
On Higher-Order Model Checking of Effectful
Answer-Type-Polymorphic Programs

TARO SEKIYAMA, National Institute of Informatics, Japan and SOKENDAI, Japan

UGO DAL LAGO, Univeristà di Bologna, Italy and INRIA, France

HIROSHI UNNO, Tohoku University, Japan

Applying higher-order model checking techniques to programs that use effect handlers is a major challenge,

given the recent undecidability result obtained by Dal Lago and Ghyselen. This challenge has been addressed

by using answer-type modifications, the use of a monomorphic version of which allows to recover decidability.

However, the absence of polymorphism leads to a loss of modularity, reusability, and even expressivity. In this

work, we study the problem of defining a calculus that on the one hand supports answer-type polymorphism

and subtyping but on the other hand ensures the underlying model checking problem to remain decidable. The

solution proposed in this paper is based on the introduction of the polymorphic answer-type □ whose role is

to provide a good compromise between expressiveness and decidability, the latter demonstrated through the

construction of a selective type-directed CPS transformation targeting a calculus without effect handlers and
any form of polymorphism. Noticeably, the introduced calculus HEPCFATM□ allows the answer types of effects

implemented by tail-resumptive effect handlers to be polymorphic. We also implemented a proof-of-concept

model checker for HEPCFATM□ programs.

CCS Concepts: • Theory of computation → Type theory; Verification by model checking; • Software
and its engineering→ Functional languages.

Additional Key Words and Phrases: model checking, algebraic effect handlers, answer-type modification

ACM Reference Format:
Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno. 2025. On Higher-Order Model Checking of Effectful Answer-

Type-Polymorphic Programs. Proc. ACM Program. Lang. 9, OOPSLA2, Article 406 (October 2025), 29 pages.
https://doi.org/10.1145/3763184

1 Introduction
Model checking [10] involves systematically exploring all possible states of a system to ensure that

it behaves as expected under all conditions. This method is widely used in fields like hardware

design, software development, and protocol verification to catch errors early in the design process,

before deployment [3, 11]. Since Ong’s seminal work [42], model checking of functional programs

with higher-order functions and recursion has been known to be decidable when data domains are

finite (such as Booleans). The resulting verification technique, called higher-order model checking
(or HOMC for short), has been used as a starting point for the development of tools capable of

verifying functional programs against safety and reachability properties, even in the presence of

infinite data domains which can be treated via, e.g., predicate abstraction [9, 27, 51].

Generalizing HOMC to programs involving computational effects, such as mutable store, I/O, and

exceptions, is crucial to make HOMC more practical and has received attention since the early

Authors’ Contact Information: Taro Sekiyama, National Institute of Informatics, Tokyo, Japan and SOKENDAI, Tokyo,

Japan, tsekiyama@acm.org; Ugo Dal Lago, Univeristà di Bologna, Bologna, Italy and INRIA, France, ugo.dallago@unibo.it;

Hiroshi Unno, Tohoku University, Sendai, Japan, hiroshi.unno@acm.org.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART406

https://doi.org/10.1145/3763184

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

https://orcid.org/0000-0001-9286-230X
https://orcid.org/0000-0001-9200-070X
https://orcid.org/0000-0002-4225-8195
https://doi.org/10.1145/3763184
https://orcid.org/0000-0001-9286-230X
https://orcid.org/0000-0001-9200-070X
https://orcid.org/0000-0002-4225-8195
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763184
https://www.acm.org/publications/policies/artifact-review-and-badging-current

406:2 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

times of HOMC [28, 51]. The situation, predictably, is much more complicated than that observed

in pure functional programs. In particular, while in the presence of effects such as nondeterministic

choice or global state the HOMC problem remains decidable [14, 28], it becomes undecidable for
effects such as probabilistic choice, exceptions carrying functions, or local stores [31, 32]. Although

these extensions with individual effects provide some insights on HOMC for effectful programs, it

had been unclear how we can generalize HOMC to deal with a broad class of effects.

Dal Lago and Ghyselen [14] addressed this situation by extending HOMC to algebraic opera-
tions [46] and effect handlers [47, 48].1 Algebraic operations are effect producers, and the interpre-

tations of the produced effects can be given as, e.g., equational axioms [45], or can be programmed

using effect handlers. Depending on how algebraic operations are interpreted, various effects, includ-

ing nondeterministic and probabilistic choice, global stores, exceptions, and I/O, can be expressed in

the framework. When algebraic operations are interpreted via effect handlers, however, the HOMC

problem is in general undecidable due to the ability of effect handlers to reify delimited continuations
as program values. On one hand, the use of delimited continuations enables implementing a wide

range of effects [4] and leads to the attempts of supporting effect handlers on several programming

languages [35, 43, 57] or the development of effect handler libraries [7, 18, 65]. However, on the

other hand, their expressivity is too powerful to keep HOMC decidable—it enables the encoding

of an infinite data domain (such as integers), which makes the HOMC problem undecidable. This

issue has prompted the community to try to define conditions on the underlying program allowing

both to capture interesting classes of programs and to obtain decidability results.

This is the path taken by Sekiyama and Unno [56] in their work on model checking functional

programs with effect handlers typed via answer-type modification (ATM in the following) [12, 15, 24,

38, 55]. Answer types are types of delimited continuations that can be captured by effect handlers,

and ATM type systems for effect handlers [12, 24, 55] track how answer types are modified. This

tracking makes it possible to reason about how many effect handlers are installed in the context

enclosing a term. Indeed, the ATM type system of Sekiyama and Unno’s calculus
2 HEPCFATM

statically bounds the number of such effect handlers, and they also show that giving such a static

bound is sufficient to guarantee decidability. However, HEPCFATM suffers from a critical limitation:

it does not allow any form of polymorphism, although some other ATM type systems supports, e.g.,

answer-type polymorphism [24, 38, 55, 61], which improves the reusability and even the expressivity

of effectful, well-typed programs. That said, lacking any polymorphism is not surprising, since it is

well known that the decidability of HOMC is sensitive to the presence of polymorphism already

for pure programs [62]. The question then becomes: how far can we go when verifying functional

programs with effect handlers and some form of polymorphism?

This is precisely the problem this paper addresses. In particular, we introduce a new calculus

HEPCFATM□ , which is equipped with effect handlers, an ATM type system, and answer type polymor-

phism captured by a new type constructor □. Despite the support for answer-type polymorphism,

the HOMC problem remains decidable in HEPCFATM□ , something we proved by defining a type-

directed continuation-passing style (CPS) transformation towards the calculus EPCF proposed by

Dal Lago and Ghyselen [14], the latter known to admit a decidable HOMC problem. Our CPS trans-

formation is selective [41] in that terms with non-polymorphic answer types require continuations
to be evaluated after the transformation, while terms with polymorphic answer types do not. In
contrast to (non-selective) CPS transformations for effect handlers in the literature [22, 24], which

1
This work focuses on so-called dynamically scoped, deep effect handlers [23]. Other types of effect handlers, such as

shallow [21, 23] or lexically scoped [6, 8] ones, are outside the scope of this work.

2
The name of (H)EPCF [14] means an extension of PCF [44] with (effect handlers and) algebraic effects.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:3

Table 1. Feature comparison of the effectful calculi. The column “Effect handlers” indicates whether effect
handlers are absent (✗) or present, and, if present, whether they are restricted to be tail-resumptive (✓TR) or
not (✓). The column “Polymorphism” indicates whether both answer-type polymorphism and subtyping are
supported (✓) or neither is supported (✗).

Calculus Effect handlers decidable HOMC ATM type system? Polymorphism

EPCF [14] ✗ ✓ No ✗

HEPCF [14] ✓ ✗ No ✗

GEPCF [14] ✓TR ✓ No ✗

HEPCFATM [56] ✓ ✓ Yes ✗

HEPCFATM□ ✓ ✓ Yes ✓

rely on parametric polymorphism in CPS terms, our selective transformation eliminates the need

for parametric polymorphism. This distinction is crucial for establishing the decidability of HOMC.

A key technical challenge arising in proving the decidability of the HOMC problem through

CPS transformation is that we need to ensure that the CPS transformation preserves the non-

termination of source programs, because HOMC can verify not only safety properties but even

liveness properties such as termination. To the best of our knowledge, none of the previous works

provides a selective CPS transformation for delimited control operators with the guarantee for non-

termination preservation (readers interested in the selective CPS transformations in the literature

are referred to Section 8). To guarantee non-termination preservation, we show that, if a source

term M can reduce, M finally evaluates to some source term N such that the CPS-transformed

result of M also finally evaluates to the CPS-transformed result of N modulo full 𝛽𝜂 “monadic”
reduction (formulated in Definition 9). Using this property together with the bisimilarity-based

reasoning technique proposed by Dal Lago et al. [13], we show that the CPS transformation

preserves non-termination.

Answer-type polymorphism does not only solve the monomorphic issue with HEPCFATM. It also
allows unifying HEPCFATM and GEPCF [14], yet another calculus with effect handlers for which

the HOMC problem is decidable. For the sake of guaranteeing decidability, effect handlers inGEPCF
are restricted to be tail-resumptive—that is, the effect handlers can exclusively call continuations

at tail position. While tail-resumptive effect handlers can only define a more restricted class

of effects than effect handlers in HEPCFATM (which we call ATM effect handlers), they allow a

more flexible use of effects—terms that only use algebraic operations handled by tail-resumptive

effect handlers do not have to limit the number of enclosing effect handlers. We incorporate this

flexibility of tail-resumptive effect handlers on the use of effects into our ATM type system by giving

answer-type-polymorphic type signatures to algebraic operations handled by tail-resumptive ones.

Intuitively, it means that the effect handling by tail-resumptive effect handlers is purely functional,
so we do not have to be sensitive to the usage of effects handled by them.

We also support another form of polymorphism: subtyping. Our subtyping is similar to the form

considered by Kawamata et al. [24], but we impose a mild condition to define a selective CPS

transformation for the language unifying ATM and tail-resumptive effect handlers.

The comparison of the calculi mentioned above plus HEPCF [14], which supports the full use of

effect handlers but instead loses the decidability of the HOMC problem, is summarized in Table 1

(from the perspectives of supported features) and Figure 1 (from the perspective of expressivity).

We present examples that can be typechecked in HEPCFATM□ (extended with subtyping), but not

in HEPCFATM nor GEPCF, in Section 2. The expressivity of HEPCF is incomparable with those of

HEPCFATM□ and HEPCFATM. On the one hand, HEPCF accommodates programs where the HOMC

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:4 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

HEPCF HEPCFATM□

GEPCF HEPCFATM

⊂† ⊂∗ ⊂∗

Fig. 1. Expressivity comparison of the calculi with effect handlers. Only comparable calculi are connected.
The inclusions ⊂† and ⊂∗ are proven by Dal Lago and Ghyselen [14] and Theorem 1 in the paper, respectively.

problem is undecidable, while HEPCFATM□ and HEPCFATM do not. On the other hand, the ATM type

systems ofHEPCFATM□ andHEPCFATM allow typechecking some terms that are ill typed in non-ATM

type systems (see the related work section of [56] for detail). The expressivity of EPCF (not shown

in Figure 1) is the same as HEPCFATM□ , GEPCF, and HEPCFATM because terms in the latter calculi

can be CPS-transformed into the former (and the reverse direction holds obviously). However,

EPCF is less macro-expressive [17] than the other calculi—that is, there is no syntax-directed way to

locally translate terms in HEPCFATM□ , GEPCF, or HEPCFATM to EPCF. Note that HEPCF is strictly

more expressive than EPCF due to the undecidability of HOMC in the former.

The contributions of the paper are summarized as follows:

• We introduce HEPCFATM□ , which supports ATM and tail-resumptive effect handlers as well

as an ATM type system with answer-type polymorphism. HEPCFATM□ enjoys type soundness

and is strictly more expressive than HEPCFATM and GEPCF.
• We show the decidability of the HOMC problem in HEPCFATM□ via a selective, type-directed

CPS transformation that preserves the typing and semantics of HEPCFATM□ programs.

• We extend HEPCFATM□ , the CPS transformation, and their metatheory with subtyping.

• The extension with subtyping is implemented as an automated verifier based on the model

checker EffCaml for HEPCFATM [56]. We implement type inference for HEPCFATM□ and the

CPS transformation from HEPCFATM□ to EPCF, and integrate them with the higher-order

model checker HorSat2 [9, 30].

The rest of this paper is structured as follows. In Section 2, we briefly explain the motivations

leading us to consider the problem of reconciling answer-type polymorphism and decidability

of the HOMC problem in more detail. We introduce our calculus HEPCFATM□ in Section 3, define

HOMC for HEPCFATM□ in Section 4, and show the decidability of the HOMC problem via the CPS

transformation from HEPCFATM□ to EPCF in Section 5. Section 6 briefly explains the extension with

subtyping. Section 7 describes our tool for the model checking of HEPCFATM□ terms. We discuss

other related works in Section 8 and conclude in Section 9. This paper only states key properties.

See the supplementary material for the auxiliary lemmas and detailed proofs, as well as the full

definition of the subtyping extension.

Notation. Throughout the paper, we abbreviate a sequence 𝑎1, · · · , 𝑎𝑛 to 𝑎𝑖
1≤𝑖≤𝑛

or, more simply,

𝑎; its length is denoted by |𝑎 |. Given 𝑎, we write 𝑎𝑖 to designate the 𝑖-th element of 𝑎.

2 Overview
This section briefly reviews effect handlers and HOMC in the presence of them and presents the

benefits of answer-type polymorphism.

