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Algebraic effects and handlers are a mechanism to structure programs with computational effects in a modular

way. They are recently gaining popularity and being adopted in practical languages, such as OCaml. Meanwhile,

there has been substantial progress in program verification via refinement type systems. While a variety of

refinement type systems have been proposed, thus far there has not been a satisfactory refinement type

system for algebraic effects and handlers. In this paper, we fill the void by proposing a novel refinement type

system for languages with algebraic effects and handlers. The expressivity and usefulness of algebraic effects

and handlers come from their ability to manipulate delimited continuations, but delimited continuations also

complicate programs’ control flow and make their verification harder. To address the complexity, we introduce

a novel concept that we call answer refinement modification (ARM for short), which allows the refinement

type system to precisely track what effects occur and in what order when a program is executed, and reflect

such information as modifications to the refinements in the types of delimited continuations. We formalize

our type system that supports ARM (as well as answer type modification, or ATM) and prove its soundness.

Additionally, as a proof of concept, we have extended the refinement type system to a subset of OCaml 5

which comes with a built-in support for effect handlers, implemented a type checking and inference algorithm

for the extension, and evaluated it on a number of benchmark programs that use algebraic effects and handlers.

The evaluation demonstrates that ARM is conceptually simple and practically useful.

Finally, a natural alternative to directly reasoning about a program with delimited continuations is to apply

a continuation passing style (CPS) transformation that transforms the program to a pure program without

delimited continuations. We investigate this alternative in the paper, and show that the approach is indeed

possible by proposing a novel CPS transformation for algebraic effects and handlers that enjoys bidirectional

(refinement-)type-preservation. We show that there are pros and cons with this approach, namely, while one

can use an existing refinement type checking and inference algorithm that can only (directly) handle pure

programs, there are issues such as needing type annotations in source programs and making the inferred

types less informative to a user.
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1 INTRODUCTION
Algebraic effects [Plotkin and Power 2003] and handlers [Plotkin and Pretnar 2009, 2013] are a

mechanism to structure programs with computational effects in a modular way. Algebraic effects

represent abstracted computational effects and handlers specify their behaviors using delimited

continuations. The ability to use delimited continuations makes algebraic effects and handlers

highly expressive, allowing them to describe prominent computational effects such as exceptions,

nondeterminism, mutable states, backtracking, and cooperative multithreading. Additionally, alge-

braic effects and handlers are recently gaining quite a recognition in practice and are adopted in

popular programming languages, such as OCaml [Sivaramakrishnan et al. 2021].

Meanwhile, there has been substantial progress in program verification via refinement type
systems [Bengtson et al. 2011; Freeman and Pfenning 1991; Nanjo et al. 2018; Rondon et al. 2008;

Sekiyama and Unno 2023; Swamy et al. 2016; Terauchi 2010; Unno and Kobayashi 2009; Unno

et al. 2018; Vazou et al. 2014; Vekris et al. 2016; Xi and Pfenning 1999; Zhu and Jagannathan 2013].

Such type systems allow the user to express a precise specification for a program as a type embed-

ding logic formulas and their type checking (sometimes even type inference) (semi-)algorithms

(semi-)automatically check whether the program conforms to the specification. While a variety of

refinement type systems have been proposed for various classes of programming languages and fea-

tures, including functional languages [Freeman and Pfenning 1991; Rondon et al. 2008; Vazou et al.

2014], object-oriented languages [Vekris et al. 2016], and delimited control operators [Sekiyama and

Unno 2023], there has not been a satisfactory refinement type system for programming languages

with algebraic effects and handlers.

In this work, we propose a new refinement type system for algebraic effects and handlers.

A challenge with the precise verification in the presence of algebraic effects and handlers is

the presence of the delimited continuations: they are the key ingredient of algebraic effects and

handlers to implement a variety of computational effects, but they also complicate programs’

control flow and make it difficult to statically discern what effects occur in what order. To address

this challenge, we propose a novel concept that we call answer refinement modification (ARM for

short), inspired by answer type modification (ATM) employed in certain type systems for delimited

control operators such as shift and reset [Asai 2009; Danvy and Filinski 1990]. Similarly to

ATM that can statically track how the use of delimited control operators influence the types of

expressions, ARM can statically track how the use of algebraic effect operations (and the execution

of the corresponding handlers) influence the refinements in the types of expressions, where the

latter, as in prior refinement type systems, is used to precisely describe the values, rather than
just their ordinary (i.e., non-refinement) types, computed by the expressions. Thus, our novel

refinement type system supporting ARM can be used to precisely reason about programs with

algebraic effects and handlers.

ATM and ARM are closely related: in fact, our refinement type system supports ATM, that is, our

system allows the whole types and not just the refinements in them to be modified. As far as we

know, the only prior (ordinary or refinement) type system for algebraic effects and handlers that

supports ATM or ARM is a recent system of Cong and Asai [2022]. However, their system does

not support refinement types (and so, obviously, no ARM), and moreover, even when compared as

mechanisms for ordinary type systems, their ATM is less expressive than ours. We refer to Section 6

for detailed comparison.
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While our system supports the full ATM, from the perspective of program verification, ARM alone,

that is, allowing only modification in type refinements, is useful. Indeed, as in other refinement-

type-based approaches, our aim is verification of programs typed in ordinary background type

systems (such as the type systems of OCaml 5 and Koka [Leijen 2014] that do not support ATM),

not to make more programs typable by extending the background type systems with ATM. As a

proof of concept, we have extended the refinement type system and implemented a corresponding

type checking and inference algorithm for a subset of OCaml 5 which comes with a built-in support

for effect handlers, and evaluated it on a number of benchmark programs that use algebraic effects

and handlers. The evaluation demonstrates that ARM is conceptually simple and practically useful.

Finally, a natural alternative to directly reasoning about a program with delimited continuations

is to apply a continuation passing style (CPS) transformation that transforms the program to a pure

programwithout delimited continuations.We investigate this alternative in the paper, and show that

the approach is indeed possible by proposing a novel CPS transformation for algebraic effects and

handlers that enjoys bidirectional (refinement-)type-preservation. Bidirectional type-preservation

means that an expression is well-typed in the source language if and only if its CPS-transformed

result is well-typed in the target language. This implies that we can use existing refinement type

systems without support for effect handlers to verify programs with effect handlers by applying

our CPS transformation. However, like other CPS transformations [Appel 1992; Cong and Asai

2018; Danvy and Filinski 1990; Hillerström et al. 2017; Plotkin 1975], ours makes global changes to

the program and can radically change its structure, making it difficult for the programmer to recast

the type checking and inference results back to the original program. Also, the CPS transformation

is type directed and requires the program to be annotated by types conforming to our new type

system, albeit only needing type “structures” without concrete refinement predicates. Moreover,

in some cases, CPS-transformed expressions need extra parameters or higher-order predicate

polymorphism to be typed as precisely as the source expressions, because the CPS transformation

introduces higher-order continuation arguments. Nonetheless, our CPS transformation is novel, and

we foresee that it would provide new interesting insights, as CPS transformations often do [Danvy

and Filinski 1990], and be a useful tool for future studies on refinement type systems and effect

handlers.

Our main contributions are summarized as follows.

• We show a sound refinement type system for algebraic effects and handlers, where ARM

plays an important role.

• We have implemented the refinement type system for a subset of OCaml language with effect

handlers, and evaluate it on a number of programs that use effect handlers.

• We define a bidirectionally-type-preserving CPS transformation which can be used to verify

programs with effect handlers, and discuss pros and cons between direct type checking using

our system and indirect type checking via the CPS transformation.

The rest of the paper is organized as follows. In Section 2, we briefly explain algebraic effects and

handlers and ATM, and then describe the motivation for ARM and our system. Section 3 presents

our language. We define its syntax, semantics and type system, present some typing examples, and

show type safety of the language. Section 4 explains the implementation of the system. In Section 5,

we provide the CPS transformation and discuss pros and cons between the direct type checking

via our type system and the indirect type checking via CPS transformation. Finally, we describe

related works in Section 6 and conclude the paper in Section 7.

2 OVERVIEW
We briefly overview algebraic effects and handlers, ATM, and ARM.
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2.1 Algebraic Effects and Handlers
Algebraic effects and handlers enable users to define their own effects in a modular way. The mod-

ularity stems from separating the use of effects from their implementations: effects are performed

via operations and implemented via effect handlers (or handlers for short). For example, consider

the following program where ℎd ≜ {𝑥𝑟 ↦→ 𝑥𝑟 , decide(𝑥, 𝑘) ↦→ max (𝑘 true) (𝑘 false)}:
with ℎd handle let 𝑎 = if decide () then 10 else 20 in let 𝑏 = if decide () then 1 else 2 in 𝑎 − 𝑏

It calls an operation decide, which takes the unit value () and returns a Boolean value, to choose

one of two integer values and then calculates the difference between the chosen values. Because

operation calls invoke effects in algebraic effects, the operations work as interfaces of the effects.

An implementation of an effect is given by an effect handler. The program installs the han-

dler ℎd for decide using the handling construct. In general, a handling construct takes the form

with ℎ handle 𝑒 , which means that a handler ℎ defines interpretations of operations performed

during the evaluation of the expression 𝑒 ; we call the expression 𝑒 a handled expression. A handler

consists of a single return clause and zero or more operation clauses. A return clause takes the form

𝑥𝑟 ↦→ 𝑒𝑟 , which determines the value of the handling construct by evaluating expression 𝑒𝑟 with

variable 𝑥𝑟 that denotes the value of the handled expression. In the example, because the return

clause is 𝑥𝑟 ↦→ 𝑥𝑟 , the handling construct simply returns the value of the handled expression. An

operation clause takes the form op(𝑥, 𝑘) ↦→ 𝑒 . It defines the interpretation of the operation op to

be expression 𝑒 with variable 𝑥 that denotes the arguments to the operation. When the handled

expression calls the operation op, the remaining computation up to the handling construct is sus-

pended and instead the body 𝑒 of the operation clause evaluates. Therefore, effect handlers behave

like exception handlers by regarding operation calls as raising exceptions. However, effect handlers

are equipped with the additional ability to resume the suspended computation. The suspended

remaining computation, called a delimited continuation, is functionalized, and the body 𝑒 of the

operation clause can refer to it via the variable 𝑘 .

Let us take a closer look at the behavior of the above example. Because the handled expression

starts with the call to decide, the operation clause for decide given by ℎd evaluates. The delimited

continuation 𝐾 of the first call to decide is

with ℎd handle (let 𝑎 = if [ ] then 10 else 20 in let 𝑏 = if decide () then 1 else 2 in 𝑎 − 𝑏)
where [ ] denotes the hole of the continuation. We write 𝐾 [𝑒] for the expression obtained by filling

the hole in 𝐾 with expression 𝑒 . Then, the functional representation of the delimited continuation 𝐾

takes the form 𝜆𝑦.𝐾 [𝑦], and it is substituted for 𝑘 in the body of the operation clause. Namely, the

handling construct evaluates to max (𝑣 true) (𝑣 false) where 𝑣 = 𝜆𝑦.𝐾 [𝑦]. Note that the variable 𝑥
of the operation clause for decide is replaced by the unit value (), but it is not referenced. The first
argument 𝑣 true to max reduces to 𝐾 [true], that is,

with ℎd handle (let 𝑎 = if true then 10 else 20 in let 𝑏 = if decide () then 1 else 2 in 𝑎 − 𝑏)
(the grayed part represents the value by which the hole in 𝐾 is replaced). Therefore, the expression

𝑣 true evaluates to with ℎd handle (let 𝑏 = if decide () then 1 else 2 in 10 − 𝑏) . Again, decide is
called and the continuation 𝐾 ′ ≜ with ℎd handle (let 𝑏 = if [ ] then 1 else 2 in 10 − 𝑏) is captured.
Then, the operation clause for decide evaluates after substituting 𝜆𝑦.𝐾 ′ [𝑦] for 𝑘 . The expression
(𝜆𝑦.𝐾 ′ [𝑦]) true evaluates to𝐾 ′ [true], that is,withℎd handle (let𝑏 = if true then 1 else 2 in 10−𝑏)
and then to with ℎd handle 9 . Here, the handled expression is a value. Therefore, the return clause

in the handler evaluates after substituting the value 9 for variable 𝑥𝑟 . Because the return clause in ℎd
just returns 𝑥𝑟 , the evaluation of (𝜆𝑦.𝐾 ′ [𝑦]) true results in 9. Similarly, (𝜆𝑦.𝐾 ′ [𝑦]) false evaluates
to 8 (which is the result of binding 𝑏 to 2). Therefore, max ((𝜆𝑦.𝐾 ′ [𝑦]) true) ((𝜆𝑦.𝐾 ′ [𝑦]) false)
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evaluates to max 9 8 and then to 9. In a similar way, 𝑣 false calculates max (20 − 1) (20 − 2), that is,
evaluates to 19, because 𝑎 is bound to 20 and 𝑏 is bound to each of 1 and 2 depending on the result

of the second invocation of decide. Finally, the entire program evaluates to 19, which is the result

of max (𝑣 true) (𝑣 false), that is, max 9 19.

2.2 Answer Type Modification and Answer Refinement Modification
An answer type is the type of the closest enclosing delimiter, or the return type of a delimited

continuation. In the setting of algebraic effects and handlers, delimiters are handling constructs.

For example, consider the following expression:

let 𝑥 = with {𝑥𝑟 ↦→ 𝑥𝑟 , op((), 𝑘) ↦→ 𝑘 0 < 𝑘 1} handle 1 + op () in 𝑐 .
The delimited continuation of op () is 𝐾 ′′ ≜ with {𝑥𝑟 ↦→ 𝑥𝑟 , op((), 𝑘) ↦→ 𝑘 0 < 𝑘 1} handle 1 +
[ ] . At first glance, the answer type of op () seems to be the integer type int since the handled

computation in the continuation returns the integer 1 + 𝑛 for an integer 𝑛 given to fill the hole,

and the return clause returns given values as they are. In other words, from the perspective of

op (), the handling construct seems to give an integer value to the outer context let 𝑥 = [ ] in 𝑐 .
However, after the operation call, the entire expression evaluates to let 𝑥 = 𝑣 ′′ 0 < 𝑣 ′′ 1 in 𝑐 where
𝑣 ′′ ≜ 𝜆𝑦.𝐾 ′′ [𝑦]. Now the handling construct becomes the expression 𝑣 ′′ 0 < 𝑣 ′′ 1, which gives a

Boolean value to the outer context. That is, the answer type changes to the Boolean type bool.

Answer type modification (ATM) is a mechanism to track this dynamic change on answer types.

ATM is not supported in existing type systems for effect handlers [Bauer and Pretnar 2013, 2015;

Brady 2013; Kammar et al. 2013; Leijen 2017; Lindley et al. 2017; Plotkin and Pretnar 2013], with the

exception of the one recently proposed by Cong and Asai [2022] (see Section 6 for comparison with

their work). Such type systems require the answer types before and after an operation call to be

unified (and so the example above will be rejected as ill-typed). Nonetheless, useful programming

with effect handlers is still possible without ATM (which is why they are implemented in popular

languages like OCaml without ATM).
1
For instance, the program in Section 2.1 is well-typed in

existing (non-refinement) type systems for algebraic effects and handlers without ATM, since the

return type of the continuation 𝑘 in the decide clause (i.e., the answer type before the execution) is
int and the return type of the decide clause (i.e., the answer type after the execution) is also int.

However, even if answer types are not modified, actual values returned by delimited continuations
usually change. Let us see the program in Section 2.1 again. Focus on the first call to decide. When

this is called, the operation clause receives the continuation 𝑣 = 𝜆𝑦.𝐾 [𝑦], which returns 9 if applied

to true and returns 19 if applied to false, as described previously. Therefore, 𝑣 can be assigned the

refinement type (𝑦 : bool) → {𝑧 : int | 𝑧 = (𝑦 ? 9 : 19)}, and thus the precise answer type before

the execution is {𝑧 : int | 𝑧 = (𝑦 ? 9 : 19)} where 𝑦 is the Boolean value passed to the continuation.

