Signature Restriction for Polymorphic Algebraic Effects
(Supplementary Material)

Taro Sekiyama

National Institute of Informatics & SOKENDAI

This is the supplementary material for “Signature Restriction for Polymorphic Algebraic Effects” accepted at
ICFP 2020, providing the full definitions of the language, the polymorphic type system, and the type-and-effect
system and the full proofs of the properties presented in the paper.

1 Definition

1.1 Syntax
Variables z,y,z,f,k Type variables «, 3,7y Effect operations op
Base types = bool |int| ...
Types A,B,C,D w= a|t|A—=B|Va.A|AxB|A+B]|Alist
Constants ¢ = true|false | 0|+ | ...
Terms M m= z|c|Az.M| M M| #op(M) | handle M with H |

(M17M2) | 7T1M | 7T2M |
inl M |inr M | case M of inlz — My; inry — Moy |
nil | cons M | case M of nil — My; consz — My | fix f. \x. M
Handlers H n= returnz — M | H;op(z, k) > M
Values v c|Az.M | (v1,v2) | inlv | inrv | nil | conswv
Typing contexts T’ OIT,z:A|T,«
Evaluation contexts E == [||E M| v E |#op(F) | handle E with H |
(B, Ms) | (vi, E) [mE | m2F |
inl E |inr E | case Eofinlz — M; inry — Mo |
cons E | case F of nil — My; consz — My

Convention 1. This work follows the conventions as below.

o We write o for a = ay,--+ ,a, with I = {1,...,n}. We often omit index sets (I and J) if they are not
important: for example, we often abbreviate a! to a. We apply this bold-font notation to other syntax
categories as well; for ezample, A’ denotes a sequence of types.

o We write {s} to view the sequence s as a set by ignoring the order.

o We writeYal. A forVay....You,. A with I = {1,...,n}. We may omit index sets (Y. A). We write Va!. A’
for a sequence of types Val. Ay, ..., Val. A, with J ={1,...,n}.

e We write T'y, Ty for the concatenation of T'y and T's, and z: A and a for (B, z: A), (0, &), respectively.
o We write H™™™ for the return clause in H and H(op) for the operation clause of op in H.
Definition 1 (Domain of typing contexts). We define dom(T") as follows.
dom () L]
dom(T, z: A) f dom(I') U {z}

dom (T, a) def dom(T") U {a}

Definition 2 (Free type variables and type substitution in types). Free type variables ftv(A) in a type A and type
substitution B[A/a] of types A for type variables o in B are defined as usual. Type A is closed if and only if ftv(A)
15 empty.

Assumption 1. We suppose that each constant c is assigned a first-order closed type ty(c) of the form ¢ — ... —
Ln = tnt1. We also suppose that, for any ¢, there exists the set K, of constants of v. For any constant ¢, ty(c) = ¢
if and only if ¢ € K,. The function ¢ gives a denotation to pairs of constants. In particular, for any constants
c1 and co: (1) ((e1, ¢) is defined if and only if ty(c1) = o — A and ty(c2) = 1o for some 1y and A; and (2) if
C(c1, c2) is defined, ((c1, ca) is a constant and ty(¢(c1, c2)) = A where ty(c1) = 1o — A.

Definition 3 (Polarity of type variable occurrence). The positive and negative occurrences of a type variable in a
type A are defined by induction on A, as follows.

e The occurrence of a in type « is positive.

e The positive (resp. negative) occurrences of o in A — B are the negative (resp. positive) occurrences of a in
A and the positive (resp. negative) occurrences of « in B.

e The positive (resp. negative) occurrences of a in ¥ 3. A, where (3 is supposed to be distinct from «, are the
positive (resp. negative) occurrences of a in A.

e The positive (resp. negative) occurrences of a in A X B are the positive (resp. negative) occurrences of a in A
and those in B.

e The positive (resp. negative) occurrences of o in A+ B are the positive (resp. negative) occurrences of a in A
and those in B.

e The positive (resp. negative) occurrences of a in Alist are the positive (resp. negative) occurrences of a in A.
The strictly positive occurrences of a type variable in a type A are defined by induction on A, as follows.

e The occurrence of a in type « is strictly positive.
o The strictly positive occurrences of a in A — B are the strictly positive occurrences of o in B.

o The strictly positive occurrences of o in ¥ 3. A, where B is supposed to be distinct from «, are the strictly
positive occurrences of ain A.

o The strictly positive occurrences of av in A X B are the strictly positive occurrences of a in A and those in B.
e The strictly positive occurrences of o in A+ B are the strictly positive occurrences of «a in A and those in B.

o The strictly positive occurrences of a in Alist are the strictly positive occurrences of o in A.

Definition 4 (Type signature). Fach effect operation op is assigned a type signature ty (op) of the formVaq....Vo,. A —
B for some m, where aq,...,an are bound in the domain type A and codomain type B. It may be abbrevi-
ated to Ya'!.A < B or, more simply, to Vo. A — B. We suppose that Vai...Vo,.A < B is closed, i.e.,

fto(4), fv(B) € {aa, -+, o}
Definition 5 (Operations satisfying signature restriction). An operation op having type signature ty (op) =
Va. A < B satisfies the signature restriction if and only if:

e the occurrences of each type variable of o in A are only negative or strictly positive; and

e the occurrences of each type variable of o in B are only positive.

1.2 Semantics

Definition 6 (op-free evaluation contexts). Fwvaluation context E is op-free, written op € E, if and only if, there
exist no Ey, Fa, and H such that E = Ej[handle Ex with H] and H has an operation clause for op.

Definition 7. Relations — and ~~ are the smallest relations satisfying the rules in Figure 1.

Definition 8 (Multi-step evaluation). Binary relation —* over terms is the reflexive and transitive closure of
—.

Definition 9 (Nonreducible terms). We write M —/ if there exists no term M’ such that M — M'.

Reduction rules

cv ~ ((c,v) R_ConsT
A M)v ~ M[v/z] R_BETA
handlevwith H ~» MJv/z] R_RETURN

(where H™™™ = returnz — M)
handle E[#op(v)|with H ~» M][v/z][Ay.handle E[y]with H/k] R_HANDLE
(where op ¢ F and H(op) = op(z,k) = M)

7T1(’l)1, 1)2) ~r U R_ProJl
7T2(’l)1, 1}2) ~r o Ug R_ProJ2
caseinlvofinle — My;inry — My ~~ M[v/x] R_CaSeEL
caseinrvofinle — My;inry — My ~» Ma[v/y] R_CASER

casenilof nil — My; consz — My ~ M R_NiL

caseconsvof nil = My; consz — My ~~ Mlv/x] R_Cons
fixfAx. M~ (Ax.M)[fixf. x.M/f] R_Fix
Evaluation rules My — M,
Ml ~ MQ
E_EvAL

Figure 1: Semantics.

1.3 Typing

Definition 10. Well-formedness judgment & T is the smallest relations satisfying the rules in Figure 3. We write
I' = A if and only if ftu(A) C dom(T') and b T is derived. Type containment judgment I' = A T B is the least
relation satisfying the rules in Figure 2. Typing judgments ' M : A and '+ H : A = B are the smallest relations
satisfying the rules in Figure 4.

Type containment (' AC B

FT T-ACC THCCB TFBCA TFALCDB,

_ . T F
rraca CRer TFACB C-TRaNs TF A, 5 4L, CB B W
'+B O Ins FT o ¢ ftu(A) C.G I'a-FACB C.Po
_INST _GEN _ LY
I'FVa. AC A[B/a) I'FACVa. A I'Va.ACVa.B
PEACB THACB o THACB TEACB o THACB
TF A, x A4, C B, x By - TFA+4,C B+ B, - TEAlistC Blist 0"
FT o fu(d) C_DFuN ot C_DPRrOD
'-Va.A—-BLCA—Va. B - 'FYa.Ax BC (Va.4) x (Va. B) -
-r C.DS -r C_DLis
_ M _ IST
TFYa.A+BC (Va.A) + (Vo B) N TFVa. Alist C (V. A) list

Figure 2: Type containment.

Well-formedness

x &€ dom(l) THA a & dom(T) FT
— WF_EMPTY WF_EXTVAR

- FT.2: A T WF_EXTTYVAR

Figure 3: Well-formedness.

Term typing

FI 2:4 €T T VAR FT T CoNs rz:A-M:B T Ass
'z:4 - 'k c:ty(e) - B '-Xz.M:A— B -
'-My:A—B T'HFM:A T A akFM:A TG '-M:A TTHACB T'+B T_INS

APP — _GEN _INST
I'-M My:B 'EM:Va. A I'-M:B
ty(op) =Va.A—B T'+M:A[C/a] THC '-M:A THH:A=B
T_Op - T_HANDLE
I'F#op(M) : B[C/a] I' - handle M with H : B
'-My:A T'HM;:B T PAlR '-M:AxB T Projl 'M:AxB T Pro12
' (M, M) : Ax B N 'tmM: A N I'noM : B N
r-mMm:A T'HB T_INL '-M:B THA T_INR
TFmM:A+B TFind:4A+B
'FM:A+B T,z2:A-M;:C T,y:BFMy:C
- - T_CASE
I'Fcase M ofinlz — My;inry — My : C
r-A TN - M:Ax Alist T.C
T'Enil : Alist - ' cons M : Alist HONS
'EM:Alst THEM:B T,z:Ax Alistk My : B T CASELIS rf:A—-Bxz:A-M:B TF
_CASELIST _Fix
I'F case M of nil — My; consz — M> : B T'FfixfAx.M:A— B

Handler typing |'FH:A=B

I''z:A-M:B
'returnz - M : A= B
'HH:A=B ty(op) =Va.C—=D T,a,z:C,k:D—B+M:B
't H;op(z,k) > M: A= B

TH_RETURN

TH_Op

Figure 4: Typing.

