On Higher-Order Model Checking of Effectful
Answer-Type-Polymorphic Programs

TARO SEKIYAMA, National Institute of Informatics, Japan and SOKENDALI, Japan
UGO DAL LAGO, Univerista di Bologna, Italy and INRIA, France
HIROSHI UNNO, Tohoku University, Japan

Applying higher-order model checking techniques to programs that use effect handlers is a major challenge,
given the recent undecidability result obtained by Dal Lago and Ghyselen. This challenge has been addressed
by using answer-type modifications, the use of a monomorphic version of which allows to recover decidability.
However, the absence of polymorphism leads to a loss of modularity, reusability, and even expressivity. In this
work, we study the problem of defining a calculus that on the one hand supports answer-type polymorphism
and subtyping but on the other hand ensures the underlying model checking problem to remain decidable. The
solution proposed in this paper is based on the introduction of the polymorphic answer-type O whose role is
to provide a good compromise between expressiveness and decidability, the latter demonstrated through the
construction of a selective type-directed CPS transformation targeting a calculus without effect handlers and
any form of polymorphism. Noticeably, the introduced calculus HEPCFA™ allows the answer types of effects
implemented by tail-resumptive effect handlers to be polymorphic. We also implemented a proof-of-concept
model checker for HEPCFA™ programs.

CCS Concepts: » Theory of computation — Type theory; Verification by model checking; - Software
and its engineering — Functional languages.

Additional Key Words and Phrases: model checking, algebraic effect handlers, answer-type modification

ACM Reference Format:

Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno. 2025. On Higher-Order Model Checking of Effectful Answer-
Type-Polymorphic Programs. Proc. ACM Program. Lang. 9, OOPSLA2, Article 406 (October 2025), 29 pages.
https://doi.org/10.1145/3763184

1 Introduction

Model checking [10] involves systematically exploring all possible states of a system to ensure that
it behaves as expected under all conditions. This method is widely used in fields like hardware
design, software development, and protocol verification to catch errors early in the design process,
before deployment [3, 11]. Since Ong’s seminal work [42], model checking of functional programs
with higher-order functions and recursion has been known to be decidable when data domains are
finite (such as Booleans). The resulting verification technique, called higher-order model checking
(or HOMC for short), has been used as a starting point for the development of tools capable of
verifying functional programs against safety and reachability properties, even in the presence of
infinite data domains which can be treated via, e.g., predicate abstraction [9, 27, 51].

Generalizing HOMC to programs involving computational effects, such as mutable store, I/O, and
exceptions, is crucial to make HOMC more practical and has received attention since the early

Authors’ Contact Information: Taro Sekiyama, National Institute of Informatics, Tokyo, Japan and SOKENDAI, Tokyo,
Japan, tsekiyama@acm.org; Ugo Dal Lago, Univerista di Bologna, Bologna, Italy and INRIA, France, ugo.dallago@unibo.it;
Hiroshi Unno, Tohoku University, Sendai, Japan, hiroshi.unno@acm.org,.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART406

https://doi.org/10.1145/3763184

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

https://orcid.org/0000-0001-9286-230X
https://orcid.org/0000-0001-9200-070X
https://orcid.org/0000-0002-4225-8195
https://doi.org/10.1145/3763184
https://orcid.org/0000-0001-9286-230X
https://orcid.org/0000-0001-9200-070X
https://orcid.org/0000-0002-4225-8195
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763184
https://www.acm.org/publications/policies/artifact-review-and-badging-current

406:2 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

times of HOMC [28, 51]. The situation, predictably, is much more complicated than that observed
in pure functional programs. In particular, while in the presence of effects such as nondeterministic
choice or global state the HOMC problem remains decidable [14, 28], it becomes undecidable for
effects such as probabilistic choice, exceptions carrying functions, or local stores [31, 32]. Although
these extensions with individual effects provide some insights on HOMC for effectful programs, it
had been unclear how we can generalize HOMC to deal with a broad class of effects.

Dal Lago and Ghyselen [14] addressed this situation by extending HOMC to algebraic opera-
tions [46] and effect handlers [47, 48]." Algebraic operations are effect producers, and the interpre-
tations of the produced effects can be given as, e.g., equational axioms [45], or can be programmed
using effect handlers. Depending on how algebraic operations are interpreted, various effects, includ-
ing nondeterministic and probabilistic choice, global stores, exceptions, and I/O, can be expressed in
the framework. When algebraic operations are interpreted via effect handlers, however, the HOMC
problem is in general undecidable due to the ability of effect handlers to reify delimited continuations
as program values. On one hand, the use of delimited continuations enables implementing a wide
range of effects [4] and leads to the attempts of supporting effect handlers on several programming
languages [35, 43, 57] or the development of effect handler libraries [7, 18, 65]. However, on the
other hand, their expressivity is too powerful to keep HOMC decidable—it enables the encoding
of an infinite data domain (such as integers), which makes the HOMC problem undecidable. This
issue has prompted the community to try to define conditions on the underlying program allowing
both to capture interesting classes of programs and to obtain decidability results.

This is the path taken by Sekiyama and Unno [56] in their work on model checking functional
programs with effect handlers typed via answer-type modification (ATM in the following) [12, 15, 24,
38, 55]. Answer types are types of delimited continuations that can be captured by effect handlers,
and ATM type systems for effect handlers [12, 24, 55] track how answer types are modified. This
tracking makes it possible to reason about how many effect handlers are installed in the context
enclosing a term. Indeed, the ATM type system of Sekiyama and Unno’s calculus? HEPCFA™
statically bounds the number of such effect handlers, and they also show that giving such a static
bound is sufficient to guarantee decidability. However, HEPCFA™ suffers from a critical limitation:
it does not allow any form of polymorphism, although some other ATM type systems supports, e.g.,
answer-type polymorphism [24, 38, 55, 61], which improves the reusability and even the expressivity
of effectful, well-typed programs. That said, lacking any polymorphism is not surprising, since it is
well known that the decidability of HOMC is sensitive to the presence of polymorphism already
for pure programs [62]. The question then becomes: how far can we go when verifying functional
programs with effect handlers and some form of polymorphism?

This is precisely the problem this paper addresses. In particular, we introduce a new calculus
HEPCFA™, which is equipped with effect handlers, an ATM type system, and answer type polymor-
phism captured by a new type constructor O. Despite the support for answer-type polymorphism,
the HOMC problem remains decidable in HEPCFA™, something we proved by defining a type-
directed continuation-passing style (CPS) transformation towards the calculus EPCF proposed by
Dal Lago and Ghyselen [14], the latter known to admit a decidable HOMC problem. Our CPS trans-
formation is selective [41] in that terms with non-polymorphic answer types require continuations
to be evaluated after the transformation, while terms with polymorphic answer types do not. In
contrast to (non-selective) CPS transformations for effect handlers in the literature [22, 24], which

This work focuses on so-called dynamically scoped, deep effect handlers [23]. Other types of effect handlers, such as
shallow [21, 23] or lexically scoped [6, 8] ones, are outside the scope of this work.
2The name of (H)EPCF [14] means an extension of PCF [44] with (effect handlers and) algebraic effects.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:3

Table 1. Feature comparison of the effectful calculi. The column “Effect handlers” indicates whether effect
handlers are absent (X) or present, and, if present, whether they are restricted to be tail-resumptive (v'}) or
not (v'). The column “Polymorphism” indicates whether both answer-type polymorphism and subtyping are
supported (V') or neither is supported (X).

Calculus ‘ Effect handlers ‘ decidable HOMC | ATM type system? | Polymorphism

EPCF [14] X v No X
HEPCF [14] v X No X
GEPCF [14] /R v No X

HEPCFA™ [56] v v Yes X

HEPCFA™ v v Yes v

rely on parametric polymorphism in CPS terms, our selective transformation eliminates the need
for parametric polymorphism. This distinction is crucial for establishing the decidability of HOMC.

A key technical challenge arising in proving the decidability of the HOMC problem through
CPS transformation is that we need to ensure that the CPS transformation preserves the non-
termination of source programs, because HOMC can verify not only safety properties but even
liveness properties such as termination. To the best of our knowledge, none of the previous works
provides a selective CPS transformation for delimited control operators with the guarantee for non-
termination preservation (readers interested in the selective CPS transformations in the literature
are referred to Section 8). To guarantee non-termination preservation, we show that, if a source
term M can reduce, M finally evaluates to some source term N such that the CPS-transformed
result of M also finally evaluates to the CPS-transformed result of N modulo full fn “monadic”
reduction (formulated in Definition 9). Using this property together with the bisimilarity-based
reasoning technique proposed by Dal Lago et al. [13], we show that the CPS transformation
preserves non-termination.

Answer-type polymorphism does not only solve the monomorphic issue with HEPCFA™. Tt also
allows unifying HEPCFA™ and GEPCF [14], yet another calculus with effect handlers for which
the HOMC problem is decidable. For the sake of guaranteeing decidability, effect handlers in GEPCF
are restricted to be tail-resumptive—that is, the effect handlers can exclusively call continuations
at tail position. While tail-resumptive effect handlers can only define a more restricted class
of effects than effect handlers in HEPCFA™ (which we call ATM effect handlers), they allow a
more flexible use of effects—terms that only use algebraic operations handled by tail-resumptive
effect handlers do not have to limit the number of enclosing effect handlers. We incorporate this
flexibility of tail-resumptive effect handlers on the use of effects into our ATM type system by giving
answer-type-polymorphic type signatures to algebraic operations handled by tail-resumptive ones.
Intuitively, it means that the effect handling by tail-resumptive effect handlers is purely functional,
so we do not have to be sensitive to the usage of effects handled by them.

We also support another form of polymorphism: subtyping. Our subtyping is similar to the form
considered by Kawamata et al. [24], but we impose a mild condition to define a selective CPS
transformation for the language unifying ATM and tail-resumptive effect handlers.

The comparison of the calculi mentioned above plus HEPCF [14], which supports the full use of
effect handlers but instead loses the decidability of the HOMC problem, is summarized in Table 1
(from the perspectives of supported features) and Figure 1 (from the perspective of expressivity).
We present examples that can be typechecked in HEPCFA™ (extended with subtyping), but not
in HEPCFA™ nor GEPCF, in Section 2. The expressivity of HEPCF is incomparable with those of
HEPCFA™ and HEPCFA™. On the one hand, HEPCF accommodates programs where the HOMC

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:4 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

HEPCF HEPCFA™

U C/ U

GEPCF HEPCFA™

Fig. 1. Expressivity comparison of the calculi with effect handlers. Only comparable calculi are connected.

The inclusions ¢’ and c* are proven by Dal Lago and Ghyselen [14] and Theorem 1 in the paper, respectively.

problem is undecidable, while HEPCFA™ and HEPCFA™ do not. On the other hand, the ATM type
systems of HEPCFA™ and HEPCFA™ allow typechecking some terms that are ill typed in non-ATM
type systems (see the related work section of [56] for detail). The expressivity of EPCF (not shown
in Figure 1) is the same as HEPCF’STM, GEPCF, and HEPCFA™ because terms in the latter calculi
can be CPS-transformed into the former (and the reverse direction holds obviously). However,
EPCEF is less macro-expressive [17] than the other calculi—that is, there is no syntax-directed way to
locally translate terms in HEPC FéTM, GEPCF, or HEPCFA™ to EPCF. Note that HEPCF is strictly
more expressive than EPCF due to the undecidability of HOMC in the former.
The contributions of the paper are summarized as follows:

e We introduce HEPCFA™, which supports ATM and tail-resumptive effect handlers as well
as an ATM type system with answer-type polymorphism. HEPCFA™ enjoys type soundness
and is strictly more expressive than HEPCFA™ and GEPCF.

e We show the decidability of the HOMC problem in HEPCFA™ via a selective, type-directed
CPS transformation that preserves the typing and semantics of HEPCFA™ programs.

e We extend HEPCFA™, the CPS transformation, and their metatheory with subtyping.

o The extension with subtyping is implemented as an automated verifier based on the model
checker EffCaml for HEPCFA™ [56]. We implement type inference for HEPCFA™ and the
CPS transformation from HEPCFA™ to EPCF, and integrate them with the higher-order
model checker HorSat2 [9, 30].

