Supplementary Material for “Abstracting Effect Systems for

1 Definitions

Remark 1.1 (Notation). We write al for a finite sequence oy, . .

Algebraic Effect Handlers”

Takuma Yoshioka!, Taro Sekiyama?, and Atsushi Igarashit

'Kyoto University, Japan

2National Institute of Informatics & SOKENDAI, Japan

.y ap, with an index set I = {0, ... ,n}, where

a is any metavariable. We also write {al} for the set consisting of the elements of o .

Definition 1.2 (Kinds). Kinds are defined as K == Typ | Lab | Eff.

Definition 1.3 (Signatures). Given a set S of label names, a label signature Xy,p is a functional relation whose
domain dom(X,p) is S. The codomain of Yia1, is the set of functional kinds of the form Il;c; K; — Lab for
some I and Kfel (if I = 0, it means Lab simply). Similarly, given a set S of effect constructors, an effect
signature Yeg is a function relation whose domain dom(Xeg) is S and its codomain is the set of functional kinds
of the form Il;c1 K; — Eff for some I and KZEI. A signature X is the disjoint union of a label signature and
an effect signature. We write 1K' — K, and more simply, IIK — K as an abbreviation for ;e K; — K.

Remark 1.4. We write C : [IK — K to denote the pair (C,IIK — K) for label name or effect constructor C.

Definition 1.5 (The Syntax of Aga). Given a signature ¥ = Xy, W Xeg, the syntaz of Aga is defined as follows.

I,J,N (index sets) ,5,m, T
fy9,2,9,2,p,k (variables) a, By, Ty Ly p
op (operation names)

F € dom(Xeg) (effect constructors)

2
&

m>c oHMNAI o =~Q

)

K

S, T

Remark 1.6.

)

Typ | Lab | Eff

AlL|e

7| A—. B|Va: K.A®

L] 187

p| FS!
{V]ow{op:VB' : K'.A= B}
0|21:Va! Ko

0| T,z: A|T,a: K

v|vive|vS|lets = e ine; | handle; g e with h
z|fun(f,z,e) | Aa: K.e | op, gt T’

{returnz — e} | AW {opB’ : K/ pk s e}
Oletz = Fine | handle; g: E with h

I € dom(Zap)
C € dom(Xyap) U dom(Seg)

(indices)
(typelike variables)
(label names)

kinds)

typelikes)

types)

labels)

effects)

operation signatures)
effect contexts)
typing contexts)
expressions)

values)

handlers)
evaluation contexts)

NN N N N N N N N N N

We write Ax.e for fun (f, z, e) if variable f does not occur in expression e.

Definition 1.7 (Free Variables). The notion of free variables is defined as usual. We write FV(e) for the set
of free variables in expression e.

Definition 1.8 (Free Typelike Variables). The notion of free typelike variables is defined as usual. We write
FTV(e) and FTV(S) for the sets of free typelike variables in expression e and typelike S, respectively.

Definition 1.9 (Value Substitution). Substitution e[v/z] and h[v/z] of value v for variable x in expression e
and handler h, respectively, are defined as follows:

zlv/z] =wv

ylv/zl =y (ifz#y)
[

| =
]
fun (f,y, e)[v/z] = fun (f, y, e[v/z]) (f f,y ¢ FV(v) U{z})
(Aa: K.e)[v/z] = Aa: K.e[v/z] (if a ¢ FTV(v))
Op; s! T][“/I] Pis! T’
(01 v2)[v/2] = vl[v/ﬂ?]) (va[v/x])
(o' $)[v/2] = (v[v/]) S
(handle; gv e with h)[v/z] = handle; gn e[v/z] with (h[v/z])
(lety = erineq)[v/x] =let y = e1[v/z] in es[v/x]

(if y # 7 and y ¢ FV(v))
(lep)lv/z] = [e[v/]]L
{returny — e, }[v/z] = {returny — e.[v/z]}
(if y # z and y ¢ FV(v))
(hw{opB’ : K/ pk s e})v/z] = hlv/z|w{opB’ : K/ pk s e[v/z]}
(if 2 # p,k and p, k ¢ FV(v) and {87} NFTV(v) = 0)
Definition 1.10 (Typelike Substitution). Substitution e[S/«a], h[S/a], T[S/a], and T[S/a] of typelike S for

typelike variable o in expression e, handler h, typelike T, and typing context T, respectively, are defined as
follows:

z[S/a] =
(fun(f z, 6))[5/041 = (f z, e[S/a])
(AB: K.e)[S/a] = AB: K.(e[S/a]) (if a« # § and 5 ¢ FTV(S))
(oprs T)[S/a] = 0, 157y 718/’
(U1 w)[S/a] = (v [S/QD (v2[S/al)
vT)[S/a] = (v]S/a]) (T[S/a])
(handle; v ew1th h)[S/a] = handle, 7(g/qx €[S/a] with (h[S/a])
(letz = e1inex)[S/a) =letz = e1[S/a]in ex[S/]
([e]L)[S/a] = [e[S/allLis/a)
{returnz — ¢,}[S/a] = {returnz — ¢,[S/a]}
)5/l

