[Sabry+’92]

This rule conflicts with implicit polymorphism due to
evaluation contexts where the hole □ appears under 𝚲𝚲
(like 𝚲𝚲𝜶𝜶.□)

where 𝑬𝑬 is an evaluation context such that 𝝀𝝀 ∉ 𝝀𝝀𝒇𝒇 𝑬𝑬

Problem: redex lifting in implicit polymorphism

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 ↦ 𝝀𝝀𝝀𝝀: 𝝉𝝉.𝑬𝑬𝑬 𝚲𝚲𝜶𝜶. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒

𝝉𝝉 and 𝒆𝒆𝟒𝟒 can refer to 𝜶𝜶 𝝉𝝉 and 𝒆𝒆𝟒𝟒 CANNOT refer to 𝜶𝜶 as
they are outside the scope of 𝜶𝜶

Cause: Conflict between generalization and binding by 𝚲𝚲

Generalizing 𝜶𝜶 in 𝒆𝒆𝟏𝟏
requires lowering 𝚲𝚲𝚲𝚲

Binding 𝚲𝚲 in 𝝉𝝉 and 𝒆𝒆𝟒𝟒
requires lifting 𝚲𝚲𝚲𝚲VERSUS

Key idea of our solution
Decomposing 𝚲𝚲𝜶𝜶 into more atomic constructors

Restrictions 𝝂𝝂𝜶𝜶. 𝒆𝒆
only bind 𝜶𝜶 (not generalize)

Open type abstractions 𝚲𝚲∘⟨𝜶𝜶, 𝒆𝒆⟩
only generalize 𝜶𝜶 (not bind)

𝚪𝚪,𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉
𝚪𝚪 ⊢ 𝝂𝝂𝜶𝜶. 𝒆𝒆 ∶ 𝝉𝝉

𝚪𝚪 ⊢ 𝒆𝒆 ∶ 𝝉𝝉 𝜶𝜶 ∈ 𝚪𝚪
𝚪𝚪 ⊢ 𝚲𝚲∘ 𝜶𝜶. 𝒆𝒆 ∶ ∀𝜶𝜶. 𝝉𝝉

Remark: These typing rules don’t imply type safety and need refinement
as shown later

Relationship to type abstraction: 𝚲𝚲𝜶𝜶. 𝒆𝒆 ≡ 𝝂𝝂𝜶𝜶.𝚲𝚲∘ 𝜶𝜶,𝒆𝒆

𝒂𝒂 ∉ 𝝀𝝀𝒇𝒇𝒇𝒇(𝝉𝝉)

Examples

⊢ 𝝂𝝂𝜶𝜶.𝚲𝚲∘ 𝜶𝜶, 𝝀𝝀𝝀𝝀:𝜶𝜶.𝝀𝝀 ∶ ∀𝜶𝜶.𝜶𝜶 → 𝜶𝜶

⊬ 𝚲𝚲∘ 𝜶𝜶, 𝝀𝝀𝝀𝝀:𝜶𝜶.𝝀𝝀 ∶ ∀𝜶𝜶.𝜶𝜶 → 𝜶𝜶

𝜶𝜶,𝝀𝝀:𝜶𝜶 → 𝜶𝜶 ⊢ 𝚲𝚲∘ 𝜶𝜶,𝝀𝝀 ∶ ∀𝜶𝜶.𝜶𝜶 → 𝜶𝜶

Restrictions 𝝂𝝂𝜶𝜶.𝒆𝒆 Open type
abstractions 𝚲𝚲∘⟨𝜶𝜶, 𝒆𝒆⟩

𝚪𝚪,𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉
𝚪𝚪 ⊢ 𝝂𝝂𝜶𝜶.𝒆𝒆 ∶ 𝝉𝝉

𝚪𝚪 ⊢ 𝒆𝒆 ∶ 𝝉𝝉 𝜶𝜶 ∈ 𝚪𝚪
𝚪𝚪 ⊢ 𝚲𝚲∘ 𝜶𝜶. 𝒆𝒆 ∶ ∀𝜶𝜶. 𝝉𝝉

Solution: redex lifting with 𝝂𝝂 and 𝚲𝚲∘

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒
𝚲𝚲𝜶𝜶. 𝒆𝒆 ≡ 𝝂𝝂𝜶𝜶.𝚲𝚲∘ 𝜶𝜶, 𝒆𝒆

= 𝑬𝑬′ 𝝂𝝂𝜶𝜶.𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒⟩

Solution: redex lifting with 𝝂𝝂 and 𝚲𝚲∘

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒
= 𝑬𝑬′ 𝝂𝝂𝜶𝜶.𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒⟩ ↦

↦

Solution: redex lifting with 𝝂𝝂 and 𝚲𝚲∘

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒
= 𝑬𝑬′ 𝝂𝝂𝜶𝜶.𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒⟩ ↦ 𝝂𝝂𝜶𝜶.𝑬𝑬′ 𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒⟩

Step 1: lifting 𝝂𝝂

↦

Solution: redex lifting with 𝝂𝝂 and 𝚲𝚲∘

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒
Step 1: lifting 𝝂𝝂

↦ 𝝂𝝂𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉.𝑬𝑬′ 𝚲𝚲∘ 𝜶𝜶, 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒)

= 𝑬𝑬′ 𝝂𝝂𝜶𝜶.𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒⟩ ↦ 𝝂𝝂𝜶𝜶.𝑬𝑬′ 𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒⟩

Step 2: lifting the redex
(i.e., lowering the evaluation context)

Requirements
for typing Generalizing 𝚲𝚲 in 𝒆𝒆𝟏𝟏 Binding 𝚲𝚲 in 𝝉𝝉 and 𝒆𝒆𝟒𝟒

How
addressed? By lowering 𝚲𝚲∘⟨𝜶𝜶,□⟩ By lifting 𝝂𝝂𝜶𝜶

What could be obtained

Implicit System F System F with
𝝂𝝂 + 𝚲𝚲∘

⋅
Type safe

⟹
Not type safeCPS trans.