The rest of this paper is structured as follows. In Section 2, we briefly explain the motivations
leading us to consider the problem of reconciling answer-type polymorphism and decidability
of the HOMC problem in more detail. We introduce our calculus HEPC F/STM in Section 3, define
HOMC for HEPCFA™ in Section 4, and show the decidability of the HOMC problem via the CPS
transformation from HEPCFA™ to EPCF in Section 5. Section 6 briefly explains the extension with
subtyping. Section 7 describes our tool for the model checking of HEPCFA™ terms. We discuss
other related works in Section 8 and conclude in Section 9. This paper only states key properties.
See the supplementary material for the auxiliary lemmas and detailed proofs, as well as the full
definition of the subtyping extension.

Notation. Throughout the paper, we abbreviate a sequence ay, - - - , a, to a_ilSiS" or, more simply,
a; its length is denoted by |a|. Given a, we write g; to designate the i-th element of a.

2 Overview

This section briefly reviews effect handlers and HOMC in the presence of them and presents the
benefits of answer-type polymorphism.

Effect handlers [23, 48] allow programs to be structured so that effect-producing operations, also
called algebraic operations, are interpreted from within the program itself. The key is a construct of
the form with H handle M, in which all algebraic operations executed in a term M are interpreted
as prescribed by an effect handler H. Effect handlers can interpret various effects, such as global
store, exceptions, nondeterministic choice, and cooperative multitasking [4], by capturing delimited

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:5

continuations. For instance, consider the following term given by Bauer and Pretnar [4]:

with H handle
let x = if Decide () then return 10 else return 20 in
let y = if Decide () then return 0 else return 5 in
returnx —y

which uses the operation Decide to make a choice between 10 and 20 and between 0 and 5. The
effect handler H identifies how Decide is interpreted. To do so, H offers an operation clause of the
form Decide(x; k) +— M, which takes a parameter x passed in an operation call and the delimited
continuation k from the call site up to the effect handler H. By invoking the delimited continuation
with a value v, the effect handler can resume the computation from the point where Decide is
called using the value v as a result of the operation call. For example, if H provides a clause
Decide(x; k) — ktrue, both of the operation calls in the program return true, so the value 10 is
returned. Captured delimited continuations can be invoked multiple times. For example, under the
effect handler H with clause Decide(x;k) — letx = ktrueinlety = kfalse in return max(x,y),
the program returns 20, the maximum of x —y among all the combinations of (x,y) € {10, 20} x{0,5}.

Although effect handlers are powerful constructs, programs often interact with external en-
vironments, e.g., to use storage, transmit some messages, or communicate with the user. One
approach to interpreting such algebraic operations, which cannot be interpreted within pro-
grams, is to view them as constructors of trees, called effect trees, generated by programs. For
example, consider operations Open, Close, Read, and EOF for file manipulation (for simplicity,
we omit file path or descriptor arguments from them), and assume that EOF returns a Boolean

value indicating if there remains readable data in the file. Given a program Mgjje def letrecf_=
if EOF () then Close () else (Read (); f ()) in (Open (); f ()), it generates an effect tree like

Close Close
Open — EOF Read EOF Read

This tree represents that the program first calls Open followed by EOF and branches depending on
the result of the call to EOF. If it returns true, the program terminates after closing the file, and,
otherwise, the program reads the file and repeats the same process from the call to EOF.

Through this tree, we can interpret effectful operations by filtering out invalid paths in there.
For example, if the file’s contents are assumed to be finite, any path involving infinitely many
occurrences of Read should be invalid, so it is filtered out and then we can conclude that the program
eventually terminates. Furthermore, it is easy to see that the program uses the file operations
correctly—e.g., it calls EOF, Read, and Close after Open, calls no file operation after Close, and
checks if some readable data remains before reading it. In HOMC, the behavior and specifications
of algebraic operations not handled by the program can be formulated using alternating parity tree
automata (APTAs). Interested readers are referred to the supplementary material.

Dal Lago and Ghyselen [14] proposed to conduct this reasoning about effect trees systematically
and formally using higher-order model checking (HOMC) [29, 42]. In their scheme, effect trees to
be verified via HOMC are only constructed by unhandled effects, that is, those that have not been
handled during the program execution and thus escaped to the top level. However, they show that
the full support for effect handlers makes HOMC undecidable, via HEPCF, a variant of PCF that
fully supports effect handlers and algebraic effects. They also show that the decidability is gained if
effect handlers are restricted to be tail-resumptive—i.e., every operation clause has to be in the form
o(x;k) — lety = Minky where k does not occur free in M. To prove this, Dal Lago and Ghyselen
introduce GEPCF, a variant of PCF equipped with algebraic effects and tail-resumptive effect

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:6 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

handlers, and define a CPS transformation from GEPCF to EPCF, yet another variant of PCF that is
only equipped with algebraic effects, by utilizing the nature of tail-resumptive effect handlers. This
CPS transformation enables reducing the HOMC problem for GEPCF to the one for EPCF. Because
the HOMC problem for the latter is decidable [14], so is for the former. However, the restriction to
tail-resumptive effect handlers is too severe to support the handling of many desirable effects, such
as global store, exceptions, and nondeterministic choice. For example, the aforementioned clause
Decide(x; k) +— letx = ktruein --- is not tail-resumptive, thereby rejected by GEPCF.
Alternatively, Sekiyama and Unno [56] identifies the crux of the undecidability as the capability
of handling effects by an arbitrary number of nested effect handlers, that is, to be simplified,
accommodating a program that reaches a term with H, handle (- - - (with H; handle M) - - -) during
the evaluation for any n. Here, the term installs the effect handlers Hy, - - - , H, on top of M in a nested
manner.’ This capability enables encoding data and operations in an infinite domain via algebraic
operations and effect handlers, respectively, hence making the HOMC problem undecidable.
Based on this analysis, Sekiyama and Unno introduced HEPCFA™ with a type system that
supports answer types to allow handling a rich class of effects keeping HOMC decidable. Their
type system assigns to a term a computation type of the form ¥ > T / a, where . is a signature of
operations that the term may call, T is the type of the values the term may return, and « is an
answer type that describes the exact number of effect handlers nested on top of the term.* Formally,
an answer type is a computation type or a value type (which means that no effect handler can be
installed). Namely, in general, its form is described by 21 > Ty / (- - (Zn > Ty / Ty+1) - - -). Here, for
eachi € [Ln],Z;» T;/ (---) is the type of the i-th closest handling construct or, equivalently, it is
the return type of the continuation captured by the i-th closest effect handler. Therefore, a term
with this answer type requires the nested installation of exactly n effect handlers. To see it more
concretely, consider a term M with a computation type X > Ty /a wherea =2 > T, / (--- (2, »
T,/ Tyt1) - -+). For each i € [1, n], the subterm with H; handle (- - - (with H; handle M) - -) can be
of the type X; > T; / (- - -)—thus, the term with H, handle (- - - (with H; handle M) - --) can be well
typed—while with Hy,4; handle (with H, handle (- - - (with H; handle M) - --)) is ill typed. Hence,
the answer type « exactly bounds the number of effect handlers to be nested on M. This capability of
answer types enables us to define a CPS transformation [~] from HEPCFA™ to EPCF. It transforms
an HEPCFA™ term of the computation type % » Ty / & given above to an EPCF term that takes n
continuations, each of type [T;_1] — [Z;> T;/ (- --)] for i € [1, n]. As a result, the HOMC problem
for HEPCFA™ programs is proven decidable while the desirable effects can be handled.
However, this form of answer types specifies the exact number of nested effect handlers, losing
reusability and expressivity significantly. For example, consider a function Ax.Decide x. This func-
tion is given a type unit — X » bool / « for some X (which specifies the type of Decide) and a. As
each call to Decide is only handled by the closest effect handler, one may expect that a program

Mp def let f = return Ax.Decide x in if (with H handle --- £ () ---) then f () else - -
can be typechecked, but it is not in HEPCFA™ since the type of f () in the then branch allows
installing, e.g., n effect handlers on top of it (n is determined by the answer type), while the type
of the handling construct can only allow installing n — 1 ones (due to the answer type « assigned
to £ ()).° Thus, the requirement on effect handlers by answer types prevents reusing the same
higher-order value in different contexts. A more serious problem is that HEPCFA™ may not allow

3The installation nesting of effect handlers can be delayed: it is possible to write a program where at most one effect handler
is active during the evaluation, while the result of a handling computation is subsequently handled by another effect handler.
4More precisely, computation types in Sekiyama and Unno [56] are in the form 3 » T / a; = a3, which allows modifying
the answer type a; to az, but here we focus on a simpler form where & = a; = a; for explanation.

SFurthermore, this example cannot be typechecked in GEPCF either if the effect handler H is not tail-resumptive.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:7

effect handling within recursive functions. For instance, consider a recursive function

Ve ' letrec f = with H handle if EOF () then Raise () else (Read (); f () ,

which raises an exception via the operation Raise handled by the effect handler H if no readable
data remains. This recursive function cannot be typechecked in HEPCFA™ because the call to the
function f will install an arbitrary number of effect handlers atop some term, despite the fact that
the HOMC problem is decidable for programs only with handleable exceptions carrying first-order
values and any other unhandled effects [51].

We address this situation by extending HEPCFA™ with answer-type polymorphism and subtyp-
ing [24, 38, 55], which enable us to abstract the typing information about effect handlers. Our
answer-type polymorphism follows the formalism of Kawamata et al. [24]. In the presence of it, an
answer type « is either a computation type or a new type constructor O, which can polymorphically
be replaced by any answer type—even one involving O itself. For example, the type O can be
coerced into X; > Ty /O, which in turn can be coerced to X > T; / (2, » T / O), and so on. This
capability of O allows the context to install zero or more effect handlers to be nested. For instance,
the function Ax.Decide x can be given type unit — %; » bool / (£, » bool / O0) for some X;, which
determines the type signature of Decide, and ;. The answer type X, » bool / O of the return type
requires the context to install at least one effect handler and allows it to nest two or more ones
atop the application of the function. Using this type, the program Mp can be typechecked because
f () can allow its context to install two or more effect handlers and, therefore, the handling con-
struct with H handle --- f () - - can allow the enclosing, outer context to install at least one effect
handler, which is aligned with the requirement of f () in the then branch. Similarly, answer-type
polymorphism enables the function Vg to be typechecked, as follows. First, the call to Raise can be
of type 21 > unit / (23 > unit / O) for some X, which determines the type signature of Raise, and 3.
This type means that the call to Raise requires installing at least one effect handler for exception han-
dling. Then, since the handling construct with H handle if EOF () then Raise () else (Read (); f ())
installs the effect handler H on top of f (), it can have the type X, > unit / O, which indicates that
the outer context can nest the installation of zero or more effect handlers. Therefore, the recursive
function may install an arbitrary number of effect handlers on top of the handling construct.®

Interestingly, answer-type polymorphism can also accommodate the flexibility of tail-resumptive
effect handlers. When an algebraic operation o is handled by a tail-resumptive clause with the
answer type O, we can give the operation o a signature of the form T; ~» T, / O, which means that
the operation takes an argument of type T; and returns a value of type T, and the answer type of
the operation call is polymorphic. This is valid because, in essence, tail-resumptive operation clauses
are simply functions. Therefore, if they imposes no requirements on enclosing effect handlers—i.e.,
their answer types are O—calls to them do not either. Such type assignment is useful in dealing
with algebraic operations that we do not expect to be handled (thus, do expect to escape and
construct effect trees) but are called in the scope of effect handlers. For example, recall that the
interpretations of EOF and Read do not expect to be programmed by effect handlers. Thus, what
the effect handler H in the function Vg can do is only to forward them to the outer effect handler,
as EOF(x; k) — lety = EOF x in k y. This clause is tail-resumptive and its answer type can be O
as EOF should only be forwarded to the top level. Therefore, the signature of EOF under the effect
handler H can be unit ~» bool / O, which indicates that EOF can be called freely in any context.

The answer type O imposes no requirement or constraint on the context—particularly, regarding
the number of nested effect handlers—except that any effect invoked by the term can be handled
only by a tail-resumptive clause with the answer type 0. When the invoked effects are to be handled

Furthermore, we also require =, can be coerced into 3 via subtyping to typecheck Vi. See Example 6.2 for details.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:8 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Variables x,y,z, f,hk Algebraic operations o, ¢

Base constants ¢ == true|false | () | ---
Enum constants en=112]---
Values V,W u=x|c|e|Ax.M|fixx.V
Terms L,M,N := returnV |letx =MinN | VW | case(V; M, ---,M,) |
o(V;x.M) | with H handle M
Handlers H == {returnx — L} W {oi(xi;k;) > M}'==m {gi(y;) — N;}ISi=n

Fig. 2. Program Syntax.

by other—especially, non-tail-resumptive—effect handlers, the answer type must be a computation
type, determining an upper bound on the number of nested effect handlers that handle the effects
in a “non-functional” manner. This enables us to define a novel CPS transformation from programs
well-typed in our type system to EPCF, thereby ensuring the decidability of their model checking.