Effects ¢
Types A,B,C,D

{op17"' 7opn}
alt|A—=*B|Va. A|AxB| A+ B| Alist

Figure 5: Type language for the effect-and-type system.

Type containment |[['FACB

I'BiC A THACB FT tv(A) SR
15 A 2 L Dy C_FUNEFF Oéi/fv() (6)

DFUNE
TF A, >¢ A, C By =< B, TFvad = BC A s vap CDFUNEFF

Figure 6: Change from Figure 2 for type containment of the effect-and-type system. It gets rid of (C_FuUN) and
(C_DFuN) instead of adding (C_FUNEFF) and (C_DFUNEFF).

1.4 Type-and-effect System

The type language for the type-and-effect system is shown Figure 5. Figure 6 describes only the change of the type
containment rules from those of the polymorphic type system.

Definition 11 (Effects satisfying signature restriction). The predicate SR (€) holds if and only if, for any op € €
such that ty (op) = Va. A — B:

e the occurrences of each type variable of o in A are only negative or strictly positive;
e the occurrences of each type variable of o in B are only positive; and

e for any function type C —¢ D occurring at a strictly positive position in A, if {a} N ftv(D) # 0, then
SR (€').

Definition 12. Typing judgments T M : A|le and T+ H : Ale = B|€ are the smallest relations satisfying the
rules in Figure 7.

Term typing |I'FM: Ale

P widel T o Cons
E_ _— E_ T
PhHx:Ale T'kc:ty(e)|e
I,z:AFM:B|¢ T Ans PHM :A— Ble THMy:Ale € Ce T A
TFAM:A9 Ble TF M M, : Ble F-
LabM:Ale SR(9 . PEM:Ale THACE TEB
'EM:Va. Ale BEN I'FM:B|e FoINST

ty(op) =Va.A—=B ope€e T'FM:A[C/a]le THC
I'F#op(M): B[C/a]|e

TE_OP

'FM:Ale THH:Ale= B|¢
I'F handle M with H : B | ¢

TE_HANDLE

M :Ale THMy: Ble 'M:AxBle 'M:AxB]|e

TE_PAIR TE_ProOJ1 TE_PROJ2
T+ (M, M) : Ax B|e " TFmM:Ale " TFmd:B|e "
PeM:Ale TRB PEM:Ble THA
E_IN E_IN
THinlM:A+ Ble 'FinrM: A+ Ble
'FM:A+Ble Tya:AFM :Cle T,y:BFMy: Cle
- - TE_CASE
It case M ofinlz — My;inry — My : Ce
A Te N F'EM:AxAlist|e TE.CONS
————— TENIL E_CON
TEnil: Alist|e I'Fcons M : Alist|e
P-M:Alistle THM :Ble Tyz:Ax Alistk My : Ble T CASELIS
E_CASELIST
I'F case M of nil — My; consz — My : Be
If:A—=“B,x:AF-M:Ble TeF FEM:Ale € Ce TE W
E_FIX E_WEAK
I'FfixfAz.M: A—<B|¢ TFM:Ale
Handler typing ’FI—H:A\E:>B|6’
I'e:AFM:Ble eC¢ THER
I'Fretunz — M : Ale = B¢ BRETURN
'FH:Ale= B|€e¢ ty(op) =Va.C—= D F,a,x:CJ{::D—)G/BI—M:B\e’
THE_Op

'+ H;op(z,k) = M : Ale W {op} = B|¢

Figure 7: Typing of the effect-and-type system.

2 Proofs

2.1 Soundness of the Type System
Lemma 1 (Weakening). Suppose that - T1,Ts. Let I's be a typing context such that dom(I'y) N dom(L3) = 0.
1. If - Ty,Ts, then - Tq,To, Ty,
2. IfT1,Ts - A, then Ty, T, T3 - A.
3. IfT1,Ts+ AC B, thenT1,T5, s - AC B.
4. IfT1,T'sEM: A, thenT'{,I'5,'s+ M : A.
5. IfT'1,I's-H:A= B, thenT1,T9,Ts+H: A= B.
Proof. By (mutual) induction on the derivations of the judgments. O
Lemma 2 (Type substitution). Suppose that T'y - A.
1. If E Ty, 0, Ty, then - T1,T2 [A/q).
2. IfT'1,a,Ts - B, then Ty, Ty [A/a] - B[A/al.
3. IfT'1,a,Ty = BC C, thenT'1,I'3[A/a] - B[A/a] C C[A/q).
4. IfT1,a,To - M : B, then'1,T9[A/a] - M : B[A/q].
5. IfT1,a,ToF H: B = C, thenT1,I';[A/a]F H : B[A/a] = C[A/«q].

Proof. Straightforward by (mutual) induction on the derivations of the judgments. Note that the cases for (T_Op
and (TH_OP) depend on Definition 4, which states that, for any op, if ty (op) = V3. C — D, ftv(C) U ftv(D)

{8}

Lemma 3.

~—

N

1. IfFTy,2: ATy, then - Ty, Ty.

9. IfTy,z:A,Ts - B, then T'1,Ts - B.

8. IfT',z: A, T BC C, thenT'1,I's - BC C.
Proof. By induction on the derivations of the judgments. O
Lemma 4 (Term substitution). Suppose that T'1 = M : A.

1. IfTy,2:ATo - M': B, then T1,Ts - M'[M /2] : B.

2. IfTy,0:AToF H:B= C, then T',Ts - H[M/z] : B = C.
Proof. By mutual induction on the typing derivations with Lemma 3. The case for (T_VAR) uses Lemma 1 (4). O

Definition 13. The function unqualify returns the type obtained by removing all the Vs at the top-level from a
given type, defined as follows.

unqualify (¥ a. A) def unqualify(A)
unqualify(A) Y (if A # Ya.B for any a and B)
Lemma 5. Suppose ' A C B. If unqualify(A) is not a type variable, then unqualify(B) is not either.

Proof. By induction on the type containment derivation. Only the interesting case is for (C_INST). In that case, we
are given ' FVa. C C C[D/a] (A = Va.C and B = C[D/a]) for some a, C, and D, and, by inversion, I' - D. Tt
is easy to see, if unqualify(V 8. C) = unqualify(C) is not a type variable, then unqualify(C[D/3]) is not either. O

Lemma 6. Suppose that T'F A C B and unqualify(A) is not a type variable.

1. If unqualify(B L, then unqualify(A) = ¢.

. If unqualify(B By — Bs, then unqualify(A) = A1 — As for some Ay and As.

) =
2 (B)
3. If unqualify(B) = By X Bg, then unqualify(A) = Ay x Ay for some Ay and As.
4. If unqualify(B) = B + Ba, then unqualify(A) = A1 + Ay for some Ay and As.
5. If unqualify(B) = B’list, then unqualify(A) = A’list for some A’.

Proof. By induction on the type containment derivation. The case for (C_TRANS) is shown by the IHs and Lemma 5.
In the case for (C_INST), we are given I' - V. C C C[D/a] for some o, C, and D (A = Va. C and B = C[D/a]).
Since unqualify(Va. C) = unqualify(C) is not a type variable, it is easy to see that the top type constructor of
unqualify(C) is the same as that of ungualify(C[D/«a]). Proving the other cases is straightforward. O

Lemma 7. IfTF v: A, then unqualify(A) is not a type variable.
Proof. By induction on the typing derivation for v. We can show the case for (T_INST) by the IH and Lemma 5. [
Lemma 8 (Canonical forms). Suppose that T't v : A.

1. If unqualify(A L, then v = c¢ for some c.
2. If unqualify(A B — C, then v = ¢ for some c, or v = Ax.M for some z and M.

4. If unqualify(A

(4) =
(4) =
3. If unqualify(A) = B x C, then v = (v, v2) for some v; and vs.
(A) = B+ C, then v = inlv' or v = inrv’ for some v'.
(4) =

5. If unqualify(A Blist, then v = nil or v = consv’ for some v'.

Proof. Straightforward by induction on the typing derivation for v. Only the interesting case is for (T_INST). In
the case, we are given, by inversion, '+ v: Band ' BC A and I' - A for some B. By Lemma 7, unqualify(B)
is not a type variable. Thus, by Lemma 6 and the IH, we finish. O

Definition 14. We use the metavariable A for ranging over typing contexts that consist of only type variables.
Formally, they are defined by the following syntaz.

=0|A

Lemma 9 (Type containment inversion: function types). If T Va{l.Al — A C Vaéz. By — Bs, then there
exist ok}, al2 37, and C™ such that

o {ar'} = {ag}} v {a1}},

e I al g7+ Ch,

o T.af B CVB. A4 [C" /aiy],

o Dol FValz. V7. Ay[C™ ol C By, and

type variables in {37} do not appear free in Ay and As.

Proof. By induction on the type containment derivation. Throughout the proof, we use the fact of - I for applying
(C_REFL); it is shown easily by induction on the type containment derivation.

Case (C REFL) We have a{l = 12 and Ay = By and Ay = Bs. Let afz? and B7 be the empty sequence,
O‘{lll = 0¢1 ,and CT' = a{l. We have to show that

° F,ozz2 F By C A; and
e l,alF A, C B,.