On the other hand, the clause for decide returns integer 19. Thus, the precise answer type after the
operation call is {𝑧 : int | 𝑧 = 19}. Now the refinement in the answer type becomes different before

and after the operation call. The same phenomenon happens in the second call to decide. When the

second call evaluates, the handler receives the continuation 𝜆𝑦.𝐾 ′ [𝑦]. It returns 𝑎 − 1 if applied to

true and returns 𝑎 − 2 if applied to false (where 𝑎 is either 10 or 20 depending on the result of the

first call to decide). Thus, the answer type before the execution is {𝑧 : int | 𝑧 = (𝑦 ? 𝑎−1 : 𝑎−2)}. In
contrast, the return value of the clause for decide ismax (𝑎 − 1) (𝑎 − 2) = 𝑎 − 1, so the answer type

after the execution is {𝑧 : int | 𝑧 = 𝑎 − 1}. Here again, the refinement in the answer type changed

by the operation call. We call this change answer refinement modification (ARM). Armed with ARM

1
One could also argue that the absence of ATM is natural for algebraic effects and handlers because they are designed

after concepts from universal algebra [Bauer 2018; Plotkin and Power 2001], and there, (algebraic) operations are usually

expected to preserve types.
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(pun intened), the refinement type system that we propose in this paper is able to assign the precise

refinement type {𝑧 : int | 𝑧 = 19} to the program, and more generally, the type {𝑧 : int | 𝑧 = 𝑣 − 𝑥}
when the constants 10, 20, 1, and 2 are replaced by variables 𝑢, 𝑣 , 𝑥 , and 𝑦 respectively with the

assumption 𝑢 ≤ 𝑣 ∧ 𝑥 ≤ 𝑦 (such an assumption on free variables can be given by refinement types

in the top-level type environment). The example demonstrates that ARM is useful for precisely

reasoning about programs with algebraic effects and handlers in refinement type systems. Indeed,

without ARM, the most precise refinement type that a type system could assign to the example

would be {𝑧 : int | 𝑧 ∈ {8, 9, 18, 19}}.
As another illuminating example, we show that ARMprovides a new approach to the classic strong

update problem [Foster et al. 2002]. It is well known that algebraic effects and handlers can imple-

ment mutable references by operations set and get, that respectively destructively updates and reads
a mutable reference, and a handler that implements the operations by state-passing (see, e.g., [Pret-

nar 2015]). On programs with such a standard implementation of mutable references by algebraic

effects and handlers, our refinement type system is able to reason flow-sensitively and derive refine-

ment types that cannot be obtained with ordinary flow-insensitive reasoning. For instance, consider

the following program where ℎ ≜ {𝑥𝑟 ↦→ 𝜆𝑠.𝑥𝑟 , set(𝑥, 𝑘) ↦→ 𝜆𝑠.𝑘 () 𝑥, get(𝑥, 𝑘) ↦→ 𝜆𝑠.𝑘 𝑠 𝑠}:
(with ℎ handle (set 3; let 𝑛 = get () in set 5; let𝑚 = get () in 𝑛 +𝑚)) 0

Thanks to ARM, our type system can give the program the most precise type {𝑧 : int | 𝑧 = 8},
which would not be possible in a type system without ARM as it would conflate the two calls to set
and fail to reason that the first get () returns 3 whereas the second get () returns 5. Roughly, ARM
accomplishes the flow-sensitive reasoning about the changes in the state by tracking changes in

the refinements in the answer types, albeit in a backward fashion as shown in Section 3.3.

Using this ability of ARM, we can also verify that effectful operations are used in a specific

order. For example, consider operations open, close, read, and write for file manipulation being

implemented using effect handlers. The use of these operations should conform to the regular

scheme (open (read | write)∗ close)∗. Our refinement type system can check if a program meets

this requirement. For instance, consider the following recursive function:

𝜆𝑥. while (★) {open 𝑥 ; while (★) {let 𝑦 = read() in write (𝑦^"X")}; close ()}
where while (★) {𝑐} loops computation 𝑐 and terminates nondeterministically, and the binary

operation (^) concatenates given strings (operation read is supposed to return a string).
2
The

function repeats opening the specified file 𝑥 and closing it after reading from and writing to the file

zero or more times. Thus, this function follows the discipline of the file manipulation operations.

We will show in Section 3.3 how ARM enables us to check it formally and detect the invalid use of

the operations if any.

3 LANGUAGE
This section presents our language with algebraic effects and handlers. The semantics is formalized

using evaluation contexts like in Leijen [2017], and the type system is a novel refinement type

system with ARM (and ATM).

3.1 Syntax and Semantics
The upper half of Figure 1 shows the syntax of our language. It indicates that expressions are split

into values, ranged over by 𝑣 , and computations, ranged over by 𝑐 , as in the fine-grain call-by-value

style of Levy et al. [2003]. Values, which are effect-free expressions in a canonical form, consist

2
For simplicity, we assume that the clause of open creates an object for a specified file and stores it in a reference implemented

by an effect handler, and the clauses of the other operations refer to the stored object to manipulate the file.
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Syntax

𝑝 ::= true | false | · · · 𝑣 ::= 𝑥 | 𝑝 | rec(𝑓 , 𝑥).𝑐 𝐾 ::= [ ] | let 𝑥 = 𝐾 in 𝑐
𝑐 ::= return 𝑣 | op 𝑣 | 𝑣1 𝑣2 | if 𝑣 then 𝑐1 else 𝑐2 | let 𝑥 = 𝑐1 in 𝑐2 | with ℎ handle 𝑐
ℎ ::= {return 𝑥𝑟 ↦→ 𝑐𝑟 , (op𝑖 (𝑥𝑖 , 𝑘𝑖 ) ↦→ 𝑐𝑖 )𝑖 }

Evaluation rules 𝑐 −→ 𝑐′

𝑐1 −→ 𝑐′
1

let 𝑥 = 𝑐1 in 𝑐2 −→ let 𝑥 = 𝑐′
1
in 𝑐2

(E-Let)

let 𝑥 = return 𝑣 in 𝑐2 −→ 𝑐2 [𝑣/𝑥]
(E-LetRet)

if true then 𝑐1 else 𝑐2 −→ 𝑐1
(E-IfT)

if false then 𝑐1 else 𝑐2 −→ 𝑐2
(E-IfF)

(rec(𝑓 , 𝑥).𝑐) 𝑣 −→ 𝑐 [𝑣/𝑥] [(rec(𝑓 , 𝑥).𝑐)/𝑓 ] (E-App) 𝑝 𝑣 −→ 𝜁 (𝑝, 𝑣) (E-Prim)

below, let ℎ = {return 𝑥𝑟 ↦→ 𝑐𝑟 , (op𝑖 (𝑥𝑖 , 𝑘𝑖 ) ↦→ 𝑐𝑖 )𝑖 }
𝑐 −→ 𝑐′

with ℎ handle 𝑐 −→ with ℎ handle 𝑐′
(E-Hndl)

with ℎ handle return 𝑣 −→ 𝑐𝑟 [𝑣/𝑥𝑟 ]
(E-HndlRet)

with ℎ handle 𝐾 [op𝑖 𝑣] −→ 𝑐𝑖 [𝑣/𝑥𝑖 ] [(𝜆𝑦.with ℎ handle 𝐾 [return 𝑦])/𝑘𝑖 ]
(E-HndlOp)

Fig. 1. Syntax and evaluation rules.

of variables 𝑥 , primitive values 𝑝 , and (recursive) functions rec(𝑓 , 𝑥).𝑐 where variable 𝑓 denotes
the function itself for recursive calls in the body 𝑐 . If 𝑓 does not occur in 𝑐 , we simply write 𝜆𝑥.𝑐 .

Computations, which are possibly effectful expressions, consist of six kinds of constructs. A value-

return return 𝑣 lifts a value 𝑣 to a computation. An operation call op 𝑣 performs the operation op
with the argument 𝑣 . A function application 𝑣1 𝑣2, conditional branch if 𝑣 then 𝑐1 else 𝑐2, and let-

expression let 𝑥 = 𝑐1 in 𝑐2 are standard. Note that functions, arguments, and conditional expressions

are restricted to values, but this does not reduce expressivity because, e.g., a conditional branch

if 𝑐 then 𝑐1 else 𝑐2 can be expressed as let 𝑥 = 𝑐 in if 𝑥 then 𝑐1 else 𝑐2 using a fresh variable 𝑥 . A

handling construct with ℎ handle 𝑐 handles operations performed during the evaluation of the

handled computation 𝑐 using the clauses in the handlerℎ. A handler {return 𝑥𝑟 ↦→ 𝑐𝑟 , (op𝑖 (𝑥𝑖 , 𝑘𝑖 ) ↦→
𝑐𝑖 )𝑖 } has a return clause return 𝑥𝑟 ↦→ 𝑐𝑟 where the variable 𝑥𝑟 denotes the value of the handled

computation 𝑐 , and an operation clause op𝑖 (𝑥𝑖 , 𝑘𝑖 ) ↦→ 𝑐𝑖 for each operation op𝑖 where the variables 𝑥𝑖
and 𝑘𝑖 denote the argument to op𝑖 and the continuation from the invocation of op𝑖 , respectively. The
notions of free variables and substitution are defined as usual. We write 𝑐 [𝑣/𝑥] for the computation

obtained by substituting the value 𝑣 for the variable 𝑥 in the computation 𝑐 . We use similar notation

to substitute values for variables in types and substitute types for type variables.

The semantics of the language is defined by the evaluation relation −→, which is the smallest

binary relation over computations satisfying the evaluation rules in the lower half of Figure 1.

The evaluation of a let-expression let 𝑥 = 𝑐1 in 𝑐2 begins by evaluating the computation 𝑐1. When

𝑐1 returns a value, the computation 𝑐2 evaluates after substituting the return value for 𝑥 . The

evaluation rules for conditional branching and function application are standard. The result of

applying a primitive value relies on the metafunction 𝜁 , which maps pairs of a primitive value
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and an argument value to computations. For a handling construct with ℎ handle 𝑐 , the handled
computation 𝑐 evaluates first. When 𝑐 returns a value, the body of the return clause in the handler ℎ

evaluates with the return value. If the evaluation of 𝑐 encounters an operation call op𝑖 𝑣 , its delimited

continuation, which is represented as a pure evaluation context 𝐾 defined in Figure 1, is captured.

Then, the body 𝑐𝑖 of the operation clause op𝑖 (𝑥𝑖 , 𝑘𝑖 ) ↦→ 𝑐𝑖 for op𝑖 in the handler ℎ evaluates after

substituting the argument 𝑣 and the function 𝜆𝑦.with ℎ handle 𝐾 [return 𝑦] for variables 𝑥𝑖 and 𝑘𝑖 ,
respectively. Note that the function substituted for 𝑘𝑖 wraps the delimited continuation 𝐾 [return𝑦]
by the handling construct with the handler ℎ. It means that the operation calls in 𝐾 [return 𝑦] are
handled by the handler ℎ. Our semantics assumes that the handler ℎ provides operation clauses

for all the operations performed by the handled computation 𝑐 . Our type system ensures that this

assumption holds on any well-typed computations. However, our language can also implement the

forwarding semantics by encoding: given a handler that does not contain an operation clause for

op, we add to the handler an operation clause op(𝑥, 𝑘) ↦→ let 𝑦 = op 𝑥 in 𝑘 𝑦.3

3.2 Type System
term 𝑡 ::= 𝑥 | . . . formula 𝜙 ::= 𝐴 (̃𝑡) | . . .

predicate 𝐴 ::= 𝑋 | . . . base type 𝐵 ::= bool | . . .
value type 𝑇 ::= {𝑥 : 𝐵 | 𝜙} | (𝑥 : 𝑇 ) → 𝐶

computation type 𝐶 ::= Σ ⊲𝑇 / 𝑆
operation signature Σ ::= {(op𝑖 : ∀

�
𝑋𝑖 : 𝐵𝑖 .𝐹𝑖 )𝑖 }

𝐹 ::= (𝑥 : 𝑇1) → ((𝑦 : 𝑇2) → 𝐶1) → 𝐶2

control effect 𝑆 ::= □ | (∀𝑥 .𝐶1) ⇒ 𝐶2

typing context Γ ::= ∅ | Γ, 𝑥 : 𝑇 | Γ, 𝑋 : 𝐵

Fig. 2. Type syntax.

Figure 2 shows the syntax of

types. As in prior refinement

type systems [Bengtson et al.

2011; Rondon et al. 2008; Unno

and Kobayashi 2009], our type

system allows a type specifica-

tion for values of base types,

ranged over by 𝐵, such as bool

and int, to be refined using logic

formulas, ranged over by 𝜙 . Our

type system is parameterized

over a logic. We assume that the logic is a predicate logic where: terms, denoted by 𝑡 , include

variables 𝑥 ; predicates, denoted by 𝐴, include predicate variables 𝑋 ; and each primitive value 𝑝

can be represented as a term. Throughout the paper, we use the over-tilde notation to denote a

sequence of entities. For example, �̃� represents a sequence 𝑡1, · · · , 𝑡𝑛 of some terms 𝑡1, . . . , 𝑡𝑛 , and

then 𝐴 (̃𝑡) represents a formula 𝐴(𝑡1, · · · , 𝑡𝑛). We also assume that base types include at least the

Boolean type bool.

Types consist of value and computation types, which are assigned to values and computations,

respectively. A value type, denoted by 𝑇 , is either a refinement type {𝑥 : 𝐵 | 𝜙}, which is assigned

to a value 𝑣 of base type 𝐵 such that the formula 𝜙 [𝑣/𝑥] is true, or a dependent function type

(𝑥 : 𝑇 ) → 𝐶 , which is assigned to a function that, given an argument 𝑣 of the type 𝑇 , performs

the computation specified by the type 𝐶 [𝑣/𝑥]. We abbreviate (𝑥 : 𝑇 ) → 𝐶 as 𝑇 → 𝐶 if 𝑥 does not

occur in 𝐶 , and {𝑧 : 𝐵 | true} as 𝐵.
A computation type is formed by three components: an operation signature, which specifies

operations that a computation may perform; a value type, which specifies the value that the

computation returns if any; and a control effect, which specifies how the computation modifies the

answer type via operation call.

Control effects, denoted by 𝑆 , are inspired by the formalism of Sekiyama and Unno [2023] who

extended control effects in simple typing [Materzok and Biernacki 2011] to dependent typing. A

control effect is either pure or impure. The pure control effect □ means that a computation calls

3
We employ the semantics without forwarding in the body of the paper to simplify the typing rule for handling constructs.

The supplementary material shows an extended typing rule for handling constructs that natively supports forwarding.
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no operation. An impure control effect is given to a computation that may perform operations,

specifying how the execution of the computation modifies its answer type. Impure control effects

take the form (∀𝑥 .𝐶1) ⇒ 𝐶2 where variable 𝑥 is bound in computation type 𝐶1. We write 𝐶1 ⇒ 𝐶2

when 𝑥 does not occur in𝐶1. In what follows, we first illustrate impure control effects in the simple,

nondependent form 𝐶1 ⇒ 𝐶2 and then extend to the fully dependent form (∀𝑥 .𝐶1) ⇒ 𝐶2 that can

specify the behavior of captured continuations using the input (denoted by 𝑥 ) to the continuations.

A control effect 𝐶1 ⇒ 𝐶2 represents the answer type of a program changes from type 𝐶1 to type

𝐶2. When it is assigned to a computation 𝑐 , the initial answer type𝐶1 specifies how the continuation

of the computation 𝑐 up to the closest handing construct behaves, and the final answer type 𝐶2

specifies what can be guaranteed for the meta-context, i.e., the context of the closest handling

construct. To see the idea more concretely, revisit the first example in Section 2.2:

let 𝑥 = with {𝑥𝑟 ↦→ 𝑥𝑟 , op((), 𝑘) ↦→ 𝑘 0 < 𝑘 1} handle 1 + op () in 𝑐 .