Unsafety by re-generalization
Let 𝑴𝑴 ≡ 𝝂𝝂𝜶𝜶.𝚲𝚲∘ 𝜶𝜶,𝝀𝝀𝝀𝝀:𝜶𝜶.𝚲𝚲∘ 𝜶𝜶,𝝀𝝀𝝀𝝀:𝜶𝜶.𝝀𝝀

⊢ 𝑴𝑴 ∶ ∀𝜶𝜶.𝜶𝜶 → ∀𝜶𝜶.𝜶𝜶 → 𝜶𝜶

Restrictions 𝝂𝝂𝜶𝜶.𝒆𝒆 Open type
abstractions 𝚲𝚲∘⟨𝜶𝜶, 𝒆𝒆⟩

𝚪𝚪,𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉
𝚪𝚪 ⊢ 𝝂𝝂𝜶𝜶.𝒆𝒆 ∶ 𝝉𝝉

𝚪𝚪 ⊢ 𝒆𝒆 ∶ 𝝉𝝉 𝜶𝜶 ∈ 𝚪𝚪
𝚪𝚪 ⊢ 𝚲𝚲∘ 𝜶𝜶. 𝒆𝒆 ∶ ∀𝜶𝜶. 𝝉𝝉

So ⊢ (𝑴𝑴 𝐛𝐛𝐛𝐛𝐛𝐛𝐥𝐥 𝐬𝐬𝐫𝐫𝐭𝐭𝐫𝐫) 𝐬𝐬𝐢𝐢𝐬𝐬 𝟎𝟎 ∶ 𝐬𝐬𝐢𝐢𝐬𝐬

But 𝑴𝑴 𝐛𝐛𝐛𝐛𝐛𝐛𝐥𝐥 𝐬𝐬𝐫𝐫𝐭𝐭𝐫𝐫 𝐬𝐬𝐢𝐢𝐬𝐬 𝟎𝟎 ↦∗ 𝐬𝐬𝐫𝐫𝐭𝐭𝐫𝐫

Unsafety by re-generalization
Let 𝑴𝑴 ≡ 𝝂𝝂𝜶𝜶.𝚲𝚲∘ 𝜶𝜶,𝝀𝝀𝝀𝝀:𝜶𝜶.𝚲𝚲∘ 𝜶𝜶,𝝀𝝀𝝀𝝀:𝜶𝜶.𝝀𝝀

Cause: The same type variable may be
generalized multiple times

Restrictions 𝝂𝝂𝜶𝜶.𝒆𝒆 Open type
abstractions 𝚲𝚲∘⟨𝜶𝜶, 𝒆𝒆⟩

𝚪𝚪,𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉
𝚪𝚪 ⊢ 𝝂𝝂𝜶𝜶.𝒆𝒆 ∶ 𝝉𝝉

𝚪𝚪 ⊢ 𝒆𝒆 ∶ 𝝉𝝉 𝜶𝜶 ∈ 𝚪𝚪
𝚪𝚪 ⊢ 𝚲𝚲∘ 𝜶𝜶. 𝒆𝒆 ∶ ∀𝜶𝜶. 𝝉𝝉

Solution: Using affine typing to enforce
type variables are generalized only once

What has been obtained

Implicit System F 𝚲𝚲𝐛𝐛𝐨𝐨𝐫𝐫𝐢𝐢
⋅

Type safe

⟹
Type safe

(System F w/ 𝝂𝝂 + 𝚲𝚲∘
+ affine typing)

CPS trans.

Other topics covered in the paper
Details of 𝚲𝚲𝐛𝐛𝐨𝐨𝐫𝐫𝐢𝐢 and the CPS transformation

Meaning preservation of the CPS transformation

Parametricity of 𝚲𝚲𝐛𝐛𝐨𝐨𝐫𝐫𝐢𝐢

Conclusion

This work addressed implicit System F as a first step
Proposed a new CPS target language with

restrictions, open type abstractions, and affine types

Future work: support for other features
Effects
Other binding constructs under which evaluation proceeds

(e.g., staged computation)

Challenging to obtain type-preserving CPS transformation
for implicit polymorphism w/o value restriction

	CPS Transformation with Affine Types for Implicit Polymorphism
	CPS transformation
	CPS transformation
	CPS transformation with type preservation
	CPS transformation for polymorphism
	This work
	Review: CPS transformation
	Factorizing CPS transformation [Danvy’92]
	Factorizing CPS transformation [Danvy’92]
	Redex lifting as source-level reduction [Sabry+’92]
	Redex lifting as source-level reduction [Sabry+’92]
	Problem: redex lifting in implicit polymorphism
	Key idea of our solution
	Examples
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	What could be obtained
	Unsafety by re-generalization
	Unsafety by re-generalization
	What has been obtained
	Other topics covered in the paper
	Conclusion

