CPS Transformation with Affine Types for Implicit Polymorphism

Taro Sekiyama

National Institute of Informatics

Takeshi Tsukada

Chiba University

ICFP 2021

CPS transformation

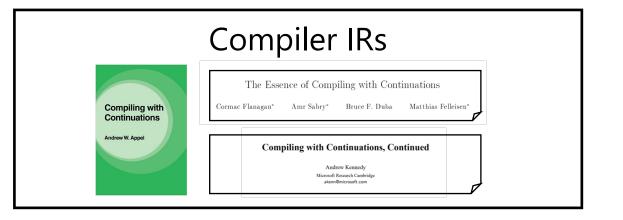
Transforming programs into continuation-passing style (CPS) $[\lambda f. 42 + (f 0)] = \lambda f. \lambda k. f 0 (\lambda x. k (42 + x))$

CPS transformation

Transforming programs into continuation-passing style (CPS) $[\lambda f. 42 + (f 0)] = \lambda f. \lambda k. f 0 (\lambda x. k (42 + x))$

Applications

Semantics of control operators $\begin{bmatrix} C \ \lambda x. e \end{bmatrix} = \lambda k. \begin{bmatrix} \lambda x. e \end{bmatrix} (\lambda y. \lambda k'. k \ y) (\lambda z. z)$ $\begin{bmatrix} \text{shift } \lambda x. e \end{bmatrix} = \lambda k. \begin{bmatrix} \lambda x. e \end{bmatrix} (\lambda y. \lambda k'. k' (k \ y)) (\lambda z. z)$ $\begin{bmatrix} \text{reset } e \end{bmatrix} = \lambda k. k (\begin{bmatrix} e \end{bmatrix} (\lambda x. x))$



CPS transformation with type preservation

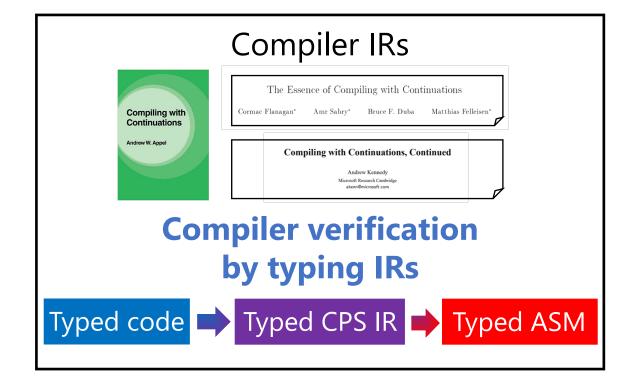
Transforming programs into continuation-passing style (CPS) $[\tau]$

$$\llbracket \lambda f. 42 + (f 0) : \tau \rrbracket = \lambda f. \lambda k. f 0 (\lambda x. k (42 + x)):$$

Applications

Semantics of control operators $[\![\mathcal{C} \lambda x. e]\!] = \lambda k. [\![\lambda x. e]\!] (\lambda y. \lambda k'. k y) (\lambda z. z)$ $[[\text{shift } \lambda x. e]] = \lambda k. [[\lambda x. e]] (\lambda y. \lambda k'. k'(k y)) (\lambda z. z)$ $[[reset e]] = \lambda k. k ([[e]] (\lambda x. x))$

```
Fine-grained type systems
       for control operators
                              \Gamma, \mathbf{X}: \tau \to \perp \vdash e : \perp
\Gamma; \alpha \vdash e : \tau; \beta
                                \Gamma \vdash C \lambda x \cdot e : \tau
```



CPS transformation for polymorphism

Established under *value restriction* [Harper&Lilibridge '94] (polymorphic expressions in a source language must be values)