They are derived by (C_REFL).

Case (C_TRANS): By inversion, we have I' - Val1 Ay - Ao CDandTTHFDC Voé2 By — By for some D. By
Lemma 6, D = Va?f’ D; — Dy for some a3 , D1, and D,. By the IH on T’ I—Va LA — Ay EVa3 Dy — Do,
there exist afy, al?, C1™"', and 37" such that

{og'} = {al“} w {ag5},

o T aés’ e 111

e Tal F D CVB]. A[Cy™ Jaly],

e I al FValz vE). Ay[Ci" Jaly] E Dy, and

e type variables in ,8 do not appear free in A; and As,.

By the IH on I'" - Va .Dy — Dy C Va . By — Bo, there exist agfll, aégf, Cs"1, and ﬂé‘* such that

o {az'} = {a"“} W {ag3},

o T aéz, 55 - Cs =

e laz B C ve;ﬁ Di[C5™ Jafy],

o T, a2 -VYals VB Dy[Cs™ Jak] C By, and

e type variables in 53 do not appear free in Dy and Ds.
We show the conclusion by letting C'* = C1[C3%' /g1)1t and 87 = g, B5%,8;]". We have to show that

o I, 012 aég, 3 ,,6111 - 01[03131/031131]111
° F,a2 - By EVa%.Vﬂf.Vﬁl) [Chl/ahl] and
o Moy FValy . Valz VB VB As[CT Jal}] C Bs.

The first requirement is shown by I',a, 37* - C;""* and T, a2, 85° - C3™" and Lemma 1 (2) and Lemma 2
(2).

Next, we show the second requirement Since T, a F D C Vﬁl Al[C’;lI“/aI“] and I‘,aég, ?{3 F Cyler,
we have T',ad?, o, 83* - D, T V3] Al[C’ll“/aI“} and T ag,a:]f;, 35 F C3™' by Lemma 1 (3) and (2),
respectively. Thus, by Lemma 2 (3),

Doy, 05, B3 = Di[Cs™ Jogy] EV BT A [C™ o]
(note that we can suppose that ozl?’1 do not appear free in 4;). By (C_PoLy),
T o, g% - VB3P Di[Cs™ Jagy] TV B VB . A[CT Jaty].
Since I', a2 F By £V B4°. D1[C3™ /ak)], we have
Ty, a8 F B CVB52.VB]". A1[Coi™ aii]
by Lemma 1 (3) and (C_TRANS). Since we can suppose that a i do not appear free in By, we have
T aff b By CVags VB3V A A [C /afy]

by (C_GEN), (C_PoLy), and (C_TRANS).

Finally, we show the third requ1rement SmceF caf EYal2 vET Ay [Ci Jald] E Dy and T, a2, 857 - Cs™,
we have T', a2, o, B F YV adi2.V 8. [Clhl/ahl] C D2 and T, a2, ad2, 82 - C3™' by Lemma 1 (3) and
(2), respectively. Thus, by Lemma 2 (3),

L oy, az5, 85" FVays. VB A2[C™ fag)| C Dy[Cs™ [agy]
(note that we can suppose that ozl31 do not appear free in As). By (C_PoLy),

T of -Vogs.VBs° Vayg VB . Ao[CH Jag] TV agy .V B4 Do C5™ oz

10

Since T, aR FVakz. VB4 Do[Cs™ /ag] C By, we have
T,az FVasg. VB3 .Vays.VBy . A[C™ Jay] C By
by (C_TRANS). Thus, by permutating Vs on the left-hand side,

T ol FValz Vais. VB2 6] Ay[CT Jall]| C By.

Case (C_FuN): Obvious by inversion.

Case (C_INST): We have al' = a,al? and B1 = A;1[C/a] and Bg = Ay[C/a] for some C such that I' = C. We

show the conclusion by letting a{lll = a, a2 CI“ = C az , and ah"’ and B’ be the empty sequence. We

have to show that

oT ag -,
e Ial F A[C/a) C 4,[C/al,
o T a2 A,[C/a] C Ay[C/al.
The first is shown by Lemma 1 (1). The second is by (C_REFL). The third is by (C_REFL).

Case (C_GEN): We have aé = a 041 and Ay = By and A2 = By and a ¢ ftv(Va{l.Al — Ay). We show the
conclusion by letting a{lll = al , ch = a{l, and ozI12 and 37 be the empty sequence. We have to show that

[F,Ot,()é{l F A1 E A1 and
[Ra,a{l H A2 E Ag.

They are derived by (C_REFL).

Case (C _PoLy): We have o' = a,afy and a2 = a,al and, by inversion, I'a F Vai. A, — Ay C
Va0°2 By — By. By the IH, there exist some o)y, a{lf, 37, and 001011 such that

o {agi} = {agii} W {a15},

o T a,aly,87 F Cylom,

e T a,aly - B, CVA. A [Co™ Jal],

o T a,al2 Fvalz. vB7. Ay[Co™ /i) T By, and

e type variables in 87 do not appear free in A; and B;.
We can prove the conclusion by letting af} = a, iyl and C"' = a, Cp™m.

Case (C_DFUN): It is found that, for some o, al' = a and af 1s the empty sequence and B; = A; and
By, = Va.Ay. We show the conclusion by lettmg 011122 = « and allll, C1 and B” be the empty sequence. It
suffices to show that I' - A1 C A; and I' F V. A2 C V. A, which are derived by (C_REFL).

Case (C_ProD), (C_SuM), (C_LisT), (C_DPRrROD), (C_DSuUM), and (C_DLIST): Contradictory.

Lemma 10. IfI‘I— Ay — A CE By — BQ, thenT'F Bi C Ay and ' As C Bs.

Proof. By Lemma 9, '+ By CVa. 4; and I' - Va. Ay C Bs for some [< X >] such that type variables in a do
not appear free in A; and As. Since I' - V. A; C A; by (C_INST) (we can substitute any type, e.g., V 8. 3, for),
we have I'F By C A; by (C_TRANS). Since I' F Ay C V. As by (C_GEN), we have '+ Ay C Bs. O

Lemma 11 (Value inversion: constants). IfT'F c: A, then T F ty(c) C A.
Proof. By induction on the typing derivation for c¢. There are only three typing rules that can be applied to c.
Case (T_CoNsT): By (C_REFL).

11

Case (T_GEN): We are given I' - ¢ : Va. B (i.e., A = Va.B) and, by inversion, I';a - ¢ : B. By the IH,
Iat ty(c) E B. By (C_PoLy), '+ Va. ty(c) C Va. B. Since ty(c) is closed, we have T' F ty(c¢) C Va. ty(c) by
(C_GEN). Thus, by (C_TRANS), we have the conclusion.

Case (T_INST): By the IH and (C_TRANS).

Lemma 12 (Progress). IfAF M : A, then:
o M — M’ for some M';
e M is a value; or
e M = E[#top(v)] for some E, op, and v such thatop ¢ E.

Proof. By induction on the typing derivation for M. We proceed by case analysis on the typing rule applied last
to derive A+ M : A.

Case (T_VAR): Contradictory.

(
Case (T_ConsT), (T_ABs), and (T_NIL): Obvious.
Case (T_ABS): Obvious.

(

Case (T_APpP): We are given

o M = M Mo,

o A M My: A,

e AHM;:B— A, and
e AFM;:B

for some M;, M5, and B. By case analysis on the behavior of M;. We have three cases to consider by the IH.

Case My — Mj for some M{: We have M — M{ M.

Case M; = Ej[#op(v)] for some Ej, op, and v such that op € E;: We have the third case in the conclusion by
letting EF = E1 Mg.

Case M; = wv; for some v;: By case analysis on the behavior of My with the TH.
Case My — Mj for some Mj: We have M — vy Mj.

Case My = FEs[#op(v)] for some FEs, op, and v such that op € FEs: We have the third case in the conclusion
by letting £ = v Es.

Case My = vy for some vy: By Lemma 8 on vy, we have two cases to consider.

Case vy = ¢1: Since A+ ¢ : B — A, we have A+ ty(¢;) C B — A by Lemma 11. By Lemma 6 (2), it
is found that ty(¢;) = ¢ — C for some ¢ and C. Since Akt — CC B — A, we have AF- B LC .
for some v by Lemma 10. Since A F vy : B, unqualify(B) is not a type variable by Lemma 7.
Thus, since A b B C ¢, it is found that unqualify(B) = ¢ by Lemma 6. Since A F vy : B, we have
g = co for some ¢ by Lemma 8. Since A F ¢y : B, we have A F ty(c2) C B by Lemma 11. Since
unqualify(B) = t, we have ty(cz) = ¢ by Lemma 6. Thus, ((c1, ¢2) is defined, and M = ¢; co —
¢(c1, c2) by (R-ConsT)/(E_EVAL).

Case v1 = Az.M': By (R-BETA)/(E_EVAL), M = (Az.M') vg — M'[v2/x].
Case (T_GEN): By the ITH.
Case (T_INST): By the IH.
Case (T_-Op): We are given
o M = #op(M’),

12

o {y(op) =Va. A — B,
o A+ #op(M’): B'[C/a], and
e AFM : AC/a]
for some op, M’, o, A’, B’, and C. By case analysis on the behavior of M’ with the TH.

