
95

CPS Transformation with Affine Types for Call-By-Value
Implicit Polymorphism

TARO SEKIYAMA, National Institute of Informatics, Japan

TAKESHI TSUKADA, Chiba University, Japan

Transformation of programs into continuation-passing style (CPS) reveals the notion of continuations, enabling

many applications such as control operators and intermediate representations in compilers. Although type

preservation makes CPS transformation more beneficial, achieving type-preserving CPS transformation for

implicit polymorphismwith call-by-value (CBV) semantics is known to be challenging.We identify the difficulty

in the problem that we call scope intrusion. To address this problem, we propose a new CPS target language

Λopen
that supports two additional constructs for polymorphism: one only binds and the other only generalizes

type variables. Unfortunately, their unrestricted use makes Λopen
unsafe due to undesired generalization

of type variables. We thus equip Λopen
with affine types to allow only the type-safe generalization. We

then define a CPS transformation from Curry-style CBV System F to type-safe Λopen
and prove that the

transformation is meaning and type preserving. We also study parametricity of Λopen
as it is a fundamental

property of polymorphic languages and plays a key role in applications of CPS transformation. To establish

parametricity, we construct a parametric, step-indexed Kripke logical relation for Λopen
and prove that it

satisfies the Fundamental Property as well as soundness with respect to contextual equivalence.

CCS Concepts: • Mathematics of computing → Lambda calculus; • Software and its engineering →
Functional languages; Control structures; Polymorphism.

Additional Key Words and Phrases: continuation-passing style, polymorphism, affine types, parametricity

ACM Reference Format:
Taro Sekiyama and Takeshi Tsukada. 2021. CPS Transformation with Affine Types for Call-By-Value Implicit

Polymorphism. Proc. ACM Program. Lang. 5, ICFP, Article 95 (August 2021), 30 pages. https://doi.org/10.1145/
3473600

1 INTRODUCTION
1.1 Background: CPS Transformation for Implicit Polymorphism
Transformation of programs into continuation-passing style (CPS) is a technique to reveal the

notion of continuations [Reynolds 1993], enabling many applications such as the enforcement

of specific evaluation strategies [Plotkin 1975; Reynolds 1972], control operators [Biernacki et al.

2015; Danvy and Filinski 1990; Felleisen et al. 1986; Hillerström et al. 2017; Reynolds 1972], and

intermediate representations (IRs) in compilers [Appel 1992; Cong et al. 2019; Fluet and Weeks 2001;

Kennedy 2007; Leißa et al. 2015]. Although the study of CPS transformation initially focused on its

semantics—specifically, the meaning-preserving aspects—with little attention on its typing [Fischer

1972; Plotkin 1975; Reynolds 1972], type-preserving CPS transformation has been proven beneficial

since its discovery by Meyer and Wand [1985] in the simply typed setting. For example, type-

preserving CPS transformation guides type systems for control operators [Danvy and Filinski

Authors’ addresses: Taro Sekiyama, tsekiyama@acm.org, National Institute of Informatics, Japan; Takeshi Tsukada, tsukada@

math.s.chiba-u.ac.jp, Chiba University, Japan.

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/8-ART95

https://doi.org/10.1145/3473600

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-9286-230X
HTTPS://ORCID.ORG/0000-0002-2824-8708
https://doi.org/10.1145/3473600
https://doi.org/10.1145/3473600
https://orcid.org/0000-0001-9286-230X
https://orcid.org/0000-0002-2824-8708
https://doi.org/10.1145/3473600
https://creativecommons.org/licenses/by/4.0/

95:2 Taro Sekiyama and Takeshi Tsukada

1989; Kameyama and Yonezawa 2008], enables typed CPS IRs in compilers, which are useful for

optimization, debugging, and certification of generated assembly/machine code [Morrisett et al.

1999], and is key in certain program verification techniques [Kobayashi 2013]. Addressing more

programming features enables more programming languages to avail these advantages.

In this work, we address a long-standing open problem with CPS transformation: whether type-

preserving CPS transformation for implicitly polymorphic call-by-value languages is achievable.

Harper and Lillibridge [1993a] investigated extensions of simply-typed CPS transformation to two

classes of polymorphism—“standard” and “ML-like”—each with call-by-value (CBV) and call-by-

name (CBN) variants. “Standard” polymorphism corresponds to what we call explicit polymorphism,

where type abstraction and application appear explicitly as constructs, as in System F [Girard 1972;

Reynolds 1974], and evaluation does not proceed beneath type abstractions. “ML-like” polymor-

phism is called implicit, where evaluation does proceed beneath type abstractions (or, equivalently

from the semantic perspective, type abstraction and application implicitly appear in source programs

as in Curry-style System F [Leivant 1983]). Harper and Lillibridge provided type-preserving CPS

transformations for both CBV and CBN explicit polymorphism and for CBN implicit polymorphism.

However, their treatment of CBV implicit polymorphism depends on the value restriction [Tofte

1990], i.e., it restricts polymorphic expressions to be values. More significantly, they also showed

that achieving meaning- and type-preserving CBV CPS transformation is difficult even for a pure

language if no restriction is imposed on implicit polymorphism [Harper and Lillibridge 1993b]; we

will discuss a reason of the difficulty in Section 7.

Unfortunately, the dependence on the value restriction in the previous work is not very sat-

isfactory. Since the discovery of the value restriction,
1
many approaches to handling non-value

polymorphic expressions in effectful languages have been proposed [Appel and MacQueen 1991;

Garrigue 2004; Hoang et al. 1993; Kammar and Pretnar 2017; Leroy and Weis 1991; Sekiyama and

Igarashi 2019; Sekiyama et al. 2020]. The dependence on the value restriction prevents languages

with these advanced approaches from receiving the benefits of type-preserving CPS transformation.

For example, OCaml [Leroy et al. 2020] employs the relaxed value restriction [Garrigue 2004] due

to its several advantages over the value restriction. If type-preserving CPS transformation depends

on the value restriction, CPS (or CPS-like) compilers of OCaml could not avail benefits such as

typed IRs and compiler certification.

This problem is pervasive, specifically in languages with type inference, which involve implicit

polymorphism inherently. Further, CBV is also common in languages with imperative (or effectful)

constructs. Both strict languages, such as ML-family ones, and non-strict languages, such as Haskell,

may involve CBV fragments (e.g., via monads in the latter [Peyton Jones and Wadler 1993]). A study

of CPS transformation for CBV implicit polymorphism is valuable for these various languages.

1.2 This Work
Our ultimate, long-term goal is to achieve meaning- and type-preserving CPS transformation for

implicitly polymorphic CBV languages that do not employ the value restriction.

As a first step towards it, this work focuses on Curry-style CBV System F, a pure language with
unrestricted implicit polymorphism. To this end, we must implement the evaluation strategy of

implicit polymorphism via CPS transformation. However, we discover that this requirement causes

the problem that we call scope intrusion, which enables type variables to escape from their scope

and makes defining type-preserving CPS transformation a challenge.

1
The value restriction was originally introduced to resolve the unsoundness issue with polymorphic type systems in the

presence of mutable references.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:3

To address this challenge, we propose a new polymorphic CPS target language Λopen
that

supports two additional constructs for polymorphism: restrictions, which only bind type variables,

and open type abstractions, which only generalize the type variables introduced by the former. These

constructs enable us to solve scope intrusion, but their unrestricted use makes the language unsafe

due to the undesired generalization of type variables. Specifically, without restriction, they would

allow the same type variable to be generalized twice and, as a result, would break the assumption

for type safety that the occurrences of the same type variable should be replaced with the same type.

We prevent this undesired generalization using affine types [Maraist et al. 1995], which can ensure

that type variables are generalized only once.
2
Setting Λopen

as the target, we provide meaning-

and type-preserving CPS transformation for Curry-style CBV System F.

We further study parametricity of Λopen
. Parametricity [Reynolds 1983; Wadler 1989], a funda-

mental property in polymorphic languages, ensures that abstraction is never violated, establishes

powerful reasoning principles, and enhances CPS transformation. For example, parametricity

enables reasoning about CPS-transformed terms [Thielecke 2003, 2004], verified CPS compil-

ers [Ahmed and Blume 2011], and typed CPS IRs for dependently typed languages [Bowman et al.

2018]. Inspired by these applications (and as a sanity check of Λopen
), we construct a parametric,

step-indexed Kripke logical relation for Λopen
and prove that it satisfies the Fundamental Property.

Our logical relation is compatible with term constructors in Λopen
, which further enables us to

prove that it is sound with respect to contextual equivalence [Morris 1969]. These results could

enhance our CPS transformation furthermore, but further investigation is left as future work.

The contributions of this work can be summarized as follows.

• We define a type-safe polymorphic language Λopen
with restrictions, open type abstractions,

and affine types.

• Employing Λopen
as a target, we provide a CPS transformation for Curry-style CBV System F

and prove that it is meaning and type preserving.
3

• We construct a step-indexed Kripke logical relation for Λopen
and prove that it satisfies the

Fundamental Property and soundness with respect to contextual equivalence.

The rest of this paper is organized as follows. Section 2 reviews Curry-style CBV System F, which

is referred to as 𝜆∀𝑣 . Section 3 presents an overview of this work, describing the scope intrusion

problem and how we address it. Section 4 defines the CPS target language Λopen
and Section 5

provides the meaning- and type-preserving CPS transformation from 𝜆∀𝑣 to Λopen
. Section 6 shows a

logical relation for Λopen
and its properties. Section 7 discusses related work and Section 8 concludes.

This paper may omit the formal definitions of certain well-known notions, auxiliary lemmas, and

detailed proofs. The full definitions, lemmas, and proofs are found in the supplementary material.

2 𝜆∀
𝑉
: CURRY-STYLE CBV SYSTEM F

This section introduces 𝜆∀𝑣 , which is the CBV 𝜆-calculus extended with polymorphic types. The

syntax, semantics, and type system of 𝜆∀𝑣 are standard, shown in Figure 1. The remainder of this

section summarizes them to make this paper self-contained.

Syntax. We use the metavariables x, y, z, f , k for variables and 𝛼 , 𝛽 , 𝛾 for type variables. 𝜆∀𝑣 is

parameterized over constants, ranged over by c, and base types, ranged over by 𝜄. Types, ranged

2
We decided to use affine types, not linear types, because affine types are more flexible in that, when we extend the source

language with control operators, they could enable CPS transformation that allows discarding continuations captured by

the control operators, while linear types would require the exact use of the continuations. However, linear types would also

help us attain the objective of this study; a target language with linear typing can be defined as Λopen
.

3
In this work, “meaning preservation” implies that the meaning of a whole program is preserved. Considering meaning

preservation on expressions, as in previous work on compiler certification [Ahmed and Blume 2011], is left for future work.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:4 Taro Sekiyama and Takeshi Tsukada

Syntax
Variables x, y, z, f , k Type variables 𝛼, 𝛽,𝛾 Constants c ::= true | false | 0 | + | ...

Base types 𝜄 ::= bool | int | ... Types 𝜏 ::= 𝛼 | 𝜄 | 𝜏1 → 𝜏2 | ∀𝛼.𝜏
Terms e ::= x | c | 𝜆x .e | e1 e2 Values w ::= x | c | 𝜆x .e

Typing contexts Θ ::= ∅ | Θ, x :𝜏 | Θ, 𝛼

Semantics e1 −→𝐹 e2

c1 c2 −→𝐹 𝜁 (c1, c2) (𝜆x .e) w −→𝐹 e[w/x]
e1 −→𝐹 e′

1

e1 e2 −→𝐹 e′
1
e2

e2 −→𝐹 e′
2

w1 e2 −→𝐹 w1 e′
2

Type system ⊢ Θ Θ ⊢ e : 𝜏

⊢ ∅
⊢ Θ Θ ⊢ 𝜏 x ∉ dom(Θ)

⊢ Θ, x :𝜏
⊢ Θ 𝛼 ∉ dom(Θ)

⊢ Θ, 𝛼

⊢ Θ x :𝜏 ∈ Θ

Θ ⊢ x : 𝜏

⊢ Θ

Θ ⊢ c : ty→ (c)
Θ, x :𝜏1 ⊢ e : 𝜏2

Θ ⊢ 𝜆x .e : 𝜏1 → 𝜏2

Θ ⊢ e1 : 𝜏1 → 𝜏2 Θ ⊢ e2 : 𝜏1
Θ ⊢ e1 e2 : 𝜏2

Θ, 𝛼 ⊢ e : 𝜏
Θ ⊢ e : ∀𝛼.𝜏

Θ ⊢ e : ∀𝛼.𝜏2 Θ ⊢ 𝜏1

Θ ⊢ e : 𝜏2 [𝜏1/𝛼]

Fig. 1. Syntax, semantics, and type system of 𝜆∀𝑣 .

over by 𝜏 , consist of type variables, base types, function types 𝜏1 → 𝜏2, and polymorphic types ∀𝛼.𝜏
(which bind 𝛼 in 𝜏). Terms, ranged over by e, consist of variables, constants, lambda abstractions

𝜆x .e (which bind x in e), and applications e1 e2. Variables, constants, and lambda abstractions are

also called values, ranged over by w. Typing contexts, ranged over by Θ, are finite sequences of
bindings of the form x :𝜏 , which assigns the type 𝜏 to the variable x, or 𝛼 . We write dom(Θ) for the
set of variables and type variables bound by Θ. The notions of free variables and free type variables
are defined as usual. We write ftv(𝜏) for the set of free type variables in the type 𝜏 . A type is closed

if and only if it contains no free type variable. We also write e1 [e2/x] for the term obtained by

substituting e2 for free variable x in e1 in a capture-avoiding manner. Similarly, 𝜏1 [𝜏2/𝛼] is the
type obtained by applying capture-avoiding type substitution [𝜏2/𝛼] to 𝜏1. Note that there are no
syntactic constructs for type abstraction and type application because they appear only implicitly.

Semantics. The semantics is defined by the evaluation relation −→𝐹 , which is a binary relation

over terms. The first two rules in Figure 1 define reduction. The reduction of a constant application

c1 c2 depends on the metafunction 𝜁 , which maps pairs of constants to constants. A function

application (𝜆x .e) w reduces to e[w/x] as usual (𝛽-reduction). It requires the argument w to be a

value because this work considers the CBV semantics. The other two rules determine the subterms

to be reduced, and indicate that the evaluation proceeds from left to right.

Type system. The type system consists of two judgments. Well-formedness judgment ⊢ Θ states

that typing context Θ is well formed, that is, Θ binds the same term and type variable at most once

and assigns a well-formed type to a term variable. A type 𝜏 is well formed under a typing context Θ,
written as Θ ⊢ 𝜏 , if and only if Θ binds all the free type variables in 𝜏 . Typing judgment Θ ⊢ e : 𝜏
states that e is typed at 𝜏 under Θ. All the typing rules are standard. The metafunction ty→ assigns

a closed first-order type of the form 𝜄1 → . . . → 𝜄n → 𝜄n+1 to each constant. We assume that, for

each constant c, the type ty→ (c) is consistent with the denotation given by 𝜁 . More formally, the

following holds for any c1, c2, and 𝜏 : 𝜁 (c1, c2) is well defined and ty→ (𝜁 (c1, c2)) = 𝜏 if and only if

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:5

ty→ (c1) = 𝜄 → 𝜏 and ty→ (c2) = 𝜄 for some 𝜄. A polymorphic type quantifies a type variable that

does not occur free in a typing context, and can be instantiated with a well-formed type.

3 OVERVIEW
This section illustrates scope intrusion, which hinders type-preserving CBV CPS transformation

for unrestricted implicit polymorphism, and then provides an overview of our approach to it.

3.1 Challenge: Scope Intrusion
In contrast with the simplicity of the definition, CPS transformation involves several factors. To

clarify the aspects of CBV CPS transformation that make extension to implicit polymorphism

difficult, we begin by reviewing the factorization of CBV CPS transformation.

Danvy [1992] found that CBV CPS transformation can be factorized into three stages: naming

intermediate results, sequencing computation, and rendering access to continuations explicit. Sabry

and Felleisen [1992] discovered that the first two stages can be expressed in a source language via

two reduction rules on source terms: 𝛽flat, which names intermediate results, and 𝛽lift, which lifts

subterms to be evaluated upward.