Explicit Polymorphism and CPS Conversion	Polymorph
Robert Harper Mark Lillibridge	ROBERT HARPE MARK LILLIBRI
	School of Comput Carnegie Mellon U 5000 Forbes Aven Pittsburgh, PA 15.
Abstract	Keywords: Polyr
We study the typing properties of CPS conversion for an extension of F_{ω} with control opera- tors. Two classes of evaluation strategies are considered, each with call-by-name and call-by-value variants. Under the "standard" strategies, constructor abstractions are values, and constructor applications can lead to non-trivial control effects. In contrast, the "ML-like" strategies evalu-	Abstract. Meye calculus may be re transform. This t

robert harper [†]	$(\mathit{rwh@cs.cmu.edu})$
MARK LILLIBRIDGE [‡]	(mdl@cs.cmu.edu)
School of Computer Science	
Carnegie Mellon University 5000 Forbes Avenue	
Pittsburgh, PA 15213	
Keywords: Polymorphism, continuations	

Problem: Not applicable to implicitly polymorphic languages w/o value restriction (like OCaml)

This work

Research question (long-term)

Is it possible to define type-preserving CPS transformation for <u>implicit polymorphism without value restriction</u>?

Contribution (short-term)

Showing it is possible for the implicit version of System F

Equivalent to allowing the reduction

$$\frac{e_1 \mapsto e_2}{\Lambda \alpha. e_1 \mapsto \Lambda \alpha. e_2}$$

Review: CPS transformation

$$\llbracket \lambda x. e \rrbracket = \lambda k. k \lambda x. \llbracket e \rrbracket$$

$$\llbracket x \rrbracket = \lambda k. k x$$

 $\llbracket e_1 e_2 \rrbracket = \lambda k. \llbracket e_1 \rrbracket (\lambda x. \llbracket e_2 \rrbracket (\lambda y. x y k))$

Factorizing CPS transformation [Danvy'92]

1. Naming intermediate results of computation

$$e_1 e_2 \implies \operatorname{let} x = e_1 e_2 \operatorname{in} x$$

2. Sequencing computation by lifting redexes

$$x (\text{let } y = e_1 \text{ in } e_2) \implies \text{let } y = e_1 \text{ in } x e_2$$

3. Making continuations explicit

Factorizing CPS transformation [Danvy'92]

1. Naming intermediate results of computation

$$e_1 e_2 \implies \operatorname{let} x = e_1 e_2 \operatorname{in} x$$

Sequencing computation by lifting redexes $x (\text{let } y = e_1 \text{ in } e_2) \implies \text{let } y = e_1 \text{ in } x e_2$

3. Making continuations explicit

Redex lifting as source-level reduction [Sabry+'92]

$$E[(\lambda x:\tau.e_1)e_2] \mapsto (\lambda x:\tau.E[e_1])e_2$$

where **E** is an evaluation context such that $x \notin fv(E)$

This rule conflicts with implicit polymorphism due to evaluation contexts where the hole \Box appears under Λ (like $\Lambda \alpha$. \Box)

Redex lifting as source-level reduction [Sabry+'92]

$$\begin{array}{l} E[(\lambda x; \tau, e_1) e_2] & \mapsto (\lambda x; \tau, E[e_1]) e_2 \\ & \text{where } E \text{ is an evaluation context such that } x \notin fv(E) \\ & \text{Instantiate by } E'[\Lambda \alpha, \Box] \end{array}$$

This rule conflicts with implicit polymorphism due to evaluation contexts where the hole \Box appears under Λ (like $\Lambda \alpha$. \Box)

Problem: redex lifting in implicit polymorphism

$$E'[\Lambda\alpha.(\lambda x:\tau.e_1)e_2]$$

$$\mapsto (\lambda x: \tau. E'[\Lambda \alpha. e_1]) e_2$$

au and e_2 can refer to lpha

 τ and e_2 CANNOT refer to α as they are outside the scope of α

Cause: Conflict between generalization and binding by Λ

Generalizing α in e_1 requires lowering $\Lambda \alpha$

Binding α in τ and e_2 requires lifting $\Lambda \alpha$

Key idea of our solution

Decomposing $\Lambda \alpha$ into more atomic constructors

Restrictions $v\alpha$. *e* only bind α (not generalize)

$$\frac{\Gamma, \alpha \vdash e : \tau}{\Gamma \vdash \nu \alpha. e : \tau} \quad a \notin ftv(\tau)$$

