Supplementary Material for “On Higher-Order Model Checking of
Effectful Answer-Type-Polymorphic Programs”

Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno
August 22, 2025

Contents
[I—_Outline

|2.2 HEPCF%TM: PCF unifying Answer-Type Modification and GEPCF restrictions| . . . . . . .. ... ..

[2.2.1  dyntax|. . . . ..
2.2.2  Semanticsl . . . . . e e e e e e e

[2.2.5  Higher-Order Model Checkingl. . . . . . . . ... ... o oo o
2.3 EPCF: PCF with Algebraic Effects] . . . . . . . . . . . . .

|2.4 Selective CPS Transformation from HEPCFET'VI to EPCF| .........................
[2.4.1 Auxiliary Definitions for Proofs| . . . . . . . . . . . . . .. ...

B Proofs|

3.1 Type Soundness of HEPCFA™| . . . .00 000 00
3.2 Type Soundness of EPCH| . . . . . . . . o
8.3 Type Preservation| . . . . . . . . . e
8.4  Semantics Preservation|. . . . . . . . . Lo
8.5 Expressivity] . . . . .o e

List of Theorems

Definition (Tree Constructor Signatures)| . . . . . . . . . .. ... .
Definition (Finitely Branching Infinite Trees)| . . . . . . . . . . .. . .. .
Convention| . . . . . . . .
Definition (Free variables and substitution)| . . . . . .. ... ... o L
Assumption] . . . ..o e e e e
Definition (Top-Level Operation Signatures)[. . . . . . . . . . ... ... . . . .. ...,
Definition (Ground Types)|. . . . . . . . . o . e
Definition (Semantics)| . . . . . . . . . L
Definition (Multi-step evaluation)|. . . . . . . . .. .. L

(

(

Definition (Infinite Evaluation)| . . . . . . . . . . . . ..
Definition (Nonreducible terms)|. . . . . . . . . . . L

oo S =] e —




10 Definition (Domains of Typing Contexts)| . . . . . . . . .. . ... L 4
11 Definition (Typing Contexts as Functions)| . . . . . . . . . .. . . . o 5
12 Definition (Pure and Impure Operation Signatures)|. . . . . . . . . . . . ... ... .. 5
13 Definition (Subtyping)| . . . . . . . . . 5
14 Definition (Typing)[. . . . . . . . 5
15 Definition (Effect Trees for HEPCFA'™ Computations)| . . . . ... ... ... ... ... ... ... 5
16  Definition (Positive Boolean Formulas)[. . . . . . . . .. ... ... L L o 5
17 Definition (POSIIONS OF TT€ES)| - « « + « v v o e e e e e e e 6
18  Definition (Alternating Parity Tree Automata)| . . . . . .. . . ... ... ... L. 6
19  Definition (Higher-Order Model Checking Problem for EPCF)| . . . . . . ... ... ... .. .. ... 6
1 Example] . . . . 7
R Example. . . ... 8
EZO Definition (Ground Types)|. . . . . . . . . . . 10
21  Definition (Semantics) . . . . . . . . . L 10
22 Definition (Multi-step evaluation)|. . . . . . . . . . .. . L 10
23 Definition (Infinite Evaluation)| . . . . . . . . ... . Lo 10
24 Definition (Nonreducible terms)|. . . . . . . . ... Lo 10
25  Definition (Typingjj .............................................. 10
6 Definition (Effect Trees for EPCF COmMPULALIONS)| . « - « « « o v o oo e e e 11
27 Definition (Program COMLEXES)| . - - - - -« « o oo e e 11
28  Definition (Contextual Equivalence)l . . . . . . . . . ... . L 11
29  Definition (Contextual Improvement)|. . . . . . . . . ... L L o 12
30 Definition (Static Functions and Applications)| . . . .. . ... ... ... ... . .. 13
31  Definition (Domains of Operation Signatures)| . . . . . . . . . . . . .. 13
|:2 Assumption (Order of Operations)| . . . . . . . . . .. . .. 13

.................................................... 13
32  Definition (CPS Transformation of Types, Values, and Terms)|. . . . . . . . . . ... ... ... ... 13
33 Definition (Evaluation Contexts)| . . . . . . . . . .. .. 14
34 Definition (Full Sn Monadic Reduction)| . . . . . . . .. .. ... 14
35 Definition (Value Sequence Split)| . . . . . . . . . .. L 14
1 Lemma (Weakening)| . . . . . . . . . . . o 18
2 Lemma (Value Substitution)|. . . . . . . . . . ... L 18
3 Lemma (Inversion of Subtyping)| . . . . . . . . . .. 18
4 Lemma (Reflexivity of Subtyping)| . . . . . . . . . . 18
|:5 Lemma (Transitivity of Subtyping)| . . . . . . . . . . . . 18
Ig Lemma (Asymmetry of Subtyping)| . . . . . . . . . .. 19
7  Lemma (Canonical Forms)|. . . . . . . . . .. 20
8 Lemma (Inversion of Operation Calls)| . . . . . . .. ... ... . 20
9 Lemma (Progress)| . . . . . . . ... 20
10 Lemma (Inversion of Return Values)| . . . . . . . . . . . ... 22
11 Lemma (Strengthening Typing Contexts)| . . . . . . . . . . . . . . o 22
12 Lemma (Inversion of Lambda Abstractions)| . . . . . . . . ... ... L o 22
13 Lemma (Inversion of Fixed Points)| . . . . . . . . .. . .. L 22
14 Lemma (Subject Reduction)[. . . . . . . . ... L 22
1 Theorem (Type Soundness)| . . . . . . . . .. e 30
15 Lemma (Weakening)| . . . . . . . . . .. 30
16 Lemma (Value Substitution)|. . . . . . . . . .. L 30
17 Lemma (Canonical FOITNS)|. « . . . o o o oot oo e e 31
18 Lemma (Progress)| . . . . . . . . e 31
19  Lemma (Subject Reduction)[. . . . . . . . ... . 31
20 Lemma (Asymmetry of Pure Signatures)|. . . . . . . . . .. ... 33
36  Definition (Partial Order on EPCF Typing Contexts)| . . . . . . . . . . . . ... ... ... .. .... 33
37 Definition (Lyping of Bffect Handlers)| . . . . . . o o o oo i oo e e 33
21 Lemma (Typing Applications)|. . . . . . . . . . . . 33




38  Definition (Types of the Static Lambda Calculus)|. . . . . . ... ... . ... ... ... ..., 34

22 Lemma (CPS Transformation of Subtyping)[ . . . . . . .. ... ... oL 34
P3~ Lemma (Type Preservation of the CPS Transformation)| . . . . . . . ... ... ... ... ...... 40
24  Lemma (Well-Definedness and Closedness of CPS Transformation on Subtyping Derivation)| . . . . . 47
25 Lemma (Well-Definedness of CPS Transformation on Typing Derivation)[. . . . . . . ... ... ... 47
26 Lemma (CPS Transformation of Reflexive Subtyping)| . . . . . . ... ... .. ... ... .. .... 47
27 Lemma (CPS Transformation of Subtyping on Final Answer Types)| . . . . . . ... ... ... ... 48
28 Lemma (CPS Transformation of Operation Signature Subtyping)| . . . . . . . . ... ... ... ... 49
P9 Lemma (Evaluation Under Evaluation COMGEXES)| - . - - - « oo ooe e e e 49
30 Lemma (Weakening of CPS Transformation)| . . . . ... ... ... ... ... ... ....... 49
31 Lemma (Substitution is a Homomorphism)| . . . . . . ... ... ... . 49
32 Lemma (Handler and Continuation Substitution)| . . . . . . ... ... .. ... ... ... ... 53
33  Lemma (CPS Transformation of Lambda Function Applications)| . . . . . . ... ... .. ... ... 53
34 Lemma (CPS Transformation of Recursive Function Application)| . . . . . . . . ... ... ... ... 56
35 Lemma (CPS Transformation of Case Matches)| . . . . . . . ... ... .. . .. ... .... 58
36 Lemma (Rolling Up Final Answer Types)| . . . . . . . .. .. 59
37 Lemma (SInulation up to RedUCION)| . . .« o . o vt oo et e e 61
2 Theorem (Contextual Equivalence of Evaluation)| . . . . . . . ... ... ... ... ... .. .... 77
3 Theorem (Contextual Improvement of Full 57 Monadic Reduction)[ . . . . . .. ... ... ... ... 7
38 Lemma (Evaluation in HEPCFA™ is Deterministic)[. . . . . . . .. ... ... ... ... ....... 78

39 Lemma
40 Lemma
41 Lemma
42  Lemma
43 Lemma
44  Lemma
45  Lemma
46 Lemma

Well-Definedness of HEPCFR'™ Effect Trees)| . . . . ... ... ... ... .......... 78
Evaluation in EPCF is Deterministic)|. . . . . . . .. . ... ... .. .. ... 78
Well-Definedness of EPCF Effect Trees)| . . . . . .. .. ... ... ... .. ..... 78
Evaluation Preserves Effect Trees in EPCF)| . . . . . .. . ... ... ... .. ... ... 79
Strengthening Typing in EPCF)[. . . . . . . . . . ... ... . 79
Subject Reduction for Full S Monadic Reduction)| . . . . . . . ... ... ... .. ..... 79
Contextual Equivalence of Evaluation Composition)| . . . . . ... ... ... ... ..... 80
Simulation of Divergence)| . . . . . . . . ... L L 80

- — 10— —J——1—

47 Lemma (CPS Transformation of Ground Values)| . . . . . . ... oo i 80
48  Lemma (Simulation of Termination at Values)[. . . . . . . ... ... .. o000 80
49  Lemma (Simulation of Termination at Operation Calls)| . . . . . . ... ... ... ... ... .... 81
4 Theorem (Preservation of Effect Trees)[. . . . . . . . .. . .. .. . o 82
50 Lemma (GEPCF C HEPCFAT™)[ . . . . . . . . 83
51 Lemma (HEPCFAT™M CHEPCFA™) . . . . . . .. . 83
5  Theorem (GEPCF U HEPCFA™ C HEPCFA™)[. . . . . .. . ... o oo . 84
1 Outline

This is the supplementary material of the paper titled “On Higher-Order Model Checking of Effectful Answer-
Type-Polymorphic Programs” published at OOPSLA’25, including all the definitions, lemmas, theorems, and proofs
mentioned in the paper.

This supplementary material formalizes the subtyping extension in the paper, which subsumes HEPCFA™
presented in the paper. The definition and examples of HOMC and alternating parity tree automata (APTAs) are
found in Section 2.2

2 Definition
2.1 Trees

Definition 1 (Tree Constructor Signatures). A tree constructor signature S is a map from tree constructors, ranged
over by s, to natural numbers that represent the arities of the constructors. We write S(s) for the arity of s assigned
by S.



Definition 2 (Finitely Branching Infinite Trees). The set Treeg of finitely branching (possibly) infinite trees
generated by a tree constructor signature S is defined coinductively by the following grammar (where s is in the
domain of S):

t = L ‘ S(t1,~~~ 7tS(s)) .
2.2 HEPCFA™: PCF unifying Answer-Type Modification and GEPCF restrictions
2.2.1 Syntax

Variables =z,y,z, f, h,k Algebraic operations o,¢

Base types B = bool | unit|---
Enum types E = 1]|2]--
Value types T,U = B|E|T—>C
Computation types C,D = Xp>T/A
Operation signatures by n= {o;: TPY ~ Tart ) A }isisn
Answer type modifications A = 016G =Gy
Base constants c = true|false| ()] --
Enum constants € = 1]2]---
Values V, W = z|cle|re.M|fixe.V
Terms L,M,N := retunV |lete=MinN |V W |case(V;M,---,M,) |
o(V;z. M) | with H handle M
Handlers H m= {retunz — LyW{o;(z;; ki) — M PSSy {q(y;) — NJisisn
Typing contexts r w= Q| T,x: T

Convention 1. We write I'1, 'y for the concatenation of I'y and I';. Given a computation type C =X > T/ A,
we write C.X, C.T, and C.A for the operation signature ¥, value type T, and answer type modification (ATM)
A, respectively.

Definition 3 (Free variables and substitution). The set fu(M) of free variables in a term M is defined in a
standard manner. Value substitution M [V /x] and W[V /x] of V for  in M and W, respectively, are defined in a
capture-avoiding manner as usual.

Assumption 1. We assume a function ty that assigns a base type ty(c¢) to every constant c.

Definition 4 (Top-Level Operation Signatures). An operation signature X is top-level if, for any o : TP ~~
T* /A €%, TP* = B for some B, T = E for some E, and A = [.

Definition 5 (Ground Types). A type T is ground if and only if 7= B for some B or T = E for some E.

2.2.2 Semantics

Definition 6 (Semantics). The evaluation relation M; — M is the smallest relation satisfying the rules in
Figure

Definition 7 (Multi-step evaluation). We write M —™ N if and only if there exist some terms Lg, - - , L, such
that: M = Lo; Vi <n. L; — L;jy1; and L, = N. We write M —* N if and only if M —"™ N for some n € N.

Definition 8 (Infinite Evaluation). We write M —* if and only if Vn € N.IM’'. M —™ M.

Definition 9 (Nonreducible terms). We write M —% if and only if there is no M’ such that M — M’.

2.2.3 Type System

Definition 10 (Domains of Typing Contexts). Given a typing context I', its domain dom(T") is defined by induction
on I' as follows.
dom (D) L]

dom(T,z: T) e {z} U dom(T)



Evaluation rules M, — My
A M)V — M[V/z] HE_BETA
(fixe. VW — Vlfixae.V/z] W HE_F1x
case(i; My,--- , M) — M; (if 0 < i <n) HE_CASE
let z = return V1 n M2 — MQ[Vl/.T] HE_LETV
letz =o(Vi;y. My)inMy — o(Vyyy.letx = My in Ms) (if y & fo(Ma)) HE_LETOP
with H handlereturn V.. —  M|[V /z] (i returna: — M € H) HE_HANDLEV
with H handleo(V;y. M) — N[V /z][\y.with H handle M /k| (if o(z;k) - N € H) HE_HANDLEOP
with H handleo(V;y. M) — lety = N[V /z]inwith H handle M  (if U(x) — NeH) HE_HANDLEOPTAIL
M= n HE_LETE M—n HE_H E
letz = MinL — letz = NinL — " with H handle M — with [ handle N~ 00

Figure 1: Semantics.

Definition 11 (Typing Contexts as Functions). We view I" as a function that maps a variable to a type. T'(x) = T
ifand only if x : T € T.

Definition 12 (Pure and Impure Operation Signatures). Given an operation signature ¥ = {o; : TP* ~

Tiari/ciini = Ciﬁn}lgigm W {gi . Uiari ~ Uiari/D}lgign, m(E) and D(E) denote {Ui . Tipar — Tiari/ciini =
Cfin}isism and {g; : UM ~ UM /O}SIS" ] respectively.

Definition 13 (Subtyping). The subtyping (with judgments of the form T) <: T, C; <: Ca, X1 <: Xa, and
Ay <: As) is the smallest relation satisfying the rules in Figure

Definition 14 (Typing). The typing of values (with judgments of the form I' - V' : T') and terms (with judgments
of the form T'+ M : C) is the smallest relation satisfying the rules in Figure

2.2.4 Effect Trees

Definition 15 (Effect Trees for HEPCF’ET'VI Computations). Given an operation signature X and a type T, the
tree constructor signature S¥ is defined as follows:

SZ(o) ot VYVo:B~n/AeX
SZ(return V) L VV such that 0+ V : T
S%(c) L) Ve

Given a term M such that O = M : X > T/ A, the effect tree of M, denoted by ET (M), is a tree in Treegy defined
by the following (possibly infinite) process:

o if M —%, then ET(M) = L;
o if M —* return V, then ET(M) = return V; and
e if M —* o(c;z.N)and o : B~>n/A €3, then ET(M) =o(¢, ET(N[1/x]),--- ,ET(N[n/xz])).

2.2.5 Higher-Order Model Checking

Definition. To define higher-order model checking for HEPCF%TM7 we first introduce alternating parity tree au-
tomata (APTAs) along with auxiliary notions.

Definition 16 (Positive Boolean Formulas). The set BT (X) of positive Boolean formulas over a finite set X is
defined as follows:

B+(X) 560 ::=tt ‘ fF|X|91\/92 | 01 N 62
where x € X. A subset Y of X satisfies § € BT (X) if 6 holds under the interpretation that assigns true to the
elements in Y and false to the elements in Y\ X.



Subtyping rules for value types
To<:T1 C<:Cy

HS_BASE HS_Cons HS_FunN
B<: B E<E T T, O < Ts— Cs

Subtyping rules for computation types

Yo<:X Ty <:Ty A <:Ay Ay 75 0= D(Zl) <: D(Eg)

HS_Comp
211>T1/A1 <222DT2/A2
Subtyping rules for answer type modifications

C1 <: Gy Cint <. oimi ¢fin <. Ofin

HS_AnsBox ————— HS_ANSEwMB = — HS_ANsMoD
O<:0 O<:C = Gy Cini = COfin < Cint = Cfin
Subtyping rules for operation signatures
Vie[l,n]. TP <: TPY A T <0 T2 A Ay < Ay
[ ] 24 11 11 27 1 2 HS Siq

{o: T~ T JA PSSy Y < {oy : Th ~> TE8 /A, J1<isn
Figure 2: Subtyping.

Definition 17 (Positions of Trees). The set dom(t) of the positions of a tree t generated by a tree constructor
signature S with maximal arity n is a set of finite sequences over alphabet {1,--- ,n} defined as dom(L) = {e}
and dom(s(ty, -+ ,tg(s))) = {e} U Uie{l,---,S(s)}{i'p | p € dom(t;)}, where € is the empty sequence and - is the
concatenation of finite sequences. The node t(p) of a tree t at a position p € dom(t) is defined by L(e) = L,
s(t1, -+ ,tgs))(€) = s, and s(t1,- -+ ,t5(5))(i-p) = ti(p).

Definition 18 (Alternating Parity Tree Automata). An alternating parity tree automaton (APTA) over a tree
constructor signature S is a tuple A = (5, Q, d, qr, ) satisfying the following:

e () is a finite set of states with ¢; € @ as the initial state.

e { is a transition function, mapping (g, s) € Q x dom(S) to a formula in B*({1,---,5(s)} x Q).
e (2 is a priority function, mapping states in @) to natural numbers.

A run-tree of an APTA A= (5,Q,9,q5,Q) over a tree t € Treeg is a tree satisfying the following:
e Every node is labeled with some (p, q) € dom(t) X Q.

e The root node is (¢, qr).

e For each node (p, q), there is a set X C {1,---,S5(¢t(p))} x @ satisfying the positive Boolean formula d(q,¢(p))
and, for each (i,¢') € X, the node (p-1,¢’) is a child of the node (p, q).

A tree t € Treeg is accepted by an APTA A if there exists a run-tree of A over ¢ such that every infinite path
(6,q1), (P1,91), (p2,q2) - - - of the run-tree meets the parity condition, that is, the largest priority infinitely occurring
in Q(qr), 2q1),Qqz2), - is even.

Definition 19 (Higher-Order Model Checking Problem for EPCF). Given an APTA and a term M such that
0F M :X> T/ A for some top-level operation signature ¥ and ground type 7T, is ET(M) accepted by the APTA?



Typing rules for values [T'F V : T

—  _HT.VA —__HTC O<i=" yrope
Tre: D@ % TFe: ty(e) 008 Thin o oONsT
Fe:THFM:C HT.ABs e:T—>CFHV:T—C HT.Fix '-=v:T T< U HT.SUBV
T'FXeM:T— C - I'kfixe.V:T— C - r-v:U N
Typing rules for terms ['FM:C
r-v.rT HT_RETURN '-M:C C<:D HT_SUBC
Phretun VX T/0 r+-M:D -
'tM :X>oTy/0 Tyx:ThEM:X>Ty/ A
1 1/ yx Iy 2 2/ HT LeT

FFIetx:MlinMQ:ZDTg/A
FI—M1:ZI>T1/C=>CHH F7.'L':T1|_M2:2|>T2/Cini:>0

- HT_LETATM
TFlete = MyinMy : S o Ty ) O = Ofn =t
PEVieT5C ThVaiT DEVin YielnlDFM:C o0
vy Vy:C - It case(V; My, ,M,): C N

S50 TP v T8 /0 T VTP Tg: Tk M:SpT/A
'Fo(Via.M):X>T/A
$ 350 TP ws T/ Qi O DRV TR T TR MY T/ C = O
'to(Viz.M):X>T/C = Cfin
H = {returnz — L} W {o;(yi; ki) — M55 {g(z) — N;}Lsisn
N = {Ui . Tipar I Tiari/ Ciini = szﬁn}lgigm ] {§i . Uipar — Uiari/D}lgign
PEM:SsT/CM= ¢ T z:TFL:Cn
Vie [Lm] T,y TP k; : T — Ok M, : Cfin
Vi€ [1,n]. L,z UPY b N;: 20 Up /O
Ve e (O =" oy vie Ln). 0.5 < %,
I' - with H handle M : Cfin

HT_Op

HT_OrPATM

HT_HANDLE

Figure 3: Type System.

Examples.

Example 1. Let ¥ be an operation signature for Set, Get, and Raise, that is,

5 4 {Set : bool ~+ 1/, Get : unit ~ 2 /[, Raise : unit ~ 0/} .

Let Asgr def (SZ.,Q,6,q1,{g— 0] g€ Q}) where Q = {q1, ¢2, Gtrue, Graise } and ¢ is defined as

* 0(gi,Set) = ((1, grrue) A (2,01)) V (1, graise) A (2, 02)),
e 0(q;,Get) =(i+1,q),

e §(q;, Raise) = ff,

e (g, return v) = d(gp, b) = tt and 0(gp, V') = ff

for each i € {1,2}, b € {true, false}, and b’ € {true, false} \ {0} (in the other cases, § returns ff).
The states ¢; and g2 express the program states where the global reference manipulated by Set and Get refers
to true and false, respectively. Based on this idea, the transition rules for Set and Get encode the semantics of



mutable state in the APTA: if Set is called with the parameter true (resp. false), the continuation is executed under
the state g1 (resp. ¢2); if Get is called in the state ¢; (resp. ¢2), the continuation supposing the return value of
Get to be 1 (resp. 2) is chosen. The conjunct (1, giue) (resp. (1, grase)) in the transition of Set requires that the
parameter of Set be true (resp. false) to set the state of the continuation to g1 (resp. ¢2).

The transition rule for Raise expresses the specification that Raise must not be called. This is indicated by the
fact that we cannot make a run-tree of Asgr over a tree t that involves a path where a Raise node is reachable and
Set and Get interact in accordance with the semantics of mutable state. If there exists such a run-tree, it would
contain a node (p, g;) for some p € dom(¢t) and ¢ € {1,2} such that t(p) = Raise. By the definition of run-trees,
there should be some X that satisfies the positive Boolean formula 6(g;, Raise), but there is no such X because
0(gi, Raise) = ff. Thus, there is no run-tree of Aggr over the tree ¢, which means that the tree t is not accepted
by Ascr.

Example 2. Consider verifying the use of global file manipulation operations Open that opens the file, Read
that reads the contents of the opened file, EOF that checks whether there remains readable data, and Close that
closes the opened file. The use of these operations is valid if their call sequences conform to the regular expression
(Open (EOF* Read)* Close)*. Let ¥ be an operation signature for the file operations defined as:

5y def {Open : unit ~ 1/0,Read : unit ~ 1 /0, EOF : unit ~ 2 /[0, Close : unit ~» 1 /O} .

Here, we assume simpler file operations than the operations in practice (as in POSIX): Open does not take a file
path nor return a file descriptor to identify the opened file object (thus, the file to be manipulated is predetermined)
and Read only returns the enum constant 1. Nevertheless, it is still nontrivial to verify the valid use of the file
operations even for this simplified version. We can treat more practical file operations, such as ones that can
manipulate multiple files, by adapting the techniques in the previous work [2].

An APTA Agje that only accepts effect trees where file operations are used in a valid manner is given by
(SZ,{q1,q2, 43}, 0, q1, {q1 — 2,q2 — 1,3 — 1}) where the transition function § is defined by

6(q1,Open) = (2,¢2) and (g2, Open) = d(g3, Open) = ff,

5(g3, Read) = (2, ¢2) and (g1, Read) = §(¢2, Read) = ff,

5(q2, EOF) = 6(q3, EOF) = (2,¢2) A (3,¢3) and §(¢q1, EOF) = ff,

(
(

e (g2, Close) = 6(gs, Close) = (2, ¢1) and d(¢1, Close) = ff,

e 0(qq,returnv) = tt and §(qq, return v) = §(gs, return v) = ff, and
(

° ) q1, C) = 5((]% C) = 6(Q3, C) =tt

(the type T is of HEPCF’S'-'VI terms to be verified). The state ¢; and g2 represent that the file is closed and opened,

respectively, and g3 represents the state where it is ensured that some data is readable. Thus, a call to Open in

the state g1, a call to Read in g3, and a call to EOF or Close in ¢y or ¢3 are valid, whereas a call to Open in

g2 or g3, a call to Read in ¢; or ¢s, and a call to EOF or Close in ¢; are invalid. The transition of EOF at the

state ¢o or q3 expresses that EOF returns 1 if there remains no readable data and, otherwise, 2. The transition of

return v at go or g3 means that a term to be verified must not terminate in the state that the file are left open.
For example, a term

Open((); . EOF((); x. case(x; Close((); - return ()), Read((); -. Close((); -. return ())))))

generates the effect tree t as

0 0 0
Open /EOF Close 411”1 0,
0 0
Read ZC /return 0

lose

and a run-tree over ¢t can be given as:



(6,(]1) - (27qQ) Y (2'27qQ) - (2'2'2’(11)
(2-3,q3) —(2-3-2,¢2) — (2:3-2-2,q1)

For a term Open((); .. EOF((); .. Read((); -. Close((); -.return ())))), the effect tree ¢’ like

9 0 0 0
Open /EOF Read ZC /return 0

lose
0 0
Read ZClose /return 0,

is generated, but we cannot make a run-tree over t’; the process to make a run-tree will stop at

(Ea(h) - (2an) Y (2'2aq2)
(2Saq3)7(2327QQ)7(23227QI)

but there is no finite set X satisfying 6(q2,¢'(2-2)) = (g2, Read) = ff.

The priority function ensures that the opened file will be closed eventually for divergent programs. To see it,
consider the effect tree ¢t generated by a term Open(();z. (fix f Ay. EOF((); z. fy)) ()), which infinitely calls EOF
after performing Open. Given a run-tree over t, it should include an infinite path where g3 or ¢3 occurs infinitely
and ¢ occurs only at the root node. The largest priority infinitely occurring in such a path is 1, which results
in breaking the parity condition. Thus, the effect tree ¢ is not accepted by Apje. Note that, if the opened file
is eventually closed as in a term (fix f.\z'.Open((); z. EOF((); y. Close((); 2. f 2)))) (), we can make a run-tree
where the state gq; appears infinitely many times in every infinite path, so the largest priority infinitely occurring
in an infinite path is even and the parity condition holds.



Evaluation rules €1 — €

(Ar.e1)v2 —  er]ue/x] E_BETA
(fixx.v1) va —  wv[fixz.v /] v E_Fix
case(i;e1, - ,€n) —> € (if0<i<n) E_CASE
letz =returnvyines —  esfvy/a] E_LETV
letx =o(vi;y.e1)ines — o(v;y.letz =erines) (if y & fo(ez)) E_LETOP
e — e
— ! — (E_LETE)
letx =ejineg —> letz =ejiney
Figure 4: Semantics.
2.3 EPCF: PCF with Algebraic Effects
2.3.1 Syntax
Variables =z,y,z, f,h,k Algebraic operations o,¢
Base types B = bool | unit]---
Enum types F 1(2)---
Types 7 = B|E|mn >
Operation signatures = = {o;: B; ~ E;}1sisn
Base constants ¢ = true|false| ()] ---
Enum constants ¢ = 1|2]--
Values v,w == z|c|e|Ar.e]fixz.v
Terms e == returnv|letz =ejiney | vy v2 | case(v;er, - -, e,) | o(v;z. e)
Typing contexts A == 0|Az:7

For the syntactic operations common in HEPCFA™ and EPCF, we use the same notation (e.g., fv(e) is the set
of free variables in e and e[v/x] is the term obtained by substituting v for z in e).

Definition 20 (Ground Types). A type 7 is ground if and only if 7 = B for some B or 7 = E for some E.

2.3.2 Semantics

Definition 21 (Semantics). The evaluation relation e; — ey is the smallest relation satisfying the rules in
Figure

Definition 22 (Multi-step evaluation). We write e —™ ¢’ if and only if there exist some terms eg, - - - , e, such
that: e = ep; Vi <n. e — €411; and e, = /. We write e —* €’ if and only if e —"™ ¢’ for some n € N, and
e —T ¢’ if and only if e —" ¢’ for some n > 0.

