Signature Restriction for
Polymorphic Algebraic Effects

Taro Sekiyama Takeshi Tsukada Atsushi Igarashi

National Institute University of Tokyo Kyoto University
of Informatics

@ ICFP 2020

1

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

[Plotkin & Pretnar '09; '13]

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

Ntkin & Pretnar '09; ’13]

é)
mEnable users to define their

own effects
m Structure effectful programs

m Can define various effects

0 E.g. exception, backtracking,

state, etc.
- y

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

Ntkin & Pretnar '09; ’13]

()
mEnable users to define their

own effects
m Structure effectful programs

m Can define various effects
0 E.g. exception, backtracking,

/\

-
m [ype-based approach
to program reuse

m Often appears implicitly
(e.g., as let-polymorphism)

m Effects as well as terms
can be polymorphic

state, etc.
- y

_

~

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

[Plotkin & Pretnar '09; '13]

E.g. random choice effect choose : va. ax a = a

Three constructs letg () =

for effects let f: vB. BxB P =

1. Declaration #ichoose (A(X,y) .X, A(X,Y).Y)
2. Operation call in (f (0,1), f (true, false))
3. Definition

handle g () with choose(x,y) - ...

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

[Plotkin & Pretnar '09; '13]

E.g. random choice effect choose : va. ax a = a

Three constructs letg () =

for effects letf: VvB.BxPB->PB =
#choose(A(X,y).X, A(X,Y).Y)

2. Operation call in (f (0,1), f (true, false))

3. Definition

handle g () with choose(x,y) - ...

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

[Plotkin & Pretnar '09; '13]

E.g. random choice effect choose : va. ax a = a

Three constructs letg () =

for effects letf: VvB.BxPB->PB =
#choose(A(X,y).X, A(X,Y).Y)

2. Operation call in (f (0,1), f (true, false))

3. Definition

handle g () with choose(x,y) - ...

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

[Plotkin & Pretnar '09; '13]

E.g. random choice effect choose : va. ax a = a

Three constructs let g () =
for effects letf: VB.BxB~>P =
1. Declaration #ichoose (A(X,Y) .Xx, A(X,Y).Y)

in (f (0,1), f (true, false))

3. Definition handle g () with choose(x,y) > ...

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

[Plotkin & Pretnar '09; '13]

E.g. random choice effect choose : va. ax a = a

Three constructs let g () =
for effects letf: VB.BxB~>P =
1. Declaration #ichoose (A(X,Y).Xx, A(X,Y).Y)

in (f (0,1), f (true, false))

3. Definition handle g () with choose(x,y) > ...

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

[Plotkin & Pretnar '09; '13]

E.g. random choice effect choose : va. ax a = a

Three constructs let g () =

for effects let f: vB. BxBP =

1. Declaration #ichoose (A(X,y) .X, A(X,Y).Y)
2. Operation call in (f (0,1), f (true, false))

handle g () with choose(x,y) - ...

This talk

A new type-safe approach to combining

Algebraic effect handlers and Polymorphism

[Plotkin & Pretnar '09; '13]

E.g. random choice effect choose : va. ax a = a

Three constructs let g () =

for effects let f: vB. BxBP =

1. Declaration #ichoose (A(X,y) .X, A(X,Y).Y)
2. Operation call in (f (0,1), f (true, false))

handle g () with choose(x,y) - ...

Problem

The unrestricted use of

Algebraic Effect Handlers 4 Implicit Polymorphism

IS unsafe

Due to the ability to manipulate delimited continuations
[Harper and Lillibridge ’93; Sekiyama and Igarashi ’19]

Prior approaches

Approach 1 Approach 2
4 N
Restricts operation calls in Restricts effect handlers
polymorphic expressions (definitions)
.= Able to address any effect = Restricts only operation calls
“* Any operation call is of possibly unsafe effects
restricted even if it doesn’t " Unclear to mix safe and
need restriction possibly unsafe effects
Existing approaches Existing approaches
m Value restriction [Tofte 90, Garrigue ‘04] m Handler restriction
: [Sekiyama & Igarashi ’19]
B Weak polymorphism [Appel+ '91]
m Closure typing [Leroy&Weis '91], etc.

_ J 8/

Prior approaches

Approach 1 Approach 2
4 N
Restricts operation calls in Restricts effect handlers
polymorphic expressions (definitions)
.= Able to address any effect = Restricts only operation calls
“ Any operation call is of possibly unsafe effects
restricted even if it doesn’t " Unclear to mix safe and
need restriction possibly unsafe effects
Existing approaches Existing approaches
m Value restriction [Tofte 90, Garrigue ‘04] m Handler restriction
: [Sekiyama & Igarashi ’19]
B Weak polymorphism [Appel+ '91]
m Closure typing [Leroy&Weis '91], etc.

- J &/

effect choose : Vva.axa = a

letg () =

Prior approache .

#choose(A(X,y).x, A(X,y).Y)
in (f (0,1), f (true, false))
handle g () with choose(x,y) - ...

Approach 1 Approach 2
4 N
Restricts operation calls in Restricts effect handlers
polymorphic expressions (definitions)
.= Able to address any effect = Restricts only operation calls
“* Any operation call is of possibly unsafe effects
restricted even if it doesn’t " Unclear to mix safe and
need restriction possibly unsafe effects
Existing approaches Existing approaches
m Value restriction [Tofte 90, Garrigue ‘04] m Handler restriction
: [Sekiyama & Igarashi ’19]
B Weak polymorphism [Appel+ '91]
m Closure typing [Leroy&Weis '91], etc.

_ J o/

effect choose : Vva.axa = a

letg () =

Prior approache xc:s......

(#choose()\(x,y) X, A(X,Y) .y))
in (f (0,1), f (true, false))
handle g () with choose(x,y) - ...