Let’s take a close look at 𝛽lift, which is problematic in implicit polymorphism. The rule 𝛽lift
depends on the notion of evaluation contexts, which are a syntactic device to express continuations

in operational semantics [Sabry and Felleisen 1992] and identify subterms to be evaluated. Let E be

an evaluation context. We write: E[e] for the term obtained by filling the hole [] of E with a term

e; and fv (E) for the set of free variables in E. Then, 𝛽lift is expressed by:

E[(𝜆x .e1) e2] =⇒ (𝜆x .E[e1]) e2 (if E ≠ [] and x ∉ fv (E))
(e1 =⇒ e2 means that e1 is reduced to e2). This rule reveals how CPS transformation enforces a

specific evaluation order (determined by evaluation contexts here) independently of the evaluation

strategy in the target language.
4
For simplicity, let e2 be a value w2. Then, 𝛽lift reduces E[(𝜆x .e1) w2]

to (𝜆x .E[e1]) w2. Both CBV and CBN reduce the resulting term to the same term E[e1] [w2/x]
because neither of them evaluates under the 𝜆 nor evaluates the argument value w2 further. In this

way, 𝛽lift enables the redex determined by an evaluation context to be reduced first in both CBV

and CBN. CPS transformation inherently incorporates both 𝛽lift and 𝛽flat [Danvy and Hatcliff 1992;

Sabry and Felleisen 1992]. Thus, 𝛽lift should be type preserving for CPS transformation to be so.

Unfortunately, naive support for implicit polymorphism makes 𝛽lift non-type-preserving. To

demonstrate this, we make type abstraction and application explicit as in System F: we write Λ𝛼.e
and e 𝜏 for explicit type abstractions and applications, respectively. Explicit polymorphism with

these constructs can simulate the semantics of implicit polymorphism by allowing evaluation

contexts in which the holes occur under binders Λ of type variables. For example, Λ𝛼. [] is a

valid evaluation context and, as it allows reduction under the Λ, a term Λ𝛼.((𝜆x .x) (𝜆x .x)) can
be reduced to Λ𝛼.𝜆x .x by 𝛽-reduction. Inspired by Harper and Lillibridge [1993a], we call such

polymorphism ML-like explicit polymorphism.

Consider 𝛽lift in ML-like explicit polymorphism. Because E[Λ𝛼. []] is a valid evaluation context,

𝛽lift would allow the following transformation:

E[Λ𝛼.((𝜆x .e1) e2)] =⇒ (𝜆x .E[Λ𝛼.e1]) e2 (if x ∉ fv (E)) .
This transformation intrudes the scope of the type variable 𝛼 . It is necessary because the eval-

uation context E expects the hole to be filled with a polymorphic term. However, the intrusion

causes two typing issues in the resulting term. The first issue is that the resulting term does not

bind the type variable 𝛼 in e2. The second, more serious issue is that, while the original term binds

4
The other rule 𝛽

flat
is also important for applying 𝛽

lift
to weak head normal forms within lambda abstractions.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:6 Taro Sekiyama and Takeshi Tsukada

the variable x inside the scope of 𝛼 , the resulting term binds it outside the scope of 𝛼 . This change
may make it impossible for x to have the type required for the resulting term to be well typed. For

example, let e1 = id (𝛼 → 𝛼) x, where id is a polymorphic identity function of the type ∀𝛽.𝛽 → 𝛽 .

This term is well typed if and only if x is assigned the type 𝛼 → 𝛼 . The subterm Λ𝛼.((𝜆x .e1) e2) in
the original term can be well typed (if e2 is of 𝛼 → 𝛼), because x is bound within the scope of 𝛼

and, thus, it can be assigned the type 𝛼 → 𝛼 . However, the subterm 𝜆x .E[Λ𝛼.e1] in the resulting

term should be ill typed because the type of x cannot reference 𝛼 .

Note that this scope intrusion problem does not occur if the source language employs the value

restriction or “standard” explicit polymorphism [Harper and Lillibridge 1993a], where all type

abstractions are values and evaluation does not proceed beneath type abstractions, because they

can exclude the evaluation contexts that cause the scope intrusion problem, such as E[Λ𝛼. []].
Harper and Lillibridge [1993a] found that a variant of ML-like explicit polymorphism with CBN

semantics can also exclude the problematic evaluation contexts. However, obtaining such a variant

for CBV is difficult because evaluation beneath type abstractions appears unavoidable there.

3.2 Our Solution
To resolve the scope intrusion problem, we propose new constructs for polymorphism. The con-

structs enable type-preserving CBV CPS transformation, but their unrestricted use is unsafe. We

restrict their use to be safe by introducing affine types. In what follows, we present an overview

of these ideas. We use the metavariable M for terms in a language with the new constructs for

polymorphism to distinguish them from those in System F.

3.2.1 New Constructs: Restriction and Open Type Abstraction. In this section, we informally intro-

duce two constructs: restriction and open type abstraction. A restriction 𝜈𝛼.M simply introduces a

fresh type variable 𝛼 and binds it in the term M . An open type abstraction Λ◦⟨𝛼,M ⟩ generalizes
(but does not bind) the type variable 𝛼 , which may occur free in M . For example, an open type

abstraction Λ◦⟨𝛼, 𝜆x .x ⟩ can be given type ∀𝛼.𝛼 → 𝛼 by assigning the type variable 𝛼 to x and

generalizing it; note that 𝛼 must be bound by an outer 𝜈 . Intuitively, an open type abstraction

Λ◦⟨𝛼,M ⟩ is evaluated to Λ◦⟨𝛼,V ⟩ where V is the evaluation result of the body M , and then to

Λ𝛼.V (thus, explicit type abstractions are still supported). Open type abstractions can generalize

only type variables bound by 𝜈 and not those bound by Λ.
The benefit of using the new constructs is recognized in generalizing type variables in open terms

(i.e., terms containing free variables). For example, consider a term 𝜆x .Λ◦⟨𝛼, id (𝛼 → 𝛼) x ⟩ (recall
that id is of ∀𝛽.𝛽 → 𝛽). This function can be given the type (𝛼 → 𝛼) → ∀𝛼.(𝛼 → 𝛼) by assigning

the type 𝛼 → 𝛼 to x because the body id (𝛼 → 𝛼) x has 𝛼 → 𝛼 and the open type abstraction

generalizes 𝛼 in the body. Note that open type abstractions can generalize type variables in the

types assigned to variables even if the variables are bound outside the open type abstractions. By

contrast, as seen in Section 3.1, a term 𝜆x .Λ𝛼.id (𝛼 → 𝛼) x with ordinary type abstraction cannot

have such a type, because the Λ determines the scope of 𝛼 and x is bound outside of it.

Now, let’s see how the new constructs resolve the scope intrusion problem. First, we express

a context Λ𝛼. [] in a source program by 𝜈𝛼.Λ◦⟨𝛼, [] ⟩ in the target language of transformation.

Thus, the problematic evaluation context E[Λ𝛼. []] is expressed by E[𝜈𝛼.Λ◦⟨𝛼, [] ⟩]. Then, we
can give CPS transformation such that a function application (𝜆x .M1)M2 placed in the hole is lifted

in a type-safe manner. It consists of two steps.

E[𝜈𝛼.Λ◦⟨𝛼, (𝜆x .M1)M2 ⟩] =⇒ 𝜈𝛼. E[Λ◦⟨𝛼, (𝜆x .M1)M2 ⟩] =⇒ 𝜈𝛼. ((𝜆x .E[Λ◦⟨𝛼,M1 ⟩])M2)

where we suppose that 𝛼 and x do not occur free in E. The first step extrudes the 𝜈 onto the top

of the program whereas the second intrudes the Λ◦ under the 𝜆 by considering the evaluation

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:7

context E[Λ◦⟨𝛼, [] ⟩]. We can observe that this new transformation still enforces the evaluation

order determined by evaluation contexts, as follows. The evaluation of a restriction term 𝜈𝛼.M
proceeds by simply evaluating its body M . Thus, the evaluation of the resulting term begins with

the reduction of the redex (𝜆x)M2 if M2 is a value.

This transformation is type preserving. Suppose that the original term is well typed. Then, it is

found that M2 has some type 𝜏2, M1 has some type 𝜏1 under the type assignment that gives x the

type 𝜏2, and E requires the hole to be filled with a term of the polymorphic type ∀𝛼.𝜏1 (in general,

restriction 𝜈𝛼.M has the same type as its body M). In addition, 𝜆x .M1 and M2 must be placed in a

context that binds 𝛼 . Considering the resulting term, the 𝜈 at the top-level binds 𝛼 . Thus, M2 can

be of the type 𝜏2. The application (𝜆x)M2 in the resulting term allows (and requires) the bound

variable x to have the same type as M2; thus, x is assigned 𝜏2. This type assignment allows M1 to

be of the type 𝜏1. Then, the open type abstraction Λ◦⟨𝛼,M1 ⟩ has the polymorphic type ∀𝛼.𝜏1 by
generalizing 𝛼 in the type 𝜏1 of M1. Thus, it can be used to fill the hole of E. The type of the entire
resulting term is the same as that of the original term, which is given by E. Thus, the transformation

is type preserving. Section 5 defines a CBV CPS transformation based on this idea.

3.2.2 Restricting Generalization by Affine Types. Although open type abstractions are key to type-

preserving CBV CPS transformation for implicit polymorphism, their unrestricted use allows type

variables to be generalized more than once, which results in allowing a term that is well typed but

gets stuck. For example, let us consider a termM def

= Λ◦⟨𝛼, 𝜆x .Λ◦⟨𝛼, 𝜆y.x ⟩ ⟩. This term generalizes

the type variable 𝛼 twice and would have the type ∀𝛼.𝛼 → ∀𝛼.(𝛼 → 𝛼) by assigning 𝛼 to both

x and y. This type indicates that application of M to any value returns a polymorphic identity

function. Thus, for example, we can expect that a term (M int 0) bool true is of the type bool and
returns a Boolean value. However, considering the underlying untyped term of M (i.e., eliminating

the Λ◦s), we can find that it would return the first argument value, integer 0. This result indicates

that we can provide a program that is well typed but gets stuck.

In general, the type checking with the standard type abstraction mechanism as in System F

assumes that a type variable is only associated with a single type within its scope by instantiation.

However, the unrestricted use of open type abstractions breaks this assumption: it causes a type

variable to be associated with multiple different types.

Our solution to this problem is to constrain the use of open type abstractions so that every type

variable is generalized at most once. We enforce this constraint using affine types [Maraist et al.

1995], which are a general type-based technique to ensure that a value is not used more than once.

Our type system manages both values and type variables in an affine manner to prevent more than

one open type abstraction from generalizing the same type variable.

4 ΛOPEN: CPS TARGET LANGUAGE
This section defines the target language Λopen

of our CPS transformation. Λopen
is a polymorphic

𝜆-calculus with restrictions, open type abstractions, and affine types as sketched in Section 3.2.

4.1 Syntax
Figure 2 presents the syntax of Λopen

, where polymorphism is made explicit.

Types, ranged over by A, B, C, and D, include type variables, base types, and polymorphic types

as in 𝜆∀𝑣 . The other two type constructors originate from linear logic [Girard 1987] (although the

present work considers affine typing, not linear typing). An affine function type A ⊸ B is given to

functions that produce a value of the type B by referring to argument variables of the type A at
most once. We call variables that can be used at most once affine and those that can be used multiple

times unrestricted. Affine variables can be bound to any value, but unrestricted ones can only be

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:8 Taro Sekiyama and Takeshi Tsukada

Types A, B,C,D ::= 𝛼 | 𝜄 | ∀𝛼.A | A ⊸ B | !A
Terms M ::= x | c | 𝜆x .M | M1 M2 | !M | let !x = M1 inM2 |

𝜈𝛼.M | Λ◦⟨𝛼,M ⟩ | Λ𝛼.M | M A
Uses 𝜋 ::= 0 | 1 | 𝜔
Typing contexts Γ ::= ∅ | Γ, x :

𝜋 A | Γ, 𝛼𝜋

Well-formedness rules ⊢ Γ

⊢ ∅
⊢ Γ Γ ⊢ A x ∉ dom(Γ)

⊢ Γ, x :
𝜋 A

⊢ Γ 𝛼 ∉ dom(Γ) 𝜋 ≠ 𝜔

⊢ Γ, 𝛼𝜋

Typing rules Γ ⊢ M : A
⊢ Γ

Γ ⊢ x : Γ(x) T_Var

⊢ Γ

Γ ⊢ c : ty(c) T_Const

Γ, x :
1 A ⊢ M : B

Γ ⊢ 𝜆x .M : A ⊸ B
T_Abs

Γ1 ⊢ M1 : A ⊸ B Γ2 ⊢ M2 : A
Γ1 + Γ2 ⊢ M1 M2 : B

T_App

⊢ Γ 𝜔Γ ⊢ M : A
Γ ⊢ !M : !A

T_Bang

Γ1 ⊢ M1 : !B Γ2, x :
𝜔 B ⊢ M2 : A

Γ1 + Γ2 ⊢ let !x = M1 inM2 : A
T_LetBang

Γ, 𝛼1 ⊢ M : A Γ ⊢ A
Γ ⊢ 𝜈𝛼.M : A

T_Nu

Γ ⊢ M : ∀𝛼.B Γ ⊢ A
Γ ⊢ M A : B[A/𝛼] T_TApp

Γ1, 𝛼
0, Γ2 ⊢ M : !A

Γ1, 𝛼1, Γ2 ⊢ Λ◦⟨𝛼,M ⟩ : !∀𝛼.A T_Gen

⊢ Γ 𝜔Γ, 𝛼0 ⊢ M : A
Γ ⊢ Λ𝛼.M : ∀𝛼.A T_TAbs

Fig. 2. Syntax and type system of Λopen.

bound to unrestricted values. We deem values affine by default and require values used more than

once to be of an “of-course” type. An of-course type !A is given to unrestricted values of the type A.
Terms, ranged over by M , follow those of the linear 𝜆-calculus [Maraist et al. 1995], augmented

with the constructs for polymorphism. They contain terms from the 𝜆-calculus (variables, constants,

functions, and applications) and terms for operating unrestricted values (!M and let !x = M1 inM2).

An unrestricted term !M ensures that the evaluation result of M is unrestricted by restricting M to

refer only to unrestricted variables. A term let !x = M1 inM2, where x is bound in M2, evaluates M2

after binding the unrestricted variable x to the unrestricted value produced by M1. The remaining

four constructs are for polymorphism. A restriction 𝜈𝛼.M introduces a fresh type variable 𝛼 and

binds it in M . An open type abstraction Λ◦⟨𝛼,M ⟩ generalizes the type variable 𝛼 that may occur

free in M . Note that it does not bind 𝛼 . A type abstraction Λ𝛼.M and type application M A come

from System F. We call type abstractions of this form closed.
We introduce certain syntactic notation as in 𝜆∀𝑣 . We write ftv(A) for the set of free type vari-

ables in the type A. Terms and types obtained by applying capture-avoiding substitution, such as

M1 [M2/x],A1 [A2/𝛼], andM1 [A2/𝛼], are defined as usual, except forM1 [A2/𝛼]: the termM1 [A2/𝛼]
is well defined if and only if 𝛼 is not generalized in M1 (i.e., M1 involves no subterm of the form

Λ◦⟨𝛼,M ′ ⟩) or A2 is a type variable.

4.2 Type System
This section formalizes the type system informally illustrated in Section 3.2. Figure 2 gives the

definition of typing contexts and inference rules for the type system.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:9

Typing contexts, ranged over by Γ, are sequences of bindings of variables coupled with types and

those of type variables. Unlike in 𝜆∀𝑣 , bindings in Λopen
accompany uses [Igarashi and Kobayashi

1997; Turner et al. 1995], ranged over by 𝜋 , which determine the usage of variables and type

variables. A use attached to a variable determines how many times the variable can be referenced.

Variables with the use 0 may never be referenced; those with 1 may be only once; and those with

𝜔 may be any number of times. A use attached to a type variable determines whether it can be

generalized. Type variables with 0 may never be generalized and those with 1 may be only once.