Effect handlers [23, 48] allow programs to be structured so that effect-producing operations, also

called algebraic operations, are interpreted from within the program itself. The key is a construct of

the form withH handleM , in which all algebraic operations executed in a term M are interpreted

as prescribed by an effect handler H . Effect handlers can interpret various effects, such as global

store, exceptions, nondeterministic choice, and cooperative multitasking [4], by capturing delimited

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:5

continuations. For instance, consider the following term given by Bauer and Pretnar [4]:

withH handle
let𝑥 = if Decide () then return 10 else return 20 in
let𝑦 = if Decide () then return 0 else return 5 in
return𝑥 − 𝑦

which uses the operation Decide to make a choice between 10 and 20 and between 0 and 5. The

effect handler H identifies how Decide is interpreted. To do so, H offers an operation clause of the
form Decide(𝑥 ;𝑘) ↦→ M , which takes a parameter 𝑥 passed in an operation call and the delimited
continuation 𝑘 from the call site up to the effect handler H . By invoking the delimited continuation

with a value v, the effect handler can resume the computation from the point where Decide is
called using the value v as a result of the operation call. For example, if H provides a clause

Decide(𝑥 ;𝑘) ↦→ 𝑘 true, both of the operation calls in the program return true, so the value 10 is
returned. Captured delimited continuations can be invoked multiple times. For example, under the

effect handler H with clause Decide(𝑥 ;𝑘) ↦→ let𝑥 = 𝑘 true in let𝑦 = 𝑘 false in returnmax(𝑥,𝑦),
the program returns 20, the maximum of 𝑥−𝑦 among all the combinations of (𝑥,𝑦) ∈ {10, 20}×{0, 5}.
Although effect handlers are powerful constructs, programs often interact with external en-

vironments, e.g., to use storage, transmit some messages, or communicate with the user. One

approach to interpreting such algebraic operations, which cannot be interpreted within pro-

grams, is to view them as constructors of trees, called effect trees, generated by programs. For

example, consider operations Open, Close, Read, and EOF for file manipulation (for simplicity,

we omit file path or descriptor arguments from them), and assume that EOF returns a Boolean

value indicating if there remains readable data in the file. Given a program MFile
def

= let rec 𝑓 _ =

if EOF () thenClose () else (Read (); 𝑓 ()) in (Open (); 𝑓 ()), it generates an effect tree like

Open EOF

Close

Read EOF

Close

Read · · ·

This tree represents that the program first calls Open followed by EOF and branches depending on

the result of the call to EOF. If it returns true, the program terminates after closing the file, and,

otherwise, the program reads the file and repeats the same process from the call to EOF.
Through this tree, we can interpret effectful operations by filtering out invalid paths in there.

For example, if the file’s contents are assumed to be finite, any path involving infinitely many

occurrences of Read should be invalid, so it is filtered out and then we can conclude that the program
eventually terminates. Furthermore, it is easy to see that the program uses the file operations

correctly—e.g., it calls EOF, Read, and Close after Open, calls no file operation after Close, and
checks if some readable data remains before reading it. In HOMC, the behavior and specifications

of algebraic operations not handled by the program can be formulated using alternating parity tree
automata (APTAs). Interested readers are referred to the supplementary material.

Dal Lago and Ghyselen [14] proposed to conduct this reasoning about effect trees systematically

and formally using higher-order model checking (HOMC) [29, 42]. In their scheme, effect trees to

be verified via HOMC are only constructed by unhandled effects, that is, those that have not been

handled during the program execution and thus escaped to the top level. However, they show that

the full support for effect handlers makes HOMC undecidable, via HEPCF, a variant of PCF that
fully supports effect handlers and algebraic effects. They also show that the decidability is gained if

effect handlers are restricted to be tail-resumptive—i.e., every operation clause has to be in the form

𝜎 (𝑥 ;𝑘) ↦→ let𝑦 =M in𝑘 𝑦 where 𝑘 does not occur free inM . To prove this, Dal Lago and Ghyselen

introduce GEPCF, a variant of PCF equipped with algebraic effects and tail-resumptive effect

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:6 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

handlers, and define a CPS transformation from GEPCF to EPCF, yet another variant of PCF that is
only equipped with algebraic effects, by utilizing the nature of tail-resumptive effect handlers. This

CPS transformation enables reducing the HOMC problem for GEPCF to the one for EPCF. Because
the HOMC problem for the latter is decidable [14], so is for the former. However, the restriction to

tail-resumptive effect handlers is too severe to support the handling of many desirable effects, such

as global store, exceptions, and nondeterministic choice. For example, the aforementioned clause

Decide(𝑥 ;𝑘) ↦→ let𝑥 = 𝑘 true in · · · is not tail-resumptive, thereby rejected by GEPCF.
Alternatively, Sekiyama and Unno [56] identifies the crux of the undecidability as the capability

of handling effects by an arbitrary number of nested effect handlers, that is, to be simplified,

accommodating a program that reaches a term withHn handle (· · · (withH1 handleM) · · ·) during
the evaluation for any 𝑛. Here, the term installs the effect handlersH1, · · · ,Hn on top ofM in a nested
manner.

3
This capability enables encoding data and operations in an infinite domain via algebraic

operations and effect handlers, respectively, hence making the HOMC problem undecidable.

Based on this analysis, Sekiyama and Unno introduced HEPCFATM with a type system that

supports answer types to allow handling a rich class of effects keeping HOMC decidable. Their

type system assigns to a term a computation type of the form Σ ⊲ T /𝛼 , where Σ is a signature of

operations that the term may call, T is the type of the values the term may return, and 𝛼 is an

answer type that describes the exact number of effect handlers nested on top of the term.
4
Formally,

an answer type is a computation type or a value type (which means that no effect handler can be

installed). Namely, in general, its form is described by Σ1 ⊲ T1 / (· · · (Σn ⊲ Tn / T𝑛+1) · · ·). Here, for
each 𝑖 ∈ [1, 𝑛], Σi ⊲ Ti / (· · ·) is the type of the 𝑖-th closest handling construct or, equivalently, it is

the return type of the continuation captured by the 𝑖-th closest effect handler. Therefore, a term

with this answer type requires the nested installation of exactly 𝑛 effect handlers. To see it more

concretely, consider a term M with a computation type Σ ⊲ T0 /𝛼 where 𝛼 = Σ1 ⊲ T1 / (· · · (Σn ⊲

Tn / T𝑛+1) · · ·). For each 𝑖 ∈ [1, 𝑛], the subterm withHi handle (· · · (withH1 handleM) · · ·) can be

of the type Σi ⊲ Ti / (· · ·)—thus, the term withHn handle (· · · (withH1 handleM) · · ·) can be well

typed—while withH𝑛+1 handle (withHn handle (· · · (withH1 handleM) · · ·)) is ill typed. Hence,
the answer type 𝛼 exactly bounds the number of effect handlers to be nested onM . This capability of

answer types enables us to define a CPS transformation J−K fromHEPCFATM to EPCF. It transforms

an HEPCFATM term of the computation type Σ ⊲ T0 /𝛼 given above to an EPCF term that takes 𝑛

continuations, each of type JT𝑖−1K → JΣi ⊲ Ti / (· · ·)K for 𝑖 ∈ [1, 𝑛]. As a result, the HOMC problem

for HEPCFATM programs is proven decidable while the desirable effects can be handled.

However, this form of answer types specifies the exact number of nested effect handlers, losing

reusability and expressivity significantly. For example, consider a function 𝜆𝑥 .Decide𝑥 . This func-
tion is given a type unit → Σ ⊲ bool /𝛼 for some Σ (which specifies the type of Decide) and 𝛼 . As
each call to Decide is only handled by the closest effect handler, one may expect that a program

MD
def

= let 𝑓 = return 𝜆𝑥.Decide𝑥 in if (withH handle · · · 𝑓 () · · ·) then 𝑓 () else · · ·
can be typechecked, but it is not in HEPCFATM since the type of 𝑓 () in the then branch allows

installing, e.g., 𝑛 effect handlers on top of it (𝑛 is determined by the answer type 𝛼), while the type

of the handling construct can only allow installing 𝑛 − 1 ones (due to the answer type 𝛼 assigned

to 𝑓 ()).5 Thus, the requirement on effect handlers by answer types prevents reusing the same

higher-order value in different contexts. A more serious problem is that HEPCFATM may not allow

3
The installation nesting of effect handlers can be delayed: it is possible to write a program where at most one effect handler

is active during the evaluation, while the result of a handling computation is subsequently handled by another effect handler.

4
More precisely, computation types in Sekiyama and Unno [56] are in the form Σ ⊲ T /𝛼1 ⇒ 𝛼2, which allows modifying

the answer type 𝛼1 to 𝛼2, but here we focus on a simpler form where 𝛼 = 𝛼1 = 𝛼2 for explanation.

5
Furthermore, this example cannot be typechecked in GEPCF either if the effect handler H is not tail-resumptive.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:7

effect handling within recursive functions. For instance, consider a recursive function

VR
def

= let rec 𝑓 _ = withH handle if EOF () thenRaise () else (Read (); 𝑓 ()) ,

which raises an exception via the operation Raise handled by the effect handler H if no readable

data remains. This recursive function cannot be typechecked in HEPCFATM because the call to the

function 𝑓 will install an arbitrary number of effect handlers atop some term, despite the fact that

the HOMC problem is decidable for programs only with handleable exceptions carrying first-order

values and any other unhandled effects [51].

We address this situation by extending HEPCFATM with answer-type polymorphism and subtyp-

ing [24, 38, 55], which enable us to abstract the typing information about effect handlers. Our

answer-type polymorphism follows the formalism of Kawamata et al. [24]. In the presence of it, an

answer type 𝛼 is either a computation type or a new type constructor □, which can polymorphically

be replaced by any answer type—even one involving □ itself. For example, the type □ can be

coerced into Σ1 ⊲ T1 /□, which in turn can be coerced to Σ1 ⊲ T1 / (Σ2 ⊲ T2 /□), and so on. This

capability of □ allows the context to install zero or more effect handlers to be nested. For instance,
the function 𝜆𝑥.Decide𝑥 can be given type unit → Σ1 ⊲ bool / (Σ2 ⊲ bool /□) for some Σ1, which

determines the type signature of Decide, and Σ2. The answer type Σ2 ⊲ bool /□ of the return type

requires the context to install at least one effect handler and allows it to nest two or more ones

atop the application of the function. Using this type, the program MD can be typechecked because

𝑓 () can allow its context to install two or more effect handlers and, therefore, the handling con-

struct withH handle · · · 𝑓 () · · · can allow the enclosing, outer context to install at least one effect

handler, which is aligned with the requirement of 𝑓 () in the then branch. Similarly, answer-type

polymorphism enables the function VR to be typechecked, as follows. First, the call to Raise can be

of type Σ1 ⊲ unit / (Σ2 ⊲ unit /□) for some Σ1, which determines the type signature of Raise, and Σ2.

This type means that the call to Raise requires installing at least one effect handler for exception han-
dling. Then, since the handling construct withH handle if EOF () thenRaise () else (Read (); 𝑓 ())
installs the effect handler H on top of 𝑓 (), it can have the type Σ2 ⊲ unit /□, which indicates that

the outer context can nest the installation of zero or more effect handlers. Therefore, the recursive

function may install an arbitrary number of effect handlers on top of the handling construct.
6

Interestingly, answer-type polymorphism can also accommodate the flexibility of tail-resumptive

effect handlers. When an algebraic operation 𝜎 is handled by a tail-resumptive clause with the

answer type □, we can give the operation 𝜎 a signature of the form T1 ⇝ T2 /□, which means that

the operation takes an argument of type T1 and returns a value of type T2, and the answer type of

the operation call is polymorphic. This is valid because, in essence, tail-resumptive operation clauses

are simply functions. Therefore, if they imposes no requirements on enclosing effect handlers—i.e.,

their answer types are □—calls to them do not either. Such type assignment is useful in dealing

with algebraic operations that we do not expect to be handled (thus, do expect to escape and

construct effect trees) but are called in the scope of effect handlers. For example, recall that the

interpretations of EOF and Read do not expect to be programmed by effect handlers. Thus, what

the effect handler H in the function VR can do is only to forward them to the outer effect handler,

as EOF(𝑥 ;𝑘) ↦→ let𝑦 = EOF𝑥 in𝑘 𝑦. This clause is tail-resumptive and its answer type can be □
as EOF should only be forwarded to the top level. Therefore, the signature of EOF under the effect

handler H can be unit ⇝ bool /□, which indicates that EOF can be called freely in any context.

The answer type □ imposes no requirement or constraint on the context—particularly, regarding

the number of nested effect handlers—except that any effect invoked by the term can be handled

only by a tail-resumptive clause with the answer type □. When the invoked effects are to be handled

6
Furthermore, we also require Σ2 can be coerced into Σ1 via subtyping to typecheck VR . See Example 6.2 for details.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:8 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Variables 𝑥,𝑦, 𝑧, 𝑓 , ℎ, 𝑘 Algebraic operations 𝜎, 𝜍

Base constants c ::= true | false | () | · · ·
Enum constants 𝜀 ::= 1 | 2 | · · ·

Values V ,W ::= 𝑥 | c | 𝜀 | 𝜆𝑥 .M | fix𝑥 .V
Terms L,M,N ::= returnV | let𝑥 =M inN | V W | case(V ;M1, · · · ,Mn) |

𝜎 (V ;𝑥 .M) | withH handleM
Handlers H ::= {return𝑥 ↦→ L} ⊎ {𝜎i (𝑥i;𝑘i) ↦→ Mi}1≤𝑖≤𝑚 ⊎ {𝜍i (𝑦i) ↦→ Ni}1≤𝑖≤𝑛

Fig. 2. Program Syntax.

by other—especially, non-tail-resumptive—effect handlers, the answer type must be a computation

type, determining an upper bound on the number of nested effect handlers that handle the effects

in a “non-functional” manner. This enables us to define a novel CPS transformation from programs

well-typed in our type system to EPCF, thereby ensuring the decidability of their model checking.

3 HEPCFATM□ : Finitary PCF with Effect Handlers and Answer-Type Polymorphism
This section introduces HEPCFATM□ , a finitary

7
variant of fine-grain call-by-value PCF [36, 44] with

effect handlers, an ATM type system, and answer-type polymorphism. We first define its syntax,

operational semantics, and type system and then show its basic properties. Typing examples are

given in Section 6. We highlight in gray boxes the parts extended or modified fromHEPCFATM [56].

3.1 Syntax
The program syntax of HEPCFATM□ , presented in Figure 2, is the same as that of HEPCF [14] except

for the presence of tail-resumptive effect handlers. Programs are classified as either values or terms.

Values, ranged over by V and W , are canonical forms not being evaluated further, including

variables 𝑥 , base constants c, enum constants 𝜀, functions 𝜆𝑥 .M , and the fixed-point operator fix𝑥 .V .
Base constants are inhabitants in some finite data domains. For example, Boolean values and the

unit value can be base constants. Enum constants are natural numbers, used to implement case

analysis. As we will see shortly, the type of enum constants specifies an upper bound to the number

of its inhabitants. Thus, well-typed HEPCFATM□ programs can only access finite data domains.

