Supplementary Material for “Answer Refinement Modification:
Refinement Type System for Algebraic Effects and Handlers”

Fuga Kawamata

Contents
1 Typing Rule for Operation Forwarding| 1
12 Detailed explanation of the benchmark] 2
|3 Definitions (other than those shown in the main paper) and Assumptions| 4
3.1 Well-formedness of typing contexts, value types, and computation types| 4
3.2 Assumptions on well-formedness judgments of formulas, well-formedness judgments of predicates, |
| and semantic validity judgements of formulasf 000 0oL 4
3.3 Assumptions on primitives|.o Lo e e e e e e e 5
4 Proof of Type Safety| 5
4. Progress| o o e e e e e e 5
4.2 Subject Reduction| 11
FE3 Type Safety] o o 22
B Definiti ? he CPS 2 Tonl 29
[5.1 Evaluation rules for the target language of the CPS transformation|. 22
5.2 Syntax of typing contexts of the target language of the transformation| 22
9.3 Well-formedness rules of the target language of the CPS transformation| 22
5.4 Typing rules of the target language of the CPS transformation| 23
5.5 Subtyping rules of the target language of the CPS transformation|. 23
[5.6 _CPS transformation of expressions| 23
[5.7 CPS transformation of types and typing CONTEXTS| . « « « v v v v v v o e e e e e 24
6 Proof of dynamic semantics preservation of the CPS transformation| 24
7 Proof of type preservation of the CPS transformation| 29
7.1 Basic properties for the target language of the CPS transformation| 29
7.2 Forward type preservation| L e e e 32
7.3 ackward type preservation| L L oL L 36

1 Typing Rule for Operation Forwarding

The typing rule for handling constructs presented in Section 3.2 of the main paper assumes that a handler
covers all the operations performed by the handled expression. In this section, we present another typing rule
for handling constructs to allow operation forwarding, that is, allow unhandled operations to be forwarded to
outer handlers automatically. The idea of the typing rule is simple: we derive it from an implementation of
operation forwarding. As mentioned in Section 3.1 of the main paper, operation forwarding can be implemented
in a calculus without forwarding by adding to a handler an operation clause op(x, k) — let y = op x in k y for
each forwarded operation op. Therefore, we can derive the new typing rule from the typing of the added clauses.
The following is the thus derived new typing rule for handling constructs which natively supports operation

forwarding;:

h = {return z, — ¢, (op;(z;, ki) = ¢;);} Thke: ST/ (Va,.Cp) = Cy

F,x,. T+ Cp Cl <F,Xi : gi,xi : Tlia ki : (yz : Tgi) — Cli = C; . 021)

)

(Z > op; VX, El(l'z : Th‘) — ((y, : Tgi) — Cli) — CQZ) OpSde = dom(Z) \ dom(h)
5 op : VXOP : BoP (2% : TP) —
(4 : TP) = S5 TP | (V2P.CP) = CP) = X/ 6 TP / (V2.0 = CP

P

S S op: VX0 : BoP (2 : TP) = ((yP : T5°) — CP) — O y°® ¢ CgP \ {=°P}
I' - with A handle ¢ : Cy

opeE Opsfwd

where dom(X) denotes the set of the operations associated by ¥ and dom(h) denotes the set of the operations
handled by h, that is, the set {(op;);}. The first two lines are the same as (T-HNDL). The third line is also
similar to the last premise of (T-HNDL), but here ¥ is allowed to contain operations other than those handled by
h. Opsgeq 1s exactly the set of the unhandled (i.e., forwarded) operations. The last part is the requirement for
the forwarded operations, which can be obtained from the typing derivations of op(z, k) — let y =op x in k y
as follows. When we simulate the operation forwarding with the explicit clause, the operation call op x in the
clause is handled by an immediate outer handler (we denote it by h’ in what follows). Therefore, its operation
signature is different from X; in fact, it corresponds to X’ in the rule. Also, the answer types of the original
operation calls of op (i.e., the answer types of the operation calls of op in the handled computation ¢) should
have Y’ as their operation signatures, because the final answer type corresponds to the type of the handling
construct, which is handled by the immediate outer handler h’. Therefore, the types of the forwarded operations
in ¥ contains ¥’ in their answer types. In addition, the types Tg®, Ty", T5°, Cg?, C7°, and C5° appear multiple
times in ¥ and ¥/, restricting the type schemes of the operations in Ops;,,q. This restriction can be understood
as follows. First, assume that the original operation call of op in ¢ has the operation signature 3 such that

S30p: TP = (TP > S 6T | CP = CP) = ST | OF, = OF

for some T7°, T3P, TyP, CoP, CTP, T4, Coh, C5°, and ¥/, under a context I'. Here we consider only simple types
for simplicity, but a similar argument can be made for dependent and refinement types by appropriately naming
the variables like in the rule above. Note that its answer types have ¥’ as described earlier, and that we do
not impose the restriction yet. From the assumption, the clause let y = op = in k£ y should be typed under the
context ',z : T7P k : To? — ¥/ > TgP / CgP = C7P . Then, the input type of op in the clause should be the type
of z, namely, 77", and the output type of op should be the type of the variable y, which turns out to be T5" from
the type of k. Therefore, the operation signature ¥’ for op x should contain op : T7* — (T5° — C7%) — C3" for
some CT% and C3% . Then, according to the typing rules for operation calls and let-expressions, it is required
that C7% = C7®, and the type of let y = op z in k y is X' > 15" / C5° = C5% . Finally, since the type of the
clause corresponds to the final answer type of the operation op in ¥ (which is ¥’ > 735 / Cg% = C3° from the
assumption), it should satisfy T;" = Tg%, CgP = Cgfy, and C5% = C3° .

2 Detailed explanation of the benchmark

In this section, we present the result of the verification of the benchmark queue-2-SAT.ml as an example. The
following is the main part of the program of queue-2-SAT.m1:

let[@annot_MB "int list ->
(unit -> ({Get_next: sl1, Add_to_queue: s2} |> int option / s => s)) —->
int option"]
queue initial (body :unit -> int option) =
match_with body () {
retc = (fun x -> (fun
exnc = raise;
effc = fun (type a) (e: a eff) -> match e with
| Get_next _ctx -> Some (fun (k: (a, _) continuation) —>
(fun queue -> match queue with
| [0 -> continue k None []
| hd::tl -> continue k (Some hd) tl1))
| Add_to_queue v -> Some (fun (k: (a, _) continuation) ->

_ > x));

(fun queue -> continue k () (queue @ [v])))
} initial

let main init =
queue init (fun O ->
perform (Add_to_queue 42);
let _ = perform (Get_next 1(*dummy+*)) in

perform (Get_next 2(*dummy*)))

This program uses two operations Get _next and Add_to_queue, which are used to dequeue and enqueue elements
respectively. The function queue manages the queue. It receives an initial queue initial and the function
body, handling the operations performed in body in the state-passing manner to simulate the behavior of the
queue. The first three lines of the program are the underlying simple type annotation, which tells the function
queue that the argument body may perform the operations Get_next and Add_to_queue and that its control
effect is impure. This annotaion is necessary because our implementation does not support effect polymorphism
as mentioned in Section 4 of the main paper. The main function main first enqueue one element, and then try to
dequeue twice (Get_next returns None when the queue is empty). Note that we added a ghost parameter _ctx
to Get_next, which is used to distinguish its two occurrences. We give 1 to the first occurrence of Get_next,
and 2 to the second. This ghost parameter is crucial for the precise verification of this program, described later
in this section.

We defined the following refinement type as the specification for the main function main (here after, we
abbreviate the type int list and int option as ilist and iopt respectively):

{z:ilist | z # []} — {2 : iopt | z # None}

That is, if the queue is initially not empty, the last dequeue should return some value.

By running the verification of the program with the specification, our implementation returns “SAT” as
shown in Table 1 in the main paper, that is, the function main certainly has the type given as the specification.
Let us investigate more detail by seeing the inferred type of the function queue:

(indt : {z :ilist | z £ []})
— (unit — X iopt / (Va.(ilist — {z : iopt | ¢1})) = ({z : ilist | p2} — {z : iopt | z # None}))
— {z : iopt | z # None}

where ¥ &' {Add_to_queue : int — (unit —
((q :ilist) — {z : iopt | da1})) — ({# : ilist | ¢2} — {z : iopt | z # None}),
Get_next : (ctx : int) — ((y : iopt) —
((q :ilist) — {z : iopt | g1 A dsa})) = ((¢ : ilist) = {z - 1opt | Pa1 A Paz})}
gi)ld:ef isSome(z) = z # None ¢2d:ef init [=z #]
¢>31d=ef isCons(q) A isSome(y) = z # None ¢32dZef isSome(y) A ctx > 2 = z # None
o isCons(q) A isCons(tail(q)) = 2 # None p1 isCons(q) A ctz > 2 = z # None
where isSome(z) holds if = Some v for some v, isCons(x) holds if x = v::w for some v and w, and tail(z) returns
the tail of the list . In the operation sigunature, we can find that Add_to_queue changes the answer type from

(g :ilist) — {z : iopt | ¢a1} to {z :ilist | p2} — {2z : iopt | z # None}. Therefore, perform (Add_to_queue 42)
can be given the control effect

(V_.((q : ilist) = {z : iopt | pa1})) = ({2 :ilist | 2} — {z : iopt | z # None}) .

Similarly, in the operation sigunature, Get_next changes the answer type from (q : ilist) — {z : iopt | ¢31 A ¢32}
to (g :ilist) — {2 : iopt | ¢41 AP} . Here, since the refinements of these answer types contain a condition on ctz,
their truth depend on whether ctz = 1 (< 2) or ctz = 2 (> 2). This enables assigning different control effects
(i.e., different ARM) to each occurrence of Get_next depending on the context. Namely, perform (Get_next 1)
can be given the control effect

(Vy.(q : list) — {z : iopt | ¢31}) = (g : ilist) — {z : iopt | a1}
since ctx = 1, while perform (Get_next 2) can be given the control effect

(Vy.ilist — {z : iopt | isSome(y) = z # None}) = (g : ilist) — {z : iopt | isCons(¢q) = z # None}

since ctx = 2. Now, the control effect of the argument body can be obtained from the composition of these
three control effects, which results in

(Va.(ilist — {z :iopt | #1})) = ({2 :ilist | p2} — {z : iopt | z # None}) .

Then, the handling construct is assigned the final answer type of body, i.e., {z : ilist | ¢o} — {z : iopt |
z # None}, and finally applying the non-empty initial queue to the handling construct returns a value of type
{z : iopt | z # None} as expected.

3 Definitions (other than those shown in the main paper) and As-
sumptions

3.1 Well-formedness of typing contexts, value types, and computation types

kT [rrT] [TFC] [TFEE] [T|TFS

T X ¢ dom(T
FT oz f ior;(? LT wE-van) #dom(l) \WE-pvan)

FI',X:B
Fz:BkF¢
I'+{z:B]| ¢}

=0 (WE-EMPTY)

Fz:THC

(WI-RFN) o S o

(WT-FuN)

T- ;B

Tz:THC, Tk

'Y T T|TFS
r-2e7/8

_Fr
I'|TFO

(WT-S16)

(WT-PURE) (WT-ATM)

3.2 Assumptions on well-formedness judgments of formulas, well-formedness judg-
ments of predicates, and semantic validity judgements of formulas

Assumption 1.
o If ' ¢, then T
o IfFT, 2 ¢ dom(D) and dom(T, 2 : B) D fu(¢), then T, 2 : B F ¢.
e IfFD,2: T, and I,T'+ A: B, then I,z : T,I" - A : B.
o If T,z : T,V and I',T' + ¢, then ',z : T, T I ¢.
o IfI'"'TVE ¢, then ',z : T, TV E ¢.
e IfTHv:Tand T,2: T,T'+ A: B, then I',T"[v/2] - A[v/z] : B.
e IfTHv:Tand 'z : T,T' F ¢, then I', TV[v/z] b ¢[v/z].
e IfTHv:Tand 'z : T,T' E ¢, then I',TV[v/z] E ¢[v/x].
e IfT'+A:BandT,X : B I'+ A': B/, then T,I"[A/X]| + A[A/X] : B
e If'HA:BandT,X : B,T" - ¢, then I', T"[4/X] F ¢[A/X].
e If'FA:BandT,X : B,I" & ¢, then I', T"[4/X] E ¢[A/X].
e ITHT) <:Tp,FT,2: Ty, T and ',z : Tb,I" - A: B, then I,z : T;,I" + A : B.
e fII'+Ty <:To, b2 : T,V and T,z : 15, TV F ¢, then T',z : T1, T I ¢.
e If'FTy <:Thand ',z : 15, IV E ¢, then I,z : T1, TV E ¢.
o Ifx ¢ fu(I",¢) and ',z : Ty, IV + ¢, then ', T I ¢.
e Ifx:(y:T1) — C1,T"F ¢, then = ¢ fu(I”, ¢).
o IfE¢and I, ¢, T" E ¢/, then T, T" E &

¢ IfT+ o, then T E ¢ = 6.

o IFTE ¢ = ¢ and T'E ¢y = b3, then T E ¢1 = s

e IfTz:{z:B|z=y},I"F ¢, thenT,z:{z:B|z=y}, I"F¢p = oly/z].
e IfTz:{2:Blz=y}, 'k ¢, thenT,2:{z: B|z=y}, I"Edly/z] = ¢ .

3.3 Assumptions on primitives
Assumption 2.
o + ty(p) for all p.
o If ty(p) = (z: T) — C, then ((p,v) is defined and + {(p,v) : C[v/z] for all v such that Fv : T.

o If ty(p) = {2z : bool | ¢}, then p = true or p = false.

4 Proof of Type Safety

4.1 Progress
Lemma 3 (Weakening).
1. Assume that =T,z : Ty, TV.
o IfT,TVHT, then T,z : Ty, I+ T.
o IfT,TV+C, then T,z : Ty, I" -+ C.
[T, T F Y, then T,z : Ty, T" F 3.
o IfTTV|THS, thenT,z: Ty, IV | THS.

2. Assume that =T,z : Ty, T.

T, TVFo:T, thenT,x: Ty, T Fo:T.
IfT,TVkc:C, thenT,z: Ty, I"Fc: C.

3. e IfT\I'F T <: Ty, then U,z : Ty, T' F Ty <: T.
IfT,TVF Cy <: Cy, then T,z : Ty, IV = Cq <: Cs.
IFT, TV E Xy <: X9, then T,z : Ty, TV F X1 <: 2.
IfT, TV |TH S; <: S, then T,z : Ty, TV | T H Sy <: Ss.

Proof. By simultaneous induction on the derivations. The cases for (WT-RFN), (T-OP) and (S-RFN) use
Assumption [I] O

Lemma 4 (Narrowing).
1. Assume that T'HTy <:Ty and - T,z : Ty, T7.

o IfT,x: T, VT, thenT,x : T, IV T.

o I[fT,x: T, TV+C, thenT,x : T1, TV - C.

e [T,z :To,T'F3, then T,z : Ty, X

o I[fT u: T, IV|THS, then T,z : T7,I" | THS.
2. Assume that T =Ty <: Ty and VT, z : Ty, T7.

o IfT,x: T,V v :T, then T,z : T}, TV v :T.
o IfT,x:To,T"Fc:C, thenT,x: T, " Fc:C.

3. Assume that T'F T <: Ty.
o IfT w: T, I'HT] <: T4, then T,z : T, TV T] <:T4.
o IfT,x: T, 1"+ Cy <:Cy, then T,z : T1, TV F C1 <: Cs.
o IfF,(I/':T271—‘I'_21 < 22, then I‘,(EZTl,Pll_Zl <: Y.

o IfF,fEITQ,FI|T|_S1 < 52, then F,CL’ZTl,].—V ‘ THS) <: 5.
4. IfFI—T1 <:Ty and T | TS, <ZSQ, thenF|T1 F S <:Ss.

Proof. By simultaneous induction on the derivations. The cases for (WT-RFN), (T-OP) and (S-RFN) use
Assumption [I] O

Lemma 5 (Substitution).

1. Assume that T'F v : Tp.
o If-T,x: Ty, I, then T, T"[v/x].
o If T x:To, T+ T, then T, TV[v/x] - T[v/x].
o IfT,x: Ty, T+ C, then T',T'[v/z] b Clv/z].
o IfT,x: Ty, T+ 3, then T, TV[v/x] F E[v/x].
o IfT,x:To, T | THS, then T, TV[v/z] | T[v/x] b Sv/x].