The type system ensures that type variables are not equipped with 𝜔 . Uses given to type variables

restrict the generalization of the type variables but do not restrict references to them. For example,

a type variable 𝛼 occurs in (M 𝛼) 𝛼 twice, but this term can be typechecked ifM has a type ∀𝛽.∀𝛾 .A.
The type system of Λopen

consists of two judgments: well-formedness judgment ⊢ Γ and typing

judgment Γ ⊢ M : A. The well-formedness rules are identical to the rules in 𝜆∀𝑣 except that it

is ensured that the use 𝜔 is never attached to type variables. Figure 2 uses the same notation

as in 𝜆∀𝑣 : dom(Γ) is the set of variables and type variables bound by the typing context Γ; and

Γ ⊢ A def

= ftv(A) ⊆ dom(Γ). We also write Γ1, Γ2 for the concatenation of Γ1 and Γ2.
Typing rules are in a syntax-directed manner. The rule (T_Var) assigns the type Γ(x) to a variable

x; we write Γ(x) for the type A such that x :
𝜋 A ∈ Γ for some 𝜋 ≠ 0. Thus, (T_Var) disallows

reference to variables having the use 0. The premise ⊢ Γ ensures that Γ(x) is uniquely determined.

The rule (T_Const) gives a constant c the type ty(c), which is the same as ty→ (c) except that the
type constructor → is replaced by⊸. The rule (T_App) for applications is standard except for the

use of typing context addition +, which is conventional in some calculi involving linearity [Atkey

2018; Cervesato and Pfenning 1996; Igarashi and Kobayashi 1997; Montagu and Rémy 2009]. It

merges the uses of bindings in two typing contexts, defined as follows.

Definition 1 (Typing Context Addition). The binary operation + on uses is defined as follows:

0 + 𝜋
def

= 𝜋 + 0 def

= 𝜋 𝜔 + 𝜋
def

= 𝜋 + 𝜔
def

= 1 + 1 def

= 𝜔 (for any 𝜋) .

The binary operation + on typing contexts is defined as follows:

∅ + ∅ def

= ∅
(Γ1, x :

𝜋1 A) + (Γ2, x :
𝜋2 A) def

= (Γ1 + Γ2), x :
𝜋1+𝜋2 A

(Γ1, 𝛼𝜋1) + (Γ2, 𝛼𝜋2) def

= (Γ1 + Γ2), 𝛼𝜋1+𝜋2 (if 𝜋1 + 𝜋2 ≠ 𝜔) .

The rule (T_App) builds the typing context in the conclusion judgment by merging the typing

contexts Γ1 for function M1 and Γ2 for argument M2. The definition of use addition indicates that

variables referenced by bothM1 andM2 are equipped with the use𝜔 in the conclusion judgment. By

contrast, it is impossible for bothM1 andM2 to generalize the same type variable. If both generalize

a type variable 𝛼 , the typing contexts Γ1 and Γ2 would assign the use 1 to 𝛼 . However, such typing

contexts cannot be merged because the addition result of the uses for a type variable must not be

𝜔 . This is how the type system prevents the same type variable from being generalized more than

once. The rule (T_Bang) is for unrestricted terms. As unrestricted values may be duplicated, we

prevent them from referring to affine variables and from generalizing affine type variables. The

typing context 𝜔Γ is obtained by changing the use 1 given to bindings in Γ to 0.

Definition 2 (Unrestricted Typing Contexts). Given Γ, a typing context 𝜔Γ is defined by
induction on Γ as follows.

𝜔∅ def

= ∅ 𝜔 (Γ, 𝛼𝜋) def

= 𝜔Γ, 𝛼0

𝜔 (Γ, x :
𝜔 A) def

= 𝜔Γ, x :
𝜔 A 𝜔 (Γ, x :

𝜋 A) def

= 𝜔Γ, x :
0 A (if 𝜋 ≠ 𝜔)

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:10 Taro Sekiyama and Takeshi Tsukada

The premise ⊢ Γ in (T_Bang) ensures that no type variable is assigned 𝜔 in Γ. The rule

(T_LetBang) typechecks a term let !x = M1 inM2. The variable x will be bound to the evaluation

result ofM1. AsM1 is of an of-course type !B, the result should be unrestricted. Thus, (T_LetBang)
allows M2 to refer to x multiple times by assigning the use 𝜔 to x. The uses of other free variables
and free type variables are merged by typing context addition as in (T_App). The rule (T_Nu) is

applied to a restriction 𝜈𝛼.M . Because type variables may be generalized once, the bound type

variable 𝛼 is assigned the use 1. The premise Γ ⊢ A ensures that 𝛼 does not leak outside the binder.

The rule (T_TApp) for type applications is standard, requiring type arguments to be well formed.

The rule (T_Gen) for open type abstractions Λ◦⟨𝛼,M ⟩ requires (1) the typing context Γ1, 𝛼1, Γ2
in the conclusion judgment to assign the use 1 to 𝛼 so that 𝛼 can be generalized, and (2) the typing

context Γ1, 𝛼
0, Γ2 in the premise to assign 0 to 𝛼 for preventing generalization of 𝛼 in M . Further,

(T_Gen) states that the abstraction Λ◦⟨𝛼,M ⟩ is unrestricted. This is necessary for proving type

preservation of CPS transformation. Intuitively, in a resulting term of our CPS transformation, a

polymorphic term is expressed by an open type abstraction. Because terms in 𝜆∀𝑣 are unrestricted, the
open type abstraction must also evaluate to an unrestricted value. The of-course types assigned by

(T_Gen) ensure this requirement, and for consistency, the bodyM is also required to be unrestricted.

The last rule (T_TAbs) typechecks closed type abstractions. The notable point of this rule is

the use of 𝜔Γ in the premise; it means that the body of a closed type abstraction generalizes

no type variable bound outside it. The enforcement of this discipline is key to proving subject

reduction. To see it, assume that closed type abstractions can generalize type variables bound

outside. Then, for example, a closed type abstraction M def

= Λ𝛼.Λ◦⟨ 𝛽, id𝛼 ⟩ would be of a type

∀𝛼.∀𝛽.𝛼 ⊸ 𝛼 (where id is a term of ∀𝛼.𝛼 ⊸ 𝛼). By (T_TApp), type applicationM 𝛽 would be typed

at (∀𝛽.𝛼 ⊸ 𝛼) [𝛽/𝛼] = ∀𝛾 .𝛽 ⊸ 𝛽 for some fresh 𝛾 . Subject reduction means that the reduction

result ofM 𝛽 also has the same type asM 𝛽 . As shown in the next section,M 𝛽 is reduced to the term

Λ◦⟨ 𝛽, id 𝛽 ⟩, which is obtained by simply substituting the argument 𝛽 for 𝛼 in the bodyΛ◦⟨ 𝛽, id𝛼 ⟩ of
M . However, this resulting term is of ∀𝛽.𝛽 ⊸ 𝛽 and cannot have the expected type ∀𝛾 .𝛽 ⊸ 𝛽 . Thus,

subject reduction would not hold if we allow the bodies of closed type abstractions to generalize

type variables that are bound outside of them. Conversely, we can avoid the unsatisfactory situation

by disallowing it. A key lemma for type substitution, which is formulated by Lemma 2 in Section 4.4,

is that, given a type A and a term M of type B, the term M [A/𝛼] has the desired type B[A/𝛼] if M
generalizes no type variable occurring in A. As the use of 𝜔Γ in (T_TAbs) ensures that closed type

abstractions generalize no type variable that occurs in substituted types, we can use this lemma to

prove that reduction of type applications is type preserving.

4.3 Semantics
This section gives the call-by-value, small-step semantics of Λopen

. We start with introducing new

syntactic classes—results, values, evaluation contexts, and extrusion contexts—and then define the

reduction and evaluation relations using them. All the definitions are shown in Figure 3.

4.3.1 New Syntax Classes. Results, ranged over by R, are evaluation results, being values possibly

enclosed by 𝜈-binders. Values, ranged over by V , are constants, lambda abstractions, unrestricted

results, or closed type abstractions. In our semantics, results are first-class, i.e., variables are replaced

by results at run time (hence, our semantics is call-by-result more precisely). Evaluation contexts

are standard in a call-by-value, left-to-right semantics [Felleisen and Hieb 1992].

Extrusion contexts, ranged over by E, are introduced to define the semantics of restrictions: their

evaluation starts with evaluating the bodies and then extrudes the 𝜈-binders upwards if they are

at a redex position. Extrusion contexts identify contexts under which 𝜈-binders are extruded. For

example, an application (𝜈𝛼. 𝜆x .x) 1 can be reduced to 𝜈𝛼. ((𝜆x .x) 1) by extruding the 𝜈-binder

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:11

Results R ::= V | 𝜈𝛼. R Values V ::= c | 𝜆x .M | !R | Λ𝛼.M
Evaluation contexts E ::= [] M2 | R1 [] | let !x = [] inM2 |

Λ◦⟨𝛼, [] ⟩ | [] A | 𝜈𝛼. [] | ! []
Extrusion contexts E ::= [] R2 | Λ◦⟨𝛼, [] ⟩ | [] A

Reduction rules M1 ⇝ M2

c1 (𝜈𝛼. c2) ⇝ 𝜈𝛼. 𝜁 (c1, c2) R_Const (𝜆x .M) R ⇝ M [R/x] R_Beta

let !x = 𝜈𝛼. !R inM ⇝ M [𝜈𝛼. R/x] R_Bang Λ◦⟨𝛼, !R ⟩ ⇝ !Λ𝛼.R R_Closing

(Λ𝛼.M) A ⇝ M [A/𝛼] R_TBeta

Evaluation rules M1 −→ M2

M1 ⇝ M2

M1 −→ M2

E_Red

M1 −→ M2

E[M1] −→ E[M2]
E_Eval

𝛼 ∉ ftv(E)
E[𝜈𝛼. R] −→ 𝜈𝛼. E[R] E_Extr

Fig. 3. Semantics of Λopen.

under the extrusion context [] 1. This mechanism of extrusion can also be seen in the previous

work that handles constructs similar to restrictions [Milner et al. 1992; Montagu and Rémy 2009].

Extrusion contexts are more restrictive than evaluation contexts for the following reasons.

First, it excludes R1 [] and let !x = [] inM2, which are contexts with the hole at argument

positions, because our semantics is call-by-”result”: results at argument positions will be substituted

for variables. Second, we disallow the extrusion of 𝜈-binders beneath the restriction constructor

for preventing meaningless non-terminating computation such as 𝜈𝛼. 𝜈𝛽. R −→ 𝜈𝛽. 𝜈𝛼 . R −→
𝜈𝛼. 𝜈𝛽. R −→ · · · . Third, we disallow the extrusion of 𝜈-binders beneath the !-constructor because

allowing it may result in the violation of the affine discipline. For example, a term !𝜈𝛼. 𝜆x .Λ◦⟨𝛼,M ⟩
would be reduced to 𝜈𝛼. !𝜆x .Λ◦⟨𝛼,M ⟩ if the 𝜈-binder under the !-constructor could be extruded. The
resulting term indicates that the value 𝜆x .Λ◦⟨𝛼,M ⟩ can be duplicated. However, this duplication

causes the type variable 𝛼 to be generalized more than once.

4.3.2 Reduction and Evaluation. The semantics consists of two relations over terms that contain no

free variables (but may contain free type variables): the reduction relation⇝ for basic computation

and the evaluation relation −→ for reducing subterms and extruding 𝜈-binders. They are defined as

the smallest relations satisfying the rules in Figure 3. We write 𝛼 for a sequence of type variables

𝛼1, · · · , 𝛼n and 𝜈𝛼.M for 𝜈𝛼1. · · ·𝜈𝛼n .M when 𝛼 = 𝛼1, · · · , 𝛼n.
The reduction rules for constant, function, and type applications are standard in the 𝜆-calculus

or System F (except for the existence of 𝜈-binders). The rule (R_Bang) for let-expressions comes

from the linear 𝜆-calculus, dropping the !-constructor from substituted results. The substituted

results must retain 𝜈-binders for subject reduction. The rule (R_Closing) converts an open type

abstractionΛ◦⟨𝛼, !R ⟩ to an unrestricted closed type abstraction !Λ𝛼.R, as (T_Gen) indicates. Because
R is unrestricted, it never generalizes type variables bound outside of itself; thus, R satisfies the

requirement that (T_TAbs) imposes on the bodies of well-typed closed type abstractions.

Evaluation subsumes reduction (E_Red). Subterms are evaluated if they are placed under an

evaluation context (E_Eval). The rule (E_Extr) extrudes a 𝜈-binder under an extrusion context

E. The side condition, which uses the notation ftv(E) denoting the set of free type variables in

E, prevents the extruded 𝜈-binder from capturing free type variables in E. This is necessary for

proving subject reduction. To see it, consider a well-typed term M def

= 𝜈𝛼. ((𝜈𝛼. R1) R2) where both

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:12 Taro Sekiyama and Takeshi Tsukada

results R1 and R2 require the type variable 𝛼 to be assigned the use 1; thus, for the termM to be well

typed, the type variable 𝛼 in R1 and 𝛼 in R2 must be bounded by different 𝜈-binders. Let E = [] R2.
Then, eliminating the side condition from (E_Extr) would allow the following reduction:

𝜈𝛼. ((𝜈𝛼. R1) R2) = 𝜈𝛼. E[𝜈𝛼. R1] −→ 𝜈𝛼. 𝜈𝛼 . E[R1] = 𝜈𝛼. 𝜈𝛼 . (R1 R2) .
After the reduction, the type variable 𝛼 in R1 and 𝛼 in R2 are both bounded by the inner 𝜈-binder.

Hence, the reduction result would be ill typed, which implies that subject reduction would not hold.

The side condition on (E_Extr) rejects this undesired reduction because the type variable 𝛼 bound

by the extruded, inner 𝜈-binder occurs in R2, that is, in E. We can evaluate M by alpha-renaming

the type variable 𝛼 bound by the inner or outer 𝜈-binder to a fresh 𝛽 before the extrusion:

𝜈𝛼. ((𝜈𝛼. R1) R2) = 𝜈𝛼. ((𝜈𝛽. R1 [𝛽/𝛼]) R2) −→ 𝜈𝛼. 𝜈𝛽. (R1 [𝛽/𝛼] R2) (where 𝛽 ∉ ftv(R2)) .
In the resulting term, 𝛽 in R1 [𝛽/𝛼] and 𝛼 in R2 are bounded by the different 𝜈-binders as desired.

4.4 Type Soundness
We show type soundness of Λopen

via progress and subject reduction [Wright and Felleisen 1994].

We use the metavariable Δ for typing contexts that consist only of type variable bindings. The

relation −→∗
is the reflexive, transitive closure of −→.

Lemma 1 (Progress). If Δ ⊢ M : A, then M = R for some R; or M −→ M ′ for some M ′.

The proof of subject reduction depends on the following type substitution lemma. We write

Γ [A/𝛼] for a typing context obtained by applying [A/𝛼] to the bindings in Γ.

Lemma 2 (Type substitution). Suppose that 𝜋 = 0 for any 𝛼𝜋 ∈ Γ1. If Γ1 ⊢ A and Γ1, 𝛼
0, Γ2 ⊢

M : B, then Γ1, Γ2 [A/𝛼] ⊢ M [A/𝛼] : B[A/𝛼].
As explained at the end of Section 4.2, this lemma can be proven by ensuring that a term M

involves no open type abstraction that generalizes type variables occurring in a substituted type A.
It is indeed ensured by the condition of the lemma because, while type variables generalized by

open type abstractions must have the use 1, the condition requires that M be typechecked under a

typing context Γ1, 𝛼
0, Γ2 that assigns the use 0 to all the type variables occurring in A (which are in

dom(Γ1)). The type substitution lemma is used for proving that the reduction rule (R_TBeta) for

type application (Λ𝛼.M) A is type preserving. The typing rule (T_TAbs) ensures that the body M
is typechecked under certain typing context 𝜔Δ that assigns only the use 0. Thus, we can apply

the type substitution lemma to prove that M [A/𝛼] has the same type as (Λ𝛼.M) A.
Lemma 3 (Subject Reduction). If Δ ⊢ M1 : A and M1 −→ M2, then Δ ⊢ M2 : A.

Theorem 1 (Type Soundness). If Δ ⊢ M : A and M −→∗ M ′ and there exists no M ′′ such that
M ′ −→ M ′′, then M ′ = R for some R such that Δ ⊢ R : A.

5 CPS TRANSFORMATION FOR CURRY-STYLE CBV SYSTEM F
This section defines a CPS transformation for 𝜆∀𝑣 and proves that it is meaning and type preserving.

