CPS Transformation with Affine
Types for Implicit Polymorphism

Taro Sekiyama Takeshi Tsukada

National Institute of Informatics Chiba University

ICFP 2021

CPS transformation

dTransforming programs into continuation-passing style (CPS)
[Af-42+ (f0)] =Af.Ak.fO0 (Ax.k (42 + x))

CPS transformation

dTransforming programs into continuation-passing style (CPS)
[Af-42+ (f0)] =Af.Ak.fO0 (Ax.k (42 + x))

JApplications

Semantics of control operators Compiler IRs
[C Ax. €] = Ak.[Ax.e](Ay. AK'.k y) (Az.2) 'c o '
[shift Ax.e] = Ak. [Ax.e] (Ay.AK'.k'(ky)) (Az.z) " ’
[[reset e]] _ Ak. k ([[e]] (Ax. x)) | Compiling \\'lthjzzt::i?jlons, Continued
u SOt 7

CPS transformation with type preservation

dTransforming programs into continuation-passing style (CPS)
[Af-42 + (f0): 7] = Af.Ak.f O (Ax.k (42 + x)) : [7]

JApplications

Semantics of control operators Compiler IRs

The Essence of Compiling with Continuations

[C Ax.e]] = Ak.[Ax.e](Ay.Ak' . k y) (Az.z)
[shift Ax.e] = Ak. [Ax.e] (Ay.Ak'. k' (ky)) (A2.2)
[reset e] = Ak.k ([e] (Ax.x))

Compiling with Continuations, Continued

Fine-grained type systems Compiler verification
for control operators by typing IRs

II'xt—-oltFe:l
ate:rt; ’ Typed code 4 Typed CPS IR B2 Typed ASM
arernf i S Typed code g Typ 84 YPed ASM

CPS transformation for polymorphism

Established under value restriction [Harper&dLilibridge ‘94]

(polymorphic expressions in a source

Explicit Polymorphism and CPS Conversion

Robert Harper Mark Lillibridge

Abstract

We study the typing properties of CPS conversion for an extension of F,, with control opera-

tors. Two classes of evaluation strategies are considered, each with call-by-name and call-by-value

variants. Under the “standard” strategies, constructor abstractions are values, and constructor
applications can lead to non-trivial control effects. In contrast, the “ML-like” strategies evalu-

anguage must be values)

Polymorphic Type Assignment and CPS Conversion-

ROBERT HARPERT (ruwh@cs.cmu.cdu)

MARK LILLIBRIDGE? (mdl@cs.cmu. edu)

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 152138

Keywords: Polymorphism, continuations

Abstract. Meyer and Wand established that the type of a term in the simply typed A-

calculus may be related in a straightforward manner to the type of its call-by-value CPS
transform. This typing property may be extended to Scheme-like continuation-passing

Problem: Not applicable to implicitly polymorphic languages
w/o value restriction (like OCaml)

This work

Research question (long-term)
s it possible to define type-preserving CPS transformation
for implicit polymorphism without value restriction?

Contribution (short-term)

Showing it is possible for the implicit {/ersion of System F

Equivalent to allowing the reduction

€1 €

Aa.eq » Aa.e,

Review: CPS transformation

[Ax.e] = Ak. k Ax. | e]
[x] = Ak. k x

[eq e;] = Ak.[eq] (Ax.[e;] (Ay.xy k))

Factorizing CPS transformation [panvy92)

1. Naming intermediate results of computation

eje, = letx=eje,inx

2. Sequencing computation by lifting redexes

Xx(lety=e;ine;) = lety=e;inxe,

3. Making continuations explicit

Factorizing CPS transformation [panvy92)

1. Naming intermediate results of computation

eje, = letx=eje,inx

@ Sequencing computation by lifting redexes

Xx(lety=e;ine;) = lety=e;inxe,

3. Making continuations explicit

Redex lifting as source-level reduction
[Sabry+'92]

E|(Ax:T.eq) e;] » (Ax:T.E|eq]) ey

where E is an evaluation context such that x € fv(E)

This rule conflicts with implicit polymorphism due to
evaluation contexts where the hole O appears under A
(like Aa. O)

Redex lifting as source-level reduction
[Sabry+'92]