Terms, ranged over by L,M , and N , may perform possibly effectful computations. Most constructs

are standard, e.g., a return-value construct returnV embeds the value V into a term, and a case

construct case(V ;M1, · · · ,Mn) does case analysis on the enum value V . An algebraic operation call,
or simply operation call, 𝜎 (V ;𝑥 .M) involves the parameter value V and the continuation 𝑥 .M ,

where the continuation takes the result of the operation call as its argument 𝑥 (thus, 𝑥 is bound in

M). The continuation will be reified and passed on to an effect handler that handles the operation

call (if any). A handling construct withH handleM handles calls to algebraic operations in the term

M using the effect handler H ; we call M the handled term. An effect handler consists of one return

clause return𝑥 ↦→ L, zero or more (non-tail-resumptive) operation clauses {𝜎i (𝑦i;𝑘i) ↦→ Mi}1≤𝑖≤𝑚 ,

which we call answer-type-modifying (ATM), and zero or more tail-resumptive operation clauses

{𝜍i (𝑧i) ↦→ Ni}1≤𝑖≤𝑛 . The body L of the return clause is evaluated when the handled term M is

evaluated to a value, to which L refers by the variable 𝑥 . The ATM operation clause 𝜎i (𝑦i;𝑘i) ↦→ Mi
is executed when the handled termM calls the algebraic operation 𝜎i . The clause takes the parameter

of the operation call as 𝑦i and the reified delimited continuation as 𝑘i . The tail-resumptive operation

clause 𝜍i (𝑧i) ↦→ Ni only takes the parameter 𝑧i . Semantically, it is the same as the operation clause

7
All available data domains are finite.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:9

Evaluation rules M1 −→ M2

(𝜆𝑥.M) V −→ M [V/𝑥]
(fix𝑥 .V)W −→ V [fix𝑥 .V/𝑥]W

case(i;M1, · · · ,Mn) −→ Mi (if 0 < 𝑖 ≤ 𝑛)

let𝑥 = returnV1 inM2 −→ M2 [V1/𝑥]
let𝑥 = 𝜎 (V1;𝑦.M1) inM2 −→ 𝜎 (V1;𝑦. let𝑥 =M1 inM2) (if 𝑦 ∉ fv(M2))
withH handle returnV −→ M [V/𝑥] (if return𝑥 ↦→ M ∈ H)

withH handle𝜎 (V ;𝑦.M) −→ N [V/𝑥] [𝜆𝑦.withH handleM/𝑘] (if 𝜎 (𝑥 ;𝑘) ↦→ N ∈ H)

withH handle𝜎 (V ;𝑦.M) −→ let𝑦 = N [V/𝑥] inwithH handleM (if 𝜎 (𝑥) ↦→ N ∈ H)

M −→ N
let𝑥 =M in L −→ let𝑥 = N in L

M −→ N
withH handleM −→ withH handleN

Fig. 3. Semantics.

𝜍i (𝑧i;𝑘i) ↦→ let𝑥 = Ni in𝑘i 𝑥 where 𝑘i does not occur free in Ni—thus, it enforces the continuation

to be called at tail position. The syntactic distinction between ATM and tail-resumptive operation

clauses allows assigning answer-type-polymorphic type signatures only to the latter.

The notions of free variables and capture-avoiding value substitution are defined as usual. The

metafunction fv returns a set of free variables occurring in a given term or value. We also write

M [W/𝑥] and V [W/𝑥] for the term and value obtained by substituting the valueW for the free

variable 𝑥 in the term M and the value V , respectively.
Note that the program examples described in Section 2 are easily rewritten into HEPCFATM□ . For

instance, an operation call 𝜎 V there is written as 𝜎 (V ;𝑥 . return𝑥) in HEPCFATM□ , and recursive

functions can be expressed using fix and functions.

3.2 Operational Semantics
The call-by-value operational semantics ofHEPCFATM□ is given as the evaluation relation −→, which

is the smallest binary relation over terms that is closed under the rules in Figure 3. Except for the

tail-resumptive handling of algebraic operations, all the evaluation rules are the same as those

from HEPCF. A call to an algebraic operation 𝜎 moves up towards the closest handling construct.

If the algebraic operation is handled by an ATM operation clause 𝜎 (𝑥 ;𝑘) ↦→ M , the continuation

involved in the operation call is reified and then the clause’s body M is evaluated after substituting

the parameter value for 𝑥 and the reified continuation for 𝑘 . Note that the underlying handler is

responsible for the handling of the operations called by the continuation. If the algebraic operation

is handled by a tail-resumptive operation clause 𝜎 (𝑥) ↦→ M , the continuation is not reified and

only the value resulting from the evaluation of the body M is passed to the continuation.

3.3 Type System
3.3.1 Types. The syntax of types for HEPCFATM□ is shown in Figure 4, consisting of value and

computation types. Value types, ranged over by T and U , are for values. Base and enum types

are the types of base and enum constants, respectively. Function types T → C are assigned to

functions. The number 𝑛 in an enum type n is simply the number of its inhabitants. Computation

types, ranged over by C, are assigned to terms. In a computation type Σ ⊲ T /A assigned to a term,

the operation signature Σ specifies algebraic operations the term may call, the value type T specifies

the value returned by the term, and the control effect A specifies the context enclosing the term up

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:10 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Base types B ::= bool | unit | · · ·
Enum types E ::= 1 | 2 | · · ·
Value types T ,U ::= B | E | T → C

Computation types C,D ::= Σ ⊲ T /A
Control effects A ::= □ | C1 ⇒ C2

Operation signatures Σ ::= {𝜎i : Tpar

𝑖
⇝ T ari

𝑖 /Ai}1≤𝑖≤𝑛
Typing contexts Γ ::= ∅ | Γ, 𝑥 : T

Fig. 4. Type Syntax.

to the delimiter—that is, the closest handling construct.
8
For C = Σ ⊲ T /A, we designate Σ, T , and

A by C .Σ, C .T , and C .A, respectively.
A control effect A is either the answer-type-polymorphic (ATP) effect □ or an answer-type-

modifying (ATM) effect Cini ⇒ Cfin
(where Cini

and Cfin
are computation types called the initial and

final answer types respectively), which allows the modification of answer types from the initial to the

final one—this is called answer-type modification.9 The ATP effect □ means that the effects invoked

by a term, if any, must be handled in a functional manner, that is, by tail-resumptive operation

clauses. Thus, an operation call 𝜎 (V ;𝑥 .M) has the ATP effect □ only if there is no enclosing effect

handler or the closest enclosing effect handler provides a tail-resumptive clause for 𝜎 . The type

checking propagates the latter information via the operation signature, as seen shortly. Note that

“pure” terms, like return-value constructs, can also have the ATP effect □ because they invoke no

effect. By contrast, an ATM effect C1 ⇒ C2 is assigned to a term whose effects can be handled by

ATM effect handlers. It is a generalization of answer types explained in Section 2; an answer type C
with a computation type C in there is expressed as C ⇒ C in HEPCFATM□ . The meaning of C1 ⇒ C2

is twofold. First, when the term calls an algebraic operation that captures the continuation, the

continuation has to behave as specified by the type C1. Second, in the course of evaluating the

term, the enclosing context (up to the nearest delimiter) is transformed together with the term into

another term that behaves as specified by the type C2. For example, consider a handling term

withH handle𝜎 ((); 𝑧. return 𝑧)
where H = {return𝑥 ↦→ return𝑥} ⊎ {𝜎 (𝑥 ;𝑘) ↦→ let𝑦 = 𝑘 1 in case(𝑦; return true, return false)}.
The evaluation of the handling term starts by calling the algebraic operation 𝜎 in the handled

term, and the operation clause of 𝜎 provided by the effect handler H takes the reified continuation

𝜆𝑧.withH handle return 𝑧 as the variable 𝑘 . Because the operation call is handled by the ATM effect

handler H , it must be given an ATM effect Cini ⇒ Cfin
for some Cini

and Cfin
. The initial answer

type Cini
specifies the behavior of the reified continuation 𝜆𝑧.withH handle return 𝑧. Since the

continuation takes and returns the enum constant 1, and invokes no effect, its type can be, e.g.,

a function type 2 → Σ ⊲ 2 /□ with some operation signature Σ, where the return type Σ ⊲ 2 /□
corresponds to Cini

. Furthermore, the operation call is rewritten to the body of the operation clause.

Therefore, the final answer type Cfin
matches with the type of the body term. In the example, the

body can be given the type Σ ⊲ bool /□ as it returns a Boolean value and invokes no effect. As

a result, the control effect assigned to the operation call can be (Σ ⊲ 2 /□) ⇒ (Σ ⊲ bool /□). As
8
There is no significant difference between contexts and continuations, but we use continuations to refer to a functional

representation of contexts.

9
In the previous work [24, 56], the ATP effect is called pure and ATM effects are called impure. We adopt the new names for

them because even terms with □ may call algebraic operations and we think that the names ATP and ATM better capture

the intuition behind the control effects.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:11

shown via the example, ATM control effects can precisely track the transition of control flow in

the presence of effect handlers capable of flexible context manipulation.

An operation signature specifies the interface of algebraic operations, associating each algebraic

operation 𝜎 that may be invoked, with a type of the form Tpar ⇝ T ari /A. The value types Tpar

and T ari
represent the input and output of the operation 𝜎 . Because the input is a parameter of the

algebraic operation and the output corresponds to the arity of the captured delimited continuations,

Tpar
and T ari

are called parameter and arity types, respectively. The control effect A describes

what operation clause handles a call to 𝜎 . If A = □, 𝜎 is called answer-type-polymorphic (ATP) and
its invocation should be handled by a tail-resumptive clause; otherwise, 𝜎 is called answer-type-
modifying (ATM) and its invocation should be handled by an ATM clause with the same control

effect as A. Therefore, for the above example term, the operation signature of the handled term

can be {𝜎 : unit ⇝ 2 / (Σ ⊲ 2 /□) ⇒ (Σ ⊲ bool /□)} since 𝜎 takes the unit value, returns the

enum constant inhabited by the type 2, and its control behavior is specified by the control effect

(Σ ⊲ 2 /□) ⇒ (Σ ⊲ bool /□) as explained above. In contrast, e.g., for an operation EOF, which
should be handled by a tail-resumptive clause EOF(𝑥) ↦→ EOF (𝑥) to be forwarded to the top level,
a type signature unit ⇝ bool /□ can be given.

3.3.2 Typing Rules. The type system consists of typing judgments for values Γ ⊢ V : T and for

terms Γ ⊢ M : C. The typing rules are presented in Figure 5. Typing contexts Γ are sequences of

bindings of the form 𝑥 : T that assigns the type T to the variable 𝑥 . We assume that the same variable

is bound only once in the same typing context. The typing rules for values are self-explanatory

and it is easy to see how they capture the aforementioned ideas for values. The metafunction ty
assigns a base type to each base constant. The typing rules for terms are similar to those given by

Kawamata et al. [24] except that subtyping is absent (although added in Section 6) and the typing

of operation calls and handling takes the presence of □ in operation signatures into account.

As mentioned above, the control effects of value-return constructs can be ATP. One can embed

terms with the ATP effect □ into the context requiring an ATM effect (HT_Emb). Since ATP terms

do not change the context, the final answer type is the same as the initial one. The rules (HT_App)

and (HT_Case) for function applications and case constructs naturally reflects their behavior.

For a let construct let𝑥 = M1 inM2, if the term M1 has the ATP effect (i.e., it does not change

the enclosing context), how the let construct changes the context is determined by the term M2

(HT_Let). If both of the control effects of M1 and M2 are ATM, say Cini

1
⇒ Cfin

1
and Cini

2
⇒ Cfin

2
,

then so is that of the let construct (HT_LetATM). The form of an ATM effect of the let construct

is determined as follows. First, the evaluation of the let construct starts by evaluating M1 and the

final answer type Cfin

1
of M1 describes how the context enclosing M1 changes. Thus, the change

of the context enclosing the let construct is determined by Cfin

1
, i.e., the final answer type of the

let construct is Cfin

1
. The initial answer type Cini

1
is the requirement for the context enclosing M1.

BecauseM1 is placed under the context let𝑥 = [] inM2 (where [] is the hole of the context) and its

control behavior is specified by the final answer type Cfin

2
, the requirement Cini

1
has to be implied by

the guarantee Cfin

2
. The rule (HT_LetATM) enforces this demand by imposing Cini

1
= Cfin

2
. Finally,

the requirement for the outer context is specified by the initial answer type Cini

2
of the term M2

sinceM2 may perform operation calls that reify delimited continuations involving the outer context.

Thus, the initial answer type of the let construct corresponds to Cini

2
.

The typing of an operation call 𝜎 (V ;𝑥 .M) depends on the type signature of the algebraic

operation 𝜎 . If 𝜎 is ATP, then the control effect of the operation call is also ATP. Because the

continuation 𝑥 .M stands for the context of the operation call, the type-checking of 𝜎 (V ;𝑥 .M) is
carried out in a way similar to (HT_Let). Otherwise, the operation call is given an ATM effect,

and then the type-checking is similar to the one done by (HT_LetATM). Note that: the parameter

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:12 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Typing rules for values Γ ⊢ V : T

Γ ⊢ 𝑥 : Γ(𝑥) HT_Var

Γ ⊢ c : ty(c) HT_Const

0 < 𝑖 ≤ 𝑛

Γ ⊢ i : n HT_EConst

Γ, 𝑥 : T ⊢ M : C
Γ ⊢ 𝜆𝑥.M : T → C

HT_Abs

Γ, 𝑥 : T → C ⊢ V : T → C
Γ ⊢ fix𝑥 .V : T → C

HT_Fix

Typing rules for terms Γ ⊢ M : C

Γ ⊢ V : T
Γ ⊢ returnV : Σ ⊲ T /□ HT_Return

Γ ⊢ M : Σ ⊲ T /□
Γ ⊢ M : Σ ⊲ T /C ⇒ C

HT_Emb

Γ ⊢ M1 : Σ ⊲ T1 /□ Γ, 𝑥 : T1 ⊢ M2 : Σ ⊲ T2 /A
Γ ⊢ let𝑥 =M1 inM2 : Σ ⊲ T2 /A

HT_Let

Γ ⊢ M1 : Σ ⊲ T1 /C ⇒ Cfin Γ, 𝑥 : T1 ⊢ M2 : Σ ⊲ T2 /Cini ⇒ C

Γ ⊢ let𝑥 =M1 inM2 : Σ ⊲ T2 /Cini ⇒ Cfin

HT_LetATM

Γ ⊢ V1 : T → C Γ ⊢ V2 : T
Γ ⊢ V1 V2 : C

HT_App

Γ ⊢ V : n ∀ 𝑖 ∈ [1, 𝑛] . Γ ⊢ Mi : C
Γ ⊢ case(V ;M1, · · · ,Mn) : C

HT_Case

Σ ∋ 𝜎 : Tpar ⇝ T ari /□ Γ ⊢ V : Tpar Γ, 𝑥 : T ari ⊢ M : Σ ⊲ T /A
Γ ⊢ 𝜎 (V ;𝑥 .M) : Σ ⊲ T /A HT_Op