Definition 23 (Infinite Evaluation). We write e — if and only if ¥n € N.Je’.e —" ¢’

Definition 24 (Nonreducible terms). We write e —/ if and only if there is no e’ such that e — ¢€’.

2.3.3 Type System

Definition 25 (Typing). Fix an operation signature =. Then, the typing of values (with judgments of the form
E|AF v:7)and terms (with judgments of the form = | A e : 7) is the smallest relation satisfying the rules in
Figure

10



Typing rules ‘E|‘A|_’I)ZTHE|‘A|_€ZT‘

TV T C UL Ye
_VAR ——— 1 _CUONST = 1_ ONST
ZlAFx:Ax) E|AFc:ty(e) E]AkFi:n
ElAz:imbFein ElAz:in o nbvin o
T_ABs T_Fix
E|AFAze:T = T E|Akrfixzv:m = 1
E|AFv:T TR ElAFe:n E|Az:imbe:n TL
_RETURN _LET
E|AbFreturnv:T E|Akletz=einey: 7o
Z|lAFv T — ZlAF vy Z|AFwv: Vie[l,n. 2| Ak e:

[ ’U1H TL — To [ ®ITnoaoe [ ! vin Viell,n]. 2| T T CasE
ElAF v Z| At case(vyer, - en): T
E>0:B~F E|Arv:B Z|Azx:EFe:T

T_Op

ElAFo(v;x.e):T
Figure 5: Type system.

2.3.4 Effect Trees

Definition 26 (Effect Trees for EPCF Computations). Given an operation signature Z and a type 7, the tree
constructor signature S= is defined as follows:

SE(o) ' n4+1 Vo:BwneE
SE(returnv) < 0 Vo such that Z | 0 v : 7
SE(c) L Ve

Given a term e such that = | § - e : 7, the effect tree of e, denoted by ET(e), is a tree in Treeg= defined by the
following (possibly infinite) process:

o if e —% then ET(e) = L;
e if ¢ —* return v, then ET(e) = return v; and

o ife —* o(¢;z.¢’)and o : B~ n € E, then ET(e) = o(¢, ET(e'[1/x]), - ,ET(e'[n/x])).

2.3.5 Contextual Relations

Definition 27 (Program Contexts). Term contexts, ranged over by P, and value contexts, ranged over by @, are
defined as follows:

P = []|return@ |letz = Piney|letz =e1inP | Quz2 | v1 Q |
case(Q;Mlv"' ,Mn) | case(V;M1,~-- aMiapa Mi—i—l,Mn) | O—(va M) ‘ O'(V,.T P)
Q def Az.P | fixz.Q

We write Ple] for the term obtained by filling the hole [] in P with the term e.

Definition 28 (Contextual Equivalence). Terms e; and ey are contextually equivalent at type 7 under typing
context A and operation signature =, written as = | A F ¢; = e : T, if:

e Z| Ak e Ty
e Z| Ak e :7; and

e for any term context P and ground type 7/ such that Z | 0 - Ple] : 7/ and = | O b Pleg] : 7/, ET(Ple1]) =
ET(Ples).

11



Definition 29 (Contextual Improvement). Assume that = | A F ¢ :

ctx

improvement = | A F ¢ <

T, if 2| 0 F Ple] :

Jeh. Ples] —"™ ¢b.

7 and

€y

—_
—

.
|0

:7and E | AF ey : 7. The contextual

is the largest relation such that, for any term context P and ground type

= P[eg} :

7', then ET(P[e1]) = ET(Ples]) and Vn,ef. Ple;] —" e =

12



2.4 Selective CPS Transformation from HEPCFA™ to EPCF

Our CPS transformation is defined using the following shorthand:

e A sequence of entities aq,- - , a, is abbreviated to @, and its length is denoted by |a|. Given a, we write a; to
designate the i-th element of the sequence a.

e Given a variable sequence T = x1,- - , Ty, we write AZ.e for the EPCF term Azy.return Azo.(- - - (return Azp,.€) -« -).
o Let X denote an EPCF term or value. Given an EPCF value v and X — (n > 0), we write v XSS for
the EPCF term defined as follows:
vw L oyw v(w,X) etz =vwinzX (if [X] > 0)
ve & letz =cinva v(e, X) C etz =cinva X (if [ X| > 0)

—1<i<
where the variable x is assumed to be fresh. Similarly, given a term e and X ==

the EPCF term

(n > 0), e X' ="=" means

. =1<i<n
letx =einx X

for some fresh variable x.
e Given a type 7 and a type sequence 7;'S'S" . we write 7 —
(when n = 0, it denotes 7).

ISisnr for the type 71 — 7o — ~++ — Tp — T

Definition 30 (Static Functions and Applications). The static lambda calculus is defined by the following syntax:
def

t = x| A1, ,Xp) ] tQ(61,- ,t,) e | v
where e and v are EPCF terms and values, respectively, that may refer to static variables x bounded in the
enclosing context. A static application (A(x1,---,Xy).t)@(tq1, -+ ,t,) is identified with the S-reduction result
t[xy =t Xy 1=ty

Definition 31 (Domains of Operation Signatures). Given an operation signature X, its domain dom(X) is the set
of operations defined by induction on ¥ as follows.

dom/(0) ey
dom(SW {0 : TP ~s Tati / A}) X gom(D) w {0}

Assumption 2 (Order of Operations). We assume that the set of all the operations is totally ordered by a binary
relation <,,. We write 0 <, X if V¢ € dom(X). 0 =Zop ¢, and X <4, 0 if V¢ € dom(X). ¢ <, 0.

Remark 1. Assumption [2]is imposed for making the CPS-transformation defined in Definition [32| deterministic.
Definition 32 (CPS Transformation of Types, Values, and Terms). CPS transformation [—] from HEPCFA™ to
EPCF is defined in Figures|[6] [7] [§ and [0] mapping

e value types T to EPCF types [T] (Figure[6),

e computation types C to EPCF types [C] (Figure [6),

e operation signatures ¥ to functions that, given a EPCF type 7, return the EPCF type [X][7] (Figure[6),

e subtyping T} <: Ty, C) <: (o, and X <: ¥y to EPCF functions [C <: (] or static functions [T <: Ts],
[Ci <: Co]°, and [E; <: 2,] (Figure[7),

e typing derivations of values I' = V : T to EPCF values [V] (Figure[§), and
e typing derivations of I' = M : C to EPCF values [M] (Figure [§) or static functions [M]® (Figure [9).

The CPS transformation for values and terms is defined on their typing derivations, which are ranged over by D. In
referring to the typing derivations, we attach the derivations to [—], as [V]p and [M]%. If the typing derivation
D is constructed by a typing rule HT_*, we may use HT_* instead of D (for example, [M[§ v., means [M]S for
some D that is constructed by the typing rule (HT_VAR)).

We write [I'] for the EPCF typing context obtained by CPS-transforming the types of all the bindings of typing
context I'.

13



for value types

(5] < B
[E] € E
[T—c] < [1]-[C]
for computation types
[SeT/00 € [S][1-[T]]

[£e 7 /Ch = c™] = S]] - [OI[C™]]) - [C™]]

[X][7]]| for operation signatures

[{o; : TP ~ Tiari/ciini N Ciﬁn}lgigm Wi UPY Uiari/D}lgign]][T] def

?

1<i<m

[[C;mﬂ) N [[Czﬁn]]) - ([[Uipar]] ~ [[Uiariﬂ) _>1§i§n7_

<j<n

([7P] — ([725] - ([[UP] = [0]) =

Figure 6: CPS transformation for types.

2.4.1 Auxiliary Definitions for Proofs
Definition 33 (Evaluation Contexts). We define EPCF evaluation contexts, ranged over by F, as follows:

E ¥ [] |letx = FEiney

Given n > 1 and a computation type sequence C=Cy,--,Cpsuch that Vi € [I,n — 1]. C; <: Ciy1, we define the
evaluation context E¢ as follows:

EC:CuC et gy = FO.Crin return [C1 <: Co]@Q(xq) .

We write E[e] for the term obtained by filling the hole of the evaluation context E with the term e. We also write
E[E’] for the evaluation context obtained by filling the hole of the evaluation context E with the one E’.

Definition 34 (Full Sn Monadic Reduction). We define a binary relation < over EPCF terms and over EPCF
values, called full Bn monadic reduction, to be the reflexive, transitive, compatible closure satisfying the following
axioms:

Vz,v,e. (Ax.e)v — e[v/x]

Ve, v. x & fo(v) = Az.vx — v

Vz,v,e. letx =returnvine < e[v/z]

Vx,e. letx =einreturnz — e

Va,y, e, e es. y & foles) = letx = (lety = erines)ines — lety = ejinletz = ezines

——1<i<n —1<i<n

For value sequences 7r; and 73; T ISISN oy g SIS

, we write vy; < Uo; if, for any i € [1,n], vi; <= vo;.

Definition 35 ﬂalue Sequence Split). Given 7 and X, split(v,X) returns a pair of value sequences @ and o0
such that: 7 = v?, v0; |o?| = |A(X)]; and |[v5| = |O(Z)|.
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[Ty <: T3] | for value subtyping
[B <: B]
[E <: E]
[[Tl — 1 <: Ty — 02]]

AX7. X1
)\Xl.Xl
AX1. Aya.let 21 = %1 ([T2 <: T1]Q(y2)) inreturn [Cy <: C5]@Q(zq)

[Ci <: C5] | for computation subtyping
[[Cl < 02]] = )\Xl.AFQ,kQ.[[Cl <: Cgﬂe@((A(E,kl).lekl),FQ,kg)
(where |hy| = |C2.%] and |hy| = |C1.X))

[Ci <: C2]¢| for computation subtyping

[Si0 Ty /O<:Son To/0F «

A(fhE, kz). letz; = f1@([[22 <: Elﬂ@(g), kg) inreturn [[T1 <: TQ]]@(LEl)
[Sio T /O0<: 820 To/ O3 = CF7)° def

(where |ha| = [S2])

A(f1,h? hY ko). letz, = f,Q([S; <: 21]]@(@, hY)), 1)inletys = ko ([T1 <: T2]@(z1)) h in return [Ci™ <:

C3"]a(y2)

(where [hY| = [[A(S2)| and [bF| = [O(S2)])

[S>T/C™ =i <:Sp T/C™ = cfr]e &
A(f1,hs, kz). let 21 = f1@(h2, k2) in return [[C’f“ <: Cgﬁn]]@(xl)
[S10 T/ CM = Cfr <2 Sy b Ty ) O = Cfir)e &

A(f, 0% WY ko). letz = £ Q([A(S2) <: A(E1)]@(h?), hT, v) in return [Cf <: Ccf™@(ay)

(where || = <))

(where Sy £ Xy V Ty # Ty vV Ci* # Ci™ and |hY| = |[A(S2)] and |h| = |hD| = |O(S2)| and

v = Ay, hP et 22 = ko ([T1 <: T2]@Q(y1)) AT in return [ C3™

[31 <: ¥3] | for operation signature subtyping

[S1<:35] = Ahp oo =S pEisEn
with (Vie[l,m]) vo ¥ Azo koletz; =h ([TH <: TH¥]@Q(22)) v;inreturn [CA? <: CAM@Q(2)
(Viell,m]) v def Ayl,Tulng‘D(El)l.letyg = ko ([T3 <: Tiazriﬂ@(yl))mlgjgn inreturn [ C3
(Vie[ln]) ws Y Azmletz; =S ([URY <: UR™]@(z0))in return [U2 <: UFi]@(z;)
Vieln]) v Y Azletz; =h$ ([US™ <: UR™]@Q(z2)) inreturn [US" <: U] Q(x1)
where:

o Dy ={og TR~ T/ G = YIS g UFY o U /O 0
o Yo ={oi: TR ~ T/ O = CRP Y= {q : UK ~ Ux'/Op==n
o [hy|=[%;

U—ilgzgm 1<i<n

and ¢ are ordered;

<i<m —=1<i<n
» g

, and the operations in X, respectively); and

. o 571
e the sequence h; is split into hi"
of O_—ilgzgm, algzgn

—1<5<|O(E —1<i<
e the sequence hq; <i<i0E)l is split into A§’ =" and the remaining (which correspond to

operations in [J(X), respectively).

g—ilgign

Figure 7: Subtyping coercions.
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[V] | for values

[[x]]HT,VAR =
[[CH HT_CONST d;f c
[[ﬂ]] HT_ECONST déf n
[Me.M]nT_ass 4 \r.return [M]
[fixz. V]nrrx def fix z.[V]
Ve < [T < Ula([V]p)

where

I'bkp VT T<: U

(HS_SuBV)
I FD V.U
for thunks (assume that T'H M : ¥ > T/ A and |h| = |X))
[M] X A E[M]eQ(R, k)

Figure 8: CPS transformation for values and thunk terms.
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for terms

(assume ' M : ¥ > T/ A and |h| = |¥| and |h7m| = [A(2)] and [hD| = |A0| = |O()))

[return V]]%IT,R,ETURN
[letz = Min N]§ir psrarm
lletz = Min N]fir
[[V W]]%T,APP
[case(V; My, -, My)[fir_case
loi(Via. M)[r_opaty
loi(Viz. M)t op
[with H handle M]$1 axpie
H

Vi € [1,

Vie [l
Vi € [1,m]. w?
Vi€ [1,m],j € [1,n]. v;;
Vi € [1,n]. w”
[M]%

where condition (*) is:

e & N
= e e

. F,yi : szar7]{?i : Tiari — C
,n).

A
A
A
A
A
A

h,k).return [ V]

h? hO, k). [M]c@(h?, h®, Az, WO [N]c@(h?, h0, k))
k). letz = [M]e@(h,1)in [N]@(h, k)
k). [V][W]hk
k). case([V]; [Mi]*@(h, k), -, [M;]*Q(h,k))
)

=

h
h,
D 00 k). h? [V] Az, kO [M]e@(h?, 10, k

(where /A(X) = ¥y W {o; : TP ~ T/ Ot = Cfinl y 3,y and
Y1 <op 04 and 0; =op Lo and X1 =1 — 1)

A(h? 100 k). letz = hD [V]in [M]e@(h?, h0, k)
(where O(X) =31 W {o; : TP ~ T2 /O} WX, and
21 jop ag; and ag; jop EQ and ‘El| = Z — ]_)

e e N e e e
=

A(h, k). [[M]]e@(wilmlglgn,wjulgign, )\x7h719§n.return [L]) hk , where
{returnz — L} W {o;(yi; ki) — M PISSmw {q(z) — NS0
MM, o
T,z UPYF N, %0 U /0
Nyi, ki et k; = return (\y, b, kKL y 0" SIS" h k) inreturn [M;]  (where |h| = |CIM.%))
Az [S 6 U /O < GRLS b U2t/ TJ@([N, ], T, 1)
Az [Si> U2 /O <: X UM/ O]*Q([N;]°, b, 1)

A k). [C <: 2> T/ A]*Q([M]S,, h, k)
(if condition (*) holds)

I'tp M : C C<IEI>T/A
TrpM:XoT/A

(HS_SusC)

Figure 9: CPS transformation for terms.
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3 Proofs
3.1 Type Soundness of HEPCFA™

Lemma 1 (Weakening). Assume that dom(I'2) N dom(I'1,T's) is empty.

o If 'y, I's-V: T, thenI'1,['5, sV : T.

o IfI",I's-M: C, thenI'1,I'5,T's - M: C.
Proof. Straightforward by mutual induction on the typing derivations. O
Lemma 2 (Value Substitution). Assume that Ty - W : U.

e If'y,x: UTTob V:T, then T\, To b V[W/x]: T.

e IfTy,z: U, o M: C,then T'1,Ty - M[W /x]: C.

Proof. Straightforward by mutual induction on the typing derivations. The case for (HT_VAR) rests on Lemma
O

Lemma 3 (Inversion of Subtyping).
o If T <: B, then T = B.
o If T <:n, then T =n.
e If T<:T'— (', then T = T" — C” for some T"” and C” such that T’ <: T" and C" <: C'.

o If C <: D, then D.¥ <: C.¥ and C.T <: D.T and C.A <: D.A. Furthermore, if C.A # O, then O(C.X) <:
O(D.%).

o If ) <: ¥y and o : T ~~ T3 /| Ay € Xy, then there exist some TP, T2, and A; such that

— 0 TP~ T8 ) Ay € 3,
— TP < TP,

— To < T34 and

— A; < As.

o If A <:0, then A =0.

o If 0 <: O™ = Cfin then C™ <: Cfin,

o If CiM = Cfin <. Cint = Cfin then CiM <: CiM and Cfi® <: Cfin.
Proof. Straightforward by case analysis on the subtyping derivations. O
Lemma 4 (Reflexivity of Subtyping).

e Forany T, T <: T.

e Forany C, C <: C.

e For any ¥, ¥ <: X.

e For any A, A <: A.
Proof. Straightforward by mutual induction on the structures of 7', C, ¥, and A. O
Lemma 5 (Transitivity of Subtyping).

o If Ty <: Ty and T <: T3, then T7 <: T3.

e If ¢ <: Cy and Cy <: (3, then O <: Cs.
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e If ¥y <: X5 and Xy <: Y3, then ¥, <: X3.
o If A1 <: Ay and As <: A3, then A; <: As.

Proof. Straightforward by induction on the total sizes of the tuples (71, Ts, T3), (Ci, Ca, C5), (31, X9,%3), and

(A1, A, A3) with case analysis on the subtyping derivations. The only interesting cases are the case of computation

subtyping and the case that A; <: Ay is derived by (HS_ANSEMB) and A, <: Aj is derived by (HS_ANSMoOD).
For the former, assume that C; <: Cy and Cy <: C3. By Lemma 3]

o (.Y < (1.5,

o (1. T <: Cu.T,

o (1.A<: CyA,

e C1.A#AD=0(C.%) <: 0(C,.%),

o (3.3 <: (.5,

o (5. T <: C5.T,

o (h.A<: (3.4, and

o Cr.A# 0= 0(C,.%) <: 0(Cs.5).
By the IHs, we have

o (3.3 <: (1.5,

o (1.T <: (5.7, and

o (1.A<: C5.A.

Finally, we show that

Assume that C1.A # 0. By Lemma |3 C5.4 # 0. Therefore, by the assumptions, 0(C;.X) <: O(C5.X) and
(C5.X) <: O(C5.%). Thus, by the IH, O(C,.X) <: O(C5.%).
For the latter, assume that

[ ] Al = |:|,
o Ay = ani = OQﬁH,
o Ay= Cini = Cfin,

ot <z ofin,

ani <: ani, and

fin . fin
o ()" <: (s

for some CiM, Cfin G and Cf". By the IH on the subtyping derivations Ci* <: Ci* and Ci* <: Cf"| we have
Cint <: Cfin. By the IH on the subtyping derivations Ci* <: Cfi* and Cf* <: Cf"| we have Ci" <: Cfin. Thus,
by (HS_AMsEMB), O <: Citt = (", Because 4; = 0, we have the conclusion. O

Lemma 6 (Asymmetry of Subtyping).
e If T<:Uand U<:T,then T=U.
o If C <:Dand D <: C, then C = D.
o If ¥ <: ¥y and ¥y <: ¥y, then ¥ = 3.
o If A; <: Ay and As <: Ay, then A; = As.
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Proof. Straightforward by mutual induction on the subtyping derivations. The case for computation subtyping
rests on Lemma [4l O

Lemma 7 (Canonical Forms). Assume that 0+ V : T.
e If T'= B, then V = ¢ for some ¢ such that ty(c) = B.
e If T'=n, then V =i for some i such that 0 < i < n.
o If T=T — (' then V = A\z.M for some z and M, or V = fixxz. V' for some z and V.
Proof. Straightforward by induction on the typing derivation. Note that:
o the case for (HT_CONST) rests on Assumption [I} which states that, for any ¢, ty(¢) = B for some B; and
e the case for (HT_SUBV) rests on Lemma [3]

O
Lemma 8 (Inversion of Operation Calls). If 't o(V;z. M) : C, then one of the following holds:
e there exist some TP, T2 ¥ T and A such that
— 0 TP¥ s T /O e X,
— Tk V:Tre
—T,z: T&-M:Xp> T/ A, and
- T /A< C
or
e there exist some TP T2 Cini ¢Ofin 53 T and C’ such that
— 0 TP s T/ O o Ofin g 3
- I V. TPrer
—Tyz: T M:X> T/C' = CM, and
- Y T/C" = Cin < C.
Proof. Straightforward by induction on the typing derivation with Lemmas [4] and [5} O

Lemma 9 (Progress). If ) = M : C, then one of the following holds:
e M =return V for some V;
o M =o(V;z. M) for some o, V, x, and M'; or
e M — M’ for some M.

Proof. By induction on the typing derivation. We proceed with case analysis on the typing rule applied last to
derive 0 = M : C.

Case (HT_RETURN): Obvious.
Case (HT_SuBC): By the IH.
Case (HT_LET): We are given

(ZH_M1:EI>T1/D .r:Tl}_MQIEDTQ/AQ
Okletz =MyinMy : 3> Ty /A

for some x, My, My, ¥, T1, To, and A such that M = (letz = M in My) and C =X > Ty / Ay. By case analysis
on the result of the IHon @ - M, : > Ty /0.

20



Case 3 V7. My = return Vq: By (HE_LETV).
Case 3o, V1,y, M{. My = o(V1;y. M{): By (HE_LETOP).
Case IM/. M; —s M{: By (HE_LETE).

Case (HT_LETATM): We are given

@FM122>T1/00:>01 I:T1FM2:2>T2/02:>CO
(Z)}—|et$:M1inMQZZDT2/CQZ>01

for some z, My, M, &, Ty, To, Cy, Cs, and Cy such that M = (letz = Myin M) and C =X > Ty / Cy = (.
By case analysis on the result of the IHon O F M; : ¥ > Ty / Cy = C.

Case 3 Vq. My = return Vi: By (HE_LETV).
Case 3o, Vi,y, M{. My = o(V1;y. M]): By (HE_LETOP).
Case AM{. M; — M]: By (HE_LETE).

Case (HT_ApP): We are given

(Z]I—VlT—>C @'_VQT
Q)I—V1VQZC

for some Vi, Vo, and T such that M = V; V5. By case analysis on the result of applying Lemma [7] to
OFVi:T— C.

Case Jx, My. Vi = Az.M;: By (HE_BETA).
Case Iz, V{. Vi = fixz.V]: By (HE_FIX).

Case (HT_CASE): We are given

fFV:n Vie[l,n.0FM:C
OF case(V; My, -, M,): C

for some V, n, My, -, M, such that M = case(V; M, --,M,). By Lemma V =i for some ¢ such that
0 < ¢ <n. Thus, we have the conclusion by (HE_CASE).

Case (HT_OP) and (HT_OPATM): Obvious.

Case (HT_HANDLE): We are given

H = {returnz — LYW {o;(yi; ki) — M}'S="w {g(z) — N;}Sisn
Y={o;: T7" ~ e A CE UP* ~ Ugtt jOyisisn
PEM S T/C"=C  o:THL:C™  Viel[lm]ly : TP ki : T = ¢ F M, : Cf
Vie[lnl.z: UPME N, : S0 UM /0 VO e (O™~ =" C).Vie [Ln]. C'S <: %,
0 - with H handle M’ : C

forsomeH, M/an L7 E70-17"' yOms Yl s Ym kl ak’!ruMly"' aM’!na Tlparv"' )
Clﬁna"' 7C/I’f:Ln7 S1y""" »Sny %1y " 5, %n, Nla"' 7Nn7 Ulpara"' ) Uﬁar’ Ularla"' ) Usrla 217"' 72717 T7 and C™ such
that M = with H handle M’. By case analysis on the result of the IHon 0 - M’ : X > T/ C™ = C.

Case 3 V’'. M’ =return V': By (HE_HANDLEV).

Case 3o, V' ,y, M". M' = o(V';y. M"): By Lemmawith 0 o(Viy.M"): > T/CH = (C, there exists
some C' such that ¢ € dom(C’.X) and C' <: ¥ > T/C™ = (. By Lemma [3, 0 € dom(X). Thus,
o(yi; ki) — M; € H for some i € [1,m], or 0(z;) — N; € H for some i € [1,n]. The conclusion is derived by
(HE_HANDLEOP) in the former case, or (HE_HANDLEOPTAIL) in the latter case.

Case IM". M’ — M": By (HE_HANDLEE).
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Lemma 10 (Inversion of Return Values). If T'FreturnV : C,then T'H V : T and ¥ > T /0O <: C for some X
and T.

Proof. Straightforward by induction on the typing derivation with Lemmas [4] and O
Lemma 11 (Strengthening Typing Contexts). Assume that 77 <: Ts.

e IfINy,z: To,IoF V: T, thenT'y,x: T1, Ty - V : T.

o If 'y, x: Ty, T M:C,thenl'y,z: T,Io - M : C.
Proof. Straightforward by mutual induction on the typing derivations. O

Lemma 12 (Inversion of Lambda Abstractions). IfI'kAz.M : T, then ',z : T'F M : C' and T/ — C' <: T for
some T and C".

Proof. Straightforward by induction on the typing derivation with Lemmas [4] and O

Lemma 13 (Inversion of Fixed Points). IfT'+fixx.V: T, then T,z : T/ - C'+V: T/ > C'and T" > C' <: T
for some T and C’.

Proof. Straightforward by induction on the typing derivation with Lemmas [ and O
Lemma 14 (Subject Reduction). If ' M : Cand M — M', thenT'F M': C.
Proof. By induction on the typing derivation.

Case (HT_RETURN): We have M = return V for some V', but there is a contradiction because there is no evaluation
rule applicable to return V.

Case (HT_SuBC): By the IH and (HT_SuBC).
Case (HT_LET): We are given

F"Mllszl/D F,xZTl}_Mgiszg/A
Phlete =M inMy: X Ty /A

for some z, My, Mo, ¥, Ty, To, and A such that M = (letx = MjinM;) and C = ¥ > To/ A. We have
letx = Myin My — M’. By case analysis on the evaluation rule applied last to derive it.

Case (HE_LETV): We are given
letz = return Vi in My — M| V7 /]

for some V7 such that M; = return V3 and M’ = M[V1/z]. By Lemma [10] with T - return V7 : ¥ > Ty /0,
there exist some ¥} and T such that T'= Vy : T{ and ¥’ > T{ /O <: £ > T} /0. By Lemmal[3] we have T} <:
Ty. Thus, by (HT_SuBV), I'+ Vi : T, and by Lemma[2] we have the conclusion I' - M[Vy/z] : S Ty / A.

Case (HE_LETOP): We are given
letz = o(Vi;y. M{)in My — o(Vy;y.letz = M in M)

for some o, V1, y, and M{ such that My = o(Vy;y. M{) and M’ = o(Vy;y.lete = M{in M) and y & fo(Ma).
Without loss of generality, we can assume that y ¢ dom(I") U {z}. By Lemma |8 with I' F o(V1;y. M{) : ¥ >
Ty /0, and Lemma

o o TP s T2 /Y,

o ' Vy: TPar,

o Iy: Tk M :'> T) /A, and

e X T/ /A <:X> Ty /0O (that is, ¥ <: ¥/ and A’ =0O)
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for some TP T2 3 T| and A’ (note that the case that the ATM of o given by ¥/ is not (1 is contradictory
by Lemmal3). By (HT_SuBC), I',y : 7% M{ : £ T} /0. By Lemma[l] with [,z : Ty F My : S To / A,
we have I,y : T x: Ty = My : $ > Ty / A. By (HT_LET),

D,y: T Flete = M{inMy: X Ty /A . (1)
Because ¥ <: X and o : TP* ~ T /[J € ¥/, Lemma |3| implies that there exist some UP* and U such
that
o 0: UP¥ s UM /O e,
e TP <. UPA and
o UM < T,
By Lemma [11| with derivation (1) and U®? <: T,

Dyy: UM bFlete = M{inMy:X> Ty /A . (2)
Then, we can derive the conclusion as follows:

[k Vy: TP par . pypar
0 UM - UM /DES TFVy: 0P
TFo(Viylete =M inM): 2> Ty /A

HT_SuBV
( ) derivation

(HT_Op)

Case (HE_LETE): We are given
M1 — Mll

for some M{ such that M’ = (letx = M{in Ms). By the IH, ' - M{ : ¥ > Ty /0. Therefore, by (HT_LET),
we have the conclusion
I'klete=MinMy: X Ty /A .

