
Higher-Order Model Checking of Effect-Handling Programs
with Answer-Type Modification
TARO SEKIYAMA, National Institute of Informatics, Japan and SOKENDAI, Japan
HIROSHI UNNO, Tohoku University, Japan

Since the seminal work by Ong, the model checking of higher-order programs—called higher-order model
checking, or HOMC for short—has gained attention. It is also crucial for making HOMC applicable to real-world
software to address programs involving computational effects. Recently, Dal Lago and Ghyselen considered
an extension of HOMC to algebraic effect handlers, which enable programming the semantics of effects. They
showed a negative result for HOMCwith algebraic effect handlers—it is undecidable. In this work, we explore a
restriction on programs with algebraic effect handlers which ensures the decidability of HOMC while allowing
implementations of various effects. We identify the crux of the undecidability as the use of an unbounded
number of algebraic effect handlers being active at the same time. To prevent it, we introduce answer-type
modification (ATM), which can bound the number of algebraic effect handlers that can be active at the same
time. We prove that ATM can ensure the decidability of HOMC and show that it accommodates a wide range
of effects. To evaluate our approach, we implemented an automated verifier EffCaml based on the presented
techniques and confirmed that the program examples discussed in this paper can be automatically verified.

CCS Concepts: • Theory of computation→ Type theory; Verification by model checking.

Additional Key Words and Phrases: model checking, algebraic effect handlers, answer-type modification

ACM Reference Format:
Taro Sekiyama and Hiroshi Unno. 2024. Higher-Order Model Checking of Effect-Handling Programs with
Answer-Type Modification. Proc. ACM Program. Lang. 8, OOPSLA2, Article 365 (October 2024), 30 pages.
https://doi.org/10.1145/3689805

1 Introduction
1.1 Background: Higher-Order Model Checking of Effectful Programs
Model checking [Baier and Katoen 2008; Clarke et al. 2018] is one of the successful program
verification methodologies, representing the program to be verified as a structure and the desired
property as a logical formula and checking if the formula holds under the structure, that is, if the
structure is a model of the formula. Thus far, model checking has been extensively studied from
various perspectives, including efficient algorithms [Bradley 2011; Burch et al. 1990], logics to
specify desired properties [Pnueli 1977], and programs to be verified [Jhala and Majumdar 2009].
Higher-order model checking (HOMC) [Kobayashi 2013] aims to model check higher-order pro-

grams. A breakthrough in the computability of HOMC was achieved by Ong [2006], who showed
that the model checking of higher-order recursion schemes (HORS), tree grammars to generate
infinite trees using higher-order functions, for formulas in monadic second-order logic (MSO) is
decidable. Since Ong’s seminal work, HOMC has gained attention in its theoretical aspects [Hague
et al. 2008; Kobayashi and Ong 2009a; Salvati and Walukiewicz 2014], applied to various verification

Authors’ Contact Information: Taro Sekiyama, National Institute of Informatics, Tokyo, Japan and SOKENDAI, Tokyo,
Japan, tsekiyama@acm.org; Hiroshi Unno, Tohoku University, Sendai, Japan, hiroshi.unno@acm.org.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART365
https://doi.org/10.1145/3689805

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-9286-230X
HTTPS://ORCID.ORG/0000-0002-4225-8195
https://doi.org/10.1145/3689805
https://orcid.org/0000-0001-9286-230X
https://orcid.org/0000-0002-4225-8195
https://doi.org/10.1145/3689805
https://creativecommons.org/licenses/by/4.0/

365:2 Taro Sekiyama and Hiroshi Unno

problems [Kobayashi and Igarashi 2013] and programming constructs [Kobayashi et al. 2010; Ong
and Ramsay 2011], and led to the development of automated verification tools [Kobayashi et al. 2011,
2010; Ramsay et al. 2014]. Although HOMC with infinite data domains (such as natural numbers) is
undecidable in general [Kobayashi et al. 2010], there are several studies to apply HOMC to infinite
data domains at the cost of giving up completeness or decidability [Kobayashi and Igarashi 2013;
Kobayashi et al. 2011, 2010; Matsumoto et al. 2015; Ong and Ramsay 2011; Unno et al. 2010].

Another crucial research line for making HOMC applicable to real-world software is to address
programs involving computational effects. Kobayashi [2009] showed that the behavior of nondeter-
ministic branches can be naturally encoded into HORS. Sato et al. [2013] demonstrated that the
HOMC problem for programs with exception handling or control operator call/cc [Reynolds 1972]
can be reduced to the one for programs with none of them by transformation into continuation
passing style (CPS). Kobayashi et al. [2019] introduced a probabilistic extension of HORS for model
checking higher-order probabilistic programs, although the almost sure termination problem for
the extended HORS is undecidable. In spite of these attempts in the literature, it had been unclear
whether HOMC can be extended to general effects such as mutable state, input/output, and concur-
rency, as well as the effects mentioned above, and, if it is possible, whether the HOMC problem for
general effects is decidable (under some appropriate logics to describe properties).

Dal Lago and Ghyselen [2024] tackled this challenge by considering two effectful extensions of
finitary PCF (i.e., PCF [Plotkin 1977] only with finite data domains). The first extension EPCF is
equipped with algebraic effects [Plotkin and Power 2003].1 Dal Lago and Ghyselen equipped EPCF
with a computation tree semantic where effect operations work as tree constructors and showed
that the model checking problem for trees generated by EPCF programs against an MSO formula
is decidable. The second extension HEPCF supports algebraic effect handlers (effect handlers, for
short) [Plotkin and Pretnar 2009, 2013], which allow the users to implement their own effects
using delimited continuations. In the computation tree semantics of HEPCF, only unhandled effect
operations appear in a generated tree. Thus, in HEPCF, we can see handled effects as user-defined
effects and unhandled effects as primitive (or built-in) effects, and the behavior of the primitive
effects can be specified by logical formulas that exclude the behavior unintended as the primitive
effects of interest. A critical difference between EPCF and HEPCF is that the HOMC problem for
HEPCF programs against MSO formulas is undecidable. To show this negative result, Dal Lago
and Ghyselen provided an encoding of natural numbers in HEPCF, where an arbitrary natural
number 𝑛 is represented by 𝑛 calls to an effect operation and the deconstruct operation on natural
numbers are implemented using an effect handler. Because the existence of an infinite data domain
makes the HOMC problem undecidable, the HOMC problem forHEPCF turns out to be undecidable.
On a positive side, Dal Lago and Ghyselen also showed that the HOMC problem for a restricted
class of effect handlers is decidable; PCF allowing only such effect handlers are called Generic
Effects PCF (GEPCF for short), as the restricted effect handlers are expressive enough to implement
generic effects [Plotkin and Power 2003]. However, GEPCF is too restrictive to allow implementing
broadly used effects such as nondeterminism and exceptions. Because the HOMC problem with
nondeterminism or exception handling is decidable [Kobayashi 2009; Sato et al. 2013], there should
be a more permissive class of effect handlers for which the HOMC problem remains decidable.

1.2 This Work
We aim to establish an expressive class of effect handlers that allow implementing a wide range of
effects and preserve the decidability of HOMC. Specifically, we define a type system to identify

1More precisely, EPCF only supports effect operations and their semantics are formulated using a logical specification,
while the semantics of algebraic effects are given by an equational theory in the original work [Plotkin and Power 2003].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:3

such a class of effect handlers. Our type system is based on the one given by Kawamata et al.
[2024], who adapted the notion of answer-type modification (ATM) [Cong and Asai 2022; Cong et al.
2021; Danvy and Filinski 1990; Ishio and Asai 2022; Kameyama and Yonezawa 2008; Materzok and
Biernacki 2011; Sekiyama and Unno 2023] to effect handlers for precise tracking of value flows.
A crucial feature of ATM for our aim is that ATM can also bound the number of effect handlers
that can be active (i.e., ready to handle effects) at the same time. When HEPCF is endowed with
our type system—which we call HEPCFATM—encoded natural numbers can be decomposed only
a number of times which is bounded statically. Thus, it prevents the full encoding of the infinite
data domain, making the HOMC problem decidable. To formally prove it, we define a type- and
semantics-preserving CPS transformation from HEPCFATM to EPCF. With this transformation, the
computability of HOMC for HEPCFATM can be reduced to that for EPCF.
The contributions of the present work are summarized as follows:
• We define HEPCFATM, a 𝜆-calculus equipped with algebraic effects and handlers and a type
system allowing ATM. While HEPCF of Dal Lago and Ghyselen restricts the parameter and
arity type of every effect operation to be a finite base and enumerate type, respectively,
HEPCFATM does not impose such a restriction for handled effects and allows their operations
to take and return higher-order values.

• We define a CPS transformation from HEPCFATM to EPCF and show that it preserves typing
and semantics of given HEPCFATM programs. As Plotkin’s colon translation [Plotkin 1975],
our CPS transformation produces only EPCF terms that involve no administrative reduction,
which is an “extra” reduction in that there is no corresponding reduction in the original
HEPCFATM terms. The guarantee of no administrative reduction enables us to show a precise
semantic relationship between HEPCFATM terms and their CPS-transformation results.

• To evaluate our approach, we implemented an automated verifier EffCaml for HEPCFATM
programs based on the presented techniques: we implemented type inference for HEPCFATM
and the CPS transformation from HEPCFATM to EPCF, and integrated them with the higher-
order model checker HorSat2 [Broadbent and Kobayashi 2013; Kobayashi 2016]. We also
confirmed that our tool can automatically verify the examples discussed in the paper.

The rest of the paper is organized as follows. Section 2 gives an overview of the present work. It
starts by reviewing the work of Dal Lago and Ghyselen [2024] and why the HOMC problem for
HEPCF is undecidable and then explains our idea to prevent it. We define EPCF and its HOMC
problem in Section 3 for making the paper self-contained. Section 4 introducesHEPCFATM. Section 5
defines the HOMC problem for HEPCFATM, presents the CPS transformation from HEPCFATM to
EPCF, and shows the decidability of the HOMC forHEPCFATM via the CPS transformation. Section 6
describes the implemented verifier EffCaml. Finally, we discuss the related work in more detail in
Section 7 and conclude in Section 8. In the paper, we only state key lemmas and theorems. The
other auxiliary lemmas and the detailed proofs of all the lemmas and theorems are found in the
supplementary material. Our verifier EffCaml is available at https://github.com/hiroshi-unno/coar.

2 Overview
This section reviews in detail how Dal Lago and Ghyselen [2024] address HOMC for algebraic effects
(Section 2.1) and HOMC for effect handlers, as well as why the latter is undecidable (Section 2.2).
We then explain why ATM can ensure the decidability of HOMC for effect handlers (Section 2.3).

2.1 Model Checking of Effectful Programs
In algebraic effects [Plotkin and Power 2003], effectful behavior arises by algebraic operations. An
algebraic operation is a producer of an effect, which influences the behavior of the remaining

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

https://github.com/hiroshi-unno/coar

365:4 Taro Sekiyama and Hiroshi Unno

let x = ref true

let rec f g =

let b1 = !x in

if g b1 then ()

else

let b2 = !x in

if b1 = b2 then f g

else raise ()

...

(a) In ML-like syntax.

Set(true; _.
let 𝑓 = fix 𝑓 . 𝜆𝑔.
Get(();𝑏1.
if 𝑔𝑏1 then ()
else

Get(();𝑏2 .
if 𝑏1 = 𝑏2 then 𝑓 𝑔

elseRaise(();𝑥 . absurd𝑥)))
in · · ·

(b) In EPCF.

Fig. 1. A program example with state manipulation and exception raising.

computation, that is, the continuation. Thus, algebraic effects are incorporated to the 𝜆-calculus
by adding constructs of the form 𝜎 (v;𝑥 . e), which calls the algebraic operation 𝜎 with parameter
v and carries its continuation 𝑥 . e. Dal Lago and Ghyselen [2024] define a 𝜆-calculus EPCF with
algebraic effects in such a way.

For instance, consider the higher-order recursive function f in Figure 1a. In this example, variable
x is a global Boolean reference and function raise raises an exception that signals a run-time
error. The function f raises an exception if an argument function g returns false for the Boolean
value b1 that the reference x possesses at the time when f is called, and if the application of g
changes the value pointed to by x; otherwise, the computation finishes or f is called recursively.
Thus, the application f (fun b -> true) immediately terminates, f (fun b -> false) diverges,
and f (fun b -> x := not b; false) ends with a run-time error.

Consider expressing this example using algebraic effects. We assume the operations Set for the
assignment to x,Get for the dereference of x, and Raise for the exception raising. The type interface
of algebraic operations is called an operation signature. For the above operations, we can assume
signature Ξ def

= { Set : bool⇝ unit, Get : unit⇝ bool, Raise : unit⇝ empty } (empty is the type
having no inhabitant).2 We also assume the fixpoint operation fix𝑥 .v to encode recursive functions.
Then, the example can be rewritten as in Figure 1b, which is similar to the program in Figure 1a
except that the algebraic operations in Figure 1b take the continuations as arguments (absurd is a
construct that can be given an arbitrary type if a value of the type empty is passed).
To interpret an EPCF term as a structure to be model checked, Dal Lago and Ghyselen [2024]

equip EPCF with a computation tree semantics [Lindley 2014; Pretnar 2015], under which the EPCF
term is regarded to generate a possibly infinite tree. For instance, Figure 2 shows the computation
trees generated by the terms corresponding to f (fun b -> true), f (fun b -> false), or f (fun

b -> x := not b; false). Each internal node of a computation tree is an algebraic operation and
its subtrees are generated by the continuation of the operation with arguments labeled to the
corresponding edges. Leaf nodes denote the final evaluation results. Because any path of the tree in
Figure 2a is finite, it is found that f (fun b -> true) terminates. As for the tree in Figure 2b, we can
reach a Raise node if and only if consecutive calls to Get return different Boolean values. Because
it is inconsistent with the behavior of mutable references, we can conclude that no exception will
be raised under the usual semantics of mutable state. By taking a look at the tree in Figure 2c, we
can find that an exception will be raised because a Raise node is reached if Get returns a Boolean 𝑏
2Here Set and Get are supposed to be for the specific reference x, but we can easily address multiple global references by,
e.g., preparing distinct operations for each reference or parameterizing the operations over the locations of references.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:5

Set(true)

Get

()()
true false

(a) 𝑓 (𝜆𝑏. true).

Set(true)

Get

Get

Get

...
...

true false
Raise
true false

Get

RaiseGet

...
...

true false

true false

true false

(b) 𝑓 (𝜆𝑏. false).

Set(true)

Get

Set(true)

Get

Get

Set(true)

...

Set(false)

...

true false
Raise
true false

Set(false)

Get

RaiseGet

Set(true)

...