(hw{opB’ : K' pk— e})[S/a] = h[S/a]w{opB’ : K’ pk — e[S/a]}
(if {87} N ({a} UFTV(S)) = 0)

alS/a] =S
BlS/e) =B (if a # B)
(A —¢ B)[S/a] = (A[S/a]) —<s/a) (B[S/a])
(V6 : K.A%)[S/a] = VB : K.A[S/a]5/a))

(if « # S and 8 ¢ FTV(S))
CTH[S/a] =CT[S/a]’

{}[S/a] = {}
(cw{op:V¥B’ : K’.A= B})[S/a] = o[S/a] w{op: VB’ : K’.A[S/a] = B[S/a]}
(if {87} NFTV(S) = 0)

0rs
T,z : A)[S

]=0
] =T[S/a],z : A[S/q]

Ja
Ja

(.5 K)[S/a] =T[S/a], f: K (if a7)

Definition 1.11 (Typelike Extraction Function). A typelike context A(T') extracted from a typing context T is
defined as follows:

AD)=10 AT,z : A)=A) ATya: K)=Al),a: K .

Definition 1.12 (Domains of Typing Contexts). The set dom(TI") of variables and typelike variables bound by
a typing context I' is defined as follows:

dom(@) =0 dom(T,z : A) = dom(T") U {z} dom(T, v : K) = dom(T") U {«} .

Definition 1.13 (Context Well-formedness and Kinding Rules).
Contexts Well-formedness

d Y THA:T FT d T
— C_EmMPTY z ¢ dom(l) yP C_VAR o ¢ dom(I’) C_TVAR
] FI,z: A FIa: K
Kinding |I'FS: K 8" K'| < Viel.(IT+S;:K;)
FT a:Kel D C:OK'—5Kex T'+S8':K!
——————— K.Var - K_CoONs
'Fa: K r-Ccs : K
THA:T I'Fe:Eff THB:T Ta:KFA:T TNaoa: KFe:Eff
yp c yp K_Fun 4 yp_ .4 c K_PoLy
I'HA—. B:Typ I'Va: K.A®: Typ

Definition 1.14 (Proper Effect Contexts). An effect context = is proper if, for any [:: Vo : Ko e =, the
following holds:
o [:IIK! — Lab € Sy,;

e for any agp’, KOIO, and og, if | :: Yoo : Ko .00 € =, then ol : K" =agl : Ko™ and o = oo; and
Y
o foranyop:VB’ : Ko/ A= Beo,

aI:KI,,BJ:KOJ}—A:Typ and aI:KI,,@J:KOJI—B:Typ.

Definition 1.15 (Well-Formedness-Preserving Functions). Given a signature 3, a (possibly partial) function
f € Ky(D)€thont « K(X) preserves well-formedness if

VI, 81, ..., Sn. TES Ky A - AT E S, Ky A f(S1,...,5,) € K(X) = T'F f(S1,...,5,) : K .
Similarly, f € K(X) preserves well-formedness if '+ f : K for any T.

Definition 1.16. We write « — T F S : Ky for a quadruple {«, T, S, Ko) such that AT, K, T5. (VSg € S.Ty, v :
K,FQ FSO : KO)/\F1 FT:K.

Definition 1.17 (Effect algebras). Given a label signature X1,1,, an effect algebra is a quintuple (Seg, ®,0, (—)T, ~
) satisfying the following, where we let ¥ = Yiap W Xeg .
e O € Eff(%) x Eff(X) — Eff(%), 0 € Eff(X), and (—)" € Lab(X) — Eff(X) preserve well-formedness.
Furthermore, ~ is an equivalence relation on Eff (X) and preserves well-formedness, that is, Ve1,e9.€1 ~
gg = (VI.T'k g1 : Eff < T'} ey: Eff).

o (Eff(X),®,0) is a partial monoid under ~, that is, the following holds:
— Ve e Eff(X).c00~ecAN0@e ~¢&; and
— Vey,e9,63 € EH(Z)
(61 @62) ®es € Eﬂ'(Z) Ve @(82 ®E3) S EH‘(Z) — (51 @82) Oeg~eEr @(52 @83).
o Typelike substitution respecting well-formedness is a homomorphism for ®, (=), and ~, that is, the
following holds:
— Va,S,e1,e0.a—= Stej,ea : Eff AeyOey € Ef(E) = (61 ®er)[S/a] = e1[S/a] ®ea[S/al;

— Va,S,L.a— S+ L:Lab = (L)'[S/a] = (L[S/a])'; and
— Va,S,e1,e0.a0— St ey,ea : Eff Aey ~eg = £1[S/a] ~ [S/a].

Remark 1.18. For readability, we introduce the following abbreviations.
def
@ c1Q¢e9 = Je.e1@e~eg and

e I'Fe1©ey dof Je.ey @e ~eg A (Ve € {e1,e0,e}.T'H &' : Eff).