Case (HT_LETATM): We are given

I‘}—M1:EI>T1/COZ>C1 F,LE:Tll_MQZZDTQ/02:>CU
F"'Et[E:MlinMgiszg/Ogﬁcl

for some x, My, Mz, &, T1, To, Cy, Cs, and Cp such that M = (letz = Myin Ms) and C =X Ty / Cy = (.
We have letz = My in My — M’. By case analysis on the evaluation rule applied last to derive it.

Case (HE_LETV): We are given
letz = return Viin My — Ms[ V7 /]

for some V7 such that My = return V3 and M’ = My[Vy/x]. By Lemmawith Tkretun Vi : X Ty / Gy =
(4, there exist some ¥ and 7] such that T+ Vi : T{ and &' > 77 /0 <: ¥ > Ty / Cp = Cy. By Lemmal[3| with
¥ T{/D <X Tl/CO = Cl, we have Tl/ <:T) and O <: Cy = 01, that is, Cy <: Cf. By (H‘T,SUB\/)7
' Vi: Ty, and by Lemma we have I'F My[Vy/z] : £ > Ty / Cp = Cy. By Lemma we have

Cy <: (y Co <: Oy
(HS_ANSMoD)
r< X Ty <: Ty Co= Cy<: Oy = Oy D(E) <: D(E)
Y T2/02:>C() <X T2/02:>01

(HS_Cowmp)

Thus, by (HT_SuBC), we have the conclusion I' - Ma[ V1 /2] : ¥ > Ty / Co = C.
Case (HE_LETOP): We are given

letz = o(Vi;y. M{)in My — o(Vy;y.letz = M in M)
for some o, V1, y, and M/ such that My = o(Vy;y. M{) and M’ = o(Vy;y.letx = M{in M) and y & fo(Ms).

Without loss of generality, we can assume that y & dom(I') U {z}. By case analysis on the result of applying
Lemma[§|to ' - o(Vy;y. M{) : S Ty / Cy = C.
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Case 1: We are given
o 0 TP oo T4 /e,
o ' Vq: TPar
o y: Tk M :¥0> T /A, and
e YT /A< X>T/Ch= Cy
for some TPar T2 3/ T’ and A’. By (HT_SuBC), I,y : T®'+ M{ : X > Ty / Cy = C;. By Lemma
with D,z : Ty F My : X Ty /Oy = Cp, we have T,y : T8 2 : Ty - My : X > Ty / Cy = Cy. By
(HT_LETATM), .
Dyy: T Fletz=M/inMy: X0 Ty / Co= C . (3)
By Lemma [3| with ¥’ > T/ 4" <: ¥ > Ty /Cy = €y, we have ¥ <: ¥/. Again by Lemma [3[ with
o TP¥ ~s T /[0 € 3, we have
o o UPY s Ut /AN
o TP <. UPEr,
Ut <: T2 and
o A <:[(thatis, A =0)
for some UP U2 and A. By Lemmawith derivation (3) and U <: T2

T,y: UM klete = M{inMy: X0 Ty / Cy = C) . (4)
Then, we can derive the conclusion as follows:

Th vy TPar  oar o, goar
o UPY w U™ /O e X TFV,:UP™
F"O’(Vﬁi{j.'th‘ZM{inMg) D> TQ/CQ = ()

HT_SuBV
( ) derivation

(HT_Op)

Case 2: We are given
e o TP o T/ COini o (Ofin ¢ 17
o TF Vy: TP,
e ly: T¥ kM :¥v>T'/C = C"M and
e YT /(' =C<:Y>T/Ch= Cy
for some TP, Tari ¢ini Cfin 5 7/ and C’. By Lemmawith Yo T')C = C0ih<: ST/ Cy= C,
we have
o X <Y,
o T/ <: T,
o (Cy<: (',
o Ci" <: (¢, and
O <: O(D).
By Lemmawith Y <: ¥ and ¢ : TP ~s T2/ 00l = COfin € 37 we have
o o UPY s Ut /A Y
o TPAT . [JPar
o Udi < Tar and
o A<: O (Cfin
for some UP*, U2 and A. Because C'™ <: C'™ by Lemma we have

Co<:C' M <o
Y <y T <: Ty C'= oM< ¢y = oM
YoT' /O = CM<:Ys T/ Cp= C™

(HS_ANSMoD) O < O()

(HS_Cowmp)

Thus, by (HT_SUBC) with T,y : T* = M| : ¥ > T' /) ' = C™ we have

Dyy: T =M :Y> Ty ) Cy= C™ .
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By Lemmawith Dix:ThF My: X0 Ty / Co = Cp, we have
Dy: T8 2: Ty - My: STy /) Co= Cp .
Thus, by (HT _LETATM),
Dyy: T b lete = M]inMy: S Ty )/ Cp = C™
By Lemmawith Uat < ar,
D,y: UM klete = MinMy: X Ty / Cy = C™ . (5)

We proceed by case analysis on A.
Case A = [0: Because 0 <: O™ = Cfin we have O™ <: Ofin by Lemma Because

Yo Ty/Ch= CM<:Np Ty Cy= O
by (HS_Cowmp), (HS_ANSMoD), Lemmasand C™ <. 0fin and Cfir <: (), we have
Dyy: UM Flete = M{inMy: X5 Ty / Cy = Gy (6)
by (HT_SuBC) with derivation (5]). Then, we derive the conclusion as follows:

Tk V. TP TPar <. par
o:UPY s UM /00X I'E V. Up™
FFJ(Vl;y.Ietz:M{inMg) D> TQ/CQ = (]

(HT_SuBV)

derivation @ (HT_Op)
_Op

Case 3 D™ Dfin, 4 = p™i = Dfin: Because D™ = Di* <: ¢ = COfin| we have O™ <: D™ and Dfi® <:
Cfi* by Lemma |3} Because
YT/ Cy= CM <8 Ty Cy = DM

by (HS_ComP), (HS_ANSMoD), Lemma {4, and C™ <: Dl we have the following derivation by
(HT_SuBC) with derivation (f)):

D,y: UM klete = M{inMy: X Ty / Cy = D™ . (7)
Then, we have the following typing derivation:

Dk Vy: TP  TPar o P
o UPY ~ U™/ D™ = DI e %) TH Vo UP
Tko(Viy.lete = M]in M) : X Ty / Cp = D™

HT_SuBV
( ) derivation

(HT_OPATM)

Because ¥ > Ty / Cy = D <: ¥ > T,/ Cy = C) by (HS_Comp), (HS_ANSMoDb), Lemmas [4 and
Dfin <. ¢fin and Cfi* <: €y, we have the conclusion

Tho(Viylete =M inM): 3> Ty / Gy = C

by (HT_SuBC).
Case (HE_LETE): We are given
M1 — Mll

for some M/ such that M’ = (letx = M{inMy). By the IH, ' - M{ : ¥ > T;/ Cy = Ci. Therefore, by
(HT_LETATM), we have the conclusion

FFIetx:M{inMQ:ZD T2/02:>01.
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Case (HT_App): We are given

TFVi:T—C TFVo:T
F"V1VQZC

for some Vi, V5, and T such that M = Vi Vo. We have V; Vo — M’. By case analysis on the evaluation rule

applied last to derive it.

Case (HE_BETA): We are given
()\JL‘M1) VQ — Ml[VQ/JC]

for some z and M; such that Vi = Az.M; and M’ = M, [V, /z]. By Lemmasandwith 'XeM;:T— C,
there exist some 7" and C’ such that

e w:TFM:C,

o T <: T, and

e O < C.
Because I' - V : T” by (HT_SUBV), we have I' = M;[V,/z] : C' by Lemmal[2] By (HT_SuBC) with €’ <: C,
we have the conclusion I' - M;[Va/x] : C.

Case (HE_F1xX): We are given
(fixz. V]) Vo — V{[fixa. V] /x] Vs

for some = and V7 such that Vi = fixz. V{ and M’ = V{[fixz.V{/z] V. By Lemma [13| with T F fixz. V] :
T — C, there exist some T’ and C’ such that

el x: T CFV/:T'— C"and

o I'5(C'<:T—C.
Because I' - fixz.V{ : T' — C’ by (HT_FIX), we have I' - V{[fixz.V{/z] : T — C’ by Lemma 2} By
(HT_SuBV) with T — C’ <: T — C, we have I' F V{[fixa.V]/x] : T — C. Therefore, by (HT_APP), we

have the conclusion
L'k Vl[fixz. V] /x] Vo: C .
Case (HT_CASE): We are given
'EV:n Vie[l,n.TFM:C
It case(V; My, -+, M,): C

for some V, n, My, -+, M, such that M = case(V; M,---,M,). Because case(V;M,---,M,) — M’ we
have V =i and M’ = M, for some 7 such that 0 < ¢ < n. Because I' - M, : C, we have the conclusion.

Case (HT_Op) and (HT_OPATM): We have M = o(V;2z. M") for some o, V, x, and M” but there is a contra-
diction because there is no evaluation rule applicable to o(V;z. M").

Case (HT_HANDLE): We are given
H = {returnz — L} W {o;(yi; ki) = M;}'S"S"w{g(z) — N;}I==n
S={op: T~ TP G = GIPSEm W {0 UP™ ~ 0P /OIS
ThMy:SoT/CM=C To:THL:C™  Viellm] Dyt TP &« T — O - M, ¢
Vie[l,n]. T,z : U N : %5 UM /0 VO € {@@Sm, Cl.Vie[l,n]. C'Y <%,
T with H handle M, : C

par . . - ..
fOIf‘iSOIIleH,ﬁMQ,(ﬂ, La an-lv"‘ yOms Y1 s Ym kl akvalv"' aMma T1 [ 7T71r)lar’ Tfrla"' 7TﬁLrla Clmla"' 7071:;1;
par a ari ari r.
Cln,"',Cmn7§1,"',§n72’1,"',2’n,N1,"'7Nn7 Ul ’_._7U7€)r7 1“7"'7Unr13217"'u2nv T,andC”“such

that M = with H handle M. We have with H handle My — M’. By case analysis on the evaluation rule applied

last to derive it.
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Case (HE_HANDLEV): We are given
with H handlereturn V. — L[V /x]
for some V such that My = return V and M’ = L[V /z]. By Lemmawith ChreturnV:X> T/ CM = (|

we have
e 'V :T and
e Yo T'/O<:E>T/CM = C
for some %' and T". By Lemmaf3| 77 <: T and C™ <: C. By (HT_SuBV), 'V : T. By Lemma [2] with
Fyz: TFL:C™, wehave I' - L[V /z] : C™. By (HT_SuBC) with C™ <: C, we have the conclusion
I'FL[V/x]:C.
Case (HE_HANDLEOP): We are given

with H handleo;(V;y. M{) — M;[V /Jy;][\y.with H handle M /k;]

for some i € [1,m], V, y, and M such that My = o;(V;y. M{) and M’ = M;[V /y;][ y.with H handle M{/k;].
By case analysis on the result of applying Lemma tolTFoy(Vi;y. M) : X T/ CM = C.
Case 1: We are given
o1 TP~ T /€ 5,
| R VA
Dyy: T - MY > T'/ A, and
e YT /A <X T/CM = C
for some TP, T2 3/ T’ and A’. By Lemma, ¥ <: ¥/, Because o; : TP ~» T2 /[0 € ¥/, we have
o; » UPY ~ U /[0 € X for some UP* and U by Lemma However, it is contradictory with the

definition of X.
Case 2: We are given
oy TP~ T2 [ Dini = Dfin ¢ 377,
- V. Trar
T,y: 7o M, Y o T'/ C' = D™, and

e YT /C' =D <:Y>T/CM = C
for some TP, Tari pini pfin 5 7/ and C’. By Lemmawith YoT')CO =Dt <% T /0N = C,
we have

o« ¥ <Y/,

o TN <. T,

° Cini <: C/7

e Diin <. ' and
Ox) <: O(D).
By Lemma [3| with ¥ <: ¥’ and o, : TP ~ T / D" = Dfin € 3/ we have

e 0, TP ~s T/ O = Cfin € 3
TPar <. TP,
Tl_ari <: Tari7
D™ < ¢ini - and
Cfin <. pfin,
By (HT_SuBV) with I' = V : TP and TP <: TP* we have I' = V : TP*. Because I',y; : T/ k; :
T2 O M, 2 CfR ) we have

Tk T2 = Ok MV /g - € (8)

by Lemma [2] Because
o< DM < oM™
y<¥ T'<T C' = D™ <. ¢ = oM
YoT'/C =DM N T/CM= O™

(HS_ANsMob) O < O(®)

(HS_Cowmp)

27



we have _ . .
Ly: T FM,:X>T/C™= C™
by (HT_SuBC) with I,y : T* = M} : ¥ > T’/ C' = D™. By Lemma [11| with T <: T we have
Loy: TP My:So T /C™ = M.
Thus, by (HT_HANDLE) with
o H={retumz > L} {o;(y;;k;) — M}==" 0 {g(z) — N;}=I=n,
o Y — {Oj : T]Par ~ T]ari/c;ni = Cjﬁn}lgjgm W {gj . Ujpar ~ U;“i/D}lSan,
Dyy: T x: THL: C™ by Lemma
Vje[lm]. Ty TPy, o TP k2 T2 — C;‘“ F M Cin by Lemma
Vje[ln]. Ty T,z UPY B N; : 250 U /O by Lemma
——1<j<m .
o VO e {CM T OiMY Ve [Ln]. C"E < %,
(these are derived by the premise of the derivation of T' - with H handle My : C), we have

T,y : T2 i with H handle M/ : C .

(2

By (HT_ABs), .
T+ Ay.with H handle M) : T#% — ¢ .
By Lemma |2| with derivation ,
T = M[V /y;][\y.with H handle M} /k;] : Cfin .
Because Cfi* <: Dfi" and Dfi" <: (', we have the conclusion
[ M;[V /y:][M\y.with H handle M} /k;] : C .

by (HT_SUBC) and Lemma [f]
Case (HE_HANDLEOPTAIL): We are given

with H handle;(V;y. M) — lety = N;[V /z;]inwith H handle M

for some ¢ € [1,n], V, y, and M{ such that My = ¢;(V;y. M{) and M’ = lety = N;[V /z;] inwith H handle M.
By case analysis on the result of applying Lemma toT kg (Viy. M) : X T/ CM= C.
Case 1: We are given
6o TP ~ T /O e 5,
' V. 1P,
Cyy: To - M : X > T/ A, and
e X T' /A <X T/CM = (C
for some TP, Tai 3/ T’ and A’. By Lemma, ¥ <: Y. Because g; : TP ~ T /[0 € ¥ and
i+ UP™ ~» U /O € 3, we have
o TP < UP* and
° Uiari <: Tari
by Lemma [3] Because
e 't V:UP" by (HT_SUBV) with I' = V : TP and TP* <: UP*, and
[ F,Zi : Uipar = N1 : 21 > Uiari/D,

we have

TFNJ[V/z]: %> UM /O
by Lemma [2] Because

(HS_ANsSBoOX)

C.Y <Y, Urt < UM O<: 0
(HS_Cowmp)

Yo UM /O0<: C.Xs UM /0O
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by Lemma [ we have .
F'EN;[V/z]: CX> U™ /0O (9)

by (HT_SuBC). Because

o Dy: T M YT /A,

e YT /A <:X>T/CM= (C,and

° Ul_ari <: Tari,
we have . .

Dy: UMMMy :3T/)C™=C

by (HT_SuBC) and Lemma [11] Thus, by (HT_HANDLE) with

o H={returnz — L}W{o;(y;; k;) — M;}'SI=m{q;(z;) — N;}ISIi=n

o X={0;: T}" ~ Tj'f”i / Cji»ni = Cjﬁ“}lgjgm W{g : UP™ ~ U]@ri/D}léan’
D,y: UMz TH L: O by Lemma
i€ [Lml Doy Up gy TPk T35 = O™ b My Of by Lemma

? J

Vije[l,n]. Tyy: UM 2 UP™ E N1 5> Ujari/lj by Lemma

<jsm

—1
e VC' e {CM™ ,Cr.Vje[ln]. 'Y< %
(these are derived by the premise of the derivation of I' F with H handle My : C'), we have

T,y : UM F with H handle M) : C' . (10)
By (HT_LET) with derivations (9) and (10)), we have the conclusion
' lety = N;[V/z;]inwith H handle M : C .

Case 2: We are given
o ¢ TP o Tor [ Dini = pfin ¢ 3
o ' V. TP
o Iy: T™ + M,:S' b T/ C' = D™ and
e Yo T'/C'=DI"<:Y>T/CM = C
for some TP, Tari pini pfin 5 7/ and €. By Lemmawith YoT')CO' =D <% T /0N = C,
we have
o X <Y,
o T <: T,
° Cini <: C/7
e D" <. ¢ and
O <: O().
By Lemmawith Y <:¥ and g : TP ~ T2/ Dint = Dfin € 57 we have
o G : UM s Ul /Oex,
o TP < P
Ut <: T2 and
° Dini < Dﬁ".
By (HT_SuBV) with ' = V : TP and TP* <: U™, we have I' b V : UP™. Because I, z; : UP™ F N; :
¥, > UM /0O, we have

)

TFNJ[V/z]: %> UM /0O
by Lemma 2l Because

(HS_ANsSBoOX)

C.Y <%, Urt < UM O<: 0
(HS_Cowmp)

Yo UM /O0<: C.Xs UM /0O
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by Lemma [ we have .
TFN[V/z]: C.8» UM /O (11)

by (HT_SuBC). Because D™ <: C by Lemmawith DM <: pfin and Dfin <: C, we have
chM<: ¢ DM C

y<¥  T'<T C'= DM < O™ = ¢
YoT')C' =DM <YsT/CM=C

(HS_ANsMoD) O < O()

(HS_Cowmp)

Thus, by (HT_SuBC) with I,y : T2 - M} : X' > T" / C' = D™, and Lemma with UM < 7o) we
have . .
Ly: UMM X0 T/C™ = C.

Thus, by (HT _HANDLE) with

o H={retunz > L}w{o;(y;;k;) = M}==" 0 {g(z) — N}==n,

o Y — {Uj . ijar ~ T;m/CJ;ni = Ojﬁn}lgjim W {Cj . Ujpar — Ufri/D}lgjgn,
Dyy: UMz T L: O by Lemma
Vi€ [Lm] Doy s UR ;s TP gy s T — O b My < Cf by Lemma

Vje[l,n]. Dy : UM,z UP™ Ny 85> UM /O by Lemma

e VC" e {CM™ ,Cr.Vjel,n. "X <y
(these are derived by the premise of the derivation of I' - with H handle My : C), we have

<js<m

T,y : UM F with H handle M} : C . (12)
By (HT_LET) with derivations and (12)), we have the conclusion
'k lety = N;[V/z;]inwith H handle M : C .

Case (HE_HANDLEE): We are given My, — M for some M; such that M’ = with H handle . By the IH,
I'tM,:S> T /CM = C. By (HT_-HANDLE), we have the conclusion

I' - with H handle M : C .

O

Theorem 1 (Type Soundness). Assume that ¥ = {o; : TP* ~ T /OpS=n If0- M : X > T/A and
M —* N and N —/, then either of the following holds:

e N=returnV and 0+ V : T for some V; or
e N=0o;(Viz.L) and 0+ V : TP and x : T+ L: X > T/ A for somei € [1,n], V, z, and L.

3.2 Type Soundness of EPCF
Lemma 15 (Weakening). Assume that dom(As) N dom(Aq, As) is empty.
e fE|A,Askv:7,then Z | A1, Ay, Azt v :T.
e fE|Aj,Aske:7,then Z | Ay, Az, Az e:T.
Proof. Straightforward by mutual induction on the typing derivations. O
Lemma 16 (Value Substitution). Assume that = | Ay F vy : 79.
e fE|Ay,z:79,As b v:T, then E | Ay, Ag b v[vy/x] : 7.
e fZE | Ay,z:79,As b e: 7, then 2| Ay, Ag b efvg/a] i 7.
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Proof. Straightforward by mutual induction on the typing derivations. The case for (T_VAR) rests on Lemma O
Lemma 17 (Canonical Forms). Assume that = |0+ v : 7.

e If 7 = B, then v = ¢ for some ¢ such that ty(c) = B.

e If 7 = n, then v =i for some 7 such that 0 <7 < n.

e If T =71 — 79, then v = A\z.e for some z and e, or v = fixz.v’ for some z and v’.

Proof. Straightforward by case analysis on the typing derivation. Note that, for any ¢, ty(c) = B for some B by
Assumption [T} O

Lemma 18 (Progress). If = | 0 F e : 7, then one of the following holds:

e ¢ = return v for some v;

e ¢ =o(v;z.¢€) for some o, v, x, and €’; or

e ¢ — ¢ for some ¢€'.
Proof. By induction on the typing derivation applied last to derive Z | 0 - e : 7.
Case (T_RETURN): Obvious.

Case (T_LET): We are given

E|l0ke:m E|lz:imbe:T

E|O0Fletz=ejiney: T
for some x, €1, ez, and 71 such that e = (letz = ey in e3). By case analysis on the result of the IHon = | O F e; : 71.

Case Ju;. e; = returnv;: By (E_LETV).
Case o, v1,y, 1. e1 = o(v1;y. e1): By (E_LETOP).
Case Jef. e; — ¢f: By (E_LETE).

Case (T_APP): We are given

El0Fv 7T =57 E|0Fvu:T

E”@"Ul’l}gi’]’

for some vy, v2, and 7' such that e = v vo. By case analysis on the result of applying Lemma to 2|0+ v :
=T,

Case dx, e1. v1 = \x.e;: By (E_BETA).
Case 3z, v{. 1 = fixz.v{: By (E_FIX).

Case (T_CASE): We are given

E|0Fv:n Vieln.Z|0Fe:T
E|0F case(v;er, - ,e,): T

for some v, n, e, -, e, such that e = case(v; ey, - ,e,). By Lemma v = | for some 4 such that 0 < i < n.
Thus, we have the conclusion by (E_CASE).

Case (T-Op): Obvious.

Lemma 19 (Subject Reduction). IfZ |AFe:7and e — ¢/, thenZE | AF e : 7.

31



Proof. By induction on the typing derivation.

Case (T_-RETURN): We have e = returnv for some v, but there is a contradiction because there is no evaluation
rule applicable to return v.

Case (T_LET): We are given

ElAFe i ZE|Az:imbe:T

E|Akletx =einey: T

for some x, e1, ez, and 71 such that e = (letz = ejiney). We have letz = e;ines — ¢’. By case analysis on
the evaluation rule applied last to derive it.
Case (E_LETV): We are given

letz = return vy in ea — exfvy /]
for some vy such that e; = returnv; and e’ = ey[vy/z]. Because = | A b return v

: 11, its inversion implies
E|AF v 7. By Lemma|l6] we have the conclusion Z | A F exfvy /a] : 7
Case (E_LETOP): We are given

letz = o(vy;y. €])ines — o(vy;y.letz = e]ine)

for some o, vy, y, and e] such that e; = o(vy;y.€]) and e/ = o(v1;y.letx = ef iney) and y & fu(ez). Because
E|AFo(v;y.e): 11, its inversion implies

e 0g:B~F€EE,
| At v : B, and

|Ay:Ebel:m

for some B and E. By Lemma Z|Ay:E,x:m e 7. By (T_LET),

[11 [1]

E|Ay:Ebleter =ejiney: 7.
By (T_OpP), we have the conclusion

E|AkFo(v;y.letz =ejines): 7.
Case (E_LETE): We are given

er — e
for some e] such that ¢’ = (letx = efiney). By the IH, Z | At ef : 71. Therefore, by (T_LET), we have the
conclusion

E|AFletzr=eline :T.
Case (T_App): We are given

ElAFv T =1 ZE|AF w7

ElAFv T

for some vy, vg, and 7’ such that e = v; v5. We have v; v — ¢€’. By case analysis on the evaluation rule applied
last to derive it.
Case (E_BETA): We are given

(Ax.e1) v2 — er[wa/x]

for some = and ey such that v; = Az.e; and e’ = e1[va/z]. By the inversion of Z | A+ Az.e; : 7/ — 7, we have

E|A,x:7 Fe 7. Because Z | AF vy : 7/, we have the conclusion E | At ej[vy/x] : 7 by Lemma
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Case (E_FI1X): We are given
(fixz.v)) vo — vj[fixz.vy /2] Vo

for some x and v{ such that v; = fixx.v{ and e’ = v{[fixz.v{ /x] v2. By the inversion of Z | A F fixz.v{ : 7/ — T,
wehave 2 | A,z : 7/ — 7+ 0] : 7/ — 7. By Lemmal[l6] = | A - v{[fixz.v{ /2] : 7" — 7. Therefore, by (T_APP),
we have the conclusion

E| AF vffixz.o /z)ve: T .

Case (T-CASE): We are given

E|lAFv:n Vie[l,n].Z|AFe: T
Z| Ak case(vier, - ,en): T

for some v, n, €1, , e, such that e = case(v;ey,--- ,e,). Because case(v; ey, --,e,) — €', we have v =i
and e’ = e; for some 7 such that 0 < i < n. Because E | A} ¢; : 7, we have the conclusion.

Case (T_OP): We have e = o(v;z. ¢"”) for some o, v, x, and e”, but there is a contradiction because there is no
evaluation rule applicable to o(v;x. e”).

O

3.3 Type Preservation
Lemma 20 (Asymmetry of Pure Signatures). If £; <: ¥ and O(22) <: O(X4), then (%) = O(X3).

Proof. Let o : TP ~ T /0 € O(X1). Because (X2) <: (X)), there exist some T5* and T3 such that
o TP ~ T3 /0 € O(32) and TP <: TP and Tg* <: T2 by Lemma By Lemmawith Y < X,
TV <: TP* and T2 <: T3'. By Lemma@ TP = TP and T = T3 Thus, o TP ~ T2 /0 € O(2s).
To show the converse, let o : T3 ~ Tgm /[0 € (). Because ¥; <: ¥, there exist some 77" and
T such that o : TP ~» T8 /0 € ¥y and T8 <: TP and T2 <: T%% by Lemma By Lemma
with O(3g) <: O(Xy), TP <@ T8 and T$' <: T8, By Lemma |6, 77 = T9* and T#' = T$'. Thus,
o TP ~ T /0 e O(2). O

Definition 36 (Partial Order on EPCF Typing Contexts). We write A; < Ag if dom(A1) C dom(A3) and, for any
x € dom(Ay1), Aq(z) = Ag(x).

Definition 37 (Typing of Effect Handlers). Let ¥ = {o; : TP* ~ Tat/ Ol = Cfinjlsism g (o, 0 UP* ~

Ut /O) where a1, -+, 04 _and g1, -+, g, are ordered, respectively. o
For variable sequences h? = hiﬂ, oo B2 and BE = KR, AY we write hZ;h0 : % to denote the typing
context that:
. - 1<j<n -
e for each i € [1,m], assigns to the variable K the type [TP™] — ([T1] — (o™ — [ugm]) — == [Cm]) —

[Cfin]; and
e for each i € [1,n], assigns to the variable A the type [UP™] — [U#].

Given a variable sequence | h= hﬁ, hiD7 we simply write A : ¥ to denote hﬁ;hﬁ DI

For value sequences v = v1m,~~- coBand o0 = o0, -0 0 we write 2| A F o300 : X if:

1<j<n

e foreachie [I,m],E | At vim TP = (T = (U] = [ — [Cin]) — [Cfin] holds; and
e for cach i € [I,n], 2| A+ v : [UP] — [U] holds.
Given a value sequence 7 = v2, v5, we simply write Z | A+ 7 : X to denote = | A - risT=S >}

Lemma 21 (Typing Applications).

1LIUE|AFvy > mand 2| A vy 7y, then 2| Ak vy v : 7o
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22 0HE|AFv:imm > and E| Ak e, then E| Ak ve: 1.

3 UZE|AFe i 2> mmand 2| A ey:7m,then 2| AF ejen: 7o,
Proof.

1. By (T_APp).

2. It suffices to show that
Z|Akletz=cinvz:m

for some fresh x. By Lemma E|Ayxz:7m Fv:7m — 72. Then, we can derive the conclusion as follows.

(T_VAR)
ElAjzinbvin o1 Ak rin (T_Arp)
_App

E|lAFe:n ElAz:nbovr:im
(T_LET)

E|AFletz=ceinva:m

3. It suffices to show that
E|AFletz=ejinzes: T

for some fresh x. By Lemma E|A,z:7m = 72 b ey : 7. Then, we can derive the conclusion as follows:

(T_VAR)
ElAz:n o nbtrin o ElAz:im o be:n
CASE
E|Ake T > 7 Az >k xe T (T_LeT)
_LET
E|AFletz=ejinzes:m
O

Definition 38 (Types of the Static Lambda Calculus). We write:
o term[Z | A+ 7] for the set of EPCF terms e such that Z | At e : 7;
e val[= | A+ 7] for the set of EPCF values v such that = | A+ v : 7; and
e vals[Z | A F X] for the set of sequences of EPCF values ¥ such that = | A+ 7 : 3.
We also define comp[= | A+ C] depending on C. A, as follows:
comp[E |AFX> T /0] def vals[Z | AE XS] xval[Z | A+ 1] = term[E | AF [T]]
comp[E|AFX > T/ CM = Cfin] def vals[Z [ AF ] x (val[Z | AF[T] — [DD)][[C™]]]) — term[=Z | A+ [C]]
Lemma 22 (CPS Transformation of Subtyping).
1. If Ty <: To, then [Ty <: To] :val[E | AF[T1]] = val[2 | A+ [T:]] for any = and A.
2. If ¢} <: Ch, then [C1 <: Co] :val[Z | AF [C1]] = val[Z | AF [Co]] for any E and A.