Set(false)

...

true false

true false

true false

(c) 𝑓 (𝜆𝑏. let𝑏 ′ = not𝑏 in Set(𝑏 ′; _. false)).

Fig. 2. Computation trees of 𝜆-terms with algebraic effects. The unit parameter and continuation unable to
be executed are omitted.

after Set(𝑏) is invoked, which is the standard behavior of mutable state. We can specify the desired
property—no exception will be raised—as well as the expected behavior of the effects—e.g., Get
returns a Boolean 𝑏 if the parameter of Set called immediately before it is 𝑏, and consecutive calls
to Get return the same value—as an MSO formula, or equivalently, as an alternating parity tree
automaton (APT for short) [Kobayashi and Ong 2009b; Ong 2006]. Dal Lago and Ghyselen [2024]
considered the problem of whether the computation tree generated by an EPCF term is accepted by
an APT and showed that it can be solved in a decidable manner (provided that all the data domains
in EPCF are finite). We will introduce the formal definition of APTs and show certain instances of
the HOMC problem for EPCF in Section 3.2.

2.2 Model Checking of Effect-Handling Programs
In the semantics presented in the previous section, the meaning of algebraic effects is fixed during
evaluating programs since they are formulated via an APT. This is natural when algebraic effects
model “primitive” effects implemented by the run-time system of the language of interest.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:6 Taro Sekiyama and Hiroshi Unno

let rec f g =

let b1 = Get () in

if g b1 then ()

else

let b2 = Get () in

if b1 = b2 then f g

else Raise ()

(a) The function f that uses the op-
erations Set, Get, and Raise to in-
voke the effects.

(with {

return x ↦→
fun s -> (x,s),

Set(x,k) ↦→
fun s -> k () x,

Get(_,k) ↦→
fun s -> k s s,

Raise(_,k) ↦→
fun s -> Raise ()

} handle (f 𝑣g)) true

(b) Mutable state.

(with {

return x ↦→
fun s -> (x,s),

Set(x,k) ↦→
fun s -> k () s ,

Get(_,k) ↦→
fun s -> k s s,

Raise(_,k) ↦→
fun s -> Raise ()

} handle (f 𝑣g)) true

(c) Immutable state.

Fig. 3. Examples where Set and Get are implemented by effect handlers.

Another way to define the semantics of algebraic effects is to use effect handlers [Plotkin and
Pretnar 2009, 2013], which enable the user to alter the way effects are handled, thus being able to
modify the meaning of algebraic effects during the program execution. For instance, consider the
programs presented in Figure 3. Compared to Figure 1a, the function f in Figure 3a invokes the
operations Set, Get, and Raise to represent the assignment x := v, dereference !x, and exception
raising raise (), respectively. An effect handler can define the meaning of these operations by
being activated through a handling construct.
A handling construct with H handle e installs the effect handler H to interpret the effects

invoked by the term e. If e calls an operation 𝜎 , its meaning is determined by the operation clause
for 𝜎 given by H . An operation clause for 𝜎 takes the form 𝜎(x,k) ↦→ e𝜎 . Once e invokes 𝜎 , the
handling construct is replaced by the clause’s body e𝜎 where the variable x refers to the parameter
of the operation call and the variable k refers to the continuation from the operation call up to the
effect handler. For example, consider the program in Figure 3b, which implements mutable state in
the state monad style; we refer to the effect handler there by 𝐻mut. The function f first calls the
operation Get. The functional representation of its continuation up to the effect handler is

fun b1 -> with 𝐻mut handle

if 𝑣g b1 then ()

else

let b2 = Get () in

if b1 = b2 then f 𝑣g

else Raise () .

Note that it corresponds to the continuation of the first call to Get in Figure 1b (except for the
presence of the handling construct). Then, as the effect handler 𝐻mut has the clause Get(_,k) ↦→
fun s -> k s s, the handling construct is replaced by fun s -> 𝑣 s s where 𝑣 is the continuation
described above. Since the handling construct is applied to the Boolean value true, the continuation
𝑣 is called with true as the current (and initial) state of the reference. The clause for Set behaves
similarly but it updates the state by a parameter x. The clause for Raise discards the continuation
and forwards Raise to the outer context. For instance, if the function f is applied to the function
fun b -> Set (not b); false, the program evaluation reaches Raise (). Because the effect handler
forwards Raise, the evaluation stops at Raise (). Our tool successfully found this counterexample
trace to the property that no exception should be raised, in 4 milliseconds on an ordinary laptop.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:7

Once the term 𝑒 in a handling construct with H handle e evaluates to a value 𝑣 , the return
clause of H is evaluated next. A return clause takes the form return x -> 𝑒𝑟 , where the variable x

refers to the value 𝑣 of the term 𝑒 . For instance, if the program in Figure 3b uses fun b -> true as
𝑣g, it evaluates to with 𝐻mut handle (). Because the return clause of 𝐻mut returns the pair of the
evaluation result and the current state, the program evaluation results in the pair ((), true).

Although the effect handler 𝐻mut implements mutable state, we can also implement immutable
state using another effect handler as in Figure 3c. The effect handler there, to which we refer by
𝐻imm, implements Set so that the new state is discarded and the old state is preserved (see the
shaded part). Thus, it retains the initial state forever. Under this effect handler, the application
f (fun b -> Set (not b); false) diverges without calling Raise because Get always return true

and, hence, the test b1 = b2 in the definition of f always succeeds. Furthermore, we can use different
effect handlers at different places as ((with 𝐻mut handle (f 𝑣g)) true); ((with 𝐻imm handle (f

𝑣g)) true) where the operator ; is the sequential composition.
Dal Lago and Ghyselen [2024] give a 𝜆-calculus extended with effect handlers, called HEPCF,

and define its computation tree semantics, which is similar to that of EPCF except that a generated
tree is composed only of unhandled algebraic operations.3 For example, the computation tree of
an HEPCF term with𝐻mut handle 𝑓 (𝜆𝑏. let𝑏 ′ = not𝑏 in Set(𝑏 ′; _. false)) consists only of the root
node Raise, and no node labeled Set nor Get appears because they are handled by 𝐻mut. Note that
Raise is also handled by 𝐻mut, but it is forwarded. Thus, for the top-level context, it is regarded
to be unhandled. From the viewpoint of the computation tree semantics, effect handlers can be
considered as computation tree transformers [Pretnar 2015]. For example, recall that the term
𝑓 (𝜆𝑏. let𝑏 ′ = not𝑏 in Set(𝑏 ′; _. false)) with the recursive function 𝑓 defined in Figure 3a generates
the tree in Figure 2c. The effect handler 𝐻mut transforms it to the finite tree Raise according to its
clauses, that is, by choosing the computation tree’s paths that are consistent with the behavior of
mutable state and eliminating Set and Get from the chosen paths (as they have been “handled”).

Dal Lago and Ghyselen also showed the undecidability of HOMC for HEPCF terms by encoding
natural numbers. Their idea of the encoding is to represent a natural number 𝑛 as a term that calls
some operation, say, Succ, exactly 𝑛 times. Such a term generates the computation tree like

Succ Succ . . . Succ ()

with 𝑛 nodes labeled Succ (the root node is the leftmost one). We refer to such a computation tree
with 𝑛 Succ by 𝑡n. Then, we can provide an algebraic effect handler that transforms the computation
tree 𝑡𝑛+1 to 𝑡n. By utilizing this idea, Dal Lago and Ghyselen succeeded in encoding the deconstructor
of natural numbers. Because HEPCF allows an unbounded number of effect handlers to enclose
a term at the same time, we can apply the encoded deconstructor an arbitrary number of times,
which enables the full encoding of natural numbers.

2.3 Decidable Model Checking of Effect-Handling Programs by Answer-Type
Modification

Because it turns out that HOMC for HEPCF is undecidable, a natural question that arises is what
restriction on HEPCF terms makes the HOMC decidable while allowing a wide range of effects
to be implemented by effect handlers. To answer this question, Dal Lago and Ghyselen provided
GEPCF, a variant of HEPCF that only supports effect handlers in a restricted form, but it cannot

3As the target of the model checking is a generated computation tree, Dal Lago and Ghyselen’s framework can only verify
the properties of unhandled operations. To verify the properties of handled operations, one needs to make effect handlers
forward the handled operations so that they appear in computation trees as unhandled ones or to use other verification
methods [Gordon 2020; Kawamata et al. 2024; Sekiyama and Unno 2023; Song et al. 2022].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:8 Taro Sekiyama and Hiroshi Unno

express some well-known effects such as mutable state, nondeterminism, and exception handling
(see Section 4.4 for detail).

As a complementary approach, we restrict HEPCF terms through a type system that can bound
the number of effect handlers made active at the same time. Namely, our type system only accepts
terms such that, if they evaluate to a term

· · · (withH1 handle · · · (withH2 handle · · · (withHn handle e) · · ·) · · ·) · · ·
where only 𝑛 effect handlers are active on the term e, the number 𝑛 is bounded statically. This
restriction leads to bounding a number of times an encoded natural number is deconstructed. Thus,
terms can access only to a finite range of natural numbers, which results in restricting the available
data domains to be finite and ensuring that the HOMC problem is decidable.

To achieve such a type system, we employ answer-type modification (ATM), which was introduced
by Danvy and Filinski [1990] for the delimited control operator set shift/reset and adapted to effect
handlers by Cong and Asai [2022] and Kawamata et al. [2024]; our type system is based on the one
in the latter work. An answer type of a term is the type of the nearest delimiter—which corresponds
to a handling construct in effect handlers—enclosing the term. For example, in the program

with {return x -> x, Ask(_, k) -> k true} handle let b = Ask () in not b ,

the answer type of the operation call Ask () is the Boolean type bool because the nearest handling
construct returns a Boolean value.

One distinguished characteristic of ATM is the ability to allow answer types to be modified by the
execution of effectful terms. This is a powerful, useful mechanism to track value flows [Kawamata
et al. 2024] and traces [Sekiyama and Unno 2023].

However, another characteristic of ATM is crucial for our aim: it can bound the number of effect
handlers made active at the same time. To highlight this point, in this section we adopt a simplified
form of ATM, where answer types are not modified, contrary to the name; we will show a generic
form to allow modification of answer types in Section 4. In the simplified ATM, we assign to a term
a computation type of the form Σ ⊲ T /A, which is composed of three components: Σ is a signature
of the operations performed by the term; T is the value type of the term, which specifies what value
the term evaluates to (e.g., T = bool if the term evaluates to a Boolean); and A is the answer type of
the term, which is either of a computation type or a value type. Thus, in general, a computation
type can be described as C def

= Σ ⊲ T / (Σ1 ⊲ T1 / (· · · (Σn ⊲ Tn / T𝑛+1) · · ·)). For 𝑖 ∈ {1, · · · , 𝑛}, as
Σi ⊲ Ti / (· · · (Σn ⊲ Tn / T𝑛+1) · · ·) is the 𝑖-th answer type, it is the type of the 𝑖-th nearest handling
construct enclosing the effectful term of the type C. Thus, the term can be enclosed by 𝑛 handling
constructs and the enclosing term has the type Σn ⊲ Tn / T𝑛+1. Can we install more effect handlers
on the enclosing term? No, it is invalid. If we were able to place the term under another handling
construct, the handling construct would have the type T𝑛+1, but handling constructs are (possibly)
effectful, so they cannot have value types like T𝑛+1. This indicates that, under ATM, only a statically
bounded number of effect handlers can be active at the same time and that the counterexample to
the decidability provided by Dal Lago and Ghyselen cannot be typechecked.
Our type system with ATM is expressive enough to accommodate effect handlers for mutable

state, nondeterminism, and exception handling, as illustrated in Section 4.4. On the other hand, it
does not accept all the well-typed GEPCF terms because GEPCF allows an unbounded number of
effect handlers to be active at the same time, at the cost of the expressivity of effect handlers.

3 EPCF: PCF with Algebraic Effects
In this section, we introduce EPCF, a finitary variant of PCF with algebraic effects, and then
formalize HOMC for EPCF as Dal Lago and Ghyselen [2024].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:9

Variables 𝑥,𝑦, 𝑧, 𝑓 , ℎ, 𝑘 Operations 𝜎

Base constants c ::= true | false | () | · · ·
Enum constants 𝜀 ::= 1 | 2 | · · ·

Values v ::= 𝑥 | c | 𝜀 | 𝜆𝑥 .e | fix𝑥 .v
Terms e ::= return v | let𝑥 = e1 in e2 | v1 v2 | case(v; e1, · · · , en) | 𝜎 (v;𝑥 . e)

Base types B ::= bool | unit | · · ·
Enum types E ::= 1 | 2 | · · ·

Types 𝜏 ::= B | E | 𝜏1 → 𝜏2
Operation signatures Ξ ::= {𝜎i : Bi ⇝ Ei}1≤𝑖≤𝑛

Typing contexts Δ ::= ∅ | Δ, 𝑥 : 𝜏

Evaluation rules e1 −→ e2
(𝜆𝑥.e1) v2 −→ e1 [v2/𝑥] (fix𝑥 .v1) v2 −→ v1 [fix𝑥 .v1/𝑥] v2

case(i; e1, · · · , en) −→ ei (if 0 < 𝑖 ≤ 𝑛) let𝑥 = return v1 in e2 −→ e2 [v1/𝑥]
let𝑥 = 𝜎 (v1;𝑦. e1) in e2 −→ 𝜎 (v1;𝑦. let𝑥 = e1 in e2) (if 𝑦 ∉ fv(e2))

e1 −→ e′1
let𝑥 = e1 in e2 −→ let𝑥 = e′1 in e2

Typing rules Ξ || Δ ⊢ v : 𝜏 Ξ || Δ ⊢ e : 𝜏

Ξ || Δ ⊢ 𝑥 : Δ(𝑥) Ξ || Δ ⊢ c : ty(c)
0 < 𝑖 ≤ 𝑛

Ξ || Δ ⊢ i : n
Ξ || Δ, 𝑥 : 𝜏1 ⊢ e : 𝜏2

Ξ || Δ ⊢ 𝜆𝑥 .e : 𝜏1 → 𝜏2

Ξ || Δ, 𝑥 : 𝜏1 → 𝜏2 ⊢ v : 𝜏1 → 𝜏2

Ξ || Δ ⊢ fix𝑥 .v : 𝜏1 → 𝜏2

Ξ || Δ ⊢ v : 𝜏
Ξ || Δ ⊢ return v : 𝜏

Ξ || Δ ⊢ e1 : 𝜏1 Ξ || Δ, 𝑥 : 𝜏1 ⊢ e2 : 𝜏2
Ξ || Δ ⊢ let𝑥 = e1 in e2 : 𝜏2

Ξ || Δ ⊢ v1 : 𝜏1 → 𝜏2 Ξ || Δ ⊢ v2 : 𝜏1
Ξ || Δ ⊢ v1 v2 : 𝜏2

Ξ || Δ ⊢ v : n ∀ 𝑖 ∈ [1, 𝑛] . Ξ || Δ ⊢ ei : 𝜏
Ξ || Δ ⊢ case(v; e1, · · · , en) : 𝜏

Ξ ∋ 𝜎 : B⇝ E Ξ || Δ ⊢ v : B Ξ || Δ, 𝑥 : E ⊢ e : 𝜏
Ξ || Δ ⊢ 𝜎 (v;𝑥 . e) : 𝜏

Fig. 4. The syntax, semantics, and type system of EPCF.