5.1 Definition
Figure 4 defines CPS-transformations for types and terms in 𝜆∀𝑣 . J𝜏K and J𝜏Kv transform type 𝜏

of terms and values in 𝜆∀𝑣 to a type in Λopen
, respectively. JΘ ⊢ e : 𝜏K ⇒ R transforms a typing

derivation for Θ ⊢ e : 𝜏 to a result R, defined as the smallest relation satisfying the rules at the

bottom of Figure 4. Notice that it is a total, functional relation between derivations and results.

The transformation J𝜏K shows that a term of type 𝜏 is transformed to a CPS term of the type

∀𝛼.(!J𝜏Kv ⊸ 𝛼) ⊸ 𝛼 for 𝛼 ∉ ftv(𝜏). The resulting type abstracts over answer types, the types of the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:13

Type transformation J𝜏K (for terms) J𝜏Kv (for values)

J𝜏K def

= ∀𝛼.(!J𝜏Kv ⊸ 𝛼) ⊸ 𝛼 (𝛼 ∉ ftv(𝜏))

J𝛼Kv
def

= 𝛼 J𝜄Kv
def

= 𝜄 J𝜏1 → 𝜏2Kv
def

= !J𝜏1Kv ⊸ J𝜏2K J∀𝛼.𝜏Kv
def

= ∀𝛼.J𝜏Kv

Typing derivation transformation JΘ ⊢ e : 𝜏K ⇒ R

⊢ Θ x :𝜏 ∈ Θ

JΘ ⊢ x : 𝜏K ⇒ Λ𝛼.𝜆k.k !x
C_Var

⊢ Θ

JΘ ⊢ c : ty→ (c)K ⇒ Λ𝛼.𝜆k.k Jc : ty→ (c)K C_Const

JΘ, x :𝜏1 ⊢ e : 𝜏2K ⇒ R y is fresh

JΘ ⊢ 𝜆x .e : 𝜏1 → 𝜏2K ⇒ Λ𝛼.𝜆k.k !(𝜆y.let !x = y in R) C_Abs

JΘ ⊢ e1 : 𝜏1 → 𝜏2K ⇒ R1 JΘ ⊢ e2 : 𝜏1K ⇒ R2 x is fresh

JΘ ⊢ e1 e2 : 𝜏2K ⇒ Λ𝛼.𝜆k.R1 𝛼 (𝜆x .R2 𝛼 (𝜆y.let !z = x in z y 𝛼 k)) C_App

JΘ, 𝛽 ⊢ e : 𝜏K ⇒ R
JΘ ⊢ e : ∀𝛽.𝜏K ⇒ Λ𝛼.𝜆k.𝜈𝛽. R 𝛼 (𝜆x .k Λ◦⟨ 𝛽, x ⟩) C_TAbs

JΘ ⊢ e : ∀𝛽.𝜏2K ⇒ R Θ ⊢ 𝜏1

JΘ ⊢ e : 𝜏2 [𝜏1/𝛽]K ⇒ Λ𝛼.𝜆k.R 𝛼 (𝜆x .let !y = x in k !(y J𝜏1Kv))
C_TApp

Fig. 4. CPS transformation.

final outputs (answers) of programs, by the type variable 𝛼 . Meyer and Wand [1985] found that CPS

transformation can be parameterized over answer types, that is, it does not require specific answer

types but it shares an answer type during the transformation of a program. By contrast, our CPS

transformation makes answer types polymorphic [Thielecke 2003]. We could define type-preserving

CPS transformation that is parameterized over answer types as in Meyer and Wand. However,

answer type polymorphism makes it easier to prove that our CPS transformation preserves the

meanings of source terms of function types as well as those of base types. We will discuss this at

the end of the next section. The CPS type J𝜏K also indicates that CPS terms invoke continuations

of the type !J𝜏Kv ⊸ 𝛼 at most once. This reflects the fact that pure terms use continuations

only linearly [Berdine et al. 2001, 2002; Hasegawa 2002]. This linearity is crucial in transforming

polymorphic terms, as seen later. The argument type !J𝜏Kv of continuations indicates that they may

duplicate the evaluation results of the terms. This reflects that any value in 𝜆∀𝑣 is unrestricted.

The transformation J𝜏Kv for a type 𝜏 of values follows Harper and Lillibridge [1993b]. The trans-

formation of polymorphic types reflects the fact that, in implicit polymorphism, type application of a

polymorphic value triggers no computation and simply returns a value. The transformation of func-

tion types utilizes the standard encoding of unrestricted function types through the combination of

affine function and of-course types [Girard 1987].

The transformation rules for JΘ ⊢ e : 𝜏K ⇒ R follow certain conventions. First, they suppose

that variable k, which denotes continuations, never appears in source terms. Second, they produce

CPS terms abstracting over answer types. Third, because continuations require arguments of an

of-course type, CPS terms wrap expressions passed to continuations using the !-constructor, and

remove the outermost !-constructor wrapping arguments of continuations by let when using them.

Now, let’s take a closer look at the transformation rules. The rule (C_Var) transforms a variable

x to 𝜆k.k !x, where x is wrapped by the !-constructor. This is valid because all variables appearing

in source terms are given the use 𝜔 in the CPS image. The rule (C_Const) produces a CPS term

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:14 Taro Sekiyama and Takeshi Tsukada

that provides continuations with the CPS counterpart Jc : ty→ (c)K of the eta-expansion result of

a constant c. In general, Jc : ty→ (c)K has the type !Jty→ (c)Kv as expected by the continuations

of c. We omit the full definition of Jc : ty→ (c)K because it would not be novel and is tedious.

Interested readers are referred to the supplementary material. The rule (C_Abs) transforms lambda

abstractions. The CPS function 𝜆y.let !x = y inR first binds the unrestricted variable x to an

argument and then proceeds to R corresponding to the body of a lambda abstraction. The rule

(C_App) defines CPS transformation of applications in CBV semantics [Plotkin 1975; Reynolds

1972]. As CPS terms are polymorphic for answer types, the CPS counterparts R1 and R2 of the
subterms, as well as the CPS term returned by the application z y, are applied to the answer type

variable 𝛼 . The rule (C_TApp) handles type instantiation, producing a CPS term that instantiates

the evaluation result of a polymorphic term. The type argument 𝜏1 is transformed to J𝜏1Kv because
type variables in the CPS image are supposed to range over CPS value types.

The rule (C_TAbs) for polymorphic terms is the crux of our CPS transformation. It is applied

to a derivation for a typing judgment Θ ⊢ e : ∀𝛽.𝜏 with the premise Θ, 𝛽 ⊢ e : 𝜏 , and it produces

a well-typed CPS term of J∀𝛽.𝜏K = ∀𝛼.(!(∀𝛽.J𝜏Kv) ⊸ 𝛼) ⊸ 𝛼 . Here, we show informally that the

produced CPS term is indeed of the type; refer to the next section for the formal statement and to

the supplementary material for the complete proof. For simplicity, suppose that Θ is empty (we will

consider nonempty typing contexts in the next section). Let R be a result such that J𝛽 ⊢ e : 𝜏K ⇒ R.
Then, we must show that

∅ ⊢ Λ𝛼.𝜆k.𝜈𝛽. R 𝛼 (𝜆x .k Λ◦⟨ 𝛽, x ⟩) : ∀𝛼.(!(∀𝛽.J𝜏Kv) ⊸ 𝛼) ⊸ 𝛼 .

Let Γ be a typing context 𝛼0, k :
1
!(∀𝛽.J𝜏Kv) ⊸ 𝛼 . Because term e only references type variable 𝛽 ,

we can suppose R to be of the type J𝜏K = ∀𝛼.(!J𝜏Kv ⊸ 𝛼) ⊸ 𝛼 under the typing context 𝜔Γ, 𝛽0.
Then, noting 𝜔Γ + Γ = Γ, we can construct the following derivation for the judgment in question:

...
T_TApp

𝜔Γ, 𝛽0 ⊢ R 𝛼 : (!J𝜏Kv ⊸ 𝛼) ⊸ 𝛼

D
T_Abs

Γ, 𝛽1 ⊢ 𝜆x .k Λ◦⟨ 𝛽, x ⟩ : !J𝜏Kv ⊸ 𝛼
T_App

Γ, 𝛽1 ⊢ R 𝛼 (𝜆x .k Λ◦⟨ 𝛽, x ⟩) : 𝛼
T_TAbs, T_Abs, T_Nu

∅ ⊢ Λ𝛼.𝜆k.𝜈𝛽. R 𝛼 (𝜆x .k Λ◦⟨ 𝛽, x ⟩) : ∀𝛼.(!(∀𝛽.J𝜏Kv) ⊸ 𝛼) ⊸ 𝛼

where the remaining derivation D is

T_Var

Γ, 𝛽0, x :
0
!J𝜏Kv ⊢ k : !(∀𝛽.J𝜏Kv) ⊸ 𝛼

T_Var

𝜔Γ, 𝛽0, x :
1
!J𝜏Kv ⊢ x : !J𝜏Kv

T_Gen

𝜔Γ, 𝛽1, x :
1
!J𝜏Kv ⊢ Λ◦⟨ 𝛽, x ⟩ : !∀𝛽.J𝜏Kv

T_App

Γ, 𝛽1, x :
1
!J𝜏Kv ⊢ k Λ◦⟨ 𝛽, x ⟩ : 𝛼

Further, we can observe that (C_TAbs) accurately reflects the semantics of implicit polymorphism

because the entire CPS term and R obtained from the premise are computationally equivalent

modulo type annotations. In the next section, we formalize this idea to show meaning preservation

of the CPS transformation.

5.2 Preservation Properties
This section investigates typing and semantic properties of the CPS transformation. In particular,

we show that it preserves the type and meaning of a source term. The full proofs of the statements

presented in this section are found in the supplementary material.

First, we show that the CPS transformation is type preserving. We define transformation JΘK of
typing contexts Θ as: J∅K def

= ∅; JΘ, x :𝜏K def

= JΘK, x :
𝜔 J𝜏Kv; and JΘ, 𝛼K def

= JΘK, 𝛼0
.

Lemma 4. If JΘ ⊢ e : 𝜏K ⇒ R, then JΘK ⊢ R : J𝜏K.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:15

Proof. By induction on the derivation of JΘ ⊢ e : 𝜏K ⇒ R. □

Theorem 2 (Type Preservation of CPS Transformation). If Θ ⊢ e : 𝜏 , then there exists some
R such that JΘ ⊢ e : 𝜏K ⇒ R and JΘK ⊢ R : J𝜏K.

Proof. By Lemma 4, it suffices to show that, if Θ ⊢ e : 𝜏 , then JΘ ⊢ e : 𝜏K ⇒ R for some R. This
is easy to show because there is a one-to-one correspondence between the typing rules in 𝜆∀𝑣 and

the CPS transformation rules. □

Next, we show meaning preservation, a formal property stating that the CPS-transformed

program behaves equivalently to a source program. To this end, we begin by defining type erasure,

which translates terms in Λopen
to the untyped 𝜆-calculus by erasing type annotations. Type erasure

makes it possible to relate terms produced by our CPS transformation and those by (a variant of)

the CBV CPS transformation given by Plotkin [1975]. Then, we show meaning preservation of our

CPS transformation via that of Plotkin’s CPS transformation.

Definition 3 (Type Erasure). Type erasure erase(M) is a function that translates terms M in
Λopen to untyped terms in 𝜆∀𝑣 , defined by induction on M as follows.

erase(x) def

= x erase(c) def

= c

erase(𝜆x .M) def

= 𝜆x .erase(M) erase(M1 M2)
def

= erase(M1) erase(M2)
erase(!M) def

= erase(M) erase(let !x = M1 inM2)
def

= (𝜆x .erase(M2)) erase(M1)
erase(𝜈𝛼.M) def

= erase(M) erase(Λ◦⟨𝛼,M ⟩) def

= erase(M)
erase(Λ𝛼.M) def

= erase(M) erase(M A) def

= erase(M)

Type erasure is meaning preserving. We write −→∗
𝐹
for the reflexive, transitive closure of −→𝐹 .

A term M is erasable if and only if, for any closed type abstraction Λ𝛼.M ′
in M , the body M ′

is a

result.

Theorem 3 (Meaning Preservation of Type Erasure). Suppose that M is erasable.
(1) If M −→∗ M ′, then erase(M) −→∗

𝐹
erase(M ′). Furthermore, if M ′ is a result, then erase(M ′)

is a value.
(2) If Δ ⊢ M : A and erase(M) −→∗

𝐹
e, then M −→∗ M ′ for some M ′ such that erase(M ′) = e.

Furthermore, if e = w, then M ′ −→∗ R for some R such that erase(R) = w.

The second case in Theorem 3 assumes that M is well typed because there is an ill-typed term M
such that M gets stuck but erase(M) does not (for example, consider M = (𝜆x .x) int).
Now, we relate our CPS transformation to a variant L · M of Plotkin’s CBV CPS transformation

for the untyped 𝜆-calculus. The only difference between L · M and Plotkin’s transformation is the

treatment of functional constants. The former transforms a constant c of the type ty→ (c) at
translation time—we express such transformation by L c : ty→ (c) M, which returns CPS functions if

c is a functional constant, as Jc : ty→ (c)K. By contrast, the latter supposes that the transformation

of functional constants is performed at run time (specifically, when the constants are applied). This

is because we assume that the types of constants are known statically, while Plotkin worked in an

untyped setting, where the types of constants are unknown. Nonetheless, the CPS terms obtained

by the two transformations are semantically equivalent, and thus L · M is considered to enjoy the

semantic properties of Plotkin’s CBV CPS transformation. Except for the handling of functional

constants, L · M is given a standard definition as in Plotkin [1975]. Hence, we omit its definition in

the paper; see the supplementary material for details. We define the full CBV 𝛽𝜂-reduction Z=⇒𝛽𝜂𝑣

as follows: e1 Z=⇒𝛽𝜂𝑣 e2 if and only if e2 is obtained by reducing a subterm (possibly under a 𝜆) in e1

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:16 Taro Sekiyama and Takeshi Tsukada

with CBV 𝛽-reduction (𝜆x .e) w⇝ e[w/x] or CBV 𝜂-reduction (𝜆x .w x) ⇝ w where x does not

occur free in w. We write Z=⇒∗
𝛽𝜂𝑣

for the reflexive, transitive closure of Z=⇒𝛽𝜂𝑣 .

Lemma 5. If JΘ ⊢ e : 𝜏K ⇒ R, then erase(R) Z=⇒∗
𝛽𝜂𝑣

L e M.

Thus, the untyped CPS programs erase(R) (𝜆x .x) and L e M (𝜆x .x) are related by Z=⇒∗
𝛽𝜂𝑣

. The

following lemma proves that their evaluation results are equivalent modulo Z=⇒∗
𝛽𝜂𝑣

. A term e gets
stuck if and only if there exists a term e′ such that (1) e −→∗

𝐹
e′, (2) e′ does not take a further

evaluation step, and (3) e′ is not a value.

Lemma 6.

(1) If e1 Z=⇒∗
𝛽𝜂𝑣

e2 and e2 −→∗
𝐹
w2 and e1 does not get stuck, then there exists some w1 such that

e1 −→∗
𝐹
w1 and w1 Z=⇒∗

𝛽𝜂𝑣
w2.

(2) If e1 Z=⇒∗
𝛽𝜂𝑣

e2 and e1 −→∗
𝐹
w1, then there exists some w2 such that e2 −→∗

𝐹
w2 and w1 Z=⇒∗

𝛽𝜂𝑣
w2.

Lemma 6 (1) would not hold without the condition that e1 does not get stuck. For example, consider

e1 = succ (𝜆x .1 x) and e2 = succ 1. We can find e1 Z=⇒𝛽𝜂𝑣 e2 and e2 −→𝐹 2, but the non-value term

e1 cannot be evaluated further.

The last auxiliary property is meaning preservation of L · M, taken from Plotkin [1975]. The

function Ψ converts values in 𝜆∀𝑣 into CPS, defined as: Ψ(c) def

= L c : ty→ (c) M and Ψ(𝜆x .e) def

= 𝜆x .L e M.

Corollary 1 (Meaning preservation of L · M).
(1) if e −→∗

𝐹
w, then L e M (𝜆x .x) −→∗

𝐹
Ψ(w).

(2) if L e M (𝜆x .x) −→∗
𝐹
w ′, then e −→∗

𝐹
w for some w such that w ′ = Ψ(w).