Remark 1.19 (Parameters of Aga). Aga takes a label signature in Definition 1.3, an effect algebra over that
label signature in Definition 1.17, and an effect context as parameters.

Example 1.20 (Effect Signature for Effect Sets). The effect signature Eesfft for effect sets consists of the pairs
{}: Eff, {-—} : Lab — Eff, and —U — : Eff x Eff — Eff.

Example 1.21 (Effect Signature for Effect Multisets). The effect signature SNt for effect multisets consists
of the pairs {} : Eff, {—} : Lab — Eff, and — U — : Eff x Eff — EfI.

Example 1.22 (Effect Signature for Rows). The effect signature X¢% for both simple rows and scoped rows
consists of the pairs () : Eff and (— | —) : Lab x Eff — Eff.

Example 1.23 (Effect Sets). An effect algebra EAge; for effect sets is defined by (X5¢¢, —U —, {},{—}, ~set)
where ~gct is the least equivalence relation satisfying the following rules:

eU{} ~set € Ee1Uen ~vgep eaUer eUe ~vger € (e1Uer) Uesg ~ger €1 U (€2 Ues)

€1 ~Set €2 €3 ~Set €4

€1Uesz ~get E2UEy

Example 1.24 (Effect Multisets). An effect algebra EAyge; for effect multisets is defined by (SMSet, — 1y —, {},
{=1}, ~Mset) Where ~pget 1s the least equivalence relation satisfying the following rules:

€1 ~YMSet €2 €3 ~YMSet €4
eU{} ~mset € e1lUer ~mser E2Uer (61 Uer) Ues ~mser €1 U (e2Ues) e1les ~Mger €2 ey

Example 1.25 (Simple Rows). An effect algebra EAgimpr for simple rows is defined by (S5, Osimpr, (), (— |
<>>a NSimpR> where

(L] (o (Lnfe2))) (fer=(Li|{(Ln | O
€1 OSimpR €2 o €1 (ifer = (L1 | (- (Ln | p))) and €3 = ())
undefined (otherwise)

and ~gimpR is the least equivalence relation satisfying the following.

€1 ~SimpR £2 Ly # Ly
(Le1) ~simpr (L] e2) (L1 |(L2]€)) ~simpr (L2 | (L1 |€)) (L|e€) ~simpr (L|(L]e€))

Example 1.26 (Scoped Rows). An effect algebra EAgcpr for scoped rows is defined by (SX%, Ogcpr, (), (— |
()), ~scpr) Where

(L[(- (Ln [e2))) (ifer = (Lo | (- (Ln [O)))
e1Oseprer < 4 €1 (ifer = (Lo | (Lo | p))) and 2 = ()
undefined (otherwise)

and ~gcpr is the least equivalence relation satisfying the following.

€1 ~ScpR €2 Ly # Lo
(L]e1) ~sepr (L]e2) (L1|(L2]e€)) ~scpr (L2 | (L1]€))

Example 1.27 (Erasable Sets). An effect algebra EApge; for effect sets is defined by (258, — U —, {}, {~}, ~Eset
) where ~ggqt is the least equivalence relation satisfying the following rules:
h#b
{0817} U{l S2"} ~ser (S22 U{h S1") {1817} U{182") ~pse {1817} eU{} ~Bser &

€1 ~YESet €2 €3 ~ESet €4
{}Ue ~gget € (e1Ueg)Ues ~pger €1U (e2Ue3) €1UE3 ~ESet E2UEy

Example 1.28 (Erasable Multisets). An effect algebra EAgpset for effect multisets is defined by (SMSet, — 1y — {},
{=}, ~EMset) Where ~gnset 1S the least equivalence relation satisfying the following rules:
L #h
{ll Slll}g{lg 8212} ~EMSet {l2 SzIQ}Q{ll 51[1} 6Q{} ~EMSet € {}Qé‘ ~EMSet €

€1 ~YEMSet €2 €3 ~YEMSet €4
(e1Ueg) Ues ~Emset €1 U (€2 U es) €1es ~EMSet €2 L€y

Example 1.29 (Erasable Simple Rows). An effect algebra EAggimpr for erasable simple rows is defined by
<E§f?w7 QESimpRa <>7 <7 | <>>7 NESimpR> where

(Li | (- (Ll 2))) (fer=(La| (L | OI)))
€1 Opsimpr g2 = { €1 (if &1 = (L1 | (- (Lo | p))) and &5 = ()
undefined (otherwise)

and ~ggimpr is the least equivalence relation satisfying the following,.