Case M’ — M" for some M": We have M — #op(M").
Case M' = E'[#op’(v)] for some E’, op’, and v such that op’ ¢ E’: We have the third case in the conclusion by

letting E = #op(E').
Case M’ = v for some v: We have the third case in the conclusion by letting £ = [].

Case (T_HANDLE): We are given

e M = handle M’ with H,
e A+ M': B, and
e AFH:B= A
for some M’, H, and B. By case analysis on the behavior of M’ with the TH.

Case M’ — M" for some M": We have M — handle M with H.

Case M’ = FE'[#op(v)] for some E’, op, and v such that op ¢ E’: If handler H contains an operation clause op(z, k) —
M", then we have M — M"[v/z][Ay.handle E'[y] with H /k] by (R_HANDLE)/(E_EVAL).
Otherwise, if H contains no operation clause for op, we have the third case in the conclusion by letting

E = handle E’ with H.
Case M’ = v for some v: By (R-RETURN)/(E_EVAL).

Case (T_PAIR): We are given

[] M = (Ml,MQ),
o A M1 : Bl, and
o AF MQ : BQ
for some Mi, M5, By, and B,. By case analysis on the behavior of M; with the TH.

Case My — M for some M{: We have M = (M], Ms).

Case M; = Ej[#op(v)] for some Ej, op, and v such that op ¢ E;: We have the third case in the conclusion by
letting E = (El,MQ).

Case M; = wv; for some v;: By case analysis on the behavior of My with the TH.

Case My — Mj: We have My — (v, My).
Case My = Es[#op(v)] for some FEs, op, and v such that op ¢ E;: We have the third case in the conclusion

by letting E = (v, E»).
Case My = wvg: We have the second case in the conclusion since M = (vy, va).

Case (T_ProJ1): We are given

e M = miM' and
e AFM' :AxB
for some M’ and B. By case analysis on the behavior of M’ with the TH.

Case M’ — M" for some M": We have M — m M".
Case M’ = FE'[#op(v)] for some E’, op, and v such that op € E’: We have the third case in the conclusion by

letting £ = w1 E'.

13

Case M’ = v’ for some v': Since A+ M’': Ax B (i.e., AF v : A x B), we have v/ = (v, v2) for some v; and
vy by Lemma 8. By (R-ProJ1)/(E_EVAL), we finish.

Case (T_Pr0J2): Similarly to the case for (T_ProJ1).
Case (T_INL), (T_INR), and (T_CoNs): Similarly to the case for (T_PAIR).
Case (T_CASE): We are given

e M = case M'ofinlz — Mjy; inry — M, and
e AFM :B+C

for some M', My, Ms, z, y, B, and C. By case analysis on the behavior of M’ wit the IH.

Case M’ — M" for some M": We have M — case M" of inlz — Mjy; inry — M.

Case M’ = FE'[#op(v)] for some E’, op, and v such that op ¢ E’: We have the third case in the conclusion by
letting E = case E’ of inlz — Mjy; inry — M.

Case M’ = v for some v: By Lemma 8, v = inlv’ or v = inrv’ for some v’. We finish by (R-CASeL)/(E_EvAL)
or (R-CaseR)/(E_EvaL).

Case (T_CASELIST): Similar to the case for (T_CASE).

Case (T_F1x): By (R-F1x)/(E_EVAL).

Lemma 13.
1. IfTEM: A, thenT F A.
2. fTHFH:A= B, thenT' F B.

Proof. Straightforward by mutual induction on the typing derivations. The case for (T_OP) depends on Lemma 2
and Definition 4, which states that, for op such that ty (op) = Va. A < B, ftv(B) C {a}. O

Lemma 14 (Value inversion: lambda abstractions). IfI'F Az.M : A, thenT,a,2:BF M : C andTHFVa. B —
C C A for some o, B, and C.

Proof. By induction on the typing derivation for Az.M. There are only three typing rules that can be applied to
Azx.M.

Case (T_ABS): We have A = B — C and let a be the empty sequence. We have the conclusion by inversion and
(C_REFL).

Case (T_GEN): We are given '+ Az. M : V3. D (i.e., A = V. D) and, by inversion, I', 8 - Az.M : D. By the IH,
[,8,v,2:BF-M:C and T',fFVY~!.B — C C D for some 7', B, and C. We show the conclusion by letting
a = f,~!. It suffices to show that I F V3.V~!. B — C T V8. D, which is derived from I', 3 - V~!. B — C C D
with (C_PoLy).

Case (T_INST): By the IH and (C_TRANS).
O

Lemma 15 (Value inversion: pairs). IfI' b (M, M) @ A, then Ta = My : By and Tya - My : By and
I'FVa.By X By £ A for some o, By, and Bs.

Proof. By induction on the typing derivation for (M, Ma). There are only three typing rules that can be applied
to (Ml, Mg)

Case (T_PAIR): Obvious by (C_REFL).

14

Case (T_GEN): We are given I' - (M3, Ms) : V3. C (i.e., A = V3. C) and, by inversion, I', 8 - (M, M) : C. By
the IH, I, B8,v' - My : By and I, 3,v' - My : By T, B+ VY~!.B; x By C C for some v/, B;, and B,. We show
the conclusion by letting o = ,~!. It suffices to show that I' - V3.V ~!. By x By T V3. C, which is derived
from I, B+ V~!. B x By C C with (C_PoLy).

Case (T_INST): By the IH and (C_TRANS).
O

Lemma 16 (Value inversion: left injections). IfT' FinlM : A, thenT,a - M : B andT -Va.B+ C C A for
some o, B, and C'.

Proof. By induction on the typing derivation for inl M. There are only three typing rules that can be applied to
inl M.

Case (T_INL): Obvious by (C_REFL).

Case (T_GEN): We are given I' - inlM : V3. D (i.e., A = V§.D) and, by inversion, I', 8 F inlM : D. By the
IH, T,8,v"FM:Band T, VY~y!.B+ C C D for some v/, B, and C. We show the conclusion by letting
a = B,~". It suffices to show that I' -V 3.V~!. B+ C CVB. D, which is derived from I', 3+ V~!. B+ CC D
with (C_Pory).

Case (T_INST): By the IH and (C_TRANS).
O

Lemma 17 (Value inversion: right injections). IfI'FinrM : A, thenT,a - M : C andT'FVa.B+ C C A for
some a, B, and C'.

Proof. Similarly to the proof of Lemma 16. O

Lemma 18 (Value inversion: cons). IfT' FconsM : A, then T,a b M : B x Blist and ' F V. Blist C A for
some o and B.

Proof. By induction on the typing derivations for cons M. There are only three typing rules that can be applied to
cons M.

Case (T_ConNs): Obvious by (C_REFL).

Case (T_GEN): We are given I' Fcons M : V3. C (i.e., A = V3. C) and, by inversion, I', 8 cons M : C. By the
IH, T,8,v'F M : B x Blistand I, 3 - V~!. Blist C C for some v/ and B. We show the conclusion by letting
a = B,~v!. It suffices to show that I' - V3.V~L. Blist C V 3. C, which is derived from I', 8 - V~!. Blist T C
with (C_PoLy).

Case (T_INST): By the IH and (C_TRANS).

Lemma 19. If ty(op) = Val. A< B and T'+ #op(v) : C, then
e I3/ + DI,
o I8’ Fu:AD"/a!], and
e T+V@/.B[D'/a!IC C

for some B’ and D'.

Proof. By induction on the typing derivation for #op(v). There are only three typing rules that can be applied to
#op(v).

Case (T_OP): We have C = B[D'/a'] and T'F D’ and T'+ v : A[D’/a] for some D’. We have the conclusion
by letting 87 be the empty sequence; note that '+ B[D'/a!] C B[D'/a!] by (C_REFL).

15

Case (T_GEN): We are given C' = V. Cy and, by inversion, I', 5 F #op(v) : Cp for some S and Cy. By the IH,
there exist some Bg° and D’ such that
o I',8,8y + D,
o I,3,85° Fv:AD'/a!] and
e I,BFVYB.B[D!/a!] C Cp.

We show the conclusion by letting 37 = $, ﬁo‘]”. It suffices to show I' -V 3. Vﬁo‘]”. B[D'/a!'] £V B. Cy, which is
proven from T, 8 -V Bg°. B[D'/a!] € Cy with (C_PoLy).

Case (T_INST): By the IH and (C_TRANS).

Lemma 20. IfT,al - E[M]: A, then

e I'a!,8/ - M:B and

e I,y:Val.VB'.B,al F Ely]: A for any y ¢ dom(T)
for some B’ and B.

Proof. By induction on the typing derivation of I', ! - E[M] : A.

Suppose that E = [|. Since I''a! E[M] : A, we have I',a! - M : A. We let 37 be the empty sequence
and B = A. It is then trivial that T',y:Val. B,al - E[y] : A by (T_INST). Note that - T' and T' - V. B by
Lemma 13.

In what follows, we suppose that F # []. We proceed by case analysis on the typing rule applied last to derive
Ial - E[M]: A

Case (T_VAR), (T_ConsT), (T_ABS), (T_N1L), and (T_F1x): Contradictory with the assumption that E # [].
Case (T_APP): By case analysis on E.

Case E = E' My: By inversion of the typing derivation, we have I';a! F E'/[M] : C — A and T,al F M, :
C for some C. By the IH, (1) I',a!,3” - M : B for some 87 and B and (2) for any y ¢ dom(T),
Iy:Val.vB’.B,a’ - E'[y]: C — A. By Lemma 1 (4) and (T_App), T, y:Va!.VB’.B,al - E'[y] My : A,
ie,D,y:Val.VB/.B,al - E[y] : A.