Let ℎ be the handler in the example. Focusing on the operation call op (), we can find that it captures
the continuation with ℎ handle 1 + [ ]. Because the continuation behaves as if it is a pure function

returning integers, the initial answer type of op () turns out to be the computation type int / □ (we

omit Σ for a while; it will be explained shortly). Furthermore, by the operation call, the handling

construct with ℎ handle 1 + op () is replaced with the body 𝑘 0 < 𝑘 1 of op’s clause in ℎ and the

functional representation 𝑣 of the continuation is substituted for 𝑘 . It means that the meta-context

let 𝑥 = [ ] in 𝑐 of the operation call takes the computation 𝑣 0 < 𝑣 1, which is of type bool / □
(note that 𝑣 0 < 𝑣 1 is pure because 𝑣 is a pure function). Therefore, the final answer type of op ()
is bool / □. As a result, the impure control effect of op () is int / □ ⇒ bool / □.
Sekiyama and Unno [2023] extended the simple form of impure control effects to a dependent

form (∀𝑥 .𝐶1) ⇒ 𝐶2, where the initial answer type 𝐶1 can depend on inputs, denoted by variable 𝑥 ,

to continuations. For instance, consider the continuationwith ℎ handle 1+ [ ] captured in the above

example. When passed an integer 𝑛, it returns 1 + 𝑛. Using the dependent form of impure control

effects, we can describe such behavior by the control effect (∀𝑥 .{𝑦 : int | 𝑦 = 𝑥+1} / □) ⇒ bool / □,
where 𝑥 represents the input to the continuation and the refinement type {𝑦 : int | 𝑦 = 𝑥 + 1}
precisely specifies the return value of the continuation for input 𝑥 . The type of 𝑥 is matched with

the continuation’s input type. Since the continuation of op () takes integers, the type assigned
to 𝑥 is int. In general, given a computation type 𝑇 / (∀𝑥 .𝐶1) ⇒ 𝐶2, the type 𝑇 is assigned to

the variable 𝑥 because it corresponds to the input type of the continuations of computations

given that computation type. The type information refined by dependent impure control effects

is exploited in typechecking operation clauses. In the example, our type system typechecks the

body of op’s clause by assigning the function type (𝑥 : int) → {𝑦 : int | 𝑦 = 𝑥 + 1} / □ to

the continuation variable 𝑘 . Then, since the body is 𝑘 0 < 𝑘 1, its type—i.e., the final answer

type—can be refined to {𝑧 : bool | 𝑧 = true} / □. Hence, the type system can assign control effect

(∀𝑥 .{𝑦 : int | 𝑦 = 𝑥 + 1} / □) ⇒ {𝑧 : bool | 𝑧 = true} / □ to the operation call and ensure that the

meta-context takes true finally (if the handling construct terminates). We will demonstrate the

expressivity and usefulness of dependent control effects in more detail in Section 3.3.

Operation signatures, denoted by Σ, are sets of pairs of an operation name and a type scheme.

We write (·)𝑖 to denote a sequence of entities indexed by 𝑖 . The type scheme associated with an

operation op is in the form ∀�𝑋 : 𝐵.(𝑥 : 𝑇1) → ((𝑦 : 𝑇2) → 𝐶1) → 𝐶2, where the types 𝑇1 and 𝑇2 are

the input and output types, respectively, of the operation and the types 𝐶1 and 𝐶2 are the initial

and final answer types, respectively, of the operation call for op. Recall that the initial answer
type 𝐶1 corresponds to the return type of delimited continuations captured by the call to op, and
that the continuations take the return values of the operation call. Therefore, the function type
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(𝑦 : 𝑇2) → 𝐶1 represents the type of the captured delimited continuations. Note that the variable 𝑦

denotes values passed to the continuations. Furthermore, the final answer type 𝐶2 corresponds to

the type of the operation clause for op in the closest enclosing handler. Therefore, the operation

clause op(𝑥, 𝑘) ↦→ 𝑐 in the handler is typed by checking that the body 𝑐 is of the type 𝐶2 with the

assumption that argument variable 𝑥 is of the type 𝑇1 and the continuation variable 𝑘 is of the type

(𝑦 : 𝑇2) → 𝐶1. A notable point of the type scheme is that it can be parameterized over predicates.

The predicate variables 𝑋 abstract over the predicates, and the annotations 𝐵 represent the (base)

types of the arguments to the predicates. This allows calls to the same operation in different contexts

to have different control effects, which is crucial for precisely verifying programs with algebraic

effects and handlers as we will show in Section 3.3. It is also noteworthy that operation signatures

include not only operation names but also type schemes as in Kammar et al. [2013] and Kammar

and Pretnar [2017]. It allows an operation to have different types depending on the contexts where

it is used. Another approach is to include only operation names and assumes that unique types are

assigned to them globally as in, e.g., Bauer and Pretnar [2013] and Leijen [2017]. We decided to

assign types to operations locally because it makes the type system more flexible in that the types

of operations can be refined depending on contexts if needed.

Typing contexts Γ are lists of variable bindings 𝑥 : 𝑇 and predicate variable bindings 𝑋 : 𝐵. We

write Γ, 𝜙 for Γ, 𝑥 : {𝑧 : 𝐵 | 𝜙} where 𝑥 and 𝑧 are fresh. The notions of free variables, free predicate

variables, and predicate substitution are defined as usual.

Well-formedness of typing contexts, value types, and computation types, whose judgments are in

the forms ⊢ Γ, Γ ⊢ 𝑇 , and Γ ⊢ 𝐶 , respectively, are defined straightforwardly by following Sekiyama

and Unno [2023]. We refer to the supplementary material for detail.

Typing judgements for values and computations are in the forms Γ ⊢ 𝑣 : 𝑇 and Γ ⊢ 𝑐 : 𝐶 ,

respectively. Figure 3 shows the typing rules. By (T-CVar), a variable 𝑥 of a refinement type is

assigned a typewhich states that the value of this type is exactly 𝑥 . For a variable of a non-refinement

type (i.e., a function type in our language), the rule (T-Var) assigns the type associated with the

variable in the typing context. The rule (T-Prim) uses the mapping ty to type primitive values 𝑝 .

We assume that ty assigns an appropriate value type to every primitive value. We refer to the

supplementary material for the formalization of the assumption. The rule (T-Fun) for functions,

(T-App) for function applications, and (T-If) for conditional branches are standard in refinement

type systems (with support for value-dependent refinements). The rules (T-VSub) and (T-CSub)

allow values and computations, respectively, to be typed at supertypes of their types. We will define

subtyping shortly. By (T-Ret), a value-return return 𝑣 has a computation type where the operation

signature is empty, the return value type is the type of 𝑣 , and the control effect is pure.

To type a let-expression let 𝑥 = 𝑐1 in 𝑐2, either the rule (T-LetP) or (T-LetIp) is used. Both of

them require that the types of the sub-expressions 𝑐1 and 𝑐2 have the same operation signature Σ
and then assign Σ to the type of the entire let-expression. The typing context for 𝑐2 is extended by

𝑥 : 𝑇1 with the value type 𝑇1 of 𝑐1, but 𝑥 cannot occur in Σ and 𝑇2 (as well as 𝐶21 in (T-LetIp)) to

prevent the leakage of 𝑥 from its scope. On the other hand, the two rules differ in how they treat

control effects. When both of the control effects of 𝑐1 and 𝑐2 are pure, the rule (T-LetP) is used. It

states that the control effect of the entire let-expression is also pure. When both are impure, the

rule (T-LetIp) is used. It states that the control effect of the let-expression results in an impure

control effect that is composed of the control effects of 𝑐1 and 𝑐2. Note that, even when one of the

control effects of 𝑐1 and 𝑐2 is pure and the other is impure, we can view both of them as impure

effects via subtyping because it allows converting a pure control effect to an impure control effect,

as shown later. We first explain how the composition works in the non-dependent form. Let the

control effect of 𝑐1 be 𝐶11 ⇒ 𝐶12 and that of 𝑐2 be 𝐶21 ⇒ 𝐶22, and assume that a control effect
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Typing rules for values Γ ⊢ 𝑣 : 𝑇
⊢ Γ Γ(𝑥) = {𝑧 : 𝐵 | 𝜙}
Γ ⊢ 𝑥 : {𝑧 : 𝐵 | 𝑧 = 𝑥} (T-CVar)

⊢ Γ ∀𝑦, 𝐵, 𝜙 .Γ(𝑥) ≠ {𝑦 : 𝐵 | 𝜙}
Γ ⊢ 𝑥 : Γ(𝑥) (T-Var)

⊢ Γ
Γ ⊢ 𝑝 : ty(𝑝) (T-Prim)

Γ, 𝑓 : (𝑥 : 𝑇 ) → 𝐶, 𝑥 : 𝑇 ⊢ 𝑐 : 𝐶
Γ ⊢ rec(𝑓 , 𝑥).𝑐 : (𝑥 : 𝑇 ) → 𝐶

(T-Fun)

Γ ⊢ 𝑣 : 𝑇1 Γ ⊢ 𝑇1 <: 𝑇2 Γ ⊢ 𝑇2
Γ ⊢ 𝑣 : 𝑇2

(T-VSub)

Typing rules for computations Γ ⊢ 𝑐 : 𝐶
Γ ⊢ 𝑣 : 𝑇

Γ ⊢ return 𝑣 : ∅ ⊲𝑇 / □ (T-Ret)

Γ ⊢ 𝑣1 : (𝑥 : 𝑇 ) → 𝐶 Γ ⊢ 𝑣2 : 𝑇
Γ ⊢ 𝑣1 𝑣2 : 𝐶 [𝑣2/𝑥]

(T-App)

Γ ⊢ 𝑣 : {𝑥 : bool | 𝜙}
Γ, 𝑣 = true ⊢ 𝑐1 : 𝐶 Γ, 𝑣 = false ⊢ 𝑐2 : 𝐶

Γ ⊢ if 𝑣 then 𝑐1 else 𝑐2 : 𝐶
(T-If)

Γ ⊢ 𝑐 : 𝐶1 Γ ⊢ 𝐶1 <: 𝐶2 Γ ⊢ 𝐶2

Γ ⊢ 𝑐 : 𝐶2

(T-CSub)

Γ ⊢ 𝑐1 : Σ ⊲𝑇1 / □
Γ, 𝑥 : 𝑇1 ⊢ 𝑐2 : Σ ⊲𝑇2 / □
𝑥 ∉ fv(𝑇2) ∪ fv(Σ)

Γ ⊢ let 𝑥 = 𝑐1 in 𝑐2 : Σ ⊲𝑇2 / □
(T-LetP)

Γ ⊢ 𝑐1 : Σ ⊲𝑇1 / (∀𝑥 .𝐶) ⇒ 𝐶12

Γ, 𝑥 : 𝑇1 ⊢ 𝑐2 : Σ ⊲𝑇2 / (∀𝑦.𝐶21) ⇒ 𝐶

𝑥 ∉ fv(𝑇2) ∪ fv(Σ) ∪ (fv(𝐶21) \ {𝑦})
Γ ⊢ let 𝑥 = 𝑐1 in 𝑐2 : Σ ⊲𝑇2 / (∀𝑦.𝐶21) ⇒ 𝐶12

(T-LetIp)

Σ ∋ op : ∀�𝑋 : 𝐵.(𝑥 : 𝑇1) → ((𝑦 : 𝑇2) → 𝐶1) → 𝐶2 Γ ⊢ Σ �Γ ⊢ 𝐴 : 𝐵 Γ ⊢ 𝑣 : 𝑇1 [𝐴/𝑋 ]

Γ ⊢ op 𝑣 : Σ ⊲𝑇2 [𝐴/𝑋 ] [𝑣/𝑥] / ((∀𝑦.𝐶1) ⇒ 𝐶2) [𝐴/𝑋 ] [𝑣/𝑥]
(T-Op)

ℎ = {return 𝑥𝑟 ↦→ 𝑐𝑟 , (op𝑖 (𝑥𝑖 , 𝑘𝑖 ) ↦→ 𝑐𝑖 )𝑖 } Γ ⊢ 𝑐 : Σ ⊲𝑇 / (∀𝑥𝑟 .𝐶1) ⇒ 𝐶2

Γ, 𝑥𝑟 : 𝑇 ⊢ 𝑐𝑟 : 𝐶1

(
Γ,�𝑋𝑖 : 𝐵𝑖 , 𝑥𝑖 : 𝑇1𝑖 , 𝑘𝑖 : (𝑦𝑖 : 𝑇2𝑖 ) → 𝐶1𝑖 ⊢ 𝑐𝑖 : 𝐶2𝑖

)
𝑖

Σ = {(op𝑖 : ∀
�
𝑋𝑖 : 𝐵𝑖 .(𝑥𝑖 : 𝑇1𝑖 ) → ((𝑦𝑖 : 𝑇2𝑖 ) → 𝐶1𝑖 ) → 𝐶2𝑖 )𝑖 }

Γ ⊢ with ℎ handle 𝑐 : 𝐶2

(T-Hndl)

Fig. 3. Typing rules.

𝐶1 ⇒ 𝐶2 is assigned to the let-expression. First, recall that the type 𝐶1 expresses the return type

of the continuation of the let-expression up to the closest handling construct and that the closest

handling construct is replaced by a computation of the type𝐶2. Based on this idea, the types𝐶1 and

𝐶2 can be determined as follows. First, because the delimited continuation of the let-expression is

matched with that of the computation 𝑐2, the initial answer type𝐶21 of 𝑐2 expresses the return type

of the delimited continuation of the let-expression. Therefore, the type 𝐶1 should be matched with

the type 𝐶21. Second, because the closest handling construct enclosing the let-expression is the

same as the one enclosing the sub-computation 𝑐1, the type 𝐶2 should be matched with the final

answer type𝐶12 of 𝑐1. Therefore, the control effect𝐶1 ⇒ 𝐶2 should be matched with𝐶21 ⇒ 𝐶12, as

stated in (T-LetIp). Furthermore, the rule (T-LetIp) requires that the initial answer type 𝐶11 of 𝑐1
to be the same as the final answer type 𝐶22 of 𝑐2. This requirement is explained as follows. First,

the computation 𝑐1 expects its delimited continuation to behave as specified by the type 𝐶11. The

delimited continuation of 𝑐1 first evaluates the succeeding computation 𝑐2. The final answer type

𝐶22 of 𝑐2 expresses that the closest handling construct enclosing 𝑐2 behaves as specified by the
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type 𝐶22. Because the closest handling construct enclosing 𝑐2 corresponds to the top-level handling

construct in the delimited continuation of 𝑐1, the type 𝐶11 should be matched with the type 𝐶22.

We now extend to the fully dependent form. From the discussion thus far, we can let the control

effects of 𝑐1, 𝑐2, and the let-expression be (∀𝑥1 .𝐶) ⇒ 𝐶12, (∀𝑥2.𝐶21) ⇒ 𝐶 , and (∀𝑦.𝐶21) ⇒ 𝐶12

respectively, for some variables 𝑥1, 𝑥2, and 𝑦. Then, the constraints on the names of these variables

are determined as follows. First, the input to the delimited continuation of 𝑐1, which is denoted by

the variable 𝑥1, should be matched with the evaluation result of 𝑐1. Then, since the let-expression

binds the variable 𝑥 to the evaluation result of 𝑐1, the variable 𝑥1 is matched with 𝑥 . Second, because

the delimited continuation of 𝑐2 is matched with that of the let-expression, the inputs to them

should be matched with each other. They are denoted by the variables 𝑥2 and 𝑦 respectively, and

hence the variable 𝑥2 is matched with 𝑦.

The rule (T-Hndl) for handling constructs with ℎ handle 𝑐 is one of the most important rules

of our system. It assumes that the handled computation 𝑐 is of a type Σ ⊲ 𝑇 / (∀𝑥𝑟 .𝐶1) ⇒ 𝐶2,

where the control effect is impure. Even when 𝑐 is pure (i.e., performs no operation), it can have an

impure control effect via subtyping. Because the type of the handling construct represents how the

expression is viewed from the context, it should be matched with the final answer type 𝐶2 of the

handled computation 𝑐 . The premises in the second line define typing disciplines that the clauses

in the installed handler ℎ have to satisfy. First, let us consider the return clause return 𝑥𝑟 ↦→ 𝑐𝑟 .