2. Assume that T'F v : Ty.
o IfT,a:To, T Fou:T, then T, T'[v/z] b v[v/z] : Tv/x].
o IfT,x: Ty, T Fc:C, then T, TV[v/x] - clv/x] : Clv/x].

3. Assume that T'F v : Tj.
o IfT,x:To,I"F T <: Ty, then T, T [v/z] F Th[v/x] <: Ta[v/x].
o IfT'x:Tp,I"F Cy <: Cy, then T, TV[v/z] - Cyv/x] <: Calv/x].
o IfT,x: Ty, TV F 3 <: Xy, then T, TV[v/x] F E1[v/z] <: Bafv/x].
o IfT,x:Tp,I" | T H Sy < Sy, then T, IV [v/z] | T F Si[v/z] <: Salv/x].

Proof. By simultaneous induction on the derivations. The cases for (WT-RFN), (T-Op) and (S-RFN) use
Assumption [T} O

Lemma 6 (Predicate Substitution).

1. Assume that T+ A : B.
o If+T,X : B,T, then + I,T"[A/X].
o IfT,X :B,I"FT, then T,T'[A/X] F T[A/X].
e IfT,X:B,I"+C, then T, T'[A/X] + C[A/X].
o IfT,X :B,I"F Y, then T,T"[A/X] F $[A/X].
e IfT,X :B,I"|TF+S, then I,I"[A/X] | T[A/X] + S[A/X].

2. Assume that T+ A : B.
o IfT,X :B,I"Fu:T, then T, T'[A/X] F v[A/X] : T[A/X].
e IfT,X :B,I"Fc:C, then T, T'[A/X] F ¢[A/X] : C[A/X].

3. Assume that T A : B.
o IfT,X :B,T" Ty <: Ty, then I, I"[A/X] + Ty [A/ X] <: TH[A/X].
o IfT,X :B,T"FC; <: Cy, then I,T"[A/X] - C1[A/X] <: Co[A/X].
o IfT,X :B,T'F %, <: %y, then T,I"[A/X] F $1[A/X] <: £,[A/X].
o IfT,X:B,I'|TFS, <:8,, then T,T"[A/X] | T+ S1[A/X] <: S5[A/X].

Proof. By simultaneous induction on the derivations. The cases for (WT-RFN), (T-OP) and (S-RFN) use
Assumption [I] O

Lemma 7 (Remove unused type bindings).
o Ifx ¢ ful) and -T2 : Ty, TV, then - T, T".
o Ifxé¢ fu(T,T) and T,z : Ty, T+ T, then T, TV - T.

o Ifxé fu(l,C) and T,z : Ty,I" + C, then T, T' F C.

o Ifxé fu(l,%) and T,z : Ty, T+ %, then T, TV - 3.

o Ifx ¢ fo(I',T,5) and T,z : Tp,I" | TH S, then T, TV | T+ S.
Proof. By simultaneous induction on the derivations. The case for (WT-RFN) uses Assumption O
Lemma 8 (Variables of non-refinement types do not occur in types).

o Ift-T x:(y:T1) — Cy, T, then x ¢ fo(T).

o IfT x:(y:T1) — C,I" T, then x ¢ fu(I",T).

o IfT x:(y:T1) = C,T'+C, then x ¢ fu(T',C).

(y:T1)
(y:T1)
o IfT,z:(y:Th) = C, I"F X, then z ¢ fu(I",X).
o IfT,z:(y:Th) = C, V| T+ S, thenz ¢ fo(I",T,5).
Proof. By simultaneous induction on the derivations. The case for (WT-RFN) uses Assumption O
Lemma 9 (Remove non-refinement type bindings).

o If-T,x:(y:Ty) — C1, TV, then - T,T".

o IfT,z:(y:T1) = Co,I" F T, then T,T" - T.
o IfTz:(y:Th) = C,T"HC, then T,T' - C.
o IfT,z:(y:T1) = C1,I" F 3, then T,I" - X.
e IfTz:(y:Th) = C, TV |THS, then T,)T" | THS.

Proof. Immediate by Lemma [§] and [7] O
Lemma 10 (Well-formedness of typing contexts from other judgements).

1. IfT'+T, then - T.

2. If'-C, then FT.

3. IfI'+X, then FT.

4. IfT|THS, then - T.
Proof. By simultaneous induction on the derivations. O
Lemma 11 (Well-formedness of types from other judgements).

1. IfTFov:T, then ' T.

2. IfTFe:C, thenT FC.
Proof. By simultaneous induction on the derivations.

1. Case (T-CVAR): We have
(i) v=u,
(i) T={z: B| z =z},
(iii) F T, and
() T() = {=: B | 6}
for some z, 2, and B. W.l.o.g., we can assume that z ¢ dom(T"). Also, sinceimplies z € dom(T),
it holds that dom(T,z : B) D fu(z =). Then, by the Assumption we have ',z : B+ z = z. By
(WT-RFN), we have the conclusion.

Case (T-VAR): We have

(i) v ==z,
(i) T'=T(z),
(iii) F T, and
)

(iv) T(x) # {2z : B | ¢} for all z, B, and ¢

for some zx. implies that I is of the form I'y, z : T, I's for some I'y and I';. Therefore, by inverting
(ii1)| repeatedly, we have I'y F T. By Lemma [3| with we have the conclusion.

Case (T-PriMm): We have

(i) v=p,
(ii) T = ty(p), and
(iif) T

for some p. By Assumption [2, we have - ty(p). By Lemma with we have the conclusion.
Case (T-Fun): We have

(i) v=rec(f,z).c,

(ii) T = (x:Tp) = C, and

(iii) T : ToFe: C

for some f,z,c, Ty, and C. By the IH of we have I', f : (z: Tp) = C,z: Ty + C. By Lemma@

we have I', z : Ty = C. By (WT-FUN), we have the conclusion.
Case (T-VSuB): Immediate by inversion.

. Case (T-RET): We have
(i) ¢ =return v,
(i) C =0T /0, and
(iii) TFov:T
for some v and T. By the IH of we have I' - T. By Lemma we have - I". Then, we have
the conclusion by the following derivation:

- _Fkr
) T-T T[THO
TFOoT /0

Case (T-App): We have
(i) ¢= vy vg,
(ii) € = Colvz/x],
(iii) T'F vy @ (z: Tp) — Cp, and
(iv) T Fwg : Tp
for some x,v1,v2, Ty and Cy. By the IH of we have I' F (z : Ty) — Cy. By inversion, we have
Iz:TyF Cy. By Lemma we have the conclusion.
Case (T-IF): We have
(i) ¢=if v then ¢ else ¢y,
(ii) T Fov: {x: bool | ¢},
(iii) I',v = truet ¢; : C, and
(iv) T,v =false b ¢y : C
for some x,v, ¢y, co, and ¢. By the TH of we have I',v = true - C. By Lemma we have the
conclusion.
Case (T-CSuB): Immediate by inversion.
Case (T-LETP): We have
(i) c=let z =¢; in ¢y,
(i) C=Xp Ty /O,
(iii) Tk e : 2Ty /0O,
(iv) T,e: Ty Fea: XpTy /O, and
(v) @ & fo(T2) U fu(X)
for some x, ¢y, co, X, T, and T5. By the IHs of and respectively, we have
e 'FXp>T) /0Oand
el T HFXpTy /0.
By inversion, we have
(vi) T'H X, and

(Vll) F, X . T1 - TQ.
By Lemma [7] with we have
(viii) T+ T .

By Lemma (10| with we have - I'. From this fact and and we have the conclusion by
the following derivation:

_ T
Ity THT, T|TF0O
IFyoTy /0

Case (T-LETIP): We have
(i) e=1let = ¢ in cq,
(i) C=XpTy / (V2.Co1) = Cha,
(iii) T e : 26Ty / (Va.Co) = Cha,
(iv) Tye :Th Feg : X0 Ty / (V2.C91) = Cp, and
(v) @ ¢ fo(Tz) U fo(5) U (fu(Ca1) \ {2})
for some x, 1, co, 22, T1, T3, Cy, C12 and Coy. By the IHs of and respectively, we have
e I'FYXpTy / (Vx.Cy) = Ci2 and
e Nz:ThFXpTy / (V2.Co1) = Ch.
By inversion, we have
(vi) T F X,
(vii) T'| T3 F (Vo.Cp) = Ca,
(viii) T,z : Ty F T3, and
(ix) T,z : Ty | Ta + (V2.C91) = Cp.
By Lemma 7] with we have
(x) THTy .
By inversion with and respectively, we have
(xi) T,z : Ty F Cy,
(xii) T'F 42, and
(xiii) Ty : Th,z: To - Coy .
W.lo.g., we can assume x # z. Then, implies © ¢ fv(Ca1). Therefore, by Lemma [7| with

and we have I', z : Ty F C5;. From this and and we have the conclusion by the
following derivation:

F,Z:TgkCzl FF012
I'EY TI'k1Ts F|T2|—(VZ.021):>012
'YX T / (VZCQl) = (19

Case (T-Op): We have
(i) ¢ =op v,

(ii) C =S To[A/X][v/z] / (vy.Ci[A/X][v/a]) = CalA/X][v/a],

—_—

i)

(iii) ¥ > o0p: VX : B. (x:T1) = ((y:Tz) = C1) — Cy,
(iv) TH X,

(v)

(vi) THw: Tl[A/X]

for some x,y, v, X, A, E, 3, Ty, T5,C1 and Cs. By inversion of with we have

O,X:Bb(z:Th) = ((y: To) = C1) = Cs .

By more inversion and Lemma [9] we have

—~—

e IX:Bz:T\+ T,

—~—

. F,X:E,x:Tl,y:Tgl—Cl,and

—_~—

eI, X:B,a:Th+C,.

By Lemma |§| with and Lemma |5 with we have
o I'F T5[A/X][v/a],
o Dy To[A/X][v/a] - C1[A/X][v/a], and
o I'F ColA/X][v/a] .
From these and we have the conclusion by the following derivation:

- T,y: TQ/@TQ [v/z] F Cy [@v/x] N [,E\/Z(] [v/z]
kY I'k Tz[A/X][v/i]/ | Tz[A/X][v/aji(Vy-CﬂA/X][@ = Co[A/X][v/x]
T+ %o ToA/X][v/2] | (Vy.C1[A)X][v/z]) = Ca[A/X][v/x]

Case (T-HNDL): We have

(i) ¢=with h handle c,
(i) TFe: T/ (Va,.Cy) = C

for some ., h, cp, X, T and C. We have the conclusion by applying inversion twice to |(ii)|

Lemma 12 (Canonical forms).

1. Iftov:(x:T)— C, then (i) v =rec(f,x).c for some f,c, or (ii) v=p for some p and {(p,v) is defined
for all v such thattFv:T.

2. If v :{x:bool| ¢}, then v = true or v = false.
Proof. By induction on the derivations.

1. Case (T-FuN): Obvious.
Case (T-PriM): Immediate from Assumption
Case (T-VSuB): By the IH and inversion of the subtyping judgment. The case for (ii) uses Lemma

Otherwise: Contradictory.

2. Case (T-PrIM): Immediate from Assumption [2]
Case (T-VSUB): By the IH and inversion of the subtyping judgment.

Otherwise: Contradictory.

Theorem 13 (Progress). If0Fc:X>T /S, then either
e ¢ =return v for some v such that 0 v : T,
e ¢ = Kop v] for some K,op and v such that op € dom(X), or
e ¢ — ¢ for some (.
Proof. By induction on the derivation.
Case (T-RET) and (T-OpP): Obvious.
Case (T-CSuB): By the IH. Note that - ¥’ <: ¥ implies dom(X’) 2 dom(X).
Case (T-App): We have
(i) ¢ =1 vg,
(i) Fop: (x:Ty) > XT /S, and
(i) Fwe: Ty
for some vy, v, x, and T7. By Lemma [12[with either one of the following two cases holds.

e v; =rec(f,x).c; for some f,c;:
By (E-App), we have (rec(f,xz).c1) va — c1[va/z][(rec(f,x).c1)/f] .

10

e v; = p for some p and ((p,v) is defined for all v such that v : T7:
As holds, {(p, v2) is defined. Therefore, by (E-PRIM) we have p va — ((p,v2) .

Case (T-IF): We have

(i) ¢ =if v then c; else c3,

(ii) Fov: {x : bool | ¢},

ii) v=truekc¢; : T /S, and
v) v="falsekcy:XpT /S

(i
(i
for some v, ¢, ¢, x, and ¢. By Lemma |12 with either one of the following two cases holds.

e v = true: By (E-IFT), we have if true then ¢; else co — ¢;.

e v = false: By (E-IFF), we have if false then ¢; else c; — ca.
Case (T-LETP): We have

(i) e=1let z = ¢ in ¢, and
(11) }_Cl : EDTl / O
for some x, ¢y, co, and Ty. By the IH of either one of the following three cases holds.
e ¢; = return v; for some v;:
By (E-LETRET), we have let © = return v; in co — cofv1/z].

e ¢; = Ki[op v1] for some Ki,0p and vy s.t. op € dom(X):
We have the conclusion with ¢ = K|op v1] where K =let z = K; in ¢;.

e ¢; — ¢} for some ¢}:
By (E-LET), we have let © = ¢; in ¢co — let = ¢} in ¢s.
Case (T-LETIP): Similar to the case for (T-LETP).
Case (T-HNDL): We have

= with h handle ¢,

c
h = {return z, — ¢, (op,(x;, k;) — ¢;):},

)
)
(iii) Yo = {(Opi VX, Ei.(l‘i : Tli) — ((yz : Tgi) — Ch) — 021’)1’}; and
) Feo: o> Ty / (erCl) = (ZDT/S)

for some co, Zr, ¢y (09;)i, (24)i (Ki)i, ()i (Xi)i (Bi)iy (Thi)i, (T2i)i, (Chi)i, (Cai)ir B0, To, and Cy. By the
IH of either one of the following three cases holds.

e co = return vy for some vy:
By (E-HNDLRET), we have with h handle return vy — ¢.[vo/x,].

e ¢y = Kylop vg] for some Ky, op, and vy s.t. op € dom(Xy):
Since op € dom(%g) = {(op;):}, there exists some j such that 1 < j < |dom(X)| and op = op;. Then,
by (E-HNDLOP) we have
with h handle Ko[op; vo] — ¢;[vo/z;][A\y.with h handle Ko[return y]/k;] .

o ¢g — ¢ for some c:
By (E-HNDL), we have with h handle ¢y — with h handle .

11

4.2 Subject Reduction
Lemma 14 (Remove tautology).
1. If+=T,¢,I", then -T,I".

2.

IfT,6,T' T, then T,T' - T.
IfT, 6,1 C, then T,T' I C.
IfT,6,T'F %, then T,T' - .
IfT,¢,T" | TF S, then T,T | T+ S.

3. Assume that E ¢.

o IfT, o, I"¢ov:T, then)T/ v :T.
o IfT,¢,I"Fc:C, then,T"Fc:C.

4. Assume that F ¢.
o IfT, ¢, 1" FT] <: T4, then T,TV - Ty <: T4.
o IfT,¢, "+ Cy <: Cy, then T, TV C; <: Cs.
o [T, 6,1 F %, <: %, then T,/ F 5, <: 3.
o IfT, 6, | TF Sy <:Ss, then T,T' | TF Sy <: Ss.
Proof.
1. Immediate by Lemmal 7]
2. Immediate by Lemma

3. By simultaneous induction on the derivations.

4. By simultaneous induction on the derivations. The case for (S-RFN) uses Assumption

Lemma 15 (Reflexivity of subtyping).

1. IfTET, thenTHT <:T.

2. IfTHC, thenT HC <: C.

3 IfTFX, thenT'FHX <: 3.

4. IfT|THS, thenT |THS<:S.
Proof. By simultaneous induction on the derivations. The case for (WT-RFN) uses Assumption
Lemma 16 (Transitivity of subtyping).

1. IfTHFTy <:Ty and T F Ty <: T3, then '+ Ty <: Ts.

2. IfTHFCy <:Cs andT'H Cs <: C3, then '+ C; <: Cs.

3 IfTFX <Xy and T'F X9 <: 33, then I' - %1 <: X3.

4. IfT|THS <82 and T | TH Sy <: S3, thenT | T F S <: Ss.
Proof. By simultaneous induction on the structure of T, Cs, Y5 and Ss.

