
Signature Restriction for
Polymorphic Algebraic Effects

Taro Sekiyama

National Institute  

of Informatics

1

Takeshi Tsukada

University of Tokyo

Atsushi Igarashi

Kyoto University

@ ICFP 2020

This talk
A new type-safe approach to combining 

2

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

This talk
A new type-safe approach to combining 

2

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

■Enable users to define their
own effects

■Structure effectful programs

■Can define various effects

□E.g. exception, backtracking,

state, etc.

This talk
A new type-safe approach to combining 

2

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

■Enable users to define their
own effects

■Structure effectful programs

■Can define various effects

□E.g. exception, backtracking,

state, etc.

■Type-based approach
to program reuse

■Often appears implicitly 

(e.g., as let-polymorphism)

■Effects as well as terms

can be polymorphic

This talk
A new type-safe approach to combining 

3

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Three constructs 
for effects

1. Declaration

2. Operation call

3. Definition

E.g. random choice

This talk
A new type-safe approach to combining 

4

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Three constructs 
for effects

1. Declaration
2. Operation call

3. Definition

E.g. random choice

This talk
A new type-safe approach to combining 

4

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Three constructs 
for effects

1. Declaration
2. Operation call

3. Definition

E.g. random choice

This talk
A new type-safe approach to combining 

5

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Three constructs 
for effects

1. Declaration

2. Operation call
3. Definition

E.g. random choice

This talk
A new type-safe approach to combining 

5

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Three constructs 
for effects

1. Declaration

2. Operation call
3. Definition

E.g. random choice

This talk
A new type-safe approach to combining 

6

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Three constructs 
for effects

1. Declaration

2. Operation call

3. Definition

E.g. random choice

This talk
A new type-safe approach to combining 

6

Polymorphismand
[Plotkin & Pretnar ’09; ’13]

Algebraic effect handlers

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Three constructs 
for effects

1. Declaration

2. Operation call

3. Definition

E.g. random choice

Problem

7

Algebraic Effect Handlers Implicit Polymorphism+
The unrestricted use of

is unsafe

[Harper and Lillibridge ’93; Sekiyama and Igarashi ’19]
Due to the ability to manipulate delimited continuations

Prior approaches

8

Restricts operation calls in
polymorphic expressions

👍 Able to address any effect

👎 Any operation call is

restricted even if it doesn’t
need restriction

Existing approaches
■ Value restriction [Tofte ’90, Garrigue ‘04]

■ Weak polymorphism [Appel+ ’91]

■ Closure typing [Leroy&Weis ’91], etc.

Restricts effect handlers
(definitions)

👍 Restricts only operation calls
of possibly unsafe effects

👎 Unclear to mix safe and
possibly unsafe effects

Existing approaches
■ Handler restriction 

[Sekiyama & Igarashi ’19]

Approach 2Approach 1

Prior approaches

9

Approach 1 Approach 2
Restricts operation calls in
polymorphic expressions

👍 Able to address any effect

👎 Any operation call is

restricted even if it doesn’t
need restriction

Existing approaches
■ Value restriction [Tofte ’90, Garrigue ‘04]

■ Weak polymorphism [Appel+ ’91]

■ Closure typing [Leroy&Weis ’91], etc.

Restricts effect handlers
(definitions)

👍 Restricts only operation calls
of possibly unsafe effects

👎 Unclear to mix safe and
possibly unsafe effects

Existing approaches
■ Handler restriction 

[Sekiyama & Igarashi ’19]

Prior approaches

9

Approach 1 Approach 2

effect choose : ∀α. α × α ⇒ α
let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))
handle g () with choose(x,y) " …

Restricts operation calls in
polymorphic expressions

👍 Able to address any effect

👎 Any operation call is

restricted even if it doesn’t
need restriction

Existing approaches
■ Value restriction [Tofte ’90, Garrigue ‘04]

■ Weak polymorphism [Appel+ ’91]

■ Closure typing [Leroy&Weis ’91], etc.

Restricts effect handlers
(definitions)

👍 Restricts only operation calls
of possibly unsafe effects

👎 Unclear to mix safe and
possibly unsafe effects

Existing approaches
■ Handler restriction 

[Sekiyama & Igarashi ’19]

Prior approaches

9

Approach 1 Approach 2

effect choose : ∀α. α × α ⇒ α
let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))
handle g () with choose(x,y) " …

Restricts operation calls in
polymorphic expressions

👍 Able to address any effect

👎 Any operation call is

restricted even if it doesn’t
need restriction

Existing approaches
■ Value restriction [Tofte ’90, Garrigue ‘04]

■ Weak polymorphism [Appel+ ’91]

■ Closure typing [Leroy&Weis ’91], etc.