Σ ∋ 𝜎 : Tpar ⇝ T ari /Cini ⇒ Cfin Γ ⊢ V : Tpar Γ, 𝑥 : T ari ⊢ M : Σ ⊲ T /C ⇒ Cini

Γ ⊢ 𝜎 (V ;𝑥 .M) : Σ ⊲ T /C ⇒ Cfin

HT_OpATM

H = {return𝑥 ↦→ L} ⊎ {𝜎i (𝑦i;𝑘i) ↦→ Mi}1≤𝑖≤𝑚 ⊎ {𝜍i (𝑧i) ↦→ Ni}1≤𝑖≤𝑛
Σ = {𝜎i : Tpar

𝑖
⇝ T ari

𝑖 /Cini

𝑖 ⇒ Cfin

𝑖 }1≤𝑖≤𝑚 ⊎ {𝜍i : U par

𝑖
⇝ U ari

𝑖 /□}1≤𝑖≤𝑛
Γ ⊢ M : Σ ⊲ T /Cini ⇒ Cfin Γ, 𝑥 : T ⊢ L : Cini

∀ 𝑖 ∈ [1,𝑚] . Γ, 𝑦i : Tpar

𝑖
, 𝑘i : T ari

𝑖 → Cini

𝑖
⊢ Mi : Cfin

𝑖

∀ 𝑖 ∈ [1, 𝑛] . Γ, 𝑧i : U par

𝑖
⊢ Ni : Σi ⊲ U ari

𝑖 /□

∀C ∈ {Cini

𝑖

1≤𝑖≤𝑚
,Cfin}. ∀ 𝑖 ∈ [1, 𝑛] . C .Σ = Σi

Γ ⊢ withH handleM : Cfin

HT_Handle

Fig. 5. Type System.

value V has to be of the parameter type Tpar
; the bound variable 𝑥 of the continuation is given the

arity type T ari
since the continuation may refer to the result of the operation call via 𝑥 ; and the

return value of the operation call is determined by the continuation.

The typing rule (HT_Handle) for handling constructs is definitely the most complicated. Con-

sider a handling construct withH handleM to be typechecked. First, (HT_Handle) assumes that

the handled term M has a computation type Σ ⊲ T /Cini ⇒ Cfin
. Then, the first two premises of the

rule require the effect handler H to implement all the algebraic operations in Σ that may be called

by the handled term M . It also requires the return clause’s body L has the type Cini
because the

return clause is the context for the handled term M . By contrast, because the final answer type

Cfin
specifies terms to which the context of M changes, it is assigned to the handling construct.

The operation clauses are also typechecked to ensure that their bodies behave as specified by the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:13

operation signature Σ. Note that the control effect of the clause of an ATP operation 𝜍i has to be

ATP to ensure that the operations invoked by the clause do not influence the outer context. Finally,

for the clause 𝜍i (𝑧i) ↦→ Mi of each 𝜍i, its operation signature Σi is required to be equal to Cfin.Σ
and Cini

𝑗 .Σ (here, Cini

𝑗 is the initial answer type of the ATM operation 𝜎j) for subject reduction. The

equality Σi = Cfin.Σ is imposed to make the handling of 𝜍i type-preserving. When the handled term

M calls 𝜍i along with parameter value V and continuation 𝑦.N , the handing construct is evaluated

to let𝑦 =Mi [V/𝑧i] inwithH handleN . Here, the termwithH handleN has the operation signature

Cfin.Σ, so the operation signature of the termMi [V/𝑧i] also has to be Cfin.Σ, according to (HT_Let).

This can be enforced by requiring Σi = Cfin.Σ. The equality Σi = Cini

𝑗 .Σ makes the reification

of delimited continuations well typed. When the handled term M evaluates to, say, 𝜎j (V ;𝑦.N),
the delimited continuation 𝜆𝑦.withH handleN is reified. Because the type of the continuation’s

body is Cini

𝑗 , the final answer type of the term N handled in the continuation is Cini

𝑗 . Therefore, as

Σi = Cfin.Σ is required, Σi = Cini

𝑗 .Σ has to hold.

3.4 Properties
First, we show that HEPCFATM□ is more expressive than both GEPCF and HEPCFATM. Note that the
program syntax of the former subsumes those of the latter.

Theorem 1 (GEPCF ∪ HEPCFATM ⊂ HEPCFATM□). If M is well typed in either GEPCF or
HEPCFATM, then it is also well typed in HEPCFATM□ . Furthermore, there exists a term M that is
accepted by HEPCFATM□ but neither by GEPCF nor HEPCFATM.

Type soundness of HEPCFATM□ is proven via progress and subject reduction [63].

Lemma 1 (Progress). If ∅ ⊢ M : C, then one of the following holds: M = returnV for some V ;
M = 𝜎 (V ;𝑥 .N) for some 𝜎 , V , 𝑥 , and N ; or M −→ N for some N .

Lemma 2 (Subject Reduction). If Γ ⊢ M : C and M −→ N , then Γ ⊢ N : C.

We assume that a program is closed and handles all the ATM algebraic operations, as their

behavior relies on captured delimited continuations. The latter condition is enforced by requiring

the program’s operation signature to take the form {𝜎i : Tpar

𝑖
⇝ T ari

𝑖 /□}1≤𝑖≤𝑛 . The remaining

algebraic operations are considered as primitive effects, whose interpretations are given by, e.g.,

equational axioms on them [45].

Theorem 2 (Type Soundness). Assume that Σ = {𝜎i : Tpar

𝑖
⇝ T ari

𝑖 /□}1≤𝑖≤𝑛 . If ∅ ⊢ M : Σ ⊲ T /A
and M −→∗ N and N −̸→, then either of the following holds:

• N = returnV and ∅ ⊢ V : T for some V ; or
• N = 𝜎i (V ;𝑥 . L) and ∅ ⊢ V : Tpar

𝑖
and 𝑥 : T ari

𝑖 ⊢ L : Σ ⊲ T /A for some 𝑖 ∈ [1, 𝑛], V , 𝑥 , and L.

Note that, if Σ = ∅, it is ensured that all the operation calls performed at run time are handled.

4 Higher-Order Model Checking
The HOMC problem for HEPCFATM□ is defined using effect trees as the structures to be verified,

and alternating parity tree automata (APTAs), which specify the semantics of primitive effects—

corresponding to unhandled operations in our setting—and the properties to be verified. Due to lack

of space, the paper only defines the effect tree semantics, which gives a way to interpret HEPCFATM□
terms as effect trees. Readers interested in the definition of APTAs and formal instances of the

HOMC problem are referred to either the supplementary material or the literature [14, 29, 42, 56].

Effect trees are built by tree constructors labeled with (unhandled) algebraic operations or ⊥
representing divergence. They are defined for closed HEPCFATM□ terms with top-level operation

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:14 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

signatures, which restrict algebraic operations with finitary parameter and arity types. To define

effect trees, we use the following notation:

M −→𝑛 N def

= ∃L0, · · · , Ln .M = L0 ∧ (∀ 𝑖 < 𝑛. Li −→ L𝑖+1) ∧ Ln = N ,

M −→∗ N def

= ∃𝑛.M −→𝑛 N , and

M −→𝜔 def

= ∀𝑛. ∃N .M −→𝑛 N .

Definition 1 (Tree Constructor Signatures). A tree constructor signature S is a map from tree

constructors, which are symbols ranged over by s, to natural numbers that represent the arities of

the constructors. We write S(s) for the arity of s assigned by S.

Definition 2 (Finitely Branching Infinite Trees). The set TreeS of finitely branching (possibly)

infinite trees (or trees for short) generated by a tree constructor signature S is defined coinductively
by the following grammar (where s is in the domain of S):

𝑡 ::= ⊥ | s(𝑡1, · · · , 𝑡S (s)) .

Definition 3 (Effect Trees for HEPCFATM□ Terms). An operation signature Σ is top-level if Σ takes

the form {𝜎i : Bi ⇝ Ei /□}1≤𝑖≤𝑛 . Given a top-level operation signature Σ and a type T , the tree
constructor signature SΣT is defined as follows:

SΣT
def

= {(𝜎, 𝑛 + 1) | 𝜎 : B ⇝ n /□ ∈ Σ} ∪ {(returnV , 0) | ∅ ⊢ V : T } ∪
⋃
c

{(c, 0)} ,

where a tree constructor is an algebraic operation, value-return construct, or base constant. Given

a term M such that ∅ ⊢ M : Σ ⊲ T /A with a top-level operation signature Σ, the effect tree of M ,

denoted by ET(M), is a tree in TreeSΣT defined coinductively as follows:

• if M −→𝜔
, then ET(M) = ⊥;

• if M −→∗ returnV , then ET(M) = returnV ; and
• if M −→∗ 𝜎 (c;𝑥 .N) and 𝜎 : B ⇝ n /□ ∈ Σ, then ET(M) = 𝜎 (c, ET(N [1/𝑥]), · · · , ET(N [n/𝑥])).
It is easy to confirm that, e.g., the effect tree semantic transforms the program MFile in Section 2 to

the effect tree drawn there (with a slight modification to add parameters to operation nodes).

Finally, we define the HOMC problem as follows. A type T is ground if it is a base or enum type.

Definition 4 (Model Checking Problem for HEPCFATM□). Given an APTA and a term M such that

∅ ⊢ M : Σ ⊲ T /A for some top-level Σ and ground T , is ET(M) accepted by the APTA?

5 CPS Transformation
This section defines a selective, type-directed CPS transformation from HEPCFATM□ to EPCF and
shows the decidability of the HOMC problem inHEPCFATM□ using it. We first recap EPCF briefly and
then introduce the CPS transformation. Finally, we discuss the properties of the CPS transformation

and the decidability proof.

5.1 Target Calculus EPCF
The calculus EPCF is a finitary variant of fine-grained call-by-value PCF with algebraic operations.

We only show its syntax in Figure 6; see the supplementary material for the full definition. EPCF
is similar to HEPCFATM□ , except that EPCF does not support effect handlers (thus, answer-type
modification does not appear in its type system either), types of values and terms are unified, and

type signatures of algebraic operations are restricted to be in the form 𝜎 : B ⇝ E. The operational
semantics and type system, equipped with typing judgments of the form Ξ || Δ ⊢ e : 𝜏 , are defined
straightforwardly, and the effect tree semantics and the HOMC problem for EPCF are formalized as

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:15

Values v,w ::= 𝑥 | c | 𝜀 | 𝜆𝑥.e | fix𝑥 .v
Terms e ::= return v | let𝑥 = e1 in e2 | v1 v2 | case(v; e1, · · · , en) | 𝜎 (v;𝑥 . e)
Types 𝜏 ::= B | E | 𝜏1 → 𝜏2

Operation signatures Ξ ::= {𝜎i : Bi ⇝ Ei}1≤𝑖≤𝑛
Typing contexts Δ ::= ∅ | Δ, 𝑥 : 𝜏

Fig. 6. Syntax of EPCF.

in Section 4. We write ET(e) for the effect tree of the EPCF term e. We only state the key property

of EPCF: the HOMC problem is decidable. A type 𝜏 is ground if 𝜏 is a base or enum type.

Theorem 3 (Decidability of Model Checking for EPCF [14]). Given an APTA and a term e
such that Ξ || ∅ ⊢ e : 𝜏 for some operation signature Ξ and ground type 𝜏 , the problem of checking
whether ET(e) is accepted by the APTA is decidable.

For readability, we use the following shorthand:

• Given 𝑥 = 𝑥1, · · · , 𝑥n, we write 𝜆𝑥.e for the EPCF term 𝜆𝑥1.return 𝜆𝑥2.(· · · (return 𝜆𝑥n .e) · · ·).
• Let X denote an EPCF term or value. Given an EPCF value v and X

1≤𝑖≤𝑛
(𝑛 > 0), we write

v X
1≤𝑖≤𝑛

for the EPCF term defined as follows:

v w def

= v w v (w,X) def

= let𝑥 = v w in𝑥 X (if |X | > 0)

v e def

= let𝑥 = e in v 𝑥 v (e,X) def

= let𝑥 = e in v (𝑥 X) (if |X | > 0)

where the variable 𝑥 is assumed to be fresh. Similarly, given a term e and X
1≤𝑖≤𝑛

(𝑛 > 0),

e X
1≤𝑖≤𝑛

means the EPCF term let𝑥 = e in𝑥 X
1≤𝑖≤𝑛

for some fresh variable 𝑥 .

5.2 CPS Transformation
In this section, we first present an overview of the challenges one encounters when giving a

CPS transformation for HEPCFATM□ , and of how they can be solved. After that, we define CPS

transformation for types and programs in HEPCFATM□ and then show its properties.

5.2.1 Overview. We begin by reviewing a non-selective CPS transformation for effect handlers as

presented in the literature [14, 22, 56], then identify the challenges in adapting it to our setting, and

present our solution. Finally, we explain how this transformation is extended to a selective one.

CPS Transformation for Effect Handlers. In CPS-transforming terms with effect handlers, the

transformation result takes two arguments: handlers and continuations. For instance, a value-return

construct returnV is transformed as follows:

JreturnV K def

= 𝜆ℎ, 𝑘.𝑘 JV K

where ℎ are variables for handlers and 𝑘 is for continuations. We call the pair consisting of zero

or more handlers and a continuation a contextual argument. Because the value-return construct

does not call algebraic operations, it only passes the CPS value JV K to the continuation. The

handler variables are used to transform operation calls. For instance, an operation call 𝜎 (V ;𝑥 .M)
is transformed as:

J𝜎 (V ;𝑥 .M)K def

= 𝜆ℎ, 𝑘.ℎ𝜎 JV K 𝜆𝑥 .JMKℎ 𝑘

where ℎ𝜎 is the variable in ℎ and represents the clause to handle the algebraic operation 𝜎 . Given the

clause, it takes the CPS parameter value JV K and the delimited continuation of the form 𝜆𝑥 .JMKℎ 𝑘 .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:16 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Typechecking Issue. However, an issue with typechecking arises in the CPS transformation of

handling constructs. Following the prior work [22], the transformation can be defined as follows:

JwithH handleMK def

= 𝜆ℎ, 𝑘.JMK vh vk ℎ 𝑘 (1)

where vh and vk are transformation results of the operation clauses and the return clause, re-

spectively, in the effect handler H . It is noteworthy that, with this definition, a CPS-transformed

term may take multiple contextual arguments, but their number depends on the context. In general,

given a source term withH1 handle (· · · (withHn handleM) · · ·), JMK takes at least 𝑛 contextual

arguments. To ensure that the CPS transformation preserves typing, we require a way to typecheck

CPS terms that take multiple contextual arguments.