1. Case analysis on I' - T <: Ts.

Case (S-RFN): By inversion, Assumption [[]and (S-RFN).
Case (S-FUN): By inversion, the IHs, Lemma[d] and (S-FUN).

2. By inversion of the both derivations, we have

—_—~—

(i) 1 = {(op; : VXi : Bi.F1;)s, (op] : VX! : B/ F},)i, (op!! : VX! : B";. Fl});},

12

—_—~—

(iv) (T, X;: Bi - Fi; <: Fy)s,
(v) (T, X; : B - Fy; <: Fy;);, and

(vi) (T, X!: B - F|; <: F},); .

By the IH with and we have (T, X, : B; Fy; <: Fy;); . By (S-SI1G), we have the conclusion.
3. By inversion, the IHs, Lemma and (S-Cowmp).
4. Case analysis on I' = 57 <: Ss.

Case (S-PURE): Since we have S; = 0 = S5, we have the conclusion immediately from I" F Sy <: Ss.
Case (S-ATM): We have
(i) S1 = (Vz.C11) = Cha,
(ii) Sz = (Vo.Ca1) = Coa,
(iii) T,z : T+ Co; <: Cq1, and
(iv) TH Cpa <: Cy

for some x,C11,C12,Co1, and Csys. Since the only rule applicable to I' - Sy <: S5 is (S-ATM).
Therefore, by inversion we have

(v) S3=(Vx.Cs1) = Cso,
(vi) T,z : TF Cs1 <: Co1, and
(vii) T+ Cas <: Cso
for some C3; and C35. By the IHs, we have
e x:THFCs <:Cqp and
e I'FCip <: Cso .
We have the conclusion by (S-ATM).
Case (S-EMBED): We have
(i) 51 =10,
(il) Sz = (Va.Co1) = Cag,
(iii) T,x : T F Ca <: Caa, and
(iv) x ¢ fu(Ca2)

for some x, C1, and Cys. Since the only rule applicable to ' - Sy <: S3 is (S-ATM). Therefore,
by inversion we have

(V) S3 = (VZ‘C31) = 032,
(Vi) I'z:TFCs <:Cs, and
(Vii) 'k Cy <: C39

for some C3; and Csz. W.lo.g., we can assume that z ¢ fu(Csz). Then, by Lemma [3| with |(vii)| we
have

(vili) Tz : T+ Cyy <: Cs .

By the IHs with and we have ',z : T+ C31 <: C32. Then we have the conclusion by
(S-EMBED).

O
Lemma 17 (Subtyping with equal variables).
o IfTx:{2:Blz=y},I"FT, thenT,x: {z:B|lz=y},I"FT <: Tly/x] .
o IfTx:{2:Blz=y},I'FT, thenT,x: {z:B|z=y},I"FTy/z] <: T .
o IfT z:{2:B|z=y}, I'HC, thenT,z:{2: Blz=y},["FC <: Cly/z] .
o IfTx:{2:Blz=y},I"FC, thenT,z:{z: B|z=y},I"FCly/z] <: C .

IfT,x:{z:B|lz=y},I'F X, thenT,x: {z: B|z=y},I"F X <: X[y/z] .

13

o IfTx:{2:Blz=y}, I'FX, thenT,z: {z: B|z=y},I"FX[y/z] <: X .
o IfTx:{z:B|z=y},I"|TES, thenT,z:{z:B|z=y},I"|TFS <: S[y/z] .
o IfTx:{2:Blz=y},I"|TFS, thenT,z:{z:B|z=y},I"|TF Sy/z] <: S .

Proof. By simultaneous induction on the derivations. The case for (WT-RFN) uses Assumption [I} The cases
for (WT-FUN) and (WT-CoMP) uses Lemma [4] O

Lemma 18 (Inversion).
1. If TEp:T, then
e I'Fiylp) <: T, and
e 't p:ty(p).
2. If T'Frec(f,z).c: (x:T)— C, then there exist some Ty and Cy such that

o I'rec(f,z).c: (z:Tp) — Co,
e I'F(z:Ty)) »Co<:(z:T)—C, and
e I'f:(x:Ty) = Co,x:ToFc:Cy.

3. IfTFreturn v: X >T /S, then there exist some T’ such that

e I'HT <: T,
e I'Fov:T, and
e I'|T"FDO<:S.
4. IfT'Fopuwv:X>T /S, then there exist some 2757g,x,y,T1,T2701,02,001, and Cya such that
e 5= (VyCm) = Coo,

—_~—

. anp:VX:E.(x:Tl)—>((y:TQ)—>C1)—>C2,

eT'+A:B,

I'-v: T[A/X],

I+ To[A/X][v/2] <: T,

T,y : To[A/X][v/a] - Cor <: C1[A/X][v/a], and
T Cy[A/X][v/2] <: Coz .

5. IfTklet c =c¢1 in ey : X1 / O, then there exists some Th such that
e Fe:SoTh /0,
el x:Thkey: 2T /0, and
o z ¢ fu(T)U fu(X) .
6. IfTHlet x =c¢) incy: T / (V2.C1) = Cs, then there exist some Ty and Cy such that
eIkt : 20Ty / (Ve.Co) = Cy,
el x:TikFc:XpT/ (V2.C1) = Cy, and
o z ¢ fu(T)Ufu(X) U (fo(C1) \{z}) -
Proof. By induction on the derivations.
1. Straightforward with Lemma [I5] and [T6]
Straightforward with Lemma [I5] and [16]
Straightforward with Lemma [15] and

Case (T-Op): Obvious with Lemma
Case (T-CSuB): We have
(i) TFopov:XpT" /5,

T e e

14

i) TEYp>T" /S <:EpT /S, and

(i) TF2pT/ S

for some 3',7", and S’. By the IH on [(i)] we have
(iv) 8" = (Vy.Cty) = Ca,

—_~—

(v) &' 30p:VX : B.(z:T}) = ((y : T§) — C}) — C},

I'HA:B,

)

) —_—
(vii) THov: T{[A/X],
)

)

)

(vi
i) T F T[A/X][v/a] <: T",
(ix) T,y : T[A/X][v/z] F C) <: C{[A/X][v/x], and

(x) T+ C3[A/X][v/a] <: Cp,

(viii

for some X, E,g,x,y,T{,Té, C1,C%, Cly, and Cl,. By inversion of , we have
(xi) THY < %,
(xii) T+ T’ <: T, and
(xii) T | T"F S' <: S .
By inversion of with we have
(xiv) S = (Vy.Cp1) = Coa,
(xv) Ty : T+ Cy1 <: Cfy, and
(xvi) T+ Cfy <: Coz
for some Cy; and Cpo. On the other hand, by inversion of with and Lemma EI, we have

—_~—

(xvii) £30p:VX : B.(z:T1) — ((y : Tu) = C1) — Cs,

and

—_~—

° F,X:EFT{<:T1,

e~

° F,X:é,x:TI’}—Tg <: Ty,

—_~—

e I',X:B,z: T,y : Ty C] <: Cy, and
. F,A;\:/E,x T FCy <: CY
for some T7,T5,C7 and C5. Then, by Lemma |§| with and Lemma [5| with we have
(xvii) T - T{[A/X] <: T1[A/X],
(xix) T+ To[A/X][o/x] <: TH{A/X][v/x).
(x) T,y : TolA/X]v/a] - C1[A/X][v/a] <: C1[A/X][v/x], and
(xxi) T F Co[A/X][v/x] <: C4[A/X][v/x] .
By subsumption of |(vii)| with |[(xviii)}
(xxii) Tk w: Tl[m] .
By Lemma [16] with [(xix)] [(viii)] and [(xii)} we have
(xxii) T+ T»[A/X][v/2] <: T’ and
(xxiv) T'F Tﬂm][v/x] <T.
By Lemma [4] with {(ix)] and [(xix)]" and ‘{(xv)| and [(xxiii)]" respectively, we have
o I',y: Ty[A/X][v/z] F CYy <: Ci[A/X][v/z] and
o I,y: Ta[A/X][v/z] F Cor <: CY), .
Then, by Lemma (16| with these two and we have
(xxv) T,y : To[A/X][v/z] F Co1 <: C1[A/X][v/x] .
Also, by Lemma |16 with and we have
(xxvi) T+ Cy[A/X][v/] <: Cos -
From |(xvii)| [(xxii)} |(xxiv)} |(xxv)| and |(xxvi), we have the conclusion.

15

5. Case (T-LETP): Obvious.
Case (T-LetIpP): Contradictory.
Case (T-CSuB): We have
(i) Trletz=cincy:X'>pT" /9,
(i) TEFY>T" /S <:EpeT /0, and
(i) T+ X7 /O
for some ¥/, T, and S’. By inversion of we have
(iv) S=0,
(v) TEY <: X%, and
(vi) THFT <: T .
Then, by the IH of we have
(vii) ThFep : X'pTy /O and
(vili) Ty : Th Feg: YT /O
for some T,. By subsumption of with we have
(ix) ThFe 20Ty /0.
By Lemma [10| with we have
x) FT,z: Ty .
Then it holds that ¢ dom(T") and hence from we have
(xi) @ ¢ fo(T) U fol(S)
Also, by Lemma (3| with and we have
ez T\ YT /O<:EsT /0.
Then by subsumption of we have
xii) Ve :ThFe: ST /0.

Now we have the conclusion from and
6. Case (T-LETP): Contradictory.
Case (T-LeTIpP): Obvious.
Case (T-CSuB): We have
(i) THletx =cyincy:X>T" /5,
i) TEYXY T /S <:EpT / (V2.C1) = Cy, and
(iii) TF ST / (V2.C1) = Cs
for some /,7”, and S’. By inversion of [(ii)} we have
(iv) TEY < %,
(v) THT' <: T, and
(vi)y T |T'F S <: (V2.C1) = Cy .
Case analysis on the derivation of
Case (S-PURE): Contradictory.
Case (S-ATM): We have
(vii) §' = (Vz.C}) = C4,
(viii) T,z : T" = Cy <: Cf, and
(ix) T'FCf <: Cy
for some C} and C}. Then, by the IH of (i)} we have
(x) The : X1/ (Va.Cy) = C4 and
xi) yz: Ty Fey: YT/ (V2.Cp) = Cy
for some 77 and Cy. By subsumption of with and we have
(xii) T'Fep : 20Ty) (Vo.Co) = Cy .
By Lemma (10| with we have
(xiii) FT,2: Ty .
Then it holds that ¢ dom(T") and hence from we have
(xiv) & ¢ folT) U fu(S) U (fo(C) \ {2})

16

Also, by Lemma (3| with and we have
e TH Y < %
e zx:Th T <: T, and
e ax:T,z:T'HCy<:C] .
Then by subsumption of we have
(xv) Tyx :Th b e : BT/ (V2.C1) = Cp .
Now we have the conclusion from |(xii)} [(xv)| and |(xiv)]
Case (S-EMBED): We have
(xvi) &' =10,
(xvii) T,z : T+ Cy <: Cy, and
(xviil) z ¢ fu(Cs) .
Then, by Lemma [18 with [(i)] we have
(xix) Tk ¢ : ¥ >Ty /O and
(xx) Tyx :Th b e : X >T" /O
for some T;. By Lemma with we have
(xxi) Fl,z: 11 .
Then it holds that ¢ dom(T") and hence from we have
(xil) @ ¢ fo(T) U fo(S) U (fo(C) \ {2}) and
(xxiil) = ¢ fo(Cy) .
Also, by inversion we have I' = (s, and so we have I' - Cs <: Cy by Lemma Then,
by Lemma [3] with [(xxi)| we have T,z : Ty = Cy <: Cs. And hence, by (S-EMBED) with h we
have
o I'|Th FO<: (Vo.C3) = Cy .
Therefore, by subsumption of with we have
(xxiv) Tkep : 0Ty / (Ve.Ca) = Cy .
Moreover, by Lemma [3| with and we have
e YT /O<:XpT [/ (V2.C) = Cy .
Then by subsumption of we have
(xxv) Tz :Th ke : 0T/ (V2.C1) = Cy .
Now we have the conclusion from [(xxiv)} [(xxv)| and |(xxii)|

O

Lemma 19 (Inversion with pure evaluation contexts). If I' = K[c] : ¥ T / (V2.C1) = Ca, then there exist
some y, Ty, and Cy such that

e I'Fc:3pTy / (Vy.Co) = Cy and
e I'y: T F Kreturn y] : T / (V2.C1) = Cp .
Proof. By induction on the structure of K.
Case K =[]: Wehave I'Fc¢:Xp>T / (V2.Cy) = C3. By a-renaming, we have
i) ThEe:XoT /) (Vy.Cily/z]) = Cs .
Therefore, we have the first half of the conclusion with 77 = T and Cy = Cy[y/z].
On the other hand, from (i)} it holds that
(ii)) FT,y: T

by Lemma [11] Lemma [10] and inversion. We show the second half of the conclusion by case analysis on
T.

Case that T is a refinement type {z: B | ¢}: By (T-CVAR) and (T-RET) with it holds that
(iii) T,y: Threturny : 0> {20: B| 2=y} /O .
Also, we have the following subtyping with Lemma

T,y:T,z:{20: B| 2=y} FCi <: Cily/7]
Ty :T|{z0:B|z=y}FO<: (V2.Cy) = C4]y/z]

Then it holds that

17

(iv) Ty : THO>{20: Bl2o=y}/O<:XpT/ (Vz.C1) = C1ly/7]

by subtyping. Therefore, by subsumption with and we have the conclusion.
Case that T is not a refinement type: By (T-VAR) and (T-RET) with [(ii)} it holds that

(v) T,y: Tkreturny:0>T7 /0.

Also, since T is not a refinement type, by Lemma |8 we have z ¢ C; and so C1[y/z] = Cy. Then, we
have the following subtyping with Lemma

Doy:T,z:THCy <: Cily/7]
Dy:T|THO<: (V2.C1) = Cily/7]

Then it holds that
(vi) T,y:THO>T /O <:XT /) (V2.C1) = Ciy/7]
by subtyping. Therefore, by subsumption with and we have the conclusion.
Case K =let © = K; in ¢t Wehave 'Flet x = Ky[c] in ¢y : X>T / (V2.C1) = Cs. By Lemma we have
(i) TF K[: 20T) (V2.C") = Oy,
(i) T,z :T'Fep: BT/ (V2.C1) = €', and
(i) = & fo(T) U fu(X) U (fu(C1) \ {z})
for some 7" and C’. By the IH of (i)} we have
(iv) TFe: X Ty / (Vy.Co) = Co and
(v) Tyy: 71 F Kyreturn y] : S 7" / (V2.C") = Cy

for some y, T} and Cj.

By Lemma [10] with we have F I',x : T". By inversion, we have ¢ dom(T') and I' - T”. Also, By
Lemmawith we have - T',y : T1. Then, by Lemma we have ',y : Ty F T'. Moreover, w.l.o.g, we
can assume x # y, and so « ¢ dom(I') U {y} = dom(T",y : T1). Then we have - ',y : Ty, 2 : T".

Therefore, by Lemma [3| with we have
Dy :Ty,z: T Fep: 30T /) (V2.Ch) = C .
Then, by (T-LeTIP) with and we have
Iy: Ty Flet x = Kjfreturn y] in co : T / (V2.C1) = Cy
that is,
(vi) Ty: Th F Klreturn y] : X T / (V2.Cy) = Cy .
Therefore, from and we have the conclusion.

Theorem 20 (Subject reduction). If 0 Fc:C and ¢ — ¢, then O+ : C
Proof. By induction on the typing derivation.
Case (T-RET) and (T-OpP): Contradictory because there is no evaluation rule for c.

Case (T-ApP): We have

(i) e
(ii) ¢
(iii) +
(iv) }—Ug

U1 V2,
Cilv2/2],
: (x T1) — C1, and

for some x, vy, v, 17 and C;. Case analysis on the evaluation derivation.