Proof. By the indifference and simulation properties of L · M, and the equivalence of the small-step

and big-step CBV semantics for 𝜆∀𝑣 . These properties have been proven by Plotkin [1975]. □

Finally, we show meaning preservation of our CPS transformation. We write w ⇒ R if and

only if erase(R) Z=⇒∗
𝛽𝜂𝑣

Ψ(w); this relates the evaluation result of a term in 𝜆∀𝑣 and that of its CPS

counterpart in Λopen
.

Theorem 4 (Meaning Preservation of CPS Transformation). Suppose that J∅ ⊢ e : 𝜏K ⇒ R.

(1) If e −→∗
𝐹
w, then R !J𝜏Kv (𝜆x .x) −→∗ R′ for some R′ such that w ⇒ R′.

(2) If R !J𝜏Kv (𝜆x .x) −→∗ R′, then e −→∗
𝐹
w for some w such that w ⇒ R′.

Proof. First, we note that application of Theorem 3 in this proof requires R to be erasable, which

is easily shown from the definition of the CPS transformation.

(1) By Lemma 5, erase(R) (𝜆x .x) Z=⇒∗
𝛽𝜂𝑣

L e M (𝜆x .x). By Corollary 1 (1) with the assumption,

L e M (𝜆x .x) −→∗
𝐹
Ψ(w). Because ∅ ⊢ R !J𝜏Kv (𝜆x .x) : !J𝜏Kv by Lemma 4, we can show that

erase(R !J𝜏Kv (𝜆x .x)) = erase(R) (𝜆x .x) does not get stuck using Theorem 3 (with a few aux-

iliary lemmas). Hence, by Lemma 6 (1), there exists somew ′
such that erase(R) (𝜆x .x)−→∗

𝐹
w ′

and w ′ Z=⇒∗
𝛽𝜂𝑣

Ψ(w). By Theorem 3, R !J𝜏Kv (𝜆x .x) −→∗ R′
for some R′

such that erase(R′) =

w ′
. As erase(R′) = w ′ Z=⇒∗

𝛽𝜂𝑣
Ψ(w), we have w ⇒ R′

.

(2) By Lemma 5, erase(R) (𝜆x .x) Z=⇒∗
𝛽𝜂𝑣

L e M (𝜆x .x). By Theorem 3 with the assumption, we

have erase(R) (𝜆x .x) −→∗
𝐹
erase(R′). As erase(R′) is a value, there exists some w ′

such that

L e M (𝜆x .x) −→∗
𝐹
w ′

and erase(R′) Z=⇒∗
𝛽𝜂𝑣

w ′
by Lemma 6 (2). By Corollary 1 (2), e −→∗

𝐹
w for

some w such that w ′ = Ψ(w). As erase(R′) Z=⇒∗
𝛽𝜂𝑣

w ′ = Ψ(w), we have w ⇒ R′
. □

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:17

The proof of Theorem 4 (1) utilizes answer type polymorphism to show that R !J𝜏Kv (𝜆x .x) is
well typed. If we were to adapt answer type parameterization, this property—the application of R to

𝜆x .x is well typed—would be more difficult to show. To see it, suppose R to be produced by CPS

transformation parameterized over answer types. Then, R would be of the type (!J𝜏Kv ⊸ 𝛼) ⊸ 𝛼 ,

in which 𝛼 is an answer type parameter. One may expect that the application R (𝜆x .x) can be

well typed by instantiating 𝛼 with !J𝜏Kv. This instantiation would make R typed at ((!J𝜏Kv ⊸
𝛼) ⊸ 𝛼) [!J𝜏Kv/𝛼] = (!J𝜏Kv [!J𝜏Kv/𝛼] ⊸ !J𝜏Kv) ⊸ !J𝜏Kv. However, !J𝜏Kv [!J𝜏Kv/𝛼] and !J𝜏Kv would
be different if 𝜏 is a function type, because then !J𝜏Kv would involve the parameter 𝛼 . Thus, the

instantiation of 𝛼 to !J𝜏Kv could not make R (𝜆x .x) well typed in general. Unfortunately, we could

not find type instantiation that generally makes R (𝜆x .x) well typed. Note that R (𝜆x .x) could
be well typed if the type 𝜏 of the program involves no function type. However, allowing 𝜏 to

involve function types provides a more accurate, general relationship between direct style and CPS

semantics, and it is indeed established by using answer type polymorphism.

6 LOGICAL RELATION AND PARAMETRICITY
This section defines a parametric, step-indexed Kripke logical relation for Λopen

and proves that it

satisfies the Fundamental Property and soundness with respect to contextual equivalence.

6.1 Main Idea
We construct a Kripke logical relation, which is a logical relation indexed by possible worlds [Pitts
and Stark 1993]. Kripke logical relations enable reasoning principles that exploit constraints on

run-time environments, such as heap invariants, and worlds keep track of the constraints on the

states of related terms. In the present work, worlds track type variables that may occur free in

related terms as well as type substitutions for them.

Because running terms in Λopen
may contain free type variables bound by 𝜈 , our logical relation

is defined for such terms. To track type variables that may be referenced by related terms, worlds

contain typing contexts Δ that include only type variables. Typing contexts in worlds are used

not only to determine type variables that related terms may reference, but also to build contexts

under which related terms are tested. For example, consider checking that terms M1 and M2 are

logically related at a function type A ⊸ B. A common approach to the checking is to test whether

applications M1 M ′
1
and M2 M ′

2
are logically related for any arguments M ′

1
and M ′

2
that are logically

related at the argument type A. In our logical relation, the construction of the test arguments M ′
1

and M ′
2
is constrained not only by the argument type A but also by a typing context under which

M1 and M2 should be related. For example, if M1 and M2 should be related under typing context

𝛼1
, then it suffices to consider only arguments M ′

1
and M ′

2
that are well typed under 𝛼0

, because

otherwise M1 M ′
1
and M2 M ′

2
may result in being ill typed. Considering the uses of type variables

enables the exclusion of invalid contexts.

As usual in the work on parametricity [Reynolds 1983], worlds also include interpretations 𝜌

that map type variables 𝛼 (that were bound by Λ) to triples of the form (A1,A2, 𝑟). The types A1 and

A2 are those substituted for 𝛼 during the evaluation of related terms, respectively. The relation 𝑟 is

a relational interpretation of 𝛼 , determining which results are related at the type 𝛼 . Logical relations

for languages with parametricity relate values V1 and V2 of a polymorphic type ∀𝛼.A if and only

if, for any types B1 and B2 and any relational interpretation 𝑟 , type applications V1 B1 and V2 B2
are related at the type A under the interpretation that maps 𝛼 to (B1, B2, 𝑟). The flexibility on the

choice of B1, B2, and 𝑟 ensures that polymorphic values behave independently of type arguments

and enables powerful reasoning principles such as free theorems [Wadler 1989].

A key ingredient of Kripke logical relations is a world extension relation ⊒, which tracks the

possible transition of program states represented by worlds. When a world W1 may evolve into

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:18 Taro Sekiyama and Takeshi Tsukada

W2 (which is written W2 ⊒ W1), terms related in the world W1 may be involved in the state of W2.

Thus, a Kripke logical relation is required to be monotonic under ⊒. A carefully designed world

extension relation enables us to prove that evaluation preserves desired invariants on related terms.

Following the semantics in Λopen
, our world extension relation allows worlds to be extended

in three ways. First, it allows typing contexts to contain more type variables over time, because

substitution may place terms under 𝜈- or Λ-binders, that is, where more type variables may be

referenced. Second, it allows the uses of type variables in typing contexts to increase over time. For

example, consider a term 𝜈𝛼. ((𝜆x .x) R). The result R may be typechecked under a typing context

𝛼0
, but the evaluation produces the term 𝜈𝛼. R in which R is typechecked under 𝛼1

. Allowing the

increase of the uses acknowledges this computation. Third, the world extension relation allows an

interpretation 𝜌 to additionally map type variables of the use 0 in the current world. This comes

from the run-time nature of Λopen
that type variables with the use 0 may result in being bound by

closed type abstractions as computation proceeds, and thus may be replaced by some types. For

example, consider a term 𝜈𝛼.Λ◦⟨𝛼, !R ⟩ in which the type variable 𝛼 is bound by 𝜈 and is assigned

the use 0 in typechecking result R. This term is evaluated to 𝜈𝛼. !Λ𝛼.R, in which the occurrences of

𝛼 in R are bound by Λ. Thus, R in the original term must be parametric over type substitutions and

relational interpretations to 𝛼 . This is ensured by allowing interpretations 𝜌 to grow.

However, this world extension—specifically, the growth of interpretations 𝜌—causes a circularity

problem in the construction of a compositional logical relation. Compositionality is a key property

of logical relations that establish parametricity, stating that the logical relation RJA[B/𝛼]K at

type A[B/𝛼] is equivalent to the logical relation RJAK in a world where RJBK is the relational
interpretation of the type variable 𝛼 . The problem is that, while a world needs to involve the logical

relation RJBK as a relational interpretation, what results are in RJBK also depends on a world. This

indicates the need of solving the following recursive equations with a problem of circularity:

World = TypCtx × (TyVar → Type × Type × Rel)
Rel = World → P(Res × Res)

where TypCtx, TyVar, Type, and Res are the sets of all typing contexts, type variables, types, and
results, respectively. Worlds must involve relational interpretations (which are in Rel) because they
may grow over time (see the above example). Note that logical relations for polymorphic languages

only with closed type abstractions, as System F, can avoid this circularity by restricting running

terms to be closed. Under this restriction, interpretations 𝜌 need not grow while computation

proceeds, and relational interpretations can be separated from worlds. By contrast, we need to

address this problem due to the existence of open type abstractions.

A well-known approach to addressing circularity in Kripke logical relations is to stratify circular

definitions with natural numbers called step indices [Ahmed 2006; Appel and McAllester 2001].

Intuitively, a step index is the number of the computation steps for which related terms must

behave similarly. Step-indexed Kripke logical relations involve steps in worlds and decrease them

as computation proceeds. The present work constructs a step-indexed Kripke logical relation to

avoid the circularity between worlds and relational interpretations.

6.2 Formal Definition
This section provides the formal definition of our logical relation. We first explain auxiliary defini-

tions in Figure 5 and then the logical relation in Figure 6. Hereinafter, we identify typing contexts

Δ1 and Δ2 up to permutation (i.e., Δ, 𝛼𝜋1 , 𝛽𝜋2 ,Δ′
is identical with Δ, 𝛽𝜋2 , 𝛼𝜋1 ,Δ′

) for simplifying the

technical development. Because Δ contains only type variables, this identification does not change

typability of terms. A use 𝜋 is larger than or equal to 𝜋 ′
, written 𝜋 ≥ 𝜋 ′

, if and only if 𝜋 = 𝜋 ′ + 𝜋0
for some 𝜋0. We use the metavariable S to denote sets of type variables and write S1 # S2 if and only

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:19

Atom [Δ,A1,A2]
def

= {(M1,M2) | Δ ⊢ M1 : A1 ∧ Δ ⊢ M2 : A2}
Atom

res [Δ,A1,A2]
def

= {(R1, R2) | (R1, R2) ∈ Atom [Δ,A1,A2]}
Atom [W ,A] def

= Atom [W .Δ,W .𝜌
fst
(A),W .𝜌

snd
(A)]

Worldn
def

= {(m, Δ, 𝜌) ∈ Nat × TypCtx × (TyVar ⇀ Type × Type × Relm) |
m < n ∧ ⊢ (m, Δ, 𝜌)}

Reln
def

=
⋃

A1,A2

Reln [A1,A2]
Reln [A1,A2]

def

= {𝑟 ∈ (W : Worldn) ⇀ P(Atomres [W .Δ,W .𝜌
fst
(A1),W .𝜌

snd
(A2)]) |

∀W1. ∀W2 ⊒ W1. ∀ (R1, R2) ∈ 𝑟 (W1). (R1, R2)W2
∈ 𝑟 (W2)

∧ ∀W , 𝜌 . 𝜌 ⊎W ∈ dom(𝑟) ∧ dom(𝜌) # ftv(A1) ∧ dom(𝜌) # ftv(A2)
=⇒ 𝑟 (𝜌 ⊎W) ⊆ 𝑟 (W)

∧ ∀W , 𝛼 . {𝛼} # ftv(A1) ∧ {𝛼} # ftv(A2) ∧ ⊢ W
=⇒ ∀ (R1, R2) ∈ 𝑟 (W@𝛼). (𝜈𝛼. R1, 𝜈𝛼 . R2) ∈ 𝑟 (W)

∧ ∀W , 𝛼 . {𝛼}#W
=⇒ ∀ (R1, R2) ∈ 𝑟 (W). (𝜈𝛼. R1, R2) ∈ 𝑟 (W) ∧ (R1, 𝜈𝛼 . R2) ∈ 𝑟 (W) }

S#W def

= S # dom(W .Δ) ∧ S # dom(W .𝜌)
𝜌 ⊎W def

= (W .𝑛, W .Δ, 𝜌 ⊎W .𝜌) (if dom(𝜌)#W)

𝜔W def

= (W .𝑛, 𝜔 (W .Δ), W .𝜌)
W@𝛼

def

= (W .𝑛, (W .Δ, 𝛼1), W .𝜌) (if {𝛼}#W)

(n +m, Δ, 𝜌) −m def

= (n, Δ, 𝜌)
▶W def

= W − 1

⊢ W def

= dom(W .𝜌) # dom(W .Δ) ∧ ∀𝛼 ∈ dom(W .𝜌). W ⊢ W .𝜌 (𝛼)
W ⊢ (A1,A2, 𝑟)

def

= W .Δ ⊢ A1 ∧ W .Δ ⊢ A2 ∧ 𝑟 ∈ RelW .𝑛 [A1,A2]

W1 ⊒ W2

def

= ⊢ W1 ∧ ⊢ W2 ∧ W1.𝑛 ≤ W2.𝑛 ∧
∃ 𝜌. (W1.Δ, †(𝜌)) Ï W2.Δ ∧ W1.𝜌 = 𝜌 ◦W2 .𝜌 ∧ W2.Δ � 𝜌

Δ1 Ï Δ2

def

= ∃Δ,Δ0 . Δ1 = (Δ2 + Δ),Δ0

†(𝜌) def

= 𝜔Δ such that dom(Δ) = dom(𝜌)
𝜌2 ◦ 𝜌1

def

= 𝜌2 ⊎ {𝛼 Z⇒ (𝜌2fst (𝜌1fst (𝛼)), 𝜌2snd (𝜌1snd (𝛼)), 𝜌1 [𝛼]) | 𝛼 ∈ dom(𝜌1)}
Γ � 𝜌

def

= ∀𝛼 ∈ dom(𝜌) ∩ dom(Γ).
∀ 𝛽 ∈ (ftv(𝜌fst (𝛼)) ∪ ftv(𝜌snd (𝛼))) ∩ dom(Γ). 𝛽0 ∈ Γ

(R1, R2)W
def

= (W .𝜌
fst
(R1),W .𝜌

snd
(R2))

(W1,W2) ⋑ W3

def

= W1.𝑛 = W2.𝑛 = W3.𝑛 ∧ W1.Δ +W2.Δ = W3.Δ ∧ W1.𝜌 = W2.𝜌 = W3.𝜌

Fig. 5. Auxiliary Definitions for the Logical Relation.

if the sets S1 and S2 are disjoint. Further, we write P(𝑋) for the power set of a set 𝑋 and 𝑋 ⇀ 𝑌

for the set of partial functions from 𝑋 to 𝑌 .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:20 Taro Sekiyama and Takeshi Tsukada

6.2.1 Auxiliary Definitions. We define various relations as subsets of Atom [Δ,A1,A2], which
consists of pairs of terms that are of the types A1 and A2 under the typing context Δ, respectively.
We denote the set of pairs of well-typed results by Atom

res
.

As discussed in Section 6.1, worlds are triples of the form (n, Δ, 𝜌): n is a step index; Δ is a

typing context under which related terms are typechecked; and 𝜌 is a map from type variables 𝛼 to

triples (A1,A2, 𝑟) that consist of types A1 and A2 substituted for 𝛼 (on the left- and right-hand sides,

respectively) and relational interpretation 𝑟 of 𝛼 . For ease of access, we employ the dot notation:

W .𝑛,W .Δ, andW .𝜌 denote the step index, typing context, and interpretation ofW , respectively.