3.1 Definition and Basic Properties
The definition of EPCF is shown in Figure 4.

The program syntax of EPCF consists of two syntactic categories: values and terms. Values,
ranged over by v, syntactically represent a canonical form not to be evaluated further, composed
of variables, base constants, enum constants, functions 𝜆𝑥 .e (𝑥 is bound in e), and the fixpoint
operator fix𝑥 .v (𝑥 is bound in v) on functions. Base constants, ranged over by c, are primitive
values, and enum constants, ranged over by 𝜀, allow the user to make case analysis on them. Terms,
ranged over by e, may involve possibly effectful computation. Value-return constructs return v,
let expressions let𝑥 = e1 in e2 (𝑥 is bound in e2), function applications v1 v2 are standard. A case
expression case(v; e1, · · · , en) performs case analysis on enum constants: if the value v is an enum

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:10 Taro Sekiyama and Hiroshi Unno

constant i for some 𝑖 such that 0 < 𝑖 ≤ 𝑛, the case expression reduces to ei. It can be easily seen
that some constructs used in Section 2.1, such as if–then constructs and absurd, can be expressed
using case expressions. An algebraic operation call (operation call for short) 𝜎 (v;𝑥 . e) involves
a parameter value v and a continuation of the form 𝑥 . e (𝑥 is bound in e), which represents the
remaining computation after 𝜎 determines the return value denoted by 𝑥 .

The set of free variables in a term e, denoted by fv(e), is defined in a standard manner. We also
write e[v/𝑥] and v ′[v/𝑥] for the term and value obtained by substituting the value v for 𝑥 in the
term e and value v ′, respectively, in a capture-avoiding manner. We use the similar notation for
HEPCFATM defined in Section 4.
The operational semantics of EPCF is defined by the evaluation relation −→, which is the

smallest binary relation over terms that satisfies the rules presented in Figure 4. Most of the rules
are standard or formalize the behavior of terms as explained. It should be noted that, if an algebraic
operation call is followed by another term as let𝑥 = 𝜎 (v;𝑦. e1) in e2, the term e2 is incorporated
into the continuation 𝑦. e1 attached to the operation call because e2 is the remaining computation
after the continuation e1. As a result, the let expression reduces to 𝜎 (v;𝑦. let𝑥 = e1 in e2).

Types, ranged over by 𝜏 , are base types B for base constants, enum types E for enum constants,
or function types. We assume that every base type only has a finite number of inhabitants.4 An
enum type takes the form n for some natural number 𝑛, which has 𝑛 inhabitants 1, · · · , n. The
signature of operations is determined by an operation signature Ξ, which maps operations to their
types of the form B⇝ E. When B⇝ E is assigned to 𝜎 , the term 𝜎 (v;𝑥 . e) is typechecked if the
parameter v is of the type B—thus, B is called the parameter type of 𝜎—and e is typed under the
assumption that 𝑥 has the type E. If E = n for some 𝑛, the continuation 𝑥 . e is identified with 𝑛

terms e[1/𝑥], · · · , e[n/𝑥]. Thus, we can deem the arity of 𝜎 to be 𝑛, so E is called the arity type of
𝜎 . Restricting arity types to be enum types enables us to interpret an EPCF term to be a possibly
infinite tree with finite branches, as the ones generated by HORS, and makes the HOMC problem
for it decidable. Typing contexts, ranged over by Δ, are finite sequences of bindings of variables
coupled with types. We assume that the types assigned to the same variable by Δ can be uniquely
determined (namely, for any 𝑥 , 𝜏 , and 𝜏 ′, 𝑥 : 𝜏 ∈ Δ and 𝑥 : 𝜏 ′ ∈ Δ imply 𝜏 = 𝜏 ′). We write Δ(𝑥) for
the type assigned to 𝑥 by Δ; it is undefined if Δ includes no binding for 𝑥 .
The type system gives inference rules to derive typing judgments of the form Ξ || Δ ⊢ v : 𝜏 for

values and Ξ || Δ ⊢ e : 𝜏 for terms. It is standard and should be self-explanatory. We assume a
function ty that assigns a base type to every base constant.
Finally, we show the basic properties of EPCF: progress, subject reduction, and determinacy.

Lemma 1 (Progress). If Ξ || ∅ ⊢ e : 𝜏 , then one of the following holds: e = return v for some v;
e = 𝜎 (v;𝑥 . e′) for some 𝜎 , v, 𝑥 , and e′; or e −→ e′ for some e′.

Lemma 2 (Subject Reduction). If Ξ || Δ ⊢ e : 𝜏 and e −→ e′, then Ξ || Δ ⊢ e′ : 𝜏 .

Lemma 3 (Determinacy). If e −→ e1 and e −→ e2, then e1 = e2.

3.2 Model Checking
This section recaps HOMC for EPCF, illustrating some examples of the HOMC after formalizing it.

3.2.1 Definition and Properties. The HOMC problem for EPCF is defined using effect trees, which
are structures to be model checked, and alternating parity tree automata (APTs), which specify the
behavior of effects and properties to be verified.

4Under this assumption, enum constants include base constants, but Dal Lago and Ghyselen [2024] distinguish between
them to identify where the case split, which is allowed only for enum constants, plays a critical role [Dal Lago 2024].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:11

Effect trees are defined for well-typed EPCF terms. They are similar to computation trees
presented in Section 2.1 but may involve a new tree constructor ⊥ to represent the divergence.
Hereinafter, we use the following notation:

e −→𝑛 e′ def
= ∃e0, · · · , en . e = e0 ∧ (∀ 𝑖 < 𝑛. ei −→ e𝑖+1) ∧ en = e′,

e −→∗ e′ def
= ∃𝑛. e −→𝑛 e′ , and

e −→𝜔 def
= ∀𝑛. ∃e′. e −→𝑛 e′ .

Definition 1 (Tree Constructor Signatures). A tree constructor signature S is a map from
tree constructors, which are symbols ranged over by s, to natural numbers that represent the arities of
the constructors. We write arS (s) for the arity of s assigned by S.

Definition 2 (Finitely Branching Infinite Trees). The set TreeS of finitely branching (possibly)
infinite trees (or trees for short) generated by a tree constructor signature S is defined coinductively by
the following grammar (where s is in the domain of S):

𝑡 ::= ⊥ | s(𝑡1, · · · , 𝑡arS (s)) .

Definition 3 (Effect Trees for EPCF Terms). Given an operation signature Ξ and a type 𝜏 , the
tree constructor signature SΞ𝜏 is defined as follows:

SΞ𝜏
def
= {𝜎 : 𝑛 + 1 | 𝜎 : B⇝ n ∈ Ξ} ∪ {return v : 0 | Ξ || ∅ ⊢ v : 𝜏} ∪

⋃
c

{c : 0}

where, for a tree constructor s (that is an operation 𝜎 , return construct return v, or base constant c),
s : 𝑛 denotes the pair (s, 𝑛), meaning that the arity of s is 𝑛. Given a term e such that Ξ || ∅ ⊢ e : 𝜏 , the
effect tree of e, denoted by ET(e), is a tree in TreeSΞ𝜏 defined by the following (possibly infinite) process:

• if e −→𝜔 , then ET(e) = ⊥;
• if e −→∗ return v, then ET(e) = return v; and
• if e −→∗ 𝜎 (c;𝑥 . e′) and 𝜎 : B⇝ n ∈ Ξ, then ET(e) = 𝜎 (c, ET(e′[1/𝑥]), · · · , ET(e′[n/𝑥])).

Any well-typed EPCF term has a uniquely determined effect tree.

Lemma 4 (Well-Definedness of EPCF Effect Trees). If Ξ || ∅ ⊢ e : 𝜏 , then ET(e) is well
defined and uniquely determined, and it is in TreeSΞ𝜏 .

Next, we introduce APTs along with auxiliary notions.

Definition 4 (Positive Boolean Formulas). The set B+ (𝑋) of positive Boolean formulas over
a finite set 𝑋 is defined as follows:

B+ (𝑋) ∋ 𝜃 ::= tt | ff | x | 𝜃1 ∨ 𝜃2 | 𝜃1 ∧ 𝜃2

where x ∈ 𝑋 . A subset 𝑌 of 𝑋 satisfies 𝜃 ∈ B+ (𝑋) if 𝜃 holds under the interpretation that assigns true
to the elements in 𝑌 and false to the elements in 𝑌 \ 𝑋 .

Definition 5 (Positions of Trees). The set dom(𝑡) of the positions of a tree 𝑡 generated by a
tree constructor signature S with maximal arity 𝑛 is a set of finite sequences over alphabet {1, · · · , 𝑛}
defined as dom(⊥) = {𝜖} and dom(s(𝑡1, · · · , 𝑡arS (s))) = {𝜖} ∪ ⋃

𝑖∈{1, · · · ,arS (s) }{𝑖 · 𝑝 | 𝑝 ∈ dom(𝑡i)},
where 𝜖 is the empty sequence and · is the concatenation of finite sequences.

The node 𝑡 (𝑝) of a tree 𝑡 at a position 𝑝 ∈ dom(𝑡) is defined by ⊥(𝜖) = ⊥, s(𝑡1, · · · , 𝑡arS (s)) (𝜖) = s,
and s(𝑡1, · · · , 𝑡arS (s)) (𝑖 · 𝑝) = 𝑡i (𝑝).

Definition 6 (Alternating Parity Tree Automata). An alternating parity tree automaton
(APT) over a tree constructor signature S is a tuple A = (S, 𝑄, 𝛿, 𝑞𝐼 ,Ω) satisfying the following:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:12 Taro Sekiyama and Hiroshi Unno

• 𝑄 is a finite set of states with 𝑞𝐼 ∈ 𝑄 as the initial state.
• 𝛿 is a transition function, mapping (𝑞, s) ∈ 𝑄 × dom(S) to a formula in B+ ({1, · · · , arS (s)} ×𝑄).
• Ω is a priority function, mapping states in 𝑄 to natural numbers.

A run-tree of an APT A = (S, 𝑄, 𝛿, 𝑞𝐼 ,Ω) over a tree 𝑡 ∈ TreeS is a tree satisfying the following:
• Every node is labeled with some (𝑝, 𝑞) ∈ dom(𝑡) ×𝑄 .
• The root node is (𝜖, 𝑞𝐼).
• For each node (𝑝, 𝑞), there is a set 𝑋 ⊆ {1, · · · , arS (𝑡 (𝑝))} ×𝑄 satisfying the positive Boolean
formula 𝛿 (𝑞, 𝑡 (𝑝)) and, for each (𝑖, 𝑞′) ∈ 𝑋 , the node (𝑝 · 𝑖, 𝑞′) is a child of the node (𝑝, 𝑞).

A tree 𝑡 ∈ Tree𝑆 is accepted by an APTA if there exists a run-tree ofA over 𝑡 such that every infinite
path (𝜖, 𝑞𝐼), (𝑝1, 𝑞1), (𝑝2, 𝑞2) · · · of the run-tree meets the parity condition, that is, the largest priority
infinitely occurring in Ω(𝑞𝐼),Ω(𝑞1),Ω(𝑞2), · · · is even.

Finally, we define the HOMC problem for EPCF. A type 𝜏 is ground if it is a base or enum type.

Definition 7 (Higher-Order Model Checking Problem for EPCF). Given an APT and an
EPCF term e such that Ξ || ∅ ⊢ e : 𝜏 for some Ξ and ground type 𝜏 , is ET(e) accepted by the APT?

Theorem 1 (Decidability of Model Checking for EPCF [Dal Lago and Ghyselen 2024]).
The higher-order model checking problem for EPCF is decidable.

3.2.2 Examples. We present two examples of HOMC, where APTs describe specifications to be
verified and specify the behavior intended on algebraic effects.

Example 3.1. Let Ξ be an operation signature for Set, Get, and Raise, that is,

Ξ
def
= {Set : bool⇝ 1,Get : unit⇝ 2,Raise : unit⇝ 0} .

Let ASGR
def
= (SΞunit, 𝑄, 𝛿, 𝑞1, {𝑞 ↦→ 0 | 𝑞 ∈ 𝑄}) where 𝑄 = {𝑞1, 𝑞2, 𝑞true, 𝑞false} and 𝛿 is defined as

• 𝛿 (𝑞𝑖 , Set) = ((1, 𝑞true) ∧ (2, 𝑞1)) ∨ ((1, 𝑞false) ∧ (2, 𝑞2)),
• 𝛿 (𝑞𝑖 ,Get) = (𝑖 + 1, 𝑞𝑖),
• 𝛿 (𝑞𝑖 ,Raise) = ff,
• 𝛿 (𝑞𝑖 , return v) = 𝛿 (𝑞𝑏, 𝑏) = tt and 𝛿 (𝑞𝑏, 𝑏 ′) = ff

for each 𝑖 ∈ {1, 2}, 𝑏 ∈ {true, false}, and 𝑏 ′ ∈ {true, false} \ {𝑏} (in the other cases, 𝛿 returns ff).
The states 𝑞1 and 𝑞2 express the program states where the global reference manipulated by Set

and Get refers to true and false, respectively. Based on this idea, the transition rules for Set and
Get encode the semantics of mutable state in the APT: if Set is called with the parameter true (resp.
false), the continuation is executed under the state 𝑞1 (resp. 𝑞2); if Get is called in the state 𝑞1 (resp.
𝑞2), the continuation supposing the return value of Get to be 1 (resp. 2) is chosen. The conjunct
(1, 𝑞true) (resp. (1, 𝑞false)) in the transition of Set requires that the parameter of Set be true (resp.
false) to set the state of the continuation to 𝑞1 (resp. 𝑞2).
The transition rule for Raise expresses the specification that Raise must not be called. This is

indicated by the fact that we cannot make a run-tree of ASGR over a tree 𝑡 that involves a path
where a Raise node is reachable and Set and Get interact in accordance with the semantics of
mutable state (for instance, Figure 2c shows an example of such a tree). If there exists such a
run-tree, it would contain a node (𝑝, 𝑞𝑖) for some 𝑝 ∈ dom(𝑡) and 𝑖 ∈ {1, 2} such that 𝑡 (𝑝) = Raise.
By the definition of run-trees, there should be some 𝑋 that satisfies the positive Boolean formula
𝛿 (𝑞𝑖 ,Raise), but there is no such 𝑋 because 𝛿 (𝑞𝑖 ,Raise) = ff. Thus, there is no run-tree of ASGR
over the tree 𝑡 , which means that the tree 𝑡 is not accepted by ASGR.