3. Oy <:3ap> Ty /O, then [C) <: X > To /O] :comp[E | AF Ci] xvals[E | A Xz xval[Z | AF1] —
term[Z | A F [T5]] for any = and A.

4. If Oy <: Xo > Ty / CiM = Cfin then [C) <: Yo To /0] : comp[Z | AF ] x vals[E | A+ Za] x (val[Z |
AF[T] — [OE)][[CM]]]) — term[Z | A F [CSn] ] for any = and A.

5. If X1 <: X, then [X1 <: o] :vals[Z | AFX;] — vals|E | AF 5] for any = and A.

Proof. By mutual induction on the total sizes of the pairs (T, T2), (C1, C), (C1, %o > To /0), (Cy, Yo > Ty / CiM =
Ciin), and (X1, %5). Note that case (2 relies on cases and (4, but cases and rely on the IHs, so there is
no circularity.
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1. Assume that Ty <: Ts is derived. By case analysis on the subtyping rule applied last to derive it.
Case (HS_BaAsE) and (HS_ENUM): Obvious.
Case (HS_FuN): We are given
Ty <: T C) <: Cy
T — Cf <: Ty — C

for some Ty, T4, C{, and CJ such that Ty = T{ — C{ and Ty = T5 — C4. We are given
[T] — Cf <: Ty — Co) = Ax1. Aya.let 21 = x3 ([ T4 <: T1]Q(y2)) inreturn [C] <: C5]@Q(z1)

for some fresh 1y, and z;.

Assume that =, A, and v such that = | A+ v : [T] — C]] are given. Then, because [T5 — Cj] =
[T5] — [Cs], it suffices to show that

E)AF Aysa.letzy = v ([Ty <: Ty]Q(y2)) inreturn [C] <: C3]Q(z1) : [T5] — [Cs] ,

which is derived by

E ” A’yQ : [[TZIIIVZI : [[Cﬂ] = z1 - HC{]] (T7VAR)

/ / ! !/ —_ ! / ! / ’ BY THE IH
El Ay [To] o ([T2 <: T1]Q(y2)) : [Ci] A y2: [T2], 21 : [Ci] F return [C1 <: C3]Q(z1) : [Cs] (T_Lit)

E| Ay [To] Fletzr = v ([T5 <: T1]@(y2)) inreturn [C] <: C3]@Q(z1) : [C5] (”l: ABS)

E|AF Ayoletzr = v ([T2 <: T1]Q(y2)) inreturn [C] <: C3]@(21) : [Ts] — [C3] -

with

E|AF v [T — Cf] (T_VAR)

Ty =17 1 E| Ay [T by [To] °
_[ri-dl=r-l6] e E1Awc[Tlewc T o
ElAy:[T2]Fw:[Th] — [G] E| Ay [To] F [Tz <: Ti]Q@(y2) : [T1] (T_ApP)

Ef Ay [Te] F o ([T2 <: T1]Q(y2)) « [C1] o

2. Assume that C) <: C; is derived. We are given
)\Xl. /\]’I;, k‘g.[[cl < Ogﬂe@((}\(E, kl) X1 hilkl),hig, k‘g)
where |h;| = |C1.X| and |hy| = |C.X| for some fresh variable sequence hy and fresh variable ky. Assume that
=, A, and vy such that Z | A+ v : [C1] are given. Then, it suffices to show that
= " A AFQ, kg.[[cl <: Cgﬂe@((A(E, kl) U1 hilkl),hig, kjg) : [[02]] .

First, we show that, for any A’ such that dom(A’) N dom(A) = 0,

A(hy,ki). oy hyky :comp[E | A, A"F G ] (13)

by case analysis on C;.A.
Case C1.A = [O: It suffices to show that
A(hy,ky). v hi kg svals|Z | A, A F C1.Y ] xval[Z | A, A F 1] — term[Z | A A F[C.T] ],

which is obvious by E | A F vy : [C1] and Lemmas [15| and
Case 3 Of"i, Cfin, €. A = C"' = Cf»: Tt suffices to show that

Ay, k). o hy ky cvals[2 | A, A F CLEx(val[2 | A, A F[Cr.T] — [O(C.E)][[CM]]]) — term[E | A, A" F [Cf*] ],

which is derived by Z | A+ v : [C1] and Lemmas [15| and
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Thus, we have formula .

Next, we proceed by case analysis on C5.A.

Case (C3.A = [: It suffices to show that
E|AF Mg, ko [Cr <t Go]*Q((A(hy, ka). vnho ki), o, ko) [Co.2][1 = [Co. T
By (T_ABSs) and (T_RETURN), it suffices to show that
E| ARy ¢ Co. 8 ks LE[Cr <: Co]*@((A(hy, k). v hy ky), ho, ko) : [Co. T,

which is derived by case (3|) with
e formula ,
o hy evals[Z | A hy : C2.3, ks : 1F Cy. 5] by (T_VAR), and
o ko cevall[E | Ajhy : Co. 3 ko :1F 1] by (T_VAR).
Case 3 CiMt, Cfin. 0y A = CM' = Cf»: Tt suffices to show that

Z | Ak Mg, ko [Cr <: Co]P@((A(hy, Kk1). v hy k), Ao, ko) [Co. X[ ([Ca. T] — [O(Ca.-2)][[CiM]]) — [Con]].

Let A" = A hy : Co. 5,k : [Co.T] — [O(Co.2)][[CiM]]. By (T_-ABS) and (T_RETURN), it suffices to
show that o o o
2| A [C < Co]f@((A(hy, k). v1 hy ki), ho, ko) : [CEV]

which is derived by case with

e formula ,
e hy €vals[Z | A’ (».3] by (T_VAR), and
o kycval[Z | A F [Co.T] — [O(C2.2)][[Cini]]] by (T_VAR).

3. Assume that C) <: ¥o > Ty /0 is derived. By inversion and Lemma [3] Yo <: C1.¥ and C;.T <: Ty and
C1.A = 0. By the definition of the CPS transformation,

[[Cl <: Yo b TQ/D]]E = A(fl,FQ7 kz) letz = fl@([[zg < ClEﬂ@(E),kg) inreturn [[ClT < TQH@(iKl)

where |hy| = || for some fresh variable x1. Assume that =, A, t;, UZ‘, and v*2 such that

et ccompE| A Ci]=vals[Z | AF C1.E] xval[E|AF 1] = term[E | AF [C1.T]],
e Z|AF vh: %y, and
e S| ARkl

are given. Then, it suffices to show that
| AFletz; = t,Q([Sy <: C1.E]Q(vh), vk2) inreturn [C1. T <: To]@(z1) : [T2] -

Because ?5 € vals[E | A+ 5], we have [Z2 <: Cl.Z]]@(vE‘) evals[E | A+ C¢.3] by the IH on (23, C1.%).

Because v*2 € val[Z | A F 1], we have t;@Q([Xy <: C1.X]Q(v}),v*?) € term[Z | A - [C1.T]]. Thus, the
conclusion is derived as follows:

(T_VAR)

= " A,]}l : [[ClT]] = Iy - [[ClT]]
— By toE IH
o = " A,:L‘l : [[ClTﬂ = [[ClT < TQH@(Z‘l) : [[TQ]] (T RETURN)
= " A tl@([[zg <: C1.E]]@(U§),Uk2) : [[ClT]] = ” A,l‘l : HC&T]} F return [[ClT <: T2]]@(1:1) : [[TQH -

— (T_LET)
Z)AFletz; =t,Q([S2 <: C1.2]Q(vh), v*2)inreturn [C1. T <: To]Q(xy) : [T]

4. Assume that C; <: ¥y b Ty / O = CQﬁn is derived. By inversion, ¥y <: (C1.% and C;.T <: T and
C1.A <: Ci" = Cfi". By case analysis on the subtyping rule applied last to derive C;.A <: Ci" = Cfin.
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Case (HS_ANsBox): Contradictory.
Case (HS_ANSEMB): We are given C;.4 = [0 and Ci™ <: Cfi". By the definition of the CPS transformation,
[C1 <:Sgp To/ CiM = Cfin]e o
= A(f1, 02 hD ko). letz; = £Q([S <: C1.2]@(hY, hD)), 1)inletys = ko ([C1.T <: To]@(z1)) h inreturn [Citi <: Cin]@(ys) .
where \hﬁ\ = |[A(X2)| and |@| = |0(X9)| for some fresh variables 1 and ys.
Assume that Z, A, tq, v hm, ?, and v** such that
ot € comp[: |AF Ci]l=vals[E| AF Ci.E] xval[E| AF1] = term[E | AF [C1.T]],
E|AF v SD:EQ,and
| A+ v [72] — [AE)I G-
Then, it suffices to show that

[11 [1]

E|AFletz; =t:Q([X2 <: Ch. E]@(v2 Jub0) 1) inletys = o*2 ([C1.T <: To]@(x1)) vhT inreturn [Ci™ <: CE™]@Q(y2) : [Co7] .

By the IH on (2, C1.%) with £ | A F /%200 : 5. we have [Ss <: C1.E]Q(oM%, 0f0) € vals[Z | A F
C,.3]. Because 1 € val[E | A+ 1] by (T_ECONST), we have

A 6Q([E, <: G.S]@(wh? vh0) 1) : [C1.T] .
By (T_LET), it suffices to show that
E| Az [CL.T]F letys = v*2 ([C1. T <: To]Q(zy)) vl w5 in return [CiM <: CfnJ@(y,) : [Cf] .
By the TH on (Cy.T, Ty) with z; € val[E | A, xli ﬁ [Ci.T]] by (T_VAR), we have E | A,z :
15 and

[Ci,.T] + [[C£< Tg]]@(ml) [T2]. By Lemmas with Z | A F ok @ [Ty] — [O(22)][[Cir] ]
and Z | A F vbP : 0O(%,), we have

= ” A,SCl : [[ClTﬂ - ’U ([[01 T <: TQ]]@(SCl)) b0 HCHIH .
By (T_LET) and (T_RETURN), it suffices to show that
| Az [CnLT oy : [GR] G < GM@(y2) < [C57]
which is derived by the IH on (Ci™, Cfin) and yo € val[Z | A, 21 : [C1.T], yo : [CiM] F [Ci*]] by (T_VAR).
Case (HS_ANsMoD): We are given
Clnl Olnl Cﬁn < C2ﬁn
Cllnl = Clﬁn < Clnl CQﬁn

for some Ci"and Cf" such that C;.4 = Cj* = Cfin,
We consider two cases as follows:

Case (1.2 =Yg and C1.T = Ty and C‘m = C’zi“i: By the definition of the CPS transformation,

[Cy<: o Ty ) CJFF = 5]
= )\(fl7 hg, k2) letz; = fl@(hg, kg) in return Hcfm < O2ﬁn]]@(l‘1)

where |hy| = |25 for some fresh variable z;. Assume that =, A, ty, 1)75, and v*2 such that

et ccomplZ |AF C]=vals[Z | AF C1.X] x (val[ZE | A+ [C1.T] — [O(CL.D)][[C]]]) —
term[Z | A - [Cfin] ],

:||AI—172*‘:22, and
o E| ARV [To] - [A(S)I[C5M]]
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are given. Then, it suffices to show that

Z | At letz; = t;@(vh, v*?) inreturn [CF* <: Cfr]@(xy) : [C5"] .

Because
et cvals[Z|AF C.2] x (val[Z | Ak [C1.T] — [D(CL.D)][[CIM]]]) — term[Z | A - [Cfin]],
e Z|AF Wb : .Y by C1.X =%, and
e S| AR [C.T] — [O(C,.2)][[CiM]] by C1.X =33 and C;.T = Ty and Ci* = Cini,

we have

2| AFti@(ub, vke) : [Cf]
By (T_LET) and (T_RETURN), it suffices to show that

El A [CI]F [CF" <: G5 Q) < [C57]

which is shown by the IH on (Cfin, Cfi*) with Z | A,z : [Cf*] F 21 : [CH*] by (T_VAR).
Case C1.X # ¥y or C1.T # Ty or i # Ci*: By Lemmasland 0L O(C1.X) = 0O(X2). By the definition
of the CPS transformation,
[[Cl <£2 > Ty / Cgini = Cﬁnﬂe L
= A(fl,hgu,hg,kg).letxl = f,Q([D(Z2) <: I(C1.2)]Q(hy ) hQD7 )inreturn [Cin <: Cin]@(z;)

where [hY| = |I(22)| and |hY| = [O(X,)| and
v = )\yl,ﬁ.let 2o = ko ([C1.T <: Tg]]@(yl))ﬁin return [Ca™ <: CIM]@(2y)

for some fresh variables a1, y2, and z2 and fresh variable sequence ﬁ such that |ﬁ| = |0(X2)|. Assume
that =, A, tq, Uth, USD, and v** such that
et ccomp[Z | AF O] =vals[Z | AF C.E] x (val[Z | A F [C1.T] — [O(C:.D)][[C]]]) —
term[ =2 || A F[CEn],
e E|AF W ,UQD 3, and
o EfAF v [T] - [OE)NICM]]
are given. Then, it suffices to show that

E| Ak letr; = t,Q([A(X2) <: A(C1.E2)]Q(v. hm) vl 7vkl) inreturn [CII" <: CinJ@(zy) : [CH]  (14)
where e . .
¥ = )\yl,hl Jetzog = 02 ([C1. T <: Tu]@Q(y1)) R inreturn [CIM <: OM]@(z9) .
First, we show that

ElAEY[CLT] = [O(CLD]ICM] - (15)
Let A" = A,y; : [C1.T], BT 0(C1.%). By (T-ABSs) and (T_RETURN), it suffices to show that
1

Z) A Fletzg = v ([C.T <: To]Q(y1)) h1 inreturn [Ci™ <: C{M]@Q(z) : [CM] .

By Lemma [21] with

o | A'Fuke: [T] — [O(S2)][[Ci*]] by Lemma [15| with = | A F vke : [T5] — [O(S2)][[C] ],
E|AF[C.T <: T2]Q(yy) : [T2] by the IH on (Cy.T, T2) with Z | A’ F y; : [C1.T] by (T_-VAR),
2| A - AP :0(CL.E) by (T_VAR), and
0(C1.x) = 0(X2),
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we have
Aok ([CL.T <: To]@(y1)) hE : [CM]

By (T_LET) and (T_RETURN), it suffices to show that
= || A/ ,2:2 |:[ lnl:ﬂ '_ H lnl ln]]]@(ZZ) H:Clnlﬂ ,

which is derived by the IH on (C’m‘ Cint) and Z | A, 29 : [CIM] F 29 : [CIM] by (T_VAR).
Now, we derive judgment . Because
oty evals|Z | AF C1.2] x (vaI[E | AF[C.T] — [O(CL.2)][[CIM]]]) — term[Z | A F [Cfin] ],
o = | AR (%) <: m(Cl.Z)]]@(vgm) 1 [(C1.2), by the IH on ((A(32), H(C1.%)) with Z | A+ vhm :
7(22)
ElAF 1}2Tj :0(C1.%) because = | A+ 1)57[3 :0(X2) and O(X9) = 0(C1.%), and
e derivation ,

we have

= A F 6 Q([A(S) <: B(CLO)]a(u?), D, vk - [CF7]
By (T_LET) and (T_RETURN), it suffices to show that

El A [CI]F [CF" <: G5 Q() < [C57]
which is shown by the IH on (Cfi", Cfi*) with Z | A,z : [Cf*] F 21 : [Cf*] by (T_VAR).

5. Assume that ¥ <: Xy is derived. By inversion, we can suppose that

S =3 WY,
B = (o0 T T/ Ol = CRPPSSm w0 (g, UR ~ Ut Oiisn,
22 _ {Ui . Tinar ~ Tz%ri/ ml Cﬁn}l<z<m W {§z Uigar — arl/D}1<z<n

e Vie[l,m]. T <: TH",

o Vie[l,m]. TA" <: T3,

o Vic[l,m]. Cl <: Cint)

o Vic[l,m]. Cin <. Cfin)

o Vi€ [ln]. U <: UR™, and
o Vic[Ln] US <: U

7m1<z<m < m <is<m —_1<i<n
Assume that =, A, v] , and th " such that = | At v ;o : 3} are given. Then, it

suffices to show that
——=1<i<m T1<1<n

EAF v hm ; uhH 2 Yo
where:
o Vic[l,m]. v;m = Axg, ko.letx; = v{“zm ([TE" <: TH]Q(x2)) v; in return [[C-ﬁn < Ci%“]]@(xl)
o Vie [Lmlv =y By S ety = ky ([T < T37]@(y0) W' /<" inreturn [Clg <: C@(yn),

o Viec [1,n]. wi = Azaletzy = he (JURY <: UF™]@Q(22)) inreturn [US™ <: UZ]Q(2) (Where hsi is a vari-
1< <|H(Z0)]

able in the sequence h that corresponds to g; in 3), and

o Vic[l,n]. vi- = Axy. Ietxl = b ([US <: UR™]@(x2))inreturn [US" <: Ux]@Q(2).

First, we have . _
Vie [Ln] 2] AR [UR] = [UF'TF wi : [UST] = [UST

which is derived by (T_ABS), (T_LET), (T_VAR), (T_App), (T_RETURN), and the IHs on ([US™], [UL™])
and ([UA], [U]). Thus,

Vie[lml. B Ak [T5'] = [BE)NICE T F v [T — [OE)IICHT]
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by (T-ABS), (T_-RETURN), (T_LET), (T_VAR), Lemmas|15/and 21} and the IHs on ( 74", T&41) and (Ci3, Cint).
Furthermore, then

vie[Lml E]AF P [T5] - (175 - [BE)IICE]) - [C5]

X2

by (T_ABs), (T_RETURN), (T_LET), (T_VAR), Lemmas [L5| and [21} the THs on (75", TH*) and (Cfir, Cir),
and 2 | A F o [TH] - ([T37] — [OE )] [CET]) — [Cf].

We also have _
Vie[Ln]. E|AFu [USY] = [US]
by (T_ABs), (T_LET), (T_VAR), (T_RETURN), Lemma [15} the ITHs on (U5, UR™) and (U, Uxt), and

Z)AF ofH: [USY] — [UAT]. Therefore, we have the conclusion.

O
Lemma 23 (Type Preservation of the CPS Transformation). Assume that [I'] < A.
1. fTFp V:T,then E | AF [V]p : [T] for any =.
2.IfTkp M : C, then E| A+ [M]p : [C] for any =.
3. IfI'kp M : C, then [M]% : comp[ZE | A+ C] for any E.

Proof. By mutual induction on the typing derivations. We often omit D in the proof because it is clear from the
context.

e Assume that I'+ V : T is given. By case analysis on the typing rule applied last to derive it.

Case (HT_VAR): Obvious by (T_VAR).
Case (HT_CoNsT): Obvious by (T_CoNsT). Note that ty(c) is a base type by Assumption
Case (HT_ECoNST): Obvious by (T_ECONST).

Case (HT_ABs): We are given I' - \e. M : T — C’ for some x, M, T', and C’ such that V = Az.M and
T =T — C' Byinversion, 'z : 7"+ M : C'. Because [I'] < A, we have [I'],z : [T'] <X A,z : [T].
Therefore, by the IH, = | A,z : [T'] F [M] : [C']. By (T-RETURN) and (T-ABS), E | A F Az.return [M] :
[T'] — [C’]- By the definition of the CPS transformation, we have the conclusion.

Case (HT_F1x): We are given I' - fixz. V' : T/ — C’ for some z, V', T', and C’ such that V = fixz.V’
and T = T' — C’. By inversion, I'xz : T/ — C' + V' : T' — (C’. Because [I'] < A, we have [I],z :
[T'] = [C'] 2 Az : [T'] — [C']. Therefore, by the IH, E | A,z : [T'] — [C'] - [V'] : [T'] — [C']-
By (T_F1x), 2 | A F fixz.[V'] : [T'] — [C']. By the definition of the CPS transformation, we have the
conclusion.

Case (HT_SUBV): By inversion, we are given I' Fp, V : U for some U and D’ such that U <: T. By the
definition of the CPS transformation, it suffices to show that

which is derived by (T_APP), Lemma and the TH.

e Assume that ' M : C is given. Let h be a fresh variable sequence such that |h| = |C.X|. By case analysis
on C.A.

Case C.A = [0: By the definition of the CPS transformation, it suffices to show that
E)Ah: CXk:1F[M]*Q(h,k): [C.T]

for some fresh variable k. It is shown by case with
—Z|AR: CXk:1Fh: C.Y and
—EZ|AR: CXk:1Fk:1
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by (T_VAR).
Case 3 C™ Cfin, ¢.A = C™ = (Cfi: By the definition of the CPS transformation, it suffices to show that
E|lAR: CXk:[C.T) = [O(C.D)][[C™]] F [M]Q(h, k) : [C],
which is shown by case with
—E|AR: CXk:[C.T] = [CM]Fh:C.X and
- Z| AR CEk:[C.T] = [D(CO)[C™]]Fk:[C.T] — [O(C.D][[C™]]
derived by (T_VAR).
e Assume that I' = M : C and = and A such that [I'] < A are given. Let
— vhevals[Z | AF C.X],
- (vhim, h0) = split(vh, C.¥), and
- Y = {Ui . Tipar ~ Tiari/ciini = Ciﬁn}lgigm W {§z’ . UZ_P&F I Uiari/D}lgign

. par ar ari ari ini ini fin fin par ar
fOI'bOHlQO'l,"',O':m,Tl a"'7T1I;7,7T1 7"'aTm701 7"'a0m7and01 a"'7Cma§17"'7gn7U1 7"'7U117,J )
and UM, .-, U3 such that the sequences o1, ,0,, and i, -+ , G, are ordered in terms of <,,. We proceed

by case analysis on the typing rule applied last to derive I' - M : C.
Case (HT_RETURN): We are given

r=v.Cc.T
PkretunV:CX> C.T/0O

and C.A = O for some V such that M = return V. Then, it suffices to show that
E|AbFreturn[V]:[C.T],

which is derived by

By THE IH

E|[AF[V]:[C.T] S

E|AFreturn[V]:[C.T]

Case (HT_LET): We are given

Fl—Mlic.ZDT1/D F,.’E:Tl'—MQZC
FFIetx:MlinMQ:C

for some x, My, M, and T; such that M = (letz = M; in M3). Without loss of generality, we can assume
that = & dom(A). By the IH with

~THM:CX> T, /0,
~Z|AFvh: CX, and
—E|AF1:1by (T_ECONST),

we have

ElAF[A]ra(h, 1) [T - (16)
We proceed by case analysis on C.A.
Case C.A = [0: Assume that v* such that = | A F v* : 1 is given. By the definition, it suffices to show that

2| AFletz = [M]eQ(v", 1) in [My]e@(vh, v¥) : [C.T] .
By (T_LET) with derivation (16]), it suffices to show that
2| Az [Th] F [Ma]f@(vh, o%) : [C.T],
which is derived by the TH with
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- F,SL'IT1|_MQZC,
— [Tyz: Th] = Az [Th],
~E|Az: [Ty Fv": C.E by Lemma and
—Z|Az:[Th]Fv*:1by Lemma
Case 3 C™ Cfin, .4 = O™ = (Cfi"; Assume that v* such that Z | A - o*: [C.T] — [O(C.2)][[C™]]
is given. By the definition, it suffices to show that
Z | AFleta = [M]eQ(v", 1) in [My]e@(vh, o*) : [CF] .
By (T_LET) with derivation (T6]), it suffices to show that
= Az [T F [MLIFQER, o) : [
which is derived by the IH with
—Ta: Ty FMy: C,
— [Tyz: Th] < A,z : [Th],
—~E|Az:[Ti]Fv": C.E by Lemma and
—Z| Az [Ty] o< [C.T] — [O(C.D)][[C™]] by Lemma
Case (HT_LETATM): We are given

M :CEeTy/C'=C™ To:TiFMy: CEp C.T/CM = ('
Thletz =M inM: C.X> C.T/C™ = ¢

for some x, My, My, Ty, C’, C™ and Cfi" such that M = (letx = M;in M) and C.A = C™ = Cfin,
Without loss of generality, we can assume that = ¢ dom(A). Assume that v* such that = | A F v* :

[C.T] — [O(C.2)][[C™]] is given. Let hT be a sequence of fresh variables such that |h5| = |[J(X)|. By
the definition, it suffices to show that

Z | A [M]FQ(0", Az, RO [Mp]e@(vh BT, o)) : [CF]

Let A’ = A,z : [T,],hP : O(C.%). By the IH with

—T,z:Th+FMy:CXpC.T)CM = (7,

— [T,z: Th] < A,

— 2| A'F "B A0 ; ¢S by Lemma [15) and (T_VAR), and

— E| Aok [0.T] — [O(C.2)][[C™]] by Lemma 15}
we have _

A" [Ma]e@(vh?, hE, ok)  [C'] .

By (T_ABS) and (T_RETURN),

= | Ak Az, A M@0, 1O, o%) - [Th] — [D(C.D)][[C]] - (17)

By the IH with
—TFM:0X>T,/C" = Cfin,
- [T =4,
—E|AFP: C.%, and
— derivation ,
we have the conclusion.
Case (HT_APpP): We are given

IFVi:T—C Tk Vo:T
F|—V1V250

for some Vi, Vs, and T such that M = V3 V,. By case analysis on C.A.
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Case C.A = [0: Assume that v* such that = | A F v* : 1 is given. By the definition, it suffices to show that
Z)AF[V][Vo] v o*: [C.T],

which is derived by Lemma |21} and the IHson ' V; : T — C and T'F Vo @ T.
Case 3 C'i, ¢fin, 0.4 = O™ = (Cfin: Assume that v¥ such that = | A+ ok : [C.T] — [O(C.D)][[C™]]
is given. By the definition, it suffices to show that

Z)AF V] [Va] vh ok [Ci]

which is derived by Lemma 2] and the [Hs on T'H V4 : T — C and T V5 : T.
Case (HT_CASE): We are given

I'HV:in Yie[l,n.TFM:C
I'Fcase(V; My,--- ,My): C

for some Vi, My,---, M,, and n such that M = case(V; My,--- , M,,). By case analysis on C.A.
Case C.A = [J: Assume that v* such that = | A - v* : 1 is given. By the definition, it suffices to show that

= | Ak case([V]; [Mi]S@(oP, oF), - - , [My]e@(o", 0¥)) - [C. 1T ,

which is derived by the IHs and (T_CASE).
Case 3 C'i, ¢fin, 0.4 = O™ = Cfin: Assume that v* such that = | A ok : [C.T] — [O(C.D)][[C™]]
is given. By the definition, it suffices to show that

E| Ak case([V]; [MiJ*@(o", v¥), -, [Ma]°Q (0P, X)) : [CT]

which is derived by the IHs and (T_CASE).
Case (HT_Op): We are given

G UM~ UM /OeCy THV U T,o:UMEM:C
Fkg(Via. M): C

for some V', x, M’, and i € [1,n] such that M = Gi(V’;z. M'). Without loss of generality, we can assume
that z & dom(A). Because Z | A+ vh: €. and ¢; € dom(0(C.X)), there exists some v in v" such that

E| AR [UPY] = [UM] .

Thus, _
ElAF V] [UM] (18)

by

By THE IH

E|AE oS [UP™ U E|AEV]:[UP™
[AF v [U77] = [U] ATV [U7] (T_App).