We also write 𝜌fst and 𝜌snd for capture-avoiding type substitutions that map a type variable 𝛼 in

dom(𝜌) to A1 and A2 when 𝜌 (𝛼) = (A1,A2, 𝑟), respectively. The bottom half of Figure 5 presents

operations to manipulate worlds. 𝜌 ⊎W returns the same world asW except that the interpretation

is 𝜌 ⊎W .𝜌 (we write 𝜌1 ⊎ 𝜌2 for the concatenation of mappings 𝜌1 and 𝜌2 with disjoint domains).

𝜔W applies the operation 𝜔 andW@𝛼 adds 𝛼1
toW .Δ.W − n decreasesW .𝑛 by number n. We

write ▶W for the one-step later world of W .

Worldn is a set of well-formed worlds indexed by natural numbers smaller than n. A worldW
is well formed, written ⊢ W , if and only if the domains ofW .Δ andW .𝜌 are disjoint and, for any

(A,A2, 𝑟) in the codomain of W .𝜌 , the types A1 and A2 are well formed under W .Δ and 𝑟 is a

relational interpretation indexed by W .𝑛.

Reln [A1,A2] is a set of relational interpretations, which, given a current world W , return a

set of pairs of results related at a certain type variable in W . The types of the results depend

onW .𝜌
fst

andW .𝜌
snd

because type substitutions may grow over time. Relational interpretations

in Reln [A1,A2] require that the current world W be in Worldn and worlds in Worldn involve

relational interpretations in Relm for some m < n. Thus, the definitions of worlds and relational

interpretations are stratified and can avoid circularity.

A relational interpretation 𝑟 must satisfy four properties. The first is monotonicity under the

world extension ⊒. This is a common property required by Kripke logical relations and states that

results R1 and R2 related in a world W1 must be related in any future world W2 of W1. Notice

that free type variables in the related results R1 and R2 may be substituted in the future world.

Thus, the definition in Figure 5 applies W2.𝜌 fst and W2.𝜌snd to R1 and R2, respectively. This is
expressed by the notation (R1, R2)W2

that is defined in the bottom of Figure 5. We follow this

convention throughout the definitions for the logical relation. The second property is what we call

irrelevance,5 which states that which results the relational interpretation 𝑟 contains is independent

of interpretations of type variables irrelevant to the types A1 and A2. This is required to prove the

logical relation compositional. Note that ordinary logical relations should be irrelevant because

they should reference only interpretations of type variables that occur in indexed types; see Neis

et al. [2011] for example. The last two properties require 𝑟 to be closed under the 𝜈 constructor.

The third is needed to prove the logical relation compatible with the 𝜈 constructor. The fourth

is for enabling the flexible reasoning with the logical relation. For example, it allows reasoning

about equivalence of polymorphic functions such that one returns a given argument wrapped

with redundant 𝜈-binders but the other returns the argument itself. These two requirements might

correspond to partial bijections in Kripke logical relations for name generation [Neis et al. 2011;

New et al. 2020; Pitts and Stark 1993]. Partial bijections represent one-to-one correspondences

between visible names. In our setting, visible are type variables with the use 1 in a world, that is,

those that can be bounded by 𝜈-constructors.

A worldW2 can be extended to a worldW1 (W1 ⊒ W2) if and only if the number of computation

steps left in W1 is not more than that in W2 and, for any type variable 𝛼𝜋
in W2.Δ, either W1.Δ

5
The name comes from Neis et al. [2011].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:21

RJ𝜄KW def

= {(𝜈𝛼1. c, 𝜈𝛼2. c) ∈ Atom [W , 𝜄]}
RJ𝛼KW def

= W .𝜌 [𝛼] (▶W)
RJA ⊸ BKW def

= {(R1, R2) ∈ Atom [W ,A ⊸ B] | ∀W ′ ⊒ W . ∀ (W1,W2) ⋑ W ′.

W1 ⊒ W =⇒ ∀ (R′
1
, R′

2
) ∈ RJAKW2. (R1 R′

1
, R2 R′

2
)W ′ ∈ EJBKW ′}

RJ∀𝛼.AKW def

= {(R1, R2) ∈ Atom [W ,∀𝛼.A] | ∀W ′ ⊒ W . ∀B1, B2, 𝑟 .
𝜔W ′ ⊢ (B1, B2, 𝑟) ∧ {𝛼}#𝜔W ′ =⇒

(R1 B1, R2 B2)𝜔W ′ ∈ EJAK {𝛼 Z⇒ (B1, B2, 𝑟)} ⊎ 𝜔W ′}
RJ!AKW def

= {(R1, R2) ∈ Atom [W , !A] | (let !x = R1 in x, let !x = R2 in x) ∈ EJAK𝜔W }
EJAKW def

= {(M1,M2) ∈ Atom [W ,A] | ∀W ′ ⊒ W . ∀n < W ′.𝑛.

∀R1. W ′.𝜌
fst
(M1) −→n R1 =⇒

∃ R2. W ′.𝜌
snd

(M2) −→∗ R2 ∧ (R1, R2) ∈ RJAK (W ′ − n)}
GJΓK def

= {(W , 𝜍) | ∃Δ. ∃ ∏
x ∈ dom=1 (Γ) Δx .

⊢ W ∧ Γ � W .𝜌 ∧ W .Δ = Δ +∑
x∈dom=1 (Γ) Δx

∧ ∀𝛼𝜋 ∈ Γ. (∃ 𝜋 ′ ≥ 𝜋. 𝛼𝜋 ′ ∈ Δ) ∨ (𝜋 = 0 ∧ 𝛼 ∈ dom(W .𝜌))
∧ ∀ x :

1 A ∈ Γ. (𝜍fst (x), 𝜍snd (x)) ∈ RJAK (W .𝑛, Δx, W .𝜌)
∧ ∀ x :

𝜔 A ∈ Γ. (𝜍fst (x), 𝜍snd (x)) ∈ RJAK𝜔W }

Γ ⊢ M1 ⪯ M2 : A
def

= Γ ⊢ M1 : A ∧ Γ ⊢ M2 : A ∧
∀ (W , 𝜍) ∈ GJΓK. (𝜍fst (M1), 𝜍snd (M2))W ∈ EJAKW

Γ ⊢ M1 ≈ M2 : A
def

= Γ ⊢ M1 ⪯ M2 : A ∧ Γ ⊢ M2 ⪯ M1 : A

Fig. 6. Logical relation.

contains 𝛼𝜋 ′
for some 𝜋 ′ ≥ 𝜋 , orW1 .𝜌 provides 𝛼 with an interpretation if 𝜋 = 0 (i.e., 𝛼 may be

bound by Λ and thus may be replaced). To express this condition, the definition of ⊒ uses three

auxiliary definitions: Δ1 Ï Δ2 states that Δ2 may evolve into Δ1, that is, Δ1 may contain more type

variables and larger uses than Δ2; †(𝜌) is a typing context that consists of the type variables mapped

by 𝜌 and assigns only the use 0; and 𝜌2 ◦ 𝜌1 is an interpretation composed of 𝜌2 and 𝜌1. Then, the

definition of ⊒ formally expresses the condition on type variables inW2.Δ. For any 𝛼
𝜋 ∈ W2.Δ, the

formulaW1.Δ, †(𝜌) Ï W2.Δ implies either 𝛼𝜋 ′ ∈ W1.Δ for some 𝜋 ′ ≥ 𝜋 , or 𝜋 = 0 ∧ 𝛼 ∈ dom(𝜌).
For the latter case,W1.𝜌 = 𝜌 ◦W2.𝜌 implies thatW1 .𝜌 gives an interpretation of 𝛼 . The substitution

composition in this formula ensures that 𝛼 referenced inW2 is replaced with types given by 𝜌 in

W1. The last conditionW2.Δ � 𝜌 states that 𝜌 provides only type substitutions that preserve typing

of terms typechecked under W2.Δ. For type substitutions in 𝜌 to preserve the typing, the type

substitution lemma (Lemma 2 in Section 4.4) allows substituted types to reference type variables in

W2 .Δ only whenW2.Δ assigns use 0 to them. Thus, if 𝜌 substitutes types 𝜌fst (𝛼) and 𝜌snd (𝛼) for
a type variable 𝛼 inW2 .Δ, and if 𝜌fst (𝛼) or 𝜌snd (𝛼) references a type variable 𝛽 inW2.Δ, then we

require thatW2.Δ assign the use 0 to 𝛽 . Notice that 𝜌fst (𝛼) and 𝜌snd (𝛼) can reference type variables

in W1.Δ but not in W2 .Δ without restriction on their uses because such type variables must not

occur—thus not be generalized—in terms typechecked under W2 .Δ.
We defer the explanation of (W1,W2) ⋑ W3 to the next section.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:22 Taro Sekiyama and Takeshi Tsukada

6.2.2 The Logical Relation. Figure 6 presents the definition of the logical relation, which consists

of relations RJAKW over pairs of results and relations EJAKW over pairs of terms. These relations

are subsets of Atom [W ,A] that contains terms typechecked under typing context W .Δ against

type A in which type variables are replaced with the corresponding type substitutions W .𝜌
fst

and

W .𝜌
snd

; the top of Figure 5 presents the definition.

The result relations RJAKW for base and of-course types are straightforward. Related results of

a base type must share the same constant in their underlying parts. The result relations RJ!AKW
for of-course types require related results to be constituted by unrestricted results related at A in

𝜔W where apparent type variables may be referenced only in an unrestricted manner.

Results are related at a type variable 𝛼 if and only if they are contained in the relational inter-

pretation of 𝛼 . When 𝜌 (𝛼) = (A1,A2, 𝑟), we write 𝜌 [𝛼] for the relational interpretation 𝑟 . As seen
in the definitions of Worldn and Reln, relational interpretations in a world W require argument

worlds having step indices smaller than W .𝑛. Thus, the result relation RJ𝛼KW passes the later

world ▶W of the current worldW to the relational interpretationW .𝜌 [𝛼]. However, this definition
causes an issue with the proof of compositionality; we will discuss it in Section 6.4 in detail.

The relations RJA ⊸ BKW for function types are defined as in the previous work on Kripke

logical relations [Ahmed et al. 2009; Ahmed 2006; Appel and McAllester 2001; Neis et al. 2011;

Pitts and Stark 1993]. Intuitively, results R1 and R2 related at a function type A ⊸ B in a world W
map arguments R′

1
and R′

2
related at the argument type A in any future worldW ′

ofW to terms

related at the return type B inW ′
. However, as discussed in Section 6.1, the arguments R′

1
and R′

2

to test the functions R1 and R2 are restricted not only by the type index A but also by the typing

context W ′.Δ of the world W ′
in which the applications run. Specifically, we need to prevent the

case that both the functions and arguments involve open type abstractions with the same type

variables because function applications composed of them violate the affine discipline in Λopen
. To

implement this idea, we use an operation (W1,W2) ⋑ W that splits a worldW into two worldsW1

andW2, which are the same asW except that their typing contexts are obtained by splitting the

uses in W .Δ. See the bottom of Figure 5 for the formal definition. The result relation RJA ⊸ BKW
splits a future world W ′

into W1 and W2 and use W2 to construct arguments R′
1
and R′

2
. To ensure

that the functions R1 and R2 are still typechecked in the other worldW1, the result relation requires

W1 to be an extension of W . Notice that this requirement is not implied only by W ′ ⊒ W and

(W1,W2) ⋑ W ′
. For example, letW andW ′

be worlds that assign the use 1 to a type variable 𝛼 .

Then, W1 .Δ Ï W .Δ holds only if W1.Δ assigns 1 to 𝛼 . However, because (W1,W2) ⋑ W ′
ensures

only W1 .Δ + W2.Δ = W ′.Δ for their typing contexts, it is possible that W1 .Δ assigns the use 0
(and W2 .Δ assigns 1) to 𝛼 and, as a result, W1.Δ Ï W .Δ does not hold. It is also notable that, as

in the previous work, the result relation allows constructing arguments R′
1
and R′

2
and testing the

applications R1 R′
1
and R2 R′

2
in any future world. This is crucial for ensuring monotonicity of the

result relations under world extension, a key property of Kripke logical relations.

The relation RJ∀𝛼.AKW for polymorphic type ∀𝛼.A in world W relates results R1 and R2
such that, for any future world W ′

of W , given a well-formed interpretation triple (B1, B2, 𝑟)
under 𝜔W ′

, the type applications R1 B1 and R2 B2 are related at the type A in the extended world

{𝛼 Z⇒ (B1, B2, 𝑟)} ⊎ 𝜔W ′
. The world 𝜔W ′

, not W ′
, is used because the underlying values of R1

and R2 are closed type abstractions, and their bodies are typechecked under 𝜔 (W ′.Δ).
The term relation EJAKW defines terms related at a type A in a worldW . We write M −→n M ′

when term M evaluates to term M ′
by 𝑛 steps. Then, terms M1 and M2 are related by EJAKW

if and only if, for any W ′ ⊒ W , when the term M1 evaluates to a result R1 by n steps for some

n < W ′.𝑛, the term M2 also evaluates to a result R2 and the results R1 and R2 are related at A in

the world (W ′ − n) where the W ′.𝑛 − n steps are left to run. This definition only says that the

term M2 mimics the behavior of M1 up toW .𝑛 steps. As seen shortly, the logical relation relates

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:23

only terms that mimic each other up to any number of steps, thus indicating that the related terms

behave equivalently.

We have defined relations for terms wherein only type variables may occur free. For extending

to terms with both free type and term variables, we define GJΓK, which determines pairs of a

relational result substitution, ranged over by 𝜍 , and a world consistent with typing context Γ. A
relational substitution 𝜍 maps variables to pairs of results, and substitutions 𝜍fst and 𝜍snd replace a

variable x with results R1 and R2 when 𝜍 (x) = (R1, R2), respectively.
Let (W , 𝜍) ∈ GJΓK. For unrestricted variables in the typing context Γ, 𝜍 assigns unrestricted

results; thus, they must be related in the world 𝜔W . For affine variables, 𝜍 assigns affine results.

Because the results in 𝜍 are put into a single term, the typing contexts to typecheck the results in 𝜍

must be able to merge with each other; otherwise, applying 𝜍 may produce a term that violates

the affine discipline. Thus, G assigns a tying context Δx for every affine variable x in Γ, requires
results assigned for x to be related under Δx , and requires that all the typing contexts Δx can merge

with each other. To formalize this idea, we introduce the following notation:

∑
𝑥 ∈𝐼 Δx is the typing

context Δx1 + · · · + Δxn given a family of typing contexts Δx1 , · · · ,Δxn with a finite index set of

variables 𝐼 = {x1, · · · , xn}, and dom=1 (Γ) is the finite set of variables that are affine in Γ. We also

write ∃ ∏
x∈𝐼 Δx to existentially quantify Δx1 , · · · ,Δxn . Then, G requires W .Δ to be represented

by Δ +∑
x∈dom=1 (Γ) Δx for some typing context Δ that maintains or enlarges the uses in Γ. Every

type variable in Γ is contained either in Δ or in the interpretation W .𝜌 if its use is 0. The condition
Γ � W .𝜌 ensures that type substitutions inW .𝜌 preserve typing of terms typechecked under Γ.
The logical approximation relation Γ ⊢ M1 ⪯ M2 : A states that, for any world W and relational

result substitution 𝜍 that respect typing context Γ, 𝜌snd (M2) mimics the behavior of term 𝜌fst (M1)
in the world W . The logical (equivalence) relation Γ ⊢ M1 ≈ M2 : A states that M1 logically

approximates M2 and vice versa.

6.3 Properties
We show parametricity of Λopen

and soundness of the logical relation with respect to contextual

equivalence. A key property to prove them is the compatibility lemmas, which say that the logical

approximation relation is closed under the term constructors. This paper presents high-level proof

sketches of the compatibility lemmas for restrictions and open type abstractions; the statements

and detailed proofs of all the compatibility lemmas are in the supplementary material.

Lemma 7 (Compatibility: Restrictions). If Γ, 𝛼1 ⊢ M1 ⪯ M2 : A and Γ ⊢ A, then Γ ⊢ 𝜈𝛼.M1 ⪯
𝜈𝛼.M2 : A.

Proof. For simplicity, in this sketch, suppose M1 and M2 to be results R1 and R2, respectively.
Notice that it is easy to address non-result terms; see the supplementary material.

Let (W , 𝜍) ∈ GJΓK. Then, it suffices to show (𝜈𝛼. R1, 𝜈𝛼 . R2)W ∈ RJAKW .