Case E = vy E’: Similarly to the above case.
Case (T-GEN): We have I',a! + E[M] : Vv.A" and, by inversion, I',al,v = E[M] : A’ for some v and A’

(note A = V~.A"). By the IH, (1) I',a!,v,8’ - M : B for some B’ and B and (2) for any y & dom(T),
Iy:Yal.Vy.VB/.B,al, v E[y]: A'.

By (T_-GEN), I',y:Val!.V~.VB’. B,a! - E[y] : V4. A’. Since A = V~. A’, we finish.

Otherwise: By the IH(s) and the corresponding typing rule, as the case for (T_ApP).

O
Lemma 21. Suppose thatI'1 - AC B and I'y - A.
1. IfTy,2:B,To- M : C, thenT'1,z: A, To M : C.
2. IfTy,2:B,T9oFH:C= D, thenT'1,z: A, T9oFH:C = D.
Proof. By mutual induction on the typing derivations. O

Lemma 22. Ifty(op) = Val. A< B and T'+ E[#op(v)] : C, then
o I3/ D',
e I8/ Fuv:A[D"/a'], and

16

o foranyy & dom(D'), I,y:¥YB’.B[D'/a!|F E[y]: C
for some B’ and D'.
Proof. By Lemma 20,

e I, 3" - #op(v) : C" and

e I,y:VB{".C'+E[y]: Cforany y ¢ dom(T)
for some ﬁih and C’. By Lemma 19,

« I8y, By - D'

o T3], 85> Fv:AD'/al], and

o I'B{' -VB3;3>. BID"/a!] C '

for some B3? and D’.
We show the conclusion by letting 37 = ‘1]1, 2‘]2. It suffices to show that, for any y ¢ dom(T),

[,y:VB]'.VBy2. B[D'/al|F Ely]: C.
Since ', 3" -V B32. B[D' /a!] E €, we have
T-VB{.vBy2. B[D o) TV). ¢
by (C_PoLy). Since T, y:V8{*. ¢’ + E[y] : C, we have
D,y:VB]'.VBy2. B[D'/al|F Ely]: C.
by Lemma 21. O

Lemma 23 (Type containment inversion: product types). IfI F Vall.A; x Ay CVal. B x B,, then there exist
1 2
ol al2 87, and CM such that

o {ar'} = {a}'} W {a1}},
e Iak g’/ + Cch,
o Mo FValz. Ve Aj[CT jady] C By,
o Do FValy. VB Ay[C™ ol C By, and
e type variables in {3’} do not appear free in Ay and As.
Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 9. O

Lemma 24 (Type containment inversion: sum types). IfI'F Va{1~A1 + A5 C Vaéz' B, + By, then there exist
0‘{1117 afz?, B7, and C™' such that

e {al} = {ali} ¥ {aly),

° I‘,a£27ﬁ‘] - CI”,

e Tal FValz vp’. A\ [C™ jaly] C By,

e Ial FValz vp’. A, [C™ /ol E By, and

e type variables in {3’} do not appear free in Ay and As.

Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 9. O

17

Lemma 25 (Type containment inversion: list types). IfI'F Va{l CAlist © Vaéz. Blist, then there exist a{lll, aff,

B7, and C™* such that
o {a7'} = {ag}} W {ag5},
e Iak g’/ + Cch,
e a2 FValy.va’. A[C" Jal}] C B, and
e type variables in {B”} do not appear free in A.
Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 9. O
Lemma 26. Suppose that o does not appear free in A.
1. If the occurrences of B in A are only negative, then I'1, o, T's = A[B/S] C AV o. B/f].
2. If the occurrences of B in A are only positive, then T'1,a, T2 F A[Va. B/B] C A[B/f].
Proof. By structural induction on A.

Case A = «: If v = B, then we have to show that I'1, o, I's - Va. B C B, which is derived by (C_REFL), (C_INST),
and (C_TrANS). Note that we do not need to consider the negative case, i.e., to show I';,,T's - B C Va. B,
because the occurrence 5 in g is not negative.

Case A = 1 By (C_REFL).

Case A = V~. C: By the IH and (C_PoLy) for each case.
Case A = C — D: By the IHs and (C_FuN) for each case.
Case A = C x D: By the IH and (C_PRoD) for each case.
Case A = C + D: By the IH and (C_Sum) for each case.

Case A = C'list: By the IH and (C_LisT) for each case.

Lemma 27. Suppose that o does not appear free in A.
1. If the occurrences of B in A are only negative or strictly positive, then T' -V a. A[B/B] C AV «a. B/f].
2. If the occurrences of 8 in A are only positive, then T'+ AV «. B/B] CV «. A[B/f].

Proof. By induction on A.

Case A = «: If v = 3, then we have to show that ' - Va. B C Va. B in the both cases, which is shown by
(C_REFL). Otherwise, if v # [, then we have to show that ' F Va.y C vy and I' + v C Va.vy. By the
assumption, o # . Thus, by (C_GEN), I' v C V.. We also have I' - V. v C v by (C_INST) (the type used
for instantiation can be any, e.g., int).

Case A = ¢: Similar for the case that A = vy and v # S.

Case A = C — D: We prove the first case. The occurrences of 8 in C' — D are only negative or strictly positive.
By definition, the occurrences of § in C' are only positive. Thus, by the IH, I' + C'[Va. B/S] E V. C[B/f]. By
definition, the occurrences of 8 in D are only negative or strictly positive. Thus, by the IH, I' - Va. D[B/f5] C
D|Va. B/f]. By (C_FuN),

L't (Va. C[B/B]) = Va.D[B/B| T CVa.B/B] — D[Va. B/B|.
By (C_DFuUN) and (C_TRANS),

I'FVa. (Yo.C[B/f]) = D[B/B| C C[Vo. B/B] — D[V a. B/A). (1)

18

By (C_INsT),
I'akVa.C[B/B] C C[B/3]. (2)

By (C_FuN) and (C_PoLy) with (2),
I'+VYa. C[B/B] = D[B/B] EVa.(Va. C[B/B]) = D[B/f].
Thus, by (C_TRANS) with (1),

I'+VYa.C[B/B) — D[B/B] C CVa.B/B] — D[V a. B/A.

Next, we prove the second case. The occurrences of 8 in C' — D are only positive. By definition, the occurrences
of Bin C are only negative. Thus, by Lemma 26 (1), I',a + C[B/38] C C[V . B/S]. By definition, the occurrences
of B in D are only positive. Thus, by Lemma 26 (2), I',a F D[Va.B/f] € D[B/f]. By (C_Fun), (C_PoLy),
and (C_TRANS),

I'tVYa.CVa.B/B] — DN a.B/B] EVa. C[B/B] — D[B/B].

Since o does not appear free in A = C — D, we have I' F C[Va. B/f] — DVa.B/f] C Va.CNa.B/f] —
D[V a. B/f] by (C_GEN). Thus, by (C_TRANS),

I'+ CNa.B/f] — DV a.B/B| C Va. C[B/G] — D|B/A).

Case A = V+. C: By the IH, (C_PoLy), and permutation of the top-level Vs for each case.

Case A = C x D: We prove the first case. The occurrences of 8 in C' x D are only negative or strictly positive. By
definition, the occurrences of 8 in C are only negative or strictly positive. Thus, by the IH, I' - Va. C[B/f5] C
C[V «. B/B]. Similarly, we also have I' - Va. D[B/S] C D[V a. B/8]. By (C_PRrROD),

't (Va.C[B/B]) xVa.D[B/B] C CNa.B/f] x DV a.B/].
By (C_DProD) and (C_TRANS),

T'+VYa.(C[B/B] x D|B/B)) C C[Va. B/B] x D[V a. B/A.

We prove the second case. The occurrences of 5 in C' x D are only positive. By definition, the occurrences of 5 in
C are only positive. Thus, by the IH, ' C[Va. B/f] C Va. C[B/f]. Similarly, we also have I' F D[V a. B/S] C
Va.D[B/B]. By (C_PrOD),

T+ CNVa.B/f] x DVa.B/B) C (Va. C[B/B]) x Va. D[B/A.

By (C_GEN), (C_PoLy), (C_INsT), (C_PrOD), and (C_TRANS), we have I' (Va. C[B/8]) x Va.D[B/j] E
Va.(C[B/B] x D[B/fA]). Thus, by (C_TRANS),

't CVa.B/B]l x D[Va. B/B] EVa.(C[B/B] x D[B/B]).

Case A = C + D: Similarly to the case that A is a product type; this case uses (C_SuM) and (C_DSuMm) instead
of (C_ProD) and (C_DPROD).

Case A = C'list: Similarly to the case that A is a product type; this case uses (C_L1ST) and (C_DL1ST) instead of
(C_ProD) and (C_DPROD).

O
Lemma 28 (Subject reduction). Suppose that all operations satisfy the signature restriction.
1. If AF My : A and My ~~ My, then A+ My : A.
2. If AF- My : A and My — My, then A+ M : A.

Proof. 1. Suppose that A - M; : A and M; ~ M>. By induction on the typing derivation for Mj.

19

Case (T_VAR), (T_Op), (T_PAIR), (T_INL), (T_INR), and (T_CoNs): Contradictory because there are no
reduction rules that can be applied to Mj.

Case (T_ConsT), (T_ABs), and (T_NIL): Contradictory since M; is a value and no reduction rules can be
applied to values.