El ARV U]

We proceed by case analysis on C.A.
Case C.A = [0: Assume that v* such that = | A F v* : 1 is given. By the definition, it suffices to show that

Z) Ak letz =% [V']in[M']*Q(vh, v*) : [C.TT] .
By (T_LET) with derivation (18)), it suffices to show that
Az [UM] F [M]FQ(vh, oF) : [C.T]

which is derived by the TH with
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—T,x: UM FM:C,

— [0,z : U] < A 2 [UX],

~ E|Ax: [UM]F P : C.% by Lemmall3]

—Z) Az [UM] ok 1by Lemma

Case 3 C™ Cfin, .4 = O™ = (Cf1"; Assume that v* such that Z | A - o*: [C.T] — [O(C.D)][[C™]]
is given. By the definition, it suffices to show that
Z| Ak letz = o [V']in [M']eQ(vh, v*) : [CT2] .
By (T_LET) with derivation (18)), it suffices to show that
E| Az [U] - [M]Pa(eh, o) : [C™]

which is derived by the IH with

—Tyx: UM FM:C,

- [[Fax : Uiari]] j A,{ZZ : HUiari]]a

~E| Az [UM]Foh: C.X by Lemma

—Z) Az U] ok [C.T] — [O(C.D)][[C™]] by Lemma

Case (HT_OPATM):

o TP > T/ O = O e X THV TP Toa: TMEM':CE»C.T/CM= M
Tkoy(Vie.M):CX> C.T)CM = Cfin

for some V', x, M', i € [1,m], and C™ such that M = o;(V';2. M') and C.A = Cn = Cfin, Without
loss of generality, we can assume that = ¢ dom(A). Because = | A F oM : C.X and o; € dom(I4(C.%)),
there exists some v in v" such that
El AV [T = ([T] = [O(C- DG — 6] -
Thus, by (T_App) and the IH,
El AR V] (T = [BCDIG™T]) — 1G] - (19)

Assume that v* such that = | A+ v [C.T] — [O(C.2)][[C™]] is given. Let hH be a sequence of fresh
variables such that |hZ| = |J(C.X)|. By the definition, it suffices to show that

Z | AF o7 [V'] O, kD [M]F@ ("D, 1T, v%)) : [Cfin] .

Let A’ = Az : [T#],30 : O(C.%). By Lemma 21} derivation (19), (T_ABs), and (T_RETURN), it
suffices to show that _ o
2| A M@, B0, vk [CM]

which is derived by the IH with

~ D TR MOXe C.T)CM = o,

— [,z T < A,

— 2| Ao pE : C.8 by Lemmaand (T_VAR), and

— E| Aok [C.7] — [O(C.2)][[C™]] by Lemma [15]

Case (HT_HANDLE): We are given

H' = {retunz — L} W {0}(ys; ki) — M;}'SS™0w {l(z;) s Ny}ISism0
S = {0} TP e T O = ¢SS (L U s U / O) SIS
reM:¥>T/C"™=C Ta:TFL:C™
Vie [Lmol. Dys s T ki T8 = ')+ Mz C'f"
Vie [lngl. T,z : UTY N, %0 U /O
——1<i<m

Ve e{cm " CY.Vi€e [l ng. €'Y <Y

T+ with H handle M’ : C
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’ / /par /par /arl sari
forsome H', M', x, L, 0y, ;0005 Y1, s Ymos K1y s Koy Muy -+, My, T'7 -, T % T

mo? mo?

7ini 7ini /fin sfin / par /par /arl sari
R Cmoa dO]?" C 07§1a"'7gn07217"'aznoaNl7"'7NnoaU1 P UnOaU o Un07

Y/, T', and C"™ such that M = with H handle M’. Let hD be a sequence of fresh variables such that
|hB| = ng. By the definition, it suffices to show that

71<z<m0 751<1<’ﬂ0

E|AF[M]Q(w , W;

K2

Az, O return [Z]) : [C]
where
— Vi€ [L,mol. w? = Ay, K letk; = return (Ay, B, k.k, y T -<I<m0 B k) in return [M;] (|B] = |C"™.50)),
— Vi€ [1,mgl. Vj € [Lngl. vy = Az [S o U /O <2 ¢ 2 p U5 /OJ*Q([N;]°, R, 1), and
—Vie[ln] wl =Xz [E) 0 U /O < €. b U/ O]Q([N,]e, vh, 1).
It is derived by the IHon T'F M’ : &' > T / ¢"™ = C with the followings.
— We show that, for any i € [1,my],
—_ ar ari ini fin
EfAFwf [P - (7] - OEC) - 1657 -
Let ) o
A=Ay [TV K [T = [BEDICTTT -
By (T_-ABS) and (T_RETURN), it suffices to show that

2| A ¢ letk; = return (\y, b, kK, y 5 <970 B k) inreturn [M;] : [C'5"] (20)

First, we show that o
2 ANy b kK, y v SIS0 Bk [T - €] (21)

By (T-ABS) and (T_RETURN), it suffices to show that
)ALy [T M kK, y o S0 Bk [0
By (T_ABS), (T_RETURN), (T_VAR), and Lemmasand it suffices to show that, for any j € [1, ng],
AR S E vy U] = [UT]
Let A = A" b : CM.5, 2 [U'5*]. By (T-ABs), it suffices to show that
A [Z e U /0 < ¢ U/ O)Q([N;]0 R 1) [UTET])

By (HS_ComP) and ¢/}™.% <: ¥/ and Lemmal we have ¥ > U’a“/D < ¢y U’am/D Thus,
by Lemma [22]

[[Z/ U/al"i / I:l < C/ini E > U/ari / I:’]]
comp[Z | A" - S e U8 /O] x vals[ 2 | A” F 5] x val[ 2 | A7 F 1] — term[Z | A” - [0727]] .
Because

* [N;]® : comp[Z | A" X > U’?ri/D] by the IH with T',z; : U’} = N; : ¥ > U’?ri/D and
[T,z : U’par]] <A,
*x S| A”F h: C’;m.Z by (T_VAR),
* 2| A”F1:1by (T_ECONST),
we have the conclusion.
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— We show that, for any i € [1, ng],
Bl A wl [UTT]) - [UT]
Let A’ = A, z; : [U'T™]. By (T_ABs), it suffices to show that
ZIA S e U /O0<: C.8 e U/ OJQ([N]°, 0P, 1) < U727 .

By (HS_Comp) and C.¥ <: ¥ and Lemma [} we have ¥} > U2 /0 <: €.% > U/?™ /0. Thus, by
Lemma [22]

[ e U /O<: C.8e U5 /O] _
comp[E | A'F X b U™ /O] x vals|2 | A’ F C.5] x val[2 | A F 1] = term[Z | A’ + [U'™]] .

Because
* [N:]¢ : comp[E | A’ F ¢ > U’ /O] by the IH with T',z, : U™ + N, : ¥/ > U?" /0 and
[T,z : U] < A
* 2| A'Foh: C.X by (T_VAR),
x*x 2| A"F1:1by (T_.ECONST),
we have the conclusion.

— We show that o B
E H A |_ /\x,hD.return [[LII : [[T’ﬂ N H:D(Z/)II[ [[C”nl]]] '

By (T-ABS) and (T_RETURN) it suffices to show that
E| Az [T],hB : OE) F L] : [¢"™],

which is derived by the TH with

* D,x: T L: O™ and

x [Ty : T2 Az [[T']],hﬁ : O).

Case (HT_SuBC): We are given
F"D/MZC/ C'<: C
I FD M:C

for some C' and D’. By case analysis on C.A.

Case C.A = [J: Assume that v* such that Z | A F v* : 1is given. By the definition, it suffices to show that
E|AF[C <: CIQ([M]%,, vP, 0% : [C.T] ,

which is derived by Lemma [22] and the IH.
Case 3 C™ Cfin, .4 = O = (1" Assume that v* such that Z | A - o*: [C.T] — [O(C.2)][[C™]]
is given. By the definition, it suffices to show that

Z)AF[C <: CTEQ([M]S, vP, o¥) : [CT7]

which is derived by Lemma 22 and the IH.
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3.4 Semantics Preservation

Lemma 24 (Well-Definedness and Closedness of CPS Transformation on Subtyping Derivation).

1. If Ty <: Ty, then [T} <: Ty] is well defined and closed.

2. If Cy <: Oy, then [C; <: (5] is well defined and closed.

3. If Cy <: Cy, then [Cy <: C5]° is well defined and closed.

4. If ¥1 <: ¥g, then [X; <: Xo] is well defined and closed.
Proof. Straightforward by induction on the subtyping derivations. O
Lemma 25 (Well-Definedness of CPS Transformation on Typing Derivation).

1. If T M : C and [vh| = |C.%], then, for any v¥, [M]°@(vh, v¥) is well defined.

2. fT'F M : C, then [M] is well defined.

3. fT'F V : T, then [V] is well defined.
Proof. Straightforward by induction on the typing derivations with Lemma O
Lemma 26 (CPS Transformation of Reflexive Subtyping).

1.VT,v. [T <: T]Q(v) — v.

2. VC,v. [C <: C]Q(v) — v.

3. VX, 00 [P = |2 = [ <: X]@Q(vh) < vh.
Proof. By mutual structural induction on 7', C', and X.

1. By case analysis on T.

Case dB. T = B: Obvious.
Case dn. T = n: Obvious.

Case 3T',C'. T = T" — C": The conclusion is proven by
[T"— ¢ <: T — C' (v) Aya.letzy = v ([T <: T']Q(y2)) inreturn [C" <: C']Q(z)

Ayo.letzy = vyginreturnz;  (by the IHs)

AY2.vV Yo

v

RN

2. By the definition of the CPS transformation, we have
[C <: C]@Q(v) = Mhg, ko.[C <: C]*Q((A(hy, k). vhy Kky), ho, ko) .
By case analysis on C.A.

Case C'.A =[J: By the IHs and the definition of the CPS transformation, the conclusion is proven as follows:

[C <: C]Q(v) = Ahg,koletz; = v[C.E <: C.X]Q(hy) kginreturn [C.T <: C.T]Q(z;)
<+ Ahg, ky.letw; = vhg kyinreturnz;  (by the IHs)
— )\E7 kQ.’UEkQ
— U.
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Case 3 C™, Cfin, C.A = C™ = (Cfi": By the IH and the definition of the CPS transformation, the conclusion
is proven as follows:

3. Assume

[C <: ClQ(v) )\E, kaletxy = v@k‘g inreturn [Cin <: Cfin]@(z;)
)\@, k/’2.|et£1 = v hg ko inreturn a1 (by the IH)
)\hg, kg.’U h2 ]{72

V.

US|

o U ={o;: I/ ~» TP [ Clni = Ofinjisismyg (¢, UP™ ~ UM /O}SI<" and

—1<i<m

o vh = pho

Then, [ <: 2]@(vh

—l<i<n
, vhsi .

—1<i<m —1<i<n
) returns a value sequence v%: , VS such that

o Vi€ [l,m]. v7 = Axa, ko. Ietxl = o"oi ([TP* <: TP*]Q(x2)) v;inreturn [Cfi* <: Cfin]@(zy),
e Viec[l,m]. v; = )\yl,iﬁ = .Ietyg = ko ([T <: T2 ]@Q(y1)) w5 = =" in return [Cint <: Ci]@(ys),
and

o Vic [1,n]. ws = Azg.letzy = b (JUP™ <: UP™]@Q(22)) inreturn [UAT <: UM]Q(2), and
e Vi€ [1,n]. v5 = Azg.letxy = oM (JUP <: UP*]Q(x9))inreturn [UM <: U] @Q(z1).

By the IHs, the conclusion is proven as follows:

Vi € [1,n]. wS

Azgletzy = he ([UP™ <: UP™]@(z2)) inreturn [UM <: UM @Q(2)

—  Azg.letz; = hS% zpinreturnz;  (by the IHs)
—  Az9.h% 2o
— h*
Vie[l,m]. v = Ay,ho —_ "letyy = ko ([TA <: T (yy)) ws =/ =" inreturn [CIM <: Cini]@(y,)
— )\yl,m == ety = kot w5 =I5 return y2 (by the IHs)
— )\yl,ﬁ - .1{32 Y1 w<11§J<”
= )\yl,ﬁlgjgn.kg 1 R (by the above reasoning)
— kg
Vi e [1,m]. v = Amy, koletzy = oM ([TPY <: TP*]Q(z2)) v; inreturn [CE* <: Cfin]@(xy)
< Az, kgletw; = v xo kyinreturnz;  (by the IHs and the above reasoning)
— )\1'2, k’g.’l}ho" To ko
— ho
Vi€ [l,m]. v = Azgletzy = oM ([UPY < UPY]Q(x2)) inreturn [UR <: U@ (21)
< Axo.letw; = v"i zginreturnz;  (by the IHs)
< Axg.vhSi g,
—  phsi |
O
Lemma 27 (CPS Transformation of Subtyping on Final Answer Types). If C = Cj,---, C, and EC is well

defined and T Fp M : ¥ > T/ C = C; and [vP| = |¥)|, then, for any vk,

ECIM]SQ(vh, oF)] = [M]% @(o", v¥)

for some D' and T'kp M : 2> T/ C = C,.

Proof. By induction on n, it suffices to show that: if ' Fp M : £ > T/ O™ = Cfi" and Cfi" <: Cf» and |ﬁ| = |3,
then, for any v* and fresh variable z,

letz = [M]5@Q(v", v%) inreturn [C <: Cfin]@(z) = [M]S% @(vh, v¥)
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for some D’ such that ' p M : X > T/ O™ = Cfin o
Assume that I'Fp M : S T/ O = Cf* and Cf* <: Cfi* and [vh] = |2] and v are given.
By Lemmaand (HS_ComP), we have X > T/ C = Cfin <: S p T/ O™ = Cfin. Let
IFkp M2 T/CM =" $oT/C0M= Oty /0N = Cfin

D = — = (HS_SuBCQC).
r-M:XT/C™= C™"

Let z is fresh variable. Then, the conclusion is proven as follows:

[M]5 @ (v, v¥)

[EoT/CM = Cfr <: Lo T/ C™ = Cf[eQ([M]S, o7, v¥)
letz = [M]SQ(vh, v¥)inreturn [Cfin <: Cfr]@(x) .

O
Lemma 28 (CPS Transformation of Operation Signature Subtyping). If ¥ <: 35 and [¥;] = |vh|, then |So| =
[[Z1 <: Za]@(vh)].
Proof. By the definition of the CPS transformation. O
Lemma 29 (Evaluation Under Evaluation Contexts). If g —" eq, then E[e;] —"™ FEJeg] for any E.
Proof. First, it is easy to show that

Ve, e, E. g — eg = E[e;]] — FEle]

by induction on E. Then, the conclusion is proven by induction on n. O

Lemma 30 (Weakening of CPS Transformation). Assume that dom(I'2) N dom(I'1,T's) is empty.
e If '), T'3tp V: T, then [V]p = [V]p for some D’ such that I'y,I'y, s bp Vi T.
o IfI',I'stp M : C, then [M]p = [M]p for some D’ such that 'y, T, T's Fpr M : C.

e If T'),T3 - M : C and |vP| = |C %], then, for any v¥, [M]%@(vh, v¥) = [M]%, @(vh, v¥) for some D’ such that
Fl,rg,rg |_D’ M: C.

Proof. Straightforward by mutual induction on the typing derivations. O
Lemma 31 (Substitution is a Homomorphism). Assume that I'y - V' T".
1. Ty, z: T'.Tobp M : C, then [M]%[[V']/z] = [M[V'/z]]% for some D’ such that I'y,Ts - M[V'/x] : C.
2. fTy,a: T, Tobp M : C, then [M]p[[V']/z] = [M[V'/z]]p: for some D’ such that 'y, Ty Fpr M[V'/x]: C.
3. IfTy,z: T'\T'ybp Vi T, then [V]p[[V']/z] = [V[V'/x]]p for some D’ such that I'y,Ts Fpr V[V /2] : T.
Proof. By mutual induction on the typing derivations.

1. By case analysis on the typing rule applied last to derive ',z : T/, Ty Fp M : C. We may omit typing
derivations in the CPS transformation but they are clear from the context.

Case (HT_RETURN): We are given

Fl,.’L‘Z T/,Fg }_D” V.:C.T
Iy,z: T TybFpreturnV :C.X>C.T /0O

and C.A =[O for some V and D" such that M = return V. The conclusion is shown as follows:

[M]5[[V'] /]
= (A(h,k).return [V]p)[[V'] /2]
A(h, k). return [V[V' /x| D (by the IH)
[return VV'/z]]%,
MVl
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for some D" and D’ such that I'1,T's bpr V[V//2z]: C.T and

Fl,rg F'D/// V[V,/I] :C.T
I'y,To bporetun V[V /2] : C.X> C.T /0O

(T_RETURN).

Case (HT_SuBC): We are given

I,z T/,FQ Fpir M : ' C<C
Fl,a:: T/,Fg l_D M:C

for some C’ and D”. Then,
[M]5IIV']/] _
= (A(hk). [¢" < Cl*Q([M]%, b, X)[[V']/]
(A, k). [C" <: CI*Q([M[V'/z]]$,h,k))  (by the IH and Lemma [24)
[M[V'/z]]%

for some D" and D’ such that I'y,T's Fpw M[V'/x]: C’ and

Fl,rg l_D’” M[V//id : C/ C/ <: C
Fl,Fg |_D/ M[V’/l’] : C

(HT_SusC).

(HT_LET): We are given

Fl,.’EI T/7F2 "Dl M1 :CX> Tl/D Fl,.’EI T/71—‘27y2 T1 "D2 M2 : C
Fl,JZZ T/7F2 l_D Iety: M1 inMg : C

for some y, My, My, Ty, D1, and Dy such that M = (lety = M in Ms). Without loss of generality, we can
assume that y & fo(V') U {z}. Then, the conclusion is shown as follows:

[M]B([V']/=] _ _
= (A(h,k).lety = [Mi]%, @Q(h, 1) in [M:]5, @(h, k))[[V']/z]
= A(K).lety = [Mi[V' /2], @(B, 1)in [My[ V' /2], @(h, k) (by the IHs)
— [lety = My[V'/a] in Mo[ V" /][,
= [M[V'/z]]p

for some D}, Dy, and D’ such that T'y, Ty Fp; My[V/ /2] : C.X > Ty /O and Ty, T,y 2 Ty bpy Ma[V' /2] C
and
Fl,l—‘g "Di MI[V'/x} :CY> T1/|:| I‘l,I‘g,y: T1 }_Dé MQ[V//.'L‘] : C
'y, o Fpr Iety = Ml[vl/l‘] in Mg[V’/x] : C

(HT_LET).

(HT_LETATM): We are given

Tya: T\ Tobp, My : C.E> T/ C' = C™ Ty,a: T To,y: T bp, My: C.E> C.T/C™ = ('
Dy,2: T Tobplety=MinMy: C.X> C.T/CM = ¢fin

for some y, My, My, Ty, C’, O™, €% D, and D, such that M = (lety = MliLMg) and C.A = O™ =
Cfin. Without loss of generality, we can assume that y ¢ fo(V')yU {z}. Let hH be a sequence of fresh
variables such that |h2| = |O(C.%)|. Then, the conclusion is shown as follows:

[M]15[[V']/x]

= (AP, 07, X%). [M]5, @(h?, 07, Ay, O [Mp]5, @(h?, 75, k)))[[V'] /2]
(where |h%| = |()(C.%)| and |hT| = |0(C.5))) -
= A7 b0, k). [Mi[V'/2]]%, @07, 05, Ay, hE.[Mo[ V' f2]]5, @(h7, BT, K))  (by the IHs)
= [lety = Mi[V'/a]in Ma[V' /][5
= [M[V'/z]]%
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for some Dj, D), and D’ such that T'1,T'y Fop; M[V'/x] : C.X > Ty /C" = Of"and Ty, Ty,y : Ty Fpy
My[V'/z]: C.X> C.T ) O™ = ¢’ and
I, Dy bpy My[V'/2]: C.8> Ty ) C' = C™
Iy, Do,y : Ty bpy MV /2] : C2> C.T ) C™ = ('

— HT_LETATM).
I', Ty bFprlety = Ml[V//LL']In MQ[V’/.T] :C.YXp> C.T/Clm = Cﬁn ( )

Case (HT_APp): We are given

Fl,.’ti T/7F2 FDl Vl : T/ — C Fl,l'Z T/,FQ F'DQ VQZ T/
Fl,l‘: T/,Fg l_D Vl V2 : C

for some Vi, Vo, T', Dy, and Dy such that M = V; V,. The conclusion is shown as follows:

[M]B([V']/=] B

(A(h, k). [Vi]p, [Va]p, hk)[[V']/x]

= A(,K). [Vi[V'/allp; [Va[V'/2]]p, Bk (by the THs)
[VA[V! /] Vo[V /2]]D

[MIV' 2]l

for some D}, Dy, and D’ such that I'y, 'y Fpr Vi[V'/2]: T — C and 'y, Ty Fpy Vo[V'/z] : T" and

Fl,l—‘g l_'Di Vl[V’/:z:] T = C Fl,l—‘g l_'Dé VQ[V//ZE] 2T’
Fl,rg l_D’ Vl[V’/x} VQ[V’/J:} : C

(HT_App).

Case (HT_CASE): We are given

I',z: T/7F2 |—D0 V:in Vie [1,n] I',z: TI,FQ |_Di M;: C
Iy,z: T Tyt case(V; My, -+, M,): C

for some Vi, My,--- , My, n, Dy, and Dy, -, D, such that M = case(V; My, -, M,). The conclusion is
shown as follows:
[M]S[V]/x] _ _
(A(h, k). case([V]p,; [Mi]p, @(h, k), - -+, [Mn]p @Q(b,K))[[V]/2]
A(h, k). case([V[V' /][ py; [[Ml[V’/x]]]%i@(h,k), L MLV 2], @(h, k) (by the THs)
[case(V V' /x|, My [V'/x],--- , Mp[V'/x])]%

= [M[V'/2]lp
for some Dy, Dy, - -+, Dy, and D’ such that I', T’y Fp, V[V'/z]:nand Vi € [1,n]. T,y Fpr M[V' /2] : C
and

'y, s Fpé V[V//LE] n Vie [1,77,] 'y, g FD: MZ[V//JL‘} : C

HT_C .
Ty P case( VIV 2l My [V ol MV ja]) s € L E-CASE)

Case (HT_Op): We are given

G:UPY v UM /O e CX Ty,z: T Tobp, V:UPY Tyx:T Tyy: UM bp, M': C
Fl,.’EZT/,FQ}_DC(V;y.M/)ZC

for some ¢, V, y, M', UPa*, U Dy, and Dy such that M = ¢(V;y. M’). Without loss of generality, we
can assume that y € fu(V') U {z}. The conclusion is shown as follows:

[M]5[[V']/=] _ _
= (A(h,k).lety =h* [V]p, in [M']%,Q(h, k))[[V']/z] (where h® corresponds to ¢ in h)
= A(hk).lety =he [V[V'/z]]p; in [[M'[V’/x}]]%é@(h,k) (by the IHs)

= [o(VIV'/a];y. MV /2])] D
= [M[V'/z]]%
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for some D}, Dy, and D’ such that T'y, 'y Fpr V[V /2] : UP* and T'y,Ta,y yar Fpy, M'[V'/z] . C and

(S UparWUari/DGC.E Fl,rg F'D’l V[V,/Zl?] urar F17F27y2 (]Mi F'D’Q M/[V//I]C
1, Do bpr o(V[V! [2];y. M [V Jx]) : C

(HT_Op).

Case (HT_OPATM): We are given
o TP Tari/ Cini = Cﬁn cC.xY N
Iy,2: T Tobp, V: TP Iy,z: T Toy: T bFp, M': CX>C.T/)C = C™
Lyz: T Tobpo(Viy.M): CX>C.T)C' = i

for some o, V, y, M’, TP Ti Cwi Cfin ¢/ D, and Dy such that M = o(V;y. M'). Without loss
of generality, we can assume that y & fo(V’) U {z}. Let 1O be a sequence of fresh variables such that
\hﬁ| = |O(C.%)|. The conclusion is shown as follows:
[MI5[[V']/2] B -
= (A%, hY, k). b7 [V]p, (A, hD.[M]5,Q(0%, hE, K)))[[ V'] /2]
(where |h%| = |[i(C.%)| and |hD| = |O(C.%)| and h? corresponds to o in h?)
A(hZ, b0, k). b7 [V[V'/a]lp; Az, hT.[M[V' /2]]3, @(hP, 25, k) (by the IHs)
[o(VIV' /]y MV’ [2])] %
= [M[V'/z]]%

for some D}, Dj, and D’ such that I'1,T'y bFp, V[V'/2] : TP and Ty, T,y : T bp, M'[V'/z] : C.X >
C.T/C'= O™ and

o TP s T2 ) O™ = 0T e C.8 N
Iy, Dybp, VIV /2] : TP Ty, Dyy: T bp, M'[V'/2]: C.S6 C.T/C" = C™

: i (HT_OPATM).
I'y,Ts Fpr O'(V,yM ) :C.X> CT/C = oM™
Case (HT_HANDLE): We are given
H = {returny — L} (] {O’z(y“kl) — Mi}lgigm ] {(1(2’1) — Ni}lgign
EO — {Uz' . Tipar ~ Tiarl/ciml = Ciﬁn}lgzgm W {Ci . Uipar ~ Uian/lj}lglgn
I'y,z: T/,FQ FMy: Yo TO/C(‘)’“ = C I'i,zx: T/,].—‘.Q,.y: ToFL: Cém
Vie[l,m]. Dy, x: T/, Ta,ys - TP ki : T — O M, - Cfin
avi € [1,’[1] I',z: T/,FQ,ZZ' : Uipar FN Y > Uiarl/[]
—1<i<
Ve e{Cn " ol viel,n]. C8 <t 3,
Ty.z: T' Ty - with H handle M, : C
for some Hl? M07 Y, L7 T1,° " 0my Y1y yYm, kl?"' 7km7 Mla"' aM’ma Tlpara" ) T'rl:r)z,ar7 T?ri’_._ ) Tﬁf{i7

C’li“i,-~- 70117?1’ and Clﬁn’... 701%117 S1,° " 2 Sns 21,7+ 520, N1, , Ny, Ufﬂf7... , upar, Ulari’... ; U:ri’ o,
To, and Ci™ such that M = with H' handle My. Without loss of generality, we can assume that the variables
YUYty s Ym, K1y -y kn, 21, , 2, are distinct from the variables in fu( V') U{z}. By the definition of the
CPS transformation, we have

—1<i<m ___1<i<n

[M]% = A(h, k). [Mo]*@(wf cw T My, D return [L]) hk

(2

where
Vie [1,m]. w? = Ay, k. let k; = return (Ay, o, .k, y 5, “<7<" B k) inreturn [M;] (2] = | Ci™.5)),

7

o Vi€ [l,m]. V)€ [Ln] vy = Az.[S 0 U2 /0 < GRS e U2/ OJa([N,], B, 1),
Vi [1,n]. wr = Az [ > UM /0 <: 0.8 U2/ O]Q([N;]¢, h, 1), and

K2

hH is a sequence of fresh variables such that [h0| = n.
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By the THs and Lemma

o Vie[l,m]. wim[[[V’]]/x] = \yi, kl.let k; = return (\y, h, k.K! y?’jlgjgnﬁk) inreturn [M;[V'/z]],
ol = Az B > UM /0 < CiNS e Ui/ O]@([N; [V /a]]e, B, 1), and

e Vie[l,m].Vjelln]

ij

e Vic [l,n]. wP[[V']/z] = Nzir[Zs > UM /O <: €. 8> U2/ O)Q([N;[ V' /2]]¢, ], 1).