3 HEPCFA™: Finitary PCF with Effect Handlers and Answer-Type Polymorphism

This section introduces HEPCFA™, a finitary’ variant of fine-grain call-by-value PCF [36, 44] with
effect handlers, an ATM type system, and answer-type polymorphism. We first define its syntax,
operational semantics, and type system and then show its basic properties. Typing examples are
given in Section 6. We highlight in gray boxes the parts extended or modified from HEPCFA™ [56].

3.1 Syntax
The program syntax of HEPCFA™, presented in Figure 2, is the same as that of HEPCF [14] except
for the presence of tail-resumptive effect handlers. Programs are classified as either values or terms.
Values, ranged over by V and W, are canonical forms not being evaluated further, including
variables x, base constants ¢, enum constants ¢, functions Ax.M, and the fixed-point operator fix x.V.
Base constants are inhabitants in some finite data domains. For example, Boolean values and the
unit value can be base constants. Enum constants are natural numbers, used to implement case
analysis. As we will see shortly, the type of enum constants specifies an upper bound to the number
of its inhabitants. Thus, well-typed HEPCFA™ programs can only access finite data domains.
Terms, ranged over by L, M, and N, may perform possibly effectful computations. Most constructs
are standard, e.g., a return-value construct return V embeds the value V into a term, and a case
construct case(V; My, - - - , My,) does case analysis on the enum value V. An algebraic operation call,
or simply operation call, o(V;x. M) involves the parameter value V and the continuation x. M,
where the continuation takes the result of the operation call as its argument x (thus, x is bound in
M). The continuation will be reified and passed on to an effect handler that handles the operation
call (if any). A handling construct with H handle M handles calls to algebraic operations in the term
M using the effect handler H; we call M the handled term. An effect handler consists of one return
clause return x +— L, zero or more (non-tail-resumptive) operation clauses {o;(y;; k;) > M;}1<I<m,
which we call answer-type-modifying (ATM), and zero or more tail-resumptive operation clauses
{i(zi) + N;}'=i=" The body L of the return clause is evaluated when the handled term M is
evaluated to a value, to which L refers by the variable x. The ATM operation clause o;(y;; k;) — M;
is executed when the handled term M calls the algebraic operation ;. The clause takes the parameter
of the operation call as y; and the reified delimited continuation as k;. The tail-resumptive operation
clause ¢;(z;) — N; only takes the parameter z;. Semantically, it is the same as the operation clause

7All available data domains are finite.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:9

Evaluation rules |M; — M,
Ax.M)V — M[V/x]
(fixx. V)W — V[fixx.V/x]W
case(i; My,--- ,M,) — M; (if0<i<n)
letx =return ViinM, — M,[V;/x]
letx =o(Vi;y. M) inMy, — o(Vy;y.letx = My in M,) (ify ¢ fv(My))
with H handlereturnV. — M[V/x] (if returnx +— M € H)
with H handle o(V;y. M) — N[V/x][Ay.with H handle M/k] (ifo(x;k) —» N € H)
with H handle o(V;y. M) — lety = N[V/x]inwith H handleM (ifo(x) — N € H)
M — N M — N
letx =MinL — letx=NinL with H handle M — with H handle N

Fig. 3. Semantics.

Gi(zi; ki) +— letx = N;jink; x where k; does not occur free in N;—thus, it enforces the continuation
to be called at tail position. The syntactic distinction between ATM and tail-resumptive operation
clauses allows assigning answer-type-polymorphic type signatures only to the latter.

The notions of free variables and capture-avoiding value substitution are defined as usual. The
metafunction fv returns a set of free variables occurring in a given term or value. We also write
M[W /x] and V[W/x] for the term and value obtained by substituting the value W for the free
variable x in the term M and the value V, respectively.

Note that the program examples described in Section 2 are easily rewritten into HEPCFA™. For
instance, an operation call o V there is written as o(V;x. return x) in HEPCF’STM, and recursive
functions can be expressed using fix and functions.

3.2 Operational Semantics

The call-by-value operational semantics of HEPCFA™ is given as the evaluation relation —, which
is the smallest binary relation over terms that is closed under the rules in Figure 3. Except for the
tail-resumptive handling of algebraic operations, all the evaluation rules are the same as those
from HEPCF. A call to an algebraic operation o moves up towards the closest handling construct.
If the algebraic operation is handled by an ATM operation clause o(x;k) — M, the continuation
involved in the operation call is reified and then the clause’s body M is evaluated after substituting
the parameter value for x and the reified continuation for k. Note that the underlying handler is
responsible for the handling of the operations called by the continuation. If the algebraic operation
is handled by a tail-resumptive operation clause o(x) — M, the continuation is not reified and
only the value resulting from the evaluation of the body M is passed to the continuation.

3.3 Type System

3.3.1 Types. The syntax of types for HEPCFA™ is shown in Figure 4, consisting of value and
computation types. Value types, ranged over by T and U, are for values. Base and enum types
are the types of base and enum constants, respectively. Function types T — C are assigned to
functions. The number 7 in an enum type n is simply the number of its inhabitants. Computation
types, ranged over by C, are assigned to terms. In a computation type X > T / A assigned to a term,
the operation signature ¥ specifies algebraic operations the term may call, the value type T specifies
the value returned by the term, and the control effect A specifies the context enclosing the term up

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:10 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Base types B ::= bool | unit | ---
Enum types E == 1[2]---
Value types T,U == B|E|T — C
Computation types C,D == X>T/A
Control effects A == 0O |C = G
Operation signatures 3 == {o;: TP" ~» T [Aj}1SIsn
Typing contexts I == 0| ,x:T

Fig. 4. Type Syntax.

to the delimiter—that is, the closest handling construct® For C=3v T/ A, we designate ¥, T, and
Aby C.3, C.T, and C.A, respectively.

A control effect A is either the answer-type-polymorphic (ATP) effect O or an answer-type-
modifying (ATM) effect C™ = Cfi" (where C™ and Cfi" are computation types called the initial and
final answer types respectively), which allows the modification of answer types from the initial to the
final one—this is called answer-type modification.” The ATP effect 0 means that the effects invoked
by a term, if any, must be handled in a functional manner, that is, by tail-resumptive operation
clauses. Thus, an operation call o(V;x. M) has the ATP effect O only if there is no enclosing effect
handler or the closest enclosing effect handler provides a tail-resumptive clause for . The type
checking propagates the latter information via the operation signature, as seen shortly. Note that
“pure” terms, like return-value constructs, can also have the ATP effect O because they invoke no
effect. By contrast, an ATM effect C; = C; is assigned to a term whose effects can be handled by
ATM effect handlers. It is a generalization of answer types explained in Section 2; an answer type C
with a computation type C in there is expressed as C = C in HEPCFA™. The meaning of C; = G,
is twofold. First, when the term calls an algebraic operation that captures the continuation, the
continuation has to behave as specified by the type C;. Second, in the course of evaluating the
term, the enclosing context (up to the nearest delimiter) is transformed together with the term into
another term that behaves as specified by the type C,. For example, consider a handling term

with H handle o((); z. return z)

where H = {returnx + returnx} W {o(x;k) — lety = k 1incase(y; return true, return false)}.
The evaluation of the handling term starts by calling the algebraic operation ¢ in the handled
term, and the operation clause of o provided by the effect handler H takes the reified continuation
Az.with H handle return z as the variable k. Because the operation call is handled by the ATM effect
handler H, it must be given an ATM effect C™ = Cfi" for some C'™ and Cfi". The initial answer
type C'™ specifies the behavior of the reified continuation Az.with H handle return z. Since the
continuation takes and returns the enum constant 1, and invokes no effect, its type can be, e.g.,
a function type 2 — X » 2 / O with some operation signature ¥, where the return type £ > 2 /0O
corresponds to C'™. Furthermore, the operation call is rewritten to the body of the operation clause.
Therefore, the final answer type Cfi" matches with the type of the body term. In the example, the
body can be given the type X » bool / O as it returns a Boolean value and invokes no effect. As
a result, the control effect assigned to the operation call can be (X > 2/0) = (2 » bool / O0). As

8There is no significant difference between contexts and continuations, but we use continuations to refer to a functional
representation of contexts.

%In the previous work [24, 56], the ATP effect is called pure and ATM effects are called impure. We adopt the new names for
them because even terms with O may call algebraic operations and we think that the names ATP and ATM better capture
the intuition behind the control effects.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:11

shown via the example, ATM control effects can precisely track the transition of control flow in
the presence of effect handlers capable of flexible context manipulation.

An operation signature specifies the interface of algebraic operations, associating each algebraic
operation ¢ that may be invoked, with a type of the form TP¥ s T2 / A, The value types TP
and T represent the input and output of the operation o. Because the input is a parameter of the
algebraic operation and the output corresponds to the arity of the captured delimited continuations,
TP and T are called parameter and arity types, respectively. The control effect A describes
what operation clause handles a call to 0. If A = O, ¢ is called answer-type-polymorphic (ATP) and
its invocation should be handled by a tail-resumptive clause; otherwise, o is called answer-type-
modifying (ATM) and its invocation should be handled by an ATM clause with the same control
effect as A. Therefore, for the above example term, the operation signature of the handled term
can be {0 : unit w» 2 /(2> 2/0) = (X » bool /O)} since o takes the unit value, returns the
enum constant inhabited by the type 2, and its control behavior is specified by the control effect
(Z>2/0) = (2 » bool /O) as explained above. In contrast, e.g., for an operation EOF, which
should be handled by a tail-resumptive clause EOF(x) +— EOF (x) to be forwarded to the top level,
a type signature unit ~» bool / O can be given.

3.3.2 Typing Rules. The type system consists of typing judgments for values I' + V : T and for
terms I' - M : C. The typing rules are presented in Figure 5. Typing contexts I' are sequences of
bindings of the form x : T that assigns the type T to the variable x. We assume that the same variable
is bound only once in the same typing context. The typing rules for values are self-explanatory
and it is easy to see how they capture the aforementioned ideas for values. The metafunction ty
assigns a base type to each base constant. The typing rules for terms are similar to those given by
Kawamata et al. [24] except that subtyping is absent (although added in Section 6) and the typing
of operation calls and handling takes the presence of O in operation signatures into account.

As mentioned above, the control effects of value-return constructs can be ATP. One can embed
terms with the ATP effect O into the context requiring an ATM effect (HT_EmB). Since ATP terms
do not change the context, the final answer type is the same as the initial one. The rules (HT_Arpp)
and (HT_CasE) for function applications and case constructs naturally reflects their behavior.

For a let construct let x = M, in M,, if the term M,; has the ATP effect (i.e., it does not change
the enclosing context), how the let construct changes the context is determined by the term M,
(HT_LET). If both of the control effects of M; and M, are ATM, say Cini = C?“ and C;ni = Cg‘n,
then so is that of the let construct (HT_LETATM). The form of an ATM effect of the let construct
is determined as follows. First, the evaluation of the let construct starts by evaluating M; and the
final answer type Cfm of M, describes how the context enclosing M; changes. Thus, the change
of the context enclosing the let construct is determined by Cf‘“, i.e., the final answer type of the
let construct is Cfm. The initial answer type C™ is the requirement for the context enclosing M;.
Because M; is placed under the context let x = [] in M, (where [] is the hole of the context) and its
control behavior is specified by the final answer type Czﬁ“, the requirement C™ has to be implied by
the guarantee Czﬁn. The rule (HT_LETATM) enforces this demand by imposing Ci" = an. Finally,
the requirement for the outer context is specified by the initial answer type C;ni of the term M,
since M, may perform operation calls that reify delimited continuations involving the outer context.
Thus, the initial answer type of the let construct corresponds to CiMi.

