CPS Transformation with Affine
Types for Implicit Polymorphism

Taro Sekiyama Takeshi Tsukada

National Institute of Informatics Chiba University

ICFP 2021



CPS transformation

dTransforming programs into continuation-passing style (CPS)
[Af-42+ (f0)] =Af.Ak.fO0 (Ax.k (42 + x))
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CPS transformation with type preservation

dTransforming programs into continuation-passing style (CPS)
[Af-42 + (f0): 7] = Af.Ak.f O (Ax.k (42 + x)) : [7]

JApplications

Semantics of control operators Compiler IRs

The Essence of Compiling with Continuations

[C Ax.e]] = Ak.[Ax.e](Ay.Ak' . k y) (Az.z)
[shift Ax.e] = Ak. [Ax.e] (Ay.Ak'. k' (ky)) (A2.2)
[reset e] = Ak.k ([e] (Ax.x))

Compiling with Continuations, Continued

Fine-grained type systems Compiler verification
for control operators by typing IRs
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CPS transformation for polymorphism

Established under value restriction [Harper&dLilibridge ‘94]

(polymorphic expressions in a source

Explicit Polymorphism and CPS Conversion

Robert Harper Mark Lillibridge

Abstract

We study the typing properties of CPS conversion for an extension of F,, with control opera-

tors. Two classes of evaluation strategies are considered, each with call-by-name and call-by-value

variants. Under the “standard” strategies, constructor abstractions are values, and constructor
applications can lead to non-trivial control effects. In contrast, the “ML-like” strategies evalu-

anguage must be values)
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Abstract. Meyer and Wand established that the type of a term in the simply typed A-

calculus may be related in a straightforward manner to the type of its call-by-value CPS
transform. This typing property may be extended to Scheme-like continuation-passing

Problem: Not applicable to implicitly polymorphic languages
w/o value restriction (like OCaml)



This work

Research question (long-term)
s it possible to define type-preserving CPS transformation
for implicit polymorphism without value restriction?

Contribution (short-term)

Showing it is possible for the implicit {/ersion of System F

Equivalent to allowing the reduction

€1 €

Aa.eq » Aa.e,




Review: CPS transformation

[Ax.e] = Ak. k Ax. | e]
[x] = Ak. k x

[eq e;] = Ak.[eq] (Ax.[e;] (Ay.xy k))



Factorizing CPS transformation [panvy92)

1. Naming intermediate results of computation

eje, = letx=eje,inx

2. Sequencing computation by lifting redexes

Xx(lety=e;ine;) = lety=e;inxe,

3. Making continuations explicit
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@ Sequencing computation by lifting redexes

Xx(lety=e;ine;) = lety=e;inxe,

3. Making continuations explicit



Redex lifting as source-level reduction
[Sabry+'92]

E|(Ax:T.eq) e;] » (Ax:T.E|eq]) ey

where E is an evaluation context such that x € fv(E)

This rule conflicts with implicit polymorphism due to
evaluation contexts where the hole O appears under A
(like Aa. O)



Redex lifting as source-level reduction
[Sabry+'92]

E|(Ax:T.eq) e, » (Ax:T.E|eq]) ey
where E is an evaluation}zé;(t such that x ¢ fv(E)
Instantiate by E'[Aa. O]

This rule conflicts with implicit polymorphism due to
evaluation contexts where the hole O appears under A
(like Aa. O)



Problem: redex lifting in implicit polymorphism

XN\

E'|lAa.(Ax:t.e4) e,] » (Ax:T.E'[Aa.eq]) ey

T and e, CANNOT refer to a as
they are outside the scope of a

Cause: Conflict between generalization and binding by A

Generalizing a in e4 Binding a in T and e,
requires lowering Aa VERSUS requires lifting Aa




Key idea of our solution

Decomposing Aa into more atomic constructors

only bind a (not generalize) only generalize a (not bind)
Natle:t I're:t aerl
a ¢ ftv(r)
I' - T I+ va. T
Relationship to type abstraction: Aa. e = e

Remark: These typing rules don't imply type safety and need refinement
as shown later



Examples

- Ax:a.x) : Va.a - «
- Ax.a.x) : Va.a - «a
) Xitt > a X vVa.a - «a
FTarFe:t F'+e:7 a€rl
T - T I - :vVa. Tt




Solution: redex lifting with v and A°
J, Aa.e = Nla, e) ‘

E'[Aa.Ax:T.€eq) ey]
= E'|lva. N {(a, (Ax:T.eq) ey)]




Solution: redex lifting with v and

E'|Aa.(Ax:T.eq) e,]
=E'| (Ax:t.eq) ey)] »




Solution: redex lifting with v and

Aa. (Ax:T.eq) e,]

(Ax:t.eq) ey)] »

Step 1: lifting

7

E'| (Ax:T.eq) ey)]




Solution: redex lifting with v and

_ Step 1: lifting
E'[Aa.(Ax:T.eq) e5] 7
= E'[ (Ax:T.eq) e3)] » v E'| (Ax:T.e1) ez).

Step2: lifting the redex

(i.e., lowering the evaluation context)

—

- (Ax:T. E'| e1)]) e;r)

Requirements

for typing Generalizing ain e; | Binding ain T and e,

How
addressed?

By lowering O By lifting



What could be obtained

Type safe CPS ”a”S Not type safe




Unsafety by re-generalization

Let M = Ax: . Ay:a.x

FM:Va.a->Va.a - «a
SO + (M bool true) int 0 : int

But (M bool true) int 0 »* true

Nate:t I'Fe:t a€erl
I' + T I'+ vVa.t




Unsafety by re-generalization

Let M = v A, Ax: . A (o, Ay . X))

Cause: The same type variable may be
generalized multiple times

Solution: Using affine typing to enforce

type variables are generalized only once -+ —

jtractions A°(a, e)
Natle:t I're:1t a€erl

F'-va.e:t '-Ala.e):Va.t




What has been obtained

Type Safe CPS trans. Type Safe

[] open
Implicit System F ) —» (Sy{t\emm/ .
+ affine typing)




Other topics covered in the paper

dDetails of A°P" and the CPS transformation
dMeaning preservation of the CPS transformation

dParametricity of A°Pen



Conclusion

Challenging to obtain type-preserving CPS transformation
for implicit polymorphism w/o value restriction

dThis work addressed implicit System F as a first step

»Proposed a new CPS target language with
restrictions, open type abstractions, and affine types

dFuture work: support for other features

> Effects

»Other binding constructs under which evaluation proceeds
(e.g., staged computation)
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