(W , 𝜍) ∈ GJΓK implies (W@𝛼, 𝜍) ∈ GJΓ, 𝛼1K. Because Γ, 𝛼1 ⊢ R1 ⪯ R2 : A, we have

(R1, R2)W@𝛼 ∈ RJAKW@𝛼 . We then obtain the conclusion by applying the following lemma:

∀𝛼,A,W , R1, R2. {𝛼} # ftv(A) ∧ ⊢ W ∧ (R1, R2) ∈ RJAKW@𝛼 =⇒ (𝜈𝛼. R1, 𝜈𝛼 . R2) ∈ RJAKW .

This lemma can be proven by induction on A; the proof depends on the third property of relational

interpretations, specifically in the case that A is a type variable. □

Lemma 8 (Compatibility: Open Type Abstractions). If Γ1, 𝛼0, Γ2 ⊢ M1 ⪯ M2 : !A, then
Γ1, 𝛼

1, Γ2 ⊢ Λ◦⟨𝛼,M1 ⟩ ⪯ Λ◦⟨𝛼,M2 ⟩ : !∀𝛼.A.

Proof. This sketch supposes M1 and M2 to be values for simplicity. Further, it is easy to find

that the values take the forms !R1 and !R2 for some R1 and R2, respectively.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:24 Taro Sekiyama and Takeshi Tsukada

Let (W , 𝜍) ∈ GJΓ1, 𝛼1, Γ2K. Then, we need to show

(Λ◦⟨𝛼, !R1 ⟩,Λ◦⟨𝛼, !R2 ⟩)W ∈ EJ!∀𝛼.AKW .

Because, for i ∈ {1, 2}, Λ◦⟨𝛼, !Ri ⟩ −→ !Λ𝛼.Ri and let !x = !Λ𝛼.Ri in x −→ Λ𝛼.Ri, the proof boils
down to showing that, for any W1 ⊒ 𝜔W − 2 and for any B1, B2, 𝑟 such that 𝜔W1 ⊢ (B1, B2, 𝑟),

((Λ𝛼.R1) B1, (Λ𝛼.R2) B2)𝜔W1
∈ EJA[𝛽/𝛼]K {𝛽 Z⇒ (B1, B2, 𝑟)} ⊎ 𝜔W1 (1)

for some fresh 𝛽 ; the type variable 𝛼 in A is renamed to 𝛽 because 𝛼 ∈ dom(W1.Δ) ∪ dom(W1.𝜌).
Let W ′

be a world obtained by replacing 𝛼1 ∈ W .Δ with 𝛼0
. Then, as (W ′, 𝜍) ∈ GJΓ1, 𝛼0, Γ2K

and Γ1, 𝛼
0, Γ2 ⊢ !R1 ⪯ !R2 : !A, we can have (!R1, !R2)W ′ ∈ RJ!AKW ′

. This further implies

(R1, R2)W ′ ∈ RJAK (𝜔W ′ − 1) .
Here, we rename type variable 𝛼 in this formula to 𝛽 (this renaming is justified using (W , 𝜍) ∈
GJΓ1, 𝛼1, Γ2K) and then add 𝛼0

to the typing context of the renamed world. As a result, we have

(R1 [𝛽/𝛼], R2 [𝛽/𝛼])W ′ ∈ RJA[𝛽/𝛼]K (𝜔 (W ′
@𝛽) − 1) .

As𝜔 (W1@𝛽) ⊒ 𝜔 (W ′
@𝛽) −1 (this is proven byW1 ⊒ 𝜔W −2 = 𝜔W ′−2) and the world extension

relation allows giving interpretation (B1, B2, 𝑟) to 𝛽0, monotonicity of the result relation implies

(R1 [B1/𝛼], R2 [B2/𝛼])𝜔W1
∈ RJA[𝛽/𝛼]K {𝛽 Z⇒ (B1, B2, 𝑟)} ⊎ 𝜔W1 .

This implies the formula (1) that we must prove. □

Theorem 5 (Fundamental Property). If Γ ⊢ M : A, then Γ ⊢ M ≈ M : A.

Proof. By induction on the derivation of Γ ⊢ M : A with the compatibility lemmas. □

To define contextual equivalence, we introduce the notion of contexts, which is defined as follows.

C ::= [] | 𝜆x .C | CM2 | M1 C | !C | let !x = C inM2 | let !x = M1 inC |
𝜈𝛼.C | Λ◦⟨𝛼,C ⟩ | Λ𝛼.C | CA

A context typing judgment C : (Γ ⊢ A) ⇝ (Γ′ ⊢ A′) states that, given a termM such that Γ ⊢ M : A,
the typing judgment Γ′ ⊢ C[M] : A′

is derivable; see the supplementary material for the formal

definition of the inference rules of context typing.

Definition 4 (Contextual Eqivalence). Contextual equivalence Γ ⊢ M1 ≈ctx M2 : A states
that (1) Γ ⊢ M1 : A, (2) Γ ⊢ M2 : A, and (3) for any base type 𝜄, constant c of 𝜄, program context C such
that C : (Γ ⊢ A) ⇝ (∅ ⊢ 𝜄), C[M1] −→∗ 𝜈𝛼1. c for some 𝛼1 if and only if C[M2] −→∗ 𝜈𝛼2 . c for
some 𝛼2.

Theorem 6 (Soundness w.r.t. Contextual Eqivalence). If Γ ⊢ M1 ≈ M2 : A, then Γ ⊢ M1 ≈ctx
M2 : A.

Proof. Let C be a context such that C : (Γ ⊢ A) ⇝ (∅ ⊢ 𝜄). By the compatibility lemmas,

∅ ⊢ C[M1] ≈ C[M2] : 𝜄 holds. Because the logical relation satisfies adequacy (i.e., given two terms

related by the logical relation, the termination of a term on one side implies the termination of the

term on the other side) and results related at a base type must have the same constant, we obtain

that: C[M1] −→∗ 𝜈𝛼1. c for some 𝛼1 if and only if C[M2] −→∗ 𝜈𝛼2. c for some 𝛼2. □

Finally, although we believe that every well-typed term in Λopen
terminates, our logical relation

does not imply it, which disables full reasoning about free theorems [Wadler 1989]. For example, in

System F, a function of type ∀𝛼.𝛼 → 𝛼 must be equivalent to the polymorphic identity function.

However, the development in this work cannot ensure that a function 𝑓 of ∀𝛼.𝛼 ⊸ 𝛼 is total, and

therefore we cannot prove the function 𝑓 equivalent to the identity function. Nevertheless, our

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:25

logical relation can address partial free theorems wherein the termination property is assumed.

Interested readers are referred to the supplementary material, which discusses partial free theorems

for the empty type and the polymorphic identity type.

6.4 An Issue with the Result Relations at Type Variables
The result relations at type variables are defined using one-step later worlds. This gives rise to a

gap between program steps and step indices because referring to results involves no computation.

Specifically, it cause a technical issue with compositionality. Initially, we have formulated com-

positionality for result relations as

RJA[B/𝛼]KW = RJAKW ′

whereW ′ = {𝛼 Z⇒ (W .𝜌
fst
(B),W .𝜌

snd
(B), 𝑟)} ⊎W and relational interpretation 𝑟 maps a given

worldW to RJBKW . However, this equation does not hold in the case of A = 𝛼 . In this case, we

need to prove

RJBKW = RJ𝛼KW ′ .

On the right-hand side, RJ𝛼KW ′ = 𝑟 (▶W ′) = RJBK ▶W ′ = RJBK ▶W (the last equation can be

proven using the irrelevance assumption on relational interpretations because we can suppose that

B is irrelevant to 𝛼). Unfortunately, in general, RJBK ▶W is not equal to RJBKW which appears

on the left-hand side of the equation.

To resolve this issue, instead of above 𝑟 , our proof of compositionality uses an interpretation 𝑟0
that increases the step index of a given world, that is, 𝑟0 maps a given worldW to RJBK (W + 1)
(where W + 1 = (W .𝑛 + 1, W .Δ, W .𝜌)). By taking this 𝑟0, we can have 𝑟0 (▶W ′) = RJBK (▶
W ′ + 1) = RJBKW ′ = RJBKW (again, the last equation comes from the irrelevance of B to 𝛼). Then,

we can prove the relations on the left- and right-hand sides in compositionality equivalent.

Unfortunately, this trick is ad-hoc and might not work well on languages with more complex

features, such as higher-order store. A promising approach to scaling to other features is to

use the technique developed by Ahmed et al. [2017], who provided a logical relation where the

interpretations of type variables are only defined one step later, like ours. Ahmed et al. aligned the

logical relation with program steps by computationally deferring the reference to values of type

arguments substituted for type variables via conversion. We expect that applying their idea to our

setting enables defining a scalable logical relation, but it is left for future work.

7 RELATEDWORK
7.1 Type-Preserving CPS Transformation
Type preservation of (CBV) CPS transformation for the simply typed 𝜆-calculus was discovered by

Meyer and Wand [1985]. Harper and Lillibridge attempted to extend it to polymorphism [Harper

and Lillibridge 1993a,b], but they discovered that extending to CBV implicit polymorphism needs

some restriction even if it is pure. Specifically, Harper and Lillibridge [1993b] proved that there

exists no meaning- and type-preserving CPS transformation where both the source and target

languages are 𝜆∀𝑣 . The use of 𝜆
∀
𝑣 as the target enables the contamination of the CPS image with

“exotic” terms corresponding to programming facilities, such as call/cc, that are inexpressive in
the source language and cannot safely cooperate with unrestricted implicit polymorphism. These

unsafe exotic terms cause the evaluation of certain CPS terms to go “wrong.” As 𝜆∀𝑣 is type safe, such

CPS terms cannot be well typed. We address this problem by restricting the use of continuations in

the CPS image to be affine, which excludes the unsafe exotic terms. This restriction might allow

the existence of exotic terms using continuations at most once, but our result indicates that they

safely cooperate with CPS terms.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:26 Taro Sekiyama and Takeshi Tsukada

7.2 CPS Transformation with Linearity
Berdine et al. [2001, 2002] formalized the idea that pure terms use continuations only linearly via

CBV CPS transformation to the linear 𝜆-calculus of Barber and Plotkin [1996]. They also showed

that certain control constructs can be expressed by linearly used continuations. Berdine [2004]

extended this idea to the affine setting. Hasegawa [2002] generalized the notion of linearly used

continuations to that of linearly used effects and provided the monadic transformation from the

computational 𝜆-calculus [Moggi 1989] to the linear 𝜆-calculus. Thielecke [2003] found that the

invocation of call/cc can be characterized by two type-preserving CPS transformations: one

with answer type polymorphism and the other with linear types. Thielecke equipped the source

language with implicit polymorphism but imposed the value restriction. Thielecke [2004] provided

only CBN CPS transformation with answer type polymorphism for a language supporting both of

call/cc and unrestricted implicit polymorphism. Target languages with linear/affine types can

characterize source terms more precisely [Hasegawa 2002], but, to the best of our knowledge, no

prior work has examined linear/affine typing to achieve type-preserving CPS transformation for

unrestricted implicit polymorphism. We utilize the linear use of continuations in source terms for

that aim.

7.3 Logical Relations and Parametricity
Logical relations are well-known techniques to reason about the properties of programs. Since

the initial development by Tait [1967] and the seminal work by Plotkin [1973], logical relations

have been extended to a variety of programming facilities and applications. Here, we discuss only

the previous work closely related to ours. Reynolds [1983] established relational parametricity,

which ensures that polymorphic terms behave equivalently no matter how they are instantiated.

This is a simple but powerful reasoning principle; for example, it can prove theorems about

polymorphic functions [Wadler 1989]. As mentioned in Section 1.2, parametricity can also enhance

CPS transformation.

We proved parametricity of Λopen
by developing a step-indexed Kripke logical relation. Kripke

logical relations have been proven powerful enough to deal with programming facilities with

some circularity, and an established approach to circularity is to involve step indices in possible

worlds [Ahmed et al. 2009; Ahmed 2006; Appel and McAllester 2001; Neis et al. 2011]. We also

employed this approach to avoid circularity between worlds and relational interpretations.

Zhao et al. [2010] provided a logical relation for a polymorphic, linearly typed language and

proved parametricity and soundness of the logical relation with respect to contextual equivalence.

As in the present work, their logical relation may also relate open terms—in particular, it can relate

terms containing free term and type variables—to exploit linearity of their language. Their logical

relation is indexed by typing contexts and allows their augmentation, as ours is indexed by possible

worlds that contain typing contexts. However, unlike our work, they did not consider substitution

for free (type) variables in running terms. Thus, their handling of free (type) variables is similar to

that of dynamic name creation in the work by Pitts and Stark [1993].

7.4 Decomposition of Type Abstraction
A key idea of our CPS target languageΛopen

is the decomposition of the type abstraction mechanism.

Montagu and Rémy [2009] took a similar approach to decomposing the module unpacking construct

with existential types, aiming at the simplification of a module language. As we decompose type

abstraction into restrictions and open type abstractions, their decomposition derives two more

atomic constructs for unpacking: one for binding existential type variables and the other for

linking the existential type variables with the witness types of unpacked modules. They managed

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:27

existential type variables as linear resources to avoid linking the same type variable with different

witness types. In their work, all functions are unrestricted. To ensure the linearity of existential

type variables in such a situation, their language prevents functions from using the existential type

variables bound outside the functions. This is more restrictive than the use of linear types (with

which linear resources can occur within linear functions), but it enables avoiding some circularity

and easily translating their language to System F. However, their approach is inadequate for our

setting because we need to generalize type variables within continuation functions outside which

the type variables are bound. The use of affine types allows more flexible use of type variables.

8 CONCLUSION
This work studied type-preserving CBV CPS transformation for a pure language with unrestricted

implicit polymorphism. We identified the challenge of scope intrusion, which happens by lifting

terms under type variable binders to the top of a program, and addressed it by defining a new

type-safe CPS target language Λopen
with restrictions, open type abstractions, and affine types.

Restrictions and open type abstractions can defer binding of type variables in closed type abstraction,

and affine types enforce the type-safe use of open type abstractions. We then provided a CPS

transformation from Curry-style CBV System F to Λopen
and proved the CPS transformation type

and meaning preserving. Aiming at establishing parametricity of Λopen
, we also constructed a

parametric, step-indexed Kripke logical relation for terms in which free type variables may occur

and may be replaced later via open type abstractions. We captured this characteristic behavior

of Λopen
with worlds and the world extension relation and proved the Fundamental Property of

the logical relation and its soundness with respect to contextual equivalence. We believe that this

study has opened up the possibility for more languages to gain the benefits of type-preserving CPS

transformation.

Our work depends on the linearity of continuations, but it is violated in the presence of some

effects. For example, general control operators allow invoking continuations multiple times, and,

even if captured continuations are restricted to be invoked only once, multi-shot continuations can

be implemented with higher-order store [Friedman and Haynes 1985]. Because naively introducing

these effects to Curry-style System F results in being unsound [Gordon et al. 1979; Harper and

Lillibridge 1991], we need to restrict, e.g., polymorphism or effects. It is a crucial future work to

provide type-preserving CPS transformation for effectful languages with restrictions other than

the value restriction.

The following are other future directions. An application of our work is to design typed IRs

for implicitly polymorphic CBV languages that do not adopt the value restriction. Extending the

development to other IR forms is also attractive. In particular, A-normal form translation [Flanagan

et al. 1993] has a problem similar to CPS transformation because it also lifts redexes to the top of a

program. Applying our approach to A-normal form translation is promising to solve the problem.

Our CPS transformation also suggests type safety of a polymorphic language where continuations

are used only once. Therefore, we conjecture that a polymorphic language only with a one-shot
control operator (and without higher-order store) is safe. Finally, we are curious about extending

our work to dependent typing and to programming facilities that allow evaluation beneath binding

constructs, such as staged computation.

ACKNOWLEDGMENTS
We would like to thank Atsushi Igarashi for advice and the anonymous reviewers at POPL 2021

and ICFP 2021 for their close reading and valuable comments. This work was supported in part

by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST and JSPS

KAKENHI Grant Numbers JP19K20247 (Sekiyama) and JP19K20211 (Tsukada).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

95:28 Taro Sekiyama and Takeshi Tsukada

REFERENCES
Amal Ahmed and Matthias Blume. 2011. An equivalence-preserving CPS translation via multi-language semantics. In

ACM SIGPLAN international conference on Functional Programming, ICFP 2011. 431–444. https://doi.org/10.1145/2034773.

