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type safety. Existing approaches to this problem are classified into two groups: one for restricting how effects
are triggered and the other for restricting how they are implemented. This work explores a new approach to
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finding a restriction on effect interfaces. To formalize our idea, we employ algebraic effects and handlers, where
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1 INTRODUCTION

1.1 Background: Polymorphic Type Assignment with Computational Effects

Pervasive in programming are computational effects, such as mutable memory cells, backtracking,
exception handling, concurrency/parallelism, and I/O processing for terminals, files, networks, etc.
These effects have a variety of roles: I/O processing enables interaction with external environments;
memory manipulation and concurrency/parallelism make software efficient; and backtracking and
exception provide reusable, general operations that make it unnecessary to write boilerplate code.
These effects have also been proven convenient in functional programming [Gordon et al. 1979;
Peyton Jones and Wadler 1993; Wadler 1992].
In return for convenience, however, computational effects can introduce weird, counterintu-

itive behavior into programs and complicate program reasoning and verification. For example,
incorporating effects into dependent type theory could easily lead to inconsistency [Pédrot and
Tabareau 2020]. This fact encourages dependent type systems to separate term-level computation
from types [Ahman 2017; Casinghino et al. 2014; Cong and Asai 2018; Sekiyama and Igarashi
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2017; Swamy et al. 2016; Xi 2007]. For program reasoning, the state transition caused by effectful
computations has to be tracked [Ahmed et al. 2009; Dreyer et al. 2010; Pitts and Stark 1998].
These kinds of gaps between pure and effectful computations are also found in our target, i.e.,

polymorphic type assignment: although any pure expressions can safely be assigned polymorphic
types [Leivant 1983], unrestricted polymorphic type assignment to effectful expressions may break
type safety. This problem with polymorphic type assignment has been discovered in call-by-value
languages with polymorphic effects, which are effects caused by polymorphic operations. For
example, ML-style references are an instance of polymorphic effects because the operations for
memory cell creation, assignment, and dereference are polymorphic [Leroy et al. 2020; Milner
et al. 1990]. Gordon et al. [1979] showed that the ML-style references cannot cooperate safely with
unrestricted polymorphic type assignment owing to the polymorphism of the operations. Another
example is control effects, which are triggered by control operators such as call/cc [Clinger et al.
1985] and shift/reset [Danvy and Filinski 1990]. These operators can be assigned polymorphic types
but the polymorphic control operators may cause unsafe behavior in unrestricted polymorphic
type assignment [Harper and Lillibridge 1993b]. This fault even occurs in let-polymorphic type
assignment [Milner 1978] where quantifiers only appear at the outermost positions.
Many approaches to the safe use of polymorphic effects in polymorphic type assignment have

been proposed [Appel and MacQueen 1991; Asai and Kameyama 2007; Garrigue 2004; Hoang et al.
1993; Kammar and Pretnar 2017; Leroy and Weis 1991; Sekiyama and Igarashi 2019; Tofte 1990;
Wright 1995]. These approaches are classified into two groups. The first groupÐto which most
of the approaches belongÐaims at restricting how effects are triggered. For example, the value
restriction [Tofte 1990] restricts polymorphic expressions to be only values in order to prevent
polymorphic expressions from triggering effects. The other group aims at restricting how effects are

implemented. For example, Sekiyama and Igarashi [2019] proposed a type system that accepts only
effects that are safe, i.e., that do not cause programs to get stuck no matter how they are used.

1.2 Our Work

This work explores a new approach to safe polymorphic type assignment for effectful call-by-value
languages. A novelty of our approach lies in restriction on effect interfaces. In this work, the effect
interfaces are represented by sets of operations coupled with type signatures. For example, an
interface for exceptions consists of a single operation raise to raise an exception and its type
signature ∀α . unit ֒→ α , which means that raise takes the unit value as an argument and returns
a value of any type α if the control gets back to the caller at all. Quantification in the signature not
only provides the clients of the operation with flexibilityÐthey can instantiate α with any desired
type and put a call of raise in any contextÐbut also constrains its servers in that implementations
of the operation have to abstract over types. In fact, the type signature of raise is sufficiently
restrictive to guarantee that the exception effect is safe. Generalizing this idea, we provide a criterion
to decide if an effect is safe. Our criterion is simple in that it only mentions the occurrences of bound
type variables α in a type signature, robust in that it is independent of how effects are implemented,
and permissive in that it is met by many safe effectsÐincluding exception, nondeterminism, and
input streaming. We call the restriction on type signatures to meet the criterion signature restriction.

We formalize our idea with algebraic effects and handlers [Plotkin and Pretnar 2009, 2013], which
are a programming mechanism to accommodate user-defined control effects in a modular way.
Algebraic effects and handlers split an effect into an interface (i.e., a set of operations with type
signatures) and an interpretation, so we can incorporate signature restriction into them naturally.

We provide two polymorphic type assignment systems for a λ-calculus equipped with algebraic
effects and handlers. The first is a simple polymorphic type system based on Curry-style Sys-
tem F [Leivant 1983] (i.e., it supports implicit, full polymorphism). This type system allows arbitrary
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terms (rather than only values) that invoke effects to be given polymorphic types but is sound,
thanks to signature restriction. The minimality of this simple type system reveals the essence of
signature restriction. The second type assignment system is a polymorphic type-and-effect system.
Using this system, we show that effect tracking is key to apply signature restriction for programs
in which both safe and potentially unsafe polymorphic effects may happen.1

The contributions of our work are summarized as follows.

• We define a λ-calculus λeff with algebraic effects and handlers and provide a type system that
supports implicit full polymorphism and allows any effectful expression to be polymorphic.
We formalize signature restriction for λeff and prove soundness of the type system under the
assumption that all operations satisfy signature restriction.

• As a technical development to justify signature restriction, we equip the type system with
Mitchell’s type containment [Mitchell 1988], which is an extension of type instantiation.
In the literature [Dunfield and Krishnaswami 2013; Peyton Jones et al. 2007], the proof of
type soundness of a calculus equipped with type containment rests on translation to another
calculus, such as System F [Girard 1972; Reynolds 1974].2 By contrast, we show soundness of
our type system directly, i.e., without translation to any other calculus. As far as we know,
this is the first work that achieves it.

• We extend λeff and its type system with standard programming features such as products,
sums, and lists to demonstrate the generality and extensibility of signature restriction.

• We develop an effect system for λeff, which enables a single program to use both safe and
potentially unsafe polymorphic effects. In this effect system, an expression can be polymorphic
if all the effect operations performed by the expression satisfy signature restriction. It also
indicates that signature restriction can cooperate with value restriction naturally.

We employ implicit full polymorphism and type containment to show type soundness, but either
of them makes even type checking undecidable [Tiuryn and Urzyczyn 1996; Wells 1994]. It is
thus desirable to identify a subset of our system where type checkingÐand type inference as well
hopefullyÐis decidable. To prove the feasibility of this idea, we implement an interpreter for a subset
of the extended λeff in which polymorphism is restricted to let-polymorphism [Damas and Milner
1982; Milner 1978] (the effect system is not supported either). This restriction on polymorphism
ensures that both type checking and type inference are decidable but it is still expressive so that all
of the motivating well-typed examples in this paper (except for those in Section 6, which rest on
the effect system) are typechecked. The implementation is provided as the supplementary material;
alternatively, it can also be found at: https://github.com/skymountain/MLSR .
Finally, we briefly relate our work with the relaxed value restriction [Garrigue 2004] here. It is

similar to our signature restriction in that both utilize the occurrences of type variables to ensure
soundness of polymorphic type assignment in the permissive use of polymorphic effects. Indeed, a
strong version of signature restriction can be justified similarly to the relaxed value restriction. The
strong signature restriction is, however, too restrictive and rejects many useful, safe effects. We
generalize it to what we call signature restriction and prove its correctness with different techniques
such as type containment. Readers are referred to Section 7.1 for further details.

Organization. The remainder of this paper is organized as follows. We start with an overview
of this work (Section 2) and then define our base calculus λeff (Section 3). Section 4 introduces a

1As we will show in the paper, signature restriction is permissive and actually we find no useful effect that invalidates it.
However, the universal enforcement of signature restriction may give rise to inconvenience in some cases, and we consider
the capability of avoiding such (potential) inconvenience important in designing a general-purpose programming language.
2The translation inserts, as a replacement for type containment, functions that are computationally meaningless but work
as type conversion statically.
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polymorphic type system for λeff, formalizes signature restriction, and shows soundness of the
polymorphic type system under the assumption that all operations satisfy signature restriction.
Section 5 extends λeff, the polymorphic type system, and signature restriction with products, sums,
and lists. Section 6 presents an effect system to allow programs to use both safe and unsafe effects.
We finally discuss related work in Section 7 and conclude in Section 8.

In this paper, we may omit the formal definitions of some well-known notions and the statements
and proofs of auxiliary lemmas for type soundness. The full definitions, the full statements, and the
full proofs are provided in the supplementary material.

2 OVERVIEW

This section presents an overview of our work. After reviewing algebraic effects and handlers, their
extension to polymorphic effects, and why a naive extension results in unsoundness, we describe
our approach of signature restriction and informally discuss why it resolves the unsoundness
problem. All program examples in this paper follow ML-like syntax.

2.1 Review: Algebraic Effects and Handlers

Algebraic effects and handlers [Plotkin and Pretnar 2009, 2013] are a mechanism that enables users
to define their own effects. They are successfully able to separate the syntax and semantics of
effects. The syntax of an effect is given by a set of operations, which are used to trigger the effect.
For example, exception is triggered by the operation raise and store manipulation is triggered by
put and get, which are used to write to and read from a store, respectively. The semantics is given
by handlers, which decide how to interpret operations performed by effectful computation.
Our running example is nondeterministic computation which enumerates all of the possible

outcomes [Plotkin and Pretnar 2009, 2013]. This computation utilizes two operations: select,
which chooses an element from a given list, and fail, which signals that the current control flow
is undesired and the computation should abort.3

1 effect select : int list ֒→ int

2 effect fail : unit ֒→ unit

3
4 let filter (l : int list) (f : int → bool) =

5 handle

6 let x = #select(l) in

7 let _ = if f x then () else #fail() in x

8 with

9 return z → [z]

10 select l → concat (map l (λy. resume y))

11 fail z → [ ]

12
13 filter [3; 5; 10] (λx. x mod 2 = 1) (* will evaluate to [3; 5] *)

The first two lines declare the operations select and fail, which have the type signatures int
list ֒→ int and unit ֒→ unit, respectively. A type signature A ֒→ B of an operation signifies
that the operation is called with an argument of type A and, when the control gets back to the caller,
it receives a value of B. We refer to A and B as the domain type and codomain type, respectively.4

3This describes only intended semantics; one can also give an unintended handler, e.g., one that always returns an integer 42
for a call of select. Certain unintended handlers can be excluded in a polymorphic setting, as is shown in Section 2.2.
4The domain and codomain types are also called the parameter type and the arity, respectively [Plotkin and Pretnar 2009].
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The function filter in Lines 4ś11 operates select and fail to filter out the elements of l that
do not meet a given predicate f. Now, let’s take a closer look at the body of the function, which
consists of a single handleświth expression of the form handleM with H . This expression installs
a handler H during the evaluation of M , which we refer to as the handled expression.