Because the variable 𝑥𝑟 denotes the return value of the handled computation 𝑐 , the value type 𝑇 of

𝑐 is assigned to 𝑥𝑟 . Moreover, since the return clause is executed after evaluating 𝑐 , the body 𝑐𝑟 is

the delimited continuation of 𝑐 . Therefore, the type of 𝑐𝑟 should be matched with the initial answer

type 𝐶1 of 𝑐 . Because the variable 𝑥𝑟 bound in the return clause can be viewed as the input to the

delimited continuation 𝑐𝑟 , it should be matched with the variable 𝑥𝑟 bound in the impure control

effect (∀𝑥𝑟 .𝐶1) ⇒ 𝐶2. Operation clauses are typed using the corresponding type schemes in the

operation signature Σ, as explained above. Note that the rule also requires the installed handler ℎ

to include a clause for each of the operations in Σ, i.e., those that 𝑐 may perform.

The rule (T-Op) for operation calls is another important rule. Consider an operation call op 𝑣 .
The rule assumes that an enclosing handler addresses the operation op by requiring that an

operation signature Σ assigned to the operation call include the operation op with a type scheme

∀�𝑋 : 𝐵.(𝑥 : 𝑇1) → ((𝑦 : 𝑇2) → 𝐶1) → 𝐶2, and instantiates the predicate variables 𝑋 in the type

scheme with well-formed predicates 𝐴 to reflect the contextual information of the operation call.

Then, it checks that the argument 𝑣 has the input type 𝑇1 [𝐴/𝑋 ] of the operation. Finally, the rule
assigns the output type 𝑇2 [𝐴/𝑋 ] [𝑣/𝑥] of the operation as the value type of the operation call,

and 𝐶1 [𝐴/𝑋 ] [𝑣/𝑥] and 𝐶2 [𝐴/𝑋 ] [𝑣/𝑥] as the initial and final answer types of the operation call,

respectively (note that the types 𝑇2, 𝐶1, and 𝐶2 are parameterized over predicates and arguments).

The type system defines four kinds of subtyping judgments: Γ ⊢ 𝑇1 <: 𝑇2 for value types,

Γ ⊢ 𝐶1 <: 𝐶2 for computations types, Γ ⊢ Σ1 <: Σ2 for operation signatures, and Γ | 𝑇 ⊢ 𝑆1 <: 𝑆2
for control effects. Figure 4 shows the subtyping rules. The subtyping rules for control effects

are adopted from the work of Sekiyama and Unno [2023], which extends subtyping for control

effects given by Materzok and Biernacki [2011] to dependent typing. The rules (S-Rfn) and (S-Fun)

for value types are standard. The judgement Γ ⊨ 𝜙 in (S-Rfn) means the semantic validity of the

formula 𝜙 under the assumption Γ. Subtyping between operation signatures is determined by

(S-Sig). This rule is based on the observation that an operation signature Σ represents the types

of operation clauses in handlers, as seen in (T-Hndl). Then, the rule (S-Sig) can be viewed as

defining a subtyping relation between the types of handlers (except for return clauses): a handler

for operations in Σ1 can be used as one for operations in Σ2 if every operation op in Σ2 is included

in Σ1 (i.e., the handler has an operation clause for every op in Σ2) and the type scheme of op in Σ1
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Subtyping rules Γ ⊢ 𝑇1 <: 𝑇2 Γ ⊢ Σ1 <: Σ2 Γ ⊢ 𝐶1 <: 𝐶2 Γ | 𝑇 ⊢ 𝑆1 <: 𝑆2
Γ, 𝑥 : 𝐵 ⊨ 𝜙1 =⇒ 𝜙2

Γ ⊢ {𝑥 : 𝐵 | 𝜙1} <: {𝑥 : 𝐵 | 𝜙2}
(S-Rfn)

Γ ⊢ 𝑇2 <: 𝑇1 Γ, 𝑥 : 𝑇2 ⊢ 𝐶1 <: 𝐶2

Γ ⊢ (𝑥 : 𝑇1) → 𝐶1 <: (𝑥 : 𝑇2) → 𝐶2

(S-Fun)

(Γ,�𝑋𝑖 : 𝐵𝑖 ⊢ 𝐹1𝑖 <: 𝐹2𝑖 )𝑖
Γ ⊢ {(op𝑖 : ∀

�
𝑋𝑖 : 𝐵𝑖 .𝐹1𝑖 )𝑖 , (op′𝑖 : ∀

�
𝑋 ′
𝑖
: 𝐵′𝑖 .𝐹 ′𝑖 )𝑖 } <: {(op𝑖 : ∀

�
𝑋𝑖 : 𝐵𝑖 .𝐹2𝑖 )𝑖 }

(S-Sig)

Γ ⊢ Σ2 <: Σ1 Γ ⊢ 𝑇1 <: 𝑇2 Γ | 𝑇1 ⊢ 𝑆1 <: 𝑆2
Γ ⊢ Σ1 ⊲𝑇1 / 𝑆1 <: Σ2 ⊲𝑇2 / 𝑆2

(S-Comp)

Γ | 𝑇 ⊢ □ <: □
(S-Pure)

Γ, 𝑥 : 𝑇 ⊢ 𝐶21 <: 𝐶11 Γ ⊢ 𝐶12 <: 𝐶22

Γ | 𝑇 ⊢ (∀𝑥 .𝐶11) ⇒ 𝐶12 <: (∀𝑥 .𝐶21) ⇒ 𝐶22

(S-ATM)

Γ, 𝑥 : 𝑇 ⊢ 𝐶1 <: 𝐶2 𝑥 ∉ fv(𝐶2)
Γ | 𝑇 ⊢ □ <: (∀𝑥 .𝐶1) ⇒ 𝐶2

(S-Embed)

Fig. 4. Subtyping rules.

is a subtype of the type scheme of op in Σ2 (i.e., the operation clause for op in the handler works as

one for op in Σ2). Given a computation type𝐶1 ≜ Σ1 ⊲𝑇1 / 𝑆1 and its supertype𝐶2 ≜ Σ2 ⊲𝑇2 / 𝑆2, a
handler for operations performed by the computations of the type 𝐶2 (i.e., the operations in Σ2) is

required to be able to handle operations performed by the computations of the type 𝐶1 (i.e., the

operations in Σ1) because the subtyping allows deeming the computations of 𝐶1 to be of 𝐶2. The

safety of such handling is ensured by requiring Σ2 <: Σ1. In the rule (S-Comp), the first premise

represents this requirement. The second premise Γ ⊢ 𝑇1 <: 𝑇2 in (S-Comp) allows viewing the return

values of the computations of the type𝐶1 as those of the type𝐶2. The third premise Γ | 𝑇1 ⊢ 𝑆1 <: 𝑆2
expresses that the use of effects by the computations of the type𝐶1 is subsumed by the use of effects

allowed by the type 𝐶2. It is derived by the last three rules: (S-Pure), (S-ATM), and (S-Embed). The

rule (S-Pure) just states reflexivity of the pure control effect. If both 𝑆1 and 𝑆2 are impure, the rule

(S-ATM) is applied. Because initial answer types represent the assumptions of computations on

their contexts, (S-ATM) allows strengthening the assumptions by being contravariant in them. By

contrast, because final answer types represent the guarantees of how enclosing handling constructs

behave, (S-ATM) allows weakening the guarantees by being covariant in them. Note that the typing

context for the initial answer types is extended with the binding 𝑥 : 𝑇1 because they may reference

the inputs to the continuations via the variable 𝑥 and the inputs are of the type 𝑇1. Finally, the

rule (S-Embed) allows converting the pure control effect to an impure control effect (∀𝑥 .𝐶1) ⇒ 𝐶2.

Because a computation 𝑐 with the pure control effect performs no operation, what is guaranteed

for the behavior of the handling construct enclosing 𝑐 coincides with what is assumed on 𝑐’s

delimited continuation. Because the guarantee and assumption are specified by the types𝐶2 and𝐶1,

respectively, if𝐶1 is matched with𝐶2—more generally, the “assumption”𝐶1 implies the “guarantee”

𝐶2—the pure computation 𝑐 can be viewed as the computation with the impure control effect

(∀𝑥 .𝐶1) ⇒ 𝐶2. The first premise in (S-Embed) formalizes this idea. Note that, because the variable

𝑥 is bound in the type 𝐶1, the rule (S-Embed) disallows 𝑥 to occur in the type 𝐶2.

Finally, we state the type safety of our system. Its proof, via progress and subject reduction,

is given in the supplementary material. We define −→∗
as the reflexive, transitive closure of the

one-step evaluation relation −→.

Theorem 3.1 (type safety). If ∅ ⊢ 𝑐 : Σ ⊲𝑇 / 𝑆 and 𝑐 −→∗ 𝑐′, then one of the following holds:
(1) 𝑐′ = return 𝑣 for some 𝑣 such that ∅ ⊢ 𝑣 : 𝑇 ; (2) 𝑐′ = 𝐾 [op 𝑣] for some 𝐾 , op, and 𝑣 such that
op ∈ dom(Σ); or (3) 𝑐′ −→ 𝑐′′ for some 𝑐′′ such that ∅ ⊢ 𝑐′′ : Σ ⊲𝑇 / 𝑆 .
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3.3 Examples
In this section, we demonstrate how our type system verifies programs with algebraic effects and

handlers by showing typing derivations of a few examples. Here, we abbreviate a pure computation

type {} ⊲𝑇 / □ to 𝑇 and omit the empty typing context from typing and subtyping judgments. For

simplicity, we often write 𝑐1 𝑐2 for an expression let 𝑥1 = 𝑐1 in let 𝑥2 = 𝑐2 in 𝑥1 𝑥2 where 𝑥1 does
not occur in 𝑐2. Furthermore, we deal with a pure computation as if it is a value. For example, we

write return 𝑐 for a computation let 𝑥 = 𝑐 in return 𝑥 if 𝑐 is pure (e.g., as return 𝑎 − 𝑏).

3.3.1 Example 1: Nondeterministic Computation. We first revisit the example presented in Sec-

tion 2.1. In our language, it can be expressed as follows:

with ℎ handle (let 𝑎 = (let 𝑦 = decide () in if 𝑦 then return 10 else return 20) in
let 𝑏 = (let 𝑦′ = decide () in if 𝑦′ then return 1 else return 2) in return 𝑎 − 𝑏)

where ℎ ≜ {return 𝑥𝑟 ↦→ return 𝑥𝑟 , decide(𝑥, 𝑘) ↦→ let 𝑟𝑡 = 𝑘 true in let 𝑟 𝑓 = 𝑘 false inmax 𝑟𝑡 𝑟 𝑓 } .
As seen before, executing this program results in 19. Our system can assign the most precise type

{𝑧 : int | 𝑧 = 19} to this program. We now show the typing process to achieve this. In what

follows, we write Γ̃𝑥 for the typing context binding the variables 𝑥 with some appropriate types 𝐵.

In particular, these variables have these base types: 𝑥𝑟 : int, 𝑎 : int, 𝑏 : int, 𝑦 : bool, and 𝑦′ : bool.
First, consider the types assigned to the clauses in the handler ℎ. The return clause can be typed

as Γ𝑥𝑟 ⊢ return 𝑥𝑟 : {𝑧 : int | 𝑧 = 𝑥𝑟 }. The clause for decide can be typed as follows:

Γ ⊢ let 𝑟𝑡 = 𝑘 true in let 𝑟 𝑓 = 𝑘 false in max 𝑟𝑡 𝑟 𝑓 : {𝑧 : int | 𝜙} (1)

where Γ ≜ 𝑋 : (int, bool), 𝑥 : unit, 𝑘 : (𝑦 : bool) → {𝑧 : int | 𝑋 (𝑧,𝑦)}, 𝜙 ≜ ∀𝑟𝑡𝑟 𝑓 .𝑋 (𝑟𝑡 , true) ∧
𝑋 (𝑟 𝑓 , false) =⇒ 𝑧 = max(𝑟𝑡 , 𝑟 𝑓 ), and max is a term-level function that returns the larger of given

two integers. In this typing judgment, the predicate variable 𝑋 abstracts over relationships between

inputs 𝑦 and outputs 𝑧 of delimited continuations captured by calls to decide, and the refinement

formula 𝜙 summarizes what the operation clause computes. Therefore, the operation signature Σ
of the type of the handled computation, 𝑐body in what follows, can be given as follows:

Σ ≜ {decide : ∀𝑋 : (int, bool).(𝑥 : unit) → ((𝑦 : bool) → {𝑧 : int | 𝑋 (𝑧,𝑦)}) → {𝑧 : int | 𝜙}} .
Therefore, we can conclude that the program is typable as desired by the following derivation

(I) ⊢ 𝑐body : Σ ⊲ int / (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ {𝑧 : int | 𝑧 = 19}
Γ𝑥𝑟 ⊢ return 𝑥𝑟 : {𝑧 : int | 𝑧 = 𝑥𝑟 } (Judgment (1))

(T-Hndl)⊢ with ℎ handle 𝑐body : {𝑧 : int | 𝑧 = 19}
if the premise (I) for 𝑐body holds. We derive it by (T-LetIp), obtaining a derivation of the form

(II) ⊢ (let 𝑦 = decide () in if 𝑦 · · · ) : Σ ⊲ int / (∀𝑎.𝐶1) ⇒ {𝑧 : int | 𝑧 = 19}
(III) Γ𝑎 ⊢ let 𝑏 = · · · in return 𝑎 − 𝑏 : Σ ⊲ int / (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ 𝐶1

(T-LetIp)

(I) ⊢ 𝑐body : Σ ⊲ int / (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ {𝑧 : int | 𝑧 = 19}
for some type 𝐶1.