2034830

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-dependent representation independence. In Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009. 340–353. https:

//doi.org/10.1145/1480881.1480925

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for free for free: parametricity, with and

without types. Proc. ACM Program. Lang. 1, ICFP (2017), 39:1–39:28. https://doi.org/10.1145/3110283

Amal J. Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Programming
Languages and Systems, 15th European Symposium on Programming, ESOP 2006, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings (Lecture Notes
in Computer Science, Vol. 3924). Springer, 69–83. https://doi.org/10.1007/11693024_6

Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press.

AndrewW. Appel and David B. MacQueen. 1991. Standard ML of New Jersey. In Programming Language Implementation and
Logic Programming, 3rd International Symposium, PLILP 1991, Proceedings. 1–13. https://doi.org/10.1007/3-540-54444-5_83

Andrew W. Appel and David A. McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. ACM Trans. Program. Lang. Syst. 23, 5 (2001), 657–683. https://doi.org/10.1145/504709.504712

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018. 56–65. https://doi.org/10.1145/3209108.3209189

Andrew Barber and Gordon D. Plotkin. 1996. Dual Intuitionistic Linear Logic. Technical Report. ECS-LFCS-96-347.
Josh Berdine, Peter W. O’Hearn, Uday S. Reddy, and Hayo Thielecke. 2001. Linearly Used Continuations. In Proceedings

of the Third ACM SIGPLAN Workshop on Continuations (CW’01). 47–54. https://www.microsoft.com/en-us/research/

publication/linearly-used-continuations/

Josh Berdine, Peter W. O’Hearn, Uday S. Reddy, and Hayo Thielecke. 2002. Linear Continuation-Passing. High. Order Symb.
Comput. 15, 2-3 (2002), 181–208. https://doi.org/10.1023/A:1020891112409

Joshua James Berdine. 2004. Linear and Affine Typing of Continuation-Passing Style. Technical Report. RR-04-04.
Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. 2015. A Dynamic Continuation-Passing Style for Dynamic Delimited

Continuations. ACM Trans. Program. Lang. Syst. 38, 1 (2015), 2:1–2:25. https://doi.org/10.1145/2794078

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2018. Type-preserving CPS translation of Σ and Π types

is not not possible. Proc. ACM Program. Lang. 2, POPL (2018), 22:1–22:33. https://doi.org/10.1145/3158110

Iliano Cervesato and Frank Pfenning. 1996. A Linear Logical Framework. In Proceedings, 11th Annual IEEE Symposium on
Logic in Computer Science, LICS 1996. 264–275. https://doi.org/10.1109/LICS.1996.561339

Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. 2019. Compiling with continuations, or without? whatever.

Proc. ACM Program. Lang. 3, ICFP (2019), 79:1–79:28. https://doi.org/10.1145/3341643

Olivier Danvy. 1992. Three Steps for the CPS Transformation. Technical Report. CIS-92-2.
Olivier Danvy and Andrzej Filinski. 1989. A functional abstraction of typed contexts. Technical Report.
Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming. 151–160. https:

//doi.org/10.1145/91556.91622

Olivier Danvy and John Hatcliff. 1992. Thunks (Continued). In Actes WSA’92 Workshop on Static Analysis (Bordeaux, France),
September 1992, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Proceedings. 3–11.

Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. 1986. Reasoning with Continuations. In

Proceedings of the Symposium on Logic in Computer Science (LICS ’86). 131–141.
Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and State.

Theorical Computer Science 103, 2 (1992), 235–271. https://doi.org/10.1016/0304-3975(92)90014-7

Michael J. Fischer. 1972. Lambda Calculus Schemata. In Proceedings of ACM Conference on Proving Assertions about Programs.
104–109. https://doi.org/10.1145/800235.807077

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.

In Proceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and Implementation (PLDI). 237–247.
https://doi.org/10.1145/155090.155113

Matthew Fluet and Stephen Weeks. 2001. Contification Using Dominators. In Proceedings of the Sixth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’01). 2–13. https://doi.org/10.1145/507635.507639

Daniel P. Friedman and Christopher T. Haynes. 1985. Constraining Control. In Conference Record of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, New Orleans, Louisiana, USA, January 1985, Mary S. Van Deusen,

Zvi Galil, and Brian K. Reid (Eds.). ACM Press, 245–254. https://doi.org/10.1145/318593.318654

Jacques Garrigue. 2004. Relaxing the Value Restriction. In Functional and Logic Programming, 7th International Symposium,
FLOPS 2004, Proceedings. 196–213. https://doi.org/10.1007/978-3-540-24754-8_15

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1145/3110283
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/3-540-54444-5_83
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3209108.3209189
https://www.microsoft.com/en-us/research/publication/linearly-used-continuations/
https://www.microsoft.com/en-us/research/publication/linearly-used-continuations/
https://doi.org/10.1023/A:1020891112409
https://doi.org/10.1145/2794078
https://doi.org/10.1145/3158110
https://doi.org/10.1109/LICS.1996.561339
https://doi.org/10.1145/3341643
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/800235.807077
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/507635.507639
https://doi.org/10.1145/318593.318654
https://doi.org/10.1007/978-3-540-24754-8_15

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism 95:29

Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102. https://doi.org/10.1016/0304-3975(87)90045-4

J. Y. Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Thèse de Doctorat
d’État. Université Paris 7.

Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. 1979. Edinburgh LCF. Lecture Notes in Computer

Science, Vol. 78. Springer. https://doi.org/10.1007/3-540-09724-4

Robert Harper and Mark Lillibridge. 1991. ML with callcc is unsound. Announcement on the types electronic forum.

https://www.cis.upenn.edu/~bcpierce/types/archives/1991/msg00034.html

Robert Harper and Mark Lillibridge. 1993a. Explicit Polymorphism and CPS Conversion. In Conference Record of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 206–219. https://doi.org/10.1145/

158511.158630

Robert Harper and Mark Lillibridge. 1993b. Polymorphic Type Assignment and CPS Conversion. Lisp and Symbolic
Computation 6, 3-4 (1993), 361–380.

Masahito Hasegawa. 2002. Linearly Used Effects: Monadic and CPS Transformations into the Linear Lambda Calculus. In

Functional and Logic Programming, 6th International Symposium, FLOPS 2002. 167–182. https://doi.org/10.1007/3-540-

45788-7_10

Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017. Continuation Passing Style for Effect

Handlers. In 2nd International Conference on Formal Structures for Computation and Deduction, FSCD 2017. 18:1–18:19.
https://doi.org/10.4230/LIPIcs.FSCD.2017.18

My Hoang, John C. Mitchell, and Ramesh Viswanathan. 1993. Standard ML-NJ weak polymorphism and imperative

constructs. In Proceedings of the Eighth Annual Symposium on Logic in Computer Science (LICS ’93). 15–25. https:

//doi.org/10.1109/LICS.1993.287604

Atsushi Igarashi and Naoki Kobayashi. 1997. Type-Based Analysis of Communication for Concurrent Programming

Languages. In Static Analysis, 4th International Symposium, SAS ’97. 187–201. https://doi.org/10.1007/BFb0032742

Yukiyoshi Kameyama and Takuo Yonezawa. 2008. Typed Dynamic Control Operators for Delimited Continuations. In

Functional and Logic Programming, 9th International Symposium, FLOPS 2008. 239–254. https://doi.org/10.1007/978-3-

540-78969-7_18

Ohad Kammar and Matija Pretnar. 2017. No value restriction is needed for algebraic effects and handlers. Journal of
Functional Programming 27 (2017), e7. https://doi.org/10.1017/S0956796816000320

Andrew Kennedy. 2007. Compiling with continuations, continued. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007. 177–190. https://doi.org/10.1145/1291151.1291179

Naoki Kobayashi. 2013. Model Checking Higher-Order Programs. J. ACM 60, 3 (2013), 20:1–20:62. https://doi.org/10.1145/

2487241.2487246

Roland Leißa, Marcel Köster, and Sebastian Hack. 2015. A graph-based higher-order intermediate representation. In

Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2015.
202–212. https://doi.org/10.1109/CGO.2015.7054200

Daniel Leivant. 1983. Polymorphic Type Inference. In Conference Record of the Tenth Annual ACM Symposium on Principles
of Programming Languages, POPL 1983. 88–98. https://doi.org/10.1145/567067.567077

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2020. The OCaml system

release 4.10: Documentation and user’s manua. https://caml.inria.fr/pub/docs/manual-ocaml/

Xavier Leroy and Pierre Weis. 1991. Polymorphic Type Inference and Assignment. In Proceedings of the 18th Annual ACM
Symposium on Principles of Programming Languages. 291–302. https://doi.org/10.1145/99583.99622

John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. 1995. Call-by-name, call-by-value, call-by-need and the

linear lambda calculus. In Eleventh Annual Conference on Mathematical Foundations of Programming Semantics, MFPS
1995. 370–392. https://doi.org/10.1016/S1571-0661(04)00022-2

Albert R. Meyer and Mitchell Wand. 1985. Continuation Semantics in Typed Lambda-Calculi (Summary). In Logics of
Programs. 219–224. https://doi.org/10.1007/3-540-15648-8_17

Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, I. Inf. Comput. 100, 1 (1992), 1–40.
https://doi.org/10.1016/0890-5401(92)90008-4

Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth Annual Symposium on Logic
in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. 14–23. https://doi.org/10.1109/LICS.1989.39155

Benoît Montagu and Didier Rémy. 2009. Modeling abstract types in modules with open existential types. In Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009. 354–365. https:

//doi.org/10.1145/1480881.1480926

James H. Morris. 1969. Lambda-calculus models of programming languages. Ph.D. Dissertation. Massachusetts Institute of

Technology. https://dspace.mit.edu/handle/1721.1/64850

J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From system F to typed assembly language. ACM
Trans. Program. Lang. Syst. 21, 3 (1999), 527–568. https://doi.org/10.1145/319301.319345

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/3-540-09724-4
https://www.cis.upenn.edu/~bcpierce/types/archives/1991/msg00034.html
https://doi.org/10.1145/158511.158630
https://doi.org/10.1145/158511.158630
https://doi.org/10.1007/3-540-45788-7_10
https://doi.org/10.1007/3-540-45788-7_10
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.1109/LICS.1993.287604
https://doi.org/10.1109/LICS.1993.287604
https://doi.org/10.1007/BFb0032742
https://doi.org/10.1007/978-3-540-78969-7_18
https://doi.org/10.1007/978-3-540-78969-7_18
https://doi.org/10.1017/S0956796816000320
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1109/CGO.2015.7054200
https://doi.org/10.1145/567067.567077
https://caml.inria.fr/pub/docs/manual-ocaml/
https://doi.org/10.1145/99583.99622
https://doi.org/10.1016/S1571-0661(04)00022-2
https://doi.org/10.1007/3-540-15648-8_17
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/1480881.1480926
https://doi.org/10.1145/1480881.1480926
https://dspace.mit.edu/handle/1721.1/64850
https://doi.org/10.1145/319301.319345

95:30 Taro Sekiyama and Takeshi Tsukada

Georg Neis, Derek Dreyer, and Andreas Rossberg. 2011. Non-parametric parametricity. J. Funct. Program. 21, 4-5 (2011),
497–562. https://doi.org/10.1017/S0956796811000165

Max S. New, Dustin Jamner, and Amal Ahmed. 2020. Graduality and parametricity: together again for the first time. Proc.
ACM Program. Lang. 4, POPL (2020), 46:1–46:32. https://doi.org/10.1145/3371114

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative Functional Programming. In Conference Record of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 71–84. https://doi.org/10.1145/

158511.158524

Andrew M. Pitts and Ian David Bede Stark. 1993. Observable Properties of Higher Order Functions that Dynamically Create

Local Names, or What’s new?. In Mathematical Foundations of Computer Science 1993, 18th International Symposium,
MFCS 1993. 122–141. https://doi.org/10.1007/3-540-57182-5_8

Gordon D. Plotkin. 1973. Lambda-definability and logical relations. Technical Report.
Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci. 1, 2 (1975), 125–159.

https://doi.org/10.1016/0304-3975(75)90017-1

John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM
Annual Conference - Volume 2 (ACM ’72). 717–740. https://doi.org/10.1145/800194.805852

John C. Reynolds. 1974. Towards a theory of type structure. In Programming Symposium, Proceedings Colloque sur la
Programmation. 408–423. https://doi.org/10.1007/3-540-06859-7_148

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress. 513–523.
John C. Reynolds. 1993. The Discoveries of Continuations. Lisp and Symbolic Computation 6, 3-4 (1993), 233–248.

Amr Sabry and Matthias Felleisen. 1992. Reasoning About Programs in Continuation-Passing Style. In Proceedings of the
Conference on Lisp and Functional Programming, LFP 1992. 288–298. https://doi.org/10.1145/141471.141563

Taro Sekiyama and Atsushi Igarashi. 2019. Handling Polymorphic Algebraic Effects. In Programming Languages and Systems
- 28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Proceedings. 353–380. https://doi.org/10.1007/978-3-030-17184-1_13

Taro Sekiyama, Takeshi Tsukada, and Atsushi Igarashi. 2020. Signature restriction for polymorphic algebraic effects. Proc.
ACM Program. Lang. 4, ICFP (2020), 117:1–117:30. https://doi.org/10.1145/3408999

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32, 2 (1967), 198–212.

https://doi.org/10.2307/2271658

Hayo Thielecke. 2003. From control effects to typed continuation passing. In Conference Record of POPL 2003: The 30th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 139–149. https://doi.org/10.1145/640128.604144

Hayo Thielecke. 2004. Answer Type Polymorphism in Call-by-Name Continuation Passing. In Programming Languages and
Systems, 13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2004. 279–293. https://doi.org/10.1007/978-3-540-24725-8_20

Mads Tofte. 1990. Type Inference for Polymorphic References. Inf. Comput. 89, 1 (1990), 1–34. https://doi.org/10.1016/0890-

5401(90)90018-D

David N. Turner, Philip Wadler, and Christian Mossin. 1995. Once Upon a Type. In Proceedings of the seventh international
conference on Functional programming languages and computer architecture, FPCA 1995. 1–11. https://doi.org/10.1145/

224164.224168

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the fourth international conference on Functional programming
languages and computer architecture, FPCA 1989. 347–359. https://doi.org/10.1145/99370.99404

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (1994), 38–94.
https://doi.org/10.1006/inco.1994.1093

Jianzhou Zhao, Qi Zhang, and Steve Zdancewic. 2010. Relational Parametricity for a Polymorphic Linear Lambda Calculus.

In Programming Languages and Systems - 8th Asian Symposium, APLAS 2010, Shanghai, China, November 28 - December
1, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6461), Kazunori Ueda (Ed.). Springer, 344–359. https:

//doi.org/10.1007/978-3-642-17164-2_24

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 95. Publication date: August 2021.

https://doi.org/10.1017/S0956796811000165
https://doi.org/10.1145/3371114
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/158511.158524
https://doi.org/10.1007/3-540-57182-5_8
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/800194.805852
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1145/141471.141563
https://doi.org/10.1007/978-3-030-17184-1_13
https://doi.org/10.1145/3408999
https://doi.org/10.2307/2271658
https://doi.org/10.1145/640128.604144
https://doi.org/10.1007/978-3-540-24725-8_20
https://doi.org/10.1016/0890-5401(90)90018-D
https://doi.org/10.1016/0890-5401(90)90018-D
https://doi.org/10.1145/224164.224168
https://doi.org/10.1145/224164.224168
https://doi.org/10.1145/99370.99404
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1007/978-3-642-17164-2_24
https://doi.org/10.1007/978-3-642-17164-2_24

	Abstract
	1 Introduction
	1.1 Background: CPS Transformation for Implicit Polymorphism
	1.2 This Work

	2 v: Curry-style CBV System F
	3 Overview
	3.1 Challenge: Scope Intrusion
	3.2 Our Solution

	4 open: CPS Target Language
	4.1 Syntax
	4.2 Type System
	4.3 Semantics
	4.4 Type Soundness

	5 CPS Transformation for Curry-style CBV System F
	5.1 Definition
	5.2 Preservation Properties

	6 Logical Relation and Parametricity
	6.1 Main Idea
	6.2 Formal Definition
	6.3 Properties
	6.4 An Issue with the Result Relations at Type Variables

	7 Related Work
	7.1 Type-Preserving CPS Transformation
	7.2 CPS Transformation with Linearity
	7.3 Logical Relations and Parametricity
	7.4 Decomposition of Type Abstraction

	8 Conclusion
	Acknowledgments
	References

