
On Higher-Order Model Checking of
Effectful Answer-Type-Polymorphic Programs

Taro Sekiyama
National Institute of Informatics

SOKENDAI

Hiroshi Unno
Tohoku University

Ugo Dal-Lago
University of Bologna

INRIA

Higher-Order Model Checking (HOMC)
[Ong, LICS’06; Kobayashi, JACM’13]

𝑀𝑀 ⊨ 𝜙𝜙
?

Higher-Order Model Checking (HOMC)
[Ong, LICS’06; Kobayashi, JACM’13]

𝑀𝑀 ⊨ 𝜙𝜙

System
HO programs yielding trees

♦ HO recursion schemes
(tree grammars with HO funcs)

♦ PCF terms
(generating Böhm trees)

?

Higher-Order Model Checking (HOMC)
[Ong, LICS’06; Kobayashi, JACM’13]

𝑀𝑀 ⊨ 𝜙𝜙

Property
Predicates over trees

♦ MSO logical formulas
♦ Modal μ-calculus formulas
♦ Alternating parity tree automata

System
HO programs yielding trees

♦ HO recursion schemes
(tree grammars with HO funcs)

♦ PCF terms
(generating Böhm trees)

?

Higher-Order Model Checking (HOMC)
[Ong, LICS’06; Kobayashi, JACM’13]

𝑀𝑀 ⊨ 𝜙𝜙
?

HOMC Problem is Decidable
Whether the trees yielded by 𝑀𝑀 satisfy 𝜙𝜙?

♦ Including safety and liveness verification problems
(E.g., assertion checking and (non-)termination analysis)

Property
Predicates over trees

♦ MSO logical formulas
♦ Modal μ-calculus formulas
♦ Alternating parity tree automata

System
HO programs yielding trees

♦ HO recursion schemes
(tree grammars with HO funcs)

♦ PCF terms
(generating Böhm trees)

Example
let rec f () =
 if * then close()
 else (read(); f ())
in
let _ = open("foo.txt") in
f ()

𝑀𝑀

⊨
? Is there no

infinite path?

𝜙𝜙

Example 𝑀𝑀

open

*

close read

*

close read

…

⊨
?

𝑀𝑀 =

Is there no
infinite path?

𝜙𝜙
let rec f () =
 if * then close()
 else (read(); f ())
in
let _ = open("foo.txt") in
f ()

Example 𝑀𝑀

𝑀𝑀 =

open

*

close read

*

close read

…

Is there no
infinite path?

𝜙𝜙

⊭
let rec f () =
 if * then close()
 else (read(); f ())
in
let _ = open("foo.txt") in
f ()

Example 𝑀𝑀

Are the file ops
used in a correct order?

𝜙𝜙

⊨
let rec f () =
 if * then close()
 else (read(); f ())
in
let _ = open("foo.txt") in
f ()

?

Example 𝑀𝑀

Are the file ops
used in a correct order?

𝜙𝜙

𝑀𝑀 =

open

*

close read

*

close read

…

⊨
let rec f () =
 if * then close()
 else (read(); f ())
in
let _ = open("foo.txt") in
f ()

?

Example 𝑀𝑀

Are the file ops
used in a correct order?

𝜙𝜙

𝑀𝑀 =

open

*

close read

*

close read

…

⊨
let rec f () =
 if * then close()
 else (read(); f ())
in
let _ = open("foo.txt") in
f ()

Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]

♦ Effect handlers: features to implement control effects
◊ Exceptions, coroutines, backtracking, etc.

⊨
?

Are the file ops
used in a correct order?

with
 return x -> x
 decide (x, k) ->
 k true;
handle
 open("foo.txt");
 let s = if decide()
 then "a" else "b" in
 write(s);
 close();

𝑀𝑀
𝜙𝜙

Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]

♦ Effect handlers: features to implement control effects
◊ Exceptions, coroutines, backtracking, etc.

⊨
?

Are the file ops
used in a correct order?

with
 return x -> x
 decide (x, k) ->
 k true;
handle
 open("foo.txt");
 let s = if decide()
 then "a" else "b" in
 write(s);
 close();

𝑀𝑀
𝜙𝜙

open

write

close

𝑀𝑀

Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]

♦ Effect handlers: features to implement control effects
◊ Exceptions, coroutines, backtracking, etc.

⊨ Are the file ops
used in a correct order?

with
 return x -> x
 decide (x, k) ->
 k true;
handle
 open("foo.txt");
 let s = if decide()
 then "a" else "b" in
 write(s);
 close();

𝑀𝑀
𝜙𝜙

open

write

close

𝑀𝑀

Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]

♦ Effect handlers: features to implement control effects
◊ Exceptions, coroutines, backtracking, etc.

⊨
?

Are the file ops
used in a correct order?

𝑀𝑀
𝜙𝜙𝑀𝑀

open

write

close

with
 return x -> x
 decide (x, k) ->
 k true; k false
handle
 open("foo.txt");
 let s = if decide()
 then "a" else "b" in
 write(s);
 close();

Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]

♦ Effect handlers: features to implement control effects
◊ Exceptions, coroutines, backtracking, etc.

⊨
?

Are the file ops
used in a correct order?