For instance, the effect trees in Figures 2a and 2b are accepted by ASGR, but the one in Figure 2c
is not. Note that the tree in Figure 2b involves paths to reach Raise, but there Get does not conform
to the semantics of mutable state, as consecutive calls to Get return different Boolean values.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:13

Example 3.2. Consider verifying the use of global file manipulation operations Open that opens
the file, Read that reads the contents of the opened file, and Close that closes the opened file.
The use of these operations is valid if their call sequences conform to the regular expression
(OpenRead∗ Close)∗. Let Ξ be an operation signature for the file operations defined as:

Ξ
def
= {Open : unit⇝ 1,Read : unit⇝ 2,Close : unit⇝ 1} .

Here, we assume simpler file operations than the operations in practice (as in POSIX): Open does
not take a file path nor return a file descriptor to identify the opened file object (thus, the file to
be manipulated is predetermined) and Read only returns enum constant 1 or 2. Nevertheless, it is
still nontrivial to verify the valid use of the file operations even for this simplified version. We can
treat more practical file operations, such as ones that can manipulate multiple files, by adapting the
techniques in the previous work [Kobayashi 2013].
An APT AFile that only accepts effect trees where file operations are used in a valid manner is

given by (SΞ𝜏 , {𝑞1, 𝑞2}, 𝛿, 𝑞1, {𝑞1 ↦→ 2, 𝑞2 ↦→ 1}) where the transition function 𝛿 is defined by
• 𝛿 (𝑞1,Open) = (2, 𝑞2) and 𝛿 (𝑞2,Open) = ff,
• 𝛿 (𝑞2,Read) = (2, 𝑞2) ∧ (3, 𝑞2) and 𝛿 (𝑞1,Read) = ff,
• 𝛿 (𝑞2,Close) = (2, 𝑞1) and 𝛿 (𝑞1,Close) = ff,
• 𝛿 (𝑞1, return v) = tt and 𝛿 (𝑞2, return v) = ff, and
• 𝛿 (𝑞1, c) = 𝛿 (𝑞2, c) = tt

(the type 𝜏 is of EPCF terms to be verified). The state 𝑞1 and 𝑞2 represent that the file is closed and
opened, respectively. Thus, a call to Open in the state 𝑞1 and a call to Read or Close in the state 𝑞2
are valid, whereas a call to Open in 𝑞2 and a call to Read or Close in 𝑞1 are invalid. Furthermore,
the valid call to Open or Close flips the state. The transition of Read at the state 𝑞2 expresses that
Read returns 1 or 2 nondeterministically. The transition of return v at 𝑞2 means that a term to be
verified must not terminate in the state that the file are left open.

For example, a term Open(();𝑥 . Read(();𝑦.Close((); 𝑧. return ()))) generates the effect tree 𝑡 as

Open
()

Read
()

Close
()

return ()

Close
()

return () ,

and a run-tree over 𝑡 can be given as

(𝜖, 𝑞1) (2, 𝑞2) (2 · 2, 𝑞2) (2 · 2 · 2, 𝑞1) .
(2 · 3, 𝑞2) (2 · 3 · 2, 𝑞1) .

For a term Open(();𝑥 . Read(();𝑦. case(𝑦; return (),Close((); 𝑧. return ())))), the effect tree 𝑡 ′ like

Open
()

Read
()

return ()

Close
()

return ()

is generated, but we cannot make a run-tree over 𝑡 ′; the process to make a run-tree will stop at

(𝜖, 𝑞1) (2, 𝑞2) (2 · 2, 𝑞2)
(2 · 3, 𝑞2) (2 · 3 · 2, 𝑞1) ,

but there is no finite set 𝑋 satisfying 𝛿 (𝑞2, 𝑡 ′(2 · 2)) = 𝛿 (𝑞2, return ()) = ff.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:14 Taro Sekiyama and Hiroshi Unno

The priority function ensures that the opened file will be closed eventually for divergent programs.
To see it, consider the effect tree 𝑡 generated by a term Open(();𝑥 . (fix 𝑓 .𝜆𝑦.Read((); 𝑧. 𝑓 𝑦)) ()),
which infinitely calls Read after performing Open. Given a run-tree over 𝑡 , it should include an
infinite path where 𝑞2 occurs infinitely and 𝑞1 occurs only at the root node. The largest priority
infinitely occurring in such a path is 1, which results in breaking the parity condition. Thus, the
effect tree 𝑡 is not accepted by AFile. Note that, if the opened file is eventually closed as in a term
(fix 𝑓 .𝜆𝑥 ′.Open(();𝑥 . Read(();𝑦.Close((); 𝑧. 𝑓 𝑥 ′)))) (), we can make a run-tree where the state
𝑞1 appears infinitely many times in every infinite path, so the largest priority infinitely occurring
in an infinite path is even and the parity condition holds.

Remark. To verify a term e that may diverge without performing effect operations (e.g., it may
only call recursive functions infinitely), we would need to insert a "dummy effect" that happens
every time a recursive function is called. If there is no such a dummy effect, the effect tree 𝑡

generated by the term e may involve the leaf ⊥. However, we cannot make a run-tree with a node
(𝑞, 𝑝) such that 𝑡 (𝑝) = ⊥ because then arS (𝑡 (𝑝)) is undefined although it is required to be defined
to make such a run-tree (or, more intuitively, because an APT is not aware of ⊥). This limitation in
run-trees would hinder the verification of the term e. The insertion of the dummy effect enables
eliminating ⊥ from effect trees.

4 HEPCFATM: PCF with Answer-Type Modification for Algebraic Effects and Handlers
This section introduces HEPCFATM, a 𝜆-calculus with algebraic effects and handlers. The program
syntax and semantics ofHEPCFATM is the same as those ofHEPCF given by Dal Lago and Ghyselen
[2024]. Its type system allows ATM as that of Kawamata et al. [2024], but they differ in the type
assignment to pure computations, which influences whether parametric polymorphism is required
to define a type-preserving CPS transformation. Because the support for parametric polymorphism
makes the HOMC problem undecidable [Tsukada and Kobayashi 2010], we adapt Kawamata
et al.’s type system so that a CPS transformation for HEPCFATM can be defined without relying on
parametric polymorphism. We will come back to this point in Section 5.3.

4.1 Program Syntax
The program syntax ofHEPCFATM, which is presented in Figure 5, is similar to that of EPCF; we use
the metavariables M and V to range over terms and values, respectively, in HEPCFATM. The only
syntactic difference from EPCF is the support for handling constructs of the form withH handleM ,
which behaves as explained in Section 2.2; we call the term M a handled term. We assume that any
effect handler, denoted by H , has at most one operation clause for each algebraic operation. As in
EPCF, we denote the set of free variables in a term M by fv(M) and value substitution for variables
in terms and values by M [V/𝑥] and V ′[V/𝑥], respectively.

4.2 Semantics
The semantics of HEPCFATM is defined by the evaluation relation −→, which is the smallest binary
relation over terms that satisfies the rules in Figure 5. Again, most of the rules are similar to those
of EPCF, and the exception is only the rules for handling constructs. Once an algebraic operation
is called, it bubbles up to the nearest handling construct enclosing the call step by step. When it
reaches the handling construct with an effect handler H , the corresponding operation clause in H
is executed with the parameter and the continuation of the call. Note that the continuation passed
to the operation clause is a function of the form 𝜆𝑦.withH handleM , which encloses the body M
of the continuation attached to the operation call by the effect handler H . Effect handlers behaving
in this way are called deep, and effect handlers that do not enclose the body of the continuation

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:15

Values V ::= 𝑥 | c | 𝜀 | 𝜆𝑥 .M | fix𝑥 .V
Terms M ::= returnV | let𝑥 = M1 inM2 | V1 V2 | case(V ;M1, · · · ,Mn) |

𝜎 (V ;𝑥 .M) | withH handleM
Handlers H ::= {return𝑥 ↦→ M} ⊎ {𝜎i (𝑥i;𝑘i) ↦→ Mi}1≤𝑖≤𝑛

Evaluation rules M1 −→ M2

(𝜆𝑥 .M1) V2 −→ M1 [V2/𝑥]
(fix𝑥 .V1) V2 −→ V1 [fix𝑥 .V1/𝑥] V2

case(i;M1, · · · ,Mn) −→ Mi (if 0 < 𝑖 ≤ 𝑛)
let𝑥 = returnV1 inM2 −→ M2 [V1/𝑥]

let𝑥 = 𝜎 (V1;𝑦.M1) inM2 −→ 𝜎 (V1;𝑦. let𝑥 = M1 inM2) (if 𝑦 ∉ fv(M2))
withH handle returnV −→ M [V/𝑥] (if return𝑥 ↦→ M ∈ H)

withH handle𝜎 (V ;𝑦.M) −→ M ′[V/𝑥] [𝜆𝑦.withH handleM/𝑘] (if 𝜎 (𝑥 ;𝑘) ↦→ M ′ ∈ H)
M1 −→ M ′

1
let𝑥 = M1 inM2 −→ let𝑥 = M ′

1 inM2

M −→ M ′

withH handleM −→ withH handleM ′

Fig. 5. The program syntax and semantics of HEPCFATM.

passed to an operation clause are called shallow [Kammar et al. 2013]. The difference between
deep and shallow effect handlers influences the design of type systems with ATM, as discussed
by Kawamata et al. [2024]. If the handled term of a handling construct returns a value, the return
clause given by the effect handler is executed.

4.3 Type System
We show the type language of HEPCFATM at the top of Figure 6. Value types, ranged over by T , are
types assigned to values, being base types, enum types, or function types.

Computation types, ranged over by C, are types assigned to terms, taking the form Σ ⊲ T /Aini ⇒
Afin. As explained in Section 2.3, Σ is an operation signature that determines the type interface of
algebraic operations that the terms may call, and T is a value type that specifies values that the
terms may return. The last two components Aini and Afin are answer types, which are either of value
or computation types. Especially, Aini is called an initial answer type and Afin is called a final one. As
seen in Section 2.3, answer types are the types of the nearest handling constructs enclosing the terms.
A key difference from the formalism given in Section 2.3 is that answer types in HEPCFATM can be
modified from the initial answer type Aini to the final one Afin; in fact, a computation type Σ ⊲ T /A
presented in Section 2.3 is an abbreviation of Σ ⊲ T /A ⇒ A. To see the expressivity of the modifi-
cation in detail, consider a handling constructwithH handle𝜎 (1;𝑦. return𝑦) with an effect handler
H def

= {return𝑥 ↦→ return𝑥} ⊎ {𝜎 (𝑥 ;𝑘) ↦→ return𝑘}. For the operation call 𝜎 (1;𝑦. return𝑦),
the initial answer type represents what computation the continuation of the operation call up to
the nearest enclosing handling construct performs. The continuation is withH handle return []
(where [] represents the “hole” to be filled when the continuation is invoked) and it returns the
value passed to fill the hole. Thus, if the hole is supposed to be filled with, say, enum constants
of some type E, the initial answer type of the operation call is a computation type Cini whose
value type is E. When we take a look at the state after the operation call, the handling construct
evaluates to the body of 𝜎’s clause in H , that is, to return v where v is 𝜆𝑦.withH handle return𝑦,
the functional representation of the continuation. The final answer type Afin of the operation call
represents this result. More generally, the final answer type of a term M specifies terms to which

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:16 Taro Sekiyama and Hiroshi Unno

Value types T ::= B | E | T → C
Computation types C ::= Σ ⊲ T /Aini ⇒ Afin

Operation signatures Σ ::= {𝜎i : Tpar
𝑖
⇝ T ari

𝑖 /Aini
𝑖 ⇒ Afin

𝑖 }1≤𝑖≤𝑛
Answer types A ::= T | C

Typing contexts Γ ::= ∅ | Γ, 𝑥 : T

Typing rules Γ ⊢ V : T Γ ⊢ M : C

Γ ⊢ 𝑥 : Γ(𝑥) HT_Var
Γ ⊢ c : ty(c) HT_Const

0 < 𝑖 ≤ 𝑛

Γ ⊢ i : n HT_EConst

Γ, 𝑥 : T ⊢ M : C
Γ ⊢ 𝜆𝑥 .M : T → C

HT_Abs
Γ, 𝑥 : T → C ⊢ V : T → C

Γ ⊢ fix𝑥 .V : T → C
HT_Fix

Γ ⊢ V : T
Γ ⊢ returnV : Σ ⊲ T /A ⇒ A

HT_Return

Γ ⊢ M1 : Σ ⊲ T1 /A ⇒ A1 Γ, 𝑥 : T1 ⊢ M2 : Σ ⊲ T2 /A2 ⇒ A
Γ ⊢ let𝑥 = M1 inM2 : Σ ⊲ T2 /A2 ⇒ A1

HT_Let

Γ ⊢ V1 : T → C Γ ⊢ V2 : T
Γ ⊢ V1 V2 : C

HT_App
Γ ⊢ V : n ∀ 𝑖 ∈ [1, 𝑛] . Γ ⊢ Mi : C

Γ ⊢ case(V ;M1, · · · ,Mn) : C
HT_Case

Σ ∋ 𝜎 : Tpar ⇝ T ari /Aini ⇒ Afin Γ ⊢ V : Tpar Γ, 𝑥 : T ari ⊢ M : Σ ⊲ T /A ⇒ Aini

Γ ⊢ 𝜎 (V ;𝑥 .M) : Σ ⊲ T /A ⇒ Afin HT_Op

H = {return𝑥 ↦→ M0} ⊎ {𝜎i (𝑥i;𝑘i) ↦→ Mi}1≤𝑖≤𝑛
Σ = {𝜎i : Tpar

𝑖
⇝ T ari

𝑖 /Cini
𝑖 ⇒ Cfin

𝑖 }1≤𝑖≤𝑛 Γ ⊢ M : Σ ⊲ T /Cini ⇒ Cfin

Γ, 𝑥 : T ⊢ M0 : Cini ∀ 𝑖 ∈ [1, 𝑛] . Γ, 𝑥i : Tpar
𝑖

, 𝑘i : T ari
𝑖 → Cini

𝑖
⊢ Mi : Cfin

𝑖

Γ ⊢ withH handleM : Cfin HT_Handle

Fig. 6. The type language and type system of HEPCFATM.

the nearest handling construct enclosing the term M finally evaluates. Thus, Afin is a computation
type Cfin whose value type is E → Cini. In summary, if the arity type of 𝜎 is E, the computation
type of the operation call 𝜎 (1;𝑦. return𝑦) can be Σ ⊲ E /Cini ⇒ Cfin for some Σ, Cini, and Cfin such
that the value types of Cini and Cfin are E and E → Cini, respectively.
A change from the type language of Kawamata et al. [2024] is that we disallow a computation

type of the form Σ ⊲ T /□, where □, called the pure control effect, means that a term of this type
calls no algebraic operation. We decided to get rid of the pure control effect because it can make
an unbounded number of effect handlers active at the same time. In Kawamata et al.’s work, a
computation type Σ ⊲ T /□ can be coerced into Σ ⊲ T / (Σ1 ⊲ T1 /□) ⇒ (Σ1 ⊲ T1 /□) for some
operation signature Σ1 and value type T1. Furthermore, the coerced type can be coerced into
Σ ⊲ T / (Σ1 ⊲ T1 /□) ⇒ (Σ1 ⊲ T1 / (Σ2 ⊲ T2 /□ ⇒ Σ2 ⊲ T2 /□)). We can repeat this process an
unbounded number of times where necessary, and therefore any number of effect handlers can be
installed on a term of Σ ⊲ T /□ at the same time. The support for the pure control effect influences
the definition of CPS transformation. The CPS transformation given by Kawamata et al. relies
on parametric polymorphism to address the pure control effect. This is inconvenient for our aim
because parametric polymorphism invalidates the decidability of HOMC [Tsukada and Kobayashi

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:17

2010]. Excluding the pure control effect enables us to define a CPS transformation that does not
rest on parametric polymorphism.5 Instead, in our type language, answer types include value
types to describe computation types in a finite, inductive manner. The type system of HEPCFATM
allows only a term of a computation type of the form Σ ⊲ T /Cini ⇒ Cfin (that is, a computation
type whose answer types are not value types) to be handled. This restriction makes it possible to
uniformly require the return clause of an effect handler to be a computation (of the type Cini) and
ensure that a handling construct is also a computation (of the type Cfin). Any operation called by a
term of a computation type, say, Σ ⊲ T / T ini ⇒ Tfin is never handled and, thus, it is regarded as an
algebraic operation of a primitive effect.