Case (T_APpP): We have two reduction rules which can be applied to function applications.

Case (R_CoNsT): We are given
o My = ¢ e,
My = ((c1, c2),
e Abcien: A,
e Abc¢ :B— A, and
e Abey:B
for some ¢1, 2, and B. By Lemma 11, A+ ty(c¢;) C B — A. By Lemma 6 and Assumption 1, ty(c;) =
t — C for some ¢ and C. Since ((c1, ¢2) is defined, it is found that ty(cz) = ¢ and ty(¢(c1, c2)) = C.
Since - A by Lemma 13, we have A F ((c1, ¢a) : ty({(c1, ¢2)). Since A F v — ty(¢(c1,e2)) E B — A
(recall that C = ty({(c1,¢2))), we have A+ ty({(c1,¢2)) C A by Lemma 10. By (T_INST), we have
AF{(cr,e): A
Case (R_-BETA): We are given
o My = (A\z.M)w,
My, = M[v/z],
e ANz M)v: A,
e A x.M:B— A, and
e Av:B
for some z, M, v, and B. By Lemma 14 A,a’,2:B'F M : A’ and A+-Va!.B' - A'C B — A for
some a!, A’ and B'. By Lemma 9, there exist al', al?, 87, and C”* such that
{a'} = {a'} W {a3'},
A,B7+Ch,
A+ BCVYA. B [C"/ak,
AFYa2 VB A'[C" /ol C A, and
type variables in 87 do not appear free in A’ and B'.
By Lemma 1, A, 37, a!,z:B'"- M : A" and A,ﬂJ,ag" F €%, Thus, by Lemma 2 (4),

A, B ol x:B'[Ch/a"] M : A[C" /oy (3)
Since A v : B and A+ BC VA7, B'[C"/al], we have
AFwv:VYB . B[C"/al]

by (T_INST) (note that A + VB7. B'[C" /al] is shown easily with Lemma 13). By Lemma 1 (4),
(C_INST), and (T_INST), we have

A, B a2 v B[C"/ah).

By Lemma 4 (1) with (3),
A,B7 a2+ Mv/z): A'[C™ ol

By (T_GEN) (with permutation of the bindings in the typing context),
At Mv/z]:Yak. Ve’ A'[Ch/al].

Since A FYak. VB’ A'[C" /al] C A, we have A+ M[v/z]: A by (T_INST).
Case (T_GEN): By the IH and (T_GEN).
Case (T_INST): By the IH and (T_INST).

20

Case (T_HANDLE): We have two reduction rules which can be applied to handle-with expressions.
Case (R_-RETURN): We are given
e M; = handlevwith H,
o H™WM — returnz — M,
My, = M[v/z],
e At handlevwith H : A,
e Atwv:B,
e AFH:B=A

for some v, H, z, M, and B. By inversion of the derivation of A+ H : B = A, wehave A,z: B+ M : A.
By Lemma 4 (1), A+ M[v/z] : A, which is the conclusion we have to show.

Case (R_-HANDLE): We are given

M; = handle E[#op(v)] with H,

op ¢ E,

H(op) = op(z,k) = M,

My, = M|[v/z][Ay.handle E[y] with H /K],
A F handle E#op(v)] with H : A,

A+ El#op(v)] : B,

e AFH:B= A

for some E, op, v, H, z, y, k, M, and B. Suppose that ty (op) = Va.C — D. By inversion of the
derivation of A H : B= A, we have A,a,z: C,k:D - A+ M : A.
By Lemma 22, A, 37 Co and A, 37 v : C[Co/a] for some 37 and Cp. Since A -V 37. Cy,

Az:CVB’. Co/al,k:DNB’.Co/a] = AFM: A (4)

by Lemma 2 (4) (note that type variables in o do not appear free in A).

Since A,B7 F v : C[Co/a], we have A F v : VB7.C[Co/a] by (T_GEN). By Definition 5, the
occurrences of a in the domain type C of the type signature of op are only negative or strictly positive.
Thus, we have A F v : C[V37. Co/a] by Lemma 27 (1) and (T_INST) (note that we can suppose that
B’ do not appear free in C). Thus, by applying Lemma 4 (1) to (4), we have

Ak:DIVB’. Co/a) - AF M[v/z] : A. (5)

We show that
A+ My.handle E[y] with H : D[V B”. Co/a] — A.

By Definition 5, the occurrences of a in the codomain type D of the type signature of op are only
positive. Thus, we have A - D[V37/. Co/a] E VB’. D[Cy/a] by Lemma 27 (2) (note that we can
suppose that 87 do not appear free in D). Thus,

Ay:DVB’. Co/a]Fy:VB'.D[Co/a]
by (T_INsT). By Lemma 1 (4) and (C_INST),
A,y:D[VB’. Co/al,B” -y : D[Co/a.

By Lemma 22,
A, y:VB'.D[Co/a]F E[y] : B.

By Lemma 21,
A,y:DVB’. Co/a] - Ely] : B.

Thus, we have
A,y:D[VB’. Co/a] F handle E[y] with H : A

by Lemma 1 (5) and (T_HANDLE). By (T_ABS),
A+ Ay.handle E[y] with H : D[V3’. Cy/a] — A.

21

By applying Lemma 4 (1) to (5), we have
A F M[v/z][Ay.handle E[y] with H /K] : A,

which is what we have to show.
Case (T_ProJ1): We have one reduction rule (R_PR0OJ1) which can be applied to projection m1. Thus, we
are given
o My = 7T1(’01,U2),
o My = uy,
o At m(v,v9): A,
At (v, 1) : AXx B
for some vy, v2, and B. By Lemma 15, A,a’ Fv; : Ciand Aol v : Coand AFVal.Cix Co T Ax B
for some a!, €}, and Cy. By Lemma 23, there exist af, oé?, B”7, and D" such that
{al} = {al} ¥ {af},
A,B7 + D,
AFYa2. ¥B’. Ci[D" /ol C 4,
AFVYal.vp’. C[D"/al] C B, and
type variables in 87 do not appear in C; and Cs.
We have to show that

At A
Since A +VYak.¥37. ,[D"/al] C 4, it suffices to show that

At :Valzvg’. o [D"/al

by (T_INsT). We have A, 37, a’ - v, : C; by Lemma 1 (4). By Lemma 2 (4), we have A, 87, a® + v; :
C,[D" /a{l]. By (T_GEN) (and swapping 37 and aéQ in the typing context A,,Bj,aéz), we have

At Va2 VB . Ci[D" /ol

Case (T_Pr0J2): Similar to the case for (T_ProJ1).
Case (T_CAsE): We have two reduction rules which can be applied to case expressions.
Case (R_CASEL): We are given
e M; = case(inlv)ofinlz — M{;inry — Mj,
My = M[v/z],
At case (inlv)ofinle — M{; inry — My : A,
e Atinlv: By + Bs,
e Alz:B+ M : A, and
e Ajx:ByHM: A
for some v, z, y, M{,, M3, By, and By. By Lemma 16, A,al v : C; and AFVa!. Cy + Co C By + By
for some a!, C;, and Cy. By Lemma 24, there exist ail, a?, B7, and D" such that
o {a'} = {a7'} ¥ {a7'},
A,B7 - D",
e AFVabk.vp’. c\[D" /ol E By,
e AFVal.vp’. ¢y[D"/al'] C B,, and
e type variables in 37 do not appear in C; and C,.
We first show that

AkFwv: Bl-
Since A FVYaf.V@’. Ci[D"/al'] C By, it suffices to show that

AFv:Ya2 Y3’ Ci[D"/al

22

by (T_INST). We have A, 37, al v, : C; by Lemma 1 (4). By Lemma 2 (4), we have A,ﬁ‘],aé"‘ o
C[D" /al']. By (T_GEN) (and swapping 87 and af in the typing context A, 37, o), we have

At v Va2 vel. ¢ [D" /al].

Since A,z : By + M] : A, we have
AF Mlv/z]: A
by Lemma 4 (1).
Case (R_CASER): Similar to the case for (R_.CASER), using Lemma 17 instead of Lemma 16.

Case (T_CASELIST): We have two reduction rules which can be applied to case expressions for lists.

Case (R-N1iL): Obvious.
Case (R_Cons): We are given
e M; = case(conswv)of nil = M{; consz — M,
o My = Mj[v/z],
A F case (cons v) of nil — M{; consy — My : A,
e A consv: Blist, and
e Az:Bx Blist- Mj: A
for some v, x, M{,, M3, and B. By Lemma 18, A,a! - v : C x Clist and A - Va!. Clist C Blist for
some a! and C. By Lemma 25, there exist a{l, af, 37, and D" such that
e {al} = {al'} v {ad},
e A3’ + D",
e AFVal.vp’. c[D"/al)C B, and
e type variables in 37 do not appear in C.
We first show that

A+VYak.vp'. D" /al] x C[D" /al]list C B x Blist.
Since A FVYak.¥37. C[D" /al] C B, we have
At (Va2.¥VB7. C[D" /al])list C Blist
by (C_LisT). We also have
AFYa2 VB’ . C[D" /ol list E (Va2.¥VB7. C[D" Jal]) list
by (C_DLisT). Thus, by (C_TRANS), we have
AFYaz.VB'.C[D" /al]list C Blist.
By (C_Prob),
A+ (Vak.vp’. CcID" jal]) x (Valz.vB7. C[D" Jal]list) E B x Blist.
By (C_DProD) and (C_TRANS), we have
AFYa2. VB’ .C[D" /al'] x C[D" Jal]list C B x Blist (6)

Next, we show that
AF v: B x Blist.