There are three ways to address this issue in the literature. The first solution is to use para-
metric polymorphism [22], which allows parameterizing CPS terms over contextual arguments

and instantiating when necessary. However, since parametric polymorphism makes the HOMC

problem undecidable [62], it is inadequate for our purpose. The second is to adopt an ATM type

system for the source language [56]. Because the ATM type system exposes the dependency of

terms on the context, it can statically capture how many contextual arguments CPS terms depend

on. Based on this idea, Sekiyama and Unno gave a CPS transformation for HEPCFATM. The third
is to fix the number of contextual arguments CPS terms take by restricting effect handlers to be

tail-resumptive [14]. In this solution, the CPS transformation of handling constructs is defined to be

JwithH handleMK def

= 𝜆ℎ, 𝑘.JMK vh vk

where the handlers ℎ and continuation 𝑘 are “weaved” into vh and vk. Namely, for each tail-

resumptive clause 𝜎 (𝑥) ↦→ M ∈ H , vh gives a CPS value 𝜆𝑥, 𝑘 ′ .JMKℎ 𝑘 ′, and, given the clause

return𝑥 ↦→ N ∈ H , vk is defined to be 𝜆𝑥.JN Kℎ 𝑘 . This transformation of handlers and continua-

tions preserves the semantics of the original handling construct if the effect handler only includes

tail-resumptive operation clauses, but it does not in general. For instance, if the effect handler H
were to allow an operation clause to return some value without invoking the captured continuation

(such as exception handling), then the continuation 𝑘 passed to the handling construct would be

discarded, while its correct semantics is that the result of evaluating the clause is passed to the

continuation 𝑘 . Under the assumption that all the operation clauses are tail-resumptive, no problem

happens because, if the evaluation withH handleM terminates at some value, the CPS term for M
finally invokes the continuation vk, which in turn invokes the outer continuation 𝑘 .

Our Solution. Our approach to the issue with handling constructs is to mix the second and third

solutions. That is, we adopt transformation (1) but we only weave the outer handler ℎ into the CPS

values for tail-resumptive operation clauses and track the contextual arguments taken by the other

clauses using the ATM type system of HEPCFATM□ .

However, the naive mix causes semantic unsoundness. For example, suppose that the handled

term M is an operation call 𝜎 (V ;𝑥 .N) and the effect handler H includes a clause 𝜎 (𝑦;𝑘𝜎) ↦→
withH ′ handle𝑘𝜎 𝑦 with another effect handler H ′

. Then, the fully applied CPS value for the term

withH handleM with outer handler vh
0
and continuation vk

0
is evaluated as follows:

JwithH handle𝜎 (V ;𝑥 .N)K vh
0
vk
0

= (𝜆ℎ, 𝑘.J𝜎 (V ;𝑥 .N)K vh vk ℎ 𝑘) vh
0
vk
0

−→∗ J𝜎 (V ;𝑥 .N)K vh [vh
0
/ℎ] vk vh

0
vk
0

−→∗ (v𝜎 JV K (𝜆𝑥 .JN K vh [vh
0
/ℎ] vk)) vh

0
vk
0

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:17

where vh [vh
0
/ℎ] means that each variable in ℎ occurring in vh is replaced by the corresponding

value in vh
0
(recall that the CPS values for tail-resumptive clauses refer to ℎ), and v𝜎 is the CPS

value for the clause of 𝜎 , which can be given

v𝜎 = 𝜆𝑦, 𝑘𝜎 .return JwithH ′ handle𝑘𝜎 𝑦K .

Therefore, the continuation 𝜆𝑥.JN K vh [vh
0
/ℎ] vk passed to the operation clause is invoked under

another effect handler H ′
. Assume that the term N calls an algebraic operation 𝜍 and the effect

handler H involves an operation clause 𝜍 (𝑧) ↦→ 𝜍 (𝑧), i.e., the operation call is forwarded into

the outer context. According to the semantics of the source language, the forwarded operation

call is handled by H ′
because it is the closest effect handler from the forwarding. However, in

the given CPS term, the forwarded operation call is handled by the outer effect handler vh
0
, as the

handler vh [vh
0
/ℎ], where operation calls forwarded by tail-resumptive clauses are interpreted by

vh
0
, is passed to JN K. In summary, only weaving the outer handler vh

0
into tail-resumptive clauses

does not work when a captured continuation is invoked under a different effect handler. Note that

such a phenomenon does not happen when all the operation clauses are tail-resumptive [14].

We solve this issue by making continuations take tail-resumptive clauses. In our CPS transforma-

tion, an operation call 𝜎 (V ;𝑥 .N) is transformed into

𝜆ℎ, 𝑘.v𝜎 JV K (𝜆𝑥, ℎ0.N ℎ′ ℎ0 𝑘)

whereℎ′ is a subsequence ofℎ that only gathers ATM clauses, andℎ0 is a sequence of tail-resumptive

ones given by the call site of the continuation. Then, for the above problematic example, we have

JwithH handle𝜎 (V ;𝑥 .N)K vh
0
vk
0

−→∗ J𝜎 (V ;𝑥 .N)K vh [vh
0
/ℎ] vk vh

0
vk
0

−→∗ (v𝜎 JV K (𝜆𝑥, ℎ0 .JN K vh′ ℎ0 vk)) vh
0
vk
0

where vh′ is the sequence of the ATM clauses in vh, so it is independent of the outer handler vh
0
.

The remaining challenge is how to pass, for ℎ0, the tail-resumptive clauses in H that weave the

effect handler at the call site of the continuation. To resolve it, we modify the definition of the CPS

value v𝜎 as follows:

v𝜎 def

= 𝜆𝑦, 𝑘 ′𝜎 .let𝑘𝜎 = return 𝜆𝑧, ℎ, 𝑘.𝑘 ′𝜎 𝑧 v ℎ 𝑘 in return JwithH ′ handle𝑘𝜎 𝑦K , (2)

where the continuation 𝑘𝜎 used in the body is a wrapper of the given continuation 𝑘 ′𝜎 . The wrapper

takes an argument 𝑧, handler ℎ, and continuation 𝑘 from the call-site and weaves ℎ into the tail-

resumptive clauses in H (the weaving results are referred to by v in Definition (2)), and then passes

them to the given continuation 𝑘 ′𝜎 . Given a tail-resumptive clause 𝜍 (𝑧) ↦→ L in H , the weaving

result in v is given by 𝜆𝑧, 𝑘 ′ .JLKℎ 𝑘 ′, which refers to the handler ℎ at the call site.

Selective CPS Transformation. While we have focused on non-selective CPS transformations

thus far, what we actually define is a selective CPS transformation, which transforms HEPCFATM□
terms with ATM effects (resp. the ATP effect □) into EPCF terms that do (resp. do not) require

continuations. Thus, e.g., the transformation of value-return constructs is defined as follows:

JreturnV K def

= 𝜆ℎ, _.return JV K ,

which takes a handler ℎ and an extra, unused argument _. We can define a transformation that

does not take the extra argument, but leaving it enables giving a simpler CPS transformation that

unifies the transformations for ATP- and ATM-effectful terms. For the ATP-effectful terms, the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:18 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

JTK for value types

JBK def

= B JEK def

= E JT → CK def

= JTK → JCK

JCK for computation types

JΣ ⊲ T /□K def

= JΣK[1 → JTK]
JΣ ⊲ T /Cini ⇒ CfinK def

= JΣK[(JTK → J□(Σ)K[JCiniK]) → JCfinK]

JΣK[𝜏] for operation signatures

J{𝜎i : Tpar

𝑖
⇝ T ari

𝑖 /Cini

𝑖 ⇒ Cfin

𝑖 }1≤𝑖≤𝑚 ⊎ {𝜍i : U par

𝑖
⇝ U ari

𝑖 /□}1≤𝑖≤𝑛K[𝜏] def

=

(JTpar

𝑖
K → (JT ari

𝑖
K → 𝜏j →1≤ 𝑗≤𝑛 JCini

𝑖
K) → JCfin

𝑖
K) →

1≤𝑖≤𝑚
𝜏i →1≤𝑖≤𝑛

𝜏

(where ∀ 𝑖 ∈ [1, 𝑛] . 𝜏i = JU par

𝑖
K → JU ari

𝑖 K)

Fig. 7. CPS transformation for types.

enum constant 1 is given instead of continuations. For example, a let-construct let𝑥 = M1 inM2

where the control effect of M1 is □, is transformed into

𝜆ℎ, 𝑘.let𝑥 = JM1Kℎ 1 in JM2Kℎ 𝑘 ,

where the result of JM1K is bound to 𝑥 because JM1K does not take continuations. The variable 𝑘
represents the enum constant or a continuation, depending on the control effect of M2.

5.2.2 Definition. The CPS transformation for types is defined in Figure 7 using the notation

𝜏𝑖 →1≤𝑖≤𝑛
𝜏 , which stands for 𝜏1 → 𝜏2 → · · · → 𝜏n → 𝜏 (when 𝑛 = 0, it denotes 𝜏). Value

types are transformed in a standard manner. An operation signature Σ is transformed into a

function JΣK[−] that wraps a given type to take a CPS-transformed handler conforming to Σ.
The definition indicates that each ATP operation 𝜍 : U par ⇝ U ari /□ is transformed into a value

of JU parK → JU ariK, which does not take continuations. The CPS value of an ATM operation

𝜎 : Tpar ⇝ T ari /Cini ⇒ Cfin
takes a parameter of JTparK and a continuation, and then returns a

CPS value of the final answer type JCfinK. The continuation takes a value of the arity type JT ariK
(which represents the return value of the call to 𝜎) along with tail-resumptive clauses weaving the

call-site’s effect handler and returns a CPS value of the initial answer type JCiniK. The definition
for computation types indicates that an HEPCFATM□ term is transformed into a CPS term taking a

handler. If the control effect of theHEPCFATM□ term is □, then the CPS term only returns a CPS value

that is the result of the computation. Otherwise, the CPS term takes a continuation and returns a

“final answer.” Here, □(Σ) is an operation signature that only gathers ATP operations in Σ. Thus,
the type JTK → J□(Σ)K[JCiniK] means that the continuation takes tail-resumptive clauses. We

write JΓK for the EPCF typing context obtained by CPS-transforming the types of all the bindings

of typing context Γ.
To define CPS transformation for values and terms, we introduce the static lambda calculus,

which allows us to remove administrative redexes inserted at the time of CPS transformation.

Definition 5 (Static Lambda Calculus). The static lambda calculus (SLC) is defined by:

t def

= x | 𝝀(x1, · · · , xn). t | t@(t1, · · · , tn) | e | v

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:19

JV K for values

J𝑥KHT_Var

def

= 𝑥 JcKHT_Const

def

= c JnKHT_EConst

def

= n

J𝜆𝑥.MKHT_Abs

def

= 𝜆𝑥 .return JMK Jfix𝑥 .V KHT_Fix

def

= fix𝑥 .JV K

JMK for thunks (assume that Γ ⊢ M : Σ ⊲ T /A and |ℎ | = |Σ|)

JMK def

= 𝜆ℎ, 𝑘.JMKe@(ℎ, 𝑘)

JMKe for terms (assume Γ ⊢ M : Σ ⊲ T /A and |h| = |Σ| and |h/□ | = | /□(Σ) | and |h□ | = |ℎ□ | = |□(Σ) |)

JreturnV Ke
HT_Return

def

= 𝝀(h, k). return JV K

JMKe
HT_Emb

def

= 𝝀(h, k). let𝑥 = JMKe@(h, 1) in k𝑥
Jlet𝑥 =M inNKe

HT_Let

def

= 𝝀(h, k). let𝑥 = JMKe@(h, 1) in JNKe@(h, k)
Jlet𝑥 =M inNKe

HT_LetATM

def

= 𝝀(h, k). JMKe@(h, 𝜆𝑥, ℎ□ .JNKe@(h/□, ℎ□, k))
JV W Ke

HT_App

def

= 𝝀(h, k). JV K JW K h k

Jcase(V ;M1, · · · ,Mn)Ke
HT_Case

def

= 𝝀(h, k). case(JV K; JM1Ke@(h, k), · · · , JMnKe@(h, k))
J𝜎 (V ;𝑥 .M)Ke

HT_Op

def

= 𝝀(h, k). let𝑥 = h𝜎 JV K in JMKe@(h, k)
J𝜎 (V ;𝑥 .M)Ke

HT_OpATM

def

= 𝝀(h, k). h𝜎 JV K 𝜆𝑥, ℎ□ .JMKe@(h/□, ℎ□, k)

JwithH handleMKe
HT_Handle

def

= 𝝀(h, k). JMKe@(w /□
𝑖

1≤𝑖≤𝑚
,w□

𝑖

1≤𝑖≤𝑛
, 𝜆𝑥, ℎi

1≤𝑖≤𝑛
.return JLK) h k ,where

H = {return𝑥 ↦→ L} ⊎ {𝜎i (𝑦i;𝑘i) ↦→ Mi}1≤𝑖≤𝑚 ⊎ {𝜍i (𝑧i) ↦→ Ni}1≤𝑖≤𝑛

∀𝑖 ∈ [1,𝑚] . Γ, 𝑦i : Tpar

𝑖
, 𝑘i : T ari

𝑖 → Cini

𝑖
⊢ Mi : Cfin

𝑖

∀𝑖 ∈ [1,𝑚] .w /□
𝑖

def

= 𝜆𝑦i, 𝑘
′
i .let𝑘i = return (𝜆𝑦,ℎ, 𝑘.𝑘 ′i 𝑦 v𝑖 𝑗

1≤ 𝑗≤𝑛 ℎ 𝑘) in return JMiK (|ℎ | = |Cini

𝑖 .Σ|)
∀𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑛] . v𝑖 𝑗

def

= 𝜆𝑧j .JNjKe@(ℎ, 1) (|ℎ | = |Cini

𝑖 .Σ|)
∀𝑖 ∈ [1, 𝑛] .w□

𝑖

def

= 𝜆𝑧i .JNiKe@(h, 1)

Fig. 8. CPS transformation for terms.

where e and v are EPCF terms and values, respectively, that may refer to static variables x bounded in
the enclosing context.We call variables, functions, and applications in the SLC static. A static applica-

tion (𝝀(x1, · · · , xn). t)@(t1, · · · , tn) is identified with the 𝛽-reduction result t[x1 := t1, · · · , xn := tn].