Operation signatures, ranged over by Σ, determine the type interface of algebraic operations as
those in EPCF, but there are two key differences between them. First, the parameter and arity types
of an operation can be arbitrary in HEPCFATM, whereas they are restricted to base and enum types,
respectively, in EPCF. This is because all the operation calls in EPCF are unhandled and appears in
computation trees. We allow the parameter and arity types of handled operations to be arbitrary
and restrict those of unhandled operations in defining the effect trees of HEPCFATM terms. The
second difference is that a type interface for an algebraic operation in HEPCFATM involves initial
and final answer types assigned to calls to the operation.

Typing contexts, ranged over by Γ, are finite sequences of bindings of variables associated with
value types. Note that only values are substituted for variables in HEPCFATM.

The type system of HEPCFATM is shown at the bottom of Figure 6, equipped with inference rules
to derive judgments Γ ⊢ V : T for values and Γ ⊢ M : C for terms. The rules for value typing
judgments are similar to those in EPCF.
The typing rules for terms are an adaption of the rules given by Kawamata et al. [2024] to our

setting. It is noteworthy that the same initial and finial answer types are assigned to a value-return
construct. This reflects that Kawamata et al.’s type system assigns the pure control effect □ to
a value-return construct and □ can be coerced into C ⇒ C for any type C. For a let expression
let𝑥 = M1 inM2, its initial and finial answer types are determined by the terms M2 and M1,
respectively. This can be understood as follows. First, how the nearest handling construct is
transformed to another term is determined by the term M1 because the transformation depends on
which operationM1 calls. Thus, the final answer type is determined byM1 (ifM1 calls no operation,
then A1 = A and thus the final answer type A1 is determined by M2). Second, the continuation
involving the nearest handling construct is finally captured by the termM2. Thus, the initial answer
type is determined byM2. Note that, for a handling constructwithH handle let𝑥 = M1 inM2, ifM1 is
an algebraic operation call, it captures the continuation like withH handle let𝑥 = return [] inM2,
where the nearest handling construct remains, but it may be transformed by the term M2 when
invoked. Thus, what can be ensured is only that M2 may capture the continuation involving the
nearest handling construct. The rule (HT_Op) for operation calls might look tricky, but it would be
easily seen by considering 𝜎 (V ;𝑥 .M) as let𝑥 = 𝜎 (V ;𝑦. return𝑦) inM . Then, the initial answer type
Aini and final answer type Afin of 𝜎 (V ;𝑦. return𝑦) should be matched with those assigned to 𝜎 by
operation signature Σ. Because the typing rule assumes Γ, 𝑥 : T ari ⊢ M : Σ ⊲ T /A ⇒ Aini, the initial
and final answer types of the let expression let𝑥 = 𝜎 (V ;𝑦. return𝑦) inM can be the types A and
Afin, respectively, by following (HT_Let). The rule (HT_Handle) typechecks a handling construct
withH handleM if: the operation signature Σ used to typecheck the handled term M is matched
with the operation clauses in the effect handler H ; and the initial answer type of M is matched
with the type of the return clause’s body (this is required because the delimited continuation of the

5As the pure control effect □ only allows installing an unbounded number of effect handlers on pure terms, the encoding of
natural numbers might be still rejected even in the presence of □. We leave this question open for future work.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:18 Taro Sekiyama and Hiroshi Unno

handled term M is withH handle return [] , whose behavior is determined by the return clause).
Then, (HT_Handle) assigns to the handling construct the final answer type Cfin of the handled
term because it specifies the term to which the handling construct is finally transformed.

4.4 Examples
This section shows thatHEPCFATM is expressive enough to accept effect handlers for exception han-
dling, mutable state, and nondeterminism. We also present an example that cannot be typechecked
in HEPCFATM due to the restriction by ATM. Finally, we compare HEPCFATM with the calculus
GEPCF [Dal Lago and Ghyselen 2024] from the perspective of expressivity via the examples.

Well-Typed Examples. We first show three effect handlers that are successfully typechecked in
HEPCFATM.

Example 4.1 (Exception Handling). LetHR
def
= {return𝑥 ↦→ return𝑥}⊎{Raise(𝑥 ;𝑘) ↦→ return 1}.

This effect handler provides a clause of the operation Raise that discards the parameter 𝑥 and the
continuation 𝑘 and simply returns the enum constant 1. Thus, for a term withHR handleM , if the
handled term M calls Raise, the handling construct returns 1. When M evaluates to a value, the
handling construct returns the value itself as the return clause of HR returns a given value 𝑥 . An
operation signature ΣR for HR can be given by

{Raise : unit⇝ 0 /C ⇒ (Σ ⊲ n /A ⇒ A)}

for arbitrary C, Σ, A, and 𝑛 ≥ 1. Then, the type system typechecks the term withHR handleM as

Γ ⊢ M : ΣR ⊲ T / (Σ′ ⊲ T /A′ ⇒ A′) ⇒ Cfin

Γ, 𝑥 : T ⊢ return𝑥 : Σ′ ⊲ T /A′ ⇒ A′

Γ, 𝑥 : unit, 𝑘i : 0 → C ⊢ return 1 : Σ ⊲ n /A ⇒ A

Γ ⊢ withHR handleM : Cfin HT_Handle

where Σ′, T , A′, and Cfin can be arbitrary as long as the first premise is derivable. If the term
M may call Raise but does not modify answer types, we can let T = n, Σ′ = Σ, A′ = A, and
C = Cfin = Σ ⊲ n /A ⇒ A and simplify the typing derivation as:

Γ ⊢ M : ΣR ⊲ n / (Σ ⊲ n /A ⇒ A) ⇒ (Σ ⊲ n /A ⇒ A)
Γ, 𝑥 : n ⊢ return𝑥 : Σ ⊲ n /A ⇒ A

Γ, 𝑥 : unit, 𝑘i : 0 → C ⊢ return 1 : Σ ⊲ n /A ⇒ A

Γ ⊢ withHR handleM : (Σ ⊲ n /A ⇒ A)
HT_Handle

Example 4.2 (Mutable State). Consider the following effect handler HSG for the operations Set
and Get to manipulate a global Boolean reference:

HSG
def
= {return𝑥 ↦→ return 𝜆𝑦.return𝑥} ⊎

{Set(𝑥 ;𝑘) ↦→ return 𝜆𝑦.let 𝑧 = 𝑘 1 in 𝑧 𝑥} ⊎ {Get(𝑥 ;𝑘) ↦→ return 𝜆𝑦.let 𝑧 = 𝑘 𝑦 in 𝑧 𝑦} .

Let C def
= Σ ⊲ (2 → Σ ⊲ T /A ⇒ A) /A ⇒ A for some Σ, T , and A. If we admit identifying the base

type bool with the enum type 2, the effect handler HSG can be typechecked against the operation
signature ΣSG defined to be

{Set : bool⇝ 1 /C ⇒ C} ⊎ {Get : unit⇝ 2 /C ⇒ C} .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:19

For example, Set’s clause is typechecked as follows:
...

Γ′ ⊢ 𝑘 1 : C
HT_App

...

Γ′, 𝑧 : 2 → Σ ⊲ T /A ⇒ A ⊢ 𝑧 𝑥 : Σ ⊲ T /A ⇒ A
HT_App

Γ′ ⊢ let 𝑧 = 𝑘 1 in 𝑧 𝑥 : Σ ⊲ T /A ⇒ A
HT_Let

Γ, 𝑥 : bool, 𝑘 : 1 → C ⊢ return 𝜆𝑦.let 𝑧 = 𝑘 1 in 𝑧 𝑥 : C
HT_Return, HT_Abs

where Γ′ = Γ, 𝑥 : bool, 𝑘 : 1 → C, 𝑦 : 2. We can also typecheck Get’s clause in a similar way.

Example 4.3 (Nondeterminism). As the third example, we consider nondeterministic computation
with an effect operation Decide. The operation Decide returns a value of the enum type 2, so
its continuation may have two branches and the return value of Decide decides which branch is
executed. We define an operation signature ΣD for Decide to be

{Decide : unit⇝ 2 / (Σ ⊲ n /A ⇒ A) ⇒ (Σ ⊲ n /A ⇒ A)}
for some Σ, A, and n, where the type n is of the values returned by the branches of Decide’s caller.
As an implementation of Decide, we give the following effect handler:

HD
def
= {return𝑥 ↦→ return𝑥} ⊎ {Decide(𝑥 ;𝑘) ↦→ let𝑦1 = 𝑘 1 in let𝑦2 = 𝑘 2 inmax(𝑦1, 𝑦2)}

where max(𝑦1, 𝑦2) is a term returning the lager enum constant between 𝑦1 and 𝑦2. A handling
construct installingHD returns the maximum value among the results of the branches of the handled
term. The effect handler HD is typechecked against ΣD as follows:

Γ ⊢ 𝑘 1 : Σ ⊲ n /A ⇒ A Γ, 𝑦1 : n ⊢ 𝑘 2 : Σ ⊲ n /A ⇒ A
Γ, 𝑦1 : n, 𝑦2 : n ⊢ max(𝑦1, 𝑦2) : Σ ⊲ n /A ⇒ A

Γ ⊢ let𝑦1 = 𝑘 1 in let𝑦2 = 𝑘 2 inmax(𝑦1, 𝑦2) : Σ ⊲ n /A ⇒ A
HT_Let

where Γ = Γ′, 𝑥 : unit, 𝑘 : 2 → Σ ⊲ n /A ⇒ A for some Γ′.

Ill-Typed Examples. As explained in Section 2, ATM bounds the number of effect handlers
made active at the same time. More concretely, for an HEPCFATM term M of a computation
type Σ1 ⊲ T1 /C1 ⇒ (Σ2 ⊲ T2 /C2 ⇒ (· · · (Σn ⊲ Tn /Cn ⇒ T) · · ·)), our type system only
allows installing at most 𝑛 − 1 effect handlers on the term M . Therefore, for instance, a term
withHn handle (withHn−1 handle (· · · (withH1 handleM) · · ·)) with 𝑛 effect handlers H1, · · · ,Hn
is ill typed. If it is well typed, the type of the term withHn−1 handle (· · · (withH1 handleM) · · ·)
with the 𝑛 − 1 effect handlers should be Σn ⊲ Tn /Cn ⇒ T , but our type system does not allow
handling a term of the type Σn ⊲ Tn /Cn ⇒ T because it requires the answer types of a handled term
to be computation types. This restriction of ATM on active effect handlers leads to the rejection of
the term that Dal Lago and Ghyselen [2024] provide to show that algebraic effects and handlers
can encode natural numbers.
To take a closer look at the restriction, we present another term that requires an unbounded

number of effect handlers activated at the same time for being typechecked. It is a variant of the
program given by Kawamata et al. [2024].

Example 4.4 (Unbounded Number of Active Effect Handlers). Consider a recursive function V def
=

fix 𝑓 .𝜆𝑥 .withH handle (𝑓 𝑥) with an effect handler H = {return𝑥 ↦→ return𝑥}. Applying this
function causes an unbounded number of effect handlers to be active at the same time:

V () −→∗ withH handle (V ()) −→∗ withH handle (withH handle (V ())) −→∗ · · ·
Thus, it invalidates the restriction imposed by ATM.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:20 Taro Sekiyama and Hiroshi Unno

To see that the function V is ill typed in HEPCFATM in fact, assume that it can be given a type
unit → ∅ ⊲ unit /Aini ⇒ Afin for some answer types Aini and Afin. Then, the typing judgment

𝑓 : unit → ∅ ⊲ unit /Aini ⇒ Afin, 𝑥 : unit ⊢ withH handle (𝑓 𝑥) : ∅ ⊲ unit /Aini ⇒ Afin

should be derivable. As only (HT_Handle) can be applied to derive it, we can find for the handled
term 𝑓 𝑥 , the typing judgment

𝑓 : unit → ∅ ⊲ unit /Aini ⇒ Afin, 𝑥 : unit ⊢ 𝑓 𝑥 : ∅ ⊲ T /C ⇒ (∅ ⊲ unit /Aini ⇒ Afin)
holds for some T and C. Because the return type of 𝑓 should be matched with the computation
type of the application 𝑓 𝑥 , the equations T = unit, C = Aini, and ∅ ⊲ unit /Aini ⇒ Afin = Afin have
to hold. However, the last equation does not hold actually due to the circularity of Afin.