𝑀𝑀
𝜙𝜙𝑀𝑀

open

write

close

write

close

with
 return x -> x
 decide (x, k) ->
 k true; k false
handle
 open("foo.txt");
 let s = if decide()
 then "a" else "b" in
 write(s);
 close();

Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]

♦ Effect handlers: features to implement control effects
◊ Exceptions, coroutines, backtracking, etc.

⊭ Are the file ops
used in a correct order?

𝑀𝑀
𝜙𝜙𝑀𝑀

open

write

close

write

close

with
 return x -> x
 decide (x, k) ->
 k true; k false
handle
 open("foo.txt");
 let s = if decide()
 then "a" else "b" in
 write(s);
 close();

HOMC with effect handlers is
undecidable

Because
♦ Effect handlers can encode natural numbers, but
♦ HOMC is undecidable in the presence of an infinite data domain

What’s a fragment that
makes HOMC decidable?

Contributions
Theory Identifying a class of higher-order programs where

◊ HOMC is decidable
◊ No restriction on effect handlers
◊ No restriction on effect invocation

if it is only handled in a tail-resumptive manner
◊ Otherwise, the interpretation of effect invocation can rely only on

a statically bounded number of handlers
Implementation
 An HO model checker for a subset of OCaml 5

◊ It checks an input program belongs to the above class
◊ If so, it model checks the program

op (x, k) -> k M (k ∉ fv(M))

Example

with
 return x -> x
 decide (x, k) ->
 k true; k false
handle
 open("foo.txt");
 let s = if decide()
 then "a" else "b" in
 write(s);
 close();

Decidable with
 return x -> x
 decide (x, k) ->
 k true
handle
 open("foo.txt");
 let s = if decide()
 then "a" else "b" in
 write(s);
 close();

Decidable

Because only one handler is used

Criteria: a program is in the decidable class if
 The interpretation of effect invocation can rely only on a bounded # of handlers
 if they are not tail-resumptive
Tail-resumptive: op (x, k) -> k M (k ∉ fv(M))

Example

Decidable
let rec f () =
 with
 return x -> x
 raise (_, k) -> ()
 // Forwarding
 * (_, k) -> k (*)
 write (x, k) -> k (write(x))
 handle
 if * then raise()
 else (write(true); f ())
in
open("foo.txt"); f ()

Because
♦ raise is handled only by the nearest handler
♦ * and write are only forwarded to
 outer effect handlers
♦ The forwarding is tail-resumptive

Criteria: a program is in the decidable class if
 The interpretation of effect invocation can rely only on a bounded # of handlers
 if they are not tail-resumptive
Tail-resumptive: op (x, k) -> k M (k ∉ fv(M))

Example

let rec f () =
 with
 return x -> x
 raise (_, k) -> ()
 // Tail-resumptive
 * (_, k) -> k (not (*))
 write (x, k) -> k (write(not x))
 handle
 if * then raise()
 else (write(true); f ())
in
open("foo.txt"); f ()

Decidable

Criteria: a program is in the decidable class if
 The interpretation of effect invocation can rely only on a bounded # of handlers
 if they are not tail-resumptive
Tail-resumptive: op (x, k) -> k M (k ∉ fv(M))

Example
No guarantee
let rec f () =
 with
 return x -> x
 raise (_, k) -> ()
 // Non-tail-resumptive
 * (_, k) -> not (k (*))
 write (x, k) -> k (write(x)); k (write(x));
 handle
 if * then raise()
 else (write(true); f ())
in
open("foo.txt"); f ()

Because, regarding * and write,
♦ The interpretations rest on
 an unbounded # of handlers, since

◊ their handlers calls themselves
◊ each recursive call installs one handler

♦ The handling is not tail-resumptive

Criteria: a program is in the decidable class if
 The interpretation of effect invocation can rely only on a bounded # of handlers
 if they are not tail-resumptive
Tail-resumptive: op (x, k) -> k M (k ∉ fv(M))

Formalization

HEPCF EPCF

HOMC is decidable

HOMC is undecidable

Formalization

HEPCF

EPCF + effect handlers

Typeable with
answer-type modification (ATM)
answer-type polymorphism (ATP)

[Kawamata+ POPL’24]

EPCF

λ + fix + finite data domains + algebraic effects

HOMC is decidable

♦ ATM can bound the # of handlers used to interpret effect invocation
♦ ATP can allow the use of an unbounded # of handlers if they are tail-resumptive

CPS
transformation

HOMC is undecidable

Implementation

♦ An HO model checker on a subset of OCaml5

♦ For small benchmarks, the verification completed in less than 0.1s

Contributions
Theory Identifying a class of higher-order programs where

◊ HOMC is decidable
◊ No restriction on effect handlers
◊ No restriction on effect invocation

if it is only handled in a tail-resumptive manner
◊ Otherwise, the interpretation of effect invocation can rely only on

a statically bounded number of handlers
Implementation
 An HO model checker for a subset of OCaml 5

◊ It checks an input program belongs to the above class
◊ If so, it model checks the program

op (x, k) -> k M (k ∉ fv(M))

https://github.com/hiroshi-unno/coar/

	On Higher-Order Model Checking of �Effectful Answer-Type-Polymorphic Programs
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Example
	Example
	Example
	Example
	Example
	Example
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	スライド番号 18
	Contributions
	Example
	Example
	Example
	Example
	Formalization
	Formalization
	Implementation
	Contributions