The handled expression (Lines 6ś7) chooses an integer selected from l by calling select, tests
whether the selected integer x satisfies f, and returns x if f x is true; otherwise, it aborts the
computation by calling fail. We write #op(M) to call operation op with argument M . We now
explain the handler in Lines 9ś11, which collects all the values in l that satisfy f as a list, along
with an intuitive meaning of handleświth expressions.

The handler H in handle M with H consists of a single return clause and zero or more operation
clauses. The return clause takes the form return x → M and computes the entire result M of
the handleświth expression using the value of the handled expression, which M refers to by x.
For example, the return clause in this example is return z → [z]. Because z will be bound to
the result of the handled expression x, the entire result is the singleton list consisting of x. An
operation clause of the form op x → M for an operation op decides how to interpret the operation
op called by the handled expression. Variable x will be bound to the argument of the call of op and
M is the entire result of the handleświth expression. For example, the operation clause fail z →

[ ] means that, if fail is called, the computation is abortedÐsimilarly to exception handlingÐand
the entire handleświth expression returns the empty list, meaning there is no result that satisfies
f .
Unlike exception handling, which discards the continuation of where an exception is raised,

however, handlers can resume computation from the point at which the operation was called.
The ability to resume a computation suspended by the operation call provides algebraic effects
and handlers with the expressive power to implement control effects [Bauer and Pretnar 2015;
Forster et al. 2019; Leijen 2017]. In our language, we use the expression resume M to resume the
computation of the handled expression with the value of M .
The operation clause for select enumerates all the possible outcomes by using resume. The

clause first returns, for each integer y of a given list l, the integer y to the caller of select by
resuming the computation from the point at which select was called. The handled expression in
the example calls select only once, so each resumed computation (which is performed under the
same handler) returns either a singleton list or the empty list (by calling fail). The next step after
the completion of all the resumed computations is to concatenate their results. The two steps are
expressed by concat (map l (λy. resume y)).

More formally, the suspended computation is expressed as a delimited continuation [Danvy and
Filinski 1990; Felleisen 1988], and resume simply invokes it. For example, let us consider evaluating
filter [3; 5; 10] (λx. x mod 2 = 1) in the last line. This reduces to the following expression:

handle

let x = #select([3; 5; 10]) in

let _ = if (λx. x mod 2 = 1) x then () else #fail() in x

with H

where H denotes the same handler as that in the example. At the call of select, the run-time
system constructs the following delimited continuation c

c
def
=

handle

let x = [] in

let _ = if (λx. x mod 2 = 1) x then () else #fail() in x

with H
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(where [] is the hole to be filled with resumption arguments), and then evaluates the operation clause
for select. The resumption expression in the operation clause invokes the delimited continuation
c after filling the hole with an integer in list [3; 5; 10]. For the case of filling the hole with 3, the
remaining computation c[3] to resume is:

handle

let x = 3 in

let _ = if (λx. x mod 2 = 1) x then () else #fail() in x

with H .

Because 3 is an odd number, it satisfies the predicate (λx. x mod 2 = 1), and therefore the final
result of this computation is the singleton list [3]. The case of 5 behaves similarly and produces
[5]. In the case of 10, because the even number 10 does not meet the given predicate, the remaining
computation c[10] would call fail and, from the operation clause for fail, the final result of c[10]
would be the empty list. The operation clause for select concatenates all of these resulting lists of
the resumptions and finally returns [3; 5]. This is the behavior that we expect of filter exactly.
The handler in the example works even when select is called more than once, e.g.:

handle

let x = #select([2; 3]) in

let y = #select([10; 20]) in

let z = x * y in

let _ = if z > 50 then #fail() else () in z

with H .

This program returns a list of the values of the handled expression that are computed with (x, y) ∈

{2, 3} × {10, 20} such that the multiplication x * y does not exceed 50.

Typechecking. We also review the procedure to typecheck an operation clause op x → M for op
of type signature A ֒→ B. Since the operation op is called with an argument of A, the typechecking
assigns argument variable x type A. As the value of M is the result of the entire handleświth
expression, the typechecking checks M to have the same type as the other clauses including the
return clause. The typechecking of resumption expressions resume M ′ is performed as follows.
Since the value of M ′ will be used as a result of calling op in a handled expression, M ′ has to be of
the type B, the codomain type of the type signature of op. On the other hand, since the resumption
expression returns the evaluation result of the entire handleświth expression, the typechecking
assumes it to have the same type as all of the clauses in the handler.

For example, let us consider the typechecking of the operation clause for select in the function
filter. Since the type signature of select is int list ֒→ int, the variable l is assigned the
type int list. Here, we suppose map and concat to have the following types:

map : int list → (int → int list) → int list list

concat : int list list → int list

(these types can be inferred automatically). The type of map requires that the arguments l and
λy.resume y have the types int list and int → int list, respectively, and they do indeed.
The requirement to l is met by the type assigned to l. We can derive that λy.resume y has type
int → int list as follows: first, the typechecking assigns the bound variable y type int and
checks resume y to have int list. An argument of a resumption expression has to be of the
type int, which is the codomain type of the type signature, and y has that type indeed. Then, the
typechecking assumes that resume y has the same type as the clauses of the handler, which is the
type int list. Thus, λy.resume y has the desired type.
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2.2 Polymorphic Effects

Polymorphic effects are a particular kind of effects that incorporate polymorphism,5 providing a
set of operations with polymorphic type signatures. We also call such operations polymorphic.

For example, we can assign select and fail polymorphic signatures and write the program as
follows:

1 effect select : ∀α . α list ֒→ α

2 effect fail : ∀α . unit ֒→ α

3
4 handle

5 let b = #select([true; false])

6 let x = if b then #select([2; 3]) else #select([20; 30]) in

7 if x > 20 then #fail() else x

8 with

9 return z → [z]

10 select l → concat (map l (λy. resume y))

11 fail z → [ ]

This program evaluates to the list [2; 3; 20] (30 is filtered out by the call of fail).
Polymorphic type signatures enable operation calls with arguments of different types. For

example, #select([2; 3]) and #select([true; false]) are legal operation calls that instantiate
the bound type variable α of the type signature with int and bool, respectively. The calls of the
same operation are handled by the same operation clause, even if the calls involve different type
instantiations. It is also interesting to see that the use of polymorphic type signatures makes
programs more natural and succinct: Thanks to its polymorphic codomain type, a call to fail can
be put anywhere, making it possible to put x in the else-branch, unlike the monomorphic case.
Another benefit of polymorphic type signatures is that they contribute to the exclusion of

undesired operation implementations. For example, the polymorphic signature of fail ensures
that, once we call fail, the control never gets back and that of select ensures that no other
values than elements in an argument list are chosen. Parametricity [Reynolds 1983] enables formal
reasoning for this; readers are referred to Biernacki et al. [2020] for parametricity with the support
for polymorphic algebraic effects and handlers.

2.3 (Naive) Polymorphic Typechecking and Its Unsoundness

(Naive) typechecking of operation clauses for polymorphic operations is obtained by extending
the monomorphic setting. The only difference is that the operation clauses have to abstract over
types. Namely, an operation clause op x → M for op of polymorphic type signature ∀α .A ֒→ B

is typechecked as follows. The typechecking process allocates a fresh type variable α , which
is bound in M , and assigns variable x type A (which may refer to the bound type variable α ).
Resumption expressions resume M ′ in M are typechecked as in the monomorphic setting; that
is, the typechecking checks M ′ to be of B (which may refer to α ) and assumes the resumption
expressions to have the same type as the clauses in the handler. Finally, the typechecking checks
whether M is of the same type as the other clauses in the handler. It is easy to see that the
polymorphic version of the select and fail example typechecks.

5Another way to incorporate polymorphism is parameterized effects, where the declaration of an operation is parameterized
over types [Wadler 1992].
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However, this naive extension is unsound. In what follows, we revisit the counterexample given
by Sekiyama and Igarashi [2019], which is an analogue to that found by Harper and Lillibridge
[1991, 1993b] with call/cc [Clinger et al. 1985].

1 effect get_id : ∀α . unit ֒→ (α → α)

2
3 handle

4 let f = #get_id() in (* f : ∀α . α → α *)

5 if (f true) then ((f 0) + 1) else 2

6 with

7 return x → x

8 get_id x → resume (λz1. let _ = resume (λz2. z1) in z1)

We first check that this program is well typed. The handled expression first binds the variable f
to the result returned by get_id. In polymorphic type assignment, we can assign a polymorphic
type ∀α . α → α to f by allocating a fresh type variable α , instantiating the type signature of
get_id with α , and generalizing α finally. The polymorphic type of f allows viewing f both as
a function of the type bool → bool and of the type int → int. Thus, the handled expression
is well typed. Turning to the operation clause, since the type signature of get_id is ∀α . unit
֒→ α → α , typechecking first allocates a fresh type variable α and assigns the argument variable x
the type unit. The signature also requires the arguments of the resumption expressions to have the
type α → α , and both arguments λz1. ... z1 and λz2. z1 do indeed. The latter function is typed
at α → α because the requirement to the former ensures that z1 has α . Thus, the entire program is
well typed.

However, this program gets stuck. The evaluation starts with the call of get_id in the handled
expression. It constructs the following delimited continuation:

c
def
=

handle

let f = [] in

if (f true) then ((f 0) + 1) else 2

with

return x → x

get_id x → resume (λz1. let _ = resume (λz2. z1) in z1) .

The run-time system then replaces the resumption expressions with the invocation of the delimited
continuation. Namely, the entire program evaluates to

M
def
= c[λz1. let _ = c[λz2. z1] in z1] .

The evaluation ofM proceeds as follows.

M =

handle

let f = (λz1. let _ = c[λz2. z1] in z1) in

if (f true) then ((f 0) + 1) else 2

with ...