Comparison with GEPCF. The calculus GEPCF proposed by Dal Lago and Ghyselen [2024] is a
variant of HEPCF and restricts the operation clauses of effect handlers to be the form 𝜎 (𝑥 ;𝑘) ↦→
let𝑦 = M in𝑘 𝑦 where 𝑘 ∉ fv(M). This restriction of GEPCF enables the guarantee for the de-
cidability of the HOMC problem. However, it causes the rejection of the aforementioned effect
handlers HR, HSG, and HD since Raise’ clause in HR discards a given continuation, Set and Get’s
clauses in HSG apply the continuation in a lambda abstraction, and Decide’s clause in HD applies
the continuation twice. On the other hand, the function in Example 4.4 would be well typed in
GEPCF because GEPCF does not restrict the number of effect handlers that can be activated at the
same time. As a result, the expressivity of HEPCFATM and that of GEPCF are incomparable.

4.5 Basic Properties
The calculus HEPCFATM also satisfies progress, subject reduction, and determinacy as EPCF.

Lemma 5 (Progress). If ∅ ⊢ M : C, then one of the following holds: M = returnV for some V ;
M = 𝜎 (V ;𝑥 .M ′) for some 𝜎 , V , 𝑥 , and M ′; or M −→ M ′ for some M ′.

Lemma 6 (Subject Reduction). If Γ ⊢ M : C and M −→ M ′, then Γ ⊢ M ′ : C.

Lemma 7 (Determinacy). If M −→ M1 and M −→ M2, then M1 = M2.

5 Model Checking of HEPCFATM

This section formalizes HOMC for HEPCFATM, gives its example, and shows the decidability of the
HOMC problem via a CPS transformation from HEPCFATM to EPCF.

5.1 Definition
We first introduce the effect trees of HEPCFATM terms, which are defined as in EPCF. A type T is
ground if it is a base type or an enum type.

Definition 8 (Effect Trees for HEPCFATM Computations). Given an operation signature Σ
and a type T , the tree constructor signature SΣT is defined as follows:

SΣT
def
= {𝜎 : 𝑛 + 1 | 𝜎 : B⇝ n /Aini ⇒ Afin ∈ Σ} ∪ {returnV : 0 | ∅ ⊢ V : T } ∪

⋃
c

{c : 0} .

Given a term M such that ∅ ⊢ M : Σ ⊲ T /Aini ⇒ Afin, the effect tree of M, denoted by ET(M), is a
tree in TreeSΣT defined by the following (possibly infinite) process:

• if M −→𝜔 , then ET(M) = ⊥;
• if M −→∗ returnV , then ET(M) = returnV ; and
• if M −→∗ 𝜎 (c;𝑥 .M ′) and 𝜎 : B⇝ n /Aini ⇒ Afin ∈ Σ,
then ET(M) = 𝜎 (c, ET(M ′[1/𝑥]), · · · , ET(M ′[n/𝑥])).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:21

Definition 9 (Top-Level Operation Signatures). An operation signature Σ is top-level if, for
any 𝜎 : Tpar ⇝ T ari /Aini ⇒ Afin ∈ Σ, Tpar = B, T ari = E, and Aini = Afin = T for some B, E, and T .

We consider that well-typed programs to be executed are terms of a computation type Σ ⊲ T / T ⇒
T ′ where the return type and initial answer type are required to coincide. This requirement enables
starting the execution of the programs by passing an identity function as an initial continuation.

Definition 10 (Higher-Order Model Checking Problem for HEPCFATM). Given an APT and
an HEPCFATM term M such that ∅ ⊢ M : Σ ⊲ T / T ⇒ T ′ for some top-level operation signature Σ
and ground types T and T ′, is ET(M) accepted by the APT?

5.2 Example
As an instance of HOMC for HEPCFATM, we consider verifying a term that invokes mutable state
implemented by an effect handler and file manipulation implemented as a primitive effect.

Example 5.1. For readability, we write let𝑥 = 𝜎 (V) inM for the term 𝜎 (V ;𝑥 .M), and M1;M2 for
the term let𝑥 = M1 inM2 with some fresh variable 𝑥 . Let

M def
= withHSG handle let𝑥 = Get(()) in let𝑥 ′ = case(𝑥 ; return false, return true) in

Set(𝑥 ′); let 𝑧 = Get(()) in return 𝑧 .

The term M handles mutable Boolean state using the effect handler HSG defined in Example 4.2.
Consider a term

M0
def
= (fix 𝑓 .𝜆𝑥 .Open(()); let𝑦 = Read(()) in let 𝑧 = M in 𝑧 𝑦;Close(()); 𝑓 𝑥) () ,

which repeats executing the handled term in M with the contents 𝑦 of the opened file as an initial
state. In this term, the operations Set andGet are handled butOpen, Read, andClose are unhandled.
Therefore, only the latter operations appear in the effect tree generated by the term M0. We can
specify the semantics of the unhandled file operations and their desired property by the APT AFile
defined in Example 3.2.

5.3 CPS Transformation
We use the following shorthand to make the definition of our CPS transformation readable.

• A sequence of entities 𝑎1, · · · , 𝑎𝑛 is abbreviated to 𝑎, and its length is denoted by |𝑎 |. Given 𝑎,
we write 𝑎𝑖 to designate the 𝑖-th element of the sequence 𝑎.

• Given 𝑥 = 𝑥1, · · · , 𝑥n, we write 𝜆𝑥.e for the function 𝜆𝑥1.return 𝜆𝑥2 . · · · return 𝜆𝑥n .e.
• Given a term e and a sequence of values v = v1, · · · , vn (𝑛 > 0), we write e v for the EPCF
term let𝑥0 = e in let𝑥1 = 𝑥0 v1 in let𝑥2 = 𝑥1 v2 in · · · let𝑥𝑛−1 = 𝑥𝑛−2 v𝑛−1 in𝑥𝑛−1 vn where the
variables 𝑥0, 𝑥1, · · · 𝑥𝑛−1 are assumed to be fresh.

• For a computation type C = Σ ⊲ T /Aini ⇒ Afin, we write C .Σ to designate the operation
signature Σ.

We also assume that the set of all the operations is totally ordered to ensure the uniqueness of the
CPS transformation.
We now define a CPS transformation for types, values, and terms in HEPCFATM, which will be

explained in detail shortly. Our CPS transformation is a variant of the CPS transformation given by
Kawamata et al. [2024], but they are different in two points. First, our CPS transformation does not
incur administrative reduction (i.e., reduction that does not correspond to any reduction in a source
term) as Plotkin’s colon translation [Plotkin 1975]. Second, it does not require polymorphism, while
Kawamata et al.’s CPS transformation requires it to address the pure control effect □. Our CPS
transformation is defined as if it were to transform values and terms, but actually it is defined on

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:22 Taro Sekiyama and Hiroshi Unno

JTK for value types

JBK def
= B JEK def

= E JT → CK def
= JTK → JCK

JCK for computation types

JΣ ⊲ T /Aini ⇒ AfinK def
= JΣK[(JTK → JAiniK) → JAfinK]

JΣK[𝜏] for operation signatures

J∅K[𝜏] def
= 𝜏

JΣ ⊎ {𝜎 : Tpar ⇝ T ari /Aini ⇒ Afin}K[𝜏] def
= (JTparK → (JT ariK → JAiniK) → JAfinK) → JΣK[𝜏]

(where 𝜎 is lower than any operation in Σ)

JV K for values

J𝑥K def
= 𝑥 JcK def

= c JnK def
= n J𝜆𝑥.MK def

= 𝜆𝑥.return JMK Jfix𝑥 .V K def
= fix𝑥 .JV K

JMK for thunks

JMK def
= 𝜆ℎ, 𝑘.JMK[ℎ | 𝑘] (where ℎ and 𝑘 are fresh and |ℎ | = |Σ|)

JMK[vh | vk] for terms with operation clauses and continuations (|vh | = |Σ| is assumed)

JreturnV K[vh | vk] def
= vk JV K

Jlet𝑥 = M1 inM2K[vh | vk]
def
= JM1K[vh | 𝜆𝑥.JM2K[vh | vk]]

JV1 V2K[vh | vk]
def
= JV1K JV2K vh vk

Jcase(V ;M1, · · · ,Mn)K[vh | vk]
def
= case(JV K; JM1K[vh | vk], · · · , JMnK[vh | vk])

J𝜎i (V ;𝑥 .M)K[vh | vk] def
= vh𝑖 JV K 𝜆𝑥, ℎ, 𝑘.JMK[vh | vk] ℎ 𝑘

(if 𝜎i is the 𝑖-th operation in Σ and
𝜎i : T

par
𝑖
⇝ T ari

𝑖 /Cini
𝑖 ⇒ Afin

𝑖 ∈ Σ and
|Cini

𝑖 .Σ| = |ℎ | and ℎ and 𝑘 are fresh)

J𝜎i (V ;𝑥 .M)K[vh | vk] def
= vh𝑖 JV K 𝜆𝑥 .JMK[vh | vk]

(if 𝜎i is the 𝑖-th operation in Σ and 𝜎i : T
par
𝑖
⇝ T ari

𝑖 / T ini
𝑖 ⇒ Afin

𝑖 ∈ Σ)

JwithH handleMK[vh | vk] def
= JMK[V1, · · · ,Vn | 𝜆𝑥.return JM0K] vh vk
(where H = {return𝑥 ↦→ M0} ⊎ {𝜎i (𝑥i;𝑘i) ↦→ Mi}1≤𝑖≤𝑛 and

∀ 𝑖 ∈ [1, 𝑛] . Vi = 𝜆𝑥i, 𝑘i .return JMiK)

Fig. 7. CPS transformation. In the definition of JMK and JMK[vh | vk], we assume that the computation type
of M is composed of an operation signature Σ.

their typing derivations. Thus, we assume that a computation type—more specifically, its operation
signature—used to typecheck terms is given and mention it in defining the CPS transformation.

Definition 11 (CPS Transformation of Types, Values, and Terms). CPS Transformation J−K
from HEPCFATM to EPCF is defined in Figure 7, mapping

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:23

• value types T to EPCF types JTK,
• computation types C to EPCF types JCK,
• operation signatures Σ to functions that, given a EPCF type 𝜏 , return the EPCF type JΣK[𝜏],
• values V to EPCF values JV K,
• terms M to EPCF values JMK, and
• terms M to EPCF terms JMK[vh | vk] given values vh and vk.

We also write JΓK for the EPCF typing context obtained by CPS-transforming the types of all the
bindings of a typing context Γ.

CPS Transformation of Types. The CPS transformation is defined for both value and computation
types. The transformation of value types is straightforward. The transformation of a computation
type C def

= Σ ⊲ T /Aini ⇒ Afin passes (JTK → JAiniK) → JAfinK to the function JΣK[−]. The
type (JTK → JAiniK) → JAfinK indicates that how the answer type modification is expressed in
CPS-transformed terms: an HEPCFATM term of the type C is transformed into an EPCF term that
takes the continuations of the type JTK → JAiniK and returns an “answer” value of the type JAfinK.
The function JΣK[−] wraps the passed type to take the CPS-transformed operation clauses of an
effect handler matched with the signature Σ. It signifies that an CPS-transformed operation clause
takes a parameter and a continuation.
The CPS transformation reveals that computation types in HEPCFATM bound the number of

continuations passed to HEPCFATM terms. In general, a computation type takes the form Σ1 ⊲

T1 /A1 ⇒ (Σ2 ⊲ T2 /A2 ⇒ (· · · (Σn ⊲ Tn /An ⇒ T) · · ·)). Let us ignore the operation signatures
Σ1, · · · , Σn now as they are not important here. Then, the computation type is CPS-transformed
into the type (JT1K → JA1K) → (JT2K → JA2K) → · · · → (JTnK → JAnK) → JTK, which ensures
that a CPS-transformed term of this type takes only 𝑛 continuations. This “bounded finiteness”
for the number of continuations is critical to guarantee the decidability of the HOMC problem.
The use of an unbounded number of continuations allows encoding arbitrary data of an infinite
domain, such as natural numbers, into the control flow, as shown by Dal Lago and Ghyselen [2024]
for HEPCF which does not bound the number of continuations passed to effectful terms.

CPS Transformation of Values and Terms. The CPS transformation for values is defined straight-
forwardly. For terms, there are two kind of transformations. One is JMK, which transforms a “thunk”
term M , which corresponds to the body of a function, a return clause, or an operation clause.
The thunks expect operation clauses and a continuation to be passed from a call site. Another
is JMK[vh | vk], which transforms a term M with CPS-transformed operation clauses vh and a
continuation vk. Kawamata et al.’s CPS transformation takes them as object-level arguments, but it
causes administrative reduction and prevents us from proving that the evaluation of a source term
is simulated only by the evaluation sequence of its CPS-transformed result (Lemma 10). Passing
the operation clauses and the continuation during the transformation enables us to get rid of
administrative reduction, which leads to establishing a more precise semantic relationship between
source and CPS-transformed terms. If we only focus on the decidability of HOMC, we could admit
administrate reduction. However, we expect that identifying the precise semantic relationship
between source and CPS-transformed terms would be useful in studying the time complexity of
HOMC via the CPS transformation, although the research on time complexity is left as future work.
Finally, it should be noted how we transform an algebraic operation call 𝜎i (V ;𝑥 .M), which

depends on what initial answer type is assigned to 𝜎i. If it is a computation type, the operation
call may be handled by an effect handler. Then, the continuation passed to the CPS-transformed
operation clause vh𝑖 of 𝜎i should be functionalized because vh𝑖 uses the continuation as a function. As
we mentioned, the body of a function is a thunk, which takes operation clauses and continuations

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:24 Taro Sekiyama and Hiroshi Unno

from call sites. Thus, in this case, the continuation is eta-expanded to take them as ℎ and 𝑘 (if the
continuation is not eta-expanded, an administrative reduction corresponding to the eta-expansion
will happen). If the initial answer type of 𝜎i is a value type T ini

𝑖 , then the eta-expanded continuation
cannot be typed at JT ari

𝑖 K → JT ini
𝑖 K, where T ari

𝑖 is the arity type of 𝜎 . This would result in breaking
type preservation of the CPS transformation. Therefore, in this case, we use the continuation not
being eta-expanded.

5.4 Properties
First, we show that the effect tree of a well-typed HEPCFATM term is well defined.

Lemma 8 (Well-Definedness of HEPCFATM Effect Trees). If ∅ ⊢ M : Σ ⊲ T /Aini ⇒ Afin and
Σ is top-level, then ET(M) is well defined and uniquely determined, and it is in TreeSΣT .

In the rest, we show the properties of the CPS transformation and how it enables to reduce the
decidability of HOMC for HEPCFATM to that for EPCF.

We start by showing that our CPS transformation is type- and semantics-preserving. We denote
the set of the variables in a typing context Δ by dom(Δ), and write Δ1 ⪯ Δ2 if dom(Δ1) ⊆ dom(Δ2)
and, for any 𝑥 ∈ dom(Δ1), Δ1 (𝑥) = Δ2 (𝑥). We also write e −→+ e′ if e −→𝑛 e′ for some 𝑛 > 0.