We start by examining judgement (III) because its derivation gives the constraints to identify the

type 𝐶1. By (T-LetIp) again, we can derive

(III-1) Γ𝑎 ⊢ (let 𝑦′ = decide () in if 𝑦′ · · · ) : Σ ⊲ int / (∀𝑏.𝐶2) ⇒ 𝐶1

(III-2) Γ𝑎,𝑏 ⊢ return 𝑎 − 𝑏 : Σ ⊲ int / (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ 𝐶2

(T-LetIp)

(III) Γ𝑎 ⊢ let 𝑏 = · · · in return 𝑎 − 𝑏 : Σ ⊲ int / (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ 𝐶1

with the premises (III-1) and (III-2) and some type 𝐶2. Judgment (III-2) is derivable by
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Γ𝑎,𝑏 ⊢ return 𝑎 − 𝑏 : {𝑧 : int | 𝑧 = 𝑎 − 𝑏}
(III-2-S) Γ𝑎,𝑏 ⊢ {𝑧 : int | 𝑧 = 𝑎 − 𝑏} <: Σ ⊲ int / (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ 𝐶2

(T-Sub)

(III-2) Γ𝑎,𝑏 ⊢ return 𝑎 − 𝑏 : Σ ⊲ int / (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ 𝐶2

with the derivation of the subtyping judgment (III-2-S):

Γ𝑎,𝑏 ⊢ Σ <: ∅ Γ𝑎,𝑏 ⊢ {𝑧 : int | 𝑧 = 𝑎 − 𝑏} <: int
Γ𝑎,𝑏 | {𝑧 : int | 𝑧 = 𝑎 − 𝑏} ⊢ □ <: (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ 𝐶2

(S-Comp)

(III-2-S) Γ𝑎,𝑏 ⊢ {𝑧 : int | 𝑧 = 𝑎 − 𝑏} <: Σ ⊲ int / (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ 𝐶2

The first two subtyping premises are derivable trivially. We can derive the third one by letting

𝐶2 ≜ {𝑧 : int | 𝑧 = 𝑎 − 𝑏} because:
Γ𝑎,𝑏, 𝑥𝑟 : {𝑧 : int | 𝑧 = 𝑎 − 𝑏}, 𝑧 : int ⊨ (𝑧 = 𝑥𝑟 ) =⇒ (𝑧 = 𝑎 − 𝑏)

(S-Rfn)

Γ𝑎,𝑏, 𝑥𝑟 : {𝑧 : int | 𝑧 = 𝑎 − 𝑏} ⊢ {𝑧 : int | 𝑧 = 𝑥𝑟 } <: {𝑧 : int | 𝑧 = 𝑎 − 𝑏}
(S-Embed)

Γ𝑎,𝑏 | {𝑧 : int | 𝑧 = 𝑎 − 𝑏} ⊢ □ <: (∀𝑥𝑟 .{𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ {𝑧 : int | 𝑧 = 𝑎 − 𝑏}
where the grayed part is denoted by 𝐶2 in the original premise. We note that our type inference

algorithm automatically infers such a type by constraint solving (cf. Section 4). Next, judgment

(III-1) is derivable by

(III-1-1) Γ𝑎 ⊢ decide () : Σ ⊲ bool / (∀𝑦′ .𝐶3) ⇒ 𝐶1

(III-1-2) Γ𝑎,𝑦′ ⊢ if 𝑦′ · · · : Σ ⊲ int / (∀𝑏.𝐶2) ⇒ 𝐶3

(T-LetIp)

(III-1) Γ𝑎 ⊢ (let 𝑦′ = decide () in if 𝑦′ · · · ) : Σ ⊲ int / (∀𝑏.𝐶2) ⇒ 𝐶1

with the premises (III-1-1) and (III-1-2) and some type𝐶3. By letting𝐶3 ≜ {𝑧 : int | 𝑧 = (𝑦′ ? (𝑎− 1) :
(𝑎 − 2))}, we can derive judgment (III-1-2):

Γ𝑎,𝑦′ ⊢ if 𝑦′ · · · : {𝑧 : int | 𝑧 = (𝑦′ ? 1 : 2)}
Γ𝑎,𝑦′ ⊢ {𝑧 : int | 𝑧 = (𝑦′ ? 1 : 2)} <: Σ ⊲ int / (∀𝑏.𝐶2) ⇒ 𝐶3

(T-Sub)

(III-1-2) Γ𝑎,𝑦′ ⊢ if 𝑦′ · · · : Σ ⊲ int / (∀𝑏.𝐶2) ⇒ 𝐶3

It is easy to see that the first typing premise holds. We can derive the second subtyping premise

similarly to subtyping judgment (III-2-S), namely, by (S-Comp) with the following derivation for

the subtyping on control effects:

Γ𝑎,𝑦′ , 𝑏 : {𝑧 : int | 𝑧 = (𝑦′ ? 1 : 2)} ⊨ (𝑧 = 𝑎 − 𝑏) =⇒ (𝑧 = (𝑦′ ? (𝑎 − 1) : (𝑎 − 2)))
(S-Rfn)

Γ𝑎,𝑦′ , 𝑏 : {𝑧 : int | 𝑧 = (𝑦′ ? 1 : 2)} ⊢ 𝐶2 <: 𝐶3

(S-Embed)

Γ𝑎,𝑦′ | {𝑧 : int | 𝑧 = (𝑦′ ? 1 : 2)} ⊢ □ <: (∀𝑏.𝐶2) ⇒ 𝐶3

Judgment (III-1-1) is derived by (T-Op), but for that, we need to instantiate the predicate variable 𝑋

in the type scheme of decide in Σwith a predicate𝐴 such that the constraint𝐶3 = {𝑧 : int | 𝐴(𝑧,𝑦′)}
imposed by (T-Op) is met. Let 𝐴 ≜ 𝜆(𝑧,𝑦).𝑧 = (𝑦 ? (𝑎 − 1) : (𝑎 − 2)), which satisfies the constraint

trivially. Then, by letting 𝐶1 ≜ {𝑧 : int | 𝜙}[𝐴/𝑋 ] , we have the following derivation:

Γ𝑎 ⊢ () : unit
(T-Op)

(III-1-1) Γ𝑎 ⊢ decide () : Σ ⊲ bool / (∀𝑦′ .{𝑧 : int | 𝐴(𝑧,𝑦′)}) ⇒ {𝑧 : int | 𝜙}[𝐴/𝑋 ]
Finally, we examine judgment (II). It is derivable by

(II-1) ⊢ decide () : Σ ⊲ bool / (∀𝑦.𝐶4) ⇒ {𝑧 : int | 𝑧 = 19}
(II-2) Γ𝑦 ⊢ if 𝑦 · · · : Σ ⊲ int / (∀𝑎.𝐶1) ⇒ 𝐶4

(T-LetIp)

(II) ⊢ (let 𝑦 = decide () in if 𝑦 · · · ) : Σ ⊲ int / (∀𝑎.𝐶1) ⇒ {𝑧 : int | 𝑧 = 19}
with the premises (II-1) and (II-2) and some type 𝐶4. Judgement (II-2) is derivable similarly to

(III-1-2) by letting 𝐶4 ≜ {𝑧 : int | 𝑧 = (𝑦 ? 9 : 19)} . For judgment (II-1), we instantiate the predicate

variable 𝑋 in the first call to decide with the predicate 𝐴′ ≜ 𝜆(𝑧,𝑦).𝑧 = (𝑦 ? 9 : 19) . Then, we can
derive the judgment by the following derivation:
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⊢ decide () : Σ ⊲ bool / (∀𝑦.{𝑧 : int | 𝐴′ (𝑧,𝑦)}) ⇒ {𝑧 : int | 𝜙 [𝐴′/𝑋 ]}
⊢ Σ ⊲ bool / (∀𝑦.𝐶4) ⇒ {𝑧 : int | 𝜙 [𝐴′/𝑋 ]} <: Σ ⊲ bool / (∀𝑦.𝐶4) ⇒ {𝑧 : int | 𝑧 = 19}

(T-Sub)

(II-1) ⊢ decide () : Σ ⊲ bool / (∀𝑦.𝐶4) ⇒ {𝑧 : int | 𝑧 = 19}
(note that 𝐶4 = {𝑧 : int | 𝐴′ (𝑧,𝑦)}) where the first premise is derived by (T-Op) and the second one

holds because the formula 𝜙 [𝐴′/𝑋 ] is semantically equivalent to the formula 𝑧 = 19.

We note that the predicate variable in the type scheme of decide is important to typing this

example. The delimited continuations captured by the two calls to decide behave differently. Namely,

they respectively behave according to the predicates 𝐴(𝑢, 𝑣) and 𝐴′ (𝑢, 𝑣) where 𝑢 is the integer

output given the Boolean input 𝑣 . By using predicate variables, our type system gives a single type

scheme to an operation that abstracts over such different behaviors.
4

3.3.2 Example 2: State. We next revisit the second example from Section 2.1. Recall the example,

which is the following program:

(with ℎ handle (set 3; let 𝑛 = get () in set 5; let𝑚 = get () in 𝑛 +𝑚)) 0

where ℎ ≜ {𝑥𝑟 ↦→ 𝜆𝑠.𝑥𝑟 , set(𝑥, 𝑘) ↦→ 𝜆𝑠.𝑘 () 𝑥, get(𝑥, 𝑘) ↦→ 𝜆𝑠.𝑘 𝑠 𝑠} . For this example, we

use the following syntactic sugars: 𝑐1; 𝑐2 ≜ let 𝑥 = 𝑐1 in 𝑐2 (where 𝑥 does not occur in 𝑐2) and

𝜆𝑥.𝑣 ≜ 𝜆𝑥.return 𝑣 . Then, the program is in our language. This program uses two operations:

set, which updates the state value, and get, which returns the current state value. The handling

construct returns a function that maps any integer value to the value 8; arguments to the function

are initial state values, but they are not used because the function begins by initializing the state.

Applying the function to the initial state value 0, the whole program returns 8.

This program is expected to be of the type {𝑧 : int | 𝑧 = 8}. The rest of this section explains how

the type system assigns this type to the program. First, the operation signature Σ for the handler ℎ

can be defined as follows:

Σ ≜ {set : ∀𝑋 : (int, int). (𝑥 : int) → (unit → ((𝑠 : int) → {𝑧 : int | 𝑋 (𝑧, 𝑠)}))
→ ((𝑠 : int) → {𝑧 : int | 𝑋 (𝑧, 𝑥)}),

get : ∀𝑋 : (int, int, int). unit → ((𝑦 : int) → ((𝑠 : int) → {𝑧 : int | 𝑋 (𝑧, 𝑠,𝑦)}))
→ ((𝑠 : int) → {𝑧 : int | 𝑋 (𝑧, 𝑠, 𝑠)}) }

Then, each sub-computation in the handled computation can be typed as follows:

⊢ set 3 : Σ ⊲ int / (∀_.(𝑠 : int) → {𝑧 : int | 𝑧 = 𝑠 + 5}) ⇒ (𝑠 : int) → {𝑧 : int | 𝑧 = 3 + 5}
⊢ get () : Σ ⊲ int / (∀𝑛.(𝑠 : int) → {𝑧 : int | 𝑧 = 𝑛 + 5}) ⇒ (𝑠 : int) → {𝑧 : int | 𝑧 = 𝑠 + 5}

𝑛 : int ⊢ set 5 : Σ ⊲ int / (∀_.(𝑠 : int) → {𝑧 : int | 𝑧 = 𝑛 + 𝑠}) ⇒ (𝑠 : int) → {𝑧 : int | 𝑧 = 𝑛 + 5}
𝑛 : int ⊢ get () : Σ ⊲ int / (∀𝑚.(𝑠 : int) → {𝑧 : int | 𝑧 = 𝑛 +𝑚}) ⇒ (𝑠 : int) → {𝑧 : int | 𝑧 = 𝑛 + 𝑠}
𝑛 : int, 𝑚 : int ⊢ return 𝑛 +𝑚 :

Σ ⊲ {𝑥𝑟 : int | 𝑥𝑟 = 𝑛 +𝑚} / (∀𝑥𝑟 .(𝑠 : int) → {𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ (𝑠 : int) → {𝑧 : int | 𝑧 = 𝑛 +𝑚}

The first four judgments are derived by (T-Op) with appropriate instantiation of the type schemes

of set and get. The last judgement is derived using (S-Embed) as in the first example. The type of

the handled computation is derived from these computation types, taking the following form:

Σ ⊲ int / (∀𝑥𝑟 .(𝑠 : int) → {𝑧 : int | 𝑧 = 𝑥𝑟 }) ⇒ (𝑠 : int) → {𝑧 : int | 𝑧 = 8} .

Therefore, by (T-Hndl), the type of the handling construct is (𝑠 : int) → {𝑧 : int | 𝑧 = 8}, and by

(T-App), the type of the whole program is {𝑧 : int | 𝑧 = 8} as promised.

4
An alternative approach is to use intersection types (i.e., allow a set of types to be given to an operation). But, we find our

approach more uniform and modular as it is able to give a single compact type scheme and enables operation signatures to

be unaware of in which contexts operations are called.
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3.3.3 Example 3: File Manipulation. Finally, we consider the last example in Section 2.1 that

manipulates a specified file. Because the example uses nondeterministic while-loop constructs

while (★) {𝑐}, we informally extend our language with them.
5
The semantics of the while-loop

constructs is given by the reduction ruleswhile (★) {𝑐} −→ 𝑐 ; while (★) {𝑐} andwhile (★) {𝑐} −→
return (), and the typing rule is given as follows:

Γ ⊢ 𝑐 : Σ ⊲ unit / 𝐶 ⇒ 𝐶
(T-Loop)

Γ ⊢ while (★) {𝑐} : Σ ⊲ unit / 𝐶 ⇒ 𝐶

Note that it is easy to adapt the type safety to this extension.

Recall that the example for file manipulation is the following function:

𝑣 ≜ 𝜆𝑥. while (★) {open 𝑥 ; while (★) {let 𝑦 = read() in write (𝑦^"X")}; close ()} .

The regular scheme stipulating the valid use of the file operations is (open (read | write)∗ close)∗,
which is equivalent to the automaton to the right.

𝑞0 𝑞1

open

close

read
write

Our idea to verify the correctness of the file manipula-

tion is to encode the automaton states as program states,

simulate the state transitions in the automaton by state-

passing, and check that the file operations are used only

in appropriate states. Let 𝑄0 ≜ 0 and 𝑄1 ≜ 1; they represent the automaton states 𝑞0 and 𝑞1,

respectively. We suppose that an effect handler implements the file operations open , close, read,
and write in a state-passing style for states𝑄0 and𝑄1. Then, the type scheme of each file operation

can be given as an instance of the following template:

𝐹 (𝑇in,𝑇out, 𝑄pre, 𝑄post) ≜ 𝑇in → (𝑇out → ({𝑥 : int | 𝑥 = 𝑄post} → 𝐶)) → ({𝑥 : int | 𝑥 = 𝑄pre} → 𝐶)
where the parameters 𝑇in and 𝑇out are the input and output types, respectively, of the operation,

and 𝑄pre and 𝑄post are the states before and after, respectively, performing the operation. We do

not specify the final answer type𝐶 concretely here because it is not important. Using this template,

an operation signature Σ of the file operations is given as

{ open : 𝐹 (str, unit, 𝑄0, 𝑄1), close : 𝐹 (unit, unit, 𝑄1, 𝑄0),
read : 𝐹 (unit, str, 𝑄1, 𝑄1), write : 𝐹 (str, unit, 𝑄1, 𝑄1) } .

Note that the state transitions represented in Σ are matched with those in the automaton. Let

𝑆 (𝑄pre, 𝑄post) ≜ ({𝑥 : int | 𝑥 = 𝑄post} → 𝐶) ⇒ ({𝑥 : int | 𝑥 = 𝑄pre} → 𝐶) .
Given an effect handler ℎ conforming to Σ and a computation 𝑐 with control effect 𝑆 (𝑛pre, 𝑛post) for
some 𝑛pre and 𝑛post, if a handling construct with ℎ handle 𝑐 is well typed, the body of ℎ’s return

clause is typed at {𝑥 : int | 𝑥 = 𝑛post} → 𝐶—i.e., the computation 𝑐 terminates at the state 𝑛post—and

the handling construct with ℎ handle 𝑐 is typed at {𝑥 : int | 𝑥 = 𝑛pre} → 𝐶—i.e., it requires 𝑛pre
as the initial state to start the computation 𝑐 . Therefore, if 𝑛pre = 𝑛post = 𝑄0, then it is guaranteed

that the file operations are used in a valid manner. Furthermore, even if 𝑐 is non-terminating, our

type system can ensure that it does not use the file operations in an invalid manner. For example,

suppose that 𝑐 is a computation close (); Ω where Ω is a diverging computation. If it is well typed,

its final answer type is {𝑥 : int | 𝑥 = 𝑄1} → 𝐶 , which indicates that with ℎ handle 𝑐 requires
𝑄1 as the initial state. It is clearly inconsistent with the above automation. As another instance,

suppose that 𝑐 involves a computation · · · ; close (); write ”𝑋 ”; · · · . This is illegal because it tries
to call write after close without open. Our type system rejects it because the initial answer type

5
An alternative is to encode the while-loop constructs in our language by supposing that the termination of a while-loop

construct is determined by some function parameter 𝑓 : unit → bool.
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{𝑥 : int | 𝑥 = 𝑄0} → 𝐶 of close () is not matched with the final answer type {𝑥 : int | 𝑥 = 𝑄1} → 𝐶

of write ”𝑋 ” while they must be matched for the computation to be well typed.