Case (E-App): We have

(v) v1 =rec(f,x).c1, and

18

(vi) ¢ = arfva/a][(rec(f,x).c1)/f]
for some f,x and c;. By Lemma with we have

(vii) F oy : (2 : Tp) = Co,

(viii) F (z: Tp) = Cop <: (z: T1) — C1, and

(ix) f:(x:Tp) = Co,x:Tokc:Cy
for some Ty and Cy. By Lemma with inversion, and Lemma @ we have - Ty. Also, by
inversion of we have - T7 <: Ty. Then, By (T-VSuB) with we have - vy : Ty. Using this
and we have the conclusion by Lemma |5 with

Case (E-PriM): We have

(x) v1 =p, and
(xi) ¢ =((p,v2)
for some p. By Lemma |18 with we have
(xii) Fp: ty(p), and
(xiii) Fty(p) <: (x:Th) = Cy .
By inversion of we have
(xiv) ty(p) = (x : To) — Co,
(xv) Ty <: Tp, and
(xvi) z:Th F Cy <: Cy
for some Ty and Cy. By Lemma with and and inversion, we have F T. Then, by
(T-VSuB) with and we have |- vy : Ty. Therefore, by Assumption [2| with we have
(xvii) F ¢(p,v2) : Colua/x] .
Also, by Lemma [11] with and inversion, we have
(xviii) z: Ty FCy .
Using by Lemma 5| with |(xvi)| and |[(xviii)| respectively, we have
o - Cylva/x] <: Chlva/x] and
o - Chlua/x] .
Therefore, by (T-CSuB) with we have the conclusion.

Case (T-IF): We have

(i) ¢ =if v then ¢ else ca,
(ii) F v : {x:bool | ¢},
(i) v =truet ¢; : C, and
(iv) v="_falset ¢y : C

for some x,v, c1, co, and ¢. Case analysis on the evaluation derivation.

Case (E-IFT): We have
(v) v =true, and
Vi) ¢ =¢ .
We have the conclusion by Lemma (14| with
Case (E-IFF): Similar.
Case (T-CSuB): By the IH and (T-CSuB).
Case (T-LETP): We have
(i) e=1let z = ¢ in ca,
(ii)y C=%2pTy /0O,
(lll) H Cq EDTl / D,
(iv) z: Ty Fe:XpTy /0O, and
(v) @ ¢ fo(T2) U fu(%)

for some x, ¢y, co, 3,171 and Ts. Case analysis on the evaluation derivation.

19

Case (E-LET): By the IH and (T-LETP).
Case (E-LETRET): We have
(vi) ¢; = return v, and
(vii) ¢ = eo[v/a]
for some v. By Lemma [18| with we have
(viii) F Ty <: Ty and
(iX) Fo: TO
for some Ty. By Lemmawith and inversion, we have - T;. Then, by (T-VSuB) with and
we have - v : T7. Therefore, by Lemma with we have
Fesfv/z): 2Ty /0O
(Note that since it holds that X[v/z] = ¥ and Th[v/x] = T5.) That is, we have the conclusion.
Case (T-LeTIP): We have

(i) e=1let z = ¢ in ca,
(ii)) C=XpTy / (V2.C21) = Cho,
(iii) Fep : 2Ty / (Va.Cy) = Cha,
(iv) z: Ty F e : 2T / (V2.Co1) = Cp, and
(v) @ ¢ fo(T2) U fu(E) U (fo(Ca1) \ {2})
for some x, z, 1, co, 2,11, T5,Co, C12 and Ca;. Case analysis on the evaluation derivation.

Case (E-LET): By the IH and (T-LETIP).
Case (E-LETRET): We have
(vi) ¢1 = return v, and
(vii) ¢ = ea[v/a]
for some v. By Lemma |18 with we have
(viii) F Ty <: Ty,
(ix) Fv:Tp, and
(x) | To FO<: (V2.Cp) = Cya

for some Ty. By Lemma [11] with [(iii)] and inversion, we have - 7. Then, by (T-VSUB) with and
we have - v : T1. Therefore, by Lemma [5| with we have

(xi) Feov/z] : X Th [(V2.C91) = Colv/x] .

(Note that since it holds that X[v/x] = X, Tha[v/z] = Ts and Coy[v/x] = C21.) By inversion of
we have
(Xll) r:TyH Co<: Cis .

By Lemma with and inversion, we have F C}a, which means x ¢ fv(C13). Therefore, by
Lemma [5| with we have
(Xlll) - Co[’l)/x} <:(Cha .

On the other hand, by Lemma with and inversion, we have x : 17,z : T - Ca;. By Lemma
with we have z : To = Co1. Then, by Lemma we have

(xiv) z: To F Cay <: Coy .

Hence, by (S-ATM) with [(xiii)| and [(xiv)] we have | T5 b (V2.Ca1) = Cylv/z] <: (V2.Ca1) = Cia .
Now we have the conclusion by subsumption of

Case (T-HNDL): We have

(i) ¢ = with h handle ¢y,
(ii) h = {return z, — ¢, (op,(x;, ki) — ¢;):},
(111) Feo: Yo 1o / (ercl) = C7
(iv) 2 : To F ¢ : Ch,
(V) <Xz : Ei,zi : T’ilyki : (yz : T’lg) — Cﬂ F C; . Cz) s and

i

20

—_—~—

Case analysis on the evaluation derivation.

Case (E-HNDL): By the IH and (T-HNDL).
Case (E-HNDLRET): We have
(vil) ¢gp = return v and
(viii) ¢ = ¢p[v/z,]
for some v. By Lemma |18 with we have
(ix) T <: To,
(x) Fo:T{, and
(xi) |Tj+0O<: (Va,.C1) = C
for some T§. By inversion of we have
(xii) @, : T+ Cy <: C and
(xiii) =, ¢ fo(C) .
By Lemma M| with and we have
(xiv) zp : T F e : Cy .
By Lemma |5| with applied to and we have
(xv) F Ci[v/z,] <: C and
(xvi) Ferfv/zy] @ Chlv/zy]
respectively. (Note that Clv/z,] = C since [(xiii)}) By Lemma [L1] with and inversion, we have
F C. From this and and we have the conclusion by (T-CSuB).
Case (E-HNDLOP): We have
(xvii) ¢o = KJop; v] and
(xviii) ¢ = ¢;[v/z;][(A\y.with h handle K[return y])/k;]
for some K and v. W.l.o.g., we can assume that y is disjoint from any other existing variables. By
Lemma |19 with we have
(xix) Fopv: 3Ty / (Vy.Cp) = C and
(xx) y: Ty F Kreturn y] : So> Ty / (Va,.C1) = Cy
for some y, Ty and Cjy. By Lemma |18 with we have

(xxi) g 3 op; : VX, : El(xl :Ti1) = ((y: Tie) = Cin) — Cia,
(xxii) F A: Ei,
(xxiil) F v = T[4/ X4,
(xxiv) F Tia[A/Xi][v/zi] <: T,
)
)

(xxv) y: ng[/z_://\X/Z] [v/x;] F Cy <: Cin [Z_/\)Z] [v/x;], and
(XXVi F CQ[A/XZ] [U/.T,Z] <:C

for some A. Note that since holds, it holds that y = y; and we use E, Ei,xi,Til,TiQ, Ci1, and
C}2 here instead of introducing new ones.

Also, by Lemma (4| with and we have

Yy TZQ[A/XlH’U/I’l] F K[return y] : 20 DTO / (Vl?rcl) = C() .

Then, by subsumption with we have

(xxvil) y: Tie[A/X;][v/z;] F K[return y] : o> Ty / (Vz,.C1) = C“[X/\E(/i] [v/x;] .
On the other hand, by Lemmawith we have -y : Tig[Z/\)?Z-] [v/z;], and hence by Lemma
with and we have

(xxvill) y : Tio[A/ Xi][v/xi], xr : To F ¢ : Cy and

—~

(xxix) (y : Tig[m][v/xi],Xi : Ei,xi 2T, ki (i Tie) > Cin b ey o Gy > .

21

Therefore, by (T-HNDL) with [(xxvii)} [(xxviii)} and |(xxix)} we have

y : Tia[A/ X;][v/x;] F with h handle K[return y] : Ci1[A/X;][v/x;] .
Then by (T-FUN) we have
(xxx) F Ay.with h handle K[return y|: (y:y: Tig[;{/\)Z-] [v/x;]) — Cil[ZE] [v/x;]
Now, by Lemma |§| with applied to [(v)l we have

—_—~— —_—~ e~ e~

ZT; . Tll[A/XZ]Jﬁ : (yz : TZQ[A/XZ]) — Cll[A/XZ] - C; . CZQ[A/XZ] .

By applying [5| twice with |[(xxiii)| and |(xxx)|in a row, we have

- e;v/z:)[(\y.with h handle K[return y])/k;] : Cio[A/X][v/i] -

Note that Cig[z/\k/i][v/:vi][()\y.with h handle Klreturn y])/k;] = lg[m][’l}/l‘l since k; ¢
fo(Cia[A/ X;][v/x;]) by Lemma Now we have the conclusion by subsumption with |(xxvi
O
4.3 Type Safety
Theorem 21 (Type safety). If 0Fc:X>T /S and c —* ¢, then either:
e ¢ =return v for some v such that 9 v : T,
o ¢ = Klop v] for some K,op and v such that op € dom(X), or
o ¢/ — " for some ¢ such that Ot ¢": T/ S.
Proof. By induction on the length of —* with Theorem [13] and Theorem O
5 Definitions for the CPS transformation
5.1 Evaluation rules for the target language of the CPS transformation
evaluation context E:=[]|Ev|E A|E T
c—c
c— ¢
————(Ec-C - :
Elc] — E|(] (Ec-Crx) if true then c; else ¢y — ¢; (EC-IFT) if false then c; else c; — ¢y (EC-IFF)
Ec-Arp
(rec(f : 7,2 :7m).c) v — c[v/z][(rec(f : 11,2 : T2).c)/f] ()
(Ec-PAPP)

(Ec-PRrIM) =

PV — Ceps(p,v) (AX :B.c) A — c[m]

(Ec-ProJ)

(Ec-TApp) (Ec-AcCsR)

{(op; = v;)i t#fop; — v; (Aa.c) T — c[T/q] (c:1)—c¢

5.2 Syntax of typing contexts of the target language of the CPS transformation

Fa=0|D,z:7|0,X:B|T,a

22

5.3 Well-formedness rules of the target language of the CPS transformation

FT x¢dom(T) Tk
— (WEC-E -
r (Z)(Cc-EMPTY) FTo.r (WEC-VAR)
FL X ¢ dom(T) T dom (T
—— (WEC-PVaR) a & dom(l) \\ 1o TVar)
FI,X: B FT,a
IX:BFr
F7$:BF d) F,Qf T + T2 ’T(WTC—PPOLY)
22 Y (WTe-R WTc-F -
TT o B o] WICRN) mr s (WICFN) oY By
'), Natr

(WTc-Rep) i‘jfg (WTC-TVAR)

(WTc-TPory)

' {(op; : 7)i} I'Va.r

5.4 Typing rules of the target language of the CPS transformation

FI I'(z)={y:B|¢} FT vy, B, ¢.I(z) #{y: B| ¢} FT
Tc-CV. Tc-V. — (Tc-P
Fl—x:{y:B|x:y}(¢ AR) F'kz:T(x) (TC-VAR) F}—p:tycps(p)(O-PRIM)
I, f:(z: = T,x:TFc: I'ke:(z: — T'Fo:
filx:m) > mr:mibecin (Te-Fux) c:(x:m) > 1 viTy (Tc-App)
Phrec(f:(x:m) > m,z:m)c: (x:71) 2T Lk cwv: v/
I'atc: T I'Fe:Var ThkHT
S _ Tc-TA
'k Aa.c: Vot (To-TABs) F'ker:7'[7/q] (PF)
IX:Bte: [T =
,/__/ C/j:_/ (TC—PABS) I'e:VX:B.1 /I:_'/_ A:B (TC-PAPP)
'FAX:B.c:VX:B.1 ke A:7[A/X]
(T kv 7)) T'kov:{(op;:7)i}
Tc-Rebp ! Tc-ProJ
'+ {(op; = v;)i} : {(op; : TZ)Z}() T'Foftop, : 7 ()
I'to:{z:bool| ¢} .I‘,v:truel—clzT I‘,v:falseI—CQ:T(TC_IF)
I'Hif v then ¢; else ¢y : 7
. / / . . .
I'te:7 TH <7 FFT(TC—ASCR) I'be:mm ThEM<im F}—TQ(TC_SUB)

Pk(c:m):7 Phec:m

5.5 Subtyping rules of the target language of the CPS transformation

Izx:BE¢ = ¢o
F'H{x:B|¢1} <:{x:B| o2}

I'Fmp<imn Ta:mor B g < moo
Lk (x:71) = T2 <t (x:7T21) = Too

(Sc-Fun)

(Sc-RFN)

F,X:EI—ﬁ <: Ty

—_—~ o~

(Sc-PPory) (D 71y <t 724)i
I'EVX :Bm <:VX : B T'F {(op; : T14)4, (0P} = 7))} <: {(op; : 72:)i}
ael L,k nr/al<:me T,86F7 B¢ fu(Va.m)

lFa<: a (Sc-TVAR) I'FVam <: V3.7

(Sc-Rep)

(Sc-Pory)

5.6 CPS transformation of expressions

[+]= @
[p] = cps(p)
[rec(f@T)=C 212 (] %ef rec(f : [(x:T1) = Ci],z : [To]).[]
[return v7] L Rah {30k [T] = a.k [v]

23

flet z = "/ in PT2/P) Y RaXh: [S] e 1 [T] = afa]@a@h@ (M : [Th].Jez] Ga@hak)

>oTy/(Ve. . >pTh/(Vz. def
[[let m:clb 1/(CDCl):>CQ in CQD 2/(ZCQ):>C1]] :C

Radh: [S]Ne: (21 [T2]) = [Col[ar] @ [Co] @h@ Az : [T1].[e2] @ [C1] @ h@k)
[v1 2] = [on] [e2]
[(if v then ¢; else ¢2)C] & (if [v] then [c1] else [co] : [C])
[(op™ v)™T/(-C=Co] SR Xh: [S] Nk : (y : [T] = [C1])-hdtop A [v] ('« [T]k /)
[(with A handle ¢)°] < [¢] @ [C] @ [h°P*] @ [7]

—_—

h = {return zI" - ¢,, (op;" ¥ (x;[” , kLTk’) = ¢i)i}

_

where § rpops 9f (o5 — AX, ¢ Byt - [Th,] M e [T] [e])i)
2] 2 Az, 2 [T].[er]

5.7 CPS transformation of types and typing contexts

[{z:B| ¢} & {«: B¢}

[(z:T) = C]E (z: [T]) - [C]

[S6T / (Va.C1) = Co] V_[Z] = ((z: [T]) — [Ch]) — [Ce]

[EeT /0] ¥ Va[S] = ([T] = a) = «a

—_~

[{(op; : VX, : Bi.F)i}] & {(op; : VX, : Bi.[Fi]F):}
[[(33 : Tl) — ((y : TQ) — Cl) — CQ]]]: dZEf (Z‘ : [Tl]]) — [[((y : T2) — Cl)]] - [[CQH
[0] <9
D,z :T] €[],z : [T]

[[,X:B] <[], x:B

6 Proof of dynamic semantics preservation of the CPS transforma-

tion

Regarding dynamic semantics, we identify values and computations modulo types and predicates since they are

irrelevant to the dynamic semantics. That is, the following equations hold, for example:

AT :T1.Cc= AT :Ta.C
cr/al=c
c[A/X]=c¢c

Also, We often omit type annotations when they are unnecessary.

Moreover, We also identify values and computations modulo § equivalence of the (static) meta language (this
is admissible because the meta language is pure). Formally, we define a relation =g as the smallest congruence

relation over expressions in the target language that satisfies the following equations:

(Az:7.c)@v =g c[v/x]
(Aac)@r =g clr/a]

and we admit the =g-equivalence.
Assumption 22.
e cps(p) [v]@T @, @vr —* [¢(p,v)]@T @V, @0

e If ((p,v) is undefined, then cps(p) [v] gets stuck.

24

e p=true < cps(p) = true
e p =false < cps(p) = false
Lemma 23 (CPS transformation is homomorphic for substitution).
o [v[vo/«]] = [v]l[voll /2]
o [clvo/x]] = [e][[vo] /]
Proof. By simultaneous induction on the structure of v and c. O

Lemma 24 (Evaluation with pure evaluation context).