Definition 12 (Typed CPS Operation Clauses). Let Σ = {𝜎i : Tpar
𝑖
⇝ T ari

𝑖 /Aini
𝑖 ⇒ Afin

𝑖 }1≤𝑖≤𝑛

where 𝜎1, · · · , 𝜎n are ordered. For a value sequence vh = vh1 , · · · , vh𝑛 , we write Ξ || Δ ⊢ vh : Σ if, for
each 𝑖 ∈ [1, 𝑛], Ξ || Δ ⊢ vh𝑖 : JTpar

𝑖
K → (JT ari

𝑖 K → JAini
𝑖 K) → JAfin

𝑖 K holds.

Lemma 9 (Type Preservation of the CPS Transformation). Assume that JΓK ⪯ Δ.
• If Γ ⊢ V : T, then Ξ || Δ ⊢ JV K : JTK for any Ξ.
• If Γ ⊢ M : Σ ⊲ T /Aini ⇒ Afin and Ξ || Δ ⊢ vh : Σ and Ξ || Δ ⊢ vk : JTK → JAiniK, then
Ξ || Δ ⊢ JMK[vh | vk] : JAfinK.

• If Γ ⊢ M : C, then Ξ || Δ ⊢ JMK : JCK for any Ξ.

Proof. Straightforward by mutual induction on the typing derivations. □

Lemma 10 (Simulation up to Reduction). If Γ ⊢ M : Σ ⊲ T /Aini ⇒ Afin and M −→ M ′, then,
for any vh and vk such that |vh | = |Σ|, either of the following holds:

• M ′ −→∗ 𝜎 (V0;𝑥 .M0) and JMK[vh | vk] = J𝜎 (V0;𝑥 .M0)K[vh | vk] for some 𝜎,V0, 𝑥,M0; or
• M ′ −→∗ M ′′ and JMK[vh | vk] −→+ JM ′′K[vh | vk] for some M ′′.

Proof. The proof is straightforward by case analysis on the evaluation M −→ M ′. □

Next, we show that the CPS transformation is “compatible” with effect tree generation. Before
that, we define CPS transformation for HEPCFATM effect trees.

Definition 13 (CPS Transformation for Effect Trees). Given an HEPCFATM effect tree
ET(M) and an EPCF value v, the tree JET(M)K[v] is defined coinductively as follows:

J⊥K[v] def
= ⊥ JreturnV K[v] def

= ET(v JV K)
J𝜎 (c, ET(M1), · · · , ET(Mn))K[v]

def
= 𝜎 (c, JET(M1)K[v], · · · , JET(Mn)K[v])

Lemma 11 (Compatibility between CPS Transformation and Effect Tree Generation).
Let Σ = {𝜎i : Bi ⇝ Ei / Ti ⇒ Ti}1≤𝑖≤𝑛 and Ξ = {𝜎i : Bi ⇝ Ei}1≤𝑖≤𝑛 . Assume that ∅ ⊢ M :
Σ ⊲ T /Aini ⇒ Afin and 𝜎1, · · · , 𝜎n are ordered. Let vh = vh1 , · · · , vh𝑛 such that, for any 𝑖 ∈ [1, 𝑛],
vh𝑖 = 𝜆𝑥, 𝑘.𝜎i (𝑥 ;𝑦. 𝑘 𝑦) for some distinct variables 𝑥 , 𝑘 , and 𝑦. Also, let vk be a value such that
Ξ || ∅ ⊢ vk : JTK → JAiniK. Then, ET(JMK[vh | vk]) = JET(M)K[vk].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:25

Proof. By coinduction on the equivalence of trees. It is easy to confirm that both JET(M)K[vk]
and ET(JMK[vh | vk]) are in TreeS′ where S′ = SΞ

JAfinK
. □

Lemma 11 indicates that, by taking the identity continuation as vk—it is possible when T = Aini—
and assuming the value type T of M to be ground—that is, to be a base type or an enum type—we
can conclude ET(JMK[vh | vk]) = ET(M).

Theorem 2 (Preservation of Effect Trees). Let Σ = {𝜎i : Bi ⇝ Ei / Ti ⇒ Ti}1≤𝑖≤𝑛 and T be a
ground type. Assume that ∅ ⊢ M : Σ ⊲ T / T ⇒ Afin and 𝜎1, · · · , 𝜎n are ordered. Let vh = vh1 , · · · , vh𝑛
such that, for any 𝑖 ∈ [1, 𝑛], vh𝑖 = 𝜆𝑥, 𝑘.𝜎i (𝑥 ;𝑦. 𝑘 𝑦) for some distinct variables 𝑥 , 𝑘 , and 𝑦. Also, let
vk = 𝜆𝑥 .return𝑥 . Then, ET(JMK[vh | vk]) = ET(M).

Because JMK[vh | vk] is of an EPCF term of JAfinK by the type preservation of the CPS transfor-
mation (Lemma 9), the HOMC problem for HEPCFATM is decidable if Afin is a ground value type,
by the decidability for EPCF terms (Theorem 1).

Corollary 1 (Decidability of Model Checking for HEPCFATM). The higher-order model
checking problem for HEPCFATM is decidable.

We have proved that, once an HEPCFATM term is typechecked, its HOMC is decidable. The
remaining issue is whether the type inference problem of HEPCFATM is decidable. In this paper,
we do not formally address the type inference of HEPCFATM, but we conjecture that it is decidable
because we can implement it by adapting a sound, complete, and decidable type inference algorithm
for the delimited control operator set shift0/reset0with ATM [Materzok and Biernacki 2011], which
has the expressivity similar to effect handlers [Forster et al. 2017].

6 Implementation
In this section, we describe our prototype implementation of HOMC for HEPCFATM. Our tool
EffCaml takes as input an HEPCFATM term written in a subset of OCaml 5 (it enables the reuse of
the OCaml 5 syntax to write programs with effect handlers) and an alternating tree automaton (ATA)
as a specification of the primitive effects and the property of interest. ATAs are the same as APTs
where parity conditions always hold. ATAs can express safety properties but not liveness properties
in general, while APTs can express both. Our tool treats only ATAs because our backend higher-
ordermodel checker HorSat2 [Broadbent and Kobayashi 2013; Kobayashi 2016] only supports ATAs.
Given the input, our tool first checks if the input term is well typed. This checking is implemented
as type inference, which infers the type of the input term (and those of its subterms) according to
HEPCFATM’s type system; if the type inference fails, the tool rejects the input. The type inference
is implemented by adapting the unification-based type inference algorithm proposed by Materzok
and Biernacki [2011] for the delimited control operator set shift0/reset0. Our implementation of the
type inference is similar to the one in the refinement type checker developed by Kawamata et al.
[2024]. The only difference from Kawamata et al. is that we need to prevent the use of the pure
control effect □, but it only brings a minor change in the algorithm. If the type checking succeeds,
our tool then transforms the given HEPCFATM term along with the inferred type information. The
transformation is based on the CPS transformation presented in Section 5.3. While the presented
CPS transformation outputs an EPCF term, the transformation implemented in our tool outputs
a HORS to reuse HorSat2 as the backend. Note that the adaptation of the CPS transformation
to HORS poses no challenge. Finally, the obtained HORS and the input ATA are fed to HorSat2,
which returns whether the HORS satisfies the specification expressed by the ATA.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:26 Taro Sekiyama and Hiroshi Unno

Table 1. Experiment results of our HOMC tool.

File name Lines of code Safe/Unsafe Result correct? Time (sec.)

file.ml 53 Safe Yes 0.005
file_unsafe.ml 52 Unsafe Yes 0.004
immutable_false.ml 42 Safe Yes 0.004
immutable_mutable_set_not_b_false.ml 64 Safe Yes 0.004
immutable_set_not_b_false.ml 44 Safe Yes 0.004
immutable_true.ml 42 Safe Yes 0.004
mutable_false.ml 43 Safe Yes 0.004
mutable_immutable_set_not_b_false.ml 63 Unsafe Yes 0.004
mutable_set_not_b_false.ml 45 Unsafe Yes 0.005
mutable_true.ml 43 Safe Yes 0.003

To test the correctness and performance of our tool, we conducted a preliminary experiment
with the examples presented in the paper. The experiment is conducted on the machine with 12th
Gen Intel(R) Core(TM) i7-1270P 2.20 GHz, 32 GB of memory. Table 1 displays the experimental
results. The instances that the program should behave as specified by the ATA are marked “Safe”
(otherwise, marked “Unsafe”). The first two instances (file.ml and file_unsafe.ml) verify if
the file operations are used correctly, and the others verify if programs with mutable state do not
perform Raise. Due to the limitation of the backend model checker HorSat2, we only verify safety
properties. The result shows that our tool successfully verifies or falsifies all the instances in a
reasonable time, but it would be because the programs and ATAs are small. It is left as future work
to evaluate our tool for larger, complex instances in terms of both programs and specifications.

7 Related Work
The verification of effectful higher-order programs have gained a lot of attention thus far. One of the
automated verificationmethodologies for higher-order programs is the HOMC for HORS [Kobayashi
2009; Ong 2006]. As explained in Section 1, several extensions to effectful programs has been
proposed [Kobayashi 2009; Kobayashi et al. 2019; Sato et al. 2013], but Dal Lago and Ghyselen
[2024] is the first who successfully extendedHOMC to general algebraic effects. They also considered
an extension to effect handlers, proved the undecidability of the HOMC problem for the extension,
defined GEPCF, a variant of PCF that only supports restricted effect handlers, and showed the
decidability of the HOMC problem for GEPCF. As discussed in Section 4.4, HEPCFATM and GEPCF
are incomparable, and it is left open whether we can take the best of both worlds.
Another major approach is to use program logics. Several researchers have proposed program

logics to address a variety of computation effects in a unified manner using algebraic effects [Kidney
et al. 2024; Matache and Staton 2019; Plotkin and Pretnar 2008] or to reason about programs with
effect handlers [de Vilhena and Pottier 2021; Luksic and Pretnar 2020]. These works aim to construct
deductive proof systems for effectful programs, while we focus on a model checking approach
(after typechecking), which facilitates automated verification.

A research line orthogonal to HOMC is the application of effect systems to safety or temporal
verification in the presence of certain control operators including effect handlers [Gordon 2020;
Kawamata et al. 2024; Sekiyama and Unno 2023; Song et al. 2022; Swamy et al. 2013]. An advantage
of employing effect systems is that they can work well even on infinite data domains. However,
it is unclear how efficiently and automatically these approaches work for temporal verification,
while several HOMC tools that can address temporal verification have been developed [Kobayashi

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:27

et al. 2011, 2010; Ramsay et al. 2014]. Swamy et al. [2013] developed F∗, a proof-oriented effectful
language, but it only supports safety properties, while HOMC can also address liveness properties.
Kawamata et al. [2024] defined a refinement type system for effect handlers and developed a
verification tool based on it, but they also focus only on safety properties. Song et al. [2022] studied
temporal safety verification, but temporal liveness verification is out of their scope.

Schuster et al. [2020] studied a compilation technique for lexically scoped effect handlers, which
are passed as arguments to operation calls to be handled, unlike dynamic effect handlers addressed
in this work, which are sought on a run-time continuation stack when an algebraic operation is
called. For efficient compilation, Schuster et al.’s type system tracks a finite list of answer types.
Schuster et al. call the answer type list a stack shape, which implements simplified ATM. In Schuster
et al.’s type system, a type of a computation takes the form [T ′]T where T ′ is the value type and
T is the stack shape of the computation. When T = T1, · · · , Tn, the type [T ′]T corresponds to the
HEPCFATM computation type T ′ /A1 ⇒ A1 (without operation signatures because Schuster et al.’s
type system do not consider them) with answer types A1, . . . ,An defined as, for 𝑖 ∈ [1, 𝑛 − 1],
Ai

def
= Ti /A𝑖+1 ⇒ A𝑖+1 and An

def
= Tn. This view is also encouraged by Schuster et al.’s iterated

CPS transformation, which is defined similarly to ours. Thus, adapting stack shapes to dynamic
effect handlers could guarantee the decidability of HOMC. However, unlike stack shapes, the full
ATM can also modify answer types. This distinctive feature of ATM enables verifying the temporal
safety properties of handled operations as well. For instance, Kawamata et al. [2024] showed that
ATM enables verifying the safe use of the file operations even if they are implemented by an effect
handler. It seems hard to verify such a property of handled operations using stack shapes.

8 Conclusion
This paper studies the decidability of the model checking problem for higher-order programs with
algebraic effects and handlers. Dal Lago and Ghyselen [2024] showed that it is undecidable in
general. We analyzed the counterexample to the decidability given by Dal Lago and Ghyselen and
found that one cause of the undecidability is to make an unbounded number of effect handlers active
at the same time, which enables the encoding of natural numbers. To prevent it while allowing
a wide range of effect implementations by effect handlers, we apply answer-type modification
(ATM), which not only allows modification of answer types but also bounds the number of effect
handlers made active at the same time. To show that ATM ensures the decidability of the HOMC
problem, we define a variant HEPCFATM of PCF with effect handlers and ATM and give a type- and
semantics-preserving CPS transformation from HEPCFATM to EPCF for which HOMC is decidable.
There are several directions for future work. One important step for practice is to combine the

present work with the approaches to extending HOMC to infinite data domains [Kobayashi and
Igarashi 2013; Kobayashi et al. 2011, 2010; Matsumoto et al. 2015; Ong and Ramsay 2011; Unno et al.
2010]. Another direction is to analyze the time complexity of the HOMC problem for HEPCFATM.
Because the HOMC problem forHEPCFATM is reduced to that for EPCF, we could start by exploring
the time complexity of the latter. Finally, it is known that there exists some relationship between
HORS and higher-order fixpoint logic (HFL) [Kobayashi et al. 2017]. It is an interesting question
whether there is such a relationship between effectful terms (or effect trees) and HFL.