€1 ~SimpR €2 h#b
(Ller) ~simpr (L]e2) (W S1™ [(b S2" | €)) ~simpr (RS2 | (W S1" | €))

(181" | €) ~gimpr (181 | (182" | &)

Example 1.30 (Erasable Scoped Rows). An effect algebra EAggcpr for scoped rows is defined by (Z}}é’ﬁ OEScpR
(0, (=1 () ~Escpr) Where

(Lo | (- (Ln | e2))) (i er = (Lo | (- (Ln [O))))
€1 OEScpR €2 def €1 (ifer = (L1 | (- (Lpn | p))) and g5 = ())
undefined (otherwise)

and ~ggcpr is the least equivalence relation satisfying the following.

€1 ~EScpR €2 L #b
(L|e1) ~esepr (L]e2) (I S1™ | (o S2™ | €)) ~msepr (o S2™ | (I S1™ | €))

Definition 1.31 (Freeness of Labels).
Freeness of labels |n—free(L, F)

n—free(L, E) n + 1—free(L, E) n—free(L, E) L# 1L
O—free(L,00) n—free(L,letx = Eine) n—free(L,handle; Ewithh) n—free(L,handle; F withh)

Definition 1.32 (Operational Semantics).

Reduction |e+— ¢’

R_App R_TApp
fun (f,z, e) v — e[fun (f,z, e)/f][v/z] (Aa: K.e) S — e[S/a]
returnz — e, € h
- R_LET - R_HANDLEL
letz =vine — e[v/x] handle; gr v with h — e,.[v/2]

opB’ : K pkrsech wen = \z.handle, g1 E[z]withh 0—free(I S’ E)

N - o7 R_HANDLE2
handle; gr E[op; g1 T” v]with h — e[T" /B”][v/p][Veont /K]

Evaluation |e — ¢

€1 —— e
——— E_EvAL
E[Cl] — EI:EQ}

Definition 1.33. We write —* for the reflexive, transitive closure of —. We also write e —/~ to denote that
there is no €' such that e — €.

Definition 1.34 (Typing and Subtyping Rules).
Typing |[T'Fe:Ale

FT z:Ael If:A—=.B,x:AFe:B|e¢
I'Ffun(f,z,e): A—.B|0

T_ABS

F'Fvy:A—=.B|0 ThHuw:A|0 Na:KkFe:Ale

T_App T_TABS
'Fvwv:Ble F'FAa:K.e:Va:K.A|0
F'Fov:Va: K.A*|0 THS: K ke :Ale Tya:Abey:Ble
T_TApp - T_LET
F'FwvS: AlS/a] | e[S/q] Pkletz =e1ines: B¢
l:Vo! :K'oex op:VﬁJ:K'J.A:BEU[SI/aI]
The:Ale THA|e<:A'|& T TS K THT/: K"’
/ ’ T_Sus J J J 1 I TOp
Ihe:A|e ['Fop; g T7: (A[T/B7]) syt (B[T/B7]) | 0

F'te:A|e l:Va!l :K'oez r-s’: k!
FFO'[SI/OLI] h:A=*DB (ZSI)TGE'NéJ

- T_HANDLING
I'F handle; g ewithh: B | e

Handler Typing |[I'F, h: A=°B ‘

Iz:Abe.:Ble

H_RETURN
'y {returnz — e} : A=° B

o=0cwi{op:v38’: K’.A' = B'}
Ibteh:A=fB T.8/ K’ p:A'k:B —-.BFe:B|e

v 7 H_Op
', hW{opB” : K’ pk+—e}: A="B

Subtyping

FI—A:Typ I'E Ay <: Ay F}—Bl‘€1<232|52
———— ST_REFL
'A< A F|_A1—>51B1<2A2—>52BQ

ST_FuN

la:KFA <A I'4A,<:B Tk
e ;'61 2| 625 ST_PorLy ! f19e ST_Cowmp
I'FVa: K.A1% <:Va: K.Ax®? F}_A|51<IB|62

Definition 1.35 (Semantics of Shallow Handlers). The semantics for shallow handlers consists of the reduction
and evaluation relations defined by the following rule R_.SHANDLE and those in Definition 1.32 except for
R_HANDLEZ2.

opB) K pk—eeh vent = Az .E[7] O—free(lSI,E)

- - Py R_SHANDLE
handle,; g1 Efop; gt T v]with h — e[T /8"]|[v/p][vcont /K]

Definition 1.36 (Typing of Shallow Handlers). The typing rules of shallow handlers consist of the rules
defined by the following rules T_SHANDLING, SH_RETURN, and SH_OP, and those in Definition 1.34 except
for T_HANDLING, H_RETURN, and H_OP.

Typing [['Fe:Ale

F'te:A|e l:Va KN oex r+sv. k"
F}_U[SN/OLN] h:Ael =B (lSN)TG&‘N&J

- T_SHANDLING
'+ handle; gy ewithh: B | e

Shallow Handler Typing |I'b, h: A° = B

Iz:AFe :Ble T'He :Eff
L'k {returnz — e} : A° =° B

SH_RETURN

oc=cW{op:¥8’: K’.A = B'}
by h:A° =B I8 K’ p: A k:B —. Abe:B|e
Ity hw{opB’ : K/ pkse}: A~ =° B

SH_Op
Definition 1.37 (The Syntax of Aga with Lift Coercions). The syntaz of Aga extended by lift coercions is the
same as Definition 1.5 except for the following.

e u= ---|[e]L (expressions) E == -.-|[E]L (evaluation contexts)

Definition 1.38 (Freeness of Labels with Lift Coercions). The rules of freeness of labels for Aga extended by
lift coercions consist of the rules in Definition 1.31 and the following rules.