The typing of an operation call o(V;x. M) depends on the type signature of the algebraic
operation o. If o is ATP, then the control effect of the operation call is also ATP. Because the
continuation x. M stands for the context of the operation call, the type-checking of a(V;x. M) is
carried out in a way similar to (HT_LET). Otherwise, the operation call is given an ATM effect,
and then the type-checking is similar to the one done by (HT_LETATM). Note that: the parameter

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:12 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Typing rules for values

0<i<n
——— HT Var —— HT CoNnsT —— HT ECoNSsT
IF'tx:T(x) TFe:ty(e) Tri:n
I''x:T+rM:C I'x:T>CrV:T—>C
HT ABss HT Fix

FrAxM:T—C

Typing rules for terms

rev:T r-M:X>T/0O
HT RETURN HT EmB
TFrreturnV:X> T/O r+M:3>T/C=C

THfixx.V: T—>C

FFM1:Z>T1/|:| F,x:Tll—Mz:Z>T2/A
Trletx=MinM,:X>T,/A

HT Lt

TFM :S>T,/C=>C Tx:TyrM:S>T,/CM=C

- — HT _LETATM
Trletx =M inM, : X» T, / Cini = (fin
FretVi:T—>C T+Vy: T F'rV:n Vie[L,n].TFM;:C
HT Arp HT Cask
rrvViVy:C I+ case(V; My, -+, M) : C

S50: TP v T /0 THV:TPY Lx:T*rM:X-T/A
F'to(V;x.M):Z»T/A

HT Or

Y30 TP au T /CM = 0 T LV TP T ox: T M:SsT/C= CM
I'ro(V;x.M):2» T/C = Cfin

HT_OpATM

H = {returnx — L} ¥ {oi(ys ki) > M}'==" 0 {ci(z;) > Ni}'=r="
> ={o;: TP s Tiari/cl@ni — Clﬁn}lsiSm W {S'i L UPH s Uiari/D}lsiSn

L 1

TFM:3>T/CM= it T x:TrL:CM
Vie[L,m]. Ty : T ki : T — C" v M;: ¢

L .
Vie[1,n].T,z: Ul.par FN; i3 UM /O
1<i<

—1SISm
VCe{CH ,CiMY Vie [1,n].C2=3;
I + with H handle M : Cfin

HT HANDLE

Fig. 5. Type System.

value V has to be of the parameter type TP*"; the bound variable x of the continuation is given the
arity type T since the continuation may refer to the result of the operation call via x; and the
return value of the operation call is determined by the continuation.

The typing rule (HT_HANDLE) for handling constructs is definitely the most complicated. Con-
sider a handling construct with H handle M to be typechecked. First, (HT_HANDLE) assumes that
the handled term M has a computation type X » T / C™ = Cfi", Then, the first two premises of the
rule require the effect handler H to implement all the algebraic operations in ¥ that may be called
by the handled term M. It also requires the return clause’s body L has the type C™ because the
return clause is the context for the handled term M. By contrast, because the final answer type
Cfin specifies terms to which the context of M changes, it is assigned to the handling construct.
The operation clauses are also typechecked to ensure that their bodies behave as specified by the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:13

operation signature . Note that the control effect of the clause of an ATP operation ¢; has to be
ATP to ensure that the operations invoked by the clause do not influence the outer context. Finally,
for the clause ¢;(z;) — M; of each ¢;, its operation signature 3; is required to be equal to Ci".3
and C}ni.Z (here, C}“i is the initial answer type of the ATM operation o;) for subject reduction. The

equality 3; = Cf 3 is imposed to make the handling of ¢; type-preserving. When the handled term
M calls ¢; along with parameter value V and continuation y. N, the handing construct is evaluated
tolety = M;[V/z;] in with H handle N. Here, the term with H handle N has the operation signature
Cfin 3, so the operation signature of the term M;[V/z;] also has to be Cf" 3, according to (HT_LET).
This can be enforced by requiring 3; = Ci".3. The equality ; = C]i.ni.Z makes the reification
of delimited continuations well typed. When the handled term M evaluates to, say, o;(V;y. N),
the delimited continuation Ay.with H handle N is reified. Because the type of the continuation’s
body is C}“i, the final answer type of the term N handled in the continuation is C}“i. Therefore, as

¥ = Cfin 3 s required, X; = C}ni.Z has to hold.

3.4 Properties

First, we show that HEPCFA™ is more expressive than both GEPCF and HEPCFA™. Note that the
program syntax of the former subsumes those of the latter.

TaEOREM 1 (GEPCF U HEPCFA™ < HEPCFA™). If M is well typed in either GEPCF or
HEPCFA™ then it is also well typed in HEPCF’STM. Furthermore, there exists a term M that is
accepted by HEPCFA™ but neither by GEPCF nor HEPCFA™,

Type soundness of HEPCFA™ is proven via progress and subject reduction [63].

Lemma 1 (Progress). If 0 + M : C, then one of the following holds: M = return V for some V;
M = o(V;x.N) for some o, V, x, and N; or M — N for some N.

Lemma 2 (Subject Reduction). fT'+ M: Cand M — N, thenT + N : C.

We assume that a program is closed and handles all the ATM algebraic operations, as their
behavior relies on captured delimited continuations. The latter condition is enforced by requiring
the program’s operation signature to take the form {o; : TIP s T/ o}'<'=" The remaining
algebraic operations are considered as primitive effects, whose interpretations are given by, e.g.,

equational axioms on them [45].

THEOREM 2 (TYPE SOUNDNESS). Assume that® = {o;: T'" ~» T2 /O}SISP [fQ - M:S> T/ A
and M —* N and N —, then either of the following holds:
e N=returnVand®+ V : T for some V; or
e N=0¢;(V;x.L) and 0+ V : Tipar and x : Tf‘ri FL:X%»>T/Aforsomeiec[1,n],V,x,andL.

Note that, if ¥ = 0, it is ensured that all the operation calls performed at run time are handled.

4 Higher-Order Model Checking

The HOMC problem for HEPCFA™ is defined using effect trees as the structures to be verified,
and alternating parity tree automata (APTAs), which specify the semantics of primitive effects—
corresponding to unhandled operations in our setting—and the properties to be verified. Due to lack
of space, the paper only defines the effect tree semantics, which gives a way to interpret HEPCFA™
terms as effect trees. Readers interested in the definition of APTAs and formal instances of the
HOMC problem are referred to either the supplementary material or the literature [14, 29, 42, 56].

Effect trees are built by tree constructors labeled with (unhandled) algebraic operations or L
representing divergence. They are defined for closed HEPCFA™ terms with top-level operation

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:14 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

signatures, which restrict algebraic operations with finitary parameter and arity types. To define
effect trees, we use the following notation:

M—"N % 30 L.M=ILyA(Vi<n L —> L) ALy, =N,
M —* N def In.M —™ N, and
M—e oy an v —n N

Definition 1 (Tree Constructor Signatures). A tree constructor signature S is a map from tree
constructors, which are symbols ranged over by s, to natural numbers that represent the arities of
the constructors. We write S(s) for the arity of s assigned by S.

Definition 2 (Finitely Branching Infinite Trees). The set Treeg of finitely branching (possibly)
infinite trees (or trees for short) generated by a tree constructor signature S is defined coinductively
by the following grammar (where s is in the domain of S):

tou= L s(t, L ts(s)) -

Definition 3 (Effect Trees for HEPCFA™ Terms). An operation signature . is top-level if ¥ takes
the form {o; : B; ~ E; / O}!<!<", Given a top-level operation signature > and a type T, the tree
constructor signature S? is defined as follows:

$2 € {(on+1)|0:Bwn/0eT}U {(retum V,0) [0+ V: T} U | J{(c0)},

where a tree constructor is an algebraic operation, value-return construct, or base constant. Given
aterm M such that O - M : ¥ » T/ A with a top-level operation signature ¥, the effect tree of M,
denoted by ET(M), is a tree in Trees§ defined coinductively as follows:

e if M —® then ET(M) = 1;

e if M —* return V, then ET(M) = return V; and

o if M —* o(¢;x.N)and o : B~ n /0O € X, then ET(M) = o(¢, ET(N[1/x]),--- ,ET(N[n/x])).

It is easy to confirm that, e.g., the effect tree semantic transforms the program Mg, in Section 2 to
the effect tree drawn there (with a slight modification to add parameters to operation nodes).
Finally, we define the HOMC problem as follows. A type T is ground if it is a base or enum type.

Definition 4 (Model Checking Problem for HEPCFA™). Given an APTA and a term M such that
O+ M:3> T/ Afor some top-level ¥ and ground T, is ET(M) accepted by the APTA?

5 CPS Transformation

This section defines a selective, type-directed CPS transformation from HEPCFA™ to EPCF and
shows the decidability of the HOMC problem in HEPCFA™ using it. We first recap EPCF briefly and
then introduce the CPS transformation. Finally, we discuss the properties of the CPS transformation
and the decidability proof.

5.1 Target Calculus EPCF

The calculus EPCF is a finitary variant of fine-grained call-by-value PCF with algebraic operations.
We only show its syntax in Figure 6; see the supplementary material for the full definition. EPCF
is similar to HEPCFA™, except that EPCF does not support effect handlers (thus, answer-type
modification does not appear in its type system either), types of values and terms are unified, and
type signatures of algebraic operations are restricted to be in the form o : B ~» E. The operational
semantics and type system, equipped with typing judgments of the form = | A + e : 7, are defined
straightforwardly, and the effect tree semantics and the HOMC problem for EPCF are formalized as

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:15

Values v, w = x| c|e]| Ax.e| fixx.v
Terms e == returnv | letx =e;iney | vi vo | case(v;ey,---,e,) | o(v;x.e)
Types 7 :=B|E|11—1n
Operation signatures = := {o;: B; w» E;}!Si<n
Typing contexts A == 0|Ax:7T

Fig. 6. Syntax of EPCF.

in Section 4. We write ET (e) for the effect tree of the EPCF term e. We only state the key property
of EPCF: the HOMC problem is decidable. A type 7 is ground if 7 is a base or enum type.

THEOREM 3 (DECIDABILITY OF MODEL CHECKING FOR EPCF [14]). Given an APTA and a term e
such that Z | O + e : T for some operation signature Z and ground type t, the problem of checking
whether ET (e) is accepted by the APTA is decidable.

For readability, we use the following shorthand:
e GivenXx =Xxp,- - -, xn, we write Ax.e for the EPCF term Ax;.return Ax,.(- - - (return Ax,.e) - --).
o Let X denote an EPCF term or value. Given an EPCF value vand X — (n > 0), we write

vilgisn for the EPCF term defined as follows:

vw & v(w,X) W letx = vwinx X (if IX| > 0)

ve ® letx = einvx v (e X) et x = einv(xX) (if|X]|>0)

n

—1<i<
where the variable x is assumed to be fresh. Similarly, given a term e and X =1= (n > 0),

—l<i< . =l<i< .
eX ~ " means the EPCF term letx = einx X . for some fresh variable x.

5.2 CPS Transformation

In this section, we first present an overview of the challenges one encounters when giving a
CPS transformation for HEPC F’STM, and of how they can be solved. After that, we define CPS
transformation for types and programs in HEPCFA™ and then show its properties.

5.2.1 Overview. We begin by reviewing a non-selective CPS transformation for effect handlers as
presented in the literature [14, 22, 56], then identify the challenges in adapting it to our setting, and
present our solution. Finally, we explain how this transformation is extended to a selective one.

CPS Transformation for Effect Handlers. In CPS-transforming terms with effect handlers, the
transformation result takes two arguments: handlers and continuations. For instance, a value-return
construct return V is transformed as follows:

[return V] O h kk vl

where h are variables for handlers and k is for continuations. We call the pair consisting of zero
or more handlers and a continuation a contextual argument. Because the value-return construct
does not call algebraic operations, it only passes the CPS value [V] to the continuation. The
handler variables are used to transform operation calls. For instance, an operation call o(V;x. M)
is transformed as:
[o(V;x. M)] < AR, k.b% [V] Ax.[M] Bk

where h? is the variable in h and represents the clause to handle the algebraic operation . Given the
clause, it takes the CPS parameter value [V] and the delimited continuation of the form Ax.[M] h k.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:16 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Typechecking Issue. However, an issue with typechecking arises in the CPS transformation of
handling constructs. Following the prior work [22], the transformation can be defined as follows:

[with H handle M] € AR, k.[M] vF vk 1)

where V" and v* are transformation results of the operation clauses and the return clause, re-
spectively, in the effect handler H. It is noteworthy that, with this definition, a CPS-transformed
term may take multiple contextual arguments, but their number depends on the context. In general,
given a source term with H; handle (- - - (with H, handle M) - --), [M] takes at least n contextual
arguments. To ensure that the CPS transformation preserves typing, we require a way to typecheck
CPS terms that take multiple contextual arguments.

