
CPS Transformation with Affine
Types for Implicit Polymorphism

Taro Sekiyama
National Institute of Informatics

ICFP 2021

Takeshi Tsukada
Chiba University

Transforming programs into continuation-passing style (CPS)
𝝀𝝀𝝀𝝀.𝟒𝟒𝟒𝟒 + 𝒇𝒇 𝟎𝟎 ∶ 𝝉𝝉 = 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌.𝒇𝒇 𝟎𝟎 𝝀𝝀𝝀𝝀.𝒌𝒌 𝟒𝟒𝟒𝟒 + 𝒙𝒙 ∶ 𝝉𝝉

CPS transformation

CPS transformation
Transforming programs into continuation-passing style (CPS)

𝝀𝝀𝝀𝝀.𝟒𝟒𝟒𝟒 + 𝒇𝒇 𝟎𝟎 ∶ 𝝉𝝉 = 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌.𝒇𝒇 𝟎𝟎 𝝀𝝀𝝀𝝀.𝒌𝒌 𝟒𝟒𝟒𝟒 + 𝒙𝒙 ∶ 𝝉𝝉

Applications

Semantics of control operators Compiler IRs
𝓒𝓒 𝝀𝝀𝝀𝝀.𝒆𝒆 = 𝝀𝝀𝝀𝝀. 𝝀𝝀𝝀𝝀.𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌′.𝒌𝒌 𝒚𝒚 (𝝀𝝀𝝀𝝀. 𝒛𝒛)
𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝝀𝝀𝝀𝝀. 𝒆𝒆 = 𝝀𝝀𝝀𝝀. 𝝀𝝀𝝀𝝀.𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌′.𝒌𝒌′ 𝒌𝒌 𝒚𝒚 (𝝀𝝀𝝀𝝀. 𝒛𝒛)
𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝒆𝒆 = 𝝀𝝀𝝀𝝀.𝒌𝒌 (𝒆𝒆 𝝀𝝀𝝀𝝀.𝒙𝒙)

CPS transformation with type preservation
Transforming programs into continuation-passing style (CPS)

𝝀𝝀𝝀𝝀.𝟒𝟒𝟒𝟒 + 𝒇𝒇 𝟎𝟎 ∶ 𝝉𝝉 = 𝝀𝝀𝒇𝒇.𝝀𝝀𝒌𝒌.𝒇𝒇 𝟎𝟎 𝝀𝝀𝝀𝝀.𝒌𝒌 𝟒𝟒𝟒𝟒 + 𝒙𝒙 ∶ 𝝉𝝉

Applications

Fine-grained type systems
for control operators

Compiler verification
by typing IRs

𝚪𝚪;𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉;𝜷𝜷
𝚪𝚪, 𝐱𝐱: 𝝉𝝉 →⊥ ⊢ 𝒆𝒆 ∶⊥
𝚪𝚪 ⊢ 𝓒𝓒 𝝀𝝀𝝀𝝀.𝒆𝒆 ∶ 𝝉𝝉

Typed code Typed CPS IR Typed ASM

Semantics of control operators Compiler IRs
𝓒𝓒 𝝀𝝀𝝀𝝀.𝒆𝒆 = 𝝀𝝀𝝀𝝀. 𝝀𝝀𝝀𝝀.𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌′.𝒌𝒌 𝒚𝒚 (𝝀𝝀𝝀𝝀. 𝒛𝒛)
𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝝀𝝀𝝀𝝀. 𝒆𝒆 = 𝝀𝝀𝝀𝝀. 𝝀𝝀𝝀𝝀.𝒆𝒆 𝝀𝝀𝝀𝝀.𝝀𝝀𝒌𝒌′.𝒌𝒌′ 𝒌𝒌 𝒚𝒚 (𝝀𝝀𝝀𝝀. 𝒛𝒛)
𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝒆𝒆 = 𝝀𝝀𝝀𝝀.𝒌𝒌 (𝒆𝒆 𝝀𝝀𝝀𝝀.𝒙𝒙)

Established under value restriction [Harper&Lilibridge ‘94]
(polymorphic expressions in a source language must be values)

CPS transformation for polymorphism

Problem: Not applicable to implicitly polymorphic languages
 w/o value restriction (like OCaml)

This work
Research question (long-term)
Is it possible to define type-preserving CPS transformation

for implicit polymorphism without value restriction?