Restricts effect handlers
(definitions)

👍 Restricts only operation calls
of possibly unsafe effects

👎 Unclear to mix safe and
possibly unsafe effects

Existing approaches
■ Handler restriction 

[Sekiyama & Igarashi ’19]

Prior approaches

10

effect choose : ∀α. α × α ⇒ α
let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))
handle g () with choose(x,y) " …

Approach 2Approach 1
Restricts operation calls in
polymorphic expressions

👍 Able to address any effect

👎 Any operation call is

restricted even if it doesn’t
need restriction

Existing approaches
■ Value restriction [Tofte ’90, Garrigue ‘04]

■ Weak polymorphism [Appel+ ’91]

■ Closure typing [Leroy&Weis ’91], etc.

Restricts effect handlers
(definitions)

👍 Restricts only operation calls
of possibly unsafe effects

👎 Unclear to mix safe and
possibly unsafe effects

Existing approaches
■ Handler restriction 

[Sekiyama & Igarashi ’19]

Prior approaches

10

effect choose : ∀α. α × α ⇒ α
let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))
handle g () with choose(x,y) " …

Approach 2Approach 1
Restricts operation calls in
polymorphic expressions

👍 Able to address any effect

👎 Any operation call is

restricted even if it doesn’t
need restriction

Existing approaches
■ Value restriction [Tofte ’90, Garrigue ‘04]

■ Weak polymorphism [Appel+ ’91]

■ Closure typing [Leroy&Weis ’91], etc.

Restricts effect handlers
(definitions)

👍 Restricts only operation calls
of possibly unsafe effects

👎 Unclear to mix safe and
possibly unsafe effects

Existing approaches
■ Handler restriction 

[Sekiyama & Igarashi ’19]

Our approach
■Restricts the types of effect operations
■We can determine if any use of effects is safe

only by examining the operation type

11

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Our approach
■Restricts the types of effect operations
■We can determine if any use of effects is safe

only by examining the operation type

11

effect choose : ∀α. α × α ⇒ α

let g () = 
 let f : ∀β. β × β " β =  
 #choose(λ(x,y).x, λ(x,y).y)
 in (f (0,1), f (true, false))

handle g () with choose(x,y) " …

Ensures choose is safe  
no matter how it is used

This work

12

■Signature restriction (SR) to ensure safety of effects
with polymorphism
□ The SR accepts effects that can be safely used anywhere  

without other restriction

□ The SR is

👍 Simple: it only examines the typed signatures (interfaces) of 

effect operations

👍 Permissive: it is satisfied by many practical effects 

(such as exception, nondeterminism, input streaming)

👍 Scalable: it can easily support basic constructs 

(such as products, sums, and lists)

■A sound type system assuming all effects satisfy the SR

■An effect system allowing the use of both
effects satisfying and not satisfying the SR

□ Effects satisfying the SR can be used  

anywhere without restriction

□ Effects not satisfying the SR can be used  
only in monomorphic expressions

■An artifact that implements a tiny ML-like language
enforcing all effects to satisfy the SR

13

https://github.com/skymountain/MLSR

This work

https://github.com/skymountain/MLSR

Implementation: https://github.com/skymountain/MLSR

Signature restriction
■Determines safety of effects with the signature 

 
 
 
only by examining polarities of α in τ1 and τ2
■op satisfies the SR if and only if
□ α occurs only negatively or strictly positively in τ1
□ α occurs only positively in τ2

14

op : ∀α. τ1 ⇒ τ2

https://github.com/skymountain/MLSR

Implementation: https://github.com/skymountain/MLSR

Signature restriction
■Determines safety of effects with the signature 

 
 
 
only by examining polarities of α in τ1 and τ2
■op satisfies the SR if and only if
□ α occurs only negatively or strictly positively in τ1
□ α occurs only positively in τ2

14

op : ∀α. τ1 ⇒ τ2

Ex. (α1 " α2) " α3
α1 : non-strictly positive

α2 : negative

α3 : strictly positive

https://github.com/skymountain/MLSR

Implementation: https://github.com/skymountain/MLSR

Examples
Operations satisfying the signature restriction

■choose : ∀α.α × α ⇒ α
□Usage: random choice and nondeterminism

■fail : ∀α.unit ⇒ α
□Usage: exception raising

■satisfy : ∀α.(str " unit + (str × α)) ⇒ α
□Usage: input streaming and parser combinators

15

op : ∀α. τ1 ⇒ τ2
op : ∀α. τ1 ⇒ τ2 satisfies the SR iff
■α occurs only negatively or strictly

positively in τ1
■α occurs only positively in τ2

https://github.com/skymountain/MLSR

Implementation: https://github.com/skymountain/MLSR

Future work
■Support for features in full-fledge languages

□ Type inference, particularly for the effect system

□General algebraic datatypes

■CPS-based foundation

□ Is it possible to achieve type-preserving CPS

transformation for the SR?

■ Applying the SR to other mechanisms to address
user-defined effects (e.g., monads)

16

https://github.com/skymountain/MLSR

Conclusion

17

■ Naive introduction of effects into a polymorphic
language is unsafe

■We propose signature restriction to determine safety
of effects with polymorphism

■ Signature restriction is

□ Simple: it only examines the types of effects

□ Permissive: it accepts many useful effects

□ Scalable: it can easily support other constructs

■ Implementation available at:
https://github.com/skymountain/MLSR