There are three ways to address this issue in the literature. The first solution is to use para-
metric polymorphism [22], which allows parameterizing CPS terms over contextual arguments
and instantiating when necessary. However, since parametric polymorphism makes the HOMC
problem undecidable [62], it is inadequate for our purpose. The second is to adopt an ATM type
system for the source language [56]. Because the ATM type system exposes the dependency of
terms on the context, it can statically capture how many contextual arguments CPS terms depend
on. Based on this idea, Sekiyama and Unno gave a CPS transformation for HEPC FAT™M The third
is to fix the number of contextual arguments CPS terms take by restricting effect handlers to be
tail-resumptive [14]. In this solution, the CPS transformation of handling constructs is defined to be

def

[with H handle M] € Ah, k.[M] vh +*

where the handlers h and continuation k are “weaved” into v and v*. Namely, for each tail-
resumptive clause o(x) — M € H, vh gives a CPS value Ax, k’.[M] hk’, and, given the clause
returnx — N € H, v is defined to be Ax.[N] h k. This transformation of handlers and continua-
tions preserves the semantics of the original handling construct if the effect handler only includes
tail-resumptive operation clauses, but it does not in general. For instance, if the effect handler H
were to allow an operation clause to return some value without invoking the captured continuation
(such as exception handling), then the continuation k passed to the handling construct would be
discarded, while its correct semantics is that the result of evaluating the clause is passed to the
continuation k. Under the assumption that all the operation clauses are tail-resumptive, no problem
happens because, if the evaluation with H handle M terminates at some value, the CPS term for M
finally invokes the continuation v¥, which in turn invokes the outer continuation k.

Our Solution. Our approach to the issue with handling constructs is to mix the second and third
solutions. That is, we adopt transformation (1) but we only weave the outer handler h into the CPS
values for tail-resumptive operation clauses and track the contextual arguments taken by the other
clauses using the ATM type system of HEPCFA™,

However, the naive mix causes semantic unsoundness. For example, suppose that the handled
term M is an operation call o(V;x. N) and the effect handler H includes a clause o(y; k%) +—
with H handle k° y with another effect handler H’. Then, the fully applied CPS value for the term

with H handle M with outer handler vg‘ and continuation v¥

s is evaluated as follows:

[with Hhandle o(Vix. N)] v vk = (U k.[o(Vix. N)] 90 vk T k) o vk

—* [0 (V;x. N)] vh [vh/R] vk v ok

o

—* (v [V] (Ax.[N] v [V /R] ¥) o,

(=)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:17

where vh [v_g/z] means that each variable in h occurring in Wh s replaced by the corresponding

value in v_g (recall that the CPS values for tail-resumptive clauses refer to E) and V7 is the CPS
value for the clause of o, which can be given

= Ay, k°.return [with H handle k% y] .

Therefore, the continuation Ax.[N] vh [v(})1 /E] vk passed to the operation clause is invoked under
another effect handler H’'. Assume that the term N calls an algebraic operation ¢ and the effect
handler H involves an operation clause ¢(z) — ¢ (z), i.e., the operation call is forwarded into
the outer context. According to the semantics of the source language, the forwarded operation
call is handled by H’ because it is the closest effect handler from the forwarding. However, in

the given CPS term, the forwarded operation call is handled by the outer effect handler v , as the

handler v [v0 /h], where operation calls forwarded by tail-resumptive clauses are interpreted by

vg, is passed to [N]. In summary, only weaving the outer handler vg into tail-resumptive clauses
does not work when a captured continuation is invoked under a different effect handler. Note that
such a phenomenon does not happen when all the operation clauses are tail-resumptive [14].

We solve this issue by making continuations take tail-resumptive clauses. In our CPS transforma-
tion, an operation call o(V;x. N) is transformed into

Ah, k.7 [V] (Ax, ho.N b’ ho k)

where b’ isa subsequence of h that only gathers ATM clauses, and hoisa sequence of tail-resumptive
ones given by the call site of the continuation. Then, for the above problematic example, we have

[with H handle 6(V;x.N)] v_{)‘vg —* [o(V;x.N)] vh h/h] WK vh v(')‘
—* (v [V] (Ax, ho.[N] W Ry vk)) ARYS

where v is the sequence of the ATM clauses in Wh, so it is independent of the outer handler vg.

The remaining challenge is how to pass, for h, the tail-resumptive clauses in H that weave the
effect handler at the call site of the continuation. To resolve it, we modify the definition of the CPS
value v7 as follows:
dff Ay, k' letk° = return Az, hk.k°zvhkinreturn [with H handle k7 y] , (2)
where the continuation k° used in the body is a wrapper of the given continuation k’°. The wrapper
takes an argument z, handler h, and continuation k from the call-site and weaves h into the tail-
resumptive clauses in H (the weaving results are referred to by v in Definition (2)), and then passes
them to the given continuation k’°. Given a tail-resumptive clause ¢(z) + L in H, the weaving

result in ¥ is given by Az, k’.[L] hk’, which refers to the handler h at the call site.

Selective CPS Transformation. While we have focused on non-selective CPS transformations
thus far, what we actually define is a selective CPS transformation, which transforms HEPC FSTM
terms with ATM effects (resp. the ATP effect 0O) into EPCF terms that do (resp. do not) require
continuations. Thus, e.g., the transformation of value-return constructs is defined as follows:

[return V]), _return vy,

which takes a handler k and an extra, unused argument _. We can define a transformation that
does not take the extra argument, but leaving it enables giving a simpler CPS transformation that
unifies the transformations for ATP- and ATM-effectful terms. For the ATP-effectful terms, the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:18 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

for value types

BB [E]YE [T—c]<[1]-[c]

for computation types

[=>T/a] € [Z][1- [T]]

[ZeT/CM = cin] < [s]([T] - [a®)]] "]]) — [¢™]]

[Z][7] |for operation signatures
def

[[{O'i . TiPar ~ Tiari / cl@ni N Cfm}lﬁiﬁm W {gi . UiPar s Uiari/D}lgiSn]][T] <

1<i<m

([[Y;Par]]_)([[j«iari]]_)Tj_)lstn[[cli'ni]])_)[[Clﬁnﬂ)_) Ti_)lSiSnT

(Where Vie [1, n] T, = [[Uipar]] N [[U'l_ari]])

Fig. 7. CPS transformation for types.

enum constant 1 is given instead of continuations. For example, a let-construct let x = M; in M,
where the control effect of M; is O, is transformed into

A, kletx = [M] h lin [My] hk,

where the result of [M;] is bound to x because [M;] does not take continuations. The variable k
represents the enum constant or a continuation, depending on the control effect of M,.

5.2.2 Definition. The CPS transformation for types is defined in Figure 7 using the notation
T, =SS5 which stands forr; > 1, — -+ — 1, > 1 (when n = 0, it denotes 7). Value
types are transformed in a standard manner. An operation signature ¥ is transformed into a
function [2][-] that wraps a given type to take a CPS-transformed handler conforming to X.
The definition indicates that each ATP operation ¢ : UP* ~» U / O is transformed into a value
of [UP*] — [U*], which does not take continuations. The CPS value of an ATM operation
o @ TP any T2/ CMF = Cfin takes a parameter of [TP*] and a continuation, and then returns a
CPS value of the final answer type [C"]. The continuation takes a value of the arity type [T]
(which represents the return value of the call to ¢) along with tail-resumptive clauses weaving the
call-site’s effect handler and returns a CPS value of the initial answer type [C™]. The definition
for computation types indicates that an HEPCFA™ term is transformed into a CPS term taking a
handler. If the control effect of the HEPC FéTM term is O, then the CPS term only returns a CPS value
that is the result of the computation. Otherwise, the CPS term takes a continuation and returns a
“final answer.” Here, O(Z) is an operation signature that only gathers ATP operations in X. Thus,
the type [T] — [2(2)][[C™]] means that the continuation takes tail-resumptive clauses. We
write [I] for the EPCF typing context obtained by CPS-transforming the types of all the bindings
of typing context I'.

To define CPS transformation for values and terms, we introduce the static lambda calculus,
which allows us to remove administrative redexes inserted at the time of CPS transformation.

Definition 5 (Static Lambda Calculus). The static lambda calculus (SLC) is defined by:

def
t T x| AMxyoc LX)t t@(t, L t) [e| v

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:19

for values

def def def

[[x]]HT_VAR = X [[CHHT_CONST = c [[ﬂ]]HT_ECONST = n
[Ax.M]uT Ass ' Ax.return [M] [fixx.V]ar mx &f fixx.[V]
for thunks (assume that T - M : ¥ > T / A and |E| =2
M € Ank[M]c@(h k)

for terms (assume I F M : 5> T/ Aand [h| = |2| and |h?| = |i(2)| and [h%] = [AT] = [B(2)|)

[return V]$it geroms &ef A(h,k). return [V]

Ml by & ALK letx = [M[*@(h, 1) inkx

[letx = MinN]&r 1 € AL K). letx = [M]*@(h, 1) in [N]*@(h, k)
[letx = MinNJ&r oary = AL K). [M]*@(h, Ax, h2.[N]*@(h®, 15, k))
VWt e € A(0K). [V] [W]hEK

[ease(Vi M, -+ M)y cpe = A K). case([V]: [Mi]*@(0.K). - . [Ma]*@ (B, K))

[o(Vix. M)y op € A(K). letx = h” [V]in [M]*@(h.k)
[o (V. M) opamy = A K).h [V] Ax, BE.[M] @ (h#, 75, k)

def —ISism __j<i<n

[with H handle M]§ir qanoe = A(h k). [[M]]e@(wi.7j o we T ,Ax,h_ilggn.return [L]) hk , where

1

H = {returnx = L} W {ai(ysk) = M}'<=" 0 {gi(2;) = N}I=i=n
Vie [t,m].T,y;: TP ki : T — O v My« Cin
Vi € [1,m]. wfj def Ay;, k! let k; = return (Ay,ﬁ,k.k; yfjlgjénﬁk) inreturn [M;] (|r| = |Cini5])
Vie[Lml,je[Lnl.v; € 2z [N]@hD (Il =|C3)

Vie [Lnl.w? € 2z [N]@h D)

Fig. 8. CPS transformation for terms.

where eand v are EPCF terms and values, respectively, that may refer to static variables x bounded in
the enclosing context. We call variables, functions, and applications in the SLC static. A static applica-
tion (A(xy, -+ ,Xp). 1)@(ty, - - , tp) is identified with the f-reduction result t[x; :=t5, -+ , X, 1= t,].

For HEPCFA™ terms and values, we define three kinds of CPS transformation: [V] for values,
[M] and [M]® for terms. These CPS transformations are defined on typing derivations of values
and terms, not on values and terms themselves. For clarification, we may specify the name of the
typing rule that is used lastly for constructing a typing derivation to be transformed, as [M]§;1 ..
which is the result of transforming a typing derivation that concludes I - M : C for some I’ and
C using (HT_LET). The definition of the CPS transformation is presented in Figure 8. The CPS
transformation [V] for a value V is defined in a homomorhpic manner, and [M] is an EPCF function
that takes a contextual argument (a handler and a continuation) and statically applies the static
function [M]° to it. The CPS transformation [M]° for a term M is a static function that maps a
contextual argument to an EPCF term, defined as explained in Section 5.2.1. We only describe a

few remarks here. First, given h, we write h? for the subsequence of h that exclusively includes all

the clauses for ATM algebraic operations. We also write h? for the clause of o given by h. Note
that the clause h? for an ATP operation o takes no continuation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:20 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno
5.2.3 Properties. We show that our CPS transformation preserves types and semantics of HEPCFA™
terms. We first introduce some notions used to formulate type preservation.

Definition 6 (Partial Order on EPCF Typing Contexts). We write Ay < A, if dom(A;) C dom(A,)
and, for any x € dom(A1), A1(x) = Az(x).

Definition 7 (Typing of Effect Handlers). Let 3 = {o; : TP ~» T2/ Cinl = Cfinjisism g (.
UP* ~» U [O}, For a value sequence v = v+ -+, vm, 181, - .. 51, we write Z | A+ v : Zif (1)
Vie[l,m].Z2 | Arvo: [[Tl.par]] - ([17] - [o®)][[CcM]]) — [[Clﬁ“ﬂ and 2)Vie [1,n]. E |
A kv [UP] — U],

Definition 8 (Types of the Static Lambda Calculus). We write (1) term[= | A + 7] for the set
of EPCF terms e such that Z | A + e : 7, (2) val[E | A + 7] for the set of EPCF values v such
that 2 | A+ v: 7, and (3) vals| Z | A + X] for the set of sequences of EPCF values v such that
E| Ar7v:ZX. Wealso define comp[Z | A + C] depending on C.A, as follows:
comp[EJA+2>T/0] ¥ vals[E[Ar 2] xval[E[A+1] = term[E | A+ [T]]
comp[E|ArZ» T/ CM = Cfin] def
vals[E[AF S]] x (val[E | A+ [T] — [@(X)][[C™]]]) — term[E | A + [Ci]]

Lemma 3 (Type Preservation of the CPS Transformation). Assume that [I] < A.
(1) T+ V:T,thenE | A+ [V]: [T] for any =.
(2 T+ M:C,thenE | A+ [M] : [C] for any E.
(3) T + M : C, then [M]® : comp[Z | A+ C] for any E.