−→ handle if (λz1. let _ = c[λz2. z1] in z1) true then ... with ...

−→ handle if (let _ = c[λz2. true] in true) then ... with ...

Subsequently, the term c[λz2. true] is to be evaluated. The delimited continuation c expects the
hole to be filled with a polymorphic function of ∀α . α → α but the function λz2. true is not
polymorphic. As a result, the term gets stuck:
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c[λz2. true] =

handle

let f = λz2. true in

if (f true) then ((f 0) + 1) else 2

with ...

−→∗
handle ((λz2. true) 0) + 1 with ...

−→ handle true + 1 with ...

A standard approach to this problem is to restrict operation calls in polymorphic expressions [Ap-
pel and MacQueen 1991; Asai and Kameyama 2007; Garrigue 2004; Hoang et al. 1993; Leroy and
Weis 1991; Tofte 1990; Wright 1995]. While this kind of approach prevents #get_id() from having
a polymorphic type, it disallows calls of any polymorphic operation inside polymorphic expressions
even when the calls are safe; refer to Sekiyama and Igarashi [2019] for further discussion. Sekiyama
and Igarashi [2019] have proposed a complementary approach to this problem, that is, restricting,
by typing, the handler of a polymorphic operation, instead of restricting handled expressions.

2.4 Our Work: Signature Restriction

This work takes a new approach to ensuring the safety of any call of an operation. Instead of
restricting how it is used or implemented, we restrict its type signature: An operation op :∀α .A ֒→ B

should not have a łbadž occurrence of α inA and B. We refer to this restriction as signature restriction.
To see how the signature restriction works, let us explain why type preservation is not easy to

prove with the following example, where type abstraction Λβ .M and type applicationM{A} are
explicit for the ease of readability:

handle let f = Λβ . #op{β}(v) in M with H .

Here, we suppose the type signature of op to be ∀α .A ֒→ B. Notice that the type variable α in the
signature ∀α .A ֒→ B is instantiated to β , which is locally bound by Λβ . Handling of operation op

constructs the following delimited continuation:

c
def
= handle let f = Λβ . [] in M with H .

The problem is that an appropriate type cannot be assigned to it under the typing context of the
handler H : the type of the hole should be B[β/α], but the type variable β is not in the scope of H .
This is a kind of scope extrusion. We have focused on the scope extrusion via the continuation, but
the operation argument v may cause a similar problem when its type A[β/α] contains β .
This analysis suggests that instantiating polymorphic operations with closed types, i.e., types

without free type variables (especially β here), is safe because then the types of the hole and the
operation argument should not contain β and, thus, the continuation and the argument could be
typed under the typing context of H .6 However, allowing only instantiation with closed types is too
restrictive. For example, it even disallows a function wrapping select, λx . #select(x), to have
a polymorphic type ∀α . α list → α because, for the function to have this type, the bound type
variable of the type signature of select has to be instantiated with a non-closed type α .

As another approach to addressing the scope extrusion, we introduce strong signature restriction,
which requires that, for each polymorphic operation op : ∀α .A ֒→ B, the type variable α occur only
negatively in A and only positively in B. This is a sufficient condition to prove type preservation.
Consider, for example, the expression

M1
def
= handle let f = Λβ1 . . . βn . #op{C}(v) in M with H

6More precisely, the argument may contain free type variables even when its type does not. However, we could address this
situation successfully by eliminating them with closing type substitution as in Sekiyama and Igarashi [2019].
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where v is a value and C is a type with free type variables β1, . . . , βn . The idea is to rewrite this
expression, immediately before the call of op, to

M ′
1

def
= handle let f = Λβ1 . . . βn . #op{∀β1 . . . βn .C}(v) in M with H

(where the rewritten part is shaded). In M ′
1, because the type variable α in op : ∀α .A ֒→ B is

instantiated with a closed type ∀β1 . . . βn .C , this operation call should be safe provided thatM ′
1 is

well typed. This expression is indeed typable if the strong signature restriction is enforced, as seen
below. To ensure thatM ′

1 is typable, we need to have

v : A[∀β1 . . . βn .C/α] (for typing #op {∀β1 . . . βn .C}(v))
#op {∀β1 . . . βn .C}(v) : B[C/α] (for type preservation) .

To this end, we employ type containment [Mitchell 1988], which is also known as łsubtyping for
second-order typesž [Tiuryn and Urzyczyn 1996]. Type containment ⊑ accepts the following key
judgments:

A[C/α] ⊑ A[∀β1 . . . βn .C/α]

B[∀β1 . . . βn .C/α] ⊑ B[C/α] ,

which follow from the acceptance of type instantiation (∀β1 . . . βn .C) ⊑ C and the strong signature
restriction which assumes that α occurs only negatively in A and only positively in B. SinceM1 is
typable, we have v : A[C/α] and, by subsumption, v : A[∀β1 . . . βn .C/α]. Therefore, the operation
#op{∀β1 . . . βn .C} is applicable tov andwe have #op{∀β1 . . . βn .C}(v) : B[∀β1 . . . βn .C/α]. Again,
by subsumption, #op{∀β1 . . . βn .C}(v) : B[C/α] as desired. Therefore, M ′

1 is also typable. Note
that the translation from M1 to M ′

1 does not change the underlying untyped term, but only the
types of (sub)expressions; hence, ifM ′

1 does not get stuck, neither doesM1.
However, the strong signature restriction is still unsatisfactory in that the type signatures of

many operations do not conform to it. For example, the signature of select : ∀α . α list ֒→ α

in Section 2.2 does not satisfy the requirements for the strong signature restriction; it disallows
positive occurrences of a bound type variable in the left-hand side of ֒→.

Signature restriction is a relaxation of the strong signature restriction, allowing the type variable
α in the signature ∀α .A ֒→ B to occur at strictly positive positions in A in addition to negative
positions. The proof of type preservation in this generalized case is essentially the same as above,
but we need an additional type containment rule, known as the distributive law:

∀α .A → B ⊑ A → ∀α . B (if α does not occur free in A)

to derive type containment judgments such as those derived above. The type signature of select
conforms to this relaxed conditionÐα only occurs at a strictly positive position in the domain
type α list; therefore, we can ensure the safety of the operation call of select in polymorphic
expressions.

The signature restriction is a reasonable relaxation in that it rejects unsafe operations as expected.
For example, get_id does not conform to the signature restriction because, in its type signature
∀α . unit ֒→ α → α , the bound type variable α occurs negatively in the codomain type α → α .

3 A λ-CALCULUS WITH ALGEBRAIC EFFECTS AND HANDLERS

This section defines the syntax and semantics of our base language λeff, a λ-calculus extended with
algebraic effects and handlers. They are based on those of the core calculus of the language Koka [Lei-
jen 2017]. The only difference is that the Koka core calculus is equippedwith let-expressions whereas
λeff is not because we focus on implicit full polymorphism, rather than only on let-polymorphism.
We will present a polymorphic type system for λeff that takes into account signature restriction in
Section 4. We also extend λeff and the polymorphic type system with products, sums, and lists in
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Variables x, y, z, f , k Effect operations op

Constants c ::= true | false | 0 | + | ...

Terms M ::= x | c | λx .M | M1 M2 | #op(M) | handleM withH

Handlers H ::= return x → M | H ; op(x, k) → M

Values v ::= c | λx .M

Evaluation contexts E ::= [] | EM2 | v1 E | #op(E) | handle EwithH

Fig. 1. Syntax of λeff.

Section 5 and provide an effect system for the extended language in Section 6. Signature restriction
differentiates these systems from the typing discipline of Koka. Besides, contrary to Koka’s effect
system, which is row-based, our effect system is not; refer to Section 6 for detail.

3.1 Syntax

Figure 1 presents the syntax of λeff. We use the metavariables x, y, z, f , k for variables and op for
effect operations. Our language λeff is parameterized over constants, which are ranged over by c

and may include basic values, such as Boolean and integer values, and basic operations for them,
such as not, +, −, mod, etc.
Terms, ranged over by M , are from the λ-calculus, augmented with constructors for algebraic

effects and handlers. They are composed of: variables; constants; lambda abstractions λx .M , where
variable x is bound in M; function applications M1 M2; operation calls #op(M) with arguments
M; and handleświth expressions handleM withH , which install handler H to interpret effect
operations performed by M . A resumption expression resume M that appears in Section 2 is the
syntactic sugar of function application k M where k is a variable that denotes delimited continuations
and is introduced by an operation clause in a handler (we will see the definition of operation clauses
shortly). The definition of evaluation contexts, ranged over by E, is standard; it indicates that the
semantics of λeff is call-by-value and terms are evaluated from left to right.

Handlers, ranged over by H , consist of a single return clause and zero or more operation clauses.
A return clause takes the form return x → M , where x is bound inM . The bodyM is evaluated once
a handled expression produces a value, to which x is bound inM . An operation clause op(x, k) → M ,
where x and k are bound in M , is an implementation of the effect operation op. The body M is
evaluated once a handled expression performs op, referring to the argument of op by x. Variable
k denotes the delimited continuation from the point where op is called up to the handleświth
expression that installs the operation clause. This ability to manipulate delimited continuations
enables the implementation of various control effects. In this paper, we suppose that a handler may
contain at most one operation clause for each operation.
Here, we introduce a few notions about syntax; they are standard, and therefore we omit their

formal definitions. Term M1[M2/x] is the one obtained by substituting M2 for x in M1 in a capture-
avoiding manner. A term M is closed if it has no free variable. We also write E[M] and E[E′] for the
term and evaluation context obtained by filling the hole of E with M and E′, respectively.

3.2 Semantics

This section defines the semantics of λeff. It consists of two binary relations over closed terms: the
reduction relation⇝, which gives the notion of basic computation such as β-reduction, and the
evaluation relation −→, which defines how to evaluate programs. These relations are defined by
the rules shown in Figure 2.
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Reduction rules M1 ⇝ M2

c v ⇝ ζ (c, v) R_Const

(λx .M) v ⇝ M[v/x] R_Beta

handle vwithH ⇝ M[v/x] (where H return
= return x → M) R_Return

handle E[#op(v)]withH ⇝ M[v/x][λy.handle E[y]withH/k] R_Handle

(where op < E and H (op) = op(x, k) → M)

Evaluation rules M1 −→ M2

M1 ⇝ M2

E[M1] −→ E[M2]
E_Eval

Fig. 2. Semantics of λeff.