Then, the conclusion is shown as follows:

[M]5[[V’]/=] i i
= (A(h,k). [Mo]e@(w? wD T Ay, D return[[Lﬂ))[[[V]]/;z:]

i
1<7,<m

= A(h k). [Mo[ V" /][ @(w ([ V'] /] WIVT/al =" Ay, B return [L[V" /a])

(by the THs on My and L)
= [(with H handle My)[V'/z]]%,
= [M[V'/2]]%
for some D’ such that I';, T’ F (with H handle My)[V'/z] : C

2. By case ().

3. Straightforward by case analysis on the typing rule applied last to derive I'1,z : T/, Ty bp V : T. The case

for (HT_VAR) rests on Lemma and the case for (HT_SUBV) rests on Lemma [24]

Lemma 32 (Handler and Continuation Substitution).
1. T Fp M : C and x &€ dom(T), then [M]%[v/z] = [M]% for any v.
2. IfT'Fp M : C and = & dom(T"), then [M]plv/z] = [M]p for any v.
3. T Fp V:Tand x & dom(T'), then [V]p[v/x] = [V]p for any v.
Proof. Straightforward by mutual induction on the typing derivations with Lemma

O

O

Lemma 33 (CPS Transformation of Lambda Function Applications). IfI'p, Ae.M : T — C and I'tp, V : T,

then, for any v" and v* such that |v"| = |C.%),

o [M\z.M]p, [V]p, — returnv,

o voh ok —+ [M[V/z]][$Q(vP, v%), and

e 'tp M[V/x]: C
for some v and D.
Proof. By induction on the typing derivation of I' bp, Az.M : T — C.
Case (HT_ABs): We are given

Pa:Tkp M:C
Pkp, e M:T—C

for some D). Let h be a sequence of fresh variables such that |h| = |C.%|, and k be a fresh variable. Then, the

conclusion is proven as follows:
[Ae.M]p, [V]p, v" v B
= ()\J) H k. [[M]]S’D’l@(ﬁ7 k)) [[V]]Dz vh ok
([M]3, @(o" "))[HV]]Dz/fE]
= ([[M[V/x]]]p v", v%))  (by Lemmas [31] and [32)
for some D such that I' Fp M[V /x] :
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Case (HT_SUBV): We are given

Fl_Di Ax.M : Ty To<:T—C
I'bp, de.M:T = C

for some Ty and D}. By Lemma [3]
° TO =7 = C/,
o T <: T,
o ' <: (C (thatis, C.X¥ <: 'Y and C'".T <: C.T and C'.A <: C.A)

for some 7' and C’. Let yo, 21, and 25 be fresh variables. Then,

[[)\J).M]]Dl [[Vﬂpzﬁvk
= [To <: T — Cla([Az.M]p;) [V]p, vh v*
= (Ayaletzy = [Ae.M]p, ([T <: T']Q(yz)) inreturn [C* <: C]Q(21)) [V]p, vh ok
—  (letzy = [Az.M]p, ([T <: T']Q([V]p,)) inreturn [C" <: C]Q(z1)) vh vk
(by (E_-BETA) and (E_LETE))
= (letzy = [Ax.M]p; [V]p, inreturn [C" <: C)@(z1)) vh vk
= letzy = (letz1 = [Az.M]p; [V]p,inreturn[C" <: CT@Q(z1))in 25 UM vk
—T  letzy = (letz; = return v’ inreturn [C’ <: C]@Q(z1))in 2o v oK
(for some v" by the IH, and (E_LETE))
—  letzy = return [C" <: CJQ(v') in 2y vh vk
(by (E_LETE)/(E_LETV))

for some D} such that

TCkp, V:T T<: T
Chp, VT’

(HT_SuBV).

We proceed by case analysis on the subtyping rule applied last to derive C'.A <: C.A.

Case (HS_ANSBox): We are given C'.A= C.A=0. Let ky and x; be fresh variables, and hy be a sequence of
fresh variables such that |ha| = |C.E|. Then, we derive the conclusion as follows:

[[)\x.Mﬂpl [[Vﬂp2ﬁ’l)k
—T letzy = return [C" <: CJ@Q(v') in 2 vh vk
(by the above reasoning)
= letzy = return Mg, ko.letzy = o' [C.2 <: C".2]Q(hy) kyinreturn [C". T <: C.T]|@Q(z;) in 2y v" v
—t etz = o' [C.2 <: C".2]Q(v") vKinreturn [C7.T <: C.T]@(x1)
(by (E_LETV), (E_BETA), and (E_LETE))
—T etz = [M[V/2]]%Q([C.2 <: ¢".X]Q(vh), v*)inreturn [C".T <: C.T]Q(z;)
(by (E_LETE), Lemma 28] and the assumption on v’ by the TH)
[C" <: CTQ([M[V /2]l 0P, 0¥)
[V /2]l a(eP, o)

for some D’ and D such that

I'bFpr M[V/LL']C/ C'<: C
Tkp M[V/z]: C

(HT_SusC).

Case (HS_ANSEMB): We are given C'.A = Oand C.A = C™ = Cfin for some €' and Cf. Let @ and @ be
sequences of fresh variables such that |hgﬂ| = |A(C.2)| and |@| = |0(C.%)|. Furthermore, let (vh®, yh0) =
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split(ﬁ, C.Y) and ks, 21, and yo be fresh variables. Then, the conclusion is proven as follows:

[Ae.M]p, [V]Dp, v v" o
—T etz = return [C" <: C]Q@Q(v')in 22 v v"
(by the above reasoning)

= letz = return (ARD, hE kolletzy = o' [C.E <: C'.S]@(hY, hT) Lin e)in 25 vF 0"
(where e = (letys = k2 ([C'. T <: C’.T}]@(rl))@in return [C™ <: C*]@(y2)))
—t etz =o' [C.X <: ¢".X]Q(vP) Linletys = v ([C'.T <: C.T]@(x1)) v'T inreturn [C™ <: CH*]@(y2)
(by (E_.LETV), (E_BETA), and (E_LETE))
—F leta; = [M[V/2]]SQ([C.E <: C".X]@(v"),1)inletys = oX ([C'. T <: C.T]@(z1)) vh in return [C™™ <: CT]@(ys)
(by (E_LETE), Lemma and the assumption on v’ by the TH))
=[O < CFQ(IMIV /]l 0%, oF)
= [MV/2l50(, o)

for some D’ and D such that
I'Fpr M[V/.T]C/ C'<:C
Trp M[V/a]: C

(HT_SuBC).

Case (HS_ANSMoD): We are given C'.A = ¢/™ = ¢'™ and C.A = ¢ = ¢ for some ¢'™, ¢/, o™i,
and Cfin,
Assume that C¢’.X = C.£ and C'.T = C.T and C"™ = C™. Let hy be a sequence of fresh variables such
that |hg| = |C.%|. Then, the conclusion is proven as follows:

[Ae.M]p, [V]p, v vk
—T et zy = return [C7 <: CTQ(v') in zp v" vk
(by the above reasoning)
= let 2o = return (Ahg, ko.let 21 = v’ ho kg in return [[C’ﬁn <: ¢fin]@(z,))in 29 vM ok
—* etz = o' 0" okinreturn [C'™ <: Cfin]@(z)
(by (E_LETV), (E_BETA), and (E_LETE))
—F ety = [M[V /2]]% @(v", v%) inreturn [C'T" <: Cfin]@(ay)
(by (E_LETE) and the assumption on v’ by the IH)
= [¢' < ClFQ(M[V /][5, o7, o")
[M(V /2]I5 00", v

for some D’ and D such that

I'bpr M[V/{E]C/ C'=C
Tkp M[V/z]: C

(HT_SusC).

Otherwise, assume that ¢'.¥ # C.X or ¢".T # C.T or it £ o, By Lemmas |3) and Oo(c.y) =
0(C’.%). Let hgﬂ, S, and h'ljibe sequences of fresh variables such that |hgﬂ\ = |A(C.2)| and |KF| = || =

I0(C.%)|. Furthermore, let (vh?, vh0) = split(v", C.%) and ko, x1, y1, and 2} be fresh variables. Then, the
conclusion is proven as follows:

[Ae.M]p, [V]Dp, v v" -
—T etz = return [C" <: C]Q@(v')in 22 vh v*
(by the above reasoning) o
= letzy = return (ALY, b, ko.letzy = o' [A(C.2) <: A(C'.2)]@(hZ) BT vl inreturn [C'™ <: CH]@(z1)) in 25 0P 0"

(where v} = )\yl,ﬁ.let 25 =ko ([C'. T <: C.T}]@(yl))ﬁin return [C™ <: ¢ @(24))
—F etz =o' [A(C.E) <: N(C".2)]Q(vh?) vhD v [v* k2] in return [[C"ﬁn <: ¢@(z)
(by (E.LETV), (E_BETA), and (E_LETE))
—t etz = [M[V/2]]% Q([A(C.E) <: [(C".2)]Q(v"D), v"D, ok [v%/ks]) in return [C"™ <: CM]@(z)
(by (E_LETE), Lemma and the assumption on v’ by the TH)
= [C <:ClQ(M[V /2|5, vh, v")
= [M[V/2]]pQ(vP, v")
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for some D’ and D such that

I'bpr M[V/J)]C/ C'=C
Trp M[V/2]: C

(HT_SuBC).

Otherwise: Contradictory.
O

Lemma 34 (@S Transformation OLRecursive Function Application). IfI' bp, fixz. V1 : T — CandI'Fp, Vo : T,
then, for any v and v* such that |vh| = |C.2|,

o [fixz.Vi]p, [V]p, — returnv,
o voh ok —t [Viffixz. Vi /x] Va]S@Q(vh, vk), and
o I'tp Viffixe. Vi/a] Vo : C

for some D.

Proof.
By induction on the typing derivation of I' Fp, fixz. Vy : T — C.

Case (HT_F1x): We are given

Pae:T—=Ckp, V1:T—C
I'bp, fixe. Vi : T — C

for some Df. Then, the conclusion is proven as follows:

[fixz. Vi]p, [Va]p, v" v
= fixa.[Vi]p; [Ve]p, v" vk
—  [Vilpy [fix2.[Vi]p, /2] [ Ve p, v" v* by (E_FIX) and (E_LETE)
= [Wilpy[lfixz. Vilp, /2] [ V2] D, v" vk
= [Wilfixe. Vi/z]]py [Va]p, v" v*  (by Lemmas [31] and
= [Wilfixz. Vi /2] Vo]S@(vh, v)

for some Dy and D such that I' Fpr Vi[fixe. Vi /2] T — C and

Fl—pél Vl[flxx Vl/x} T = C Fl—pz Vo: T
T FD Vl[flmel/x} VQ : C

(HT_-App).

Case (HT_SUBV): We are given

FF'D’l fixz. Vi : Ty To<:T—C
Ibp, fixe. Vi : T — C

for some Ty and D}. By Lemma
o Ty= T — C/,
o T <: T,
o ' <: (C (thatis, C.X <: C". Y and C'.T <: C.T and C'.A <: C.A)
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for some T" and C’. Let ya, 21, and 22 be fresh variables. Then,

[fixz. Vi]p, [V]p, vP v*
[To <: T — ClQ([fixz. Vi]p;) [V]p, v o
= (Myaletz = [fixe. Vi]p, ([T <: T']Q(y2)) inreturn [C" <: C]Q(z1)) [V]p, vh ok
—  (letz; = [fixe. Vi]p, ([T <: T']Q([V]p,))inreturn [C" <: C)@(z1)) vh vk
(by (E_BETA) and (E_LETE))
(let z1 = [fixz. Vi]p; [V]py inreturn [C7 <: CJ@(z1)) vh vk
let 25 = (let 21 = [fixz. Vi]p; [V]py inreturn [C" <: C]Q(z1))in 23 v" vk
—T etz = (let z; = return v’ inreturn [’ <: CJ@(z1)) in 25 v" v
(for some v" by the TH, and (E_LETE))
—  letzy = return [C" <: CJQ(v') in 25 vh vk
(by (E_LETE)/(E_LETV))

for some D) such that

Chp, V:T T<:T
Php, Vi T’

(HT_SuBV).

We proceed by case analysis on the subtyping rule applied last to derive C'.A <: C.A.

Case (HS_ANSBoOX): We are given C'".A= C.A=0. Let ko and x; be fresh variables, and hy be a sequence of
fresh variables such that |hs| = |C.X|. Then, we derive the conclusion as follows:

[[fIXLL' Vl]]D1 [[V]]D2 ﬁ Uk
= letzy = return [C! <: CJQ(v') in zy v" v
(by the above reasoning)
= letzy = return Mg, ko.letz; = v/ [C.X <: C".2]Q(hg) ke in [C".T <: C.T]Q(zy) in 2z v" v
—T etz =o' [C.2 <: C".2]Q(vh) v¥in[C'. T <: C.T]Q(z)
(by (E_LETV), (E_BETA), and (E_LETE))
—T etz = [Vilfixa. Vi/x] Voo @([C.2 <: €".2]@Q(vh), %) in [C".T <: C.T]Q(x;)
(by (E_LETE), Lemma and the assumption on v’ by the TH)
[C" <: CTe@([ Va[fixz. Vi /x] VoS, vh, v)
= [Wilfixz. Vi/z] Va]sQ(vh, vk)

for some D’ and D such that

T'bpr Vl[fIX:Evl/CC} Vo ' C < C
T }_D Vl[flxmvl/x] V2 : C

(HT_SuBC).

Case (HS_ANSEMB): We are given ¢'.A = and C.4 = Ol = Cfin for some O™ and Cf". Let @ and @
be sequences of fresh variables such that |héﬂ\ = |A(X)| and |@| = |OJ(2)|. Furthermore, let (vh@, yh0) =

split(vh,X) and kg, x1, y2 be fresh variables. Then, the conclusion is proven as follows:

[fixz. Vilp, [V]p, v vk o
—1  letzg = return [C’ <: CJQ(v")in 22 vh vk
(by the above reasoning)

= letzy = return (ARL, BT ko letzy = o/ [C.5 <: C".5]@(hZ, hT) Lin €)in 25 v" vk
(where e = (letys = ko ([C'. T <: C.T]]@(zl))@in return [C™ <: Cfin]@Q(y2)))
—+ etz =0/ [C.X <: C'.2]@(WM) Linletyy = vk ([C'.T <: C.T]@(x1)) v"Tinreturn [Cini <: CAn]@(y,)
(by (E-LETV), (E_BETA), and (E_LETE))
—t etz = [Vi[fixz. Vi/z] Va]S, Q([C.X <: c’.g]@(wh), 1) inletyy = vk ([C'.T <: C.T]@(z1)) v'D inreturn [CiM <: Cin]@(ysz)
(by (E_LETE), Lemma and the assumption on v’ by the IH)
= [0 <: CleQ([ Vifixz. Vi/a] V2], vh, v%)
= [Vilfixz. Vi/z] Va]$@(vh, vk)

o7



for some D’ and D such that
T'Fpr Vl[fIXJTVl/JZ] Vo : c’ C'<: C
T }_D Vl[fIX$V1/£E] V2 : C

(HT_SusC).

Case (HS_ANSMoD): We are given ¢'.4 = ¢'™ = ¢’ and C.A = € = Cfin for some ¢/™, ¢/t ¢ini

and Cfin,
Assume that ¢".X = C.X and ¢".T = C.T and C'™ = O Let hy be a sequence of fresh variables such
that |hg| = |C.X|. Then, the conclusion is proven as follows:

[[fIX x. Vl]]D1 [V]]Dz W Uk
—T letzy = return [ <: C]@Q(v') in 2 vh vk
(by the above reasoning)
= let 2o = return (Ahg, ko.let 21 = v’ ho kg in return [[C’ﬁn <: 0fn]@(z1))in 2y oh pk
—F ety = v’ oM vkinreturn [C'™ <: ] @(zy)
(by (E_LETV), (E_BETA), and (E_LETE))
—T letazy = [Vi[fixa. Vi /x] Va]% @(vh, o) in return [ < Cin]@(xy)
(by (E_LETE) and the assumption on v’ by the TH)
= [C" <: CleQ([Vy[fixz. Vi /x] VoS, vh, )
= [Wilfixz. Vi/z] Va]H@(oh, vk)

for some D’ and D such that

I'bFpr Vl[fl)(l‘vl/ai] Vs : c’ C'=C
T Fp Vilfixe. Vi/z] Va: C

(HT_SusC).

Otherwise, assume that ¢".X # C.X or C".T # C.T or o gini By Lemmas and 0(c.x) =
O(C".X). Let hgﬂ, hS, and h'ljibe sequences of fresh variables such that |h§\ = |A(C.%)| and |5 = |hD| =

I0(C.%)|. Furthermore, let (v"?, vP3) = split(v", C.) and ko, 1, y1, and 2} are fresh variables. Then, the
conclusion is proven as follows:

[fixz. Vi]p, [V]p, vh v*
—t letze = return [C! <: C]@Q(v')in 22 v" v*
(by the above reasoning)
= letzy = return (ARD, hE ko lletzy = o [A(C.X) <: [A(C'.2)]@(hL) hY vk inreturn [C"5" <: CT]@(z1)) in 2o 0" v
(where vf = Ay1, hllet zb = ko ([C. T <: C.T]Q(y1)) K inreturn [C™ <: C"™]@(2}))
—t etz = o' [A(C.X) <: P(C".2)]Q(vMD) vh0 vk [v%/ks] in return [C'™ <: ¢ @ (1)
(by (E_.LETV), (E_BETA), and (E_LETE))
—t letay = [Vaffixz. Vi /a] Va]S @([A(C.E) <: A(C".E)]|@(vh?), 010, vk [v* /ks]) inreturn [C"™ <: CHM]@(z:)
(by (E_LLETE), Lemma and the assumption on v’ by the TH)
[C" <: CTPQ([ Valfixz. Vi/x] Va]br, v", v%)
[Valfixz. Vi /z] Va]S@(uh, v¥)

for some D’ and D such that
I'bFpr Vl[fixx. Vl/l’] Vy c’ C'<: C
Ibtp ilfixa. Vi/x] Vo : C

(HT_SuBC).

Otherwise: Contradictory.
O

Lemma 35 (CPS Transformation of Case Matches). If 'Fpi:nandVj € [1,n]. I'Fp, M;: C, then, for any oh
and v* such that [v"| = [C.X|,

case([i]p; [M]5, Q(vh, 0"), -, [Ma]5, @, v%)) — [Mi]p, @ (0P, %) .
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Proof. By (E_CASE), it suffices to show that [ijp = i. We show it by induction on the typing derivation of I' Fp i : n
Case (HT_ECoONsT): Obvious by the definition of the CPS transformation.
Case (HT_SUBV): We are given

I'bpri: T T <:n
FFDj:n

for some T. By Lemma[3] 7' = n. The conclusion is proven as follows:
[ilo = [n<:n]Q([i]>)
= [n<:n]@Q(i) (by the IH)

Otherwise: Contradictory.

O

Lemma 36 (Rolling Up Final Answer Types). If C = Cy,---, C, and EC is well defined and T' Fp M : C; and
|[vh| = |C, 2], then

E°¢ [return [M]p] vh vk — [M]% @(vh, v*)
for some D’ and I'+pr M : C,,.

Proof. By induction on n.

Case n = 1: The conclusion is proven as follows:

ECreturn [M]p] vh vk < [[M]]Dﬁik
—  [M]SQ(vh, vk) .

Casen >1: Let C" = (Cy,---, C, and = be a fresh variable. We have C; <: C,. By the definition of the CPS
transformation,

ECreturn [M]p] vh v* = Ei[letx = return [M]p inreturn [C; <: Co]@(x)] vh v
—  EY[return [y <: Co]@Q([M]p)] vh v .

By Lemmawith C1 <: Oy, we have (5.X <: C1.X and C,.T <: C5.T and (C1.A <: C5.A. By case analysis on
the subtyping rule applied to derive C;.A <: (5. A

Case (HS_ANSBoOX): We are given C1.A = Cy.A=0. Let ky and z; be fresh variables and ho be a sequence of
fresh variables such that |ha| = |C2.X|. By the definition of the CPS transformation,

EC[return [M]p] vh vk

< E%[return [C) <: C5]@([M]p)] vP vk (by the above reasoning)

= E%[return Ahg, ko etz = [M]p [Co.5 <: C1.X]@(hg) kyinreturn [C1. T <: Cy. T]@(x1)] vh vk

s E%[return Mg, ko let 2 = [M]%Q([Co.X <: C1.2]@(hy), ky) inreturn [Cy. T <: Cy. T]@Q ()] 0P v*
= [return Ahg, ko . [M ]S, @ (hy, k2)] vh v

= E%[return [M]p~] vP v

< [M]S%,@(vh, v%) (by the TH)

EC
c’

for some D" and D’ such that

I'tp M: Cy C1 <: Gy
F'_’D//M:CQ

(HT_SusC)

and I' I_D/ M : Cn
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Case (HS_ANSEMB): We are given (1.4 = and (5.4 = Cimt = Cfin for some CiM and Cfi® such that Cint <
62“. Let ko, 1, and ys be fresh variables and hs be a sequence of fresh variables such that |hs| = |C2.X|, and

(h?,@) = split(ha, C2.X). Then, the conclusion is proven as follows:

Eﬁreturn [M]p] vh v*
— Ei’[return [C: <: C]@([M]p)] vt vk  (by the above reasoning)

k

= EY[return Ao, ko letzy = [M]p [Co.2 <: C1.2]@(h2) Lin €] vP v*

(where e = (letys = ks ([C1. T <: Co.T]Q(x1)) b inreturn [C3" <: C3]@(y2)))
< E%[return Aha, ko letz1 = [[M]D@([[Cg E <: 01.3]Q(h2),1)ine] vh v

‘T[

return Mo, ko.[M]%, @(ha, ka)] vt
= EY [return [M]p] oh ok
—  [M]%@(vh,v*)  (by the TH)

for some D" and D’ such that

I'tp M: Cy O < Gy
F"DHMZCQ

(HT_SusC)
and ' |_D’ M Cn.
Case (HS_ANSMoD): We are given

Clm < Clini Cﬁn . CQHH
Clnl = Clﬁ le = CQﬁn

for some CiM Cfin . Cini and Cf* such that Cy.A = O™ = Cfi* and Cp.A = CiM = Cfin.
Assume that C1.2 = CQ.E and C;.T = C5.T and Cj™ = CiM. Let x; be a fresh variable. Then, the conclusion

is proven as follows:

EC return [M]p)] vh vk

—  E%[return [Cy <: Co]@Q([M]p)] v" v* (by the above reasoning)

=  E%[return Ahg, ko letzy = [M]p ha ks inreturn [Cn <: Cfin]@(z1)] vh vk
< E%[return Ahg, k. let £ = [M]%@(hg, k) inreturn [Cfin <: Cfo]@(z,)] vh v
= E%[return Mg, ko.[M]%, Q(hy, ko)) vh vk

=  E%retu rn [M]pr] PLR
—  [M]S%, @Q(vh, %) (by the IH)
for some D" and D’ such that

I'tp M: Cy O < Oy
F"DHMZCQ

(HT_SusC)

andFl—D/M'C’

Otherwise, assume that C;.X # Cy.Y or C1.T # Co.T or Ci™ # CiM. Let ky, 1, and y; be fresh variables,
and h1 and hy be a sequence of fresh variables such that |h‘:'| = |0(C2.%)| and |hy| = |C5.%|. Then, the

conclusion is proven as follows:

EC return [M]p] vh vk

— i[return [C1 <: Co]@([M]p)] vh vk (by the above reasoning)

= E%[return My, ka.letz; = [M]p [Co.2 <: C1.5]@(hy) vin return [C]™ <: CQﬁn]}@(ml)] v
(where v iAyl,hlm.letzg =ko ([C1.T <: C2.T] (y1)) hlD inreturn [ CiM

— i[ return Mg, ko.letz = [[M]]%@([LCQ.Z <: C1.2]@Q(hy), v) inreturn [ C

i[return N, ko [M]S, @Q(hg, k)] vh v
- EC [returi[[MHD//] ’Uh k
< [M]%,@(vh, v*) (by the IH)
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for some D" and D’ such that

Tkp M: G 1 <: Gy
F'_’D//M:CQ

(HT_SusC)

and I’ |_D’ M Cn
O

Lemma 37 (Simulation up to Reduction). If ) Fp M : ¥ > T/ A and |[vP| = ||, then, for any v¥, one of the
following holds:

1. there exist some V and D’ such that
e A=0,
e M =return V,
e [return V]$@(vM, v%) —* return [V]pr, and
L4 @ I_D/ Vo T,
2. there exist some C™, ¢fir v D' C, Uhim, and v such that
o A= Cini = Cﬁn,
o M =return V,
o (002, 010) = split(oF, %),
[return V]S,@(vh, v%) —* EC[o*[V]p o],
e )Fp V: T, and

e the first and last computation types of C' are C™ and Cf", respectively;

3. there exist o, V', x, M’, TP¥ T2 y D;, and Dy such that
o M —* o(V'ix. M),

[M]$@(vh, v%) < letz = v [V']p, in[M']$,@(vh, v¥),

o o TPY s T /(N €3,

e v is a value in the sequence v" that corresponds to o in I,
o fbp, V': TP and
o 0x: T bp, M': > T/ A;
4. there exist some C™, Cfn o V' gz, M’ TPar Tari Qoini cofin "Gy, vhim, "0 R0 Dy, and Dy such that
o A= Cini = Cﬁn,
o M —* o(V';z. M),
e 1 is a sequence of fresh variables such that [R0] = |O(Z)],
o (v"D, yhT) = split(v", %),
[M]$@(vh, v%) — ECTv [V']p, (Az, hH.[M']S, @(v"D, hH, v¥))],
e o Trar . Tari/ Caini = Ccrﬁn c 27

e v is a value in the sequence v" that corresponds to o in 3,

the first and last computation types of C are C7f™ and O, respectively,
o bp, V/: TP
o )x: T¥ Fp, M': ¥ > T /O = Coini;

61



or
5. there exist some M’ and D’ such that
o M —*T M,
o [M]5@Q(vM, vk) —s—ts [M']%, @Q(vh, vk), and
o Nbp M':S5 T/ A
Proof. By induction on the derivation of ) Fp M : 3> T / A.
Case (HT_RETURN): The conclusion (case (1f)) holds obviously.

Case (HT_SuBC): We are given

Obpr M:C C<:SoT/A
DrpM:SoT/A

for some D" and C. By Lemma[3] ¥ <: C.¥ and C.T <: T and C.A <: A. By case analysis on the subtyping
rule applied last to derive C.A <: A.

Case (HS_ANSBOX): We are given C.A = A = [0. Let x; be a fresh variable. By the definition of the CPS
transformation,

[MIp@(h, o) = [C<: S5 T /O[a([M], 0", o%)
= letz; = [M]%, Q([Z <: C.X]@Q(vh), v*)inreturn [C.T <: T]Q(z;) .

Let v = [¥ <: C.X]@Q(vh). By Lemma |v/M| = |C.%|. Thus, we can apply the IH on ¢ Fpr M : C. We
proceed by case analysis on the result.
Case [l We are given some V and D"’ such that

e M =return V,

o [return V]S, @(v™M, vk) —* return [ V]prr, and

o 0Fpm V:C.T.

Then, the conclusion (case (/1)) is proven as follows:

(M50, ")
= letz; = [M]%,@Q(v™, v¥)inretun [C.T <: T]@(x;) (by the above reasoning)
—* letzy =return [V]pw inreturn [C.T <: T]@(z1) (by case (1)) and (E_LETE))
— [[CT <: T]]@([[V]]DH/)
= [V]p

for some D’ such that

@FD/// V.C.T C.T<T
(Z)}_D’ V.T

(HT_SuBV).

Case 2l Contradictory with C.A = 0.
Case @ We are given some o, V', z, M, T'*™, T'* v/, D}, and D) such that
o M —* o(V';ax. M),
[M]%, @0, v%) < lete = o' [V']py in [M]5, Q(, 0"),
e 0 T s T /O e O,
e v/ is a value in the sequence v'P that corresponds to o in C.X,
o Obp, Vo T and
o 0a:T™ fp, M': C.
Because X <: C.X and o : TP ~ T'*" /0 € C.%, there exist some TP and T such that
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o o TPY s T /(N €3,

o TP <. TP and

o T <
by Lemma Let v be a value in the sequence vh that corresponds to o in ¥ (there exists such a value
because |v"| = |X|), and let y» and y; be fresh variables. By the definition of the CPS transformation,

v = Ayalety; = v ([T <: TP]@(yo)) inreturn [T <: T"*|@(y;) .
Then, the conclusion (case (3)) is proven as follows:

[M]pQ(o",0%)
letzy = [M]S,Q(v"M, o) inreturn [C.T <: T]@(x1) (by the above reasoning)

— letz; = (letz = v'[V']p; in [[M’]]epé@(y/h7 v*))inreturn [C.T <: T]@(z1) (by case (@)

— letx =o' [V']pinletz; = [[M']]%é@(ﬁ, oK) inreturn [C.T <: T]Q(x)

= letx =o' [V']p;in [[M’]]%g@(ﬁ, vk)

— letz = (lety; = v ([T <: TP ]Q([V']p;)) inreturn [T <: T )@(yy)) in [[M/]]EDQ’@(W, v¥)

letz = (letyy = v [V']p, inreturn [T <: T ]@(y1))in [M']5, @(v, %)
< lety; = v[V']p, inletz = return [T <: T"*)@(y, ) in [[M'ﬂ%é,@(ﬁ, o)
— letx =v[V']p,in [[M’]]%2@(W, v%)  (by Lemmas

for some DY, Dy, and Dy such that

O,2: T Fp, M':C C<:E>T/A
O,2: ™ bpy M :Sp T /A

(HT_SusC),

0 Y 4T e TP <. TP
0bp, VTP

(HT_SusV),

and '
Oyx: T Fp, M :X>T/A.
Case @} Contradictory with C.A = [.
Case Bl We are given some M’ and D"’ such that
o M —* M,
o [M]5, Qv vk) s—stes [M']S%., Qv vk), and
o O Fpm M': C.
Then, the conclusion (case ) is proven as follows:

[M5@(0F, v¥)
= letz; = [M]%,@Q(v™, v¥)inreturn [C.T <: T]@(x1) (by the above reasoning)
——t etz = [M']S, QM oK) inreturn [C.T <: T]@(x1) (by case and (E_LETE))
= [M']5 @(o", v¥)

for some D’ such that

Obpn M':C C<:SeT/A
@"DI M Y T/A

(HT_SuBC).