We end this section by showing that the example function 𝑣 can be typed at str → Σ ⊲ unit /
𝑆 (𝑄0, 𝑄0), which means that 𝑣 ’s body uses the file operations appropriately. Note that, for any

typing context Γ′ and file operation op, if op : 𝐹 (𝑇1,𝑇2, 𝑛pre, 𝑛post) ∈ Σ and Γ′ ⊢ 𝑣 : 𝑇1, then

Γ′ ⊢ op 𝑣 : Σ ⊲𝑇2 / 𝑆 (𝑛pre, 𝑛post) by (T-Op). Let Γ ≜ 𝑥 : str. For the inner while-loop construct, we

have the following typing derivation:

Γ ⊢ read() : Σ ⊲ str / 𝑆 (𝑄1, 𝑄1)
Γ, 𝑦 : str ⊢ write (𝑦^"X") : Σ ⊲ unit / 𝑆 (𝑄1, 𝑄1)

(T-LetIp)

Γ ⊢ let 𝑦 = read() in write (𝑦^"X") : Σ ⊲ unit / 𝑆 (𝑄1, 𝑄1)
(T-Loop)

Γ ⊢ while (★) {let 𝑦 = read() in write (𝑦^"X")} : Σ ⊲ unit / 𝑆 (𝑄1, 𝑄1)
Thus, the sub-computations of the outer while-loop construct can be typed as follows:

Γ ⊢ open 𝑥 : Σ ⊲ unit / 𝑆 (𝑄0, 𝑄1)
Γ ⊢ while (★) {let 𝑦 = read() in write (𝑦^"X")} : Σ ⊲ unit / 𝑆 (𝑄1, 𝑄1)
Γ ⊢ close () : Σ ⊲ unit / 𝑆 (𝑄1, 𝑄0) .

where the control effects express how the state changes according to the operation calls. By (T-

LetIp), (T-Loop), and (T-Fun), they then imply that 𝑣 is typed at str → Σ ⊲ unit / 𝑆 (𝑄0, 𝑄0) as
desired.

3.4 Discussion
In this section, we discuss the current limitations and future extensions of our system.

3.4.1 Abstraction of Effects. Our type system has no mechanism for abstraction of effects. There-

fore, if we cannot know possible effects of the handled computation in advance (e.g., as in

𝜆𝑓 .with ℎ handle (𝑓 ()), where the effects of the handled computation 𝑓 () are determined by

function parameter 𝑓 ), we have to fix its effects (both the operation signature and the control

effect). A possible way to address this issue is to incorporate some mechanism to abstract effects.

For operation signatures, effect polymorphism as in the existing effect systems for algebraic effects

and handlers [Leijen 2017; Lindley et al. 2017], is a promising solution. However, adapting it to our

system is not trivial. Effect polymorphism enables specifying a part of an operation signature as a

parameter, and handling constructs implicitly forward operations in the parameter. The problem

is that our type system modifies the type schemes of forwarded operations (see the supplementary

material for detail). Therefore, even though the type schemes are involved in an operation signature

parameter, we need to track how they are modified. We leave addressing this challenge for future

work. For control effects, we conjecture that bounded polymorphism can be used to abstract control

effects while respecting the necessary sub-effecting constraints.

3.4.2 Combination with Other Computational Effects. Algebraic effects and handlers are sometimes

used with other computational effects. For example, when implementing a scheduler with algebraic

effects and handlers, an imperative queue is often used to keep suspended continuations, like in an

example from Multicore OCaml [2022]. Even though some computational effects can be simulated

by algebraic effects and handlers themselves, it is often convenient to address them as primitive

operations for efficiency. Our system does not support such primitive computational effects. It is

left for future work to combine these features in one system.

3.4.3 Shallow Handlers. The handlers we adopt in this work are called deep handlers [Kammar et al.

2013], which is the most widely used variant. Another variant of algebraic effect handlers is shallow
handlers [Hillerström and Lindley 2018], which we do not address in the present work. Just as
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deep handlers are related to shift0/reset0, shallow handlers are related to control0/prompt0 [Piróg

et al. 2019]. Therefore, the type system for control0/prompt0 with ATM [Ishio and Asai 2022]

may be adapted to develop a refinement type system for shallow handlers, as we have developed

our refinement type system for deep handlers based on the type systems for shift0/reset0 with

ATM [Materzok and Biernacki 2011; Sekiyama and Unno 2023].

3.4.4 Recursive Computation Types. Some useful programs with algebraic effect handlers are ill

typed in our system due to the lack of support for recursive computation types. For example,

consider the following program:

rec(𝑓 , 𝑛).with ℎ handle if 𝑛 = 0 then Err "error" else 𝑓 (𝑛 − 1)
where ℎ ≜ {Err(𝑚𝑠𝑔, 𝑘) ↦→ Err (sprintf "called at %d. %s" 𝑛 𝑚𝑠𝑔)} . This recursive function
handles the error in each function call, producing its own stack trace. It cannot be typed without

recursive types because the type of the handled computations appears recursively as its answer

type. To see this, assume that the type of the handled computation (i.e., the conditional branch)

is assigned a type Σ ⊲𝑇 / 𝐶1 ⇒ 𝐶2 (here we consider only simple types for simplicity). Then, the

type of the handling construct (i.e., the body of the function) is 𝐶2, which implies that the overall

function has type int → 𝐶2. And so, the recursive call to the function 𝑓 (𝑛 − 1) also has type 𝐶2.

Then, the type 𝐶2 should be a subtype of Σ ⊲ 𝑇 / 𝐶1 ⇒ 𝐶2 since 𝑓 (𝑛 − 1) is the else-branch of

the conditional branch. However, we cannot derive Γ ⊢ 𝐶2 <: Σ ⊲ 𝑇 / 𝐶1 ⇒ 𝐶2 (for some Γ) in
our system because while the type on the left-hand side is 𝐶2 itself, 𝐶2 appears as the answer type

in the control effect of the type on the right-hand side. On the other hand, using recursive types,

we can give this function the following type (again, we consider only simple types for simplicity):

int → 𝜇𝛼.Σ𝛼 ⊲ 𝑇 / 𝑇 ⇒ 𝛼 where Σ𝛼 ≜ {Err : str → (𝑇 → 𝑇 ) → 𝛼} and 𝑇 is an arbitrary value

type. Type 𝜇𝛼.𝐶 denotes a recursive computation type where the type variable 𝛼 refers to the

whole type itself. The control effect of this type is recursively nested, which reflects the fact that

the handling construct is recursively nested due to the recursive call to the function.

3.4.5 Type Polymorphic Effect Operations. Consider the following program that evaluates to [[21]]:
with {𝑥𝑟 ↦→ 𝑥𝑟 ,wrap((), 𝑘) ↦→ [𝑘 ()]} handle (wrap ();wrap (); 21)

This does not type-check in our current system because a type polymorphic operation signature

like Σ ≜ {wrap : ∀𝛼.unit → (unit → 𝛼 / 𝑆) → 𝛼 list / 𝑆 ′} is required. It is, however, easy to

extend our type system to support type polymorphic operation signatures to handle such examples.

Specifically, in the typing of operation clauses 𝑐𝑖 in the (T-Hndl) rule, one would generalize type

variables, and in the (T-Op) rule, one would instantiate type polymorphism.

3.4.6 Modularity (or Abstraction) versus Preciseness (or Concreteness). In our system, operation

signatures are of the form op𝑖 : 𝑇𝑖 → (𝑇 ′
𝑖 → 𝐶𝑖 ) → 𝐶′

𝑖 where the types 𝐶𝑖 and 𝐶
′
𝑖 represent

behavior of the effect handler. In other words, the signature reveals specific implementation details

regarding effect handlers. This design, from our perspective of precise specification and verification,

is valuable. Indeed, our type system can formally specify and verify the assume-guarantee-like

contracts between the handler and operation-call sides. However, from the perspective of modularity

and abstraction, this design choice is not the optimal one. In fact, one of the purposes of effect

handlers is to abstract away the specifics so that one could later choose a different implementation.

To ensure that the handler implementation details do not leak in the operation signatures, one

can introduce computation type polymorphism: The types 𝐶𝑖 and 𝐶
′
𝑖 in the operation signature

above will be replaced by computation type variables, thus hiding the details. However, completely

hiding the information of handler implementations in this way implies that we are not providing

and verifying a detailed specification requirement for the handler implementations.
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Practically speaking, rather than the two extremes, we believe that it is engineering-wise desirable

to allow for a gradient between modularity (abstraction) and preciseness (concreteness) and to

describe and verify types at the appropriate level of detail depending on the use case. Introducing

all the polymorphisms discussed in this section might achieve this goal, but we plan to investigate

whether it is indeed the case by specifying and verifying various real-world programs. In our view,

the issue of how to describe types at an appropriate level of abstraction, as discussed above, is an

important open problem not just for algebraic effects but for general control operators and, more

broadly, for effectful computation.

4 IMPLEMENTATION
4.1 Description of Our Implementation
In this section, we describe our prototype implementation of a refinement type checking and

inference system, RCaml
6
. It takes a programwritten in a subset of the OCaml 5 language (including

algebraic data types, pattern matching, recursive functions, exceptions, mutable references
7
, let-

polymorphism, and effect handlers) and a refinement-type specification for the function of interest.

It first (1) obtains an ML-typed AST of the program using OCaml’s compiler library, (2) infers

refinement-free operation signatures and control effects, (3) generates refinement constraints for the

program and its specification as Constrained Horn Clauses (CHCs) (see e.g., the work of Bjørner et al.

[2015]), and finally (4) solves these constraints to verify if the program satisfies the specification.

The steps (3) and (4), where the refinement type checking is reduced to CHC solving, follow existing

standard approaches such as those proposed by Rondon et al. [2008] and Unno and Kobayashi

[2009]. The inference of (refinement-free) operation signatures is similar to that of record types

using row variables, and is mutually recursive with the inference of control effects. It is based on

the inference of control effects for shift0/reset0 [Materzok and Biernacki 2011]. As we split the steps

of CHC generation and solving, we can use different solvers as the backend CHC solver depending

on benchmarks. In this experiment, we used two kinds of CHC solvers: Spacer [Komuravelli et al.

2013] that is based on Property Directed Reachability (PDR) [Bradley 2011; Een et al. 2011], and

PCSat [Unno et al. 2021] that is based on template-based CEGIS [Solar-Lezama et al. 2006; Unno

et al. 2021] with Z3 [de Moura and Bjørner 2008] as an SMT solver.

Because inputs to the implementation are OCaml programs that are type-checked by OCaml’s

type checker which does not allow ATM, the underlying OCaml types corresponding to the answer

types cannot be modified. However, as remarked before in Section 1, our aim is to verify existing
programs with algebraic effects and handlers, and, as remarked before, our ARM, that allows only

modification in the refinements, is useful for that purpose.

Our implementation supports several kinds of polymorphism. In addition to the standard let-

polymorphism on types, it supports refinement predicate polymorphism. The implementation

extends the formal system by allowing bounded predicate polymorphism in which abstracted

predicates can be bounded by constraints on them, and further allows predicate-polymorphic

types to be assigned to let-bound terms. However, because the implementation can infer predicate-

polymorphic types only at let-bindings, we used a different approach, which we will discuss in

Section 4.2, to simulate predicate polymorphism in operation signatures.

Another notable point is that our implementation deals with operations and exceptions uniformly.

That is, exception raising is treated as an operation invocation and it can be handled by a certain

kind of effect handlers which have clauses for exceptions (the exception clauses are included in the

effect handlers of OCaml by default).

6
available at https://github.com/hiroshi-unno/coar

7
Strong updates [Foster et al. 2002] are not supported.
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4.2 Evaluation
We performed a preliminary experiments to evaluate our method on some benchmark programs

that use algebraic effect handlers. The benchmarks are based on example programs from Bauer and

Pretnar [2015] and the repository of the Eff language [Pretnar 2022]. We gathered the effect handlers

in those examples and created benchmark programs each of which uses one of the effect handlers.

We also added a refinement type specification of the function of interest to each benchmark.

(Other auxiliary functions are not given such extra information, and so their types are inferred
automatically even for recursive functions.) Most benchmarks could be solved automatically without

the annotations, but some need them as hints. We discuss the details at the end of this section. It

is also notable that, although the examples presented in Section 3.3 focus on the specifications

specialized in concrete, constant values such as {𝑧 : int | 𝑧 = 19} for Example 1, the benchmarks

include programs that demonstrate that our type system and implementation can address more

general specifications.For instance, the specification for the benchmark choose-max-SAT.ml, which
is a general version of Example 1 where the constants 10, 20, 1, and 2 are replaced by parameters 𝑢,

𝑣 , 𝑥 , and 𝑦, respectively, of a function main to be verified, is as follows:

⊢ main : (𝑢 : int) → (𝑣 : {𝑧:int | 𝑧 ≥ 𝑢}) → (𝑥 : int) → (𝑦 : {𝑧:int | 𝑧 ≥ 𝑥}) → {𝑧:int | 𝑧 = 𝑣 − 𝑥}
We refer to the supplementary material for the source code and the specifications of our benchmarks.

All the experiments were conducted on Intel Xeon Platinum 8360Y, 256 GB RAM.

Table 1 shows the results of the evaluation. The files that are suffixed with -SAT are expected to

result in “SAT”, that is, the programs are expected to be typed with the refinement types given as

their specifications. The other files (suffixed with -UNSAT) are expected to result in “UNSAT”, that is,

the programs are expected not to be typed with the given refinement types. For each program, we

conducted verification in two configurations ((1) Spacer, and (2) PCSat). The field “time” indicates

the time spent in the whole process of the verification. We set the timeout to 600 seconds. Our

implementation successfully answered correct result for most programs. For instance, we show the

benchmark io-write-2-SAT.ml as an example (where @annot_MB is an effect annotation written

in the underlying OCaml type, explained in the last paragraph of this section):

let[@annot_MB "(unit -> ({Write: s} |> unit / s3 => s3)) -> unit * int list"]
accumulate (body: unit -> unit) = match_with body () {
retc = (fun v -> (v, [])); exnc = raise;
effc = fun (type a) (e: a eff) -> match e with
| Write x -> Some (fun (k: (a, _) continuation) ->
let (v, xs) = continue k () in (v, x :: xs) ) }

let write_all l = accumulate (fun () ->
let rec go li = match li with
| [] -> () | s :: ss -> let _ = perform (Write s) in go ss

in go l )

It iterates over a list l to pass its elements to the operation Write, and the handler for Write
accumulates the passed elements into another list. It is checked against the following specification:

⊢ write_all : {𝑧 : int list | 𝑧 ≠ []} → {𝑧 : unit × int list | ∀𝑢, 𝑣 . 𝑧 = (𝑢, 𝑣) ⇒ 𝑣 ≠ []}
That is, if the iterated list is not empty, the accumulated list is not, either. Our implementation

successfully answered that write_all satisfies the specification, with the following inferred type:

(𝑙 : {𝑧 : int list | 𝑧 ≠ []}) → {𝑧 : unit × {𝑧′ : int | 𝑙 ≠ []} list | 𝜙}
where 𝜙 ≜ ∃𝑡 : int list.(𝑡 = [] ∨ 𝑧.2 ≠ []) ∧ 𝑡 ≠ [] ∧ 𝑙 ≠ [] and 𝑧.2 means the second element of

the pair 𝑧. ARM is indispensable for this example because the initial answer type of the body of the
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Table 1. Evaluation results

file name

Spacer PCSat

result correct? time (sec.) result correct? time (sec.)

