On Higher-Order Model Checking of
Effectful Answer-Type-Polymorphic Programs

Taro Sekiyama Ugo Dal-Lago Hiroshi Unno

National Institute of Informatics University of Bologna Tohoku University
SOKENDAI INRIA

Higher-Order Model Checking (HOMC)

[Ong, LICS'06; Kobayashi, JACM'13]

?
ME @

Higher-Order Model Checking (HOMC)

[Ong, LICS'06; Kobayashi, JACM'13]

System
HO programs yielding trees

¢ HO recursion schemes
(tree grammars with HO funcs)

¢ PCF terms M
(generating Bohm trees) % I: ¢

Higher-Order Model Checking (HOMC)

[Ong, LICS'06; Kobayashi, JACM'13]

System
HO programs yielding trees

¢ HO recursion schemes
(tree grammars with HO funcs)

¢ PCF terms
(generating Bohm trees)

Property

Predicates over trees

¢ MSO logical formulas
¢ Modal p-calculus formulas
¢ Alternating parity tree automata

}M;¢4

Higher-Order Model Checking (HOMC)

[Ong, LICS'06; Kobayashi, JACM'13]

System

HO programs yielding trees

¢ HO recursion schemes

(tree grammars with HO

¢ PCF terms
(generating Bohm trees)

Property

Predicates over trees

¢ MSO logical formulas
¢ Modal p-calculus formulas
¢ Alternating parity tree automata

2
funcs) . 4
}MF¢

HOMC Problem

Whether the trees yielded by M satisfy ¢?

¢ Including safety and liveness verification problems
(E.g., assertion checking and (non-)termination analysis)

Example v ¢

let rec £ () =

if * then close() 1’

else (read(); f ()) - s there no
in = infinite path?
let = open("foo.txt") in
Q0

Example v ¢

let rec £ () =
if * then close() 1’
else (read(); f ()) - s there no
in = infinite path?
let = open("foo.txt") in
Q0
"""" | T open
| |
i * I
5 < i
i close read i
; [[M]] — | i
. * I
i < O ;

close read

Example v ¢

let rec £ () =
if * then close()
else (read(); f ()) Is there no
in I# infinite path?
let = open("foo.txt") in
Q0
""""""""" open
| |
i * I
i close read i
; [[M]] — | i
| * |
: <« O\ .

close read

Example v ¢

let rec £ () =
if * then close() i’
else (read(); f ())) Are the file ops
in |= used in a correct order?
let = open("foo.txt") in
()

Example v ¢

let rec £ () =
if * then close() i’
else (read(); f ())) Are the file ops
in |= used in a correct order?
let = open("foo.txt") in
0
"""""""""" open
| |
. * l
< O\ |
i close read i
; [[M]] — | i
: * |
| P i

close read

Example v ¢

let rec £ () =
if * then close()
else (read(); f ()) Are the file ops
in |= used in a correct order?
let = open("foo.txt") in
0
""""""""""" open
| |
. * l
< O\ |
i close read i
; [[M]] — | i
: * |
| P i

close read

Extension with effect handlers ipaiLago and Ghyselen, PopL24]

¢ Effect handlers: features to implement control effects

O Exceptions, coroutines, backtracking, etc.

M with
return x -> X ? q')

decide (x, k) ->
k true;

handle |= Are the file ops
used in a correct order?

open("foo.txt");

let s = if decide()
then "a" else "b" in

write(s);

close();

Extension with effect handlers ipaiLago and Ghyselen, PopL24]

¢ Effect handlers: features to implement control effects

O Exceptions, coroutines, backtracking, etc.

M| with
ﬂﬂlﬂ return x -> X qb
JEEEEEEEEEE ~ decide (x, k) -> 1’
open -7 k true; " .
| A handle I Are the file ops
write open("foo.txt"); used in a correct order?
' let s = if decide()
Close [} 1 1 n :
then "a" else "b" in
""""""" write(s);
close();

Extension with effect handlers ipaiLago and Ghyselen, PopL24]

¢ Effect handlers: features to implement control effects

O Exceptions, coroutines, backtracking, etc.

M| with
ﬂﬂlﬂ return x -> X qb
JEEEEEEEEEE ~ decide (x, k) ->
open - k true; .
| A handle I Are the file ops
write open("foo.txt"); used in a correct order?
' let s = if decide()
close :
then "a" else "b" in
""""""" write(s);
close();

Extension with effect handlers ipaiLago and Ghyselen, PopL24]

¢ Effect handlers: features to implement control effects

O Exceptions, coroutines, backtracking, etc.

M| with
ﬂﬂlﬂ return x -> X qb
JEEEEEEEEEE ~ decide (x, k) -> 1’
open | _, k true; k false . .
| 1 handle I Are the file ops
write open("foo.txt"); used in a correct order?
' let s = if decide()
close :
then "a" else "b" in
write(s);
close();

" ————

Extension with effect handlers ipaiLago and Ghyselen, PopL24]

¢ Effect handlers: features to implement control effects

O Exceptions, coroutines, backtracking, etc.

