CPS Transformation with Affine Types for Implicit Polymorphism

Taro Sekiyama

National Institute of Informatics

Takeshi Tsukada

Chiba University

ICFP 2021

CPS transformation

Transforming programs into continuation-passing style (CPS) $[[\lambda f. 42 + (f 0)] = \lambda f. \lambda k. f 0 (\lambda x. k (42 + x))$

CPS transformation

 \Box Transforming programs into continuation-passing style (CPS) $[[\lambda f. 42 + (f 0)] = \lambda f. \lambda k. f 0 (\lambda x. k (42 + x))$

OApplications

Semantics of control operators | | | Compiler IRs $\mathcal{C} \lambda x. e \rrbracket = \lambda k. [\![\lambda x. e]\!] (\lambda y. \lambda k'. k y) (\lambda z. z)$ $\textsf{shift}~\lambda x.\, \boldsymbol{e}]\!]=\lambda k.\,\,\llbracket \lambda x.\, \boldsymbol{e}\rrbracket\, \big(\lambda y.\, \lambda k'.\, k'(k\, y)\big)\, (\lambda z.\, z)$ $\llbracket \text{reset } e \rrbracket = \lambda k. k \left(\llbracket e \rrbracket (\lambda x. x) \right)$

CPS transformation with type preservation

 \Box Transforming programs into continuation-passing style (CPS) $\llbracket \lambda f.42 + (f\ 0) : \tau \rrbracket = \lambda f. \lambda k. f\ 0 \ (\lambda x. k\ (42 + x)) : \llbracket \tau \rrbracket$

OApplications

Semantics of control operators | | | Compiler IRs

 $\mathcal{C} \lambda x. e \rrbracket = \lambda k. [\![\lambda x. e]\!] (\lambda y. \lambda k'. k y) (\lambda z. z)$ $\textsf{shift}~\lambda x.\, \boldsymbol{e}]\!]=\lambda k.\,\,\llbracket \lambda x.\, \boldsymbol{e}\rrbracket\, \big(\lambda y.\, \lambda k'.\, k'(k\, y)\big)\, (\lambda z.\, z)$ $\llbracket \text{reset } e \rrbracket = \lambda k. k \left(\llbracket e \rrbracket (\lambda x. x) \right)$

Fine-grained type systems for control operators $\Gamma; \alpha \vdash e : \tau; \beta$ $\frac{\Gamma, x: \tau \rightarrow \bot \vdash e : \bot}{\square}$ $\Gamma \vdash C \lambda x \ldotp e : \tau$

CPS transformation for polymorphism

Established under *value restriction* [Harper&Lilibridge '94] (polymorphic expressions in a source language must be values)

Problem: Not applicable to implicitly polymorphic languages w/o value restriction (like OCaml)

 $(rwh@cs.cmu.edu)$ $(\mathit{mdl@cs.cmu.edu})$

e of its call-by-value CPS ike continuation-passin

This work

Research question (long-term)

Is it possible to define type-preserving CPS transformation for implicit polymorphism without value restriction?

Contribution (short-term)

Showing it is possible for the implicit version of System F

Equivalent to allowing the reduction

$$
\frac{e_1 \mapsto e_2}{\Lambda \alpha \cdot e_1 \mapsto \Lambda \alpha \cdot e_2}
$$

Review: CPS transformation

$$
[\![\lambda x.\,e]\!]=\lambda k.\,k\,\lambda x.\,[\![e]\!]
$$

$$
[\![x]\!]=\lambda k.\,k\,x
$$

 $\begin{bmatrix} e_1 & e_2 \end{bmatrix} = \lambda k \cdot [e_1] (\lambda x \cdot [e_2] (\lambda y \cdot x \cdot y \cdot k))$

Factorizing CPS transformation [Danvy'92]

1. Naming intermediate results of computation

$$
e_1 e_2 \implies \det x = e_1 e_2 \text{ in } x
$$

2. Sequencing computation by lifting redexes

$$
x (\text{let } y = e_1 \text{ in } e_2) \implies \text{let } y = e_1 \text{ in } x e_2
$$

3. Making continuations explicit

Factorizing CPS transformation [Danvy'92]

1. Naming intermediate results of computation

$$
e_1 e_2 \implies \det x = e_1 e_2 \text{ in } x
$$

(•• Sequencing computation by lifting redexes x (let $y = e_1$ in e_2) \Rightarrow let $y = e_1$ in $x e_2$

3. Making continuations explicit

Redex lifting as source-level reduction [Sabry+'92]

$$
E[(\lambda x: \tau. e_1) e_2] \mapsto (\lambda x: \tau. E[e_1]) e_2
$$

where E is an evaluation context such that $x \notin fv(E)$

This rule conflicts with implicit polymorphism due to evaluation contexts where the hole \Box appears under Λ (like $\Lambda \alpha$. \Box)

Redex lifting as source-level reduction [Sabry+'92]

$$
E[(\lambda x: \tau. e_1) e_2] \mapsto (\lambda x: \tau. E[e_1]) e_2
$$

where *E* is an evaluation context such that $x \notin fv(E)$
Instantiate by $E'[\Lambda \alpha. \Box]$

This rule conflicts with implicit polymorphism due to evaluation contexts where the hole \Box appears under Λ (like $\Lambda \alpha$. \square)