amb-1-SAT.ml Yes 0.55 Yes 15.30

amb-1-UNSAT.ml Yes 0.72 Yes 63.62

amb-2-SAT.ml Yes 2.31 Yes 31.48

amb-2-UNSAT.ml Yes 2.26 - timeout
†

amb-3-SAT.ml Yes 3.20 Yes 182.41

amb-3-simpl-SAT.ml Yes 1.71 Yes 16.79

bfs-SAT.ml No
∗1

1.67 - timeout
∗1

bfs-UNSAT.ml Yes 2.00 - timeout
†

bfs-simpl-SAT.ml No
∗1

2.22 - timeout
∗1

choose-all-SAT.ml Yes 16.23 - timeout
†

choose-all-UNSAT.ml Yes 12.56 - timeout
†

choose-max-SAT.ml Yes 23.08 - timeout
†

choose-max-UNSAT.ml Yes 15.97 - timeout
†

choose-sum-SAT.ml Yes 1.54 - timeout
†

choose-sum-UNSAT.ml Yes 7.99 Yes 15.00

deferred-1-SAT.ml Yes 0.46 Yes 4.49

deferred-1-UNSAT.ml Yes 0.27 Yes 4.09

deferred-2-SAT.ml Yes 0.43 Yes 4.38

distribution-SAT.ml Abort
÷

- - timeout
∗2

distribution-UNSAT.ml Abort
÷

- - timeout
∗2

expectation-SAT.ml Yes 0.51 Yes 7.25

expectation-UNSAT.ml Yes 1.45 Yes 7.33

io-read-1-SAT.ml Yes 0.43 Yes 13.90

io-read-1-UNSAT.ml Yes 0.41 Yes 12.21

io-read-2-SAT.ml Yes 0.56 Yes 21.10

io-read-3-SAT.ml Yes 0.54 Yes 14.88

io-write-1-SAT.ml Yes 0.32 Yes 8.48

io-write-1-UNSAT.ml Yes 0.32 Yes 8.76

io-write-2-SAT.ml Yes 0.46 Yes 11.33

io-write-2-UNSAT.ml Yes 0.68 Yes 11.65

modulus-SAT.ml Yes 14.23 Yes 11.89

modulus-UNSAT.ml Yes 26.56 Yes 11.91

queue-1-SAT.ml Yes 0.78 Yes 19.22

queue-1-UNSAT.ml Yes 0.52 Yes 16.93

queue-2-SAT.ml Yes 0.89 Yes 22.63

round-robin-SAT.ml Yes 0.96 - timeout
†

round-robin-UNSAT.ml Yes 0.73 - timeout
†

safe-div-1-SAT.ml Abort
÷

- Yes 2.71

safe-div-1-UNSAT.ml Abort
÷

- Yes 2.73

safe-div-2-SAT.ml Abort
÷

- Yes 2.55

safe-div-2-UNSAT.ml Abort
÷

- Yes 3.58

select-SAT.ml - timeout
‡

Yes 13.28

select-UNSAT.ml - timeout
‡

Yes 13.26

shift-SAT.ml Yes 0.28 Yes 2.92

shift-UNSAT.ml Yes 1.25 Yes 3.93

state-SAT.ml - timeout
‡

Yes 33.69

state-UNSAT.ml Yes 0.63 Yes 13.56

state-easy-SAT.ml Yes 0.90 Yes 35.54

transaction-SAT.ml - timeout
‡

Yes 15.36

transaction-UNSAT.ml - timeout
‡

Yes 15.77

yield-SAT.ml Yes 1.51 Yes 17.57

yield-UNSAT.ml Yes 1.52 - timeout
†

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 5. Publication date: January 2024.



Answer Refinement Modification: Refinement Type System for Algebraic Effects and Handlers 5:23

function go should be {𝑧 : unit× int list | 𝑧.2 = []} (since it should be matched with the type of the

return clause of the handler), while its final answer type should be {𝑧 : unit × int list | 𝑧.2 ≠ []} .
We also present another interesting example (queue-2-SAT.ml) in detail in the supplementary

material.

The benchmarks that were not verified correctly in both configurations are bfs(-simpl)-SAT.ml
(marked with ∗1) and distribution-(UN)SAT.ml (marked with ∗2). They need some specific

features which the implementation does not support. The formers need an invariant which states

that there exists an element of a list that satisfies a certain property. The latter needs recursive

predicates in the type of an integer list, which states a property about the sum of the elements

of the list. These issues are orthogonal to the main contributions of this paper; they are about

the expressiveness of the background theory used for refinement predicates, to which our novel

refinement type system is agnostic. Also, bfs(-simpl)-SAT.ml uses mutable references which

our implementation does not handle in a flow-sensitive manner (as mentioned in the footnote 7).

One solution to this issue is to encode references with an effect handler as in Section 2.1, but our

implementation does not do such encoding automatically. More advanced support for native effects

including references is left for future work, as discussed in Section 3.4.

We discuss pros and cons between the two configurations. First, Spacer does not support division

operator, and so it cannot verify some programs that use division (marked with ÷, aborting with the

message “Z3 Error: Uninterpreted ’div’ in <null>”). Also, some programs can be solved in

one configuration but not in the other. Among those solved by Spacer but not by PCSat (marked

with †), round-robin-(UN)SAT.ml timed out during the simplification of its constraints. For the

remaining programs, their constraints tend to contain predicate variables that take a large number

of arguments, which makes it hard for PCSat to find solutions. Conversely, the programs solved

by PCSat but not by Spacer (marked with ‡) involve constraints where some predicate variables

occur many times, which leads to complicated solutions that are difficult for Spacer to solve.

It is worth noting that our benchmarks do not rely on refinement type annotation in most places,

even for recursive functions and recursive ADTs. However, a few kinds of annotations are still

needed. First, as mentioned in Section 3.4, our type system does not support effect polymorphism.

Therefore, we added effect annotations to function-type arguments which may perform operations

when executed, as the one given to the benchmark io-write-2-SAT.ml using @annot_MB. These
annotations are written in the underlying OCaml types, that is, we did not specify concrete

refinements in the annotations. Second, we provided refinement type annotations for two small

parts of state-SAT.ml, because otherwise it could not be verified within the timeout period in both

configurations. Third, because our implementation infers predicate-polymorphic types only at let-

bindings, we added ghost parameters to some operations and functions to infer precise refinement

types of them which are not let-bound but need some abstraction of refinements. Ghost parameters

are parameters which are used to express dependencies in dependent type checking, but have no

impact on the dynamic execution of the program so they can be removed at runtime. In automated

verification, completely inferring predicate variables requires higher-order predicate constraints,

which are not expressible with CHC. Therefore, we provided ghost parameters to make it possible

to reduce the verification to CHC solving. For example, the following is a part of state-SAT.ml:

let rec counter c =
let i = perform (Lookup c) in
if i = 0 then c else (perform (Update (c, i - 1)); counter (c + 1))

in counter 0

which is handled by a handler that simulates a mutable reference similar to that of Example 2

in Section 3.3.2. Here, we pass the variable 𝑐 to the operation Lookup and Update as the ghost

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 5. Publication date: January 2024.



5:24 Fuga Kawamata, Hiroshi Unno, Taro Sekiyama, and Tachio Terauchi

Evaluation, Typing and subtyping rules 𝑐 −→ 𝑐′ Γ ⊢ 𝑐 : 𝜏 Γ ⊢ 𝜏1 <: 𝜏2

(𝑐 : 𝜏) −→ 𝑐 (Λ𝛼.𝑐) 𝜏 −→ 𝑐 [𝜏/𝛼] (Λ�
𝑋 : 𝐵.𝑐) 𝐴 −→ 𝑐 [𝐴/𝑋 ] {(op𝑖 = 𝑣𝑖 )𝑖 }#op𝑖 −→ 𝑣𝑖

Γ ⊢ 𝑐 : ∀𝛼.𝜏 ′ Γ ⊢ 𝜏
Γ ⊢ 𝑐 𝜏 : 𝜏 ′ [𝜏/𝛼]

(Γ ⊢ 𝜏1𝑖 <: 𝜏2𝑖 )𝑖
Γ ⊢ {(op𝑖 : 𝜏1𝑖 )𝑖 , (op′𝑖 : 𝜏 ′𝑖 )𝑖 } <: {(op𝑖 : 𝜏2𝑖 )𝑖 }

Γ, 𝛽 ⊢ 𝜏1 [𝜏/𝛼] <: 𝜏2 Γ, 𝛽 ⊢ 𝜏 𝛽 ∉ fv(∀𝛼.𝜏1)
Γ ⊢ ∀𝛼.𝜏1 <: ∀𝛽.𝜏2

Fig. 5. The operational semantics and the type system of the target language (excerpt).

parameter. In the formal system presented in Section 3.2 where predicate polymorphism is available

in operation signatures, we can give Update the type

∀𝑋 :(int, int). (𝑥 :int) → (unit → ((𝑠:int) → {𝑧:int | 𝑋 (𝑧, 𝑠)})) → ((𝑠:int) → {𝑧:int | 𝑋 (𝑧, 𝑥)})

in the same way as Example 2 in Section 3.3.2, and instantiate the predicate variable 𝑋 with

𝜆(𝑧, 𝑠).𝑧 = 𝑐 + 1 + 𝑠 to correctly verify state-SAT.ml. On the other hand, in the implementation,

since predicate polymorphism is not available in operation signatures, the handler needs to know

the concrete predicate which replaces 𝑋 . However, the predicate contains 𝑐 , which the handler

cannot know without receiving some additional information. Therefore, we need to add the ghost

parameter 𝑐 to Update (and the same for Lookup). This time we added them manually, but one

possible approach for automating insertion of ghost parameters is to adopt the technique proposed

by Unno et al. [2013]. We conjecture that a similar technique can be used for our purpose.

5 CPS TRANSFORMATION
5.1 Definitions and Properties
This section presents the crux of our CPS transformation that translate the language defined in

Section 3 to a 𝜆-calculus without effect handlers. Readers interested in the complete definitions of

the target language and the CPS transformation are referred to the supplementary material.

The target language of the CPS transformation is a polymorphic 𝜆-calculus with records and

recursion. Its program and type syntax are defined as follows:

𝑣 ::= 𝑥 | 𝑝 | rec(𝑓 : 𝜏1, 𝑥 : 𝜏2).𝑐 | Λ�
𝑋 : 𝐵.𝑐 | {(op𝑖 = 𝑣𝑖 )𝑖 } | Λ𝛼.𝑐

𝑐 ::= 𝑣 | 𝑐 𝑣 | if 𝑣 then 𝑐1 else 𝑐2 | 𝑐 𝐴 | 𝑣#op | 𝑐 𝜏 | (𝑐 : 𝜏)
𝜏 ::= {𝑥 : 𝐵 | 𝜙} | (𝑥 : 𝜏1) → 𝜏2 | ∀�𝑋 : 𝐵.𝜏 | {(op𝑖 : 𝜏𝑖 )𝑖 } | 𝛼 | ∀𝛼.𝜏

In the target language, values are not strictly separated from computations as those in the source

language; for example, functions in function applications can be computations. The metavariables

𝛼 and 𝛽 range over type variables. Expressions Λ𝛼.𝑐 and 𝑐 𝜏 are a type abstraction and application,

respectively. Type polymorphism is introduced to express the pure control effect in the target

language using answer type polymorphism [Thielecke 2003]. Expressions {(op𝑖 = 𝑣𝑖 )𝑖 } and 𝑣#op are

a record literal and projection, respectively. We use operation names as record labels for the target

language to encode handlers using records. Our CPS transformation produces programs with type

annotations for proving bidirectional type-preservation. Recursive functions with type annotations

and type ascriptions (𝑐 : 𝜏) are used to annotate programs. We abbreviate rec(𝑓 : 𝑇1, 𝑥 : 𝑇2).𝑐 to
𝜆𝑥 : 𝑇2.𝑐 if 𝑓 does not occur in 𝑐 . Types are defined in a standard manner. Typing contexts Γ are

extended to include type variables. The operational semantics is almost standard. Figure 5 shows
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⟦{𝑥 : 𝐵 | 𝜙}⟧ ≜ {𝑥 : 𝐵 | 𝜙} ⟦(𝑥 : 𝑇 ) → 𝐶⟧ ≜ (𝑥 : ⟦𝑇⟧) → ⟦𝐶⟧
⟦Σ ⊲𝑇 / (∀𝑥 .𝐶1) ⇒ 𝐶2⟧ ≜ ∀_.⟦Σ⟧ → ((𝑥 : ⟦𝑇⟧) → ⟦𝐶1⟧) → ⟦𝐶2⟧

⟦Σ ⊲𝑇 / □⟧ ≜ ∀𝛼.⟦Σ⟧ → (⟦𝑇⟧ → 𝛼) → 𝛼

⟦{(op𝑖 : ∀
�
𝑋𝑖 : 𝐵𝑖 .𝐹𝑖 )𝑖 }⟧ ≜ {(op𝑖 : ∀

�
𝑋𝑖 : 𝐵𝑖 .⟦𝐹𝑖⟧F)𝑖 }

⟦(𝑥 : 𝑇1) → ((𝑦 : 𝑇2) → 𝐶1) → 𝐶2⟧F ≜ (𝑥 : ⟦𝑇1⟧) → ⟦((𝑦 : 𝑇2) → 𝐶1)⟧ → ⟦𝐶2⟧

⟦(opÃ 𝑣)Σ⊲𝑇 /(∀𝑦.𝐶1 )⇒𝐶2⟧ ≜ Λ𝛼.𝜆ℎ : ⟦Σ⟧.𝜆𝑘 : (𝑦 : ⟦𝑇⟧ → ⟦𝐶1⟧).ℎ#op 𝐴 ⟦𝑣⟧ (𝜆𝑦′ : ⟦𝑇⟧.𝑘 𝑦′)
⟦(with ℎ handle 𝑐)𝐶⟧ ≜ ⟦𝑐⟧ @ ⟦𝐶⟧ @ ⟦ℎops⟧ @ ⟦ℎret⟧

where


ℎ = {return 𝑥𝑇𝑟𝑟 ↦→ 𝑐𝑟 , (op

�
𝑋𝑖 :𝐵𝑖

𝑖
(𝑥𝑇𝑥𝑖

𝑖
, 𝑘

𝑇𝑘𝑖
𝑖

) ↦→ 𝑐𝑖 )𝑖 }

⟦ℎops⟧ ≜ {(op𝑖 = Λ�
𝑋𝑖 : 𝐵𝑖 .𝜆𝑥𝑖 : ⟦𝑇𝑥𝑖⟧.𝜆𝑘𝑖 : ⟦𝑇𝑘𝑖⟧.⟦𝑐𝑖⟧)𝑖 }

⟦ℎret⟧ ≜ 𝜆𝑥𝑟 : ⟦𝑇𝑟⟧.⟦𝑐𝑟⟧

Fig. 6. CPS transformation of types and expressions (excerpt).

four evaluation rules. Type ascriptions simply drop the ascribed type 𝜏 . Type applications substitute

a given type 𝜏 for the bound type variable 𝛼 . Predicate applications are similar. Record projections

with op𝑖 extract the associated field 𝑣𝑖 . The type system is also standard, presented in Figure 5.

We write Γ ⊢ 𝜏 to state that all the free variables (including type and predicate ones) in the type

𝜏 are bound in the typing context Γ. The subtyping for record types allows supertypes to forget

some fields in subtypes, and the types of each corresponding field in two record types to be in the

subtyping relation (we deem record types, as well as records, to be equivalent up to permutation of

fields). The subtyping rule for type polymorphism is a weaker variant of the containment rule for

polymorphic types [Mitchell 1988]. It is introduced to emulate (S-Embed) in the target language.

We show the key part of the CPS transformation in Figure 6. The upper half presents the

transformation of types. The transformation of value types is straightforward. Operation signatures

are transformed into record types, which means that operation clauses in a handler are transformed

into a record. The transformations of computation types indicate that computations are transformed

into functions that receive two value parameters: handlers and continuations. If the control effect

is pure, the answer types of computations become polymorphic in CPS. This treatment of control

effects is different from that of Materzok and Biernacki [2011], who define CPS transformation for

control effects in the simply typed setting. Their CPS transformation transforms, in our notation, a

computation type𝑇 / □ into the type ⟦𝑇⟧, and a type𝑇 / 𝐶1 ⇒ 𝐶2 into the type (⟦𝑇⟧ → ⟦𝐶1⟧) →
⟦𝐶2⟧ (note that they address neither operation signatures nor dependent typing). Because the latter

takes continuations whereas the former does not, CPS transformation needs to know where pure

computations are converted into impure ones (via subtyping). To address this issue, Materzok and

Biernacki’s CPS transformation focuses on typing derivations in the source language rather than

expressions. However, because our aim is at reducing the typing of programs with algebraic effects

and handlers to that of programs without them, we cannot assume typing derivations in the source

language to be available. By treating two kinds of control effects uniformly using answer type

polymorphism, our CPS transformation can focus only on expressions (with type annotations).