Contribution (short-term)
Showing it is possible for the implicit version of System F

𝒆𝒆𝟏𝟏 ↦ 𝒆𝒆𝟐𝟐
𝜦𝜦𝜦𝜦. 𝒆𝒆𝟏𝟏 ↦ 𝜦𝜦𝜦𝜦. 𝒆𝒆𝟐𝟐

Equivalent to allowing the reduction

Review: CPS transformation

𝝀𝝀𝝀𝝀. 𝒆𝒆 = 𝝀𝝀𝝀𝝀.𝒌𝒌 𝝀𝝀𝝀𝝀. 𝒆𝒆

𝒙𝒙 = 𝝀𝝀𝝀𝝀.𝒌𝒌 𝒙𝒙

𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 = 𝝀𝝀𝝀𝝀. 𝒆𝒆𝟏𝟏 (𝝀𝝀𝝀𝝀. 𝒆𝒆𝟐𝟐 𝝀𝝀𝝀𝝀.𝒙𝒙 𝒚𝒚 𝒌𝒌)

Factorizing CPS transformation [Danvy’92]

1. Naming intermediate results of computation

2. Sequencing computation by lifting redexes

3. Making continuations explicit

𝒙𝒙 (𝐥𝐥𝐥𝐥𝐥𝐥 𝒚𝒚 = 𝒆𝒆𝟏𝟏 𝐢𝐢𝐢𝐢 𝒆𝒆𝟐𝟐) ⟹ 𝐥𝐥𝐥𝐥𝐥𝐥 𝒚𝒚 = 𝒆𝒆𝟏𝟏 𝐢𝐢𝐢𝐢 𝒙𝒙 𝒆𝒆𝟐𝟐

𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 ⟹ 𝐥𝐥𝐥𝐥𝐥𝐥 𝒙𝒙 = 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 𝐢𝐢𝐢𝐢 𝒙𝒙

Factorizing CPS transformation [Danvy’92]

1. Naming intermediate results of computation

2. Sequencing computation by lifting redexes

3. Making continuations explicit

𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 ⟹ 𝐥𝐥𝐥𝐥𝐥𝐥 𝒙𝒙 = 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 𝐢𝐢𝐢𝐢 𝒙𝒙

𝒙𝒙 (𝐥𝐥𝐥𝐥𝐥𝐥 𝒚𝒚 = 𝒆𝒆𝟏𝟏 𝐢𝐢𝐢𝐢 𝒆𝒆𝟐𝟐) ⟹ 𝐥𝐥𝐥𝐥𝐥𝐥 𝒚𝒚 = 𝒆𝒆𝟏𝟏 𝐢𝐢𝐢𝐢 𝒙𝒙 𝒆𝒆𝟐𝟐

Redex lifting as source-level reduction
[Sabry+’92]

This rule conflicts with implicit polymorphism due to
evaluation contexts where the hole □ appears under 𝚲𝚲
(like 𝚲𝚲𝜶𝜶.□)

𝑬𝑬 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 ↦ 𝝀𝝀𝝀𝝀: 𝝉𝝉.𝑬𝑬 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐
where 𝑬𝑬 is an evaluation context such that 𝒙𝒙 ∉ 𝒇𝒇𝒇𝒇 𝑬𝑬

Instantiate by 𝑬𝑬′ 𝚲𝚲𝜶𝜶.□

𝑬𝑬 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 ↦ 𝝀𝝀𝝀𝝀: 𝝉𝝉.𝑬𝑬 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐

Redex lifting as source-level reduction
[Sabry+’92]

This rule conflicts with implicit polymorphism due to
evaluation contexts where the hole □ appears under 𝚲𝚲
(like 𝚲𝚲𝜶𝜶.□)

where 𝑬𝑬 is an evaluation context such that 𝒙𝒙 ∉ 𝒇𝒇𝒇𝒇 𝑬𝑬

Problem: redex lifting in implicit polymorphism

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 ↦ 𝝀𝝀𝝀𝝀: 𝝉𝝉.𝑬𝑬𝑬 𝚲𝚲𝜶𝜶. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐

𝝉𝝉 and 𝒆𝒆𝟐𝟐 can refer to 𝜶𝜶 𝝉𝝉 and 𝒆𝒆𝟐𝟐 CANNOT refer to 𝜶𝜶 as
they are outside the scope of 𝜶𝜶

Cause: Conflict between generalization and binding by 𝚲𝚲

Generalizing 𝜶𝜶 in 𝒆𝒆𝟏𝟏
requires lowering 𝚲𝚲𝚲𝚲

Binding 𝛂𝛂 in 𝝉𝝉 and 𝒆𝒆𝟐𝟐
requires lifting 𝚲𝚲𝚲𝚲VERSUS

Key idea of our solution
Decomposing 𝚲𝚲𝜶𝜶 into more atomic constructors

Restrictions 𝝂𝝂𝝂𝝂. 𝒆𝒆
only bind 𝜶𝜶 (not generalize)