The reduction relation is defined by four rules. The rule (R_Const) is for constant applications.
The denotations of functional constants are given by ζ , which is a mapping from pairs of a constant c
and a value v to the value that is the result of applying c to v. A function application (λx .M) v reduces
to M[v/x], as usual, by (R_Beta). The other two rules are for computation in terms of algebraic
effects and handlers. The rule (R_Return) is for the case in which a handled expression evaluates
to a value. In such a case, the return clause of the installed handler is evaluated with the value of the
handled expression. We write H return for the return clause of a handler H . The rule (R_Handle) is
the core of effectful computation in algebraic effects and handlers, and looks for an operation clause
to interpret an operation invoked by a handled expression. The redex is a handleświth expression
that takes the form handle E[#op(v)]withH where the handled expression E[#op(v)] performs the
operation op and E does not install handlers to interpret it. We call evaluation contexts that install
no handler to interpret op op-free, which is formally defined as follows.

Definition 1 (op-free evaluation contexts). Evaluation context E is op-free, written op < E,

if and only if, there exist no E1, E2, and H such that E = E1[handle E2 withH ] and H has an operation

clause for op.

We also denote the operation clause for op in H by H (op). Then, the conjunction of op < E and
H (op) = op(x, k) → M in (R_Handle) means that the operation clause op(x, k) → M installed by
the handleświth expression is the innermost among the operation clauses for op from the point at
which op is invoked. The handleświth expression with such an operation clause reduces to the
body M of the operation clause after substituting the argument v of the operation call for x and the
functional representation of the delimited continuation λy.handle E[y]withH for k.
The evaluation proceeds according to the evaluation rule (E_Eval) in Figure 2. A program is

decomposed into the evaluation context E and the redex M1 and evaluates to the term E[M2]

obtained by filling the hole of E with the resulting term M2 of the reduction of M1.

4 A POLYMORPHIC TYPE SYSTEM FOR SIGNATURE RESTRICTION

This section defines a polymorphic type system for λeff that incorporates type containment as
subsumption. We then formalize signature restriction and show that the type system is sound if
all operations satisfy signature restriction. The type system in this section does not track effect
information for simplicity, so a well-typed program may terminate at an unhandled operation call.
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Type variables α , β,γ Base types ι ::= bool | int | ...

Types A,B,C,D ::= α | ι | A → B | ∀α .A

Typing contexts Γ ::= ∅ | Γ, x :A | Γ,α

Fig. 3. The type language.

4.1 Type Language

Figure 3 presents the type language of the polymorphic type system. It is standard and in fact
the same as that of System F [Girard 1972; Reynolds 1974]. We use metavariables α , β , γ for type
variables and ι for base types such as bool and int. Types, ranged over by A, B, C, D, consist of: type
variables; base types; function types A → B; and polymorphic types ∀α .A, where type variable α
is bound in A. Typing contexts, ranged over by Γ, are sequences of bindings of variables coupled
with their types and type variables. We suppose that each constant c is assigned a first-order closed
type ty(c) of the form ι → . . .→ ιn → ιn+1 which is consistent with the denotation of c.

We use the following shorthand and notions. We write α I for α = α1, · · · ,αn with I = {1, ...,n}.
We apply this bold-font notation to other syntax categories as well; for example, AI denotes a
sequence of types. We often omit the index sets (I , J , K) if they are clear from the context or
irrelevant: for example, we may abbreviate α I to α . We also write ∀α I

.A for ∀α1. ... ∀αn.A with
I = {1, ...,n}. We may omit the index sets and write ∀α .A simply. We write ∀α I

.A
J for a sequence

of types ∀α I
.A1, . . . , ∀α I

.An with J = {1, . . . ,n}. The notions of free type variables and capture-
avoiding type substitution are defined as usual. We write ftv(A) for the set of free type variables
of A and A[B/α ] for the type obtained by substituting each type of B for the corresponding type
variable of α simultaneously (here we suppose that B and α share the same, omitted index set).

4.2 Polymorphic Type System

We present a polymorphic type system for λeff, which consists of four judgments: well-formedness
judgment ⊢ Γ, which states that a typing context Γ is well formed; type containment judgment
Γ ⊢ A ⊑ B, which states that, for the types A and B, which are assumed to be well formed under Γ,
the inhabitants of A are contained in B; term typing judgment Γ ⊢ M : A, which states that term M

evaluates to a value of A after applying appropriate substitution for variables and type variables in
Γ; and handler typing judgment Γ ⊢ H : A ⇒ B, which states that handler H handles operations
called by a handled term of A and produces a value of B after applying appropriate substitution
according to Γ (we refer to A and B as the input and output types of the handler, respectively). These
judgments are defined as the smallest relations that satisfy the rules in Figure 4.

The well-formedness rules are standard. A typing context is well formed if (1) variables and type
variables bound by it are unique and (2) it assigns well-formed types to the variables. We write
dom(Γ) for the set of variables and type variables bound by Γ. A type A is well formed under typing
context Γ, which is expressed by Γ ⊢ A, if and only if ftv(A) ⊆ dom(Γ) (i.e., Γ binds all of the free
type variables in A).
The type containment rules originate from the work of Tiuryn and Urzyczyn [1996], which

simplifies the rules of type containment of Mitchell [1988]. The rules (C_Refl) and (C_Trans)
indicate that type containment is a preorder. The rule (C_Inst) instantiates polymorphic types with
well-formed types. The rule (C_Gen) may add a quantifier ∀ if it does not bind free type variables.
The rules (C_Poly) and (C_Fun) are for compatibility; note that type containment is a kind of
subtyping and hence it is contravariant on the domain types of function types. The rule (C_DFun)
is a simplified version [Tiuryn and Urzyczyn 1996] of the original łdistributivež law [Mitchell 1988],
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Well-formedness ⊢ Γ

⊢ ∅
WF_Empty

x < dom(Γ) Γ ⊢ A

⊢ Γ, x :A
WF_ExtVar

α < dom(Γ) ⊢ Γ

⊢ Γ,α
WF_ExtTyVar

Type containment Γ ⊢ A ⊑ B

⊢ Γ

Γ ⊢ A ⊑ A
C_Refl

Γ ⊢ A ⊑ C Γ ⊢ C ⊑ B

Γ ⊢ A ⊑ B
C_Trans

Γ ⊢ B

Γ ⊢ ∀α .A ⊑ A[B/α]
C_Inst

⊢ Γ α < ftv(A)

Γ ⊢ A ⊑ ∀α .A
C_Gen

Γ,α ⊢ A ⊑ B

Γ ⊢ ∀α .A ⊑ ∀α . B
C_Poly

Γ ⊢ B1 ⊑ A1 Γ ⊢ A2 ⊑ B2

Γ ⊢ A1 → A2 ⊑ B1 → B2
C_Fun

⊢ Γ α < ftv(A)

Γ ⊢ ∀α .A → B ⊑ A → ∀α . B
C_DFun

Term typing Γ ⊢ M : A

⊢ Γ x :A ∈ Γ

Γ ⊢ x : A
T_Var

⊢ Γ

Γ ⊢ c : ty(c)
T_Const

Γ, x :A ⊢ M : B

Γ ⊢ λx .M : A → B
T_Abs

Γ ⊢ M1 : A → B Γ ⊢ M2 : A

Γ ⊢ M1 M2 : B
T_App

Γ ⊢ M : A Γ ⊢ A ⊑ B Γ ⊢ B

Γ ⊢ M : B
T_Inst

Γ,α ⊢ M : A

Γ ⊢ M : ∀α .A
T_Gen

ty (op) = ∀α .A ֒→ B Γ ⊢ M : A[C/α ] Γ ⊢ C

Γ ⊢ #op(M) : B[C/α ]
T_Op

Γ ⊢ M : A Γ ⊢ H : A ⇒ B

Γ ⊢ handleM withH : B
T_Handle

Handler typing Γ ⊢ H : A ⇒ B

Γ, x :A ⊢ M : B

Γ ⊢ return x → M : A ⇒ B
TH_Return

Γ ⊢ H : A ⇒ B ty (op) = ∀α .C ֒→ D Γ,α , x :C, k :D → B ⊢ M : B

Γ ⊢ H ; op(x, k) → M : A ⇒ B
TH_Op

Fig. 4. Polymorphic type system for λeff.

which is the core of type containment. This rule allows ∀ that quantifies a function type to move to
its codomain type if the quantified type variable does not occur free in the domain type. This rule is
justified by the fact that we can supply a function from ∀α .A → B to A → ∀α . B in System F and
the result of applying type erasure to it is equivalent to the identity function [Mitchell 1988]. This
rule is crucial for allowing the domain type of a type signature to refer to quantified type variables
in strictly positive positions, which makes signature restriction permissive.

The typing rules for terms are almost standard, coming from Mitchell [1988] for polymorphism
and Plotkin and Pretnar [2013] for effects. The rule (T_Inst) converts types by type containment.
The rule (T_Op) is for operation calls. We formalize a type signature of an operation as follows.

Definition 2 (Type signature). Each effect operation op is assigned a type signature ty (op)

of the form ∀α1. ... ∀αn.A ֒→ B for some n, where α1, ...,αn are bound in the domain type A and
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codomain type B. It may be abbreviated to ∀α I
.A ֒→ B or, more simply, to ∀α .A ֒→ B. We suppose

that ∀α1. ... ∀αn.A ֒→ B is closed, i.e., ftv(A),ftv(B) ⊆ {α1, · · · ,αn}.

We note that domain and codomain types may involve polymorphic types.
The rule (T_Op) instantiates the type signature of the operation with well-formed types and

checks that an argument is typed at the domain type of the instantiated signature. We use notation
Γ ⊢ C for Γ ⊢ C1, · · · , Γ ⊢ Cn when C = C1, · · · ,Cn.
The typing rules for handlers are also ordinary [Plotkin and Pretnar 2013]. A return clause

return x → M is typechecked by (TH_Return), which allows the body M to refer to the values of
the handled expression via bound variable x. An operation clause op(x, k) → M is typechecked by
(TH_Op). Let the type signature of op be ∀α . C ֒→ D. In typecheckingM , variable x is assigned the
codomain type C since variable x will be bound to the arguments to the operation op. Variable k is
assigned to type D → B where B is the output type of the handler. This is because k will be bound
to the functional representations of delimited continuations such that: the delimited continuations
suppose that their holes are filled with values of the codomain type D of the type signature; and
they are wrapped by the handleświth expression installing the handler and therefore they would
produce values of B.