[Klop v]] @ 7@ vh @ v, —* vp#op A [v] (A\y.[K[return y]] @@ vy, @ vg) -
Proof. By induction on the structure of K.

Case K = |:

LHS = Jop v] @7 @vp, @ vy,
= (Aa.XhMk.h#top A [v] (Ay.k y)) @ 7@ vs @ vy,
—* vptop A [v] (\y.vg v)

8 UpFOp A [v] \y.(Aa.AhXk.kE y)@T@ v, @vy)

— vp#top A [v] (A\y.[return y] @ 7@ vy, @ vy)
= RHS

Case K =let x = K in cs:

LHS = [let = Kj[op v] in ¢2] @7 @ vy, @ vy,
= (AaXh k. [Kifopv]]aTtah@a (\z.[ez] @T7@h@k)) @7 v, vy
—* [K1[op v]]@T@v, @ (Az.[ee] @ T @ vp, @ vg)
(by the IH)
—* vp#top A [v] (\y.[Kilreturn y]] @7 @ v, @ (Az.[co] @ 7@ vp @ vg))
=g vp#op A [v] Oy.(AaXu Xk [Ky[return y]]@7@h@ (Az.[c;] @7 @h@k)) @ 7@ v, @ vg)
= up#op A [v] (M\y.[let z = Ki[return y] in c;] @ 7@ vy, @ vg)
— vp#top A [v] (M\y.[K[return y]] @ 7@ v, @ vg)
= RHS

Lemma 25 (One-step simulation). If ¢ — ¢/, then [c]@T@ v, @v, —* [@7 @ v, @ vy, .

Proof. By induction on the derivation of ¢ — ¢’. In the following, we implicitly use Lemma[23]and the equality

c[r/a] = ¢ and ¢[A/X] = ¢ (note that we identify computations modulo types and predicates regarding dynamic
semantics).

Case (E-LET):

LHS =[let z = ¢1 in ex] @ T @ vy @ vy
= (Aa. h k. Jei]@Taha (M\z.Jes]@Tah@k)) @t auv, @y
—* [a]@rav, @ (Az.Jez] @ T @ vy @ vy)
(by the IH)
—* [dl@r@v,@(\o.fex] @7 @ vy T vg)
=5 (Aa h Ak [c]]@ra@ha (Ar.[cs] @TTh@k))
=[let z = ¢} in co] @7 T vy @ vy
= RHS

ol
\]
®l
<
>
ol
(4
=

25

Case (E-LETRET): First, w.l.o.g., we can assume that x ¢ fv(vp,) U fo(vg). Then,

LHS = [let z = return v in 2] @7 @ v}, @ vy,
= (Aa.Mh k. [return v]@T@aha (A\z.[cx] @Tah@k)) @71 @ v, @y,
—" [return v] @ T @ vy @ (Ax.Je2] @ T @ vy @ vy)
= (Aa. b k.k [v])) @T@v, @ (Az.[e2] @ T @ vy, @ vg)
—* Az Jex] @T@ U, @) [V]
— ([e2] @ T @ vp, @ g)[[v] /2]
= ([e2] @ T @ w1, @ i) [[V] /2]
= [e2]l[v]/x] @ T @ vy @ v
= [e2[v/z]] @ T @V @ VR
= RHS

Case (E-IFT):

LHS = [(if true then ¢, else ¢;)°] @7 @ v, @ vy,
= (if true then [c¢;] else [c2] : [C]) @ T @ vy @V
— ¥ [a]erauv, @vy
= RHS

Case (E-IFF): similar.
Case (E-App):

LHS = [(rec(f,z).c) v] @7 @ vy @ vy,
= (rec(f,x).[c]) [v] @ T @ v, @ vy
— [c][rec(f, z).[c]/ f, [v]/x] @ T @ v), @ v
= [c[rec(f,x).c/f,v/z]] @ T @vp @ vy
= RHS

Case (E-PRriM): By Assumption [22]
Case (E-HNDL):

LHS = [with h handle c]@ 7@ v, @ vy,
= ([(Jara[r°P*]a[h™]) @ T T v, G vy
(by the IH)
= ([]ara[hP]a[n™])arav,auv,
= [with h handle ¢'| @ 7@ v, @ vy
= RHS

Case (E-HNDLRET):

LHS = [with ~ handle return v] @ 7@ v, @ vy,
= ([return v] @ 7@ [h°P*] @ [A"']) @ T @ v} @ v
= (A ARk [v])) @7 @ [hP] @ [R™']) @ T @ v, @ vy,
—* ([M™] W) @ T @ v, @ g
= ((Azr.fc]) [v]) @ T @ vp @ vy
= [e.][[v]/xr] @ T @ v, @ v
= [erlv/z)] @ T @ v @ g
= RHS

26

Case (E-HNDLOP):
LHS = [with h handle KJop, v]] @7 @ v;, @ vy
= ([K[op; v]]@T@[r°"*] @ [R™']) @ T @vs @ vp
(by Lemma
—* [heP*]#op; A [v] (\y.[K[return y]] @7 @ [h°P*] @ [A™])
= [h°P*]#op; A [v] (Ay.[with h handle K[return y]])
— (AX; Az Mk [ei]) A [v] (Ay.[with A handle K[return y]])
—" [ei][[v]/zi][Ay-[with h handle K[return y|]/k;]
= [eilv/z;][\y.-with h handle K[return y]/k;]]
= RHS

O
Theorem 26 (Forward (multi-step) simulation). If ¢ —* return v, then [cJ@r@{}@ Az : .x) —* [v] .
Proof. By applying Lemma [25| repeatedly, we have

[(Jere{}@(\z:7.a) —" [returnv]erea{} @ (\z: T.a) .

Then,
[return v]@r@{} @ (A\z: 7.z)
= (Aa h A kk [v])ara{} @ (\z: T.7)
—* (Az.x) [v]
— [v]
and therefore we have the conclusion. O

Definition 27. We define evaluation contexts E as follows:
E:=[]|let x = F in ¢ | with 4 handle F

Definition 28. We define a function bop as follows:

bop([]) 0
bop(let x = F in ¢) ef bop(E)
bop(with h handle E) % dom(h) U bop(E)
That is, bop(F) is a set of operations that are handled by a handler in FE.

We say ¢ is stuck if ¢ is irreducible and ¢ # return v. We proceed the proof of the backward simulation
following 7.

Lemma 29 (Preservation of the specific forms of stuck computations).
1. If ¢ = EJif v then ¢; else cy] where v is not true nor false, then [c] @ T @ vy, @ vy gets stuck.

2. If ¢ = E[vy ve] where vy is not rec(f,x).c nor p such that {(p,v2) is defined, then [c] @ T @ v, @ vy, gets
stuck.

3. Let ho be a handler. If ¢ = E[op v] where op ¢ bop(E) U dom(ho), then [c] @ 7@ [hg™°] @ g gets stuck.
Proof.
1. By induction on the structure of E.

Case E=]]:

[c] @ T@ vy, @vg = [if v then ¢; else o] @7 @ v, @ vy
= if [v] then [c1] else [c2] @7 @ vy, @ vy,

From Assumption [v] is neither true nor false. Therefore, there is no applicable evaluation rule,
and hence this computation is stuck.

27

Case FE =let x = F; in c:

[cl@T@uv, @u, = [let x = Eq[if v then ¢; else ¢;] in c]@T@ v, @ vy
= (Aa.MhDE.[E;[if v then c; else c;]]@Taha (M\z.[cJaTahak))@Tav, auv
—" [E1[if v then ¢; else c]]@T@ v, @ (Ax.[c] @ 7@ vy, @ vy)

By the TH, this computation gets stuck.
Case E = with h handle Ej:

[c] @ T @ vy @ vy, = [with h handle E;[if v then ¢; else co]] @ 7@ vy, @ vy,
= ([E4[if v then c; else c;]] @@ [hP°] @ [h™']) @ T @ v}, @ v
By the IH, this computation gets stuck.
2. Similar to the case [Il
3. By induction on the structure of FE.
Case E=]|:
[cd@r@[r]@v, = [op v] @7 @ [AF?] @ vg

= (Aa Mk k.h#top A [v] (Ay.[return y]G@rah@k)) @7 @ [AP*] @ vy,
—* hP*#op A [v] (Ay.[return y] @ 7@ [AP°] @ vy

Here, ho?® does not have a field with op since op ¢ dom(hg). Therefore, there is no applicable
evaluation rule, and hence this computation is stuck.

Case F =let x = F; in c:
[cl@r@[h’] @vi, = [let © = Eqfop v] in] @ 7@ [AP?] @ vy
= (Aa. Ak [Eijopv]]@ar@ha (Ax.[cJ@r@h@k))@ra [hF*] @ vy

—* [Er[op v]] @7 @ [hg®] @ (Ax.[c] @7 @ [A?] @ vg)

Since op ¢ bop(E) U dom(hy) and bop(E) = bop(let x = Ey in ¢) = bop(E1), it holds that op ¢
bop(E1) U dom(hg). Then, by the TH, this computation gets stuck.

Case FE = with h handle Ey:
[cl@r@[hg?®] @ v = [with h handle E;fop v]] @7 @ [he°] @ vy
= ([Er[opv]]@r@[r®]@[h™]) @ 1@ [h] @ vk

Here, op ¢ bop(E) = bop(with h handle E;) = bop(E;) U dom(h). Therefore, by the IH, this
computation gets stuck.

O

Lemma 30 (Preservation of stuck computations). If ¢ is a stuck computation, then [cJe@ra{}@ (A Az : 7.x) also
gets stuck.

Proof. A stuck computation c is either:

e EJ[if v then ¢, else c3] where v is not true nor false,

e Elvy vo] where vy is not rec(f, z).c nor p such that {(p,vs) is defined, or

e FE[op v] where op ¢ bop(E).
Therefore, it is immediate from Lemma O
Theorem 31 (Backward simulation). If [c]@7@{}@ (Az: 7.o) — v/, then ¢ —* return v and [v] =o' .

Proof. We show this theorem by proving its contraposition: If “c —* return v and [v] = v'” does not hold,
then [c]@r@{} @ (Azx: 7.x) — v’ also does not hold. We can divide the situation into two cases:

Case that ¢ —* return v does not hold: There are two possibilities where ¢ does not evaluate to a value-
return.

28

Case that ¢ diverges: Since ¢ diverges, for all natural numbers n, there exists a sequence
c—rc—> —Cp .
Then, by Lemma we have a sequence
[dera{}a(\z:7a2) —T [a]era{}ea(\r:172) —T - —T [c,]Jara{}a(\r:T.2)

for all n. The length of the sequence is at least n, and therefore [c]@7@{}@(Ax : 7.z) has evaluation
sequences of arbitrary length, which means it cannot be evaluated to a value.

Case that ¢ —* ¢’ and ¢’ is stuck: By applying Lemma [25| repeatedly, we have
[ddara{}a(\z:12) —"[d]ara{}a(\r:T.x).

Also, by Lemma 30} it holds that [¢']@r@{}@(Az : 7.z) gets stuck. Therefore, [c(Jara{}a(A\z : 7.z)
cannot be evaluated to a value.

Case that ¢ —* return v holds but [v] = v’ does not: By Theorem [26 we have
[dJeara{}a\zr:1.2) —T o] .

Then, from the premise [v] # v" and the fact that the evaluation of the target language is deterministic,
it cannot be the case that [c]@r@{}@ Az : 7.x) —T o' .

O

Corollary 32 (Simulation). Ifc —* return v, then [c]@r@{}@(\z : 7.z) —T [v] . Also, if [c]Jer@{}@(\z :
r.z) —1 v, then ¢ —* return v and [v] =o' .

Proof. Immediate from Theorem [26] and O

7 Proof of type preservation of the CPS transformation

In the following, we consider static expressions and dynamic ones as identical since the distinction is irrelevant
to the discussion on the type preservation. In other words, we write [¢] @ 7 @ v, @ vy, as [c] T vp vy below, for
example.

7.1 Basic properties for the target language of the CPS transformation
Assumption 33.

o If FT" and dom(T") D fu(¢), then T' F ¢.

If T+ ¢, then F T.

e IfI'F ¢, then T'E ¢ = ¢.

o IfTE ¢y = ¢y and ' E ¢y = ¢g, then T'E ¢y = ¢s.

e IfTFv:rand I,z :7,I"F A: B, then I',I"[v/z] - A[v/z] : B.

e If'Fov:7Tand Iz :7,T" F ¢, then T, TV [v/x] - ¢[v/x].

e IfTHwv:7and Iz : 7,T" E ¢, then T, TV [v/x] F ¢[v/x].

e If'A:BandT,X:B,I'+ A" : B then I,I"[A/X] - A'[A/X] : B'.
e If'HA:BandT,X : B,T' - ¢, then T', T"[A/X] + ¢[A/X].

e IfTHFA:Band D, X :B,I'E ¢, then I, "[4/X] F ¢[A/X].

o If T, [, T3 and T'y, Ty b ¢, then T'y, Ty, T3 F .

e If Iy, T5, T3 and I'y,Is F A: B, then I'y,I'5,T5 - A : B.

o If T, T, T3 and T'y, Ty F ¢, then T'y, Ty, T's E .

e IfI'+7m <, b z:m, I and T,z : 7, I A: B, then T,z : 7,I" - A : B.

29

e f'Fm <:m, Flz:7, IV and ',z : 2, T F ¢, then T,z : 7, IV F ¢.

e If'F7 <:mand 'z : 5, IV E ¢, then ',z : 7, TV E ¢.

o Ifx ¢ fu(l",;¢) and ',z : 79, F ¢, then I, TV I ¢.

e Ifzd ful",A)and T,z : 70,I'+ A: B, then T, T' + A : B.

e If ',z : 7,T' I ¢ and 7 is not a refinement type, then x ¢ fu(I”, ®).

e If,z:7,I"+ A: B and 7 is not a refinement type, then x ¢ fu(T', A).

e If T,z : 7,1V F ¢ and 7 is not a refinement type, then z ¢ fo(I",¢) and ', T E ¢.

e Ifad fu(l',¢) and T, o, T" F ¢, then T, T F ¢.

o Ifa ¢ fu(I",¢) and T, a,I' £ ¢, then I, T" F ¢.
Assumption 34.

o - ty,,(p) for all p.
Lemma 35 (Weakening). Assume that - T'1,Ty, T's.

o IfT',I'st 7, thenT'1,I'9, T3t 7.

o [fT'\,I'skc:7,thenT'1,I'5, T3k c:T.

o [fI',I'sk 71 <7y, thenT'1,T, T3 11 <: 7.
Proof. By induction on the derivation. Assumption [33]is used. O
Lemma 36 (Narrowing). Assume that Tk 71 <: 79.

o IfFT x:7m, IV and T,z : o, IV b7, then T,z : 7, TV 7.

e IfrT,z:7m, IV and T,z :n,I"Fc:7, then,z:7,I" Fc:T.

o [T x:1,I"Fr <1, then)z : 1, I" b7 <:7o.
Proof. By induction on the derivation. Assumption [33|is used. O
Lemma 37 (Remove unused type bindings).

o Ifx ¢ fu(T') and T, 2 : 79,17, then F T, T".

o Ifx ¢ fu(T',7) and T,x : 7o, I" 7, then T, TV - .
Proof. By induction on the derivation. The case for (WTC-RFN) uses Assumption O
Lemma 38 (Variables of non-refinement types do not apper in types). Assume that 19 is not a refinement type.

o If-T x: 7,1, then x ¢ fu(I).

o If T,z :7,I" b7, then x ¢ fu(T’, 7).
Proof. By induction on the derivation. The case for (WTC-RFN) uses Assumption O
Lemma 39 (Remove non-refinement type bindings). Assume that 7o is not a refinement type.