Freeness of labels |n—free(L, F)

n—free(L, E) n—free(L,E) L# 1L
n + 1—free(L, [E]L) n—free(L, [E] L)

Definition 1.39 (Semantics with Lift Coercions). The semantics for Aga extended by lift coercions consists of
the reduction and evaluation relations defined by the following rule R_LIFT and those in Definition 1.32 except
for RZHANDLEZ2.

Reduction |e+— ¢’

—— R_LIFT
[v], — v

Definition 1.40 (Typing of Lift Coercions). The typing rules of Aga extended by lift coercions consist of the
rules in Definition 1.34 and the following rule.

Ike:A|e THL:Lab (L)Toed ~¢

T_LiFT
ThHle]p:A|e
Definition 1.41 (Freeness of Label Names).
Freeness of label names |n—free(L, E)
n—free(l, E) n + 1—free(l, E)

0—free(l,0) n—free(l,letz = Fine) n—free(l,handle; g F withh)

n—free(l, E) 1#1
n—free(l, handle, gr E with h)

Definition 1.42 (Operational Semantics with Type-Erasure). The type-erasure semantics consists of the re-
duction and evaluation relations defined by the following rule R_HANDLE2’ and those in Definition 1.32 except
for R_LHANDLE2.

opB’ K7 pks e€h veom = Az.handle, g1 E[z] withh 0—free(l, E)

~ - =7 R_HANDLE2’
handle; g1 E[op, g T” v]with h —— e[T” /3" |[v/p][vcont /K]

Definition 1.43 (Freeness of Label Names with Lift Coercions).
The rules of freeness of label names for Aga extended by lift coercions consist of the rules in Definition 1.41
and the following rules.

Freeness of label names |n—free(l, E)

n—free(l, E) n—free(l, E) L#18"
n + 1—free(l, [E]; g1) n—free(l, [E]L)

Definition 1.44 (Semantics with Lift Coercions and Type-Erasure). The semantics for lift coercions consists
of the reduction and evaluation relations defined by the rule R_CHANDLE2' defined in Definition 1.42 and those
in Definition 1.39 except for R_HANDLE2.

Definition 1.45 (Safety Conditions).
(1) For any L, (L)' © 0 does not hold.

(2) If (L)' ec and (I')'©e' ~e and L# L', then (L)T ©¢'.

Definition 1.46 (Safety Condition for Lift Coercions). The safety condition added for lift coercions is the
following:
(3) If ()T oer ~ (L)' O O(Ly)"O(L)T ®eg and L ¢ {L1,..., Ly}, then ey ~ (L) O+ &(L,) " ©eg.

Definition 1.47 (Safety Condition for Type-Erasure). The safety condition added for the type-erasure semantics
1s the following:
(4) If (181" @ e and (182)T @ ¢, then S17 = Sy

Example 1.48 (Unsafe Effect Algebras).

Effect algebra violating safety condition (1) Consider an effect algebra such that () - (I)T © 0 holds
for some [. Clearly, this effect algebra violates safety condition (1). In this case, § - op;v : A | 0 can
be derived for some A (if op, v is well typed) because op; v is given the effect (I)T and the subeffecting
0+ (1)T © 0 holds. However, the operation call is not handled.

Effect algebra violating safety condition (2) Consider an effect algebra such that safety condition (1),
(HTe ()T, and (I'T©0 ~ (I')" hold for some [and I’ such that [# I’. This effect algebra violates safety
condition (2): if safety condition (2) is met, we would have (I)T © 0, but it is contradictory with safety
condition (1).

This effect algebra allows assigning the empty effect 0 to the expression handle; op; v with h as illustrated
by the following typing derivation:

Drop,v:A| ()" OFA| () <A)"

(Too~ ()" OFop v:Al(l)
0 handle, op; vwithh: B |0

T_SuB

T_HANDLING

However, the operation call in it is not handled.

Jo: Typ.3p: Eff {
empty : o, add:Int = a = o, size:a —ygyInt, find @ Int = a —y; Bool,
filter - (Int =13 Bool) =3 a =3 «, choose : v =, Int,
accumulate : V3 : Typ.Vp' : Eff (Unit =,y 8) —, BList

Figure 1: Module Interface IntSet

pack(Int List, {Selection Int}, {- - -
choose = selectselection Int
accumulate = AB : Typ.Ap" : Eff Af : Unit = (seiectionint} U’ B-
handlesejection int f () with { returnz — [z]} W {select zs k — concat (map k zs)}

b))

pack(Int List, {Fail} U {Choice}, {- - -
choose = fun(auz, rs, match zs with
| [] = failgai Int ()
| y :: ys — if decidechoice () then y else auzx ys),
accumulate = AB : Typ.Ap’' : Eff \f : Unit — {Fail} U {Choice} U o/ -
handlecpoice
handler,;
10
with {returnz — [z]} W {faila: Typ__— [}
with {returnz — z} W {decide _k — k true Q £ false}

Figure 2: Two implementation of IntSet

2 Example

We present a motivating example of allowing multiple effect variables in one effect collection. In this example,
we use EAge; and offer two modules of type IntSet, which is an interface of implementations for integer sets
defined in Figure 1.