4.3 Desired Propositions for Type Soundness

As mentioned in Section 2.3, the polymorphic type system is unsound if we impose no further
restriction on it. This section details the proof sketch of type preservation provided in Section 2.4
and formulates two propositions such that they do not hold in the polymorphic type system but, if
they did, the type system would be sound. In Section 4.4.2, we show that the propositions hold if all
operations satisfy signature restriction.
We start by considering an issue that arises when proving soundness of the polymorphic type

system. This issue relates to the handling of an operation call by (R_Handle), which enables the
following reduction:

handle E[#op(v)]withH ⇝ M[v/x][λy.handle E[y]withH/k]

where op < E and H (op) = op(x, k) → M . The problem is that the RHS term does not preserve the
type of the LHS term. If this type preservation were successful, we would be able to prove soundness
of the polymorphic type system, but it is contradictory to the existence of the counterexample
presented in Section 2.3.

A detailed investigation of this problem reveals two propositions that are lacking but sufficient
to make the polymorphic type system sound.

Proposition 1. If ty (op) = ∀α I
.A ֒→ B and Γ ⊢ M : ∀ βJ

.A[CI/α I ], then Γ ⊢ M : A[∀ βJ
.C

I/α I ].

Proposition 2. If ty (op) = ∀α I
.A ֒→ B and Γ ⊢ M : B[∀ βJ

.C
I/α I ], then Γ ⊢ M : ∀ βJ

. B[CI/α I ].

In what follows, we show how these propositions allow us to prove type soundness. Before
that, we first fix and examine the type information of the terms appearing in the LHS term. Let us
suppose that ty (op) = ∀α I

.A ֒→ B and that the LHS term has a type D under a typing context Γ.
We can then find that

Γ,α I
, x :A, k :B → D ⊢ M : D (1)

is derived. Turning to the handled expression E[#op(v)], we can find two facts about the typing
judgment for v. The first fact originates from (T_Op): since v is an argument of operation op, it
should be of A[CI/α I ], which is a type obtained by substituting certain types CI for type variables
α I in the domain type A of the type signature of op. The second is from (T_Gen), which allows the
generalization of types anywhere. Thus, v is well typed under a typing context Γ, βJ , an extension
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of Γ with some type variables βJ (note that I , J in general). In summary, the typing judgment for
v takes the following form:

Γ, βJ ⊢ v : A[CI/α I ] . (2)

Now, we show that Proposition 1 makes M[v/x] typed at D. First, we can derive

Γ ⊢ v : ∀ βJ
.A[CI/α I ]

by the typing derivation of judgment (2) and (T_Gen). Proposition 1 enables us to prove

Γ ⊢ v : A[∀ βJ
.C

I/α I ] . (3)

We can also derive

Γ, x :A [∀ βJ
.C

I/α I ], k :B[∀ βJ
.C

I/α I ] → D ⊢ M : D

by substituting ∀ βJ
.C

I for α I in the typing judgment (1); note that the type variables in α I do not
occur free in D because they are bound by the type signature. Thus, we can derive

Γ, k :B[∀ βJ
.C

I/α I ] → D ⊢ M[v/x] : D (4)

using an ordinary substitution lemma with the derivation for judgment (3).
Next, we show that Proposition 2 makes M[v/x][λy.handle E[y]withH/k] typed at D. This is

possible if
Γ ⊢ λy.handle E[y]withH : B[∀ βJ

.C
I/α I ] → D

is derivable, jointly with the derivation of typing judgment (4). Namely, it suffices to derive

Γ, y :B [∀ βJ
.C

I/α I ] ⊢ handle E[y]withH : D .

By an observation similar to v, we find that #op(v) is typed at B[CI/α I ] under Γ, βJ (note that B is
the codomain type of the type signature of op). Thus, for the above typing judgment to hold, it
suffices for y to have the same type as #op(v). Hence, we will derive

Γ, y :B [∀ βJ
.C

I/α I ], βJ ⊢ y : B[CI/α I ] . (5)

Because Γ, y : B [∀ βJ
.C

I/α I ], βJ ⊢ y : B[∀ βJ
.C

I/α I ], we can derive Γ, y : B [∀ βJ
.C

I/α I ], βJ ⊢ y :

∀ βJ
. B[CI/α I ] by Proposition 2; and, by instantiating ∀ βJ

. B[CI/α I ] to B[CI/α I ] with βJ in the
typing context, we have succeeded in deriving the typing judgment (5).
Thus, if Propositions 1 and 2 held, we could derive

Γ ⊢ M[v/x][λy.handle E[y]withH/k] : D .

The polymorphic type system in Section 4.2 does not actually have these propositions, but imposing
signature restriction produces a type system that does have them.

4.4 Signature Restriction

This section formalizes signature restriction for λeff and shows that it implies Propositions 1 and 2.

4.4.1 Definition. As described in Section 2.4, signature restriction rests on the polarity of the
occurrences of quantified type variables in a type signature. The polarity is defined in a standard
manner, as follows.

Definition 3 (Polarity of type variable occurrence). The positive and negative occurrences

of a type variable in a type A are defined by induction on A, as follows.

• The occurrence of α in type α is positive.

• The positive (resp. negative) occurrences of α in A → B are the negative (resp. positive) occur-

rences of α in A and the positive (resp. negative) occurrences of α in B.
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• The positive (resp. negative) occurrences of α in ∀ β .A, where β is supposed to be distinct from

α , are the positive (resp. negative) occurrences of α in A.

The strictly positive occurrences of a type variable in a type are defined as follows.

• The occurrence of α in type α is strictly positive.

• The strictly positive occurrences of α in A → B are the strictly positive occurrences of α in B.

• The strictly positive occurrences of α in ∀ β .A, where β is supposed to be distinct from α , are the

strictly positive occurrences of α in A.

Definition 4 (Operations satisfying signature restriction). An operation op having type

signature ty (op) = ∀α .A ֒→ B satisfies the signature restriction if and only if: (1) the occurrences of

each type variable of α in A are only negative or strictly positive; and (2) the occurrences of each type

variable of α in B are only positive.

The signature restriction allows quantified type variables to occur at strictly positive positions of
the domain type of a type signature. This is crucial for many operations, such as raise, fail, and
select, to conform to signature restriction. The rule (C_DFun) plays an important role to permit
this capability, as seen in the next section.

We can easily confirm whether an operation satisfies the signature restriction. For example, it is
easy to determine that get_id does not satisfy the signature restriction: since its type signature is
∀α . unit ֒→ α → α , the quantified type variable α occurs not only at a positive position but also at
a negative position in the codomain type α → α . By contrast, the operations raise and fail given
in Section 2 satisfy the signature restriction because their type signature ∀α . unit ֒→ α meets the
conditions in Definition 4. To determine whether select satisfies the signature restriction, we
need to extend λeff and the polymorphic type system by introducing other programming constructs
such as lists. Particulars of this extension are presented in Section 5.

4.4.2 Proofs of the Desired Propositions. The signature restriction enables us to prove Propositions 1
and 2, which are crucial to show that reduction preserves typing. Below is the key lemma for that.

Lemma 1. Suppose that α does not appear free in A.

(1) If the occurrences of β in A are only negative or strictly positive, then Γ ⊢ ∀α .A[B/β] ⊑

A[∀α . B/β].

(2) If the occurrences of β in A are only positive, then Γ ⊢ A[∀α . B/β] ⊑ ∀α .A[B/β].

This lemma means that an operation op conforming to the signature restriction satisfies Propo-
sitions 1 and 2. For Proposition 1: suppose ty (op) = ∀α I

.A ֒→ B and Γ ⊢ M : ∀ βJ
.A[CI/α I ];

since op satisfies the signature restriction, we can apply case (1) of Lemma 1, which implies
Γ ⊢ ∀ βJ

.A[CI/α I ] ⊑ A[∀ βJ
.C

I/α I ]; thus, we can derive Γ ⊢ M : A[∀ βJ
.C

I/α I ] by (T_Inst).
Proposition 2 is proven similarly by using case (2) of Lemma 1 instead of case (1).

It is easy to prove Lemma 1 if the occurrences of β in A are only negative in case (1). In fact, the
following lemma handles such a case (the statement is generalized slightly).

Lemma 2. Suppose that α does not appear free in A.

(1) If the occurrences of β in A are only negative, then Γ1,α , Γ2 ⊢ A[B/β] ⊑ A[∀α . B/β].

(2) If the occurrences of β in A are only positive, then Γ1,α , Γ2 ⊢ A[∀α . B/β] ⊑ A[B/β].

Proof. We prove both cases simultaneously by structural induction on A. The polarity condition
on the occurrences of β ensures that, if A = β , it suffices to show Γ1,α , Γ2 ⊢ ∀α . B ⊑ B, which is
derived by (C_Inst). □
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Now, we prove Lemma 1 with Lemma 2 and (C_DFun), which is the key rule for the signature
restriction to allow strictly positive occurrences of quantified type variables in the domain type of
a type signature.

Proof of Lemma 1. We prove both cases simultaneously by structural induction on A. The case
(2) can be proven by Lemma 2: it enables us to show Γ,α ⊢ A[∀α . B/β] ⊑ A[B/β]; then, by (C_Poly),
(C_Gen), and (C_Trans), we can derive Γ ⊢ A[∀α . B/β] ⊑ ∀α .A[B/β].

Let us consider case (1) where A is a function type C → D; the other cases are easy to show.
Suppose that the occurrences of β in C → D are only negative or strictly positive. By definition,
the occurrences of β in C are only positive. Thus, by the IH, Γ ⊢ C[∀α . B/β] ⊑ ∀α .C[B/β].
Furthermore, by definition, the occurrences of β in D are only negative or strictly positive. Thus,
by the IH, Γ ⊢ ∀α .D[B/β] ⊑ D[∀α . B/β]. By (C_Fun),

Γ ⊢ (∀α .C[B/β]) → ∀α .D[B/β] ⊑ C[∀α . B/β] → D[∀α . B/β] . (6)

Thus:

Γ ⊢ ∀α .C[B/β] → D[B/β]

⊑ ∀α . (∀α .C[B/β]) → D[B/β] (by (C_Poly), (C_Fun), and Γ,α ⊢ ∀α .C[B/β] ⊑ C[B/β])
⊑ (∀α .C[B/β]) → ∀α .D[B/β] (by (C_DFun))
⊑ C[∀α . B/β] → D[∀α . B/β] (by (6)) .

□

4.5 Type Soundness

This section shows soundness of the polymorphic type system under the assumption that all
operations satisfy the signature restriction. As usual, our proof rests on two properties: progress
and subject reduction [Wright and Felleisen 1994]. As discussed in Sections 4.3 and 4.4, the signature
restriction, together with type containment, enables us to prove subject reduction.