Open type abstractions 𝚲𝚲∘⟨𝜶𝜶, 𝒆𝒆⟩
only generalize 𝜶𝜶 (not bind)

𝚪𝚪,𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉
𝚪𝚪 ⊢ 𝝂𝝂𝝂𝝂. 𝒆𝒆 ∶ 𝝉𝝉

𝚪𝚪 ⊢ 𝒆𝒆 ∶ 𝝉𝝉 𝜶𝜶 ∈ 𝚪𝚪
𝚪𝚪 ⊢ 𝚲𝚲∘ 𝜶𝜶. 𝒆𝒆 ∶ ∀𝜶𝜶. 𝝉𝝉

Remark: These typing rules don’t imply type safety and need refinement
as shown later

Relationship to type abstraction: 𝚲𝚲𝜶𝜶. 𝒆𝒆 ≡ 𝝂𝝂𝝂𝝂.𝚲𝚲∘ 𝜶𝜶,𝒆𝒆

𝒂𝒂 ∉ 𝒇𝒇𝒇𝒇𝒇𝒇(𝝉𝝉)

Examples

⊢ 𝝂𝝂𝝂𝝂.𝚲𝚲∘ 𝜶𝜶, 𝝀𝝀𝝀𝝀:𝜶𝜶.𝒙𝒙 ∶ ∀𝜶𝜶.𝜶𝜶 → 𝜶𝜶

⊬ 𝚲𝚲∘ 𝜶𝜶, 𝝀𝝀𝝀𝝀:𝜶𝜶.𝒙𝒙 ∶ ∀𝜶𝜶.𝜶𝜶 → 𝜶𝜶

𝜶𝜶,𝒙𝒙:𝜶𝜶 → 𝜶𝜶 ⊢ 𝚲𝚲∘ 𝜶𝜶,𝒙𝒙 ∶ ∀𝜶𝜶.𝜶𝜶 → 𝜶𝜶

Restrictions 𝝂𝝂𝝂𝝂.𝒆𝒆 Open type
abstractions 𝚲𝚲∘⟨𝜶𝜶, 𝒆𝒆⟩

𝚪𝚪,𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉
𝚪𝚪 ⊢ 𝝂𝝂𝝂𝝂.𝒆𝒆 ∶ 𝝉𝝉

𝚪𝚪 ⊢ 𝒆𝒆 ∶ 𝝉𝝉 𝜶𝜶 ∈ 𝚪𝚪
𝚪𝚪 ⊢ 𝚲𝚲∘ 𝜶𝜶. 𝒆𝒆 ∶ ∀𝜶𝜶. 𝝉𝝉

Solution: redex lifting with 𝝂𝝂 and 𝚲𝚲∘

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐
𝚲𝚲𝜶𝜶. 𝒆𝒆 ≡ 𝝂𝝂𝝂𝝂.𝚲𝚲∘ 𝜶𝜶, 𝒆𝒆

= 𝑬𝑬′ 𝝂𝝂𝝂𝝂.𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐⟩

Solution: redex lifting with 𝝂𝝂 and 𝚲𝚲∘

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐
= 𝑬𝑬′ 𝝂𝝂𝝂𝝂.𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐⟩ ↦

↦

Solution: redex lifting with 𝝂𝝂 and 𝚲𝚲∘

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐
= 𝑬𝑬′ 𝝂𝝂𝝂𝝂.𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐⟩ ↦ 𝝂𝝂𝝂𝝂.𝑬𝑬′ 𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐⟩

Step 1: lifting 𝝂𝝂

↦

Solution: redex lifting with 𝝂𝝂 and 𝚲𝚲∘

𝑬𝑬′ 𝚲𝚲𝜶𝜶. 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐
Step 1: lifting 𝝂𝝂

↦ 𝝂𝝂𝝂𝝂. 𝝀𝝀𝝀𝝀: 𝝉𝝉.𝑬𝑬′ 𝚲𝚲∘ 𝜶𝜶, 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐)

= 𝑬𝑬′ 𝝂𝝂𝝂𝝂.𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐⟩ ↦ 𝝂𝝂𝝂𝝂.𝑬𝑬′ 𝚲𝚲∘⟨𝜶𝜶, 𝝀𝝀𝝀𝝀: 𝝉𝝉. 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐⟩

Step 2: lifting the redex
(i.e., lowering the evaluation context)

Requirements
for typing Generalizing 𝛂𝛂 in 𝒆𝒆𝟏𝟏 Binding 𝛂𝛂 in 𝝉𝝉 and 𝒆𝒆𝟐𝟐

How
addressed? By lowering 𝚲𝚲∘⟨𝜶𝜶,□⟩ By lifting 𝝂𝝂𝝂𝝂

What could be obtained

Implicit System F System F with
𝝂𝝂 + 𝚲𝚲∘

⋅
Type safe

⟹
Not type safeCPS trans.