For semantic preservation, we first prove that the evaluation of HEPCFA™ terms can be simulated
by their CPS terms. The simulation holds modulo full fn monadic reduction.

Definition 9 (Full fn Monadic Reduction). We define a binary relation < over EPCF terms and
over EPCF values, called full fn monadic reduction, to be the reflexive, transitive, compatible closure
satisfying the following axioms:

Vx,v,e (Ax.e)v — e[v/x] Vx,v.x ¢ fu(v) = Ax.vx — v
Vx,v,e letx =returnvine — e[v/x] Vx,e.letx =einreturnx < e
Vx,y,e,e,6e.y ¢ fv(es) = letx = (lety =ejiney)ines < lety =ejinletx = ez ine;

Lemma 4 (Simulation up to Reduction). IfO0+ M :¥»> T /Oand |E| = ||, then, for any v¥, one
of the following holds:

(1) M =return V and [return V]]e@($, V&) = return [V] for some V;

(2) M —* o(V';x.M’) and [M]¢@(v", V) — letx = v[V']in [[M']]e@(ﬁ v¥) for some o,
V’, x, M’, and v such that v is a value in the sequence v" that corresponds to o; or
(3) M —* M’ and [M]¢@(v", v*) —s—s*s [M']¢@(vh, v*) for some M’.

To show Lemma 4, we have to consider a more complicated statement because handled terms in
handling constructs have ATM effects, while Lemma 4 only considers the ATP effect for simpli-
fication. See the supplementary material for the full statement. Using the bisimilarity technique
of Dal Lago et al. [13], we can prove that < preserves contextual improvement, which is a partial
order relating contextually equivalent terms e; and e, such that e, takes at least the same number
of evaluation steps as e;. By this property with Lemma 4, the observational behavior (termination
at values/operation calls, or divergence) of HEPCFA™ terms can be simulated by their CPS terms.
Note that, if the simulation modulo 1 monadic equality were to be proven, ensuring the simulation

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:21

Subtyping rules ‘ T <: Ty ‘ ‘ Ci <: G ‘ ‘Al <: Ay ‘ ‘21 <: Xy ‘
T, <:Ty C<:C
T, ->C<:T, » G
Yo Ti<T, A<A A 0= 02 <:0()
12T /A <3 T [Ay
G < G Cini < it Cfin <, Cfin

0<:G =G Cini = Cfin < Cini = (fin

B<:B E< E

. ar ar i 1
Vie[Ln]. TV < TH" A T < T A Ay <t Ay

{oi: T} ~wo T A YISISn WS < {o;: Ty~ To0 [Ay Yisisn

Additional typingrules [T +V:T| [T+M:C]
TvV:T T<:U ' rM:C C<:D
THV:U TrM:D

Fig. 9. Subtyping.

of observational behavior—more specifically, proving that, if an HEPCFA™ term diverges, its CPS
term takes an infinitely many number of steps—would be more challenging. Now, we show that
the CPS transformation preserves effect trees of given HEPCFA™ terms using the above result.

THEOREM 4 (PRESERVATION OF EFFECT TREES). Let T be a ground type and X = {o; : B; ~»
E;/O}'Si=n gnd B = {0, : B; ~ E;}'S'<". Assume that® + M : 3 > T/0. LetV =y, , vy such
that, for anyi € [1,n], v = Ax.0;(x; y. returny). Then, ET([M]*@(+", 1)) = ET(M).

COROLLARY 1 (DECIDABILITY OF MODEL CHECKING FOR HEPCFA™) ' The higher-order model
checking problem for HEPCFA™ is decidable.

6 Subtyping Extension
This section briefly sketches an extension HEPCFA™ with subtyping. The subtyping judgments
and rules, as well as the additional typing rules, are shown in Figure 9. The subtyping is similar
to the one given by Kawamata et al. [24], generalizing (HT_EMB) to coerce O into an ATM effect
everywhere and allowing width subtyping on operation signatures. The only subtlety is the side
condition A; # O = 0O(2;) <: O(Z3) in the subtyping for computation types X; » T; / A; and
2y » T, [Ay, which is highlighted by the gray box in Figure 9. We can prove type soundness
of the extended HEPC FéTM without this condition, but it is imposed for soundness of the CPS
transformation. As suggested in the CPS type transformation (Figure 7), given a computation type
%> T/CM = Cfin the operation signature ¥ occurs at a negative position (thus, the subtyping
requires X, <: %), but O(Z) occurs at a positive position. Thus, in coercing X; > T; / A; into
3 > Ty | Ag, if Ay # O (which also ensures A, # 0O), then O(2;) <: O(Z,) is required. It is left
open whether we can provide a CPS transformation without this side condition or whether we can
justify it without the lens of the CPS transformation.

The CPS transformation is also extended for subtyping. The extension transforms a subtyping
derivation to a static function that coerces the subtype to the supertype. The definition is complicated
but straightforward. The coercion functions are applied where typing derivations rely on subtyping.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:22 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

Input: HEPCFE™ Type HEPCFE™ CPS EPCF term HorSat2
term (in OCaml) inference typing derivation transformation (in HORS) (HO model checker)
l

{Input: Specification in ATA] { Sat or Unsat]

Fig. 10. Architecture of the implemented tool.

All the properties, such as type soundness and type and semantics preservation of the CPS
transformation, are proven for the extension. See the supplementary material for the details
including the full definition.

Now, we show how the program examples given in Section 2 are typechecked in this extension.

Example 6.1 (Nondeterministic Choice). The first example is Mp, which uses the operation Decide.
For that, consider the following term

let f = return Ax.Decide(x; y. returny) inlet z = with H handle f () in case(z; f (), return false) ,

which is slightly modified from Mp to avoid ambiguity. Let 2p = {Decide : unit ~» bool / (2 »
2/0) = (X»2/0)} WX for some X, and assume that the effect handler H implements algebraic
operations as specified by Xp. Because f : unit — Zp » bool /(2 » 2/0) = (£ » 2/0),
the application f () has the type 2p » bool /(X » 2/0) = (X » 2/0O). Therefore, the term
with H handle f () has the type X » 2 /0, which can be coerced into Zp > 2/ (2> 2/0) = (Z»
2/ O). Since the case construct can have the same type as f (), the let construct letz = --- can be
given the type Xp > bool / (Z»>2/0) = (2> 2/DO).

Here, it is crucial to instantiate the type X » 2 /O of the handling construct to the type 2p »
2/(2»2/0) = (2> 2/0O) since the initial answer type of the handling construct must match
with the final answer type 2 » 2 / O of the application f (). In fact, if the ATP effect O (or subtyping)
were absent as in HEPCFA™ the above term could not be typechecked. To see it, assume that the
application f () has a computation type 2p > bool / C; = C, for some initial answer type C; and
final one C,. The ATM type system assigns the type C, to the handling construct, and requires
that the initial answer type of the type C, of the handling construct match with the final answer
type C; of the application f (). However, without polymorphism (nor other typing mechanisms
admitting circularity), this requirement would not be met because then C, cannot involve itself.

Example 6.2 (Exception Raising). Consider the recursive function Vg, which is expressed as
fix f.Ax.with H handle EOF((); y. case(y; Raise((); z. return z), Read((); z. f ())))

in HEPCFA™. Let > = {EOF : unit ~ 2/0,Read : unit ~> unit /0} and g = {Raise : unit ~»
unit/ (X » unit/0) = (2 » unit/0)} WX, and assume that the effect handler H implements
algebraic operations as specified by Zg. We show that the recursive function has the type unit —
3 » unit / O. This type assignment is possible if the handled term has the type 3g > unit / (2 »
unit /0) = (2 » unit /O) under the typing context f : unit — X » unit /O, x : unit. Because
the answer types of EOF and Read are polymorphic, the handled term has the same type as
Raise((); z.return z) and f (), which both can be of the desired type—the latter is achieved by
subtyping ¥ > unit /O <: 3g > unit / (£ > unit /0) = (2 > unit / O).

Again, this example also requires polymorphism to be typechecked: although the return type of
the recursive function would be required to involve itself as a final answer type, it would not be
met without polymorphism (nor other recursive typing mechanisms).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:23

7 Implementation

We extended the existing model checker EffCaml [56] for HEPCFA™ to implement our proof-of-
concept model checker for HEPC FéTM. The extended model checker, whose entire architecture is
illustrated in Figure 10, verifies an HEPCFA™ program written in a subset of OCaml 5 against a
safety property specified by an alternating tree automaton (ATA), which is an APTA with the parity
condition that always holds (see the supplementary material for the definition of parity conditions).
Our tool only handles ATAs, as our HOMC backend HorSat2 [9, 30] only supports ATAs.

Given an HEPCFA™ term, our tool infers its type according to the type system of HEPCFA™, We
implemented the type inference by following the approach of Kawamata et al. [24], as HEPCFA™
can be seen as a simplified version of their ATM refinement type system, with the exception
of the inclusion of tail-resumptive operation clauses, which we identify by analyzing the term
before the type inference. Our type inference is constraint-based: it first generates equality and
subtyping constraints over value types, control effects, and operation signatures, and then solves
the resulting constraints. Constraint generation and solving for operation signatures are handled in
a way analogous to constraint-based record type inference, since subtyping on operation signatures
resembles record subtyping. For control effects, we adopt the constraint-based type inference
framework for the delimited control operators shift@/reset@ [38]. We believe that our type
inference implementation is sound, but this remains a conjecture.

If the type inference is successful—otherwise, it indicates that the input program is outside the
fragment identified by HEPCFA™s type system, so our tool aborts without passing the problem to
the backend—then our tool transforms the HEPCFA™ term into a higher-order recursion scheme
(HORS) in CPS, following the CPS transformation extended with subtyping (see Section 6). Finally,
the output HORS is fed into HorSat2, which model checks the HORS against the given ATA.

We coonﬁrmed th'at our tool success- Program ‘ Specification ‘ Sat/Unsat
fully verifies or fals%ﬁes four HO.MC in- Open (); Vi (); Close () | File-Usage Sat
stances, as summarized in the right ta- o i . o

pen (); Vg ();Open () | File-Usage Unsat
ble. The first co.lumn preser.lt.s the pro- Vtrue No-Raise Sat
grams to be verified. In addition to the V false No-Raise Unsat
shorthand introduced in Section 5, we
abbreviate o(V;x.returnx) to oV and use sequential composition M;; M, and if branching
if M then M, else My, which can easily be encoded in HEPCFA™. The first two examples refer
to Vg, which is presented in Section 2 and expressed as

fix f.Ax.with Hg handle if EOF () then Raise () else (Read (); f ())

with Hg = {returnx +— returnx, EOF(x) — EOF (x),Read(x) — Read (x),Raise(x;k) +—
return x}, which forwards EOF and Read and handles the operation Raise. The functional value V
in the third and fourth examples is defined to be

fix f.Ax.let g = (with Hs handle lety = Get () inif y then f y else Raise ()) ing x

with Hg = {returnx +— return Ay.return x, Get(x; k) — return dy.k y y, Raise(x) +— Raise (x)},
which handles Get to return the current state y as in a state monad and forwards Raise. The
argument x in V is an initial state of the handled term. The specifications File-Usage and No-Raise
are both given as ATAs. The former describes that call sequences of Open, Close, EOF, and Read
follow the regular expression (Open (EOF | Read)* Close)* and Read is called only when it is
immediately preceded by a call to EOF that returns true. The latter describes that no call to Raise
escapes to the top level. See the artifact for the details of the specifications. All the verification tasks
completed in less than 0.1 seconds on the machine with 12th Gen Intel(R) Core(TM) i7-1270P 2.20
GHz, 32 GB of memory. This result demonstrates that the proposed CPS transformation enables

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

406:24 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

model checking of the fragment identified by our type system. That said, evaluating the performance
of our tool on larger and more complex instances remains future work.