For HEPCFATM□ terms and values, we define three kinds of CPS transformation: JV K for values,
JMK and JMKe for terms. These CPS transformations are defined on typing derivations of values

and terms, not on values and terms themselves. For clarification, we may specify the name of the

typing rule that is used lastly for constructing a typing derivation to be transformed, as JMKe
HT_Let

,

which is the result of transforming a typing derivation that concludes Γ ⊢ M : C for some Γ and

C using (HT_Let). The definition of the CPS transformation is presented in Figure 8. The CPS

transformation JV K for a value V is defined in a homomorhpic manner, and JMK is an EPCF function
that takes a contextual argument (a handler and a continuation) and statically applies the static

function JMKe to it. The CPS transformation JMKe for a term M is a static function that maps a

contextual argument to an EPCF term, defined as explained in Section 5.2.1. We only describe a

few remarks here. First, given h, we write h/□
for the subsequence of h that exclusively includes all

the clauses for ATM algebraic operations. We also write h𝜎 for the clause of 𝜎 given by h. Note
that the clause h𝜎 for an ATP operation 𝜎 takes no continuation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:20 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

5.2.3 Properties. We show that our CPS transformation preserves types and semantics ofHEPCFATM□
terms. We first introduce some notions used to formulate type preservation.

Definition 6 (Partial Order on EPCF Typing Contexts). We write Δ1 ⪯ Δ2 if dom(Δ1) ⊆ dom(Δ2)
and, for any 𝑥 ∈ dom(Δ1), Δ1 (𝑥) = Δ2 (𝑥).

Definition 7 (Typing of Effect Handlers). Let Σ = {𝜎i : Tpar

𝑖
⇝ T ari

𝑖 /Cini

𝑖 ⇒ Cfin

𝑖 }1≤𝑖≤𝑚 ⊎ {𝜍i :
U par

𝑖
⇝ U ari

𝑖 /□}. For a value sequence v = v𝜎1 , · · · , v𝜎m , v𝜍1 , · · · , v𝜍n , we write Ξ || Δ ⊢ v : Σ if (1)

∀ 𝑖 ∈ [1,𝑚] . Ξ || Δ ⊢ v𝜎i : JTpar

𝑖
K → (JT ari

𝑖 K → J□(Σ)K[JCini

𝑖 K]) → JCfin

𝑖 K and (2) ∀ 𝑖 ∈ [1, 𝑛] . Ξ ||
Δ ⊢ v𝜍i : JU par

𝑖
K → JU ari

𝑖 K.

Definition 8 (Types of the Static Lambda Calculus). We write (1) term[Ξ || Δ ⊢ 𝜏] for the set
of EPCF terms e such that Ξ || Δ ⊢ e : 𝜏 , (2) val[Ξ || Δ ⊢ 𝜏] for the set of EPCF values v such

that Ξ || Δ ⊢ v : 𝜏 , and (3) vals[Ξ || Δ ⊢ Σ] for the set of sequences of EPCF values v such that

Ξ || Δ ⊢ v : Σ. We also define comp[Ξ || Δ ⊢ C] depending on C .A, as follows:

comp[Ξ || Δ ⊢ Σ ⊲ T /□] def

= vals[Ξ || Δ ⊢ Σ] × val[Ξ || Δ ⊢ 1] → term[Ξ || Δ ⊢ JTK]
comp[Ξ || Δ ⊢ Σ ⊲ T /Cini ⇒ Cfin] def

=

vals[Ξ || Δ ⊢ Σ] × (val[Ξ || Δ ⊢ JTK → J□(Σ)K[JCiniK]]) → term[Ξ || Δ ⊢ JCfinK]

Lemma 3 (Type Preservation of the CPS Transformation). Assume that JΓK ⪯ Δ.

(1) If Γ ⊢ V : T , then Ξ || Δ ⊢ JV K : JTK for any Ξ.
(2) If Γ ⊢ M : C, then Ξ || Δ ⊢ JMK : JCK for any Ξ.
(3) If Γ ⊢ M : C, then JMKe : comp[Ξ || Δ ⊢ C] for any Ξ.

For semantic preservation, we first prove that the evaluation ofHEPCFATM□ terms can be simulated

by their CPS terms. The simulation holds modulo full 𝛽𝜂 monadic reduction.

Definition 9 (Full 𝛽𝜂 Monadic Reduction). We define a binary relation ↩→ over EPCF terms and

over EPCF values, called full 𝛽𝜂 monadic reduction, to be the reflexive, transitive, compatible closure

satisfying the following axioms:

∀𝑥, v, e. (𝜆𝑥.e) v ↩→ e[v/𝑥] ∀𝑥, v. 𝑥 ∉ fv(v) =⇒ 𝜆𝑥 .v 𝑥 ↩→ v
∀𝑥, v, e. let𝑥 = return v in e ↩→ e[v/𝑥] ∀𝑥, e. let𝑥 = e in return𝑥 ↩→ e
∀𝑥,𝑦, e1, e2, e3 . 𝑦 ∉ fv(e3) =⇒ let𝑥 = (let𝑦 = e1 in e2) in e3 ↩→ let𝑦 = e1 in let𝑥 = e2 in e3

Lemma 4 (Simulation up to Reduction). If ∅ ⊢ M : Σ ⊲ T /□ and |vh | = |Σ|, then, for any vk, one
of the following holds:

(1) M = returnV and JreturnV Ke@(vh, vk) = return JV K for some V ;
(2) M −→∗ 𝜎 (V ′

;𝑥 .M′) and JMKe@(vh, vk) ↩→ let𝑥 = v JV ′K in JM′Ke@(vh, vk) for some 𝜎 ,

V ′
, 𝑥 , M′

, and v such that v is a value in the sequence vh that corresponds to 𝜎 ; or
(3) M −→+ M′

and JMKe@(vh, vk) ↩→−→+↩→ JM′Ke@(vh, vk) for some M′
.

To show Lemma 4, we have to consider a more complicated statement because handled terms in

handling constructs have ATM effects, while Lemma 4 only considers the ATP effect for simpli-

fication. See the supplementary material for the full statement. Using the bisimilarity technique

of Dal Lago et al. [13], we can prove that ↩→ preserves contextual improvement, which is a partial

order relating contextually equivalent terms e1 and e2 such that e2 takes at least the same number

of evaluation steps as e1. By this property with Lemma 4, the observational behavior (termination

at values/operation calls, or divergence) of HEPCFATM□ terms can be simulated by their CPS terms.

Note that, if the simulation modulo 𝛽𝜂 monadic equality were to be proven, ensuring the simulation

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:21

Subtyping rules T1 <: T2 C1 <: C2 A1 <: A2 Σ1 <: Σ2

B <: B E <: E
T2 <: T1 C1 <: C2

T1 → C1 <: T2 → C2

Σ2 <: Σ1 T1 <: T2 A1 <: A2 A1 ≠ □ =⇒ □(Σ1) <: □(Σ2)
Σ1 ⊲ T1 /A1 <: Σ2 ⊲ T2 /A2

□ <: □
C1 <: C2

□ <: C1 ⇒ C2

Cini

2
<: Cini

1
Cfin

1
<: Cfin

2

Cini

1
⇒ Cfin

1
<: Cini

2
⇒ Cfin

2

∀ 𝑖 ∈ [1, 𝑛] . Tpar

2𝑖
<: Tpar

1𝑖
∧ T ari

1𝑖
<: T ari

2𝑖
∧ A1𝑖 <: A2𝑖

{𝜎i : Tpar

1𝑖
⇝ T ari

1𝑖
/A

1𝑖
}1≤𝑖≤𝑛 ⊎ Σ <: {𝜎i : Tpar

2𝑖
⇝ T ari

2𝑖
/A

2𝑖
}1≤𝑖≤𝑛

Additional typing rules Γ ⊢ V : T Γ ⊢ M : C
Γ ⊢ V : T T <: U

Γ ⊢ V : U
Γ ⊢ M : C C <: D

Γ ⊢ M : D

Fig. 9. Subtyping.

of observational behavior—more specifically, proving that, if an HEPCFATM□ term diverges, its CPS

term takes an infinitely many number of steps—would be more challenging. Now, we show that

the CPS transformation preserves effect trees of given HEPCFATM□ terms using the above result.

Theorem 4 (Preservation of Effect Trees). Let T be a ground type and Σ = {𝜎i : Bi ⇝
Ei /□}1≤𝑖≤𝑛 and Ξ = {𝜎i : Bi ⇝ Ei}1≤𝑖≤𝑛 . Assume that ∅ ⊢ M : Σ ⊲ T /□. Let v = v1, · · · , vn such
that, for any 𝑖 ∈ [1, 𝑛], vi = 𝜆𝑥.𝜎i (𝑥 ;𝑦. return𝑦). Then, ET(JMKe@(vh, 1)) = ET(M).

Corollary 1 (Decidability of Model Checking for HEPCFATM□). The higher-order model
checking problem for HEPCFATM□ is decidable.

6 Subtyping Extension
This section briefly sketches an extension HEPCFATM□ with subtyping. The subtyping judgments

and rules, as well as the additional typing rules, are shown in Figure 9. The subtyping is similar

to the one given by Kawamata et al. [24], generalizing (HT_Emb) to coerce □ into an ATM effect

everywhere and allowing width subtyping on operation signatures. The only subtlety is the side

condition A1 ≠ □ =⇒ □(Σ1) <: □(Σ2) in the subtyping for computation types Σ1 ⊲ T1 /A1 and

Σ2 ⊲ T2 /A2, which is highlighted by the gray box in Figure 9. We can prove type soundness

of the extended HEPCFATM□ without this condition, but it is imposed for soundness of the CPS

transformation. As suggested in the CPS type transformation (Figure 7), given a computation type

Σ ⊲ T /Cini ⇒ Cfin
, the operation signature Σ occurs at a negative position (thus, the subtyping

requires Σ2 <: Σ1), but □(Σ) occurs at a positive position. Thus, in coercing Σ1 ⊲ T1 /A1 into

Σ2 ⊲ T2 /A2, if A1 ≠ □ (which also ensures A2 ≠ □), then □(Σ1) <: □(Σ2) is required. It is left
open whether we can provide a CPS transformation without this side condition or whether we can

justify it without the lens of the CPS transformation.

The CPS transformation is also extended for subtyping. The extension transforms a subtyping

derivation to a static function that coerces the subtype to the supertype. The definition is complicated

but straightforward. The coercion functions are applied where typing derivations rely on subtyping.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:22 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Input:
term (in OCaml)

Input: Specification in ATA

Type
inference typing derivation

CPS
transformation

term
(in HORS)

HorSat2
(HO model checker)

Sat or Unsat

Fig. 10. Architecture of the implemented tool.

All the properties, such as type soundness and type and semantics preservation of the CPS

transformation, are proven for the extension. See the supplementary material for the details

including the full definition.

Now, we show how the program examples given in Section 2 are typechecked in this extension.

Example 6.1 (Nondeterministic Choice). The first example isMD, which uses the operation Decide.
For that, consider the following term

let 𝑓 = return 𝜆𝑥.Decide(𝑥 ;𝑦. return𝑦) in let 𝑧 = withH handle 𝑓 () in case(𝑧; 𝑓 (), return false) ,

which is slightly modified from MD to avoid ambiguity. Let ΣD = {Decide : unit ⇝ bool / (Σ ⊲

2 /□) ⇒ (Σ ⊲ 2 /□)} ⊎ Σ for some Σ, and assume that the effect handler H implements algebraic

operations as specified by ΣD. Because 𝑓 : unit → ΣD ⊲ bool / (Σ ⊲ 2 /□) ⇒ (Σ ⊲ 2 /□),
the application 𝑓 () has the type ΣD ⊲ bool / (Σ ⊲ 2 /□) ⇒ (Σ ⊲ 2 /□). Therefore, the term

withH handle 𝑓 () has the type Σ ⊲ 2 /□, which can be coerced into ΣD ⊲ 2 / (Σ ⊲ 2 /□) ⇒ (Σ ⊲

2 /□). Since the case construct can have the same type as 𝑓 (), the let construct let 𝑧 = · · · can be

given the type ΣD ⊲ bool / (Σ ⊲ 2 /□) ⇒ (Σ ⊲ 2 /□).
Here, it is crucial to instantiate the type Σ ⊲ 2 /□ of the handling construct to the type ΣD ⊲

2 / (Σ ⊲ 2 /□) ⇒ (Σ ⊲ 2 /□) since the initial answer type of the handling construct must match

with the final answer type Σ ⊲ 2 /□ of the application 𝑓 (). In fact, if the ATP effect □ (or subtyping)

were absent as in HEPCFATM, the above term could not be typechecked. To see it, assume that the

application 𝑓 () has a computation type ΣD ⊲ bool /C1 ⇒ C2 for some initial answer type C1 and

final one C2. The ATM type system assigns the type C2 to the handling construct, and requires

that the initial answer type of the type C2 of the handling construct match with the final answer

type C2 of the application 𝑓 (). However, without polymorphism (nor other typing mechanisms

admitting circularity), this requirement would not be met because then C2 cannot involve itself.

Example 6.2 (Exception Raising). Consider the recursive function VR, which is expressed as

fix 𝑓 .𝜆𝑥 .withH handleEOF(();𝑦. case(𝑦;Raise((); 𝑧. return 𝑧),Read((); 𝑧. 𝑓 ())))

in HEPCFATM□ . Let Σ = {EOF : unit ⇝ 2 /□,Read : unit ⇝ unit /□} and ΣR = {Raise : unit ⇝
unit / (Σ ⊲ unit /□) ⇒ (Σ ⊲ unit /□)} ⊎ Σ, and assume that the effect handler H implements

algebraic operations as specified by ΣR. We show that the recursive function has the type unit →
Σ ⊲ unit /□. This type assignment is possible if the handled term has the type ΣR ⊲ unit / (Σ ⊲

unit /□) ⇒ (Σ ⊲ unit /□) under the typing context 𝑓 : unit → Σ ⊲ unit /□, 𝑥 : unit. Because
the answer types of EOF and Read are polymorphic, the handled term has the same type as

Raise((); 𝑧. return 𝑧) and 𝑓 (), which both can be of the desired type—the latter is achieved by

subtyping Σ ⊲ unit /□ <: ΣR ⊲ unit / (Σ ⊲ unit /□) ⇒ (Σ ⊲ unit /□).
Again, this example also requires polymorphism to be typechecked: although the return type of

the recursive function would be required to involve itself as a final answer type, it would not be

met without polymorphism (nor other recursive typing mechanisms).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:23

7 Implementation
We extended the existing model checker EffCaml [56] for HEPCFATM to implement our proof-of-

concept model checker for HEPCFATM□ . The extended model checker, whose entire architecture is

illustrated in Figure 10, verifies an HEPCFATM□ program written in a subset of OCaml 5 against a

safety property specified by an alternating tree automaton (ATA), which is an APTA with the parity

condition that always holds (see the supplementary material for the definition of parity conditions).