The lower half of Figure 6 shows the key cases of the transformation of expressions. We separate

abstractions and applications in the target language into static and dynamic ones, as in the work of

Hillerström et al. [2017], for proving the preservation of the operational semantics (Theorem 5.1).

Redexes represented by static applications are known as administrative redexes, inserted and reduced
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at compile (CPS-transformed) time. By contrast, redexes represented by dynamic applications are

reduced at run time because they originate in the source program. Constructors for static expressions

are denoted by the overline notation, like 𝜆, Λ, and @. We use the “at” symbol explicitly as an infix

operator of static applications for clarification. Non-overlined abstractions and applications are

dynamic ones, which are treated as ordinary expressions. Also, for backward type-preservation

(Theorem 5.3), we extend the source language with type annotations. For example, in an operation

call (opÃ 𝑣)Σ⊲𝑇 /(∀𝑦.𝐶1 )⇒𝐶2
, Ã are predicates used to instantiate the type scheme of the operation

op, and Σ ⊲ 𝑇 / (∀𝑦.𝐶1) ⇒ 𝐶2 is the type of the operation call op 𝑣 . Without type annotations,

CPS-transformed expressions may have a type that cannot be transformed back to a type in the

source language. An operation call (opÃ 𝑣)Σ⊲𝑇 /(∀𝑦.𝐶1 )⇒𝐶2
is transformed into a function that seeks

the corresponding operation clause in a given handler and then applies it to a given sequence

of predicates, argument, and continuation. Note that the continuation is in the 𝜂-expanded form

because, for the preservation of the operational semantics, we need a dynamic lambda abstraction

that corresponds to the continuation 𝜆𝑦.with ℎ handle 𝐾 [return 𝑦] introduced in the rule (E-

HndlOp) of the source language. An expressionwith ℎ handle 𝑐 is transformed into a function that

applies the CPS-transformed handled computation to the record of the CPS-transformed operation

clauses and the CPS-transformed return clause (because the return clause works as the continuation

of 𝑐). The transformation preserves operational semantics bidirectionally in the following way:

Theorem 5.1 (simulation). Let≡𝛽 be the smallest congruence relation over expressions in the target
language that satisfies (𝜆𝑥 : 𝜏 .𝑐) @ 𝑣 ≡𝛽 𝑐 [𝑣/𝑥] and (Λ𝛼.𝑐) @ 𝜏 ≡𝛽 𝑐 [𝜏/𝛼]. If 𝑐 −→∗ return 𝑣 , then
⟦𝑐⟧@𝜏@{}@(𝜆𝑥 : 𝜏 .𝑥) −→+ 𝑣 ′ for some 𝑣 ′ such that ⟦𝑣⟧ ≡𝛽 𝑣

′. Also, if ⟦𝑐⟧@𝜏@{}@(𝜆𝑥 : 𝜏 .𝑥) −→+ 𝑣 ′,
then 𝑐 −→∗ return 𝑣 and ⟦𝑣⟧ ≡𝛽 𝑣

′ for some 𝑣 .

(Note that 𝜏 can be any type since types are irrelevant to the operational semantics.) The first half

states that if a computation 𝑐 in the source language evaluates to a value-return of 𝑣 , the transformed

computation ⟦𝑐⟧ applied to a type, an empty handler {}, and a trivial continuation 𝜆𝑥 : 𝜏 .𝑥 evaluates

to the transformed value ⟦𝑣⟧. Similarly, the second half states the reverse direction.

Now, we state forward and backward type-preservation of the CPS transformation.

Theorem 5.2 (Forward type-preservation). The following holds: (1) If Γ ⊢ 𝑣 : 𝑇 then ⟦Γ⟧ ⊢
⟦𝑣⟧ : ⟦𝑇⟧. (2) If Γ ⊢ 𝑐 : 𝐶 then ⟦Γ⟧ ⊢ ⟦𝑐⟧ : ⟦𝐶⟧.

Theorem 5.3 (Backward type-preservation). The following holds: (1) If ∅ ⊢ ⟦𝑣⟧ : 𝜏 , then there
exists some 𝑇 such that ∅ ⊢ 𝑣 : 𝑇 and ∅ ⊢ ⟦𝑇⟧ <: 𝜏 . (2) If ∅ ⊢ ⟦𝑐⟧ : 𝜏 , then there exists some 𝐶 such
that ∅ ⊢ 𝑐 : 𝐶 and ∅ ⊢ ⟦𝐶⟧ <: 𝜏 .

Theorem 5.3 is implied immediately by backward type preservation of the CPS transformation

for open expressions. See the supplementary material for the statement for open expressions.

Theorem 5.3 indicates that it is possible to reduce typechecking in our source language to that in a

language without effect handlers. That is, if ones want to verify whether an expression 𝑐 has type

𝐶 , they can obtain the same result as the direct verification by first applying CPS transformation to

𝑐 and 𝐶 , and then checking whether ⟦𝑐⟧ has type ⟦𝐶⟧ with a refinement type verification tool that

does not support algebraic effect handlers.

Type annotations in the source language are necessary to restrict the image of the transformation.

Without them, a CPS-transformed program may be of a type 𝜏 that cannot be transformed to a

type in the source language inversely (i.e., there exists no type 𝐶 in the source language satisfying

⟦𝐶⟧ = 𝜏). For example, consider Λ𝛼.𝜆ℎ.𝜆𝑘.𝑘 0, the CPS form (without annotations) of expression

return 0. Without annotations, we can pick arbitrary types as the type of ℎ. Therefore, it can have

type ∀𝛼.bool → (int → 𝛼) → 𝛼 . However, there is no type 𝐶 in the source language such that
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⟦𝐶⟧ = ∀𝛼.bool → (int → 𝛼) → 𝛼 . Even worse, the source language has no type that is a subtype
of the type of the CPS form since bool and record types are incomparable with each other. Another

example is 𝜆𝑥.Λ𝛼.𝜆ℎ.𝜆𝑘.𝑘 𝑥 , the CPS form (again, without annotations) of expression 𝜆𝑥 .return 𝑥 .
Its type can be (int → int) → ∀𝛼.{} → ((int → int) → 𝛼) → 𝛼 , that is, 𝑥 can be of type int → int.

However, there is no value type 𝑇 in the source language such that ⟦𝑇⟧ is a subtype of int → int.

Note that since a function type in the source language is in the form (𝑥 : 𝑇𝑥 ) → 𝐶 , the right hand

side of the arrow in the CPS-transformed function type must be in the form ∀𝛼.{· · · } → · · · , which
does not match with int. Therefore, without type annotations, Theorem 5.3 does not hold.

While our formalization requires concrete refinement type annotations in the source language,

actually we can relax this restriction by using predicate variables as placeholders instead of con-

crete refinements in type annotations. This is because type annotations are only for prohibiting

occurrences of types with unintended structures, not for restricting refinements. Those predicate

variables are instantiated after CPS transformation with concrete predicates inferred by generating

and solving CHC constraints that contain these predicate variables from the CPS-transformed

expression. Formally, by allowing occurrences of predicate variables in type annotations of both

the source and target language, and introducing predicate variable substitution 𝜎 , we can state

that ⟦𝜎 (𝑐)⟧ = 𝜎 (⟦𝑐⟧). This means that, for an expression 𝑐 that is annotated with types containing

predicate variables, both of the followings result in the same expression: (1) first instantiating

the predicate variables in 𝑐 with concrete refinements, and then CPS-transforming it (i.e., CPS-

transforming the concretely-annotated expression), and (2) first CPS-transforming 𝑐 , and then

instantiating the predicate variables in the CPS-transformed expression with the concrete re-

finements. In other words, concrete refinements are irrelevant to the CPS transformation. This

irrelevance is ensured by the fact that refinements can depend only on first-order values because it

means that handler variables ℎ and continuation variables 𝑘 , which occur only in CPS-transformed

expressions, cannot be used in instantiated refinements. The reason why we have defined the CPS

transformation with concrete refinements is just to state Theorem 5.2 and Theorem 5.3.

5.2 Comparison between the Direct Verification and the Indirect Verification
In this section, we compare the direct verification using our refinement system presented in Section 3

with the indirect verification via the CPS transformation presented above. One of the differences is

that the direct verification requires special support of verification tools for algebraic effect handlers,

while the indirect one can be done by existing tools without such support. On the other hand, the

indirect verification has some disadvantages. First, in most cases, CPS-transformed programs tend

to be complicated and be in the forms quite different from the source programs. This complexity

incurred in the indirect typechecking may lead to confusing error messages when the typechecking

fails. Transforming the inferred complex types back to the types of the source language would be

helpful, but it is unclear whether we can do this because the inferred types of the CPS-transformed

expressions do not necessarily correspond to the CPS-transformed types of the source expressions,

as stated in Section 5.1. By contrast, because the direct typechecking deals with the structures of

the source programs as they are, error messages can be made more user-friendly. Second, our CPS

transformation needs a non-negligible amount of type annotations—type annotations are necessary

in let-expressions, conditional branches, and recursive functions as well as operation calls and

handling constructs. In practice, it is desired to infer as many types as possible. However, it seems

quite challenging to define a CPS transformation that enjoys backward type-preservation and needs

no, or few, type annotations. One of the possible approaches for addressing type annotations in

more automated way is to use the underlying simple type system of our refinement type system for

algebraic effect handlers. As mentioned in Section 5.1, concrete refinements are not necessary for
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type annotations. Therefore, we can generate type annotations for an expression using its simple

type inferred by the underlying type system.

We also compare these two approaches based on an experiment. We used some direct style (DS)

programs (i.e., programs using algebraic effect handlers), and for each program, we applied our

CPS transformation manually and ran the verification on both DS one and CPS one. Additionally,

we also compared them with optimized CPS programs where administrative redexes were reduced.

We used the same implementation as the one in Section 4 with the configuration of Spacer. We

added annotations of source programs to only top-level, closed first-order expressions, but the

correctness of the verification can be justified by the preservation of dynamic semantics.

Table 2. Evaluation results of CPS transformation

program

DS CPS CPS (opt)

✓? time ✓? time ✓? time

amb-2 Yes 1.30 Yes 1.32 Yes 0.91

choose-easy Yes 0.26 Yes 0.27 Yes 0.22

choose-sum Yes 2.18 Yes 1.79 Yes 12.87

io-read-2 Yes 0.66 No 1.29 No 0.62

simple Yes 0.11 Yes 0.16 Yes 0.14

Table 2 shows the results of the ex-

periment. The columns “✓?” show

whether the verification result is cor-

rect. The columns “time” are in sec-

onds. Some programs have no big dif-

ference in verification time among

the three variants, but there are two

notable things. First, optimized CPS

version of choose-sum took more

time than the other versions. This

seems because the size of the pro-

gram became larger by the optimization. The CPS choose-sum program contains some branching

expressions and each branch uses variables representing its continuation and the outer handler. By

reducing administrative redexes in the program, these variables are instantiated with a concrete

continuation and handler, that is, the continuation and handler are copied to each branch, which

results in larger size of the program and its constraints generated during the verification. Second,

CPS version of io-read-2 could not be verified correctly. One possible reason is lack of support for

higher-order predicate polymorphism. Since CPS programs explicitly pass around continuations,

their types tend to be higher-order. Then, in some cases, higher-order predicate polymorphism

becomes necessary by CPS transformation.

6 RELATEDWORK
6.1 Algebraic Effects and Handlers
Algebraic effect handlers introduced by Plotkin and Pretnar [2013] turned out to be greatly ex-

pressive, which have inspired researchers and programming language designers and leads to a

variety of implementations [Bauer and Pretnar 2015; Brady 2013; Kammar et al. 2013; Leijen 2017;

Lindley et al. 2017; Sivaramakrishnan et al. 2021]. For advanced verification of algebraic effects and

handlers, Ahman [2017] proposed a dependent type system for algebraic effects and handlers. Brady

[2013] introduced algebraic effect handlers to Idris, a dependently typed programming language. In

contrast to our system, these systems do not allow initial answer types to depend on values passed

to continuations. Ahman and Plotkin [2015] investigated an algebraic treatment of computational

effects with refinement types, but their language is not equipped with effect handlers. To our

knowledge, there is no research focusing on refinement type systems with support for algebraic

effect handlers and their implementations for automated verification.

Cong and Asai [2022] provided a type system with ATM for algebraic effect handlers in a simply

typed setting. Compared with ours, their system is limited in a few points. First, it allows programs

to use only one operation. Second, the operation can be invoked two or more times only when it

is handled by an effect handler where the result types of the return and operation clause are the
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same. This limitation is particularly critical for our aim, program verification, because it means that

there is no way to track the state of continuations that changes with the execution of programs.

For instance, the examples presented in Section 3.3 cannot be verified under such a restriction

because they include multiple calls to an operation and each call changes the state of continuations.

Our type system has none of these limitations—it supports multiple operations and an unlimited

number of calls to operations even under a handler with clauses of different types. The key idea

of our system to allow such a handler is to introduce the abstraction of operation clauses over

predicates. By this abstraction, our type system can represent how the same operation clause

behaves differently under different continuations.

Our CPS transformation is based on Hillerström et al. [2017]. They defined a CPS transformation

from a language with effect handlers but without dependent/refinement types, and proved that

it enjoys forward type-preservation, but they, and others, such as Cong and Asai [2022], who

studied CPS transformation for effect handlers, did not consider the backward direction. Their

transformation also assumes that programs are fully annotated with types.

6.2 Type Systems for Other Delimited Control Operators
ATM was proposed by Danvy and Filinski [1990] to type more expressions with the delimited

control operators shift/reset. Cong and Asai [2018] proposed a dependent type system for shift/reset,

where initial answer types cannot depend on values passed to continuations. A type system with

ATM for another set of delimited control operators shift0/reset0, is developed by Materzok and

Biernacki [2011]. They proposed a new subtyping relation that allow lifting pure expressions to

impure ones. Based on their work, Sekiyama and Unno [2023] proposed a refinement type system

for shift0/reset0. Their type system utilizes ATM for reasoning about traces (sequences of events)

precisely. In their system, initial answer types can depend on values passed to continuations. Our

control effects are inspired by their work, but they use the dependency of control effects mainly

for reasoning about traces while we use it for refining properties of values. Their target operators

shift0/reset0 are closely related to our target operators, algebraic effect handlers [Forster et al. 2017;

Piróg et al. 2019]. However, naively applying their approach to algebraic effect handlers does not

enable precise verification. A critical difference between shift0/reset0 and algebraic effect handlers

is that, while shift0/reset0 allows deciding the usage of captured delimited continuations per each

call site of the continuation-capture operator shift0, algebraic effect handlers require all the calls to

the same operation under a handler ℎ to be interpreted by the same operation clause in ℎ. This

hinders precise verification of the use of continuations per each operation call. Our type system

solves this problem by abstracting the type schemes of operations over predicates.

7 CONCLUSION
We developed a sound refinement type system for algebraic effects and handlers, which adopts

the concept of ATM (especially, ARM) to capture how the use of effects and the handling of them

influence the results of computations. This enables precise analysis of programs with algebraic

effects and handlers. We also implemented the type checking and inference algorithm for a subset of

OCaml 5 and demonstrated the usefulness of ARM. Additionally, we defined a bidirectionally-type-

preserving CPS transformation from our language with effect handlers to the language without

effect handlers. It enables the reuse of existing refinement type checkers to verify programs with

effect handlers, but makes programs to be verified complicated and requires them to be fully

annotated. One possible direction for future work is to incorporate temporal verification as in

Sekiyama and Unno [2023] into algebraic effects and handlers. Also, it is interesting to apply ARM

to other variants of effect handlers, such as lexically scoped effect handlers [Biernacki et al. 2020;

Zhang and Myers 2019].
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Our artifact is available in the GitHub repository, at https://github.com/hiroshi-unno/coar. The

experimental results shown in Table 1 and Table 2 can be reproduced by following the instructions

in popl24ae/README.md of the repository.
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