Case (HS_ANSEMB): We are given C.A =[Jand A = Ot = Cfin for some C'™ and O such that C™ <: Cfin,
Let (vh%, vhE) = split(v", ¥). Let x1 and ys be fresh variables. By the definition of the CPS transformation,

[M]5@(v", v¥) -
[C <2 T/C™ = C™]Q([M]%, vh, 0¥ o
letz, = [M]S%, Q([E <: C.2]@(vh),1)inletys = v* ([C.T <: T]@Q(z1)) v"H inreturn [C <: CHn]@(ys) .
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Because |[Z <: C.X]@Q(vh)| = |C.2| by Lemma we can apply the IH on () Fp» M : C'. We proceed by case
analysis on the result.

Case[lf We are given some V and D" such that
o M =returnV,
e [return V]%,Q([2 <: C.X]@(v"),1) —* return [V]pw, and
o O Fpw V:C.T.
Then:

[M]%@(vh, o)
= etz = [M]S,Q([E <: C.2]@(v"),1)inlety, = vk ([C.T <: T]Q(x1)) v"Tin return [C™ <: Cin]@(y,)
(by the above reasoning)
—* letzy = return [V]pm inletyy = 0% ([C.T <: T]@Q(z1)) vh in return [C™F <: C]@(ys)
(by case and (E_LETE))
— letyy = X ([C.T <: T]Q([V]pm)) v"T inreturn [C™ <: Cin]@(y,)
= letys = v*[V]p v"Tinreturn [C™ <: Cn]@(y,)

for some D’ such that

@FD/N V.C.T C.T<T
(Z)}_D’ VZ T

(HT_SuBV).

We have the conclusion (case ) by letting C = ¢, Cfin,
Case P} Contradictory with C.A = O.
Case @ We are given some o, V', z, M', T'™™, T'* v/, D}, and D) such that

o M —* o(V'x. M),

[M]5,Q([E <: C.Z]Q(0"),1) = leta = o' [V']p; in [M']5, Q([ <: C.X]Q(v"),1),

o g: TP s T’ari/D e C.Y,

e v’ is a value in the sequence [X <: C.X]@(v") that corresponds to o in C.%,

o Obp, Vo T and

o 0,z: T fp, M': C.
Because ¥ <: C.X and o : """ ~ T"*" /[0 € C.%, there exist some TP and T such that

o 0: TP s T /O X,

o TP <. TPar and

o Tari . T/ari
by Lemma Let v be a value in the sequence vh that corresponds to o in ¥ (there exists such a value
because [vP| = |¥]), and let y, and y; be fresh variables. By the definition of the CPS transformation,

o' = Myalety; = v ([T'° <: TP]Q(ys)) inreturn [T <: T ]@(y;) .

Therefore,

(M]3, 6([S <: C.5]a(eh), 1)
— letx =o' [V']p;in [[M’]]epé@([[Z <: 0.2]@(vP),1) (by case (3))
— letz = (lety; = v ([T <: TP*]Q([V']p;)) inreturn [T <: T'*)@(y1)) in [M]5, @([E <: C.x]a(vh), 1)
= letx = (lety; = v [V']p, inreturn [y1]py ) in [[M’]};;é@([[z <: C.x]a(vh),1)
lety; = v [V']p, inletz = return [yi]pn in [M']%, O([E <: C.2]@(v"), 1)
letyr = v [V']p, in [M']%, Q([E <: C.X]Q(o"), 1)[[y1]pn /4]

= letx=0v[V']p,in [[M']]GD,E,@([[E <: 0.X]@(v"),1) (by Lemmas and [32)
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for some Dy, DY', and D} such that

) Y AN A TP <. Trar

¥ (HT_SuBV),
Obp, VTP
and
- - (HT_VAR) ) ari
Q);yl . pari | e Tari T2 .
0,91 : T bpu yy 0 T (HT_SusV),
and

0,z T Fpy M2 C .
Then, the conclusion (case ) is proven as follows:

[M5 (o, o¥) B -
< letzy = [M]S,,Q([S <: C.X]@(vh),L)inletys = v* ([C.T <: T]@(z1)) v"Tinreturn [C™* <: Cn]@(yz)
(by the above reasoning)

= letzy = (letx = v [V']p, in [M']S,,, Q([Z <: c.x]@(vh), 1)) inletys = v* ([C.T <: T]@(x1)) v'T in return [C™ <: Cin]@(y2)
2
(by the above reasoning) -
= etz =v[V']p, inletz = [M']5,, Q([Z <: C.X]Q(v"),1)inletys = ok ([C.T <: T]Q(z1)) v"Uinreturn [C <: ¢in]Q(y2)
2

= letz=v[V']p,in[C <:X>T/AJFQ([M']
= etz =v[V']p, in[M'], @(u", )

hook
?Dé”l)h,’l} )

for some D5 such that

0,z: T Fpy M': C C<:¥>T/A
0,x: T Fp, M': ST/ A

(HT_SusC).

Case[dt Contradictory with C.A = 0.
Case B} We are given some M’ and D" such that
o M —7T M,
o [M]5.Q([2 <: C.X]Q(vN),1) ——t [M']%.,Q([S <: C.X]@(vh),1), and
o O kpw M': C
for some M’ and D"’. Then, we have the conclusion (case (5])) because
[M]5Q(o", v%)
= letz1 = [M]S,Q([2 <: C.X]@(vh),1)inletys = v*([C.T <: T]@(x1)) v"inreturn [C™™ <: Cin]@Q(y2)
(by the above reasoning)
T etz = [M']SQ([2 <: C.2]@(vh), 1) inletys = v* ([C.T <: T]Q(x1)) v"T inreturn [C™™ <: "] Q(y2)
(by case (5) and (E_LETE))
[C <2 T/AFQ(M %0, vh, v*)
[M']5 @(vh, v")

for some D’ such that

OFpn M':C C<:SpT/A
[ZH_D’ M/ZED T/A

(HT_SuBC).

Case (HS_ANSMoD): We are given
<o ot < ofin

N e

for some C'™, ¢/ Cini and Cfin such that C.A = ¢'™ = '™ and A = ¢ = Cfin. We consider two
cases as follows.
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Case C.¥ =Y and C.T = T and C"™ = i Let 21 be a fresh variable. Also, let (v"@, vh0) = split(v", X).
By the definition of the CPS transformation,

[MI5QGF, o) B
= [C<:Zp> T/CH = Ci]eQ([M]S,, vh, vk)
= etz = [M]%,Q(v", v%)inreturn [C'T" <: Cin]@(x4) .

We proceed by case analysis on the result of applying the IH on () ko M : C.
Case[lt Contradictory with C.A # O
Case[2 We are given some V, D', and C” such that
e M =return V,
e [return V]S, @(v", v%) —* EC [o* [V]p v"],
L] @'_D’ V. C.T, and
e the first and last computation types of C” are C"™ and C’ ﬁn, respectively.
Then: L
[return V]$@Q(vh, vk)
= letx; = [return Vﬂ%,/@(ﬁ, v¥) in return [[C”ﬁn <: Cfin]@(zy)
(by the above reasoning)
—* etz = EY [ [V]p v"OJinreturn [¢'™ <: Cin]@(ay)
(by case (2) and (E_LETE))
A U mn th]

Because C.T = T and C'™ = C™ We have the conclusion (case ) by letting C' = C7, Cfin,
Case Bt We are given some o, V', z, M’, TP* T 4, D;, and D} such that
o M —* o(V'x. M),
[M]%,@(vh, o) < lete = v [V']p, in [M']5, Q(oP, v),
e o:TPY « T /O e C.3,
e v is a value in the sequence b that corresponds to o in C.3%,
o OFp, V': TP and
o 0,x: T* bp, M': C.
Then, the conclusion (case (3)) is proven as follows:

[M]H@(0", v*)
= letzy = [M]S,@(v", v%)inreturn [C'T" <: Cin]@(xy)
(by the above reasomng) o
— letx; = (Ietx =o[V']p, in [[M’]]%,z@(vh, v%)) inreturn [C/1" <: Cin]@(ay)
(by case (3)) \
— letz =v[V']p, inletxy = [M’ ]]D, (v", v%) inreturn [C'T" <: Cf]@(xy)
= letz = v [V']p, in[M']$, Qv ,vk)

for some D5 such that

Ox: T Fp, M': C C<:X>T/A
P,z: T bp, M : 2> T/ A

(HT_SusC).

Note that because ¥ = C.X, we have
o o: TP¥ s T3 /(D€ Y and
e v is a value in the sequence v" that corresponds to o in X.
Case @} We are given some o, V', z, M’, TPar, Tari ¢oini ¢ofin "7 4 p0 D, and D, such that
o M —* o(V'x. M),
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e hU is a sequence of fresh variables such that [h0| = |J(C.%)],
[M]%,@Q(vh, v%) — EC [0 [V']p, (Az, AD.[M']%, @(v2, hE, vk))],
e o : TPrar Tari/ Caini = Caﬁn c CE,

e v is a value in the sequence Vh that corresponds to o in C.X,

the first and last computation types of C” are C?fi" and C’ ﬁn, respectively,
o OFp, V': TP and

o ),x: Toribp, M': C.Xb C.T)C™ = Coini,

Then, the conclusion (case ) is proven as follows:

[M]p@(vh, )
= letz; = [M]S,,@Q(vh, v*)inreturn [C'™ <: CT]@(z:)
(by the above reasoning)
< letzy = B [V']p, (Aw,hﬁ.[[M’ﬂeDg@(vhm7hﬁ, v9))]inreturn [C'™ <: ] @(zy)
(by case @) L
= BT [V']p, Az, hE.[M ], QoM A, %)) .

Note that because C.X¥ =X and C.T = T and C"™ = C™ we have
o [RF]=10(2)],
o g TP o Tarl j goini o Cofin ¢ 3
e v is a value in the sequence vh that corresponds to ¢ in ¥, and
e )x: T kp, M': ¥ T/ CM = (Coini,
Case[Bl We are given some M’ and D"’ such that
o M —t M,
o [M]5%,Q(vh, vk) ——ts [M']%.,Q(vh, vk), and
o ObFpuw M': C.
Then, the conclusion (case ) is proven as follows:

[M]5@(F, o)

= letzy = [M]%, @ (vlv )inreturn [C'"" <: Cfi"]@(z1)  (by the above reasoning)
——t letz; = [M']$,Q(vh, v*)inreturn [ <: ¢in]@(z,) (by case (F) and (E_LETE))
= HC < XD T/Aﬂe@(HM ]]'D'”’ v ’Uk)

[M']%,@(o", v*)
for some D’ such that

wl_DH/M/ZC C<ZZI>T/A
DM :X>T/A

(HT_SusC).

Case C.X # X or C.T # T or "™ £ CWi; We have 0(C.X) <: O(%) by Lemma Let 1, y1, and 2 be
fresh variables, and hY be a sequence of fresh variables such that |hY| = |O(X)]. Also, let (vh?, vh0) =
split(vh, X). By the definition of the CPS transformation,

[M]5Q(0", v%) o
= [C<:Zp> T/CN = CeQ([M]S%,, vh, v*)
letzy = [M]S, Q([A(X) <: B(C.2)]@(vh ), v"0, %) inreturn [C"™ <: Cin]@(2)

where o o . o
"= \y1, M et 2o = X ([C. T <: T]Q(y1)) R inreturn [C™ <: ¢"™]Q(2y) .

Let v"0 = [A(Z) <: m(CE)]]@(UW) Because [vh?, v"0| = |C.3| by Lemmas and we can apply
the IH on () Fp» M : C. We proceed by case analysis on the result.
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Case[lt Contradictory with C.A # [J.
Case[2 We are given some V, D"/, and C’ such that
o M =returnV,
o [return V]S, @(v@, vh0 y/k) —* B[y [V]pm vh0),
e OFpw V:C.T, and
e the first and last computation types of C7 are C'™ and C'™, respectively.
Note that ('U’Tm, WP = split((v"?, "), C.X). Then:

[return V]$@(vh, v%)
= letz; = [return V]S, @(v/"?, b, /%) in return [C/f" < Cfin]@(ay)
(by the above reasoning)
—* letx; = EC'[ *[V]pr v inreturn [C'5" <: Cin]@(xy)
(by case (2) and (E_LETE))
_ EC, Cf‘"[ /k [[V]]DW UhD}
—t BT letzy = ¢ ([C.T <: T]Q([V]pw)) vhT inreturn [C™ <: C"™]@(2,)]
(by (E_BETA), (E_LETV), and Lemma
= BTk [V]p oh]

for some D’ such that

@FDW V.:C.T C.T<T
(Z)"D/ V.T

(HT_SuBV).

We have the conclusion (case ) by letting C = ¢, C7, Cfin,
Case Bt We are given some o, V', x, M', TP T ' Dy, and D} such that
o M —* o(Viz. M),
o [M]5, @, oP0, v%) < letz = o' [V']p, in [M']5, @, vP0, %),
e o: TP s T /O e C.%,
e v’ is a value in the sequence U’Tm,vﬁ that corresponds to o in C.%,
o O Fp, V': TP and
o (), x: TariFD/ M C.
Because ¥ <: C.X and o : TP ~» T¥1 /O € C.% and O(C.X) <: (), we have o : TP ~ T2 /[0 €

Y by Lemmas I and Lemma@ Let v be a value in the sequence vh that corresponds to ¢ in X (there
exists such a value because |v"| = |3|), and let y2 and y; be fresh variables. Because both v and v’ are

in v"2 and correspond to o, we have v = v’. Then, the conclusion (case ) is proven as follows:

[M5@(0F, o%)
= letz; = [M]S,@(vh?, vhT, o) inreturn [C'™" <: CH]@(x:)
(by the above reasoning)
— letx; = (letz =v[V']p, in [[M’ﬂepé@(vlhm,yﬁ, v™))inreturn [C'T" <: Cin]@ ()
(by case (3))
— letz=v[V']p,inletz, = [[M’ﬂ%é@(v’Tm,vT:‘, o) inreturn [C'™ <: Cfir]@(ay)
= letz =0 [V']p, in[M']5,Q(vh, vk)

for some D5 such that

Q],:E:TariFDéM':C C<:%>pT/A
0,x: T Fp, M': % T/ A

(HT_SuBC).

. i ini fin =7, 0
Case @ We are given some o, V', z, M', T'P*" T'*" C'"7™ ¢’ C’, v/, WO, D, and D) such that
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M —* o(Viz. M),

e /T is a sequence of fresh variables such that [W/C| = |0(C.%)],

[M]%, @8, 0P, o) 5 B! [V']p; Az, 2. [M']S, @D, BT, o'%)],
e o: T/par ~ T/ari/ O/Uini = C/O‘ﬁn c CZ,

v’ is a value in the sequence v"%2, yhH that corresponds to ¢ in C.%,

the first and last computation types of €7 are C'°™ and %", respectively,

o Dbp, Vi TP and

o 0o: T™ bp, M': C.XpC.T/)C"™ = 7™,

Note that split((v"?, vh0), C.5) = (v, yh0),

Because ¥ <: C.X and o : T'?* ~ T/ / C"7™ = ¢’ ¢ 0.3 and 0(C.%) <: O(X), there exist some
ar ari oini ofin ar ar ari ari

TPar, T, 0oL O gy qoesy, UPT e U|I|)](2)\v and U™, -+, Uiy such that

e o TPar Tari/ Oaini = Oaﬁn c 2’

o TP <. TPar

° Tari <: T/ari’

° O/UIHI <: Cto'ini7

o Cofin <. 017 and

° D(Z) — D(CE) — {gi . Uipar - Uiari/D}lgig\D(Eﬂ

by Lemmas and [6]

Let v be a value in the sequence v that corresponds to ¢ in ¥ (there exists such a value because
|vh| = |X]). Also, let o, ko, @1, 41, Y2, b1, , hjo(y)| be fresh variables. By the definition of the CPS
transformation, we have

v = Aza, kaletz) = v ([T <: TP*]@(x)) v” inreturn [C7F <: ¢"7™]@(a))

for some v” and w;'=*<IHE)| guch that
—1<i<|0 i ri —1<3 . oini ini

o v/ = )\yl,hilgzgl O et Yo = ko ([T <: T Q(y1)) ;' <= in return [C'7™ <: 0™ @(yy)

o Vie [l O w; = Az.letzy = h; (UP™ <: UP]Q(z2)) inreturn [UM <: UA]@Q(21).

Let v = \x, h’D.[[M’]]%;@(v’hm,h’iD, v"). Furthermore, we write h; and w; for the sequences hﬁlélglm(g)‘

1<i<|0(®)

and w; || respectively. Then,

v//[v////kz]
Ay1, B detyy = o ([T <: T"™]@Q(y1)) Wy inreturn [C"7™ <: CoMi]@(y,)
\y1, hi.letys = v"" [y1]pr W; in return [[C"Uini < CoMi]Q(yy)
Ay1, hgletys = v"” [y1]pa hyinreturn [[C’Ui]rli <: CoMmiQ(yy)
(as w; < h; by Lemma
= Ayr, hadetys = [M]%, @D, Ty, o) [[ys ] /o] inreturn [C77™ <: C7M]@(y,)
= Az, hiletys = [M']S, Qv Ry, v'%) in return [C'7™ <. comi]@(ys,)
(by Lemmas and
= M,k [CZe 0.T/C™ = ¢ < Bp T/ O = CoMQ([M]5,,, v, Ty, v¥)
= Ax,E.[M'H%Z@(Uhm,E, v%)

for some DY', DY, and D such that

ari ari (HT’VAR) ari sari
Oyyr : T Fayp 2 T T°" <. T

(Z),yl : Tari |—Dy1 Y1 - T/ari

(HT_SusV),

0,2: T Fpy M': C.S> C.T /O™ = 07
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and
0,2: T bpy M': C.S> C.T /O™ = '™
cCx>C.T/ cC'"M = 0" <Y T/ o -, goini
0, : T Fp, M 3> T/ o s oini

(HT_SusC).

Therefore, the conclusion (case (4))) is proven as follows:

[MI5Q(0F, v¥)
= letz; = [M]S, @(vD, v"D, v/%) inreturn [C'T" <: Cin]@(xy)
(by the above reasoning)
s letz; = EC[v V1o, (/\a:,h":'_[[M’]]%,Q@(U/hsz’iD, v™))]inreturn [C' < CEn]@(21)
(by case ()
_ EW,C““ [v/ [[V/]]Dg ’UW]
— BT leta) = v ([T <: TP*]Q([V']py)) v”[v" k] inreturn [0 <: ¢"7™]@(a))]
—  geo oot [0 [V']p, v"[v" [ks]]
— BTNy [V ], Az, hi [M]5, Q0N By, 0F))]
(by the above reasoning)

for some D; such that

Obp, VTP TP <P
Obp, VTP

(HT_SuBV).

Case[B} We are given some M’ and D" such that
o M —t M,
o [M]%, @2 phD oK) sty [M']S,, @(vD, vhD, /%), and
° (DI—D/// M :C.
Then, the conclusion (case (5])) is proven as follows:

[M]5Q(vh, o¥)
= letz; = [M]%,@Q(v"?, vhD, v'%) in return [’ <: ¢fin]@(zy) (by the above reasoning)
sty letzy = [M']%, Qv vhD v/ inreturn [C'™ <: Cf0]@(xz1) (by case (B) and (E_LETE))
= [C<:2p T/ AJFQ([M']%0, vh, v%)
[M']5 @(vh, %)

for some D’ such that

Obpn M':C C<:ST/A
0FM :SoT/A

(HT_SuBC).

Case (HT_LET): We are given

Obp, Mi:So T /0 Oa:Tibp, My: ST/ A
®|_D|etl‘:M1inM212D T/A

for some z, My, My, Th, Di, and Dj such that M = (letz = M in Mz). Without loss of generality, we can assume
that « ¢ fu(vh) U fo(vX). We proceed by case analysis on the result of applying the IH on §) Fpr My : X Ty /0.

Case[lf We are given some V; and Df such that

e My =return V7,
e [return Vl]]%,l@(vh,l) —* return [Vi]py, and
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e () |_Di/ V..
By (HE_LETV),
M = (letz = return Vyin My) — My[Vy/a] .
Then, the conclusion (case (p)) is proven as follows:
[M]5@(vh, v¥)
= letz = [return Vlﬂ%i (vh,1)in HMQHD/ (vh, v¥)
—* letz = return [Vi]py in [M2]5, Q(v oh vk) (by case (1) and (E_LETE))
(Mol @R, o0 [Vily /2] (by (B-LETV))
= [[MQ[Vl/x]]]D, (vh,v%)  (by Lemmas [31] and
for some D’ such that O - My[Vy/z]: X > T/ A.
Case 2} Contradictory.
CaseBt We are given some o, V', y, M{, TP* T 4, Dy, and DY such that
o My —* o(V'5y. MY),
o [Mi]5,@(0",1) < lety = v [V']p, in [M{]5,@(o", 1),
o g: TP s T2 /M e Y
e v is a value in the sequence v that corresponds to ¢ in X,
o O bp, V' TP and
o Oy: T™ bpy M{: S0 Ty /00
Without loss of generality, we can assume that y € fo(Ms). By (HE_LETE) and (HE_LETOP),

M = (letx = Myin My) —* (letx = o(V';y. M{)in My) — o(V';y.letz = M]in Ms) .

Then, the conclusion (case (3) is proven as follows:

[M]Q(vh, v¥)
= letz = [[Ml]]D’ (vP, 1) in [[M2]]D' (v, 0¥) o
letz = (lety = v [[V Ip, in [[Ml]]D,, (vh,1))in [[MQ]]D/ (v, vk)
lety = v [V']p, inletz = [M]]5,, @ (vh,1)in [M]5, @ (vh, v¥)

= lety=v[V']p, in[letx = M{in Ms]%, Q(v WP o) (by Lemma [30))

(_)
(_>

for some Dy and DY’ such that

0,y : T bFpy Mj: ¥ T /0O O,y : T x: Ty Fpyr My: %> T /A
0,y: T bp, letx = M{inMs: 50 T/ A

(HT_LET).

Case[d Contradictory.
Case Bl We are given some M{ and D such that
o My —7T M,
o [Mi]5, @00, 1) ——F e [M{]5,Q(o",1), and
o Obpy M{: %> Ty /00
By (E_LETE),
M = (letz = My in My) —" letz = M]in M, .
Then, the conclusion (case (p)) is proven as follows:
[MI$@(F, o¥)
= letz = [M1]5, @(v", 1) in [Ma] 5, @(v" ,v%)
T etz = [[MlﬂD/,@(ih 1)in [[Mgﬂp, (vh, v%)  (by case () and (E_LETE))
= [letz = M in My]%, @(vh, v¥)
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for some D’ such that

Obpy M{:So Ti /O Bo:Tibp, Mp: o T/ A
@FD/ Ietx:M{inMg:ED T/A

(HT_LET).

Case (HT_LETATM): We are given

Obp, My:SpTi/C=C™  Qa:Tibp My: X T/CM=C
Obpletz=MinMy: X T/C™ = C™

for some x, My, My, Ty, C, Ci*, C™ D, and D) such that M = (letz = Myin M) and A = C™ = Cfin,
Without loss of generality, we can assume that = ¢ fo(vh) U fo(vk). Let (vP?, 9h0) = split(vh, %), and hC be a
sequence of fresh variables such that |hH| = |O(X)|. By the definition of the CPS transformation,

[M5@(vR, v%) = [Mi]%, Qo7 Az, hE.[Ma]S, @(vh2, 1, v)) .

Let v’k = )\x,hﬁ.ﬂMgﬂ%é@(vﬁ, hE,vk). We proceed by case analysis on the result of applying the TH on
(Z)}_Di M112l> Tl/CjCﬁn.

Case[lt Contradictory.
Case [ We are given some Vi, Dy, and C” such that
e M; = return V7,
o [return V1]5, @(o", v*) —* EC[o* [Vi]p, v"0],
e Otp, Vi: Ty, and
e the first and last computation types of C7 are C' and C1", respectively.
By (HE_LETV),
M = (letz = return Vi in Mo) — Ma[V1/z] .

Then, the conclusion (case (5)) is proven as follows:

[M]5@(vh, o)
= [return Vlﬂ%i@(vh, v')
vt B[ [Vilp, o0 (by case @)

—* BT [Mal, 002, o7, o) ([ Vi]p, /2] (by Lemma [29)

=  EBY[[M] Vl/x]ﬂe@é,@(ﬁ, "3, p%)]  (by Lemmas [31] and
= [Ma[Vi/a]]$ @D, 0P0,0%)  (by Lemma [27)

for some D4 and D’ such that .
0 I_Dé’ MQ[Vl/I‘] IR T/ ™M= C

and
Obp My[Vy/a] : 2> T ) C™ = O,
Case[Bt We are given some o, V', y, M{, TP* T 4, Dy, and DYy such that
o My —* o(V';y. M),
. [[Ml]]eD,l@(ﬁ, ) — lety = v [V']p, in [[M{]]eDé,@(W, v’),
o o TPV ~s T /(N €3,
e v is a value in the sequence oM that corresponds to o in X,
o O bp, V' TP and
o 0y: T bpy M{:%S> Ty /C = Cin
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Without loss of generality, we can assume that y € fo(Ms). By (HE_LETE) and (HE_LETOP),
M = (letx = Myin My) —* letx = o(V';y. M{)in My — o(V';y.letz = M| in Ms) .
Then, the conclusion (case ) is proven as follows:

[M]$@(v, o¥)
= [Mi],Q(vh, v™)
= lety = v [V']p, in [M{]%, QP Az, AD.[Ms], @(vhZ, hD, v¥))
= lety=v[V']p,in[letz = M]in Mg]]e%@(ﬁ, v*)  (by Lemma[30)

for some Dy and DY’ such that

Oy: T bFpy M{: STy /C=C™  Qy: T x:Tybpy My: S0 T/C™ = C
O,y: T bp, letz = M{inMy : X T/ C™ = i

(HT_LETATM).

Case[# We are given some o, V', y, M{, TPa Tari goni gofin 07 g »O, Dy, and DY such that
o My —* o(V';y. M),
e h/J is a sequence of fresh variables such that |R/0] = [O(Z)],

[M, @(oP, v*) = EC[o [V']p, Ay, W7 [M{]%,, @M, 1D, o)),

o TP s Tari/ Caini = Caﬁn c 27

e v is a value in the sequence vh that corresponds to ¢ in X,

the first and last computation types of C’ are C?fi* and Cfin,
o Obp, V': TP and
o Oy: T™ bpy M{:S> T/ C = O,
Without loss of generality, we can assume that y ¢ fo(Ms). By (HE_LETE) and (HE_LETOP),

M = (letx = Myin My) —* letz =o(V';y. M{)in My — o(V';y.letz = M| in Ms) .
Then, the conclusion (case ) is proven as follows:

[M]50(w", v)
= M5, @, v™)
B[ [V]p, (. WD [M{], @ ("D, W0, v7))]
= BT [V']p, Oy, /7 [M{]5, @D, WD, Az, b [Ms ], @02, 1O, k)]

= E9W[V']p, (Ay, k' .Jlete = M{in Mo]$, @(oh?, A5, 4%))]  (by Lemma [30)

(
(
for some Dy and DY’ such that

Oy: T bpy M{: %> T/ C = C™  0y: T z:Tybpy My: ST/ C™ = C
0,y: T bp, leta = M]inM,: X > T/ C™ = Con

(HT_LETATM).

Case[Bl We are given some M; and D such that
o My —7T M,
o [[Ml]]%,l@(ﬁ, vR) sty [[Ml’]]%,l,@(ﬁ, v'%), and
e Dbpy M{:Xp> Ty /C = Cin.

By (HE_LETE),
M = (letz = My in My) —" letz = M]in M, .
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Then, the conclusion (case () is proven as follows:

[M]3@(iF, o%)
— [[Ml]]epi@ ﬂv/k)
sty [[Ml’]]epi,@(vh, ') (byfcase B))
= lletz = M]in Ma]%, @(vh, o)
for some D’ such that
Obpy M{:SoT1/C=C™  Qa:Tibp My:SpT/C™=C
Dklete = M{inMy: X T/ CM = Cfin

(HT_LETATM).

Case (HT_ApP): We are given

@"Dl VllT/—)EDT/A (ZH—D2V22T/
QH_D V1V222DT/A

for some Vy, Va, T', Dy, and Dy such that M = V; V. By case analysis on the result of applying Lemma [7] to
Dbp, Vi: T = %> T/ A.