By (T_INsT) with (6), it suffices to show that

AFwv:Ya2. ¥YB'.C[D"/al] x C[D" /ad]list.

23

We have A,37,al + v : C x Clist by Lemma 1 (4). By Lemma 2 (4), we have A,,Bj,aéz Fow:
C[D" Jal']x C[D" Jal]list. By (T_GEN) (and swapping 87 and a? in the typing context A, 87, ai?),
we have

AFwv:Ya2. VB'.C[D"/al] x C[D" /ad]list.

Since A,z : B x Blist M, : A, we have
At Myv/xz]: A

by Lemma 4 (1).

Case (T_F1x): We have one reduction rule (R_F1x) which can be applied to the fixed-point operator. The
proof is straightforward with Lemma 4 (1) and (T_-ABS).

2. Suppose that A - M; : A and M; — M,. By definition, there exist some FE, M{, and Mj such that
M, = E[M]], My = E[Mj;], and M] ~» M,. The proof proceeds by induction on the typing derivation of
for My = E[M{]. If E = [], then we have the conclusion by the first case. In what follows, we suppose that
E # []. By case analysis on the typing rule applied last to derive A - E[M{] : A.

Case (T_VAR), (T_ConsT), (T_ABS), (T_N1L), and (T_F1x): Contradictory because F has to be [].
Case (T_APP): By case analysis on E.

Case E = E' M: We are given
e AFFE'[M]:B— A and

e AFM:B
for some B. By the IH, A + E'[Mj] : B — A. Since My = E'[Mj] M, we have the conclusion by
(T_App).

Case E = v E': By the IH.
Case (T_GEN): By the IH.
Case (T_INST): By the IH.
Case (T_OP): By the IH.
Case (T_HANDLE): By the IH.
Case (T_PAIR): By the IH.
Case (T_ProJ1): By the IH.
Case (T_PrOJ2): By the IH.
Case (T_INL): By the IH.
Case (T_INR): By the IH.
Case (T_CASE): By the IH.
Case (T_CoNs): By the IH.
Case (T_CASELIST): By the IH.

O

Theorem 1 (Type Soundness). Suppose that all operations satisfy the signature restriction. If A+ M : A and
M —* M' and M' —/~, then:

o M’ is a value; or
e M’ = El[#op(v)] for some E, op, and v such that op ¢ E.
Proof. By Lemmas 28 and 12. O

24

2.2 Soundness of the Type-and-effect System

This section show soundness of the type-and-effect system. We may reuse the lemmas proven in Section 2.1 if their
statements and proofs do not need change.

Lemma 29 (Weakening). Suppose that - T'1,Ts. Let I's be a typing context such that dom(T2) N dom(T'3) = 0.

1. IfF T4, T3, then - Ty, Ty, T,

2. IfT1, T3 F A, then Tq,Ta,Ts - A.

9. IfT1,Ts+ AC B, then 1,05, T3 - A C B.

4. IfT1, T3 M: Ale, thenT1,T2, T3 M : Ale.

5. IfT1,I'sk-H:Ale= B|¢, thenT1,T2,Ts-H:Ale= B|¢€.
Proof. By (mutual) induction on the derivations of the judgments. O
Lemma 30 (Type substitution). Suppose that T'; F A.

1. If kT, e, Ty, then - T1,T2 [A/q).

2. IfT1,a, T3+ B, then T'1,T2 [A/a] F B[A/q].

3. IfT1,a,To = BC C, thenT'1,T3[A/a] F B[A/a] E C[A4/q).

4. IfT1,a,T9 - M : Be, thenT1,To[A/a]l - M : B[A/a]|e.

5. IfTy,a,ToF H:Ble= C|¢, thenT1,T2[A/a]F H: B[A/a]|e = C[4/a]|€.
Proof. Straightforward by (mutual) induction on the derivations of the judgments, as in Lemma 2. O
Lemma 31 (Term substitution). Suppose that Ty + M : A|e for any e.

1. IfTy,2: A,ToF M': Ble, thenT1,To - M'[M/z]: B|e.

2. IfTy,2:A,ToF H:Ble= C|€, thenT1,ToF H{M/z]: Ble= C|¢€.
Proof. By mutual induction on the typing derivations as in Lemma 4. O
Lemma 32 (Canonical forms). Suppose that - v : Ale.

1. If unqualify(A) = ¢, then v = ¢ for some c.

If unqualify(A B —¢ C, then v = ¢ for some ¢, or v = Ax.M for some x and M.

= B x C, then v = (v, v2) for some vy and vs.

)
)
)
)

2.

3.

4. If unqualify(A) = B+ C, then v = inlv’ or v = inrv’ for some v'.
5.

(

(
If unqualify (A

(
If unqualify(A) = Blist, then v = nil or v = consv’ for some v'.
Proof. Similarly to Lemma 8. O

Lemma 33 (Type containment inversion: function types). IfT Vaf.Al — Ay C Va?.Bl — By, then

€1 = e and there exist o, al2, 87, and C™ such that

o {af'} = {afi} ¥ {af}},

. P,Otg,,@‘] - 0111!

e Ial B VB A [CM /aly,

o I,al FValy.vp7 A [CT Jal| C B,

25

e type variables in {B’} do not appear free in A; and Az, and

o if ailf or B7 is not the empty sequence, SR (e1).
Proof. Similarly to Lemma 9. O
Lemma 34. IfT'H A = Ay C By — By, theney = e and ' By C Ay and T'H A; C Bs.
Proof. Similarly to Lemma 10 with Lemma 33. 0
Lemma 35 (Value inversion: constants). IfI'F c¢: Ale, then T ty(c) C A.
Proof. Similarly to Lemma 11. O
Lemma 36 (Progress). If A+ M : Ale, then:

o M — M’ for some M';

e M is a value; or

o M = E[#op(v)] for some E, op, and v such that op ¢ E and op € e.

Proof. Similarly to Lemma 12 with the lemmas proven in this section. The case for (TE_.WEAK) is also straight-
forward. O

Lemma 37 (Value inversion: lambda abstractions). IfT' b Ax.M : Ale, then Tyo,z:B + M : C|€ and
'Va.B —¢ CLC A for some a, B, C, and €.

Proof. Similarly to Lemma 14. O

Lemma 38 (Value inversion: pairs). IfI'F (My,Ms) : Ale, then T,a b My : By|e and I'ya = Ms : Bs|€ and
I'FVYa.By X By £ A for some o, By, and Bs.

Proof. Similarly to Lemma 15. O

Lemma 39 (Value inversion: left injections). IfT'FinlM : Ale, thenT,ao - M : Ble andT'FVa.B+ CC A
for some a, B, and C.

Proof. Similarly to Lemma 16. O

Lemma 40 (Value inversion: right injections). IfT'FinrM : Ale, thenT,aF M : Cle andTHFVYa.B+ CC A
for some o, B, and C.

Proof. Similarly to the proof of Lemma 17. O

Lemma 41 (Value inversion: cons). IfT'tFconsM : A|e, thenT,a - M : B x Blist|e and T -V ea. Blist C A for
some o and B.

Proof. Similarly to Lemma 18. O
Lemma 42. Ifty(op) = Val.A < B and T #op(v) : C|e¢, then

e I8/ + D!,

o I8/ Fuv:AD"/a!]|€,

o ¢ Ceg,

e op €€, and

e T+VB’/.B[D' /o' C C; or
for some B7, D', and €. Furthermore, if 37 is not the empty sequence, SR (€') holds.

Proof. By induction on the typing derivation. There are only five typing rules that can be applied to #op(v).

26

Case (TE_GEN): Straightforward by the IH. Note that SR (¢) by inversion.
Case (TE_INST): Straightforward by the TH and (C_TRANS).
Case (TE_OpP): Trivial.

Case (TE_WEAK): By the IH.

Lemma 43. IfT',al - E[#op(v)]: A|e and op & E, then
o Ial, 37 -#op(v): B|€ and
e I,y:Val.VB'.B,al - E[y]: A|e for any y & dom(T), and
e op € ¢
for some B7, B, and €. Furthermore, if 37 is not the empty sequence, then SR ({op}) holds.
Proof. By induction on the typing derivation.
Case (TE_VAR), (TE_CoONST), (TE_ABS), (TE_NIL), and (TE_FIX): Contradictory.
Case (TE_APP): By case analysis on E.

Case E = E' My: By inversion of the typing derivation, we have I', a! + E'[#op(v)] : C =< A]e and T',a! +
M, : C'leand ¢’ C € for some C and €’. By the TH,
o I'al B’ I-#op(v) : B¢,
eI y:Val. VB’ .B,a! - E'ly]: C =<4 |e for any y & dom(T), and
e 0p € ¢,
e If 37 is not the empty sequence, then SR ({op}) holds.

for some 3”7, B, and ¢. By Lemma 29 (4) and (TE_APP), I, y:Val.V37.B,al - E'[y]| My : Ale, ie.,
Iy:Val.vB/.B,a’ - E[y] : Ale.

Case E = v, E’: Similarly to the above case.
Case (TE_GEN): By the IH. We find SR ({op}) by op € € and SR (¢).
Case (TE_INST): By the IH.

Case (TE_OP): If E = [], the proof is straightforward by letting 37 be the empty sequence, B = A, and ¢ = ¢;
op € e is found by Lemma 42.

Otherwise, the proof is similar to the case for (TE_APP).