We show two implementations of IntSet in Figure 2. The former implementation assumes the effect context
Selection :: Va : Typ.{select : alist = a}, and concretizes p by SelectionInt. The latter implementation
assumes the effect context Choice :: {decide : Unit = Bool}, Fail :: {fail : Yo : Typ.Unit = «}, and concretizes p
by {Fail} U {Choice}. Because the concrete effect of the latter implementation consists of two labels, it needs to
be abstracted by a row variable, not by a label variable.

We define the function search_path using this package as follows.

search_path = Asets : IntSet List.\s : Int.At : Int.
fun(auz,p, Apath : Int List.
if p = t then path
elselet x = choose (filter (Ay : Int.not (exists (Az.z = y) path)) (nthp sets))
in auz x (x :: path))

s [s]

We show the example program using search_path as follows.

graph = [add 1 (add 2 empty); add 0 (add 2 (add 3 empty)); add 0 (add 1 (add 4 empty));

add 1 (add 4 (add 5 empty)); add 2 (add 3 (add 6 empty)); add 3 empty; add 4 empty]
clean (A-: Unit.search_path graph 05)

clean (A_: Unit.search_path graph 05)
The evaluation results are as follows.

[[55 3; 45 25 1; OF; [55 35 1; Of; [55 33 4; 25 0]; [53 3; 15 2; O]]
[[6; 4; 2; 0; 1]; [6; 4; 2; 1]; [65 4; 3; 1]]

10

3 Properties

3.1 Properties with Deep Handlers

This section assumes that the safety conditions in Definition 1.45 hold.
Lemma 3.1 (Well-formedness of context in judgement). IfT'F S : K, then FT.

Proof. By induction on a derivation of I' = S : K. We proceed by case analysis on the kinding rule applied
lastly to this derivation.
Case K_VAR: Clearly.

Case KFuN: S = A . B,T'HFA:Typ, ' Fe: Eff, and ' v B : Typ are given. By the induction
hypothesis, we have F T'.

Case K PoLy: S =Va: KA, I'a: K+ A: Typ, and I'a : K F ¢ : Eff are given. By the induction
hypothesis, we have - I';a : K. Since only C_TVAR can derive - I',a : K, the required result - T" is
achieved.

Case K_Cons: Clearly.

Lemma 3.2.
(1) If = T, then F A(T).

(2) IfTHS: K, then AT)FS: K.
Proof.

By mutual induction on the derivations. We proceed by case analysis on the rule applied lastly to the
derivation.
Case C_EMPTY: Clearly because of A(0) = 0.
Case C_VAR: For some I'”, z, and A, the following are given:
e I'=T"z:Aand
e I A: Typ.
By the induction hypothesis, we have A(T') - A : Typ. By Lemma 3.1, we have - A(T). Thus, we get
F A(T) as required because of A(T",z : A) = A(TY).

Case C_TVAR: For some IV, o, and K, the following are given:

e I'=T"a:K,
e IV, and
o a ¢ dom(I").

By the induction hypothesis, we have - A(T'). By a ¢ dom(I"), we have a ¢ dom(A(I"”)) because
dom(A(T")) € dom(I'"). Thus, C_TVAR derives - A(I"),a : K as required.

Case K VAR: T, a: K €T, and S = « are given for some a. By the induction hypothesis, we have - A(T").
By Definition 1.11, we have o : K € A(T"). Thus, K_VAR derives A(l') Fa : K.
Case K_Cons: For some C, 87, and K, the following are given:
e S=C8',
o T,
e C:IIK! 5 K e¥, and
e I'tS": K.
By the induction hypothesis, we have - A(T') and A(T') - S* : K. Thus, K_Cons derives A(T') - C S” :
K as required.
Case K_FunN: For some A, ¢, and B, the following are given:
e S=A—.B,
e K =Typ,

11

e ' A: Typ,
o 'Fe: Eff and
e ' B:Typ.
By the induction hypothesis, we have
e A()F A: Typ,
o A(l') Fe: Eff, and
e AT+ B: Typ.
Thus, K_FuN derives A(T') - A —. B : Typ.

Case K_PoLy: For some a, K’, A, and ¢, the following are given:
o S=Va: K A°
e K=Typ,
el a:K'FA:Typ, and
e I'a:K'Fe:Eff.
By the induction hypothesis, we have
e A(T,a: K')F A: Typ and
e A(T,a: K')Fe: Eff.