Approach 1 Approach 2
4 N
Restricts operation calls in Restricts effect handlers
polymorphic expressions (definitions)
.= Able to address any effect = Restricts only operation calls
“ Any operation call is of possibly unsafe effects
restricted even if it doesn’t " Unclear to mix safe and
need restriction possibly unsafe effects
Existing approaches Existing approaches
m Value restriction [Tofte 90, Garrigue ‘04] m Handler restriction
: [Sekiyama & Igarashi ’19]
B Weak polymorphism [Appel+ '91]
m Closure typing [Leroy&Weis '91], etc.

- J &/

effect choose : Vva.axa = a

letg () =

Prior approache .

#choose(A(X,y).x, A(X,y).Y)
in (f (0,1), f (true, false))
handle g () with choose(x,y) - ...

Approach 1 Approach 2
4 N
Restricts operation calls in Restricts effect handlers
polymorphic expressions (definitions)
.= Able to address any effect = Restricts only operation calls
“* Any operation call is of possibly unsafe effects
restricted even if it doesn’t " Unclear to mix safe and
need restriction possibly unsafe effects
Existing approaches Existing approaches
m Value restriction [Tofte 90, Garrigue ‘04] m Handler restriction
: [Sekiyama & Igarashi ’19]
B Weak polymorphism [Appel+ '91]
m Closure typing [Leroy&Weis '91], etc.

_ J 10/

effect choose : Vva.axa = a

letg () =

Prior approache .

#choose(A(X,y).x, A(X,y).Y)
in (f (0,1), f (true, false))
handle g () witf(choose(x,y) >)

Approach 1 Approach 2
4 N
Restricts operation calls in Restricts effect handlers
polymorphic expressions (definitions)
.= Able to address any effect = Restricts only operation calls
“ Any operation call is of possibly unsafe effects
restricted even if it doesn’t " Unclear to mix safe and
need restriction possibly unsafe effects
Existing approaches Existing approaches
m Value restriction [Tofte 90, Garrigue ‘04] m Handler restriction
: [Sekiyama & Igarashi ’19]
B Weak polymorphism [Appel+ '91]
m Closure typing [Leroy&Weis '91], etc.

- J 10/

Our approach

m Restricts the types of effect operations

m \WWe can determine if any use of effects is safe
only by examining the operation type

effect choose : Va. ax a = a

let g () =
letf : VB. BxB->P =
#choose(A(X,Y).X, A(X,Y).Y)
in (f (0,1), f (true, false))

handle g () with choose(x,y) - ...

11

Our approach

m Restricts the types of effect operations

m \WWe can determine if any use of effects is safe
only by examining the operation type

effect choose :(va. axa = a

|
let g () = Ensures choose is safe

letf: vB.BxB->PB = no matter how it is used

v,

_
#choose(A(X,Y).X, A(X,Y).Y)
in (f (0,1), f (true, false))

handle g () with choose(x,y) - ...

11

This work

m Signature restriction (SR) to ensure safety of effects
with polymorphism
0 The SR accepts effects that can be safely used anywhere
without other restriction

0 The SR is

= Simple: it only examines the typed signatures (interfaces) of
effect operations

= Permissive: it is satisfied by many practical effects
(such as exception, nondeterminism, input streaming)

= Scalable: it can easily support basic constructs
(such as products, sums, and lists)

m A sound type system assuming all effects satisfy the SR

12

This work

m An effect system allowing the use of both
effects satisfying and not satisfying the SR

Effects satisfying the SR can be used
anywhere without restriction

Effects not satisfying the SR can be used
only in monomorphic expressions

m An artifact that implements a tiny ML-like language
enforcing all effects to satisfy the SK

https://github.com/skymountain/MLSR

4 4

13

https://github.com/skymountain/MLSR

Signature restriction

m Determines safety of effects with the signature

op : Va. T1 = T

only by examining polarities of a in t: and t»

m op satisfies the SR if and only if

a occurs only negatively or strictly positively in t1
o occurs only positively in t;

Implementation: https://github.com/skymountain/MLSR 14

https://github.com/skymountain/MLSR

Signature restriction

m Determines safety of effects with the signature

op : Va. T1 = T

only by examining polarities of a in t: and t»

m op satisfies the SR if and only if
a occurs only negatively or strictly positively in t1

i . N
a occurs only positively in T Ex. (o » a2) 0

a1 . hon-strictly positive
o : hegative
as . strictly positive

Implementation: https://github.com/skymountain/MLSR 14

https://github.com/skymountain/MLSR

op : Va. t1 = T satisfies the SR iff

EX am p I eS m a occurs only negatively or strictly
positively in T4

m a occurs only positively in t>

Operations satisfying the signature restriction

m choose : va.ax a = a
Usage: random choice and nondeterminism

mfail : va.unit = a

Usage: exception raising

msatisfy : va.(str->unit + (strxa)) = a

Usage: input streaming and parser combinators

Implementation: https://github.com/skymountain/MLSR 15

https://github.com/skymountain/MLSR

Future work

m Support for features in full-fledge languages
Type inference, particularly for the effect system
General algebraic datatypes

m CPS-based foundation

Is it possible to achieve type-preserving CPS
transformation for the SR?

m Applying the SR to other mechanisms to address
user-defined effects (e.g., monads)

Implementation: https://github.com/skymountain/MLSR 16

https://github.com/skymountain/MLSR

Conclusion

m Naive introduction of effects into a polymorphic
language is unsafe

m \We propose signature restriction to determine safety
of effects with polymorphism

m Signature restriction is
0 Simple: it only examines the types of effects
0 Permissive: it accepts many useful effects
0 Scalable: it can easily support other constructs

m Implementation available at:
https://github.com/skymountain/MLSR

17