8 Related Work

Higher-Order Model Checking. Model checking of higher-order programs has been an active
research topic in the last twenty-five years, giving rise to many positive, but also negative, results.
We should certainly mention the pioneering and partial results by Knapik et al. [25, 26], Ong’s
breakthrough result [42] about the decidability of the HOMC problem for higher-order recursion
schemes, and Kobayashi and co-authors’ work on model checking as (intersection) type check-
ing [33]. Some studies do exist about extensions of the cited decidability results to calculi endowed
with some specific form of effects [27, 37, 51], but all this has been given a clearer status by Dal Lago
and Ghyselen [14], who recently studied the problem of HOMC for functional languages with
algebraic effects, giving a decidability result for the HOMC problem holding when specifications are
expressed in an APTA. This is not inconsistent with the aforementioned undecidability results about,
e.g., probabilistic choice [32], as the specifications one is interested at there cannot be formalized
as APTAs. The recent paper by Kobayashi [31] further helps in understanding where the source of
undecidability actually lies, and why linearity is the key to design decidable fragments.

Effectful Higher-Order Programs and Handlers. Since Moggi’s seminal work on monads [39], the
theory of languages with both higher-order functions and effects has been structured around the
categorical notion of monads. All this has been given a more operational flavor by Plotkin and
Power in their work about algebraic effects [46]. Algebraic operations can be given a computational
meaning through effect handlers, this way allowing effects to be interpreted by the program itself
rather than by the environment, in the style of the try — with operator for exceptions. The theory
and practice of effect handling has been extensively studied [5, 21-23, 47, 48, 53, 54, 66]. Dal Lago
and Ghyselen [14] show that if the underlying calculus is along the lines of the aforementioned
ones, the HOMC problem becomes undecidable even for a simply-typed discipline. Sekiyama and
Unno [56] have recently showed that in the presence of answer-type modifications decidability
can be recovered, but that to do so one must renounce to any form of polymorphism, and have
algebraic operations typed in a monomorphic way. We show that Sekiyama and Unno’s approach
is extensible to two forms of polymorphism: answer-type polymorphism and subtyping.

Other Approaches to Temporal Verification of Effectful Higher-Order Programs. A recent line of
work has been concerned with the temporal verification of infinite-state higher-order effectful
programs using type-and-effect systems. Gordon [20] defines a framework for sequential effects
with tagged control operators akin to abort and call/cc, capturing temporal safety properties.
Similarly, Sekiyama and Unno [55] give a type-and-effect system for general temporal properties
in the presence of the control operators shift®@ and reset@. Song et al. [60] tackles the safety
verification problem for general effect handlers against specifications in a logic more expressive than
classical LTL. We are not aware of any work dealing with the problem of verifying general effect
handlers against APTAs except for that of Dal Lago and Ghyselen [14] and that of Sekiyama and
Unno [56]. For temporal verification on primitive effects or trace properties, numerous frameworks
have been proposed [19, 40, 55, 58, 59, 67, 69], but extensions to effect handlers or other control
operators may require nontrivial efforts because their ability to manipulate continuations could
bring unexpected issues, as observed by Dal Lago and Ghyselen [14] or de Vilhena and Pottier [16].

Answer-Type Polymorphism and CPS Transformation. Answer-type polymorphism has been
discovered by Riecke and Thielecke [50] as a proof technique, and later Thielecke [61] linked
answer-type polymorphism to effect systems—the answer types of terms guaranteed to be pure by

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:25

a type system can be polymorphic. Answer-type polymorphism has been introduced to ATM type
systems by Asai and Kameyama [1] and Materzok and Biernacki [38]. While Asai and Kameyama’s
type system allows universally quantifying answer types, Materzok and Biernacki do not introduce
parametric polymorphism but instead offers the type constructor € to represent answer-type
polymorphism (corresponding to O in our notation), as well as subtyping for instantiating e.
Materzok and Biernacki also defined a selective type-directed CPS transformation that can transform
terms of the answer type € to terms that do not rely on continuations. However, they did not show the
semantic preservation of the CPS transformation; it is only shown that weak semantic preservation—
i.e., source terms before and after reduction can be transformed into fn-equivalent terms—for
untyped source terms using a non-selective, non-type-directed CPS transformation. Kawamata
et al. [24] brought answer-type polymorphism to effect handlers and gave a type-directed CPS
transformation. Their CPS transformation satisfies strong semantic preservation—i.e., it preserves
reduction—but it relies on parametric polymorhpism in the target language as in the one of
Hillerstrom et al. [22]. Also, their type system did not support ATP algebraic operations. Asai and
Uehara [2] formalized a selective, type-directed CPS transformation in the presence of answer-type
polymorphism (in the style of Asai and Kameyama [1]) and proved that it satisfies a weak semantic
preservation, but it is not proven to preserve observational behavior. Sato et al. [51] proposed a
selective CPS transformation for HOMC and showed that it satisfies strong semantic preservation,
but they address neither control operators (at least formally) nor answer-type polymorhpism. Our
selective, type-directed CPS transformation for effect handlers in the presence of answer-type
polymorphism does not satisfy strong semantic preservation, but it preserves reduction modulo full
Sn monadic reduction, which is enough to guarantee the preservation of observational behavior.

9 Conclusion

We showed that the HOMC problem for effect handlers remains decidable in the presence of
answer-type polymorphism and subtyping by giving a selective CPS transformation that turns
answer-type-polymorphic terms to continuation-independent terms. There are several future
directions. Because effect handlers can be viewed as transducers on computation trees [49], it is
an interesting question whether the verification technique based on higher-order tree transducers
could be applied to effect handlers. To make the verification problem decidable, Kobayashi et al.
[34] assume the linearity on trees to be verified, i.e., trees to be verified are traversed only once.
To verify non-linear trees, they require coercion annotations. Because the ATM-based approaches
allow traversing computation trees multiple times without annotations, we first need to explore the
root cause of the gap. The effect handlers that this paper focused on are called dynamically scoped
and deep [23], but there are many other forms of effect handlers, such as lexically scoped [6, 8],
shallow [21], scoped [64], and bidirectional [68] effect handlers. Kobayashi [31] studied the HOMC
problem in the presence of other effectful features such as local store. One of the long-term goals is
to make a unified model checking framework to accommodate these various effectful features.

Data Availability Statements

The artifact [52] provides the supplementary material and a document for the implemented HOMC
tool and the reproduction of the experimental results in Section 7. The tool, as well as the bench-
marks, is also found at https://github.com/hiroshi-unno/coar.

Acknowledgments

We thank the anonymous reviewers for their valuable comments. This work was partly supported
by JSPS KAKENHI (JP20H04162, JP20H05703, JP22H03564, JP22H03570, JP24H00699, JP25H00446),
JST CREST (JPMJCR21M3), and the ANR Project HOPR (ANR-24-CE48-5521-01).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

https://github.com/hiroshi-unno/coar

406:26 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

References

[1] Kenichi Asai and Yukiyoshi Kameyama. 2007. Polymorphic Delimited Continuations. In Programming Languages and

[11

[12

[13

(14
[15
[16
[17
[18

[19

[20

[21

[22

—

—

—

—_ = = O

]

[

—

—

—

Systems, 5th Asian Symposium, APLAS 2007, Proceedings. 239-254. doi:10.1007/978-3-540-76637-7_16

Kenichi Asai and Chihiro Uehara. 2018. Selective CPS transformation for shift and reset. In Proceedings of the ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, Los Angeles, CA, USA, January 8-9, 2018, Fritz
Henglein and Hsiang-Shang Ko (Eds.). ACM, 40-52. doi:10.1145/3162069

David Basin, Cas Cremers, and Catherine Meadows. 2018. Model Checking Security Protocols. Springer International
Publishing, Cham, 727-762. doi:10.1007/978-3-319-10575-8_22

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and
Algebraic Methods in Programming 84, 1 (2015), 108-123. doi:10.1016/j.jlamp.2014.02.001

Dariusz Biernacki, Maciej Pirég, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting algebraic effects. Proc. ACM
Program. Lang. 3, POPL (2019), 6:1-6:28. doi:10.1145/3290319

Dariusz Biernacki, Maciej Pirog, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect
instances via lexically scoped handlers. PACMPL 4, POPL (2020), 48:1-48:29. doi:10.1145/3371116

Jonathan Immanuel Brachthéuser, Philipp Schuster, and Klaus Ostermann. 2018. Effect handlers for the masses. Proc.
ACM Program. Lang. 2, OOPSLA (2018), 111:1-111:27. doi:10.1145/3276481

Jonathan Immanuel Brachthauser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers
and lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1-126:30. doi:10.1145/3428194
Christopher H. Broadbent and Naoki Kobayashi. 2013. Saturation-Based Model Checking of Higher-Order Recursion
Schemes. In Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy (LIPIcs, Vol. 23), Simona
Ronchi Della Rocca (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 129-148. doi:10.4230/LIPICS.CSL.2013.129
Edmund M. Clarke and E. Allen Emerson. 1981. Design and Synthesis of Synchronization Skeletons Using Branching-
Time Temporal Logic. In Logics of Programs, Workshop, Yorktown Heights, New York, USA, May 1981 (Lecture Notes in
Computer Science, Vol. 131), Dexter Kozen (Ed.). Springer, 52-71. doi:10.1007/BFB0025774

Edmund M. Clarke, Anubhav Gupta, Himanshu Jain, and Helmut Veith. 2005. Model Checking: Back and Forth between
Hardware and Software. In Verified Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE
2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions (Lecture Notes in Computer Science,
Vol. 4171), Bertrand Meyer and Jim Woodcock (Eds.). Springer, 251-255. doi:10.1007/978-3-540-69149-5_27

Youyou Cong and Kenichi Asai. 2022. Understanding Algebraic Effect Handlers via Delimited Control Operators. In
Trends in Functional Programming - 23rd International Symposium, TFP 2022, Virtual Event, March 17-18, 2022, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 13401), Wouter Swierstra and Nicolas Wu (Eds.). Springer, 59-79.
doi:10.1007/978-3-031-21314-4_4

Ugo Dal Lago, Francesco Gavazzo, and Paul Blain Levy. 2017. Effectful applicative bisimilarity: Monads, relators, and
Howe’s method. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017. IEEE Computer Society, 1-12. doi:10.1109/LICS.2017.8005117

Ugo Dal Lago and Alexis Ghyselen. 2024. On Model-Checking Higher-Order Effectful Programs. Proc. ACM Program.
Lang. 8, POPL (2024), 2610-2638. doi:10.1145/3632929

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming. 151-160. doi:10.
1145/91556.91622

Paulo Emilio de Vilhena and Francois Pottier. 2021. A separation logic for effect handlers. Proc. ACM Program. Lang. 5,
POPL (2021), 1-28. doi:10.1145/3434314

Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. Sci. Comput. Program. 17, 1-3 (1991),
35-75. doi:10.1016/0167-6423(91)90036-W

Dan R. Ghica, Sam Lindley, Marcos Marofias Bravo, and Maciej Pirég. 2022. High-level effect handlers in C++. Proc.
ACM Program. Lang. 6, OOPSLA2 (2022), 1639-1667. doi:10.1145/3563445

Colin S. Gordon. 2017. A Generic Approach to Flow-Sensitive Polymorphic Effects. In 31st European Conference on
Object-Oriented Programming, ECOOP 2017 (LIPIcs, Vol. 74), Peter Miiller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 13:1-13:31. doi:10.4230/LIPIcs. ECOOP.2017.13

Colin S. Gordon. 2020. Lifting Sequential Effects to Control Operators. In 34th European Conference on Object-Oriented
Programming, ECOOP 2020 (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik, 23:1-23:30. doi:10.4230/LIPIcs.ECOOP.2020.23

Daniel Hillerstrom and Sam Lindley. 2018. Shallow Effect Handlers. In Programming Languages and Systems - 16th
Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018, Proceedings (Lecture Notes in Computer
Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 415-435. doi:10.1007/978-3-030-02768-1_22

Daniel Hillerstrom, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017. Continuation Passing Style for Effect
Handlers. In 2nd International Conference on Formal Structures for Computation and Deduction, FSCD 2017. 18:1-18:19.
doi:10.4230/LIPIcs.FSCD.2017.18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

https://doi.org/10.1007/978-3-540-76637-7_16
https://doi.org/10.1145/3162069
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/3290319
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3428194
https://doi.org/10.4230/LIPICS.CSL.2013.129
https://doi.org/10.1007/BFB0025774
https://doi.org/10.1007/978-3-540-69149-5_27
https://doi.org/10.1007/978-3-031-21314-4_4
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1145/3632929
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/3434314
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1145/3563445
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.23
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.4230/LIPIcs.FSCD.2017.18

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:27

[23]

[24]

[25]

[26

—

[27

—

[28]

[29

—

[30

—

[31

—

[32

—

[33

[t

[34

—

[35

—

[36

—

[37

—

[38

—

[39

—

[40

[t

[41

—

[42]