Acknowledgments
We thank the anonymous reviewers for their fruitful comments on the submission. We are also
grateful to Ugo Dal Lago for the comments on the early draft. This work was partly supported by
JSPS KAKENHI Grant Numbers JP22K17875, JP24H00699, JP20H04162, JP22H03564, JP22H03570,
and JP20H05703, as well as JST CREST Grant Number JPMJCR21M3.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

365:28 Taro Sekiyama and Hiroshi Unno

References
Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press.
Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In Verification, Model Checking, and Abstract

Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings (Lecture Notes
in Computer Science, Vol. 6538), Ranjit Jhala and David A. Schmidt (Eds.). Springer, 70–87. https://doi.org/10.1007/978-3-
642-18275-4_7

Christopher H. Broadbent and Naoki Kobayashi. 2013. Saturation-BasedModel Checking of Higher-Order Recursion Schemes.
In Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy (LIPIcs, Vol. 23), Simona Ronchi Della
Rocca (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 129–148. https://doi.org/10.4230/LIPICS.CSL.2013.129

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang. 1990. Symbolic Model Checking:
10ˆ20 States and Beyond. In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90), Philadelphia,
Pennsylvania, USA, June 4-7, 1990. IEEE Computer Society, 428–439. https://doi.org/10.1109/LICS.1990.113767

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). 2018. Handbook of Model Checking.
Springer. https://doi.org/10.1007/978-3-319-10575-8

Youyou Cong and Kenichi Asai. 2022. Understanding Algebraic Effect Handlers via Delimited Control Operators. In
Trends in Functional Programming - 23rd International Symposium, TFP 2022, Virtual Event, March 17-18, 2022, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 13401), Wouter Swierstra and Nicolas Wu (Eds.). Springer, 59–79.
https://doi.org/10.1007/978-3-031-21314-4_4

Youyou Cong, Chiaki Ishio, Kaho Honda, and Kenichi Asai. 2021. A Functional Abstraction of Typed Invocation Contexts.
In 6th International Conference on Formal Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos
Aires, Argentina (Virtual Conference) (LIPIcs, Vol. 195), Naoki Kobayashi (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 12:1–12:18. https://doi.org/10.4230/LIPICS.FSCD.2021.12

Ugo Dal Lago. 2024. Private communication.
Ugo Dal Lago and Alexis Ghyselen. 2024. On Model-Checking Higher-Order Effectful Programs. Proc. ACM Program. Lang.

8, POPL (2024), 2610–2638. https://doi.org/10.1145/3632929
Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming. 151–160. https:

//doi.org/10.1145/91556.91622
Paulo Emílio de Vilhena and François Pottier. 2021. A separation logic for effect handlers. Proc. ACM Program. Lang. 5,

POPL (2021), 1–28. https://doi.org/10.1145/3434314
Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2017. On the expressive power of user-defined effects: effect

handlers, monadic reflection, delimited control. PACMPL 1, ICFP (2017), 13:1–13:29. https://doi.org/10.1145/3110257
Colin S. Gordon. 2020. Lifting Sequential Effects to Control Operators. In 34th European Conference on Object-Oriented

Programming, ECOOP 2020 (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 23:1–23:30. https://doi.org/10.4230/LIPIcs.ECOOP.2020.23

Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. 2008. Collapsible Pushdown Automata and
Recursion Schemes. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008,
24-27 June 2008, Pittsburgh, PA, USA. IEEE Computer Society, 452–461. https://doi.org/10.1109/LICS.2008.34

Chiaki Ishio and Kenichi Asai. 2022. Type System for Four Delimited Control Operators. In Proceedings of the 21st ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experiences, GPCE 2022, Auckland, New
Zealand, December 6-7, 2022, Bernhard Scholz and Yukiyoshi Kameyama (Eds.). ACM, 45–58. https://doi.org/10.1145/
3564719.3568691

Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. ACM Comput. Surv. 41, 4 (2009), 21:1–21:54. https:
//doi.org/10.1145/1592434.1592438

Yukiyoshi Kameyama and Takuo Yonezawa. 2008. Typed Dynamic Control Operators for Delimited Continuations. In
Functional and Logic Programming, 9th International Symposium, FLOPS 2008. 239–254. https://doi.org/10.1007/978-3-
540-78969-7_18

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN International Conference on
Functional Programming, ICFP 2013. 145–158. https://doi.org/10.1145/2500365.2500590

Fuga Kawamata, Hiroshi Unno, Taro Sekiyama, and Tachio Terauchi. 2024. Answer Refinement Modification: Refinement
Type System for Algebraic Effects and Handlers. Proc. ACM Program. Lang. 8, POPL (2024), 115–147. https://doi.org/10.
1145/3633280

Donnacha Oisín Kidney, Zhixuan Yang, and Nicolas Wu. 2024. Algebraic Effects Meet Hoare Logic in Cubical Agda. Proc.
ACM Program. Lang. 8, POPL (2024), 1663–1695. https://doi.org/10.1145/3632898

Naoki Kobayashi. 2009. Types and higher-order recursion schemes for verification of higher-order programs. In Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 416–428. https://doi.org/10.1145/1480881.1480933

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.4230/LIPICS.CSL.2013.129
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-031-21314-4_4
https://doi.org/10.4230/LIPICS.FSCD.2021.12
https://doi.org/10.1145/3632929
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/3434314
https://doi.org/10.1145/3110257
https://doi.org/10.4230/LIPIcs.ECOOP.2020.23
https://doi.org/10.1109/LICS.2008.34
https://doi.org/10.1145/3564719.3568691
https://doi.org/10.1145/3564719.3568691
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-540-78969-7_18
https://doi.org/10.1007/978-3-540-78969-7_18
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/3633280
https://doi.org/10.1145/3633280
https://doi.org/10.1145/3632898
https://doi.org/10.1145/1480881.1480933

Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification 365:29

Naoki Kobayashi. 2013. Model Checking Higher-Order Programs. J. ACM 60, 3 (2013), 20:1–20:62. https://doi.org/10.1145/
2487241.2487246

Naoki Kobayashi. 2016. HorSat2: A Saturation-Based Model Checker for Higher-Order Recursion Schemes. Private
communication. Available at https://github.com/hopv/horsat2..

Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2019. On the Termination Problem for Probabilistic Higher-Order
Recursive Programs. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. IEEE, 1–14. https://doi.org/10.1109/LICS.2019.8785679

Naoki Kobayashi and Atsushi Igarashi. 2013. Model-Checking Higher-Order Programs with Recursive Types. In Programming
Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in
Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 431–450. https://doi.org/10.1007/
978-3-642-37036-6_24

Naoki Kobayashi, Étienne Lozes, and Florian Bruse. 2017. On the relationship between higher-order recursion schemes
and higher-order fixpoint logic. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,
246–259. https://doi.org/10.1145/3009837.3009854

Naoki Kobayashi and C.-H. Luke Ong. 2009a. A Type System Equivalent to the Modal Mu-Calculus Model Checking of
Higher-Order Recursion Schemes. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS
2009, 11-14 August 2009, Los Angeles, CA, USA. IEEE Computer Society, 179–188. https://doi.org/10.1109/LICS.2009.29

Naoki Kobayashi and C.-H. Luke Ong. 2009b. A Type System Equivalent to the Modal Mu-Calculus Model Checking of
Higher-Order Recursion Schemes. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS
2009. IEEE Computer Society, 179–188. https://doi.org/10.1109/LICS.2009.29

Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. 2011. Predicate abstraction and CEGAR for higher-order model checking.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 222–233. https://doi.org/10.1145/
1993498.1993525

Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. 2010. Higher-order multi-parameter tree transducers and recursion
schemes for program verification. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM,
495–508. https://doi.org/10.1145/1706299.1706355

Sam Lindley. 2014. Algebraic effects and effect handlers for idioms and arrows. In Proceedings of the 10th ACM SIGPLAN
workshop on Generic programming, WGP 2014, Gothenburg, Sweden, August 31, 2014, José Pedro Magalhães and Tiark
Rompf (Eds.). ACM, 47–58. https://doi.org/10.1145/2633628.2633636

Ziga Luksic and Matija Pretnar. 2020. Local algebraic effect theories. J. Funct. Program. 30 (2020), e13. https://doi.org/10.
1017/S0956796819000212

Cristina Matache and Sam Staton. 2019. A Sound and Complete Logic for Algebraic Effects. In Foundations of Software Science
and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings (Lecture Notes in
Computer Science, Vol. 11425), Mikolaj Bojanczyk and Alex Simpson (Eds.). Springer, 382–399. https://doi.org/10.1007/978-
3-030-17127-8_22

Marek Materzok and Dariusz Biernacki. 2011. Subtyping Delimited Continuations. In Proceeding of the 16th ACM SIGPLAN
international conference on Functional Programming, ICFP 2011, Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier
Danvy (Eds.). ACM, 81–93. https://doi.org/10.1145/2034773.2034786

Yuma Matsumoto, Naoki Kobayashi, and Hiroshi Unno. 2015. Automata-Based Abstraction for Automated Verification of
Higher-Order Tree-Processing Programs. In Programming Languages and Systems - 13th Asian Symposium, APLAS 2015,
Pohang, South Korea, November 30 - December 2, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9458), Xinyu
Feng and Sungwoo Park (Eds.). Springer, 295–312. https://doi.org/10.1007/978-3-319-26529-2_16

C.-H. Luke Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In 21th IEEE Symposium
on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings. IEEE Computer Society, 81–90.
https://doi.org/10.1109/LICS.2006.38

C.-H. Luke Ong and Steven J. Ramsay. 2011. Verifying higher-order functional programs with pattern-matching algebraic
data types. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 587–598. https://doi.org/10.1145/
1926385.1926453

Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci. 1, 2 (1975), 125–159.
https://doi.org/10.1016/0304-3975(75)90017-1

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1145/2487241.2487246
https://github.com/hopv/horsat2
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.1007/978-3-642-37036-6_24
https://doi.org/10.1007/978-3-642-37036-6_24
https://doi.org/10.1145/3009837.3009854
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1145/1706299.1706355
https://doi.org/10.1145/2633628.2633636
https://doi.org/10.1017/S0956796819000212
https://doi.org/10.1017/S0956796819000212
https://doi.org/10.1007/978-3-030-17127-8_22
https://doi.org/10.1007/978-3-030-17127-8_22
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1007/978-3-319-26529-2_16
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1145/1926385.1926453
https://doi.org/10.1145/1926385.1926453
https://doi.org/10.1016/0304-3975(75)90017-1

365:30 Taro Sekiyama and Hiroshi Unno

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223–255. https:
//doi.org/10.1016/0304-3975(77)90044-5

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11, 1
(2003), 69–94. https://doi.org/10.1023/A:1023064908962

Gordon D. Plotkin and Matija Pretnar. 2008. A Logic for Algebraic Effects. In Proceedings of the Twenty-Third Annual IEEE
Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA. IEEE Computer Society, 118–129.
https://doi.org/10.1109/LICS.2008.45

Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems, 18th
European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, Proceedings. 80–94. https://doi.org/10.1007/978-3-642-00590-9_7

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (2013).
https://doi.org/10.2168/LMCS-9(4:23)2013

Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October - 1 November 1977. IEEE Computer Society, 46–57. https://doi.org/10.1109/
SFCS.1977.32

Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. Invited tutorial paper. In The 31st Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2015, Nijmegen, The Netherlands, June 22-25, 2015 (Electronic
Notes in Theoretical Computer Science, Vol. 319), Dan R. Ghica (Ed.). Elsevier, 19–35. https://doi.org/10.1016/J.ENTCS.
2015.12.003

Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong. 2014. A type-directed abstraction refinement approach to
higher-order model checking. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 61–72.
https://doi.org/10.1145/2535838.2535873

John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM
Annual Conference - Volume 2 (ACM ’72). 717–740. https://doi.org/10.1145/800194.805852

Sylvain Salvati and Igor Walukiewicz. 2014. Krivine machines and higher-order schemes. Inf. Comput. 239 (2014), 340–355.
https://doi.org/10.1016/J.IC.2014.07.012

Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. 2013. Towards a scalable software model checker for higher-order
programs. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation, PEPM
2013, Elvira Albert and Shin-Cheng Mu (Eds.). ACM, 53–62. https://doi.org/10.1145/2426890.2426900

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2020. Compiling effect handlers in capability-
passing style. Proc. ACM Program. Lang. 4, ICFP (2020), 93:1–93:28. https://doi.org/10.1145/3408975

Taro Sekiyama and Hiroshi Unno. 2023. Temporal Verification with Answer-Effect Modification: Dependent Temporal
Type-and-Effect System with Delimited Continuations. Proc. ACM Program. Lang. 7, POPL, Article 71 (2023), 32 pages.
https://doi.org/10.1145/3571264

Yahui Song, Darius Foo, and Wei-Ngan Chin. 2022. Automated Temporal Verification for Algebraic Effects. In Programming
Languages and Systems - 20th Asian Symposium, APLAS 2022 (Lecture Notes in Computer Science, Vol. 13658), Ilya Sergey
(Ed.). Springer, 88–109. https://doi.org/10.1007/978-3-031-21037-2_5

Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. 2013. Verifying higher-order programs
with the dijkstra monad. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 387–398. https:
//doi.org/10.1145/2491956.2491978

Takeshi Tsukada and Naoki Kobayashi. 2010. Untyped Recursion Schemes and Infinite Intersection Types. In Foundations of
Software Science and Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings
(Lecture Notes in Computer Science, Vol. 6014), C.-H. Luke Ong (Ed.). Springer, 343–357. https://doi.org/10.1007/978-3-
642-12032-9_24

Hiroshi Unno, Naoshi Tabuchi, and Naoki Kobayashi. 2010. Verification of Tree-Processing Programs via Higher-Order
Model Checking. In Programming Languages and Systems - 8th Asian Symposium, APLAS 2010, Shanghai, China, November
28 - December 1, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6461), Kazunori Ueda (Ed.). Springer, 312–327.
https://doi.org/10.1007/978-3-642-17164-2_22

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 365. Publication date: October 2024.

https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1109/LICS.2008.45
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/J.ENTCS.2015.12.003
https://doi.org/10.1016/J.ENTCS.2015.12.003
https://doi.org/10.1145/2535838.2535873
https://doi.org/10.1145/800194.805852
https://doi.org/10.1016/J.IC.2014.07.012
https://doi.org/10.1145/2426890.2426900
https://doi.org/10.1145/3408975
https://doi.org/10.1145/3571264
https://doi.org/10.1007/978-3-031-21037-2_5
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1007/978-3-642-12032-9_24
https://doi.org/10.1007/978-3-642-12032-9_24
https://doi.org/10.1007/978-3-642-17164-2_22

	Abstract
	1 Introduction
	1.1 Background: Higher-Order Model Checking of Effectful Programs
	1.2 This Work

	2 Overview
	2.1 Model Checking of Effectful Programs
	2.2 Model Checking of Effect-Handling Programs
	2.3 Decidable Model Checking of Effect-Handling Programs by Answer-Type Modification

	3 EPCF: PCF with Algebraic Effects
	3.1 Definition and Basic Properties
	3.2 Model Checking

	4 HEPCFATM: PCF with Answer-Type Modification for Algebraic Effects and Handlers
	4.1 Program Syntax
	4.2 Semantics
	4.3 Type System
	4.4 Examples
	4.5 Basic Properties

	5 Model Checking of HEPCFATM
	5.1 Definition
	5.2 Example
	5.3 CPS Transformation
	5.4 Properties

	6 Implementation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