E|(Ax:T.eq) e, » (Ax:T.E|eq]) ey
where E is an evaluation}zé;(t such that x ¢ fv(E)
Instantiate by E'[Aa. O]

This rule conflicts with implicit polymorphism due to
evaluation contexts where the hole O appears under A
(like Aa. O)

Problem: redex lifting in implicit polymorphism

XN\

E'|lAa.(Ax:t.e4) e,] » (Ax:T.E'[Aa.eq]) ey

T and e, CANNOT refer to a as
they are outside the scope of a

Cause: Conflict between generalization and binding by A

Generalizing a in e4 Binding a in T and e,
requires lowering Aa VERSUS requires lifting Aa

Key idea of our solution

Decomposing Aa into more atomic constructors

only bind a (not generalize) only generalize a (not bind)
Natle:t I're:t aerl
a ¢ ftv(r)
I' - T I+ va. T
Relationship to type abstraction: Aa. e = e

Remark: These typing rules don't imply type safety and need refinement
as shown later

Examples

- Ax:a.x) : Va.a - «
- Ax.a.x) : Va.a - «a
) Xitt > a X vVa.a - «a
FTarFe:t F'+e:7 a€rl
T - T I - :vVa. Tt

Solution: redex lifting with v and A°
J, Aa.e = Nla, e) ‘

E'[Aa.Ax:T.€eq) ey]
= E'|lva. N {(a, (Ax:T.eq) ey)]

Solution: redex lifting with v and

E'|Aa.(Ax:T.eq) e,]
=E'| (Ax:t.eq) ey)] »

Solution: redex lifting with v and

Aa. (Ax:T.eq) e,]

(Ax:t.eq) ey)] »

Step 1: lifting

7

E'| (Ax:T.eq) ey)]

Solution: redex lifting with v and

_ Step 1: lifting
E'[Aa.(Ax:T.eq) e5] 7
= E'[(Ax:T.eq) e3)] » v E'| (Ax:T.e1) ez).

Step2: lifting the redex

(i.e., lowering the evaluation context)

—

- (Ax:T. E'| e1)]) e;r)

Requirements

for typing Generalizing ain e; | Binding ain T and e,

How
addressed?

By lowering O By lifting

What could be obtained

Type safe CPS ”a”S Not type safe

Unsafety by re-generalization

Let M = Ax: . Ay:a.x

FM:Va.a->Va.a - «a
SO + (M bool true) int 0 : int

But (M bool true) int 0 »* true

Nate:t I'Fe:t a€erl
I' + T I'+ vVa.t

Unsafety by re-generalization

Let M = v A, Ax: . A (o, Ay . X))

Cause: The same type variable may be
generalized multiple times

Solution: Using affine typing to enforce

type variables are generalized only once -+ —

jtractions A°(a, e)
Natle:t I're:1t a€erl

F'-va.e:t '-Ala.e):Va.t

What has been obtained

Type Safe CPS trans. Type Safe

[] open
Implicit System F) —» (Sy{t\emm/ .
+ affine typing)

Other topics covered in the paper

dDetails of A°P" and the CPS transformation
dMeaning preservation of the CPS transformation

dParametricity of A°Pen

Conclusion

Challenging to obtain type-preserving CPS transformation
for implicit polymorphism w/o value restriction

dThis work addressed implicit System F as a first step

»Proposed a new CPS target language with
restrictions, open type abstractions, and affine types

dFuture work: support for other features

> Effects

»Other binding constructs under which evaluation proceeds
(e.g., staged computation)

	CPS Transformation with Affine Types for Implicit Polymorphism
	CPS transformation
	CPS transformation
	CPS transformation with type preservation
	CPS transformation for polymorphism
	This work
	Review: CPS transformation
	Factorizing CPS transformation [Danvy’92]
	Factorizing CPS transformation [Danvy’92]
	Redex lifting as source-level reduction [Sabry+’92]
	Redex lifting as source-level reduction [Sabry+’92]
	Problem: redex lifting in implicit polymorphism
	Key idea of our solution
	Examples
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	What could be obtained
	Unsafety by re-generalization
	Unsafety by re-generalization
	What has been obtained
	Other topics covered in the paper
	Conclusion

