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HOMC Problem

Whether the trees yielded by M satisfy ¢?

¢ Including safety and liveness verification problems
(E.g., assertion checking and (non-)termination analysis)
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¢ Effect handlers: features to implement control effects

O Exceptions, coroutines, backtracking, etc.
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used in a correct order?
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write(s);

close();
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HOMC with effect handlers is
undecidable

Because
¢ Effect handlers can encode natural numbers, but
¢ HOMC is undecidable in the presence of an infinite data domain

What's a fragment that
makes HOMC decidable?\



Contributions

Theory Identifying a class of higher-order programs where
Q

O %>kM (kGEfv(M))}
O

if it is only handled in a tail-resumptive manner
%

Implementation
An HO model checker for a subset of OCaml 5
¢ It checks an input program belongs to the above class
O If so, it model checks the program



Criteria: a program is in the decidable class if
The interpretation of effect invocation can rely only on a bounded # of handlers

Exa m p|e if they are not tail-resumptive
Tail-resumptive: op (x, k) ->k M (k & fv(M))

with with
return X -> X return X -> X
decide (x, k) -> decide (x, k) ->
k true k true; k false
handle handle
open("foo.txt"); open("foo.txt");
let s = if decide() let s = if decide()
then "a" else "b" in then "a" else "b" in
write(s); write(s);
close(); close();

Because only one handler is used
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Criteria: a program is in the decidable class if
The interpretation of effect invocation can rely only on a bounded # of handlers

Exa m p|e if they are not tail-resumptive
Tail-resumptive: op (x, k) ->k M (k & fv(M))

let rec £ () =

with
return Xx -> X
raise (_, k) -> ()
// Tail-resumptive

* (_, k) -> k (not (*))
write (x, k) -> k (write(not x))
handle

if * then raise()
else (write(true); f ())

in
open("foo.txt"); f ()




Example

if they are not tail-resumptive

Criteria: a program is in the decidable class if
The interpretation of effect invocation can rely only on a bounded # of handlers

Tail-resumptive: op (x, k) ->k M (k & fv(M))

No guarantee

let rec £ () =

with
return Xx -> X
raise (_, k) -> ()

// Non-tail-resumptive

* (L, k) ->not (k (*))

write (x, k) -> k (write(x)); k (write(x));
handle

if * then raise()
else (write(true); f ())

in
open("foo.txt"); f ()

Because, regarding * and write,

¢ The interpretations rest on
an unbounded # of handlers, since

O their handlers calls themselves
O each recursive call installs one handler

¢ The handling is not tail-resumptive




Formalization

HEPCF EPCF

4 N

HOMC is decidable

HOMC is undecidable K /




EPCF + effect handlers A + fix + finite data domains + algebraic effects

T

HEPCF EPCF
- ~ s N
Typeable with transformation
answer-type modification (ATM) >
answer-type polymorphism (ATP) HOMC is decidable
[Kawamata+ POPL24]
N /
HOMC is undecidable \_ -

¢ ATM can bound the # of handlers used to interpret effect invocation
¢ ATP can allow the use of an unbounded # of handlers if they are tail-resumptive



Implementation

¢ An HO model checker on a subset of OCaml5

~

N
Input: HEPCFE™ | | Type
term (in OCaml) ) inference

ATM
HEPCF{,

'\ typing derivatio

n

/

CPS

transformation

{

EPCF term
(in HORS)

™

J/

HorSat2

"| (HO model checker)

[Input: Specification in ATA

[ Sat or"Unsat ]

¢ For small benchmarks, the verification completed in less than 0.1s




Contributions

Theory Identifying a class of higher-order programs where
Q

O %>kM (kGEfv(M))}
O

if it is only handled in a tail-resumptive manner
%

Implementation
An HO model checker for a subset of OCaml 5
¢ It checks an input program belongs to the above class
O If so, it model checks the program https://github.com/hiroshi-unno/coar/
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