In this work, type containment is thus a key notion to prove type soundness, but it complicates
certain inversion properties. In the literature [Dunfield and Krishnaswami 2013; Peyton Jones et al.
2007], type soundness of a language with subtyping such as ⊑ has been shown by translation to
another languageÐtypically, System FÐwhere the use of subtyping is replaced by łcoercionsž (i.e.,
certain term representations for type conversion by subtyping). This approach is acceptable in the
prior work because the semantics of the source language is determined by the target language.
However, this approach is not acceptable in our setting because the terms checked by our type
system should be interpreted by the semantics of λeff as they are. We thus show soundness of the
polymorphic type system directly, without translation to other languages.
The property that is the most difficult to prove in the direct approach is the inversion of type

containment judgments for function types.

Lemma 3. If Γ ⊢ A1 → A2 ⊑ B1 → B2, then Γ ⊢ B1 ⊑ A1 and Γ ⊢ A2 ⊑ B2.

We cannot prove this lemma as it is by induction on the derivation of Γ ⊢ A1 → A2 ⊑ B1 → B2
because a premise in the derivation may relate the (nonpolymorphic) function type on one side
to a polymorphic function type on the other side. Thus, we need to generalize the assumption to
a type containment judgment that may relate polymorphic function types: Γ ⊢ ∀α I

.A1 → A2 ⊑

∀ βJ
. B1 → B2. By investigating the type containment rules, we find that α I is split into three

sequences α I01
01
, α I02

02
, and α I03

03
depending on how the rules handle the type variables in α I : those of

α I01
01

stay in βJ ; those of α I02
02

are quantified in the return type B2; and those of α I03
03

are instantiated
with some types C0

I03 . Furthermore, we have to take into account certain, unrevealed type variables
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γK that initially emerge at the outermost position by (T_Gen) and are subsequently distributed
into subcomponent types. For example:

A1 → A2 ⊑ ∀γ .A1 → A2 ⊑ (∀γ .A1) → (∀γ .A2)

where γ < ftv(A1) ∪ ftv(A2). These observations are formulated in the following inversion lemma
for type containment, which implies Lemma 3. We write {α I } to view the sequence α I as a set by
ignoring the order and {α I } ⊎ {βJ } for the union of disjoint sets {α I } and {βJ }.

Lemma 4 (Type containment inversion: function types). If Γ ⊢ ∀α I
.A1 → A2 ⊑ ∀ βJ

. B1 → B2,

then there exist α I1
1
, α I2

2
, γK , and CI1 such that

• {α I } = {α I1
1
} ⊎ {α I2

2
},

• Γ, βJ
,γK ⊢ CI1 ,

• Γ, βJ ⊢ B1 ⊑ ∀γK
.A1[C

I1/α I1
1
], and

• Γ, βJ ⊢ ∀α I2
2
. ∀γK

.A2[C
I1/α I1

1
] ⊑ B2.

In this statement, the sequence α I2
2
corresponds to α I02

02
in the above informal description and α I1

1

includes the type variables that remain in βJ (i.e., α I01
01
) and those instantiated with some types in

C
I1 (i.e., α I03

03
). Type substitution [CI1/α I1

1
] replaces a type variable in α I01

01
with itself.

We also prove other lemmas such as weakening, substitution, canonical forms, and value in-
version. We omit their formal statements and proofs in this paper; the details can be found in the
supplementary material.

Now, we show progress and subject reduction. In what follows, the metavariable ∆ ranges over
typing contexts that consist of only type variable bindings. Note that the polymorphic type system
is not equipped with a mechanism to track effects, so the operations that are carried out may not
be handled.

Lemma 5 (Progress). If ∆ ⊢ M : A, then:

• M −→ M ′ for some M ′;

• M is a value; or

• M = E[#op(v)] for some E, op, and v such that op < E.

Lemma 6 (Subject reduction). Suppose that all operations satisfy the signature restriction.

(1) If ∆ ⊢ M1 : A and M1 ⇝ M2, then ∆ ⊢ M2 : A.

(2) If ∆ ⊢ M1 : A and M1 −→ M2, then ∆ ⊢ M2 : A.

We write −→∗ for the reflexive, transitive closure of −→ and M −̸→ to mean that there exists no
term M ′ such that M −→ M ′.

Theorem 1 (Type soundness). Suppose that all operations satisfy the signature restriction. If ∆ ⊢

M : A and M −→∗ M ′ and M ′ −̸→, then:

• M ′ is a value; or

• M ′
= E[#op(v)] for some E, op, and v such that op < E.

Proof. By progress (Lemma 5) and subject reduction (Lemma 6). □

Remark 1. It is natural to ask whether the signature restriction can be further relaxed. Consider
a type signature ∀α .A ֒→ B. A negative occurrence of α in B is problematic as get_id, which has
type signature ∀α . unit ֒→ α → α , is unsafe (see Section 2.3). A non-strictly positive occurrence
of α in A is also problematic, as the following example shows. Let us consider a calculus with int,
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bool, and sum types D1 + D2 for simplicity (we write inlM and inrM for injection into sum types).
Consider an operation op of the signature ∀α . ((α → int) → α) ֒→ α and let

v
def
= λf .λx .inr (f (λy.inl x)) : ((β → (β + int)) → int) → (β → (β + int))

M
def
= let g = #op(v) in case g 0 of inl z → z; inr z → E[g true] : int,

where E is an evaluation context such that x : bool+ int ⊢ E[x] : int and E[inr true] causes a run-time
error (it is easy to construct such E). It is not difficult to check that M has type int. In #op(v), the
type variable α bound by the type signature is instantiated with β → (β + int), and thus g has type
∀ β . β → (β + int). The type variable β is instantiated with int in g 0 and with bool in g true. Then
the counterexample is given by

handleM with return x → x; op(x, k) → k (x k) : int,

which is reduced to handle E[inr true]with return x → x; op(x, k) → k (x k) and causes an error.

5 AN EXTENSION OF λEFF

This section demonstrates the extensibility of the signature restriction. To this end, we extend λeff,
the polymorphic type system, and the signature restriction with products, sums, and lists and show
soundness of the extended polymorphic type system under the extended signature restriction. We
also provide a few examples of operations that satisfy the extended signature restriction.

5.1 Extended Language

The extension of λeff and the polymorphic type system is shown in Figure 5, in which the extended
part of the syntax is highlighted. Terms support: pairs; projections; injections; case expressions for
sums; the nil constant; cons expressions; case expressions for lists; and the fixed-point operator.
A case expression matching injections caseM of inl x → M1; inr y → M2 binds x in M1 and y in
M2, respectively; a case expression matching lists caseM of nil → M1; cons x → M2 binds x in M2;
the fixed-point operator fix f .λx .M binds f and x in M . Pairs, injections, and cons expressions are
values if their immediate subterms are also values. Types are extended with product types, sum
types, and list types. The extension of evaluation contexts follows that of terms. For the semantics,
the reduction rules for projections, case expressions, and the fixed-point operator are added. The
extension of the polymorphic type system is also straightforward. Type containment is extended
by adding six rules: the three rules on the left in Figure 5 are for compatibility and the three rules
on the right are for distributing ∀ over immediate subcomponent types. All of the additional typing
rules are standard and are thus omitted.

Remark 2. The rule (C_DSum) in Figure 5 may look peculiar or questionable. Actually, there
exists no term M in (implicitly typed) System F such that x :∀α . (A + B) ⊢ M : (∀α .A) + (∀α . B),
and thus the expected coercion function of (∀α . (A + B)) → (∀α .A) + (∀α . B) is not definable in
System F. A justification can be given by the following fact: for every closed value ⊢ v : ∀α . (A+B),
one has ⊢ v : (∀α .A) + (∀α . B). In fact ⊢ v : ∀α . (A + B) implies v = inl v ′ or inr v ′′. Assuming
the former for definiteness, α ⊢ v ′ : A and thus ⊢ v ′ : ∀α .A.

We also extend the polarity of the occurrences of a type variable. The polarity of the occurrences
in type variables, function types, and polymorphic types is given in Definition 3. We also define
the polarity in product, sum, and list types as follows.

Definition 5 (Polarity of type variable occurrence in product, sum, and list types). The

positive and negative occurrences of a type variable in a product, sum, and list type are defined as

follows.
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Terms M ::= x | c | λx .M | M1 M2 | #op(M) | handleM withH | (M1,M2) |

π1M | π2M | inlM | inrM | caseM of inl x → M1; inr y → M2 |

nil | consM | caseM of nil → M1; cons x → M2 | fix f .λx .M

Values v ::= c | λx .M | (v1, v2) | inl v | inr v | nil | cons v

Types A,B,C,D ::= α | ι | A → B | ∀α .A | A × B | A + B | A list

Evaluation contexts E ::= [] | EM2 | v1 E | #op(E) | handle EwithH | (E,M2) | (v1, E) |

π1E | π2E | inl E | inr E | case E of inl x → M1; inr y → M2 |

cons E | case E of nil → M1; cons x → M2

Reduction rules M1 ⇝ M2

π1(v1, v2)⇝ v1 π2(v1, v2)⇝ v2 fix f .λx .M ⇝ (λx .M)[fix f .λx .M/f ]

case inl v of inl x → M1; inr y → M2 ⇝ M1[v/x]

case inr v of inl x → M1; inr y → M2 ⇝ M2[v/y]

case nil of nil → M1; cons x → M2 ⇝ M1 case cons v of nil → M1; cons x → M2 ⇝ M2[v/x]

Type containment Γ ⊢ A ⊑ B

Γ ⊢ A1 ⊑ B1 Γ ⊢ A2 ⊑ B2

Γ ⊢ A1 × A2 ⊑ B1 × B2
C_Prod

⊢ Γ

Γ ⊢ ∀α .A × B ⊑ (∀α .A) × (∀α . B)
C_DProd

Γ ⊢ A1 ⊑ B1 Γ ⊢ A2 ⊑ B2

Γ ⊢ A1 + A2 ⊑ B1 + B2
C_Sum

⊢ Γ

Γ ⊢ ∀α .A + B ⊑ (∀α .A) + (∀α . B)
C_DSum

Γ ⊢ A ⊑ B

Γ ⊢ A list ⊑ B list
C_List

⊢ Γ

Γ ⊢ ∀α .A list ⊑ (∀α .A) list
C_DList

Fig. 5. The extended part.

• The positive (resp. negative) occurrences of α in A×B are the positive (resp. negative) occurrences

of α in A and those in B.