Open type abstractions $\Lambda^{\circ}\langle \alpha, e \rangle$ only generalize α (not bind)

$$\Gamma \vdash e : \tau \quad \alpha \in \Gamma$$

 $\Gamma \vdash \Lambda^{\circ} \langle \alpha. e \rangle : \forall \alpha. \tau$

Relationship to type abstraction: $\Lambda \alpha$. $e \equiv \nu \alpha$. $\Lambda^{\circ} \langle \alpha, e \rangle$

Remark: These typing rules don't imply type safety and need refinement as shown later

Examples

$\vdash \boldsymbol{\nu}\alpha. \Lambda^{\circ}\langle \alpha, \lambda x: \alpha. x \rangle : \forall \alpha. \alpha \to \alpha$

 $\not\vdash \quad \Lambda^{\circ} \langle \alpha, \lambda x : \alpha . x \rangle : \forall \alpha . \alpha \to \alpha$

 $\alpha, x: \alpha \to \alpha \vdash \Lambda^{\circ} \langle \alpha, x \rangle \qquad : \forall \alpha. \alpha \to \alpha$

Restrictions $v\alpha$. e	Open type abstractions $\Lambda^{\circ}\langle \alpha, e \rangle$
Γ , $lpha \vdash e : au$	$\Gamma \vdash e : \tau \alpha \in \Gamma$
$\Gamma \vdash \nu \alpha. e : \tau$	$\overline{\Gamma \vdash \Lambda^{\circ} \langle \alpha. e \rangle} : \forall \alpha. \tau$

Solution: redex lifting with ν and Λ°

$$E'[\Lambda \alpha. (\lambda x: \tau. e_1) e_2]$$

= $E'[\nu \alpha. \Lambda^{\circ} \langle \alpha, (\lambda x: \tau. e_1) e_2 \rangle]$

Solution: redex lifting with ν and Λ°

 \mapsto

 $E'[\Lambda \alpha. (\lambda x: \tau. e_1) e_2]$ = $E'[\nu \alpha. \Lambda^{\circ} \langle \alpha, (\lambda x: \tau. e_1) e_2 \rangle] \mapsto$

Solution: redex lifting with ν and Λ°

Step 1: lifting $\boldsymbol{\nu}$

- $E'[\Lambda \alpha. (\lambda x: \tau. e_1) e_2]$
- $= E'[\underline{v\alpha}, \Lambda^{\circ}\langle \alpha, (\lambda x; \tau, e_1) e_2 \rangle] \mapsto \underline{v\alpha}, E'[\Lambda^{\circ}\langle \alpha, (\lambda x; \tau, e_1) e_2 \rangle]$

 \mapsto

Solution: redex lifting with ν and Λ°

 $E'[\Lambda \alpha. (\lambda x: \tau. e_1) e_2]$

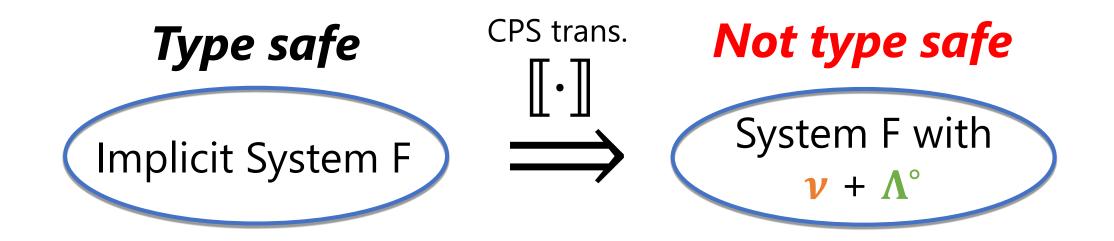
 $= E'[\underline{\nu\alpha}.\Lambda^{\circ}\langle\alpha,(\lambda x;\tau.e_1)e_2\rangle] \mapsto \underline{\nu\alpha}.E'[\Lambda^{\circ}\langle\alpha,(\lambda x;\tau.e_1)e_2\rangle]$

Step 2: lifting the redex (i.e., lowering the evaluation context)

$$\mapsto \underline{\nu\alpha}.(\lambda x:\tau. E'[\Lambda^{\circ}\langle \alpha, e_1\rangle]) e_2)$$