Our tool only handles ATAs, as our HOMC backend HorSat2 [9, 30] only supports ATAs.

Given anHEPCFATM□ term, our tool infers its type according to the type system ofHEPCFATM□ . We

implemented the type inference by following the approach of Kawamata et al. [24], as HEPCFATM□
can be seen as a simplified version of their ATM refinement type system, with the exception

of the inclusion of tail-resumptive operation clauses, which we identify by analyzing the term

before the type inference. Our type inference is constraint-based: it first generates equality and

subtyping constraints over value types, control effects, and operation signatures, and then solves

the resulting constraints. Constraint generation and solving for operation signatures are handled in

a way analogous to constraint-based record type inference, since subtyping on operation signatures

resembles record subtyping. For control effects, we adopt the constraint-based type inference

framework for the delimited control operators shift0/reset0 [38]. We believe that our type

inference implementation is sound, but this remains a conjecture.

If the type inference is successful—otherwise, it indicates that the input program is outside the

fragment identified by HEPCFATM□ ’s type system, so our tool aborts without passing the problem to

the backend—then our tool transforms the HEPCFATM□ term into a higher-order recursion scheme

(HORS) in CPS, following the CPS transformation extended with subtyping (see Section 6). Finally,

the output HORS is fed into HorSat2, which model checks the HORS against the given ATA.

Program Specification Sat/Unsat

Open ();VR ();Close () File-Usage Sat

Open ();VR ();Open () File-Usage Unsat

V true No-Raise Sat

V false No-Raise Unsat

We confirmed that our tool success-

fully verifies or falsifies four HOMC in-

stances, as summarized in the right ta-

ble. The first column presents the pro-

grams to be verified. In addition to the

shorthand introduced in Section 5, we

abbreviate 𝜎 (V ;𝑥 . return𝑥) to 𝜎 V and use sequential composition M1;M2 and if branching

ifM thenM1 elseM2, which can easily be encoded in HEPCFATM□ . The first two examples refer

to VR, which is presented in Section 2 and expressed as

fix 𝑓 .𝜆𝑥 .withHR handle if EOF () thenRaise () else (Read (); 𝑓 ())
with HR = {return𝑥 ↦→ return𝑥, EOF(𝑥) ↦→ EOF (𝑥),Read(𝑥) ↦→ Read (𝑥),Raise(𝑥 ;𝑘) ↦→
return𝑥}, which forwards EOF and Read and handles the operation Raise. The functional value V
in the third and fourth examples is defined to be

fix 𝑓 .𝜆𝑥 .let𝑔 = (withHS handle let𝑦 = Get () in if 𝑦 then 𝑓 𝑦 elseRaise ()) in𝑔 𝑥
with HS = {return𝑥 ↦→ return 𝜆𝑦.return𝑥,Get(𝑥 ;𝑘) ↦→ return 𝜆𝑦.𝑘 𝑦 𝑦,Raise(𝑥) ↦→ Raise (𝑥)},
which handles Get to return the current state 𝑦 as in a state monad and forwards Raise. The
argument 𝑥 in V is an initial state of the handled term. The specifications File-Usage and No-Raise
are both given as ATAs. The former describes that call sequences of Open, Close, EOF, and Read
follow the regular expression (Open (EOF | Read)∗ Close)∗ and Read is called only when it is

immediately preceded by a call to EOF that returns true. The latter describes that no call to Raise
escapes to the top level. See the artifact for the details of the specifications. All the verification tasks

completed in less than 0.1 seconds on the machine with 12th Gen Intel(R) Core(TM) i7-1270P 2.20

GHz, 32 GB of memory. This result demonstrates that the proposed CPS transformation enables

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

406:24 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

model checking of the fragment identified by our type system. That said, evaluating the performance

of our tool on larger and more complex instances remains future work.

8 Related Work
Higher-Order Model Checking. Model checking of higher-order programs has been an active

research topic in the last twenty-five years, giving rise to many positive, but also negative, results.

We should certainly mention the pioneering and partial results by Knapik et al. [25, 26], Ong’s

breakthrough result [42] about the decidability of the HOMC problem for higher-order recursion

schemes, and Kobayashi and co-authors’ work on model checking as (intersection) type check-

ing [33]. Some studies do exist about extensions of the cited decidability results to calculi endowed

with some specific form of effects [27, 37, 51], but all this has been given a clearer status by Dal Lago

and Ghyselen [14], who recently studied the problem of HOMC for functional languages with

algebraic effects, giving a decidability result for the HOMC problem holding when specifications are

expressed in an APTA. This is not inconsistent with the aforementioned undecidability results about,

e.g., probabilistic choice [32], as the specifications one is interested at there cannot be formalized

as APTAs. The recent paper by Kobayashi [31] further helps in understanding where the source of

undecidability actually lies, and why linearity is the key to design decidable fragments.

Effectful Higher-Order Programs and Handlers. Since Moggi’s seminal work on monads [39], the

theory of languages with both higher-order functions and effects has been structured around the

categorical notion of monads. All this has been given a more operational flavor by Plotkin and

Power in their work about algebraic effects [46]. Algebraic operations can be given a computational

meaning through effect handlers, this way allowing effects to be interpreted by the program itself

rather than by the environment, in the style of the try − with operator for exceptions. The theory

and practice of effect handling has been extensively studied [5, 21–23, 47, 48, 53, 54, 66]. Dal Lago

and Ghyselen [14] show that if the underlying calculus is along the lines of the aforementioned

ones, the HOMC problem becomes undecidable even for a simply-typed discipline. Sekiyama and

Unno [56] have recently showed that in the presence of answer-type modifications decidability

can be recovered, but that to do so one must renounce to any form of polymorphism, and have

algebraic operations typed in a monomorphic way. We show that Sekiyama and Unno’s approach

is extensible to two forms of polymorphism: answer-type polymorphism and subtyping.

Other Approaches to Temporal Verification of Effectful Higher-Order Programs. A recent line of

work has been concerned with the temporal verification of infinite-state higher-order effectful

programs using type-and-effect systems. Gordon [20] defines a framework for sequential effects

with tagged control operators akin to abort and call/cc, capturing temporal safety properties.

Similarly, Sekiyama and Unno [55] give a type-and-effect system for general temporal properties

in the presence of the control operators shift0 and reset0. Song et al. [60] tackles the safety

verification problem for general effect handlers against specifications in a logic more expressive than

classical LTL. We are not aware of any work dealing with the problem of verifying general effect

handlers against APTAs except for that of Dal Lago and Ghyselen [14] and that of Sekiyama and

Unno [56]. For temporal verification on primitive effects or trace properties, numerous frameworks

have been proposed [19, 40, 55, 58, 59, 67, 69], but extensions to effect handlers or other control

operators may require nontrivial efforts because their ability to manipulate continuations could

bring unexpected issues, as observed by Dal Lago and Ghyselen [14] or de Vilhena and Pottier [16].

Answer-Type Polymorphism and CPS Transformation. Answer-type polymorphism has been

discovered by Riecke and Thielecke [50] as a proof technique, and later Thielecke [61] linked

answer-type polymorphism to effect systems—the answer types of terms guaranteed to be pure by

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:25

a type system can be polymorphic. Answer-type polymorphism has been introduced to ATM type

systems by Asai and Kameyama [1] and Materzok and Biernacki [38]. While Asai and Kameyama’s

type system allows universally quantifying answer types, Materzok and Biernacki do not introduce

parametric polymorphism but instead offers the type constructor 𝜖 to represent answer-type

polymorphism (corresponding to □ in our notation), as well as subtyping for instantiating 𝜖 .

Materzok and Biernacki also defined a selective type-directed CPS transformation that can transform

terms of the answer type 𝜖 to terms that do not rely on continuations. However, they did not show the

semantic preservation of the CPS transformation; it is only shown thatweak semantic preservation—

i.e., source terms before and after reduction can be transformed into 𝛽𝜂-equivalent terms—for

untyped source terms using a non-selective, non-type-directed CPS transformation. Kawamata

et al. [24] brought answer-type polymorphism to effect handlers and gave a type-directed CPS

transformation. Their CPS transformation satisfies strong semantic preservation—i.e., it preserves

reduction—but it relies on parametric polymorhpism in the target language as in the one of

Hillerström et al. [22]. Also, their type system did not support ATP algebraic operations. Asai and

Uehara [2] formalized a selective, type-directed CPS transformation in the presence of answer-type

polymorphism (in the style of Asai and Kameyama [1]) and proved that it satisfies a weak semantic

preservation, but it is not proven to preserve observational behavior. Sato et al. [51] proposed a

selective CPS transformation for HOMC and showed that it satisfies strong semantic preservation,

but they address neither control operators (at least formally) nor answer-type polymorhpism. Our

selective, type-directed CPS transformation for effect handlers in the presence of answer-type

polymorphism does not satisfy strong semantic preservation, but it preserves reduction modulo full

𝛽𝜂 monadic reduction, which is enough to guarantee the preservation of observational behavior.

9 Conclusion
We showed that the HOMC problem for effect handlers remains decidable in the presence of

answer-type polymorphism and subtyping by giving a selective CPS transformation that turns

answer-type-polymorphic terms to continuation-independent terms. There are several future

directions. Because effect handlers can be viewed as transducers on computation trees [49], it is

an interesting question whether the verification technique based on higher-order tree transducers
could be applied to effect handlers. To make the verification problem decidable, Kobayashi et al.

[34] assume the linearity on trees to be verified, i.e., trees to be verified are traversed only once.

To verify non-linear trees, they require coercion annotations. Because the ATM-based approaches

allow traversing computation trees multiple times without annotations, we first need to explore the

root cause of the gap. The effect handlers that this paper focused on are called dynamically scoped
and deep [23], but there are many other forms of effect handlers, such as lexically scoped [6, 8],

shallow [21], scoped [64], and bidirectional [68] effect handlers. Kobayashi [31] studied the HOMC

problem in the presence of other effectful features such as local store. One of the long-term goals is

to make a unified model checking framework to accommodate these various effectful features.

Data Availability Statements
The artifact [52] provides the supplementary material and a document for the implemented HOMC

tool and the reproduction of the experimental results in Section 7. The tool, as well as the bench-

marks, is also found at https://github.com/hiroshi-unno/coar.

Acknowledgments
We thank the anonymous reviewers for their valuable comments. This work was partly supported

by JSPS KAKENHI (JP20H04162, JP20H05703, JP22H03564, JP22H03570, JP24H00699, JP25H00446),

JST CREST (JPMJCR21M3), and the ANR Project HOPR (ANR-24-CE48-5521-01).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

https://github.com/hiroshi-unno/coar

406:26 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

References
[1] Kenichi Asai and Yukiyoshi Kameyama. 2007. Polymorphic Delimited Continuations. In Programming Languages and

Systems, 5th Asian Symposium, APLAS 2007, Proceedings. 239–254. doi:10.1007/978-3-540-76637-7_16
[2] Kenichi Asai and Chihiro Uehara. 2018. Selective CPS transformation for shift and reset. In Proceedings of the ACM

SIGPLAN Workshop on Partial Evaluation and Program Manipulation, Los Angeles, CA, USA, January 8-9, 2018, Fritz
Henglein and Hsiang-Shang Ko (Eds.). ACM, 40–52. doi:10.1145/3162069

[3] David Basin, Cas Cremers, and Catherine Meadows. 2018. Model Checking Security Protocols. Springer International
Publishing, Cham, 727–762. doi:10.1007/978-3-319-10575-8_22

[4] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and
Algebraic Methods in Programming 84, 1 (2015), 108–123. doi:10.1016/j.jlamp.2014.02.001

[5] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting algebraic effects. Proc. ACM
Program. Lang. 3, POPL (2019), 6:1–6:28. doi:10.1145/3290319

[6] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect

instances via lexically scoped handlers. PACMPL 4, POPL (2020), 48:1–48:29. doi:10.1145/3371116

[7] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2018. Effect handlers for the masses. Proc.
ACM Program. Lang. 2, OOPSLA (2018), 111:1–111:27. doi:10.1145/3276481

[8] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers

and lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1–126:30. doi:10.1145/3428194

[9] Christopher H. Broadbent and Naoki Kobayashi. 2013. Saturation-Based Model Checking of Higher-Order Recursion

Schemes. In Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy (LIPIcs, Vol. 23), Simona

Ronchi Della Rocca (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 129–148. doi:10.4230/LIPICS.CSL.2013.129

[10] Edmund M. Clarke and E. Allen Emerson. 1981. Design and Synthesis of Synchronization Skeletons Using Branching-

Time Temporal Logic. In Logics of Programs, Workshop, Yorktown Heights, New York, USA, May 1981 (Lecture Notes in
Computer Science, Vol. 131), Dexter Kozen (Ed.). Springer, 52–71. doi:10.1007/BFB0025774

[11] Edmund M. Clarke, Anubhav Gupta, Himanshu Jain, and Helmut Veith. 2005. Model Checking: Back and Forth between

Hardware and Software. In Verified Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE
2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions (Lecture Notes in Computer Science,
Vol. 4171), Bertrand Meyer and Jim Woodcock (Eds.). Springer, 251–255. doi:10.1007/978-3-540-69149-5_27

[12] Youyou Cong and Kenichi Asai. 2022. Understanding Algebraic Effect Handlers via Delimited Control Operators. In

Trends in Functional Programming - 23rd International Symposium, TFP 2022, Virtual Event, March 17-18, 2022, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 13401), Wouter Swierstra and Nicolas Wu (Eds.). Springer, 59–79.

doi:10.1007/978-3-031-21314-4_4

[13] Ugo Dal Lago, Francesco Gavazzo, and Paul Blain Levy. 2017. Effectful applicative bisimilarity: Monads, relators, and

Howe’s method. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017. IEEE Computer Society, 1–12. doi:10.1109/LICS.2017.8005117