1. If T,z : 79,1V, then - T, T".

2. If,z:7, "7, then T, TV - 7.

3. Ifx ¢ fu(c) and)z : 79, F 7, then T, TV Fc: 7.

4. IfTx 7m0, IV 1 <7, then T, TV 71 <: 7o,
Proof.

1. Immediate by Lemma [38] and

2. Immediate by Lemma [38] and

30

3. By induction on the derivation. The case for (TC-PAPP) uses Assumption

4. By induction on the derivation. The case for (SC-RFN) uses Assumption

Lemma 40 (Remove unused type variable bindings).
o Ifad fu(I') and - T, o, T”, then T, T".
e Ifad fu(T',7) and Ty, TV 7, then T, TV F 7.
o Ifad fu(T',m,m2) and T, o, T" b 1y <: 7o, then T, TV b 1 <: 7o.
Proof. By induction on the derivation. The case for (WTSc-RFN) and (SC-RFN) uses Assumption
Lemma 41 (Substitution). Assume thatT'F v : 79.
o If-T,x:7,I, then - T, TV [v/x].
o IfT,z:7,I" b7, then T, T'[v/z] b T[v/x].
o IfT,z:1,I"Fec:7, thenT,T[v/x] & c[v/z] : T[v/x].
o IfT x:70,I"F 1 <: 72, then T, TV[v/z] F m1[v/z] <: T2[v/x].
Proof. By induction on the derivation. Assumption [33]is used.
Lemma 42 (Predicate substitution). Assume that T+ A : B.
e IfFT,X : BT, then k I,T"[A/X].
e IfT,X :B,I"F 7, then I,I"[A/X] I T[A/X].
o IfT,X :B,I"Fc:, then T, T'[A/X] F ¢[A/X] : 7[A/X].
o IfT,X :B,T" -1 <:7o, then T, T'[A/X] F 11 [A/X] <: m[A/X].
Proof. By induction on the derivation. Assumption [33]is used.
Lemma 43 (Type substitution). Assume that ' - 7.
o If-T a1, then - T,T[rg/q].
o IfT,a, T 7, then T, T[10/c] F T[10/ .
o IfT a,T"Fc:7, then T, [r0/a] F c[ro/a] : [0/].
o IfT, o, 1 <: 79, then I, IV[1o/ax] F 11|10/ <: T2[10/0].
Proof. By induction on the derivation. Assumption [33]is used.
Lemma 44 (Well-formedness of typing contexts from that of types). If ' 7, then - T.
Proof. By induction on the derivation. The case for (WTC-RFN) uses Assumption
Lemma 45 (Well-formedness of types from typings). If ' c: 7, then Tt 7.
Proof. By induction on the derivation.
Case (Tc-CVAR): By Assumption
Case (Tc-VAR): By Lemma 35
Case (Tc-Prim): By Assumption [34] and Lemma
Case (Tc-FuN): By the IH, Lemma 39 and (WTc-FuN).
Case (Tc-APP): By the IH, inversion, and Lemma [1]
Case (Tc-TABS): By the IH and (WTc-TPoLy).
Case (Tc-TAPP): By the IH, inversion, and Lemma [43]

31

Case (Tc-PABs): By the IH and (WTc-PPoLy).
Case (Tc-PApp): By the IH, inversion, and Lemma
Case (Tc-Ir): By the IH and Lemma

Case (Tc-Ascr) and (Tc-SuB): Immediate.

O
Lemma 46 (Reflexivity). IfT'F 7, then ' F 7 <: 7.
Proof. By induction on the derivation. The case for (WTC-RFN) uses Assumption O
Lemma 47 (Transitivity). If I'F 7 <: 1 and I'F 72 <: 73, then I' - 71 <: 73.
Proof. By induction on the structure of 7. Assumption Lemma and [35] are used. O

Lemma 48 (Inversion).
o [fT'+x: 7, then either

obT andTH{z:B|z=za}<:7 (if T'(x) ={z: B| ¢} for some z,B and ¢)
o FT and T'FT'(z) <: 7 (otherwise)

o [fT'kp:T, thentT and 'ty (p) <: 7.

o I[fTFrec(f:(x:m) > max:m)c:T,thenl f:(x:m) > m,z:mmbcimandThH(x:7) > 1 <7,
o IfTFAa.c:7, thenT,atc: 7 and T'+Va.7' <: 7 for some 7'.

o IfT'F{(op; =v;i)i} : 7, then (' Fv; :73), and I' - {op, : 7;} <: 7 for some (73);.

e [fTHcv:T,thenTkec:(z:m) =1, I'Fv:m and T'F rafv/z] <: 7 for some x, 71 and T2.

—_~

e IfTHcA:7, thenTFc:VX:B7 , T+A:B andFI—T’[m} <:Tf0rsome)?,§ and 7.
o IfTHer :7,thenTFce:Var, TET and T F 7|7’ /a] <: 7 for some « and 7.

o IfTHuftop: 7, thenT Fov:{...;op:7,...}.

o IfTF(c:7):T1,thenTkFc:7 and TH 7" <: 7.

e I[fTHif vthen ¢y else cy: 7, then ' v:{z:bool| ¢}, T,v=truet ¢y : 7/, T,v =falset ¢y : 7/, and
Tt 7 <:7 for some z,¢ and 7'.

Proof. By induction on the derivation. Lemma [46] and [47] are used. O

Lemma 49 (Inversion for CPS-transformed computations). If I' b Aa.Ah : 7. Mk @ 7i.c : T and neither 13, nor
Tk 18 a refinement type, then there exists some 7' such that

e a,h:mnk:mFc:7 and
e I'FVar, -1 — 1 <7
Proof. By Lemma 48] (Sc-Pory), (Sc-Fun), and Lemma [{7] O

Lemma 50 (Inversion for the specific form of application). If T'F ¢ 79 vy ve : T, then there exist some 7/, 11,
and T such that

el'Fec:7,
e 'Fwy:7, and
e 'Fuy:my.

In addition, if T'F 7] <: 7 and T+ 75 <: 19 for some 1| and 7, and neither T nor 75 is a refinement type, then
' 7" <:Va.r{ — 75 — 7 where « is fresh.

Proof. The first half is by Lemma The second half is by Lemma and [47] with the results of the first
half. O

32

7.2 Forward type preservation
Assumption 51.
o If T F ¢, then [I] - ¢.
o IfTHA: B, then [I]+ A: B.
o If T E ¢, then [I] F ¢.
Assumption 52.
o [9(D)] = typa(Ip])-
o If ty(p) = {x : B | ¢} for some z, B and ¢, then [p] = p.

Lemma 53 (CPS transformation preserves free variables in types).

o fo([T]) = fo(T).
o fo([C]) = fu(C).
o fo(IZ]) = fo(%).
Proof. By simultaneous induction on the structure of types. O

Lemma 54 (CPS transformation is homomorphic for substitution).
o [Tlv/x]] = [T]([v]/=]-

[Clv/=]] = [C][[v]/x].

[Elv/z]] = [E]{[v]/=]-

[T[A/X]] = [TT[A/X].

[ClA/X]] = [CT[A/X].

o [E[A/X]] = [E][A/X].

Proof. By simultaneous induction on the structure of types. The case for T = {z : B | ¢} uses Assumption
iy O

Lemma 55 (CPS transformation preserves well-formedness).
o If-T, then F [I].
o IfT'FT, then [I'] - [T7].
o IfTF C, then [T] F [C].
o IfT F X, then [T'] F [X].

Proof. By simultaneous induction on the derivations. Lemma [35]is used. The case for (WT-RFN) uses As-
sumption 51} O

Lemma 56 (CPS transformation preserves subtyping).
o IfTFTy <: Ty, then [T] F [Th] <: [T2]-
o IfTF Cy <: Cy, then [I] F [C4] <: [Cq].
o IfTF Xy <: Xy, then [T] F [21] <: [22]-

Proof. By simultaneous induction on the derivations. Lemmais used. The case for (S-RFN) uses Assumption

5311 O
Theorem 57 (Forward type preservation).

1. If TFw:T, then [T F [v] : [T].

2. If Tk c: C, then [T] F [] : [C].

Proof. By simultaneous induction on the typing derivation of the source language.

33

1. Case (T-CVAR): By Lemma definition of CPS transformation of typing contexts, and (Tc-CVAR).
Case (T-VAR): By Lemma definition of CPS transformation of typing contexts, and (T'C-VAR).
Case (T-PriM): By Lemma[55, Assumption [52} and (Tc-PRrim).

Case (T-FuN): By the IH and (Tc-Fun).
Case (T-VSuB): By the IH, Lemma [56] Lemma [55] and (Tc-SUB).

2. Case (T-RET): we have

e c =return v,
e C={}pT /0, and
e 'Fuv:T
for some v and T'. Then, we have
o [c] = Aa.h: {} Ak [T] — a.k [v] and
o [Cl=Va{} = (T] > o) - «a.
By the IH, we have
o [T]F o] : [T7] -

We have the conclusion by the following derivation with Lemma

Tc-Va
TonnFk:[1] = o (Te-VaR) Toni - [0] : [T]

[T], e, h: {},k:[T] > atk[v]:«
[T], b : {} E XE[T] = ok [v] : ([T] = o) = « (
[Tl,a b AR {3 Ak [T] = ak [v] : {} = ([T] = o) = «
[T] F AaAh: {320k [T] = ok [v] : Va{} = ([T] = @) = «

(Tc-App)
(Tc-Lam)
Tc-Lam)
(Tc-TABs)

where Ty 5 & Tl e, h: {}E:[T] = .
Case (T-APP): By the IH, Lemma [54) and (Tc-App).
Case (T-IF): By the IH, (Tc-IF) and (Tc-ASCR).
Case (T-CSuB): similar to the case for (T-VSUB).
Case (T-LETP): We have
e c=let x =c; in ¢y,
o C=%pTy/0,
e k¢ :XpTy /0,
e z:Thkco:X>Ty /0 and
x ¢ fo(T2) U fo(%)
for some x, ¢y, co, X, T1 and T5. Then we have
o [c] = AaAh: [E] Ak : [To] — aJei] a h (Az: [T1].[c2] o b k) and
o [C] =Va.[X] = ([T2] — a) = « .
By Lemma [53] we have
o z ¢ fu([T2]) U fu([X]) -
Also, by the IHs, we have
o [IF [e] - v6.[3] = (ITh] —) — B and
o [I,z:[Ta] F [ea] - Vv [X] = ([T2] =) = v

We have the conclusion by the following derivations with Lemma

Pankt[a] 1 VB.[E] = ([Th] = B) = B Tank b«

Coni b [a] o: [B] = ([T = @) — « (Tc-TArp) m(TC—VAR)
TConkFlea] ah: (1] - a) =« oA (Tc-App)
“A): MlansF [o b (1] = a) = a LOAPP)
Lo Fle] i 97 [5] = ([T2] 2 7) =7 Tanke Fa (Tc-TApP) (Tc-VAR)

Fa,h,k,m F [[Czﬂ a [[E]] — ([[Tg]] — Oé) —
(B): Tonkabt [co] ah:([T2] = o) >«

th,k,aj Fh: [[Z]]

(Tc-App)

34

(Tc-VAR)

(Tc-Arp)

(Tc-Fun)

(Tc-App)

(Tc-Fun)
Tc-Fun)
(Tc-TABs)

(B) Fa,h,k,:p Fk: [[TQ]] —

Congk,z:[T1]FJee] ahk:a

(A) TopktFdz:[Th]fe2] e hk:[Th] = «

[T], e, b [E],k: [T2] = at [a] a h (Az: [T1].Je2] o h k) : «

[T], e, b : [E] F Ak : [T2] — a.]ci] @ h Az : [Ti].Je2] @ b k) : ([T2] — o) = « (
[T],a b Ab: [Z]Mk: [To] — a]ai] @ b (Az: [Th]Je2] a b k) : [E] — ([T2] = o) — «

[T] F Aadh: [Z] Ak : [To] = afei] b (Ax: [Th]-[c2] @ h k) : Vo [X] = ([T2] = @) = «

where Ty 5 1 def [T, e, h: [E],k: [T2] > a and To pk 2 def Congx:[Th] -
Case (T-LETIP): We have
e c=let z =c in ¢,
e C=XpTy/ (V2.Ch) = Cy,
ke 2Ty / (Va.Ch) = Co,
Da:Thikey: 2Ty [(V2.Ch) = Cq, and
z & fu(Tz) U fo(E) U (fu(Co) \ {z})
for some x, z, ¢1, ¢, 2,11, Ty, Cy, C1 and Cy. Then we have
o [c] = Aadh: [Z] Mk : (2 : [T2]) = [Col-[e1] [Ce] b (M : [T1]-[c2] [Ci] h k) and
o [C] =Va.[X] = ((z: [T=]) = [Co]) — [C2] -
By Lemma [53] we have
o x ¢ fo([T2]) U fu([E]) U (fo([Co]) \ {2}) -
Also, by the IHs, we have
o [T]F [e1] : V. [2] = ((z : [T1]) — [C1]) — [C2] and
o [T, z:[Th] F [c2] : Ve [2] — ((z: [T2]) — [Co]) — [Ci] -
We have the conclusion by a straightforward derivation like the case for (T-LETP) using those
judgements shown so far and Lemma [35]

Case (T-OpP): (In this case, we use Lemma [54] frequently and implicitly.)
We have

® c=o0p v,
o C=3oT[A/X|[v/2] / (Vy.CL[A/X][v/]) = Ca[A/X][v/x],

° ZBOPZVX:E.(xlTl)%((yZTQ)—)Cl)—)CQ,
e TFY,

—_~—

e '+ A:B,and
F}—U:Tl[zz/\)/(]

for some x,y, v,)~(, A 57 3, T1,T5,Cq and Cs. Then, we have
o [d] = AaAh: [S) Nk : (y : [BI[A/X)[v] /] — [C[A/X)[[v] /).
N httop A [o] '+ [TaIA/X[e] /o) & o),
o [C) =vee[E] = ((y: [T20[A/X][[0] /2]) = [C11[A/X]l[v]/2]) = [Ca][A/X][[v] /2], and
e [X]30p:VX : B.(z: [T1]) — ((y : [T2]) — [Ci]) — [C2] -
Also, by the IHs, we have
o [T+ [o] : [T1][A/X] .
By Assumption [f1] we have

o [IJ+HA:B.
We have the conclusion by a straightforward derivation like the cases for (T-RET) and (T-LETP)
using those judgements shown so far and Lemma
Case (T-HNDL): We have
e ¢ = with h handle ¢,
e h = {return z, — ¢, (op;(z;, ki) — ¢;):},
e I'Fe¢y:Eor> T, / (Va,.Ch) = C,

35

e Iu,.: T, Fc :Cy,

[] (F,XZ : Ei,l'l‘ : T’ilyki : (yz : T’lg) — Cﬂ FCZ' : Cz) s and

° 20 = {(Opl : VXl : El(xl : ,_Tl) — ((yz : EQ) — Czl) — 021)1}
Then, we have

o [c] = [eo] [C] [RoP°] [A],
o [n"¢] = Az, : [T3] [er],

—_~—

[] Hhops]] = {(Opz = AXl : E)\.TZ . [[Tﬂ]])\kl . (y1 . [[T‘lg]]) — [Cﬂﬂ[cz]])z}a and

—_—~

o [Zo] = {(op; : VX : Bi.(wi : [Tul) = ((yi : [T2]) — [Cia]) — [Ciz])i} -
Also, by the IHs, we have

o [T]F [eo] : Y. [Z0] — ((zo : [T7]) — [C1]) — [C],

o [F]Lmr:/[[\TL]] F e] : [C4], and

° ([[F]],XZ : EZ‘,JCZ‘ : [[El]];ki : (yz : [[ng]]) — [[Czl]] - [[Clﬂ : [[ngﬂ) .

We have the conclusion by a straightforward derivation like the cases for (T-RET) and (T-LETP)
using those judgements shown so far and Lemma [35

O

7.3 Backward type preservation
For the backward direction, we define some notations.
Definition 58. T' is cps-wellformed if for all (z : 7) € T, it holds that 7 = [T7] for some T

Definition 59. rmtv is a function which removes all bindings of type variables from a typing context. Formally,
it is defined as follows:

at act

rmtv(0) rmto(T,z:7) = rmtv(T),z : 7

def

rmtv(T, X : B) Lef rmto(T), X : B rmtv (L, a) = rmto(T)

Lemma 60 (CPS-wellformed target typing contexts have corresponding source ones). If I is cps-wellformed,
then there exists some I such that [I'] = rmtv(T).

Proof. By induction on the structure of T". O

Since the CPS transformation is injective, there is only one I'" which satisfies the equation in Lemma
Therefore, we define a function (—|) that maps I to I':

Definition 61. Let I' be a cps-wellformed typing context in the target language. We define (I') to be the typing
context in the source language such that [([)] = rmtv(T).