Case 3z, M. Vi = Az.M;: The conclusion (case (f])) is proven by (HE_BETA) and Lemma [33]
Case 3, V{. Vi = fixz. V{: The conclusion (case (5)) is proven by (HE_Fix) and Lemma [34]
Case (HT_CASE): We are given
OFp Vin Viel[l,n]. 0bp, M; : 2> T/ A
Obpcase(V; My, ,My):X>T/A

for some V, n, My, -+, M,, D', and Dy, --- , D, such that M = case(V; My, , M,). The conclusion (case ()
is proven by Lemma [7, (HE_CASE), and Lemma [35]

Case (HT_OP): The conclusion (case (3])) holds obviously.
Case (HT_OPATM): The conclusion (case (4))) holds obviously.

Case (HT_HANDLE): We are given

H = {returnz — L} W {o;(yi; ki) — M}'SSmw {q(2) = N;ISisn
ZI _ {Ui . Tipar — Tiari / Ciini = Ol_ﬁn}lgigm W {Ci . Uipar ~ Uiari/D}lgiSn
Obp, My : Yo T /) C™ = "™ G0 T bpe L: O™
Vie[l,m]. 0,y : TP k; T{“% — Cini Fpe, M, : Cin Vie[l,n]. 0,2 U™ Fps, N;: %0 U /0O
Ve {CP =" oty vicLn. 2 < s ™M =S T/ A
0 Fp with H handle My : > T/ A

/ par ar ari ari
for some Ha M07 x, L7 Ea 01, s0Om,y Y1 s Ym kl"'vkma Ml)"'aM’ma T1 a"'7T7ry)7, 5 Tl 7"'aTm7

ini ini fin fin par ar ari ari
01 7"'a0m7 01 7"'aCm7§1a"'7§na 1y 5 ”n, N17"'7NTL7 Ul 7"'7Uy}3 ) Ul 7"'aUn ) 217"'72717

T, ¢'"™ ¢’ Dy, D, Do, ... Do, and DS, --- , D such that M = with H handle M,.
For i € [1,7n], let DY be a typing derivation such that

0,2 : UP™ Fps, N;: %0 UP /O S0 UM /O0<: S UM /0O
0,2, : UP" bpo Ny : S UM /O

(HT_-SuBC),

(2
and, for 7 € [1,m],7 € [1,n], Dg be a typing derivation such that

0,2 : UP bps N;j: S0 U /O S50 UP/O<: G U /O
0.2 U™ b Ny 2 .S e U /O

(HT_SuBC).
J

Furthermore, let
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o Vic[l,m]. w? = Myi, ki Jet k; = return (\y, b, k.k, y ;' SIS" h k) inreturn [M;] pe. (where K}, y, k are fresh

i — ..
variables, and h is a sequence of fresh variables such that |h| = |C;™.3|),

e Vic[l,m].Vje[ln] v; = )\zj.ﬂ]\fj]]%m@(ﬁ,l),

i

o Vjel,n]. w? = Az [Ni]$n@(u", 1), and

K3

e hH be a sequence of fresh variables such that |h0| = n.

Then,
— —mlSiSm —1<i<n — —
[M]%Q(vh, v*) = [Mo] %, Q(w; , w , Az, hH return [ L] pe ) vh v* .
Let
o (M@, yP0) = split (vh, %),
PR —1<i<m
oy = u/l!ﬂ , and
— 1<i<n
[ ] ’wD = ’U}D o

(2

We proceed by case analysis on the result of the IHon O bp, My : X' > T' / o = orfin,

Case[ll Contradictory.
Case2} We are given some Vp, D)), and C’ such that
e My = return Vy,
o [return VO]]%O@(ﬁ, w, Az, A return [L]pe) —* EC [(Az, hD.return [L] pe) [Volo, whd),
e Obp, Vo: T, and
e the first and last computation types of C” are C’ ™ and ¢’ ﬁn7 respectively.
By (HE_HANDLEV),
M = with H handlereturn Vo — L[Vy/x] .

Then, the conclusion (case ) is proven as follows:

[M]5Q(vh, 0¥)
= [[Moﬂ%o@(wm,ﬁ, Az, hE.return [ L] pe ) vP v
—*  EY[(\x, h.return [L] pe) [ Vo] py vhP] P vk (by case (2) and (E_LETE))
—t E%[return [L]pe[[ Vo] p, /]] vh 0% (by (E-BETA), (E_LLETV), and Lemma [29)
= E%[return[L[Vy/z]]pre] vh vk (by Lemma [31))

—  [L[Vo/2]]% @Q(v", v*)  (by Lemma [36)

for some D’® and D’ such that ) Fpre L[Vy/a] : C"™ and 0 bpr L[Vy/x] : €', Note that ¢'™ = T/ A.
Case Bl We are given some ¢ € [1,n], V', y, Mj, D1, and Dy such that
o My —* i(V';y. Mp),
. [[Mo]]epo@(wm,ﬁ, Az, hO return [L]pe) < lety = w2 [V']p, in [[Mé]]%z@(ﬁ,ﬁ, Az, hOreturn [L] pe),
e 0bp, V': U, and
o 0 y: UMibp, M{:X o T ) C'™ = ¢,
By (HE_HANDLEE) and (HE_HANDLEOPTAIL),

M = with H handle My —* with H handleg;(V';y. My) — lety = N;[V'/z;] inwith H handle M .
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Then, the conclusion (case () is proven as follows:

[M]5a (5%, v¥)
= HMO]}%O@(wm,ﬁ, Az, hO.return [[L]]De)ﬁ k
< (lety = wf [V']p, in [M{]%, @(w?, wH, Az, hD.return [[L]}De)) vh ok (by case (3))
— (lety = [[Ni]];[]@(ﬁ,l)[[[ V’]]Dl/z,] in [[MO]]D2 (wm O, Az, kO return [L] pe)) v" v
(by (E_LETE) and (E_BETA))
= (lety =[NV’ /zl]]]D, (vh,1)in [[Mé]]%z@(ﬁ,ﬁ, Az, hEreturn [ L] pe)) v" v
(by Lemmas [31] and.
—  lety =[N;[V’ /ZZ]HD; (vh,1)in (M5, (wm O, Az, hO.return [ L] pe) v" v*
= lety= [[Ni[V’/zi]]]eD,1 (vh, 1) in [with H handle MO]]D, (vh, v%)

(by Lemma [30])
= [lety = N;[V'/2;]inwith H handle M]3, @(vP, v%)

for some D}, Dj, and D’ such that
Obp, Ni[V'/z]: S0 UM /0O,
y: UM+ with H handle M : ¢'™ |
and

Obp Ni[V'/2z]: S0 UM /0 y: UM+ with H handle My : '™ 0™ =$p T/ A
0 tprlety = N;[V'/z;]inwith H handle My : ¥ > T / A

Case[# We are given some i € [1,m], V', y, M}, C, WO, Dy, and D such that
o My —* oi(V'5y. Mp),

e /T is a sequence of fresh variables such that [W/C| = n,

e the first and last computation types of C' are Cfi* and C’ ﬁn, respectively,
e 0kp, V': TP*, and
o 0y: Toribp, My :5 o T/ C'™ = Cini,

By (HE_HANDLEE) and (HE_HANDLEOP),

M = with H handle My —* with H handleo;(V';y. Mj) — M;[ V' /y;][A\y.with H handle M{/k;] .

Then, we have

w? [V']p, (/\y,hT:].[[Mé]]%Q@(ﬁ7 RO, Az, hO.return [ L] pe))

let k; = return (Ay, h, k.[Mg]5, @(w?, v, 1<J<” , Az, hPreturn [L]pe) h k) in return [Mi]pes [[ V'] p, /yi]
let k; = return (\y, h, k.[with H handle MO]]DH@(h k))inreturn [M;]pe: [[V']p, /y:] (by Lemma [30))
let k; = return [Ay.with H handle M{]p+ inreturn [M;]pe: [[ V'], /3]

return [M;]poi [[ V'] D, /i) [[Ay-with H handle M{]pr /K]

return [M;[ V' /y:][Ay.with H handle Mg /k;]|pro:  (by Lemmas [31] and

||£|\||£l

for some D", D", and D'’ such that

0,y : T Fpr with H handle M = ¢

?

0 Fpi Ay.with H handle M - T2 — ¢

i i
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and
0 Fproe My[V' Jyi][\y.with H handle M} /k;] : Ci .

Therefore, the conclusion (case ) is proven as follows:

[MI$ (P, o¥)

= [Mo]S, @(w?, w5, Az, kD .return [L] pe ) wh ok

— Eﬁ[wim [V'lp, My, h’D.[[Mé]]e%@(wm,hT:', Az, hO return [L] pe ))] v" v*
(by case @) o

—T  ECreturn [M;[V'/y:][A\y.with H handle M /k;]]pre.] vh v

(by the above reasoning and Lemma

— [M;[ V' Jy:][Ay.with H handle M/ /k;]]% @(vh, v¥)
(by Lemma

for some D’ such that 0 Fpr M;[ V' /y:][Ay.with H handle M{/k;] : C"™.
Case[Bf We are given some M; and Dy such that
o My —T Mg,
o [[M)]]%O@(ﬁ7ﬁ, Az, hB.return [L] pe) —s—+es [[Mé]]%é@(ﬁ, wB, Az, hD.return [L]p- ), and
o Dbpy My : X T/ C"™ = '™,
By (HE_HANDLEE),

M = with H handle My —* with H handle M .

The conclusion (case (5)) is proven as follows:

[M50(0, o¥)
= [[MO]]"DO@(wim7 w5, Az, hB.return [L] pe ) vh vk

sty [[Mé]]epé@(wm,ﬁ, Az, hO return [L]pe) v" v%  (by case @)
= [with H handle Mg]%, @(vh, v¥)

for some D’ such that ) Fp, with H handle M : ¢/™".
O

Theorem 2 (Contextual Equivalence of Evaluation). If 2 | At e :7 andZE | At es: 7 and e1 — ey, then
E”Al_el(i(GQZT.

Proof. This can be proved directly following the strategy in [I], where the underlying monad is the free one, namely
the one of (possibly infinite) trees whose nodes are labelled with values from finite types. The idea is that if
e1 —T eg, then e; and ey either both diverge or they reduce to the same value, and are thus trivially bisimilar,
applicatively. This then implies that they are contextual equivalent, given the soundness of applicative bisimilarity
for contextual equivalence. O

Theorem 3 (Contextual Improvement of Full 8y Monadic Reduction). If 2 | At e :7 and 2 | AF ey : 7 and

ctx
e <> e, thenZ | AF ex < e :7.
Proof. Again, this can be proved following the strategy in [I]. More specifically:

e The fact that if ¢ < ey, then 2 | A F ¢ = ez : T can be proved by observing that if e; < ey, then e;
and ey are applicatively bisimilar where the underlying monad is the one trees whose nodes are labelled with
values from finite types, exactly as in Theorem
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e We also have to prove that if e; < ey then for every context P, it holds that Ples] does not take more steps to
be evaluated than P[e;] can be proved by considering another monad, namely the monad X +— 14+(Nx (X +1)),
whereas a value in the left component of the coproduct signals divergence, while a pair (n,r) in the right
component of the coproduct signals convergence in n steps to r, which can be either a value of an unspecified
operation o. In such a monad, e; and es are applicatively similar, and since applicative similarity is included
in the contextual preorder, we are done.

O
Lemma 38 (Evaluation in HEPCF’E,TNI is Deterministic). If M — M; and M — Ms, then M; = Mo.
Proof. Straightforward by induction on the derivation of M — M;. O

Lemma 39 (Well-Definedness of HEPCFA™ Effect Trees). If 0+ M : X > T/ A and ¥ is top-level, then ET(M)
is well defined and uniquely determined, and it is in Tree S5

Proof. We show that ET(M) € Treesg by coinduction. We proceed by case analysis on the evaluation of M.
Case M —*: Obvious.

Case 3 V. M —* return V: By the definition, ET(M) = return V. By Lemma OFreturnV : X > T/ A By
Lemmas andand (HT_SuBV), we have § - V' : T. Thus, return V € Treegs.

Case 30, V,z,M'. M —* o(V;2z.M'): By Lemma [14 0 - o(V;z.M') : £ > T/A. By Lemma [§ to 0 I
o(Viz. M') : 3> T/ A, the assumption that ¥ is top-level, and (HT_SUBC) we have

eo:B~n/OeX,
e )V :B,and
ex:ntM:3>T/A

for some B and n. By Lemma V = ¢ such that ty(c) = B. Then, by the definition,
ET(M) = o(c, ET(M'[1/a]), - ,ET(M[n/a]) .

Thus, by the coinduction principle, it suffices to show that, for any ¢ € [1,n], 0 = M'[i/x] : ¥ > T / A, which is
shown by LemmaQ with z :nt-M':Xp> T /Aand O Fi:n.

Otherwise: Contradictory with Lemmas [I4] and [9]

The uniqueness of ET(M) is shown by Lemma O
Lemma 40 (Evaluation in EPCF is Deterministic). If e — ¢; and e — ey, then e; = es.

Proof. Straightforward by induction on the derivation of e — ;. O

Lemma 41 (Well-Definedness of EPCF Effect Trees). If Z | 0 - e : 7, then ET(e) is well defined and uniquely
determined, and it is in Treegs=.

Proof. We show that ET(e) € Treeg= by coinduction. We proceed by case analysis on the evaluation of e.
Case e —*: Obvious.

Case Jv. e —* return v: By the definition, ET(e) = return v. By Lemma = | 0+ returnv : 7. By its inversion,
E|0F v:7. Thus, returnv € Treegs.

Case 3o,v,z,¢’. ¢ —* o(v;z.€¢'): By Lemmal[l9 Z | 0 - o(v;z. €/) : 7. By its inversion and Lemma [17]

e og:B~nez,
e v =, and

eZ|z:nke:T

78



for some B n, and c¢. Then, by the definition, ET(e) = o(¢, ET(e’'[1/z]), - ,ET(e’[n/z])). Thus, by the
coinduction principle, it suffices to show that, for any i € [1,n], = | 0 - ¢/[i/z] : 7, which is shown by Lemma
withE|z:nte:7and E|0Fi:n.

Otherwise: Contradictory with Lemmas [19 and
The uniqueness of ET(e) is shown by Lemma O
Lemma 42 (Evaluation Preserves Effect Trees in EPCF). IfZ | 0F e: 7 and e —* ¢/, then ET(e) = ET(¢’).

Proof. By Lemmas [19| and ET(e), ET(¢') € Treeg=. We show that ET(e) = ET(e’) by case analysis on the
evaluation of e.

Case e —*: By Lemma[i0] ¢/ —*. Therefore, ET(e) = ET(¢') = L.
Case Jv. e —* returnv: By Lemma[d0] ¢/ —* returnv. Therefore, ET(e) = ET(e’) = return v.

Case Jo,v,x,e9. ¢ —* o(v;2. p): Because ET(e) is well defined, we have o : B ~» n € Z and v = ¢ for some B,
n, and c. By Lemmald0] ¢/ —* o(c;x. eg). Therefore, ET(e) = ET(¢') = o (¢, ET(eo[1/2]),- - ,ET(eo[n/x])).

Otherwise: Contradictory with Lemmas [T9] and [I8]

O
Lemma 43 (Strengthening Typing in EPCF).
o If = | A1, A2, Azt v : 7 and dom(As) N fu(v) =0, then E | A1, Az v : 7.
o If=| A1, A2, Azt e: 7 and dom(Az) N fu(v) =0, then Z | A, Azt e: 7.
Proof. Straightforward by mutual induction on the typing derivations. O

Lemma 44 (Subject Reduction for Full 87 Monadic Reduction).
I.IfE|AFe:7and e — ¢/, then E| Ak e : 7.

2. fZ|Atwv:7and v = v/, then Z | A+ v : 7.

Proof. By mutual induction on ¢ — ¢’ and v < v'.

1. By case analysis on how e¢ < ¢’ is derived.

Case e = ¢’: Obvious.

Case Je’. e < e’ Ne” < ¢: Bythe IH Z | AFe”: 7,50 again by the IH, Z | A+ ¢’ : 7.

Case Iz, e1,v5. e = (Ax.e1) 12 A €' = ej[va/x]: Without loss of generality, we can assume that z ¢ dom(A).
By the inversion of Z | A F (Az.e1) vp : 7, there exists some Z | A,z : 7' F e :7and Z | Ak vy : 7/ for
some 7. By Lemma[16] we have the conclusion Z | A & e;[ve/z] : 7.

Case Jx,v,ep. e = (letz =returnviney) A e’ = ep[v/z]: Without loss of generality, we can assume that = ¢
dom(A). By the inversion of Z | A+ letz = returnviney : 7, wehave Z | At v: 7 and Z | A,z : 7' Feg: T
for some 7/. By Lemma [16] we have the conclusion E | A+ eglv/x] : 7.

Case 3z. e = (letz = €’ inreturnz): By the inversion of Z | A F letz = ¢’inreturnz : 7, we have the conclu-
sionZE | Ak e T,

Case Jx,y,e1,ez,e3. e = (letz = (lety = ejiney)ines) A e = (lety =ejinletz = exyines) A y & fu(es): By the
inversion of Z | A letz = (lety = ey iney)ines : 7, we have

H A €1 :T1,

| Ayy:7 b eg: 7o, and

|

o o o
(11 [ [1]

| Az imo ez T
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for some 71 and 75. To show the conclusion, by (T_LET) with Z | A F e; : 71, it suffices to show that
E|Ay:miFleter=eines:T.
By (T_LET) with = | A,y : 71 F €2 : 72, it suffices to show that
E|lAy:m,z:mebes:iT,
which is derived by Lemma |15 with E | A,z : o F ez : 7.
Case compatibility rules: By the IHs.
2. By case analysis on how v < v’ is derived.

Case v = v': Obvious.
Case 3v". v > 0" A v < o' By the IH, E | A+ v” : 7, s0 again by the IH, Z | AF v’ : 7.

Case Jz. v = Az.v'x A x & fo(v'): Without loss of generality, we can assume that @ € dom(A). By the
inversion of E | A F Az.v’ x : 7, there exist some 71 and 75 such that 7 =7 - mand E | A,z : 7 F v :
71 — T2. By Lemma we have the conclusion Z | AF v : 7 — 7.

Case compatibility rules: By the IHs.
O

Lemma 45 (Contextual Equivalence of Evaluation Composition). If Z | A+ e : 7 and e ———T< €', then
A= T

Proof. By the assumption e —s——T< ¢’, there exist some e; and ey such that e < e; and ¢ —1 ey and
es — ¢e. By Lemma and Theoremwith E|AFe:Tande < e, wehave Z | AF e £ ¢ : 7. By Lemma

and Theorem [2| with e —T €3, we have Z | A+ ¢ e ez : 7. By Lemma and Theorem [3| with es < €/, we

have Z | At ey L ¢/ : 7. Therefore, by the transitivity of contextual equivalence, = |AFe et O

Lemma 46 (Simulation of Divergence). Let

e T be a ground type,

o ¥ ={0;: B; ~ E; JO}ISisn,

e == {0;: B, ~ E;}'S'=" and

e vh =P ... o such that, for any i € [1,n], v} = A\v.0;(z;y. returny).
If0bFp M:X>T/0and M —* and Z | O+ v" : ¥, then [M]SQ(vh, 1) —«.

Proof. The proof proceeds by iteratively, and coinductively applying Lemma at each step observing that in
EPCF, if ¢ «—»——T< ey, then the number of reduction steps to an irreducible term from ey is strictly less than
that of e, thanks to Theorem [3] O

Lemma 47 (CPS Transformation of Ground Values). If T is a ground type and § -p V : T, then [V]p = V.
Proof. Straightforward by induction on the typing derivation of 0 Fp V' : T. O

Lemma 48 (Simulation of Termination at Valuesl. Let T be a ground type. If @ bp M : X > T /O and
M —* return V and Z | 0 - vh : X, then [M]$@Q(vh, 1) —* return [V]p for some D’ such that 0 Fp, V : T.

Proof. By induction on the number of steps of the evaluation M —* return V. We proceed by case analysis on
the result of applying Lemma [37|to O Fp M : X > T /0.

Case[} We are given M = return V and [return V]$@(v",1) —* return [V]ps for some D’ scuh that § Fps V & T.
Thus, we have the conclusion.
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Case 2l Contradictory.
Case B Contradictory by Lemma [10]
Case[dt Contradictory.
Case[B} We are given some M’ and D’ such that
o M —t M,
o [M]5$@(v", 1) ——+— [M']$,@Q(vh, 1), and
o OFp M :S» T /0.
By Lemma M’ —* return V. By the IH, [[M’]]%,@(W, 1) —* return [V]p- for some D’ such that ) bpr V :
T. By Lemma Z |0+ [M]$Q(0", 1) : [T]. By Lemma 20k [M]5Q(h,1) = [M]S,@(u0", 1) : [T].
Thus, by [M']% @(vh,1) —* return [V]ps and the assumption that T is ground, we have [M]%@(vh, 1) —*
return [V]pr.
O
Lemma 49 (Simulation of Termination at Operation Calls). Let
e T be a ground type,
o ¥ ={0;: B; ~ E; /O}!='=",
e =={0;: B, ~ E;}'<" and
o h =0 ... , ol such that, for any i € [1,n], v} = \v.0;(x;y. returny).

fPFp M:Yo T/0Oand M —* o(V';y.M’) and Z | - v : 2, then there exist some i € [1,7], Dy, and Dy
such that

e 0=0;
o Z|0F [M]$Q(0h, 1) = oi([V']pysy- [M']5,@(0", 1)) : [T],
e fFp, V':B;, and
e y:Eilbp, M :X>T/0.
Proof. By induction on the number of steps of the evaluation M —* o(V’; 2. M'). We proceed by case analysis
on the result of applying Lemma [37)to O bp M : £ > T /0.
Case[ll Contradictory by Lemma [40]
Case 2l Contradictory.

Case Bl By Lemma we are given some i € [1,n], D1, and Dy such that

o [M]5Q(vP,1) < lety = vf [V']p, in [M']5, @ (0", 1),
e fFp, V':B;, and
e )y:E;bp, M : 30> T /0.
We have o
lety = o! [V']p, in [M']%,@Q(v", 1)
— ety =o([V']p,;y.returny)in [M']3,@(v",1)  (by (E_LETE)/(E_BETA))
— o([V']p,;y.lety = returnyin [M']$, @(vh, 1)) (by (E_LETOP))
= o([V'lpy- [M'],@(0", 1)) .
By Lemmas [23] and [45] we have the conclusion

2 0F [M]SQ(h, 1) 2 o ([V]p,;y. [M']H, @00, 1)) : [T] .
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Case[d Contradictory.
Case[B} We are given some M” and D” such that
o M —T M",
o [M]5@Q(vM, 1) ——t [M"]%,@Q(v", 1), and
° (Z)l_’D// M”ZED T/D
By Lemma M" —* o(V';z. M"). By the TH, there exist some i € [1,n], D1, and Ds such that
* 0 =0,
o 2|0+ [M"]5,Q(00, 1) Z oi([V']pssy. [M']5,@ (0%, 1)) : [T,
e fFp, V':B;, and
e y:Ebp, M : X T /0.
By Lemmas 23] and
=)0+ [M]5Q(vh, 1) = [M"]%,@(vh, 1) : [T] .
By the transitivity of the contextual equivalence, we have the conclusion.
O

Theorem 4 (Preservation of Effect Trees). Let T be a ground type and ¥ = {o; : B; ~ E; /O}S<" and

2= {0y : B; ~ E}'<=" Assume that 0 p M : X > T /0 and 01, --- ,0, are ordered. Let vP = ol -+ o" such

that, for any i € [1,n], v} = Av.o;(z;y. returny). Then, ET([M]%Q(vh, 1)) = ET(M).
Proof. Note that [B] = B and [E] = E for any B and E, so [T] = T.

Because 0 - M : ¥ > T /O and X is top-level, ET (M) is well defined and is in Treegx by Lemma

Next, we show that ET([M]%@(v",1)) is well defined and is in Tree S, We have Z |  F v" : & because we
can derive Z | 0 - Ax.o;(z;y. returny) : B; — E; for any i € [1,n] as follows:

(T_VAR)
(T-VaR) E|x:B,y:Ety:E
_ — — (T_-RETURN)
Z>0;: B~ E; E|lx:B;Fx:B; E|x:Bi,y: E; Freturny : E;
= (T_Op)
E|x: Bk oi(z;y.returny) : E;
(T_ABS).

E|0F Ax.oi(x;y. returny) : B; — E;

Thus, by Lemma [23) = | § - [M]c@ W,l :[T]. Therefore, ET([M]¢@ oM 1)) € Treeg= by Lemma |41
Str)

Finally, we show that ET([M]@(v",1)) = ET(M) by coinduction. We proceed by case analysis on the
evaluation of M.

Case M —*: By definition, ET(M) = L. By Lemma ET([M]%@(vh,1)) = L. Therefore, we have the
conclusion.

Case 3V. M —* return V: By Lemma [M]e@(vh, 1) —* return [V]ps for some () Fp/ V : T. Thus,

ET([M]e@Q(vh, 1)) = return[V]p
= return V  (by Lemma [47)
= ET(M).

Case 3o, V,M'. M —" o(V;y.M'): Because ET(M) € Treegy, we have V = ¢ and o = o; for some c and 1.
Let E; = m for some m. By the definition,

ET(M) = Ui(c7ET(M/[l/y])7 T ,ET(MI[m/y])) :
By Lemma [49]
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o S| 0F [M]$Q(", 1) = oy([clp,; v [M']5,@(0", 1)) : [ 7],
e fFp, ¢c: B;, and
e y:Ebp, M :X0>T/0O

for some D; and D,. Thus,

ET([M]5@(v", 1))
= ET(0i([c]p,;y- [M']5, (", 1)) L
(because = | 0 - [[M]]D (", 1) Z o ([c]p,; v [M']%,@(v",1)) : [T] and [T] is ground)
BIT(o,(c50. [ 5, 6% 1) (b Lemma 1]
o1, ET([M )3, 6(%, 1)1/g]), -, BT([M'5, &(oF, 1) m/y]))

oi(c, ET([M'[L/y]]5,Q(v", 1)), -, ET([M'[m/y]]5,@(v",1)))  (by (HT-ECoNsT) and Lemma 31) .

Now, it suffices to show that, for any j € [1,m],

T([M'[i/y]]*@(v", 1)) = ET(M'[j/y]) -
By the coinduction principle, it suffices to show that
OFM/yl:x>T/0,
which is shown by Lemma [2| with y : E; Fp, M’ : X > T /O and (= j : m (derived by (HT_ECONST)).

Otherwise: Contradictory with Lemmas [9] and [T4]

3.5 Expressivity
Lemma 50 (GEPCF C HEPCFETM). If M is well typed in GEPCF, then M is also well typed in HEPCF’%TM.

Proof. The program syntax and semantics of GEPCF is subsumed by HEPCF%TM. The types in GEPCF are defined
as follows:

RS ¥ B|E|R->=zS

Types and effects in GEPCF are transformed into ones in HEPCF’ET'VI as follows:

ef
[Blcepcr B
ef
[Eleercr < E
[R —= Slcepcr e [R]cercr — [Elcepcr > [S]eepce /O

[{o: : Bi ~ E}<<"Jgepce = {oy: By~ E; / 0}

Then, it is easy to show that, if a term M is well typed in GEPCF, then M is also well typed in HEPCFETM, by
induction on the typing derivation of M in GEPCF using [—]cepck. O

Lemma 51 (HEPCFAT™ C HEPCF’ETM). If M is well typed in HEPCFA™  then M is also well typed in HEPCFé,TM.

Proof. The program syntax and semantics of HEPCFAT™™ is subsumed by HEPCF%TM. The types in HEPCFATM
are similar to those in HEPCF%T'VI except that an answer type is either a computation type or a value type.
In transforming types in HEPCFA™ to ones in HEPCFA™, if an answer type is a computation type, then the
transformation is applied to the computation type recursively, and if the answer type is a value type, then it is
transformed into ) > 7'/ where T is the result of transforming the HEPCFA™ value type. Then, it is easy to
show that, if a term M is well typed in HEPCFA™  then M is also well typed in HEPCFGTM, by induction on the
typing derivation of M in HEPCFA™ using the aforementioned type transformation. O
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Theorem 5 (GEPCF U HEPCFA™ HEPCFETM). If M is well typed in either GEPCF or HEPCFAT | then it is
also well typed in HEPCF’&TM. Furthermore, there exists a term M that is accepted by HEPCF%T'\/I but neither by
GEPCF nor HEPCFATM,

Proof. By Lemmas [50|and |51, GEPCF UHEPCFA™ C HEPCFAT™. As shown in [3], there exists a term L such that
L is accepted by GEPCF but not by HEPCFA™  and there exists a term N such that N is accepted by HEPCFAT™
but not by GEPCF. HEPCF'&TIVI accept both L and N by Lemmas |50| and and it is easy to construct a term M
from L and N such that M is accepted by HEPCF’E,T'VI but neither by GEPCF nor HEPCFATM, O
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