Problem: redex lifting in implicit polymorphism

$$
E'[\Lambda\alpha.(\lambda x;\tau.e_1)e_2] \mapsto (\lambda x;\tau.E'[\Lambda\alpha.e_1])e
$$

$$
(\lambda x: \tau. E'[\Lambda \alpha. e_1]) e_2
$$

 τ and e_2 can refer to α τ and e_2 CANNOT refer to α as they are outside the scope of α

Cause: Conflict between generalization and binding by Λ

Generalizing α in e_1 requires lowering $\boldsymbol{\Lambda}\boldsymbol{\alpha}$

Binding α in τ and e_2 **VERSUS** $\int_{\text{requires lifting} } \alpha$

Key idea of our solution

Decomposing $\Lambda \alpha$ into more atomic constructors

Restrictions va . e only bind α (not generalize)

$$
\frac{\Gamma, \alpha \vdash e : \tau}{\Gamma \vdash \nu \alpha. e : \tau} \ \ a \notin f t \nu(\tau)
$$

Open type abstractions Λ **°** $\langle \alpha, e \rangle$ only generalize α (not bind)

$$
\Gamma \vdash e : \tau \quad \alpha \in \Gamma
$$

 $\Gamma \vdash \Lambda^{\circ} \langle \alpha, e \rangle : \forall \alpha. \tau$

Relationship to type abstraction: $\Lambda \alpha$. $e \equiv \nu \alpha$. $\Lambda^{\circ} \langle \alpha, e \rangle$

Remark: These typing rules don't imply type safety and need refinement as shown later

Examples

$\vdash \nu \alpha$. $\Lambda^{\circ} \langle \alpha, \lambda x : \alpha \cdot x \rangle : \forall \alpha \cdot \alpha \rightarrow \alpha$

 $\nvdash \quad \Lambda^{\circ} \langle \alpha, \lambda x : \alpha. x \rangle : \forall \alpha. \alpha \rightarrow \alpha$

 $\alpha, x: \alpha \to \alpha \vdash \Lambda^{\circ} \langle \alpha, x \rangle \qquad : \ \forall \alpha, \alpha \to \alpha$

Solution: redex lifting with v and Λ°

$$
E'[\Lambda \alpha. (\overline{\lambda x: \tau. e_1}) e_2]
$$

= $E'[\nu \alpha. \Lambda^{\circ} \langle \alpha, (\lambda x: \tau. e_1) e_2]$]
= $E'[\nu \alpha. \Lambda^{\circ} \langle \alpha, (\lambda x: \tau. e_1) e_2 \rangle]$

Solution: redex lifting with v and Λ°

 \mapsto

- $E'[\Lambda\alpha.(\lambda x:\tau.\,e_1)\,e_2]$
- $= E' [\nu \alpha. \Lambda^{\circ} \langle \alpha, (\lambda x : \tau. e_1) e_2 \rangle] \mapsto$

Solution: redex lifting with ν and Λ°

 $E'[\Lambda\alpha.(\lambda x:\tau.\,e_1)\,e_2]$

Step 1: lifting v

 $= E'[\nu\alpha, \Lambda^{\circ}(\alpha, (\lambda x; \tau, e_1) e_2)] \mapsto \nu\alpha, E'[\Lambda^{\circ}(\alpha, (\lambda x; \tau, e_1) e_2)]$

 \mapsto

Solution: redex lifting with $ν$ and $Λ°$

 $E'[\Lambda\alpha.(\lambda x:\tau.e_1)e_2]$

$$
\boxed{\text{Step 1: lifting }\nu}
$$

 $= E' \left[\nu \alpha. \Lambda^{\circ} \langle \alpha, (\lambda x: \tau. e_1) e_2 \rangle \right] \mapsto \nu \alpha. E' \left[\Lambda^{\circ} \langle \alpha, (\lambda x: \tau. e_1) e_2 \rangle \right]$

Step2: lifting the redex (i.e., lowering the evaluation context)

$$
\mapsto \overline{\nu\alpha}.(\lambda x;\tau.E'[\Lambda^{\circ}\langle\alpha,e_1\rangle])e_2)
$$

What could be obtained

Unsafety by re-generalization

Let
$$
M \equiv \nu \alpha
$$
. $\Lambda^{\circ} \langle \alpha, \lambda x : \alpha \cdot \Lambda^{\circ} \langle \alpha, \lambda y : \alpha \cdot x \rangle$

 $\vdash M : \forall \alpha \ldotp \alpha \rightarrow \forall \alpha \ldotp \alpha \rightarrow \alpha$ So \vdash (*M* bool true) int $0:$ int

But $(M$ bool true) int $0 \mapsto^*$ true

Unsafety by re-generalization

Let $M \equiv \nu \alpha$. $\Lambda^{\circ} \langle \alpha, \lambda x : \alpha \cdot \Lambda^{\circ} \langle \alpha, \lambda y : \alpha \cdot x \rangle$

Cause: The same type variable may be generalized multiple times

What has been obtained

Other topics covered in the paper

 \Box Details of Λ ^{open} and the CPS transformation

Meaning preservation of the CPS transformation

 \Box Parametricity of Λ ^{open}

Conclusion

Challenging to obtain type-preserving CPS transformation for implicit polymorphism w/o value restriction

 \Box This work addressed implicit System F as a first step

Proposed a new CPS target language with restrictions, open type abstractions, and affine types

Future work: support for other features

≻Effects

Other binding constructs under which evaluation proceeds (e.g., staged computation)