• The positive (resp. negative) occurrences of α in A+B are the positive (resp. negative) occurrences

of α in A and those in B.

• The positive (resp. negative) occurrences of α in A list are the positive (resp. negative) occurrences

of α in A.

The strictly positive occurrences of a type variable in a product, sum, and list type are defined as

follows.

• The strictly positive occurrences of α in A × B are the strictly positive occurrences of α in A and

those in B.

• The strictly positive occurrences of α in A + B are the strictly positive occurrences of α in A and

those in B.

• The strictly positive occurrences of α in A list are the strictly positive occurrences of α in A.

The signature restriction for the extended language is defined as in Definition 4 except that the
polarity of occurrences of type variables is defined by both of Definitions 3 and 5.
We can prove that the extended polymorphic type system satisfies type soundness under the

assumption that all operations conform to the signature restriction for the extended language in a
similar way as in Section 4.5; refer to the supplementary material for the proof.
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5.2 Examples

This section presents two operations that satisfy the signature restriction in the extended language.
The first example is select, which is an operation given in Section 2.1 for nondeterministic

computation. The operation has the type signature ∀α . α list ֒→ α , where the quantified type
variable α occurs only at a strictly positive position in the domain type α list and only at a positive
position in the codomain type α . Thus, select satisfies the signature restriction and, therefore, it
can be safely called by any polymorphic expression.

The second example is from Leijen [2017], who implemented parser combinators using algebraic
effects and handlers. The effect for parsing provides a basic operation satisfy which has the type
signature

∀α . (str → (α × str) + unit) ֒→ α

where str is the type of strings. This operation takes a parsing function of str → (α × str) + unit

such that: the parsing function returns the unit value if an input string does not conform to the
grammar; otherwise, it returns the parsing result of α and the unparsed, remaining string. The
operation satisfy would return the result of parsing if it succeeds. For example, we can give
satisfy a parsing function that returns the first character of a given inputÐand returns the unit
value if the input is the empty stringÐas follows:

#satisfy(λx .if (length x) > 0 then inl (first x, last x) else inr ()).

Here: length is a function of str → int that returns the length of a given string; first is of str → char

(char is the type of characters) that returns the first character of a given string; and last is of
str → str that returns the same string as an input except that it does not contain the first character
of the input. In this example, the call of satisfy is of the type char because the argument function is
of the type str → (char× str)+unit, which requires the quantified type variable α to be instantiated
to char. The operation satisfy satisfies the signature restriction clearly. The quantified type
variable α occurs only at a strictly positive position in the domain type str → (α × str) + unit of
the type signature and it also occurs only at a positive position in the codomain type α .

6 COOPERATION OF SAFE AND UNSAFE EFFECTS

This section describes an effect system for λexteff , which enables the type-safe cooperation of safe and
unsafe effects in a single program. Our effect system allows expressions to be polymorphic if their
evaluation performs only operations that satisfy the signature restriction. This capability makes it
possible for the effect system to incorporate value restrictionÐi.e., any value can be polymorphic.
The definition of signature restriction changes to take into account effect information on types.
Soundness of the effect system enables us to ensure that programs handle all the operations
performed at run time.
Our effect system is inspired by Kammar et al. [2013], where the effect system tracks involved

effect operations by their names together with their type signatures. There are, however, two
differences between Kammar et al.’s and our effect systems. The first difference comes from that of
the evaluation strategies the calculi adopt: the calculus of Kammar et al. is based on call-by-push-
value (CBPV) [Levy 2001] and we adopt call-by-value (CBV). This difference influences the design
of effect systems because the two strategies have different notions for the value representations
of suspended computations and effect systems have to manage the effects caused by their run.
CBPV views functions as (not suspended) computations, and thus Kammar et al. did not equip
function types with effect information; instead, they augmented the types of thunks (which are
value representations of suspended computations in CBPV) with it. By contrast, because CBV views
functions as values that represent suspended computations, our effect system equips function types
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Effects ϵ ::= {op1, · · · , opn}

Types A,B,C,D ::= α | ι | A →ϵ B | ∀α .A | A × B | A + B | A list

Type containment Γ ⊢ A ⊑ B

Γ ⊢ B1 ⊑ A1 Γ ⊢ A2 ⊑ B2

Γ ⊢ A1 →ϵ A2 ⊑ B1 →ϵ B2
C_FunEff

⊢ Γ α < ftv(A) SR (ϵ)

Γ ⊢ ∀α .A →ϵ B ⊑ A →ϵ ∀α . B
C_DFunEff · · ·

Term typing Γ ⊢ M : A | ϵ

Γ ⊢ M1 : A →ϵ
′
B | ϵ Γ ⊢ M2 : A | ϵ ϵ ′ ⊆ ϵ

Γ ⊢ M1 M2 : B | ϵ
Te_App

Γ,α ⊢ M : A | ϵ SR (ϵ)

Γ ⊢ M : ∀α .A | ϵ
Te_Gen

Γ ⊢ M : A | ϵ Γ ⊢ H : A | ϵ ⇒ B | ϵ ′

Γ ⊢ handleM withH : B | ϵ ′
Te_Handle

Γ, f :A →ϵ B, x :A ⊢ M : B | ϵ

Γ ⊢ fix f .λx .M : A →ϵ B | ϵ ′
Te_Fix

Γ ⊢ M : A | ϵ ′ ϵ ′ ⊆ ϵ

Γ ⊢ M : A | ϵ
Te_Weak · · ·

Handler typing Γ ⊢ H : A | ϵ ⇒ B | ϵ ′

Γ, x :A ⊢ M : B | ϵ ′ ϵ ⊆ ϵ ′

Γ ⊢ return x → M : A | ϵ ⇒ B | ϵ ′
THe_Return

Γ ⊢ H : A | ϵ ⇒ B | ϵ ′ ty (op) = ∀α .C ֒→ D Γ,α , x :C, k :D →ϵ
′
B ⊢ M : B | ϵ ′

Γ ⊢ H ; op(x, k) → M : A | ϵ ⊎ {op} ⇒ B | ϵ ′
THe_Op

Fig. 6. The effect system (excerpt).

with effect information. The second difference is that we include only operation names and not
their type signatures in the effect information. This is merely for simplifying the presentation but
it makes the calculus non-terminating [Kammar and Pretnar 2017].

6.1 Effect System

Figure 6 shows only the key part of the effect system; the full definition is found in the supplementary
material.
The type language includes effect information. Effects, ranged over by ϵ , are finite sets of

operations. Function types are augmented with effects that may be triggered in applying the
functions of those types.
Typing judgments also incorporate effects. A term typing judgment Γ ⊢ M : A | ϵ asserts that

M is a computation that produces a value of A possibly with effect ϵ . A handler typing judgment
Γ ⊢ H : A | ϵ ⇒ B | ϵ ′ asserts that H handles a computation that produces values of A possibly with
effect ϵ and the handling produces values of B possibly with effect ϵ ′. Type containment judgments
Γ ⊢ A ⊑ B and well-formedness judgments ⊢ Γ take the same forms as those of the polymorphic
type system in Section 4.

Most of the typing rules for terms are almost the same as those of the polymorphic type system
except that they take into account effect information. The rule (Te_App) shows how effects are
incorporated into the typing rules: the effect triggered by a term is determined by its subterms.
Besides, (Te_App) requires effect ϵ ′ triggered by a function to be a subset of the effect ϵ of the
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subterms. The rule (Te_Gen) is the key of the effect system, allowing a term to have a polymorphic
type if it triggers only safe effects. The safety of an effect ϵ is checked by the predicate SR (ϵ), which
asserts that any operation in ϵ satisfies the signature restriction for the type language in Figure 6;
we will formalize SR (ϵ) after explaining the type containment rules. A byproduct of adopting
(Te_Gen) is that the effect system incorporates the value restriction [Tofte 1990] successfully: it
allows values to have polymorphic types because the values perform no operation (thus, their
effects can be the empty set ∅) and SR (∅) obviously holds. The rule (Te_Fix) gives any effect ϵ ′

to the fixed-point operator. This means that the fixed-point operator can be viewed as a pure
computation because it only produces a lambda abstraction without triggering effects. The rule
(Te_Weak) weakens the effect information of a term.

There are two rules for deriving a handler typing judgment Γ ⊢ H : A | ϵ ⇒ B | ϵ ′. They state
that the effect of a handleświth expression installing H consists of the operations that the handled
expression may call but H does not handle and those that the return clause or some operation
clause of H may call. The effect ϵ ⊎ {op} is the same as ϵ ∪ {op} except that it requires op < ϵ .

Most of the type containment rules of the effect system are the same as those of the polymorphic
type system. The exception is the rules for function types (C_Fun) and (C_DFun), which are replaced
by (C_FunEff) and (C_DFunEff) to take into account effect information. The rule (C_DFunEff)
for deriving Γ ⊢ ∀α .A →ϵ B ⊑ A →ϵ

∀α . B has an addition conditional that SR (ϵ)must hold. This
condition originates from (Te_Gen). The rule (C_DFunEff) allows that, if a lambda abstraction
λx .M has a polymorphic type ∀α .A →ϵ B, the body M may also have another polymorphic type
∀α . B. In general, M may be a non-value term. In such a case, only (Te_Gen) justifies that M has a
polymorphic type; however, to apply (Te_Gen) the effect ϵ triggered by M has to meet SR (ϵ). This
is the reason why (C_DFunEff) requires that SR (ϵ) hold.
Now, we formalize the predicate SR (ϵ), which states that any operation in ϵ satisfies signature

restriction extended by effect information. In what follows, we suppose the notions of positive/neg-
ative/strictly positive occurrences of a type variable for the type language in Figure 6; they are
defined naturally as in Definitions 3 and 5. In addition, we can decide whether a type occurs at a
strictly positive position in a type by generalizing Definitions 3 and 5 from the occurrences of type
variables to those of types.

Definition 6 (Effects satisfying signature restriction). The predicate SR (ϵ) holds if and

only if, for any op ∈ ϵ such that ty (op) = ∀α .A ֒→ B:

• the occurrences of each type variable of α in A are only negative or strictly positive;

• the occurrences of each type variable of α in B are only positive; and

• for any function type C →ϵ
′
D occurring at a strictly positive position in A, if {α } ∩ ftv(D) , ∅,

then SR (ϵ ′).