By Definition 1.11, we have A(T',a: K') = A(T'), : K'. Thus, K_PoLy derives A(T") - Va : K'. A : Typ
as required.
|

Lemma 3.3.
(1) For anyT and e, if T ke : Eff, then T ke © ¢ holds.

(2) For any T, €1, €9, and e3, if ' Fe1 @2 and 'k g9 © €3, then I'F 61 © e3.

Proof.
(1) Clearly because of Lemma 3.2(2) and because 0 is a unit element.

(2) Clearly because © is associative and preserves well-formendness.

Lemma 3.4 (Transitivity of Subtyping).

(1) IfFFAl <:Ag and T'+ Ay <: Ag, thenT'F A <ZA3.
(2) IfFFA1|€1 <ZA2|€2 andFFAg\sg <1A3‘€3, thenI‘FA1|51 <IA3|€3.

Proof. By the structural induction on the summation of the sizes of Ay, As, and Ag. If either I' - Ay <: As or
'+ Ay <: Ag is derived by ST_REFL, then we have I' - 4; <: A3 immediately. Thus, we suppose that neither
'k A; <: Ay nor I'F Ay <: As is derived by ST_REFL in the following. We proceed by case analysis on what
form A has.

Case Ay = 7: No rules other than ST_REFL can derive I' = 41 <: As.

Case A1 = By —, Cy: Since only ST_FUN can derive I' - By —., €1 <: Ag, we have Ay = By —., C» for
some By, €9, and C5 such that
e ' By <: By and
o F"Cl|€1 <: CQ|52.

Since only ST_FUN can derive I' = By —., Cy <: A3, we have A3 = B; —., C3 for some Bs, €3, and Cj
such that

e ' By <: By and
o I'F (o |ex<: C3es.

Since only ST_COMP can derive I'F Cy | g3 <: C3 |eg and T'F C) | &1 <: Oy | €2, we have
e ' (4 <: O,

12

e ' (Cy <: Cf,
e 'FeyQeg, and
o ['Feoes.
By the induction hypothesis and Lemma 3.3(2), we have
e T+ By <: By,
e 'Fey1©e3, and
e ' () <: Cs.
Thus, we have I' - A; <: A3 by ST_FUN as required.
Case Ay =Va: K.B;*': Since only ST_POLY can derive I' - Vo : K.B1®! <: A, we have Ay = Va : K.By*"?
for some By and e such that I'ya : K+ By | €1 <: By | 2. Since only ST_PoLY can derive ' F Vo :

K.By®® <: As, we have A3 = Va : K.B3®® for some B3 and e3 such that I',a : K F By | 2 <: B3 | e3.
Since only ST_CoMP can derive T',a: K+ By | g1 <: By |es and I',a: K+ By | e <: B3 | €3, we have

e 'a: K By <: Bs,
e a:KFe e,
e I'a: K+ By <: B3, and
e [a:KFeyQes.
By the induction hypothesis and Lemma 3.3(2), we have
e 'a: K+ By <: Bgand
e a:Kte ©es.
Thus, we have I' - A} <: A3 by ST_POLY as required.

Lemma 3.5 (Weakening). Suppose that - T'1,T'y and dom(I's) N dom(T'3) = 0.
(1) Ifl_ Fl,F3, then F17F27F3.

(2) IfT1,T3+S: K, thenT1,T5,T3F S : K.

(3) If T1,T3+ A <: B, thenT1,T9, T3+ A <: B.

(4) IfT1, T3k Ay | e1 <: Aa | ea, then T1,T9, T3 Ay | 1 <: Ao | ea.
(5) IfT1,Tske: Ale, thenT1,T3,T5ke: A|e.

(6) IfT1,T3 by h: A=° B, then [y, T, T3 o h: A =° B.

Proof.
(1)(2) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.

Case C_EMPTY: Clearly because of - T';,T'; and 'y = I's = ().

Case C_VAR: If I's = (), then - I'1, 'y, I's holds immediately. If I's #), then for some I';, z, and A, the
following are given:
- Pg = FZ)” Z A,
— z ¢ dom(I'1,T'%), and
- I',T4F A: Typ.
Since dom(I'2) N dom(I';) = () holds, we have I'y, ', I, = A : Typ by the induction hypothesis. By
z ¢ dom(I'1,T'%) and dom(I'y) Ndom(Ts,z : A) = 0, we have z ¢ dom(I'y,T'2,T'%). Thus, C_VAR
derives - T'1, ', I, 2+ A.
Case C_TVAR: If 'y = (), then - 'y, 'y holds immediately. If I's #), then for some I';, @, and K, the
following are given:

- Is=T%0a: K,
— a ¢ dom(I'y,T%), and
— FT,,T,

13

Since dom(I'y) Ndom (T
and dom(T'3) N dom(T%
I, Iy, T, a: K.
Case K_VAR: For some «, the following are given:
- S =q,
— FTI,T'3, and
—a:Kely I3
By the induction hypothesis, we have - T';,I'5,I's. Thus, I'1,I'5,T'3 F « : K holds because of
a: K el Ty, Ts.
Case K_FuN: For some A, B, and ¢, the following are given:
- S=A—-. B,
- K =Typ,
- I',I's+ A: Typ,
— I'y,I's e Eff, and
- I'y,I's+ B: Typ.
By the induction hypothesis, we have
— Iy, I, T3 A: Typ,
— I'y,I5, T3 Fe: Eff, and
—I'y, I, T3+ B: Typ.
Thus, K_FUN derives I'1,I'5,I's - A —. B : Typ.