Assumption 62. Assume that I' is cps-wellformed.
o If ' ¢, then (') F ¢.
o IfTHA:B, then (T) - A: B.
e If T E ¢, then ([) E ¢.

Lemma 63 (Computation types in the specific form of subtyping are pure). If ' - [C] <: Va1 — (12 —
B) =14 and BT, then C=XpT /O (for some X and T'), and 74 = (.

Proof. Assume that C = X>T / (V2.Cy) = Cs for some X, T, z,C; and Cs. Then, we have
CEVAIE] = ((z: [T]) — [C1]) = [Ce] <:Var — (12 = 8) = 7

where v is fresh. By inversion, we have T',a, h : 7,z : [T] F 8 <: [C1], that is, Ty, h : 7,2 : [T] F 8 <: Vé.75
for some 75 and 6. This is contradictory since there is no subtyping rule for such a judgment.
Therefore, C = X T / O for some ¥ and T'. In this case, we have

LEVYE] = ([T] =) = v <:Voar = (2 = B) = 74

where + is fresh. By inversion, we have

36

o I'at 74,
e I a,h:m,x: [T][rs/v] F B <: v[r6/7], and
o U a,h:m,x:[T]re/Y] b v[r6/7] <: T4

for some 7. The second judgment can be derived by only (SC-TVAR) where v[r5/7] = 8. Therefore, the
third judgment becomes I',a, h : 71,2 : [T][76/7] F B <: 74, which can be derived by only (SC-TVAR) where
T4 = 5 O

Lemma 64 (Computation types can be assumed to be impure). IfT'F ¢ : C, then w.lo.g., we can assume that
C=%XpT/(Vz.Cy) = Cs for some X, T,x,C1 and Cs.

Proof.
Case C =X T / (V2.C1) = Cy: Immediate.

Case C=%3pT /0O: It holds that ' F X7 / O <: ¥pT / (Vx.Cy) = Cy for any Cp such that I' F Cp.
Therefore, by subsumption we have I' - ¢ : X T / (V2.Cy) = Cp .

O
Lemma 65 (Backward preservation on well-formedness). Assume that T is cps-wellformed.
1. If+ T, then - ().
2. If T+ [T], then ()T
3. If T+ [C], then () - C.
4. If T+ [X], then (T) - X
Proof. By simultaneous induction on the derivation.

1. Case (WEcC-EMPTY): Obvious since (@) = 0.
Case (WEC-VAR): We have

e I'=T"z:7,

o FIV,

e x ¢ dom(I"), and
eIk T

for some IV, x, and 7. By the IH, we have I (I'’). Also, we have = ¢ dom((I')) since dom(I") 2
dom((T')). Moreover, since I is cps-wellformed, 7 = [T7] for some T. Then, by the IH, we have
(I") F T. We have the conclusion by (WE-VAR). (Note that (I') = (I, z : [T]) = (IV),z: T.)

Case (WEC-BVAR): By the IH and (WE-BVAR).
Case (WEc-PVAR): By the IH and (WE-PVAR).
Case (WEcC-TVAR): By the IH. Note that (I, o) = (I).

2. Case analysis on T'.

Case T = {z: B| ¢}: By Assumption [62]and (WT-RFN).
Case T = (z: T1) — C1: By the IHs and (WT-FUN).

3. Case analysis on C.

Case C =X T /O: We have [C] =Va.[X] — ([T] — «) — « for some a. By inversion, we have

e I''ak [X] and
e T o, h:[X]F[T] .

By [0l we have
o Dok [I7.

By the IHs, we have
e (I')F X and
o ()FHT.

Also, by (WT-PURE), we have (I') | T+ 0. Then we have the conclusion by (WT-Comp).

37

Case C =3Xv>T / (Vz.Cq) = C3: We have [C] = Va.[E] = ((z : [T]) — [Ci]) — [C2] - By inversion,
we have
ok [X],
Tya,h: [Z]F 1],
Tya,h: [Z],z: [T]F [Ci], and
Too,h: [Z],k: (z: [T]) = [C1] F [Ce] -
By [9] we have
o I' ok [T7],
o I'a,x: [T] + [C4], and
e I ak[Cy] .
By the IHs, we have
e (MFX
o (O)FT,
e (I,

({T),z: THCq, and
() - Cs .
Then we have the conclusion by (WT-ATM) and (WT-Cowmp).

4. By the IHs and (WT-S1G).

Lemma 66 (Backward preservation on subtyping). Assume that T is cps-wellformed.
1. If T+ [Th] <: [T2], then (T) F Ty <: Ts.
2. If T+ [C41] <: [Cs], then (T) F Cy <: Cs.
3. If Tk [24] <: [X2], then (T) F X <: 2.
Proof. By simultaneous induction on the derivation.
1. Case analysis on T and T.

Case Th ={z: B | ¢1} and Tp = {2z : B | ¢2}: We have
o [T1]={z:B|¢1} and
° [[TQHZ{ZB|¢2}
We have the conclusion by Assumption [62|and (S-RFN).
Case T1 = (z: Tyo) — C1 and Ty = (z : T19) — C1: We have
° [[Tlﬂ = ($: [[Tlo]]) — [[Clﬂ and
o [13] = (z: [T2o]) — [C2].
We have the conclusion by the IHs and (S-FUN).

Otherwise: Contradictory since there is no applicable rule.
2. Case analysis on C7 and Cs.

Case C1, =%;>T; /0O and Cy = 3o > Ty / : We have

e [C1] =Va.[21] = ([T1] = @) = a and
o [Co] =VB.[%:] — ([T2] — B) — 8

for some « and 5. By inversion, we have
e IOk T,
o I' 5+ [32] <: [Z1][7/e] and
o ' B h:[X:] F[T1] <: [T2][7 /<]

for some 7. Since CPS-transformed types do not contain type variables, we have
o I' 5+ [32] <: [21] and
o ' 3, h: 2] F[Th] <: [T2] -

By [0} we have
o I' B+ [32] <:[21] and

38

o I'BH[T1] <: [T3] -
By the IHs, we have
o (I)F Xs <: Xy and
e MFTY <: Ty .
Also, by (S-PURE), we have (I') | 71 F O <: 0. Then we have the conclusion by (S-ComPp).
Case C1 =31 0Ty / (Vo.C11) = C12 and Cy = Yo > T / (Vo.Co1) = Caz: We have
o [Ci] =Va.[21] — ((z : [T1]) = [Ci1]) — [Ci2] and
° HCQ]] = Vﬁ[[zgﬂ — ((.’E : [[TQ]]) — [[021]]) — [[022]] .
By inversion, we have
e 'Sk,
L, B F [<: [Z1][7/al,
D,8,h: [22] F [Th][r/a] <: [T2],
T, 6, h: [Ba],z: [Th][r/a] F [C21] <: [Ci1][7/«a], and
D,8,h: 2], k: (z:[T2]) — [Caa] F [Ci2]lr/a] <: [C22] .
for some 7. Since CPS-transformed types do not contain type variables, we have
L, B[22 <: [E4],
LB,k [Eo] B [Th] <: [T2],
L, 5,h:],z : [T1] F [Ca1] <: [C11], and
D,8,h: [,k : (z: [T2]) — [Caa] F [Ci2] <: [C22] .
By [0l we have
T, B F [X2] <: [24],
T, 5+ [T1] <: [T2],
T, B,z : [Th] F [Cai] <: [Ci1], and
T, B F [Ci2] <: [C22] .
By the IHs, we have
o (I)F X <: 3,
o M) FT <: Ty,
o (I),z:Ty + Co <: Cqy, and
. (]Fl) FCio <: Coy .
Then we have the conclusion by (S-ATM) and (S-Cowmp).
Case C1 =101y /O and Cy = X9 Ts / (Va.Ca1) = Caa: We have
o [C1] =Va.[21] — ([T1] — @) = « and
o [Co] =VB.[E:] = ((w: [T2]) = [Ca1]) — [C22] -
W.lo.g., we can assume that « ¢ [Ca]. By inversion, we have
e IOk T,
T, B F [<: [Z1][7/],
D,8,h: [22] F [Th][r/¢] <: [T2],
T,B,h: [Ba2], 2 : [Th][r/a] F [C21] <: a[r/al, and
D,8,h: 2], k: (z:[T2]) — [Ca1] F a[r/a] <: [Co2] .
for some 7. Since CPS-transformed types do not contain type variables, we have
T, B F [<: [24],
L,6,h: [Zo] F[T1] <: [T2],
T,B,h: 2],z : [Th] F [Ca1] <: 7, and
L,68,h: [Zao],k: (x:[T2]) = [Caa] F 7 <: [C22] -
By [9] we have
o ' BF 2] <: [24],
o I'BH[IN] < [12],
o IS, x:[T1] F [Ca] <: 7, and
o ISk 7 < [Ce2] .
By Lemma [35] and 7] we have

39

o ' BF 2] <: [%4],
o I' 5+ [T1] <: [T2], and
o I' G x:[T1] F [Ca] <: [C22] .
By the IHs, we have
o () F X <: Xy,
o () FTy <: Ty, and
o (I),z:TyF Co <: Coy .
Then we have the conclusion by (S-EMBED) and (S-ComP).
Case C1 =X 0Ty / (Vo.C11) = C12 and Cy = Yo To / O: We have
o [C1] =Va.[21] — ((z : [T1]) = [C11]) — [Ci2] and
o [Co] =VB.[%:2] = ([T2] = B) — 8 .
By inversion, we have
e I''GF 7, and
e ' 5, h:[2:],k:(z:[T]) = B+ [Cia][r/a] <: 8 .
for some 7. Since CPS-transformed types do not contain type variables, we have
o ' G, h:[X2],k:(z:[Te]) = B+ [Ci2] <: 5.

This is contradictory since [Ci2] cannot be a type variable and thus there is no applicable rule.

3. By the IHs, and (S-S1G).

Theorem 67 (Backward type preservation (for open expressions)). Assume that I' is cps-wellformed.
1. If T+ [v] : 7, then there exists T such that (I) Fv:T and T+ [T] <: 7.
2. If T'F [[c] : 7, then there exists C' such that (T) Fc:C and T'+ [C] <: 7.

Proof. By simultaneous induction on the structure of v and c.

1. Case v = z: We have [v] = 2. By Lemma[§] we have either
I.FTandTH{z:B|z=z} <: 7 (if T'(z) = {z: B| ¢} for some z, B and ¢)
2. FT and T'+TI'(z) <: 7 (otherwise)
Case 1: By Lemma [65] we have - (I'). Also, since [{z: B | ¢'}] = {z: B | ¢/} for any ¢, we have
o ([)(x) ={z:B| ¢} and
o I'F[{z:Blz=xa}] <: 7.
Then, by (T-CVAR), we have (I') - = : {z : B | z = 2}. Now we have the conclusion with
T={z:B|z=uz}.
Case 2: By Lemma[65] we have t (['). Then, since I'(z) = rmtv(I')(z) = [(T)](z) = [(T)(z)] holds
by Lemma [60 we have I' - [(T) ()] <: 7. Also, by (T-VAR), we have (T) - 2 : (I)(z). Now we
have the conclusion with 7' = (') (z).
Case v = p: We have [v] = cps(p). By Lemma [48] we have
e -T"and
o I'H tycps([[p]]) <:T.
By Lemma we have F (['). Then, by (T-PRrRIM), we have (T') F p : ty(p). Also, by Assumption
we have I' F [ty(p)] <: 7. Now we have the conclusion with T' = ty(p).
Case v = rec(f®T1)=C1 272) c: We have [v] = rec(f : (z : [T1]) — [Ci],z : [T2]).[c]. By Lemma
we have
o I'f:(z:[Th]) — [Ci],x : [TA] F [€] : [Ci] and
o ' (x:[Th]) — [Ch] <: 7.
By the IH, we have
o (I),f:(x:T1) = Cryz:Thtc:Cland
o T.f: (2 [1]) > [Cilz : [T - [C] < [Ci]

40

for some C{. By Lemma we have
(C),f:(z:Th) = Cryx:TiFCy <:Cy .
Then, by (T-CSuB) and (T-FuN), we have
I+ rec(f®T)=C ooy e (2 :Ty) — C .
Now we have the conclusion with T' = (x : T1) — C4.

2. Case c = return v': We have [c] = Aa.Ah: {} Mk : [T] — a.k [v] . By Lemma we have
e U a,h:{},k:[T] > atk[v]:7 and
e I'Va{} > ([T]—a) o7 <7
for some 7. By Lemma |48} we have
e Dah: {}k:[T]—=abkk:(y:m) — 7o,
e T a,h:{},k:[T] = at [v]: 7, and
e Ta,h:{}k:[T] = at n[v]/y] <: 7
for some y, 71, and 75. By Lemma[39] we have
e akv]:m .
Then, by the TH, we have
o () Fv:T and
e I'H[T] <7 .
Therefore, by (T-RET), we have
e ()Freturnv: {}o7 /0.
On the other hand, by Lemma [48] we have
eDah:{}E:[T]=akb[T]ma<(y:m) =1 .
Then, By inversion, we have 75 = «. By inversion again, we have 7/ = «. Therefore, we have
e I'Va{}l = ([T] = o) wa<:T,
that is,
e I'F[{}vT /O] < 7.
Now we have the conclusion with C' = {}>T /[
Case ¢ = let x:clzDTl/D in 022|>T2/D: We have [c] = Aa.dh : [E]Ak @ [T2] — aa] o b Az :
[T1].[c2] o h k) . By Lemma [49] we have
1) T,o,h: [Z],k: [T2] = at [a] ah (Ax: [T1].Jce] @ h k) : 7" and
(ii) TFYa.[X] = ([T2] @) = 7' <t 7
for some 7/. By Lemma [50] with we have
(iii) T, o, h: [Z], k : [To] — ak [ei] : 77,
(iv) Ty, h: [E],k: [To] = a b+ h: 7, and
V) Tya,h: [Z],k: [To] — a b Az : [Th].Je2] a h k7o
for some 77,7 and 5. By Lemma [48| with and respectively, we have
(vi) Tya, b [Z],k: [T2] = a - [2] <: 7,
(vii) Ty, b [2], k2 [T2] = o,z : [Th] b [e2] « b k: 73, and
(viii) Ty, h: [Z],k: [Te] = aF (z: [T1]) = 73 <: 72
for some 73. Then, by the second half of Lemma [50] we have
(ix) Tyo, h: [Z],k : [T2] = a7 < VB.[E] — ((x: [Th]) = 73) — 7'
where (3 is fresh.
On the other hand, by Lemma with we have
(x) Tyo,h: [Z],k: [To] = o,z : [TA] F [eo] : 75,
(xi) T,a, h: [2],k: [T2] = o, : [T1] F h : 74, and
(xii) Tya, b [B],k: [T2] = a,z: [Th] F k= 75
for some 74,74 and 75. By Lemma [48| with and respectively, we have

41

o I o, h:[E],k:[Te] = o,z : [Th] F [2] <: 74 and
o Lo h:[E]k:[Te] = a,z: [T F [T2] » a<: 75 .
Then, by the second half of Lemma [50] we have
(xiii) Ty o, h: [2], k2 [T2] = a,z: [T F 7 < V. [2] = ([T2] =) — 73
where 7 is fresh.
By Lemma |39| with and we have
(xiv) T at [er] = 77,
(xv) Tyak 7" < VB[] = ((x: [T1]) = 73) = 7’
(xvi) Ty, : [Th] F [e2] : 74
(xvil) Tya,z: [Th) b 75 < V. [2] = ([T2] =) — 73 .
Then, by the THs of and respectively, we have
(xviii) (T) F ¢ : Ch,
(xix) T, a - [C4] <: 77,
(xx) (T),x: Ty F cg: Cy, and
(xxi) T, o, : [Th] - [C2] <: 74
for some C; and Cs. By Lemma [47| with ‘ and ’ and ‘ and ’ respectively, we

have
(xxii) Ty aF [Cy] <:VB.[2] = ((z: [Th]) = m3) — 7" and
(xxiii) Ty o,z : [Th] F [Ce]] <: VA [2] = ([T2] — @) — 75 .
By Lemma [63| with we have
e 1 =%1;>T1; /0and
e 3=
for some 11 and Tiy. Then, by Lemma [63] again with we have
o Oy =Yg >Th /0 and
e 7'=q
for some Y95 and Th. By inversion of we have
o I' o, S+ [X] <: [E11] and
o I o, h:[X],5F [Tu] <: [T1] -
By Lemma and [66] we have
o ()X <: Xy and
e MFT <: Ty .
Then, by subsumption on we have
(xxiv) (T)F e 2Ty /0.
In the same way, from we have
(xxv) (T),z:Thke: 2Ty /0.
Therefore, by (T-LETP) with |[(xxiv)|and |(xxv)l we have

M)Fletx=crinecy: X1y /0.
Also, since 7/ = a, implies
FFEsTy /O] < 7.
Now we have the conclusion with C =X >T, /0.