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN International Conference on
Functional Programming, ICFP 2013. 145-158. doi:10.1145/2500365.2500590

Fuga Kawamata, Hiroshi Unno, Taro Sekiyama, and Tachio Terauchi. 2024. Answer Refinement Modification: Re-
finement Type System for Algebraic Effects and Handlers. Proc. ACM Program. Lang. 8, POPL (2024), 115-147.
doi:10.1145/3633280

Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. 2001. Deciding Monadic Theories of Hyperalgebraic Trees.
In Typed Lambda Calculi and Applications, 5th International Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001,
Proceedings (Lecture Notes in Computer Science, Vol. 2044), Samson Abramsky (Ed.). Springer, 253-267. doi:10.1007/3-
540-45413-6_21

Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. 2002. Higher-Order Pushdown Trees Are Easy. In Foundations
of Software Science and Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings
(Lecture Notes in Computer Science, Vol. 2303), Mogens Nielsen and Uffe Engberg (Eds.). Springer, 205-222. doi:10.1007/3-
540-45931-6_15

Naoki Kobayashi. 2009. Model-checking higher-order functions. In Proceedings of the 11th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, September 7-9, 2009, Coimbra, Portugal, Anténio Porto
and Francisco Javier Lopez-Fraguas (Eds.). ACM, 25-36. doi:10.1145/1599410.1599415

Naoki Kobayashi. 2009. Types and higher-order recursion schemes for verification of higher-order programs. In
Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 416-428. doi:10.1145/
1480881.1480933

Naoki Kobayashi. 2013. Model Checking Higher-Order Programs. J. ACM 60, 3 (2013), 20:1-20:62. doi:10.1145/2487241.
2487246

Naoki Kobayashi. 2016. HorSat2: A Saturation-Based Model Checker for Higher-Order Recursion Schemes. Private
communication. Available at https://github.com/hopv/horsat2..

Naoki Kobayashi. 2025. On Decidable and Undecidable Extensions of Simply Typed Lambda Calculus. Proc. ACM
Program. Lang. 9, POPL (2025), 1136-1166. doi:10.1145/3704875

Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2019. On the Termination Problem for Probabilistic Higher-Order
Recursive Programs. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. IEEE, 1-14. doi:10.1109/LICS.2019.8785679

Naoki Kobayashi and C.-H. Luke Ong. 2009. A Type System Equivalent to the Modal Mu-Calculus Model Checking of
Higher-Order Recursion Schemes. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science,
LICS 2009. IEEE Computer Society, 179-188. doi:10.1109/LICS.2009.29

Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. 2010. Higher-order multi-parameter tree transducers and
recursion schemes for program verification. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg
(Eds.). ACM, 495-508. doi:10.1145/1706299.1706355

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017. 486-499. http://dl.acm.org/citation.cfm?id=3009872
Paul Blain Levy. 2001. Call-by-push-value. Ph.D. Dissertation. Queen Mary University of London, UK. http:
//ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233

Mark Lillibridge. 1999. Unchecked Exceptions Can Be Strictly More Powerful Than Call/CC. High. Order Symb. Comput.
12,1 (1999), 75-104. doi:10.1023/A:1010020917337

Marek Materzok and Dariusz Biernacki. 2011. Subtyping Delimited Continuations. In Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming, ICFP 2011, Manuel M. T. Chakravarty, Zhenjiang Hu,
and Olivier Danvy (Eds.). ACM, 81-93. doi:10.1145/2034773.2034786

Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth Annual Symposium on
Logic in Computer Science (LICS °89), Pacific Grove, California, USA, June 5-8, 1989. 14-23. doi:10.1109/LICS.1989.39155
Yoji Nanjo, Hiroshi Unno, Eric Koskinen, and Tachio Terauchi. 2018. A Fixpoint Logic and Dependent Effects for
Temporal Property Verification. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS ’18), Anuj Dawar and Erich Grédel (Eds.). ACM, 759-768. do0i:10.1145/3209108.3209204

Lasse R. Nielsen. 2001. A Selective CPS Transformation. In Seventeenth Conference on the Mathematical Foundations of
Programming Semantics, MFPS 2001, Aarhus, Denmark, May 23-26, 2001 (Electronic Notes in Theoretical Computer Science,
Vol. 45), Stephen D. Brookes and Michael W. Mislove (Eds.). Elsevier, 311-331. doi:10.1016/S1571-0661(04)80969-1
C.-H. Luke Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In 21th IEEE
Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings. IEEE Computer
Society, 81-90. doi:10.1109/LICS.2006.38

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/3633280
https://doi.org/10.1007/3-540-45413-6_21
https://doi.org/10.1007/3-540-45413-6_21
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1145/1599410.1599415
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1145/2487241.2487246
https://github.com/hopv/horsat2
https://doi.org/10.1145/3704875
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1145/1706299.1706355
http://dl.acm.org/citation.cfm?id=3009872
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
https://doi.org/10.1023/A:1010020917337
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1016/S1571-0661(04)80969-1
https://doi.org/10.1109/LICS.2006.38

406:28 Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58

[t

[59

—

[60]

[61]

[62]

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerstrém, K. C. Sivaramakrishnan, Matija
Pretnar, and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2
(2023), 460-485. doi:10.1145/3622814

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223-255.
do0i:10.1016/0304-3975(77)90044-5

Gordon D. Plotkin and A. John Power. 2002. Computational Effects and Operations: An Overview. In Proceedings of the
Workshop on Domains VI 2002, Birmingham, UK, September 16-19, 2002 (Electronic Notes in Theoretical Computer Science,
Vol. 73), Martin Escardé and Achim Jung (Eds.). Elsevier, 149-163. doi:10.1016/J.ENTCS.2004.08.008

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11,
1 (2003), 69-94. doi:10.1023/A:1023064908962

Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems,
18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, Proceedings. 80—-94. doi:10.1007/978-3-642-00590-9_7

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4
(2013). doi:10.2168/LMCS-9(4:23)2013

Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. Invited tutorial paper. In The 31st Conference
on the Mathematical Foundations of Programming Semantics, MEPS 2015, Nijmegen, The Netherlands, June 22-25, 2015
(Electronic Notes in Theoretical Computer Science, Vol. 319), Dan R. Ghica (Ed.). Elsevier, 19-35. doi:10.1016/J.ENTCS.
2015.12.003

Jon G. Riecke and Hayo Thielecke. 1999. Typed Exeptions and Continuations Cannot Macro-Express Each Other. In
Automata, Languages and Programming, 26th International Colloquium, ICALP’99, Prague, Czech Republic, July 11-15,
1999, Proceedings (Lecture Notes in Computer Science, Vol. 1644), Jiri Wiedermann, Peter van Emde Boas, and Mogens
Nielsen (Eds.). Springer, 635-644. doi:10.1007/3-540-48523-6_60

Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. 2013. Towards a scalable software model checker for higher-order
programs. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation, PEPM
2013, Elvira Albert and Shin-Cheng Mu (Eds.). ACM, 53-62. doi:10.1145/2426890.2426900

Taro Sekiyama, Ugo Dal Lago, and Hiroshi Unno. 2025. Artifact for "On Higher-Order Model Checking of Effectful
Answer-Type-Polymorphic Programs". doi:10.5281/zenodo.16923662

Taro Sekiyama and Atsushi Igarashi. 2019. Handling Polymorphic Algebraic Effects. In Programming Languages and
Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Proceedings. 353-380. do0i:10.1007/978-3-030-17184-1_13

Taro Sekiyama, Takeshi Tsukada, and Atsushi Igarashi. 2020. Signature restriction for polymorphic algebraic effects.
Proc. ACM Program. Lang. 4, ICFP (2020), 117:1-117:30. doi:10.1145/3408999

Taro Sekiyama and Hiroshi Unno. 2023. Temporal Verification with Answer-Effect Modification: Dependent Temporal
Type-and-Effect System with Delimited Continuations. Proc. ACM Program. Lang. 7, POPL, Article 71 (2023), 32 pages.
doi:10.1145/3571264

Taro Sekiyama and Hiroshi Unno. 2024. Higher-Order Model Checking of Effect-Handling Programs with Answer-Type
Modification. Proc. ACM Program. Lang. 8, OOPSLA2 (2024), 2662-2691. doi:10.1145/3689805

K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting
effect handlers onto OCaml. In PLDI "21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM,
206-221. doi:10.1145/3453483.3454039

Christian Skalka and Scott F. Smith. 2004. History Effects and Verification. In Programming Languages and Systems:
Second Asian Symposium, APLAS 2004 (Lecture Notes in Computer Science, Vol. 3302), Wei-Ngan Chin (Ed.). Springer,
107-128. doi:10.1007/978-3-540-30477-7_8

Christian Skalka, Scott F. Smith, and David Van Horn. 2008. Types and trace effects of higher order programs. J. Funct.
Program. 18, 2 (2008), 179-249. doi:10.1017/50956796807006466

Yahui Song, Darius Foo, and Wei-Ngan Chin. 2022. Automated Temporal Verification for Algebraic Effects. In
Programming Languages and Systems - 20th Asian Symposium, APLAS 2022 (Lecture Notes in Computer Science, Vol. 13658),
Ilya Sergey (Ed.). Springer, 88-109. doi:10.1007/978-3-031-21037-2_5

Hayo Thielecke. 2003. From control effects to typed continuation passing. In Conference Record of POPL 2003: The 30th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 139-149. doi:10.1145/640128.604144

Takeshi Tsukada and Naoki Kobayashi. 2010. Untyped Recursion Schemes and Infinite Intersection Types. In Foundations
of Software Science and Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings
(Lecture Notes in Computer Science, Vol. 6014), C.-H. Luke Ong (Ed.). Springer, 343-357. d0i:10.1007/978-3-642-12032-9_24

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

https://doi.org/10.1145/3622814
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/J.ENTCS.2004.08.008
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1016/J.ENTCS.2015.12.003
https://doi.org/10.1016/J.ENTCS.2015.12.003
https://doi.org/10.1007/3-540-48523-6_60
https://doi.org/10.1145/2426890.2426900
https://doi.org/10.5281/zenodo.16923662
https://doi.org/10.1007/978-3-030-17184-1_13
https://doi.org/10.1145/3408999
https://doi.org/10.1145/3571264
https://doi.org/10.1145/3689805
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1007/978-3-540-30477-7_8
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1007/978-3-031-21037-2_5
https://doi.org/10.1145/640128.604144
https://doi.org/10.1007/978-3-642-12032-9_24

On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs 406:29

[63]
[64]

[65]

[66]
[67]
[68]

[69]

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (1994),
38-94. doi:10.1006/inc0.1994.1093

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect handlers in scope. In Proceedings of the 2014 ACM SIGPLAN
symposium on Haskell, Haskell 2014. 1-12. do0i:10.1145/2633357.2633358

Ningning Xie and Daan Leijen. 2020. Effect handlers in Haskell, evidently. In Proceedings of the 13th ACM SIGPLAN
International Symposium on Haskell, Haskell@ICFP 2020, Virtual Event, USA, August 7, 2020, Tom Schrijvers (Ed.). ACM,
95-108. doi:10.1145/3406088.3409022

Takuma Yoshioka, Taro Sekiyama, and Atsushi Igarashi. 2024. Abstracting Effect Systems for Algebraic Effect Handlers.
Proc. ACM Program. Lang. 8, ICFP (2024), 455-484. doi:10.1145/3674641

Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan. 2025. Derivative-Guided Symbolic Execution.
Proc. ACM Program. Lang. 9, POPL (2025), 1475-1505. doi:10.1145/3704886

Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Handling bidirectional control flow. Proc. ACM Program.
Lang. 4, OOPSLA (2020), 139:1-139:30. doi:10.1145/3428207

Zhe Zhou, Qianchuan Ye, Benjamin Delaware, and Suresh Jagannathan. 2024. A HAT Trick: Automatically Verifying
Representation Invariants using Symbolic Finite Automata. Proc. ACM Program. Lang. 8, PLDI (2024), 1387-1411.
doi:10.1145/3656433

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 406. Publication date: October 2025.

https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3674641
https://doi.org/10.1145/3704886
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3656433

	Abstract
	1 Introduction
	2 Overview
	3 HEPCFATM : Finitary PCF with Effect Handlers and Answer-Type Polymorphism
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Type System
	3.4 Properties

	4 Higher-Order Model Checking
	5 CPS Transformation
	5.1 Target Calculus EPCF
	5.2 CPS Transformation

	6 Subtyping Extension
	7 Implementation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