M| with
ﬂﬂlﬂ return x -> X qb
JEEEEEEEEEE ~ decide (x, k) -> 1’
open | k true; k false . .
| 1 handle I Are the file ops
write . open("foo.txt"); used in a correct order?
' | let s = if decide()
Close ' n_n nmponoo
| i then "a" else "b" in
write write(s);
| | close();

" ————

Extension with effect handlers ipaiLago and Ghyselen, PopL24]

¢ Effect handlers: features to implement control effects

O Exceptions, coroutines, backtracking, etc.

M| with
[[M]] return X -> X q')
JEEEEEEEEEE ~ decide (x, k) ->
open e k true; k false .
l "/ handle I;é Are the file ops
write — / open("foo.txt"); used in a correct order?
/ | let s = if decide()
Close ! n_n nmp o e
| i then "a" else "b" in
write | write(s);
l | close();

" ————

HOMC with effect handlers is
undecidable

Because
¢ Effect handlers can encode natural numbers, but
¢ HOMC is undecidable in the presence of an infinite data domain

What's a fragment that
makes HOMC decidable?\

Contributions

Theory Identifying a class of higher-order programs where
Q

O %>kM (kGEfv(M))}
O

if it is only handled in a tail-resumptive manner
%

Implementation
An HO model checker for a subset of OCaml 5
¢ It checks an input program belongs to the above class
O If so, it model checks the program

Criteria: a program is in the decidable class if
The interpretation of effect invocation can rely only on a bounded # of handlers

Exa m p|e if they are not tail-resumptive
Tail-resumptive: op (x, k) ->k M (k & fv(M))

with with
return X -> X return X -> X
decide (x, k) -> decide (x, k) ->
k true k true; k false
handle handle
open("foo.txt"); open("foo.txt");
let s = if decide() let s = if decide()
then "a" else "b" in then "a" else "b" in
write(s); write(s);
close(); close();

Because only one handler is used

Criteria: a program is in the decidable class if
The interpretation of effect invocation can rely only on a bounded # of handlers

Exa m p|e if they are not tail-resumptive
Tail-resumptive: op (x, k) ->k M (k & fv(M))

let rec f () = Because
with ¢ raise is handled only by the nearest handler
return Xx -> X

: ’ ¢ * and write are only forwarded to
raise (_, k) -> () outer effect handlers
// Forwarding

* (LK) -> k (%) ¢ The forwarding is tail-resumptive

write (x, k) -> k (write(x))
handle

if * then raise()
else (write(true); f ())

in
open("foo.txt"); f ()

Criteria: a program is in the decidable class if
The interpretation of effect invocation can rely only on a bounded # of handlers

Exa m p|e if they are not tail-resumptive
Tail-resumptive: op (x, k) ->k M (k & fv(M))

let rec £ () =

with
return Xx -> X
raise (_, k) -> ()
// Tail-resumptive

* (_, k) -> k (not (*))
write (x, k) -> k (write(not x))
handle

if * then raise()
else (write(true); f ())

in
open("foo.txt"); f ()

Example

if they are not tail-resumptive

Criteria: a program is in the decidable class if
The interpretation of effect invocation can rely only on a bounded # of handlers

Tail-resumptive: op (x, k) ->k M (k & fv(M))

No guarantee

let rec £ () =

with
return Xx -> X
raise (_, k) -> ()

// Non-tail-resumptive

* (L, k) ->not (k (*))

write (x, k) -> k (write(x)); k (write(x));
handle

if * then raise()
else (write(true); f ())

in
open("foo.txt"); f ()

Because, regarding * and write,

¢ The interpretations rest on
an unbounded # of handlers, since

O their handlers calls themselves
O each recursive call installs one handler

¢ The handling is not tail-resumptive

Formalization

HEPCF EPCF

4 N

HOMC is decidable

HOMC is undecidable K /

EPCF + effect handlers A + fix + finite data domains + algebraic effects

T

HEPCF EPCF
- ~ s N
Typeable with transformation
answer-type modification (ATM) >
answer-type polymorphism (ATP) HOMC is decidable
[Kawamata+ POPL24]
N /
HOMC is undecidable _ -

¢ ATM can bound the # of handlers used to interpret effect invocation
¢ ATP can allow the use of an unbounded # of handlers if they are tail-resumptive

Implementation

¢ An HO model checker on a subset of OCaml5

~

N
Input: HEPCFE™ | | Type
term (in OCaml)) inference

ATM
HEPCF{,

'\ typing derivatio

n

/

CPS

transformation

{

EPCF term
(in HORS)

™

J/

HorSat2

"| (HO model checker)

[Input: Specification in ATA

[Sat or"Unsat]

¢ For small benchmarks, the verification completed in less than 0.1s

Contributions

Theory Identifying a class of higher-order programs where
Q

O %>kM (kGEfv(M))}
O

if it is only handled in a tail-resumptive manner
%

Implementation
An HO model checker for a subset of OCaml 5
¢ It checks an input program belongs to the above class
O If so, it model checks the program https://github.com/hiroshi-unno/coar/

	On Higher-Order Model Checking of �Effectful Answer-Type-Polymorphic Programs
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Higher-Order Model Checking (HOMC) �[Ong, LICS’06; Kobayashi, JACM’13]
	Example
	Example
	Example
	Example
	Example
	Example
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	Extension with effect handlers [Dal Lago and Ghyselen, POPL’24]
	スライド番号 18
	Contributions
	Example
	Example
	Example
	Example
	Formalization
	Formalization
	Implementation
	Contributions