Unsafety by re-generalization
Let 𝑴𝑴 ≡ 𝝂𝝂𝝂𝝂.𝚲𝚲∘ 𝜶𝜶,𝝀𝝀𝝀𝝀:𝜶𝜶.𝚲𝚲∘ 𝜶𝜶,𝝀𝝀𝒚𝒚:𝜶𝜶.𝒙𝒙

⊢ 𝑴𝑴 ∶ ∀𝜶𝜶.𝜶𝜶 → ∀𝜶𝜶.𝜶𝜶 → 𝜶𝜶

Restrictions 𝝂𝝂𝝂𝝂.𝒆𝒆 Open type
abstractions 𝚲𝚲∘⟨𝜶𝜶, 𝒆𝒆⟩

𝚪𝚪,𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉
𝚪𝚪 ⊢ 𝝂𝝂𝝂𝝂.𝒆𝒆 ∶ 𝝉𝝉

𝚪𝚪 ⊢ 𝒆𝒆 ∶ 𝝉𝝉 𝜶𝜶 ∈ 𝚪𝚪
𝚪𝚪 ⊢ 𝚲𝚲∘ 𝜶𝜶. 𝒆𝒆 ∶ ∀𝜶𝜶. 𝝉𝝉

So ⊢ (𝑴𝑴 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭) 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎 ∶ 𝐢𝐢𝐢𝐢𝐢𝐢

But 𝑴𝑴 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢𝐢𝐢 𝟎𝟎 ↦∗ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

Unsafety by re-generalization
Let 𝑴𝑴 ≡ 𝝂𝝂𝝂𝝂.𝚲𝚲∘ 𝜶𝜶,𝝀𝝀𝝀𝝀:𝜶𝜶.𝚲𝚲∘ 𝜶𝜶,𝝀𝝀𝒚𝒚:𝜶𝜶.𝒙𝒙

Cause: The same type variable may be
generalized multiple times

Restrictions 𝝂𝝂𝝂𝝂.𝒆𝒆 Open type
abstractions 𝚲𝚲∘⟨𝜶𝜶, 𝒆𝒆⟩

𝚪𝚪,𝜶𝜶 ⊢ 𝒆𝒆 ∶ 𝝉𝝉
𝚪𝚪 ⊢ 𝝂𝝂𝝂𝝂.𝒆𝒆 ∶ 𝝉𝝉

𝚪𝚪 ⊢ 𝒆𝒆 ∶ 𝝉𝝉 𝜶𝜶 ∈ 𝚪𝚪
𝚪𝚪 ⊢ 𝚲𝚲∘ 𝜶𝜶. 𝒆𝒆 ∶ ∀𝜶𝜶. 𝝉𝝉

Solution: Using affine typing to enforce
type variables are generalized only once

What has been obtained

Implicit System F 𝚲𝚲𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨
⋅

Type safe

⟹
Type safe

(System F w/ 𝝂𝝂 + 𝚲𝚲∘
+ affine typing)

CPS trans.

Other topics covered in the paper
Details of 𝚲𝚲𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 and the CPS transformation

Meaning preservation of the CPS transformation

Parametricity of 𝚲𝚲𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨

Conclusion

This work addressed implicit System F as a first step
Proposed a new CPS target language with

restrictions, open type abstractions, and affine types

Future work: support for other features
Effects
Other binding constructs under which evaluation proceeds

(e.g., staged computation)

Challenging to obtain type-preserving CPS transformation
for implicit polymorphism w/o value restriction

	CPS Transformation with Affine Types for Implicit Polymorphism
	CPS transformation
	CPS transformation
	CPS transformation with type preservation
	CPS transformation for polymorphism
	This work
	Review: CPS transformation
	Factorizing CPS transformation [Danvy’92]
	Factorizing CPS transformation [Danvy’92]
	Redex lifting as source-level reduction [Sabry+’92]
	Redex lifting as source-level reduction [Sabry+’92]
	Problem: redex lifting in implicit polymorphism
	Key idea of our solution
	Examples
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	Solution: redex lifting with 𝝂 and 𝚲 ∘
	What could be obtained
	Unsafety by re-generalization
	Unsafety by re-generalization
	What has been obtained
	Other topics covered in the paper
	Conclusion