The first and second conditions of Definition 6 are the same as those of Definition 4, signature
restriction without effect information. The third condition is necessary to apply (C_DFunEff).
The signature restriction in the polymorphic type system allows type variables α in type sig-
nature ∀α .A ֒→ B to occur at a strictly positive position in A (see Definition 4). As discussed
in Section 4.4.2, this capability originates from (C_DFun). In the effect system, the counterpart
(C_DFunEff) is applied to retain this capability, but (C_DFunEff) requires the effect of a function
type to satisfy SR. This is the reason why the signature restriction for the effect system imposes
the third condition. Note that, if type variables in α do not occur free in D (and they do not in C

either), then we can derive Γ ⊢ ∀α .C →ϵ
′
D ⊑ C →ϵ

′
∀α .D without (C_DFunEff). Thus, the

third condition does not require SR (ϵ ′) if {α } ∩ ftv(D) = ∅.
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We finally state soundness of the effect system, which ensures that a well-typed program handles
all the operations performed at run time. We prove it by progress and subject reduction; their
formal statements and proofs are found in the supplementary material.

Theorem 2 (Type soundness). If ∆ ⊢ M : A | ∅ and M −→∗ M ′ and M ′ −̸→, then M ′ is a value.

6.2 Example

The effect system allows us to use both safe and unsafe effects in a single program. For example, let
us consider the following program (which can be represented in λexteff ).

let f : ∀α . α →{get_id} α = λx. #get_id() x in

let g : ∀α . α →{get_id} α = #select([λx. x; f]) in

if g true then (g 2) + 1 else 0

This examplewould be rejected if wewere to enforce all operations to follow the signature restriction
as in Section 4 because it uses the unsafe operation get_id. By contrast, the effect system accepts
it because: the polymorphic expression λx. #get_id() x calls no operation and #select([λx.

x; f]) calls only select, which satisfies the signature restriction, during the evaluation; therefore,
they can have the polymorphic type ∀α . α →{get_id} α by (Te_Gen). Note that the effect system
still rejects the counterexample given in Section 2.3 because it disallows polymorphic expressions
to call operations that do not satisfy the signature restriction, such as get_id.

7 RELATED WORK

7.1 Restriction for the Use of Effects in Polymorphic Type Assignment

The problem that type safety is broken in naively combining polymorphic effects and polymorphic
type assignment was initially discovered in a language with polymorphic references [Gordon et al.
1979] and later in one with polymorphic control operators [Harper and Lillibridge 1991, 1993b].
Researchers have developed many approaches to reconcile these conflicting features thus far [Appel
and MacQueen 1991; Asai and Kameyama 2007; Garrigue 2004; Hoang et al. 1993; Leroy and Weis
1991; Sekiyama and Igarashi 2019; Tofte 1990; Wright 1995].

A major direction shared among them is to prevent the generalization of type variables assigned
to an expression if the type variables are used to instantiate polymorphic effects triggered by the
expression. Leroy and Weis [1991] called such type variables dangerous. The value restriction [Tofte
1990; Wright 1995], which allows only syntactic values to be polymorphic, is justified by this idea
because these values trigger no effect and therefore no dangerous type variable exists. Similarly,
Asai and Kameyama [2007] and Leijen [2017] allowed only observationally pure expressions to be
polymorphic. Tofte [1990] proposed another approach that classifies type variables into applicative
ones, which cannot be used to instantiate effects, and imperative ones, which may be used, and
allows the generalization of only applicative type variables. Weak polymorphism [Appel and
MacQueen 1991; Hoang et al. 1993] extends this idea by assigning a type variable the number of
function applications necessary to trigger effects instantiated with the type variable. If the numbers
assigned to type variables are positive, effects instantiated with the type variables are not triggered;
therefore, they are not dangerous and can be generalized safely. Leroy and Weis [1991] prevented
the generalization of dangerous type variables by making the type information of free variables in
closures accessible. These approaches focused on a specific effect (especially, the ML-style reference
effect) basically, but they can be applied to other effects as well. We prevent the generalization
of dangerous type variables by closing the type arguments of an operation call at run time, as
discussed in Section 2.4. This type transformation is not always acceptable, but we find that it is if
the operation satisfies the signature restriction.
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Garrigue [2004] proposed the relaxed value restriction, which allows the generalization of type
variables assigned to an expression if the type variables occur only at positive positions in the
type of the expression. The polarity condition on generalized type variables makes it possible to
use the empty type as a surrogate of the type variables and, as a result, prevents instantiating
effects with the type variables. The relaxed value restriction is similar to signature restriction in
that both utilize the polarity of type variables. In fact, the strong signature restriction, introduced
in Section 2.4, is explainable by using the empty type zero and subtyping <: for it (i.e., deeming
zero a subtype of any type) as in the relaxed value restriction. First, let us recall the key idea of
the strong signature restriction: it is to rewrite an operation call Λβ1 . . . βn . #op{C}(v) for op :
∀α .A ֒→ B to Λβ1 . . . βn . #op{∀β1 . . . βn .C}(v) to close the type argument C and to use provable
type containment judgments A[C/α] ⊑ A[∀β1 . . . βn .C/α] and B[∀β1 . . . βn .C/α] ⊑ B[C/α] for
typing the latter term. We can rephrase this idea with zero, instead of ∀β1 . . . βn .C , as follows: the
operation call is rewritten to Λβ1 . . . βn . #op{zero}(v) and this term can be typed by using the
subtyping judgments A[C/α] <: A[zero/α] and B[zero/α] <: B[C/α], which are provable owing
to the polarity condition of the strong signature restriction (i.e., α occurs only negatively in A

and only positively in B). However, this argument does not extend to the (non-strong) signature
restriction because it allows the bound type variable α to occur at strictly positive positions in the
domain type A and then A[C/α] <: A[zero/α] no longer holds. Thus, our technical contributions
include the findings that the type argument C can be closed by quantifying it and that A[C/α] ⊑
A[∀β1 . . . βn .C/α] is provable by type containment, where the distributive law plays a key role.
This changeÐwhich may seem minor perhapsÐrenders the signature restriction quite permissive.

Sekiyama and Igarashi [2019] followed another line of research: they restricted the definitions of
effects instead of their usage. They also employed algebraic effects and handlers to accommodate
effect definitions in a programmable way and provided a type system that accepts only effects
such that programs do not get stuck even if they are instantiated with dangerous type variables.
However, a problem with their work is that all effects have to be safe for any usage and a program
cannot use both safe and unsafe effects. Our work, by contrast, provides an effect system that allows
the use of both operations that satisfy and do not satisfy the signature restrictionÐinasmuch as
they are performed appropriately. The effect system utilizes the benefit of the signature restriction
that it only depends on the type interfaces of effects.
Effect systems have been used to safely introduce effects in polymorphic type assignment thus

far. Asai and Kameyama [2007] and Leijen [2017] utilized effect systems for the control operators
shift/reset [Danvy and Filinski 1990] and algebraic effects and handlers to ensure that polymorphic
expressions are observationally pure, respectively. Kammar and Pretnar [2017] proposed an effect
system for parameterized algebraic effects, which are declared with type parameters and invoked
with type arguments. Unlike polymorphic effects, parameterized effects invoked with different
type arguments are deemed different. Kammar and Pretnar utilized the effect system to prevent the
generalization of the type variables involved by type arguments of parameterized effects.

7.2 User-Defined Effects

Our work employs algebraic effects and handlers as a technical development to describe a variety
of effects. Algebraic effects were originally proposed as a denotational framework to describe the
meaning of an effect by separating the interface of an effect, which is given by a set of operations,
and its interpretation, which is given by the equational theory over the operations [Plotkin and
Power 2003]. Plotkin and Pretnar [2009, 2013] introduced effect handlers in order to represent the
semantics of exception handling in an equational theory. The idea of separating an effect interface
and its interpretation makes it possible to handle user-defined effects in a modular way and
encourages the emergence of languages equipped with algebraic effect handlers, such as Eff [Bauer
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and Pretnar 2015], Koka [Leijen 2017], Frank [Lindley et al. 2017], Multicore OCaml [Dolan et al.
2017]. We also utilize the separation and restrict only effect interfaces in order to achieve type
safety in polymorphic type assignment.

Another approach to user-defined effects is to use control operators, which enable programmers
to make access to continuations. Many control operators have been developed thus farÐe.g.,
call/cc [Clinger et al. 1985], control/prompt [Felleisen 1988], shift/reset [Danvy and Filinski 1990],
fcontrol/run [Sitaram 1993], and cupto/prompt [Gunter et al. 1995]. These operators are powerful
and generic, but, in return for that, it is unsafe to naively combine them with polymorphic type
assignment [Harper and Lillibridge 1993b]. They do not provide a means to assign individual effects
fine-grained type interfaces. Thus, it is not clear how to apply the idea of signature restriction for
the effects implemented by control operators.
Monads can also express the interpretation of an effect in a denotational manner [Moggi 1991]

and have been used as a long-established, programmable means for user-defined effects [Peyton
Jones and Wadler 1993; Wadler 1992]. Filinski [2010] extracted the essence of monadic effects and
proposed a language equipped with a type system and an operation semantics for them. We expect
our idea of restriction on effect interfaces to be applicable to monadic effects as well, but for that
we would first need to consider how to introduce polymorphic effects into a monadic language
because Filinski’s language supports parametric effects but not polymorphic effects.

8 CONCLUSION

This work addresses a classic problem with polymorphic effects in polymorphic type assignment.
Our key idea is to restrict the type interfaces of effects. We formalize our idea with polymorphic
algebraic effects and handlers, propose the signature restriction, which restricts the type signa-
tures of operations by the polarity of occurrences of quantified type variables, and prove that a
polymorphic type system is sound if all operations satisfy the signature restriction. We also give
an effect system in which operations performed by polymorphic expressions have to satisfy the
signature restriction but those performed by monomorphic expressions do not have. This effect
system enables us to use both operations that satisfy and do not satisfy the signature restriction in
a single program safely.
There are several directions for future work. First, we are interested in analyzing the signature

restriction from a more semantic perspective. For example, the semantics of a language with control
effects is often given by transformation to continuation-passing style (CPS). It would be interesting
to study CPS transformation for implicit polymorphism by taking the signature restriction into
account. Another direction would be to apply the signature restriction to evaluation strategies
other than call-by-value. Harper and Lillibridge [1993a] showed that polymorphic type assignment
and the polymorphic version of the control operator call/cc can be reconciled safely in call-by-name
at the cost of expressivity and by changing the timing of type instantiation slightly. However, it is
unclearÐand we would imagine impossibleÐwhether similar reconcilement is achievable in other
strategies such as call-by-need and call-by-push-value. Exporting the idea of signature restriction
to other evaluation strategies would be beneficial also for testing the robustness and developing a
more in-depth understanding of signature restriction.
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