[14] Ugo Dal Lago and Alexis Ghyselen. 2024. On Model-Checking Higher-Order Effectful Programs. Proc. ACM Program.
Lang. 8, POPL (2024), 2610–2638. doi:10.1145/3632929

[15] Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming. 151–160. doi:10.
1145/91556.91622

[16] Paulo Emílio de Vilhena and François Pottier. 2021. A separation logic for effect handlers. Proc. ACM Program. Lang. 5,
POPL (2021), 1–28. doi:10.1145/3434314

[17] Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. Sci. Comput. Program. 17, 1-3 (1991),
35–75. doi:10.1016/0167-6423(91)90036-W

[18] Dan R. Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-level effect handlers in C++. Proc.
ACM Program. Lang. 6, OOPSLA2 (2022), 1639–1667. doi:10.1145/3563445

[19] Colin S. Gordon. 2017. A Generic Approach to Flow-Sensitive Polymorphic Effects. In 31st European Conference on
Object-Oriented Programming, ECOOP 2017 (LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 13:1–13:31. doi:10.4230/LIPIcs.ECOOP.2017.13

[20] Colin S. Gordon. 2020. Lifting Sequential Effects to Control Operators. In 34th European Conference on Object-Oriented
Programming, ECOOP 2020 (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 23:1–23:30. doi:10.4230/LIPIcs.ECOOP.2020.23

[21] Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. In Programming Languages and Systems - 16th
Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018, Proceedings (Lecture Notes in Computer
Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 415–435. doi:10.1007/978-3-030-02768-1_22

[22] Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017. Continuation Passing Style for Effect

Handlers. In 2nd International Conference on Formal Structures for Computation and Deduction, FSCD 2017. 18:1–18:19.
doi:10.4230/LIPIcs.FSCD.2017.18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

https://doi.org/10.1007/978-3-540-76637-7_16
https://doi.org/10.1145/3162069
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/3290319
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3428194
https://doi.org/10.4230/LIPICS.CSL.2013.129
https://doi.org/10.1007/BFB0025774
https://doi.org/10.1007/978-3-540-69149-5_27
https://doi.org/10.1007/978-3-031-21314-4_4
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1145/3632929
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/3434314
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1145/3563445
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.23
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.4230/LIPIcs.FSCD.2017.18

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:27

[23] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN International Conference on
Functional Programming, ICFP 2013. 145–158. doi:10.1145/2500365.2500590

[24] Fuga Kawamata, Hiroshi Unno, Taro Sekiyama, and Tachio Terauchi. 2024. Answer Refinement Modification: Re-

finement Type System for Algebraic Effects and Handlers. Proc. ACM Program. Lang. 8, POPL (2024), 115–147.

doi:10.1145/3633280

[25] Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. 2001. Deciding Monadic Theories of Hyperalgebraic Trees.

In Typed Lambda Calculi and Applications, 5th International Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001,
Proceedings (Lecture Notes in Computer Science, Vol. 2044), Samson Abramsky (Ed.). Springer, 253–267. doi:10.1007/3-

540-45413-6_21

[26] Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. 2002. Higher-Order Pushdown Trees Are Easy. In Foundations
of Software Science and Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings
(Lecture Notes in Computer Science, Vol. 2303), Mogens Nielsen and Uffe Engberg (Eds.). Springer, 205–222. doi:10.1007/3-

540-45931-6_15

[27] Naoki Kobayashi. 2009. Model-checking higher-order functions. In Proceedings of the 11th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, September 7-9, 2009, Coimbra, Portugal, António Porto
and Francisco Javier López-Fraguas (Eds.). ACM, 25–36. doi:10.1145/1599410.1599415

[28] Naoki Kobayashi. 2009. Types and higher-order recursion schemes for verification of higher-order programs. In

Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 416–428. doi:10.1145/

1480881.1480933

[29] Naoki Kobayashi. 2013. Model Checking Higher-Order Programs. J. ACM 60, 3 (2013), 20:1–20:62. doi:10.1145/2487241.

2487246

[30] Naoki Kobayashi. 2016. HorSat2: A Saturation-Based Model Checker for Higher-Order Recursion Schemes. Private

communication. Available at https://github.com/hopv/horsat2..

[31] Naoki Kobayashi. 2025. On Decidable and Undecidable Extensions of Simply Typed Lambda Calculus. Proc. ACM
Program. Lang. 9, POPL (2025), 1136–1166. doi:10.1145/3704875

[32] Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2019. On the Termination Problem for Probabilistic Higher-Order

Recursive Programs. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. IEEE, 1–14. doi:10.1109/LICS.2019.8785679

[33] Naoki Kobayashi and C.-H. Luke Ong. 2009. A Type System Equivalent to the Modal Mu-Calculus Model Checking of

Higher-Order Recursion Schemes. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science,
LICS 2009. IEEE Computer Society, 179–188. doi:10.1109/LICS.2009.29

[34] Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. 2010. Higher-order multi-parameter tree transducers and

recursion schemes for program verification. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg

(Eds.). ACM, 495–508. doi:10.1145/1706299.1706355

[35] Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017. 486–499. http://dl.acm.org/citation.cfm?id=3009872

[36] Paul Blain Levy. 2001. Call-by-push-value. Ph. D. Dissertation. Queen Mary University of London, UK. http:

//ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233

[37] Mark Lillibridge. 1999. Unchecked Exceptions Can Be Strictly More Powerful Than Call/CC. High. Order Symb. Comput.
12, 1 (1999), 75–104. doi:10.1023/A:1010020917337

[38] Marek Materzok and Dariusz Biernacki. 2011. Subtyping Delimited Continuations. In Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming, ICFP 2011, Manuel M. T. Chakravarty, Zhenjiang Hu,

and Olivier Danvy (Eds.). ACM, 81–93. doi:10.1145/2034773.2034786

[39] Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth Annual Symposium on
Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. 14–23. doi:10.1109/LICS.1989.39155

[40] Yoji Nanjo, Hiroshi Unno, Eric Koskinen, and Tachio Terauchi. 2018. A Fixpoint Logic and Dependent Effects for

Temporal Property Verification. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS ’18), Anuj Dawar and Erich Grädel (Eds.). ACM, 759–768. doi:10.1145/3209108.3209204

[41] Lasse R. Nielsen. 2001. A Selective CPS Transformation. In Seventeenth Conference on the Mathematical Foundations of
Programming Semantics, MFPS 2001, Aarhus, Denmark, May 23-26, 2001 (Electronic Notes in Theoretical Computer Science,
Vol. 45), Stephen D. Brookes and Michael W. Mislove (Eds.). Elsevier, 311–331. doi:10.1016/S1571-0661(04)80969-1

[42] C.-H. Luke Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In 21th IEEE
Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings. IEEE Computer

Society, 81–90. doi:10.1109/LICS.2006.38

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/3633280
https://doi.org/10.1007/3-540-45413-6_21
https://doi.org/10.1007/3-540-45413-6_21
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1145/1599410.1599415
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1145/2487241.2487246
https://github.com/hopv/horsat2
https://doi.org/10.1145/3704875
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1145/1706299.1706355
http://dl.acm.org/citation.cfm?id=3009872
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
https://doi.org/10.1023/A:1010020917337
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1016/S1571-0661(04)80969-1
https://doi.org/10.1109/LICS.2006.38

406:28 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

[43] Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, K. C. Sivaramakrishnan, Matija

Pretnar, and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2
(2023), 460–485. doi:10.1145/3622814

[44] Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223–255.

doi:10.1016/0304-3975(77)90044-5

[45] Gordon D. Plotkin and A. John Power. 2002. Computational Effects and Operations: An Overview. In Proceedings of the
Workshop on Domains VI 2002, Birmingham, UK, September 16-19, 2002 (Electronic Notes in Theoretical Computer Science,
Vol. 73), Martín Escardó and Achim Jung (Eds.). Elsevier, 149–163. doi:10.1016/J.ENTCS.2004.08.008

[46] Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11,
1 (2003), 69–94. doi:10.1023/A:1023064908962

[47] Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems,
18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, Proceedings. 80–94. doi:10.1007/978-3-642-00590-9_7

[48] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4
(2013). doi:10.2168/LMCS-9(4:23)2013

[49] Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. Invited tutorial paper. In The 31st Conference
on the Mathematical Foundations of Programming Semantics, MFPS 2015, Nijmegen, The Netherlands, June 22-25, 2015
(Electronic Notes in Theoretical Computer Science, Vol. 319), Dan R. Ghica (Ed.). Elsevier, 19–35. doi:10.1016/J.ENTCS.

2015.12.003

[50] Jon G. Riecke and Hayo Thielecke. 1999. Typed Exeptions and Continuations Cannot Macro-Express Each Other. In

Automata, Languages and Programming, 26th International Colloquium, ICALP’99, Prague, Czech Republic, July 11-15,
1999, Proceedings (Lecture Notes in Computer Science, Vol. 1644), Jirí Wiedermann, Peter van Emde Boas, and Mogens

Nielsen (Eds.). Springer, 635–644. doi:10.1007/3-540-48523-6_60

[51] Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. 2013. Towards a scalable software model checker for higher-order

programs. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation, PEPM
2013, Elvira Albert and Shin-Cheng Mu (Eds.). ACM, 53–62. doi:10.1145/2426890.2426900

[52] Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno. 2025. Artifact for "On Higher-Order Model Checking of Effectful
Answer-Type-Polymorphic Programs". doi:10.5281/zenodo.16923662

[53] Taro Sekiyama and Atsushi Igarashi. 2019. Handling Polymorphic Algebraic Effects. In Programming Languages and
Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Proceedings. 353–380. doi:10.1007/978-3-030-17184-1_13

[54] Taro Sekiyama, Takeshi Tsukada, and Atsushi Igarashi. 2020. Signature restriction for polymorphic algebraic effects.

Proc. ACM Program. Lang. 4, ICFP (2020), 117:1–117:30. doi:10.1145/3408999

[55] Taro Sekiyama and Hiroshi Unno. 2023. Temporal Verification with Answer-Effect Modification: Dependent Temporal

Type-and-Effect System with Delimited Continuations. Proc. ACM Program. Lang. 7, POPL, Article 71 (2023), 32 pages.
doi:10.1145/3571264

[56] Taro Sekiyama and Hiroshi Unno. 2024. Higher-Order Model Checking of Effect-Handling Programs with Answer-Type

Modification. Proc. ACM Program. Lang. 8, OOPSLA2 (2024), 2662–2691. doi:10.1145/3689805
[57] K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM,

206–221. doi:10.1145/3453483.3454039

[58] Christian Skalka and Scott F. Smith. 2004. History Effects and Verification. In Programming Languages and Systems:
Second Asian Symposium, APLAS 2004 (Lecture Notes in Computer Science, Vol. 3302), Wei-Ngan Chin (Ed.). Springer,

107–128. doi:10.1007/978-3-540-30477-7_8

[59] Christian Skalka, Scott F. Smith, and David Van Horn. 2008. Types and trace effects of higher order programs. J. Funct.
Program. 18, 2 (2008), 179–249. doi:10.1017/S0956796807006466

[60] Yahui Song, Darius Foo, and Wei-Ngan Chin. 2022. Automated Temporal Verification for Algebraic Effects. In

Programming Languages and Systems - 20th Asian Symposium, APLAS 2022 (Lecture Notes in Computer Science, Vol. 13658),
Ilya Sergey (Ed.). Springer, 88–109. doi:10.1007/978-3-031-21037-2_5

[61] Hayo Thielecke. 2003. From control effects to typed continuation passing. In Conference Record of POPL 2003: The 30th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 139–149. doi:10.1145/640128.604144

[62] Takeshi Tsukada andNaoki Kobayashi. 2010. Untyped Recursion Schemes and Infinite Intersection Types. In Foundations
of Software Science and Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings
(Lecture Notes in Computer Science, Vol. 6014), C.-H. LukeOng (Ed.). Springer, 343–357. doi:10.1007/978-3-642-12032-9_24

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

https://doi.org/10.1145/3622814
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/J.ENTCS.2004.08.008
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1016/J.ENTCS.2015.12.003
https://doi.org/10.1016/J.ENTCS.2015.12.003
https://doi.org/10.1007/3-540-48523-6_60
https://doi.org/10.1145/2426890.2426900
https://doi.org/10.5281/zenodo.16923662
https://doi.org/10.1007/978-3-030-17184-1_13
https://doi.org/10.1145/3408999
https://doi.org/10.1145/3571264
https://doi.org/10.1145/3689805
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1007/978-3-540-30477-7_8
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1007/978-3-031-21037-2_5
https://doi.org/10.1145/640128.604144
https://doi.org/10.1007/978-3-642-12032-9_24

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:29

[63] Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (1994),
38–94. doi:10.1006/inco.1994.1093

[64] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect handlers in scope. In Proceedings of the 2014 ACM SIGPLAN
symposium on Haskell, Haskell 2014. 1–12. doi:10.1145/2633357.2633358

[65] Ningning Xie and Daan Leijen. 2020. Effect handlers in Haskell, evidently. In Proceedings of the 13th ACM SIGPLAN
International Symposium on Haskell, Haskell@ICFP 2020, Virtual Event, USA, August 7, 2020, Tom Schrijvers (Ed.). ACM,

95–108. doi:10.1145/3406088.3409022

[66] Takuma Yoshioka, Taro Sekiyama, and Atsushi Igarashi. 2024. Abstracting Effect Systems for Algebraic Effect Handlers.

Proc. ACM Program. Lang. 8, ICFP (2024), 455–484. doi:10.1145/3674641

[67] Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan. 2025. Derivative-Guided Symbolic Execution.

Proc. ACM Program. Lang. 9, POPL (2025), 1475–1505. doi:10.1145/3704886

[68] Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Handling bidirectional control flow. Proc. ACM Program.
Lang. 4, OOPSLA (2020), 139:1–139:30. doi:10.1145/3428207

[69] Zhe Zhou, Qianchuan Ye, Benjamin Delaware, and Suresh Jagannathan. 2024. A HAT Trick: Automatically Verifying

Representation Invariants using Symbolic Finite Automata. Proc. ACM Program. Lang. 8, PLDI (2024), 1387–1411.
doi:10.1145/3656433

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 406. Publication date: October 2025.

https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3674641
https://doi.org/10.1145/3704886
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3656433

	Abstract
	1 Introduction
	2 Overview
	3 HEPCFATM : Finitary PCF with Effect Handlers and Answer-Type Polymorphism
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Type System
	3.4 Properties

	4 Higher-Order Model Checking
	5 CPS Transformation
	5.1 Target Calculus EPCF
	5.2 CPS Transformation

	6 Subtyping Extension
	7 Implementation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