Requirements for typing	Generalizing α in e_1	Binding α in $ au$ and e_2
How addressed?	By lowering $\Lambda^{\circ}\langle \alpha, \Box \rangle$	By lifting <mark>να</mark>

What could be obtained



Unsafety by re-generalization

Let
$$M \equiv \nu \alpha$$
. $\Lambda^{\circ} \langle \alpha, \lambda x : \alpha . \Lambda^{\circ} \langle \alpha, \lambda y : \alpha . x \rangle \rangle$

 $\vdash M : \forall \alpha. \alpha \rightarrow \forall \alpha. \alpha \rightarrow \alpha$ So $\vdash (M \text{ bool true}) \text{ int } 0 : \text{ int}$

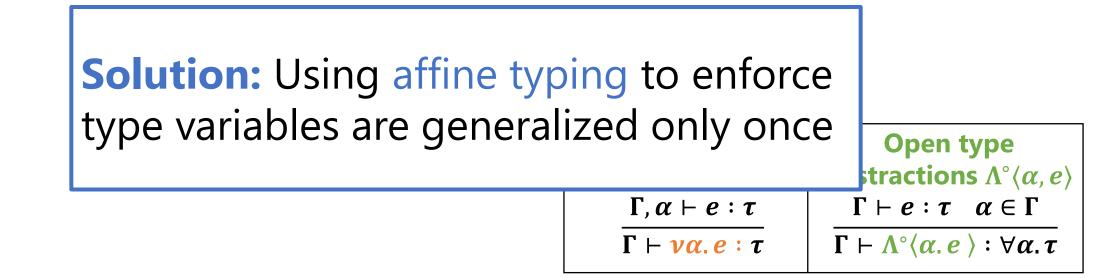
But (*M* bool true) int $0 \mapsto^*$ true

Restrictions $v\alpha$. e	Open type abstractions $\Lambda^{\circ}\langle \alpha, e \rangle$
$\Gamma, \alpha \vdash e : \tau$	$\Gamma \vdash e : \tau \alpha \in \Gamma$
$\overline{\Gamma \vdash \nu \alpha. e : \tau}$	$\overline{\Gamma \vdash \Lambda^{\circ} \langle \alpha. e \rangle} : \forall \alpha. \tau$

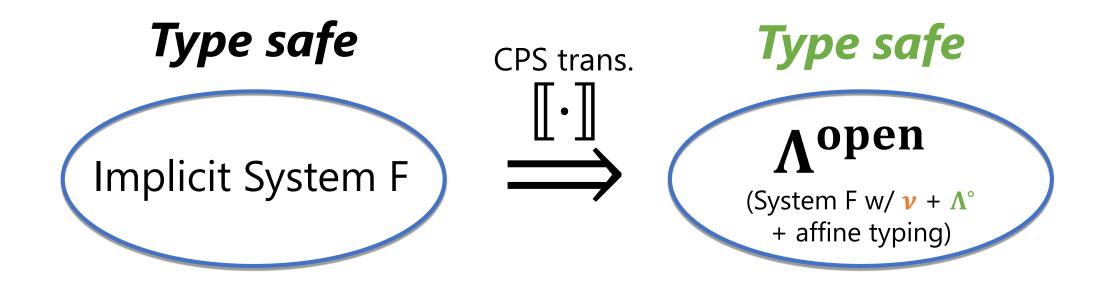
Unsafety by re-generalization

Let $M \equiv \nu \alpha$. $\Lambda^{\circ} \langle \alpha, \lambda x : \alpha. \Lambda^{\circ} \langle \alpha, \lambda y : \alpha. x \rangle \rangle$

Cause: The same type variable may be generalized multiple times



What has been obtained



Other topics covered in the paper

 \Box Details of Λ^{open} and the CPS transformation

□ Meaning preservation of the CPS transformation

 \Box Parametricity of Λ^{open}

Conclusion

Challenging to obtain type-preserving CPS transformation for implicit polymorphism w/o value restriction

This work addressed implicit System F as a first step

Proposed a new CPS target language with restrictions, open type abstractions, and affine types

□Future work: support for other features

➢Effects

Other binding constructs under which evaluation proceeds (e.g., staged computation)