Case c=let z = (:1E'>T1/(WC'CI)=>C2 in CQEDTQ/(VZ'CO)ﬂcI: We have [c] = AaAh : [E]Ak 2 (2 2 [T2]) —
[Col-[ea] [C2] k (Ax : [T1]-[c2] [Ci] k k) . In the similar way to the previous case, we have
(i) THVYa.[X] = ((z: [T2]) — [Co]) = 7' <: 7,
(ii) (T)F 1 : Ch,
(iii) T,a kb [C1] <:VB.[Z] = (z: [T1]) — 73) — 7,
(iv) ([),z: Ty F co: Co, and
v) Tya,z: [T1] F [C2] <: V.[2] = ((z : [T2]) = [Co]) — 73
for some 7/, 73, C1 and C3. By Lemma we can assume that

42

e Oy =%1>Ty9 / (Vz1.C11) = C12 and
o Oy =3%9>Tog / (Vee.Ca1) = Con
for some 1, T1g,z1,C11, Ci2, X2, Tog, €2, Cy1 and Cas. Then, by inversion of we have
(Vi) 1 ==
(vii) Ty, 5 - [2] <: [21],
(viii) T, o, B, b : [Z] F [To] <: [T4],
(ix) Tya, B,k : [E],z : [Tho] b 73 <: [C11], and
x) Tya,B8,h: [Z],k: (x: [Th]) — 3 F [Cr2] <: 7" .
By Lemma and |66| with and respectively, we have
(xi) (T) F X <: 3y and
(xii) (T)F Tio <: T3y .
By subsumption on with we have
(xiii) (O)F 1 :X>Tho / (V1.C11) = Cha .
On the other hand, by inversion of |(v), we have
® 1y=12
e U o,z : [Th], v+ [2] <: [22],
o U o,z : [Th],v,h: [Z] F [T20] <: [T2],
o T o,z : [Th], v, h:[Z],2: [T20] F [Co] <: [C21], and
o T o,z : [Th], v, h:[Z],k: (2:[T2]) = [Co] F [C22] <: 75 .
By Lemma |36| with we have
(xiv) T, o,z : [Tho], v F [2] <: [22],
(xv) Dy, : [Tho]l, v, h: [2] F [T20] <: [T2],
(xvi) Ty o,z : [Tho], v, b : [2], 2 : [T20] F [Co] <: [C21], and
(xvi)) T o,z : [Tho], v, b [Z], k2 (z: [T]) — [Co] F [Caz] <: 75 .
By Lemma and [47| with and we have
(xviii) T, o,z : [Tho] - [Ca2] <: [C14] -
By Lemma and [66] with [(xiv)} [(xv)] |(xvi)| and |(xviii)| we have
o (I),z:TiokF X <: Xg,
o (D), :Tiot Toy <: To,
o ([),z: T,z :Too - Cy <: Coy, and
o ([),z:Tiot Coo <: Cyy .
Then, by Lemma (36| and subsumption on we have
(xix) (),z:TiobFca: XpTy / (V2.Ch) = Chy .
Therefore, by (T-LETIP), we have

M)Flet x =ciincy : Ty / (V2.Ch) = Cya .

Also, by Lemma and [47| with |(i)| and we have
o I'HVa.[X] — ((z: [T2]) — [Co]) — [Ci2] <: T,
that is,
FF[E>Ty /) (V2.Ch) = Cra] <: 7.
Now we have the conclusion with C =X Ty / (V2.Cp) = Cia .
Case ¢ = v1 v9: We have [c¢] = [v1] [ve] . By Lemma (48] we have
o T'H 1] : (x:71) — 7o,
e '+ [vs] : 71, and
o I' npffve]/x] <: 7
for some z, 71 and 75. By the IHs, we have
o (I)F vy : Ty,
o (I)F vy: Ty,
o '] <: (x:71) — 72, and

43

o I'H[Ia] <:m
for some T} and T5. By inversion, we have
o I = (z:Th1) = Cra,
e I't7 <:[T11], and
e z:m F[Ci2] <72
for some Ty; and Cq2. By Lemma we have I' b [T3] <: [T11] . Then, by Lemma we have
(T) F Tz <: T11, and hence by (T-VSUB) we have ([) - vg : T11 . Therefore, by (T-APP), we have
(T) F vy v2: Crafve/x] .
On the other hand, by Lemma we have I' - [Cy2][[vz] /2] <: 72[[v2]/z] . Then, by Lemma
we have I' F [Cra][[v2] /2] <: 7 .
Now we have the conclusion with C' = Cia[ve/x] .
Case ¢ = (if v then ¢; else ¢3)¢": We have [¢] = (if [v] then [c] else [c2] : [C']) . By Lemma
we have
o '+ if [v] then [c¢1] else [c2] : [C'] and
e I'H[C]<:7T.
By Lemma [§ again, we have
e 't [v]: {z:bool | ¢},
T, [v] = truek [e1] : 7/,
T, [v] = false - [eo] : 7/, and
k7" < [C]
for some z, ¢ and 7’. By the IHs, we have
e (T)Fv:{z:bool| ¢},
o (I'),v =truekt ¢ : Cy,
e ([),v="falset cy: Cy,
e ', [v] =truet [C1] <: 7/, and
o I' [v] =false - [Co] <: 7
for some C7 and Cy. (Note that since v is of a refinement type, it holds that [v] = v.) By Lemma
and [{7 we have
o I', [v] = true k- [C1] <: [C'] and
o I [v] = false - [C2] <: [C'] .
By Lemma [66] we have
e ([),v=truet C; <: C'" and
o (I'),v =falset Cy <: C" .
Then, by (T-CSuUB), we have
e (I'),v =truek ¢; : ¢ and
o ([),v="falsetFcy:C".
Therefore by (T-IF), we have (I') - if v then ¢; else ¢z : ¢/ . Now we have the conclusion with
c=C.
Case ¢ = (op;‘ 0)=T/(V-C)=C2; We have [] = AaMh : [S]Ak < (y ¢ [T]) — [Ci].h#op A [v] (M :
[T].k y') . By Lemma[49] we have
(i) oo h: [S],k: (y: [T]) = [C1] - htop A [v] (A : [T].k y') : 7" and
(ii) THVYa.[Z] = ((y: [T]) = [C1]) = 7' <: 7
for some 7'. (Below, we write Ty 5 for T', o, b : [E], k- (y : [T]) — [Ci] -)
By Lemma 48| with we have
(iii) Tope FAY - [T]k Y 1,
(iV o,h,k F [[’U]] : T3,
(v) TanxFA: B,

)T
) T

(vi) Tapi b [E] < {...,VX : B.75,...},
) T
r

ahk T[4/ X] < (x:73) = T4,
ahk Fma[[v]/2z] <: 71 — 72, and

(vii

(viii

44

(ix) Tonr bFme <.

By Assumption |33| and |62 with we have
e IFA:B.

By inversion of we have

—_~—

e X ={ .., 0p:VX: E.(wop : Top1) = ((Yop : Top2) = Cop1) = Copa, - ..} and

—~

* Tonp, X : Bt (Zop : [Top1]) = ((Yop : [Top2]) = [Cop1]) = [Copa] <: 75 -
By repeatedly inverting this subtyping judgment with applying Lemma [42] with Lemma [41] with
and Lemma |47 with and we have
(x) & = Zop,
() Tt 75 <t [Topt [[A/X],
(xii) Tan 71 < (top * [Tep2][A/X][[0]/]) = [Copt][A/X][[v] /2], and
(xiil) Lo - [Cop[A/X][[0] /2] <: 7' .
By Lemma [39| with we have
e T ak[v]:ms.
Then, by the TH, we have
(xiv) (T) F v : T, and
(xv) Tya bk [T,] <: 73
for some T,,. By Lemma |47 with and (using Lemma , we have
o T ot [T,] <: [Top][A/X] .
Then, by Lemma [66] we have
o (0) F T, <: Top1[A/X]
and hence, by (T-VSUB) with [(xiv)] we have
o (D) Fv: Tom[A/X] .

Also, by Lemma [44] and inversion, we have I'; a F [£]. Then by Lemma we have (') + X.
Therefore, by (T-OP), we have

(V) F0p v 3> Topa[A/X][0/2] / (Yyp-Copr [/ X][v/2]) = Copal A/ X][v/2] .

On the other hand, by Lemma {48 with we have
(XVi) Fa,h,k F (y/ : [[T]D — T <:T1,
(xvil) Tanp ¥ [TTF 7]y’ /yo] <: 76,
(xviil) Topk, ¥ [T1F (y: [T]) — [Ci] <: (yo : 77) — 73, and
(xix) ok, : [T]1FY 77 .
By inversion of we have
e y =y and
o Lonksy t [Ty 77 b [Ch] <:7s .
Then, by Lemma [41] with we have
o Tonky : [TIH Oy /y] <:7sly'/yl -
Then, by Lemma 47| with we have
e Longe,y [T F[Ch]ly'/y] <: 76
(Note that y = yo). Then by (Sc-FUN), we have
o Lonw b (¢ - [T]) = [Chlly'/y] < (" [T]) = 76
and by a-renaming we have
e L'opnit(y: [T = [Ch] < (W : [T]) = 76 -
Then, by Lemma [47| with and we have
(xx) Lk b (y: [T]) = [C1] <: (Yop : [Top2][A/X][[v]/2]) = [Copr][A/ X][[v] /] -
Therefore, by some subtyping rules with and we have

45

o T F Vau[Z] = ((yop : [Topal[A/X[[0]/2]) = [Cop[A/X][[v]/2]) — [Copel[A/X][[v] /2] <:
Va.[2] = (v : [T]) — [Ci]) — 7.

Then by Lemma 47| with we have
o T'FVau[S] = ((yop : [Top2[A/X][[v]/2]) = [Coprl[A/X)[[0]/a]) — [Cop)[A/X][[0] /] <: 7 ,
that is, - s -
T F [5 Top2[A/X][0/2] / (Vyop-Copr[A/X][v/2]) = Copal A/ X][v/2]] <: 7 .

Now we have the conclusion with C' = XpTgp0 [le_/\j(][v/x] / (VYop-Cop1 [;1_/\)/(] [v/z]) = Cop2 [X/\)/(][v/x] .

Case ¢ = (with & handle ¢)“: We have [c] = [c] [C] [h°P*] [h"*!] where

h = {return z7" — ¢,, (opiBi (T fwiTiz) = Cay Ci)i
T 2

R = Aoy 2 [T0]-[er]

—_~—

[hoP*] = {(op; = AX; : Bidw; : [Ta]-Mei = (s : [Ti2]) — [Cin]-[ei])i}

By Lemma [50] we have
(i) TF [: 7,

(ii) T F [h°P*]) : 71, and

(iii) T+ [R™] : 7

for some 7/, 7 and 5.

By Lemma [4§] with [(ii)] and we have

e~

(iv (F FAX; : Bida : [Ti] M : (v : [Ti]) — [Cal-Jei] ZTZ‘) ,

) .
(v) TF{(op; : 3)i} <: 71,
(vi) Tz, : [T;] F [er] : 73, and
(vil) TF (z . [T7]) = 3 <: 72 .
Then, by the second half of Lemma [50] we have
(viii) T'H 7" <:Va{(op; : 7:)i} = (zr : [T1]) = 13) = 7
where « is fresh.
By the IH of [(vi)] we have
(ix) ([), 2z : Tr F ¢ : Cp and
(x) Ty, : [T] F [Cr] <: 73
for some C,..
By repeatedly inverting and by Lemma [47, we have

—_~—

(xi) (F,Xi t Byt [Tl ki« (yi 2 [Til) = [Cal F [e] - T{) and

K2

(xii) (r VX, Bi(zi: [Ta]) — (s : [Ti2]) — [Ca]) — 7/ < Ti>

for some 7. By the IH of we have

i

(Xlll) ((]FD,Xl : E,iﬂi : Tilaki : (yz : TZQ) — Cﬂ [Ci CZ) and

i
—

(xiv) (I‘,X,- : E,zi Tl ki : (v 2 [Ti2]) — [Cal F [Ci] <: Tz’)

for some C;’s. By (Sc-FUN) and (Sc-PPoLy) with [(xiv)] we have

3

—~

. (r FVX:: Bi(x: [Ta]) = (i 2 [Ti2]) = [Cal) = [Ci] <: VX : Bz : [Ta]) = (i : [Ti2]) = [Ca]) —wg) .

Then, by Lemma [47| with we have
(xv) (wvxi : Bi(zi : [Ta]) = (v : [Ti2]) — [Cal) — [Ci] <: Ti> .

Thus, by Lemma |47 and subtyping with and we have
o I'H1' <:Var, = ((z: [T]) = [Cr]) = 7

46

3

P

where 7, % {(op; : VX; : Bi.(x; : [Ta]) = ((vi : [Ti2]) = [Cia]) = [Ci]):} . Here, we define ¥ to be

{(op; : VX, : E(% :Tin) = (i : Tie) = Ci1) = C;);}, Then, it holds that 7, = [X]. That is, we
have

(xvi) T F 7' <:Va.[2] = ((z : [T7]) = [Cr]) = 7.
On the other hand, by the IH of we have
(xvii) (T) F c: Cy and
(xviii) T'F [Co] <: 7/
for some Cy. By Lemma w.l.o.g., we can assume that Cy = Yo > Ty / (V2o.Co1) = Coa . Then,
by Lemma [47| with |(xvi)| and |(xviii), we have

o ' Vﬂ[[zo]] — ((31‘0 : [[To]]) — [[001]]) — 002 < VO&[[E]] — ((1‘7« : [[T»,«]]) — [[Cr]]) — T .

Then, by inversion, we have

F,Ojl_ E{E]] <: [20]],
Tya,h: [X]F [To] <: [T:],
Lo, h: [X], 2 [To] F [Cr] <: [Co1]s

and
(xix) Tya,h: [Z],k : (2 : [To])) = [Cor] F [Coz] <: T .
By Lemma [39] we have
o I'ak [X] <: [Z0],
o I' ok [To] <: [Tr], and
o I a,z,: [To] F [Cr] <: [Coi] -
Then, by [66], we have
o I)FX <X,
o (I)F Ty <: Ty, and
o (I),z, : Ty C, <: Copy -
Therefore, by subsumption on we have
(xx) M) Fc: 2T,/ (Vz,.C.) = Cha .
Thus, by (T-HNDL) with and we have

(T) - with h handle c¢: Cpz .

Also, by Lemma [39| and [40] with we have
'+ [[CQQH <!T.

Now we have the conclusion with C' = Cos.

O
Corollary 68 (Backward type preservation (for closed expressions)).
o If O+ [v] : 7, then there exists some T such that Ot v :T and O+ [T] <: 7.
o If OF [c] : 7, then there exists some C such that O c: C and O+ [C] <: 7.
Proof. Immediate from Theorem @ since) is obviously cps-wellformed. O

47

	Typing Rule for Operation Forwarding
	Detailed explanation of the benchmark
	Definitions (other than those shown in the main paper) and Assumptions
	Well-formedness of typing contexts, value types, and computation types
	Assumptions on well-formedness judgments of formulas, well-formedness judgments of predicates, and semantic validity judgements of formulas
	Assumptions on primitives

	Proof of Type Safety
	Progress
	Subject Reduction
	Type Safety

	Definitions for the CPS transformation
	Evaluation rules for the target language of the CPS transformation
	Syntax of typing contexts of the target language of the CPS transformation
	Well-formedness rules of the target language of the CPS transformation
	Typing rules of the target language of the CPS transformation
	Subtyping rules of the target language of the CPS transformation
	CPS transformation of expressions
	CPS transformation of types and typing contexts

	Proof of dynamic semantics preservation of the CPS transformation
	Proof of type preservation of the CPS transformation
	Basic properties for the target language of the CPS transformation
	Forward type preservation
	Backward type preservation