Case (TE_.HANDLE): By the IH. We find op € ¢ because the handler does not have an operation clause for op

(op & E).
Case (TE_WEAK): By the IH.

Otherwise: Similarly to the case for (TE_APP).

O
Lemma 44. Suppose thatT'1 - AC B and T’y F A.
1. IfTy,2: B,To- M : C|e, thenT1,2: A,To - M : C|e.
2. IfT'y,2:B,To- H:Cle= D|é€, thenT1,z: A,Ts - H:Cle= D]|¢.
Proof. By mutual induction on the typing derivations. O

Lemma 45. Ifty(op) = Val. A< B and T'+ Ef#op(v)]: C|e and op € E, then

27

o I8/ + D,

o I8’ Fuv:AD"/a']|¢, and

o foranyy & dom(), T,y:¥B’. B[D'/a!|F E[y]: C|e
for some B7, D, and €'. Furthermore, if 37 is not the empty sequence, SR ({op}) holds.
Proof. By Lemma 43,

o T',B8]" F#op(v) : C'|€" and

o I,y:VB)".C'+ E[y]: C|eforany y ¢ dom(T), and

o if ,81‘]1 is not the empty sequence, then SR ({op}) holds
for some 35" and C’. By Lemma 42,

« I.8{".By - D',

« 0,37, 8y v A[D'[a!]| €,

o I.8{' FVB32. BID'/a!] C C’, and

e if 832 is not the empty sequence, SR ({op}) holds

for some ﬂéb, D', and €.
We show the conclusion by letting 87 = ‘1]1, ‘2]2. Tt suffices to show that, for any y & dom(T),

L,y:YB{".VB42. B[D'/al|F E[y]: C|e.

Since I, 3" -V B42. B[D' /a’] £ ', we have
I-VYB.vBy2. B[D /o' EVE]. ¢’

by (C_PoLy). Since ', y:VB{*. C' + E[y] : C'| ¢, we have

[, y:VB]'.VB32. B[D'/al|F E[y]: C|e.
by Lemma 44. O
Lemma 46. IfTFov: Ale, thenTtFv: A|€ for any €.
Proof. Straightforward by induction on the typing derivation. O
Lemma 47. Suppose that o does not appear free in A.

1. Suppose that (1) the occurrences of 8 in A are only negative or strictly positive and (2) for any function type
C —¢ D occurring at a strictly positive position of A, if 8 € ftv(D), then SR (¢). Then I'+Va. A[B/f] C
ANV a. B/f).

2. If the occurrences of 8 in A are only positive, then T+ AV «. B/B] CV «. A[B/f].

Proof. By induction on A. The second case is proven by Lemma 26, (C_Pory), (C_GEN), and (C_TRANS).

Let us consider the second case. We consider the case that A = C —¢ D for some C, D, and ¢; the other cases
are shown similarly to Lemma 27. By the IHon C, '+ C[Va. B/S] CVa. C[B/f].

Now, we show that

I'EVa.(Ya. C[B/B]) = D[B/B] C C[Va.B/B] = DIVa.B/A]. (7)
If 8 € ftv(D), then SR (¢) by the assumption. By the IH on D, I' - Va. D[B/f] C D[V a. B/f]. By (C_FUNEFF),

I'+ (Va.C[B/B]) = Va.D[B/B] T C[Va. B/B] = D[Vo. B/A).

28

Since SR (¢), we have (7) by (C_LDFUNEFF) and (C_TRANS). Otherwise, if 8 ¢ ftv(D), then I, = D[B/f] C
D[V a. B/B] by (C_REFL) because D[B/5] = D[V a.B/B] = D. Thus,

I'+VYa. (Va. C[B/f]) = D[B/B) CVa. C[¥a. B/B] »¢ D[V a. B/f]

by (C_Pory) and Lemma 29 (3). Since a does not occur in A = C —¢ D, we can have (7) by eliminating the
outermost V on the RHS type with (C_INST).
By (C_INsT),
I'atVa. C[B/B] E C[B/S]. (8)

By (C_FuNEFF) and (C_PoLy) with (8),

I'+Va. C[B/B] = D[B/B]| CVa.(Ya. C[B/B]) = D[B/B].
Thus, by (C_TrRANS) with (7),

I'kYa.C[B/B] = D|B/B] C C[Va. B/B] = D[Va. B/f).

O
Lemma 48 (Subject reduction).
1. If A M;: Ale and My ~ Mo, then AF My : Ale.
2. If AE My : Ale and My — My, then A+ My : Ale.
Proof. 1. By induction on the typing derivation. Most of the cases are similar to Lemma 28. We here focus on

the cases that need a treatment specific to the type-and-effect system.

Case (TE_App)/(R-BETA): We are given
o My = (Az. M),

My = M[v/x],
AF(Ax.M)v: Ale,

o A Xz.M: B —c Ale,

e A wv:Ble and

o ¢y C ¢
for some z, M, v, B, and ¢y. By Lemma 37 A,a’,z:B'F M : A’ | and A+Val.B' —¢ A'C B —% A
for some af, A’, B’, and €. By Lemma 33, we find ¢ = ¢y, and there exist ail, aéz, B7, and C* such
that

{a'} = {a1'} W {az},

o A3+ Ch,

e AFBLVYB.B[C"/al,

e AFVYak.vp’l. AlCch/al] C A, and

e type variables in 37 do not appear free in A’ and B’, and

o If aéQ or 37 is not the empty sequence, SR (¢).
By Lemma 29, A, 87, a!,z:B'+ M : A'|¢ and A, 87, a2 - C™. Thus, by Lemma 30 (4),

A,B ag, z:B'[Ch/a" | F M A'[C"/at]|¢ (9)
Since A v: Bleand AF BC VB’ B'[C"/al], we have
AFwv:VB . B[C"/al] e

by (TE_INST) (note that A + V37. B'[C"/al'] is shown easily with Lemma 13). By Lemma 29 (4),
(C_INST), and (TE_INST), we have

A,,BJ,oéZ Fo:B'[C"/ah] e

29

By Lemmas 46 and 31 (1) with (9),
A, B a2+ Mv/z): A[CM Jal]| €.
By (TE-GEN) (with permutation of the bindings in the typing context),
At Mv/z]: Va2 va’ A'[Ch /ol

(note that If a2 or 3”7 is not the empty sequence, SR (¢')). Since A FVYaR. V@’ . A'[C"/al] C A, we
have A+ M[v/z] : A|€ by (TE_INST). Since € C ¢, we have

AFMv/z]: Ale

by (TE_-WEAK).
Case (TE_GEN): By the IH and (TE_GEN).
Case (TE_HANDLE)/(R_HANDLE): We are given
e M; = handle E[#op(v)] with H,
eop & E,
H(op) = op(z, k) = M,
My, = M[v/z][Ay.handle E[y] with H /k],
A+ handle E[#op(v)| with H : A e,
A& Ef#op(v)] : B|€,
e AFH:B|eé= Ale
for some E, op, v, H, z, y, k, M, B, and €. Suppose that ty (op) = Va. C < D. By inversion of the
derivation of A- H : Ble' = A|e, we have Ao, z: C,k:D =< A M : Ale.
By Lemma 45,
o« AB'F Co,
A BT v C[Co/a]] €,
[,y:¥B’.D[Co/a]F Ely]: B|¢, and
e if 37 is not the empty sequence, SR ({op})
for some B”7, Cy, and €. Since A -V 37. Cy,

A,z:CVB’. Co/al,k:DNB’.Coja] = A M: Ale (10)

by Lemma 30 (4) (note that type variables in a do not appear free in A). Since A, 37 F v : C[Co/c]| €0,
we have A v :VB37. C[Cy/a]| e by Lemma 46 and (TE_GEN).

We show that A v : C[VB7. Co/a]|eo. If 37 is not empty, then SR ({op}). Thus, we have the derivation
by Lemma 47 (1) and (TE_INST) (note that we can suppose that 37 do not appear free in C). Otherwise,
if 87 is empty, we also have it.

By applying Lemmas 46 and 31 (1) to (10), we have
A k:DNVB’. Co/a) = AF Mv/z]: Ale. (11)
We show that
A+ \y.handle E[y] with H : D[V3’. Co/a] = A|€”

for any €”.

For that, we first show that A - D[V37. Co/a] C VB’. D[Co/a]. If B7 is not empty, then SR ({op}).
Thus, we have the derivation by Lemma 47 (2) (note that we can suppose that 87 do not appear free in
D). Otherwise, if 37 is empty, we also have it by (C_REFL).

Thus, since T', y:VB7. D [Co/a] - E[y] : B|€, we have

A,y:DNB’. Co/alt Ely]: B|€

30

by Lemma 44. Thus, we have
A,y:D[VB’. Cy/a)F handle E[y]|with H : A|e
by Lemma 29 (5) and (TE_HANDLE). By (TE_ABS),
A+ M\y.handle E[y|with H : D[V 37. Co/a] = A|€”

for any €”.
By applying Lemma 31 (1) to (11), we have

A F M[v/z][Ay.handle E[y] with H/k] : A|e,

which is what we have to show.

Case (TE_F1X)/(R_F1X): By Lemma 31. Note that the fixed-point combinator can be given any effect.

2. Straightforward by induction on the typing derivation.

Theorem 2 (Type Soundness). If A+ M : A|Q and M —* M’ and M’ —/~, then M’ is a value.
Proof. By Lemmas 48 and 36.

31