Case K_Pory: Without loss of generality, we can choose « such that o ¢ dom(T'z). For some K’ A,
and ¢, the following are given:

— S=Va:K' A5,
— K =Typ,
—TI'1,T'3,a: K'F A: Typ, and
—TI'1,T3,a: K'Fe: Eff.
Since dom(T'2) Ndom(T'3, v : K') = @, we have
—I',T9,T3,a: K'F A: Typ and
— I, T, T3,a: K'Fe: Eff
by the induction hypothesis. Thus, K_PoLy derives I';,I'5,T's F Vo : K'.A° : Typ.
Case K_Cons: For some C, 8, and K, the following are given:
- S=cs’,
- C:IK' 5 Keyx,
— FI'1,T'3, and
-1, IS8T K.
By the induction hypothesis, we have F I';,T'5,T's and I';,T'5, T's - S : K7, Thus, K_CoNs derives
I, T5-C8 K.

) =0, we have F I'1, I'g, T'4 by the induction hypothesis. By « ¢ dom(I'y,T')
,a : K) = 0, we have a ¢ dom(T'y,T'2,T%) Thus, C_TVAR derives +

(3)(4) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.

Case ST REFL: A = B and I';,I's b A : Typ are given. By case (2), we have I';,I'5,T's - A : Typ.
Thus, ST_REFL derives I'1,T'5, s - 4 <: A.

Case ST_Fun: For some Ay, €1, By, Az, €2, and Bs, the following are given:
— A=A =, By,
— B= A3 =, Bo,
—I',T's+ Ay <: Ay, and
—I',TsF By | &1 <: By | ea.
By the induction hypothesis, we have I'1,T'2,I's = By | 1 <: B | 2. Thus, ST_FUN derives

Fl,FQ,Fg - A1 —ey Bl <: A2 ey B2

as required.

14

Case ST_PoLy: Without loss of generality, we can choose « such that a ¢ dom(I'3). For some K, Aq,
€1, Az, and &9, the following are given:
— A=Va:K.A",
— B=Va: K.A>**, and
-1, T5,a0: KF Ay | e <: Ay | ea.
By the induction hypothesis, we have I'y, T2, s, : K+ Ay | &1 <: Ay | €5. Thus, ST_POLY derives

'y, I, I's FVa: K.A]_El <:Va: K.Agez

as required.

Case ST_ComP: We have I'y,T's b Ay <: Ay and I'1,I'3 F &1 © e5. By the induction hypothesis, we
have T';,T'5,T's = A; <: Ay. By case (2), we have I'1,T'5,T's b g1 © 9. Thus, ST_CoMP derives
I',T9,Ts+ Ay | &1 <: Ag | €9 as required.

(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.

Case T_VAR: For some z, the following are given:

—e=ux,
— =0,
— FT4,T3, and
—xz:Ael,Ts.
By case (1), we have - I'1,I'5,I's. Thus, T_VAR derives I'1,I'5,T's - 2 : A | 0 because of z : A €
', T, I's.

Case T_ABs: Without loss of generality, we can choose f and z such that f ¢ dom(T'z) and z ¢ dom(T's).
For some €', A’, B’, and &', the following are given:
—e=fun(f,z,¢),
— A=A —re! B/,
— =0, and
- I, Ts,f: A = B,x:AFe:B|€.
By the induction hypothesis, we have T'y,T9,T'3,f : A” —o B,z : A F ¢ : B' | € because of
dom(T2) Ndom(Ts, f : A" = B,z : A’) = (. Thus, T_ABS derives I'1,T'5,T's + fun(f,z,¢’) :
A’ —re! B’ | 0.
Case T_App: For some vy, vz, and C, the following are given:
- €= g,
—I',Tsk v :B—. A|0, and
~ I, T3k w:B]o.
By the induction hypothesis, we have
— I, Iy, TskFv: B—. A]0and
- I, Ty, T3k w:B|0.
Thus, T_ApP derives I'1, Iy, Ts vy vy : A | €.
Case T_TABs: Without loss of generality, we can choose « such that « ¢ dom(T's). For some K, e', B,
and ¢’, the following are given:

—e=Aa:K.¢,
— A=Va: KA,
— =0, and

- I, T3,a: Kke': A €.
By the induction hypothesis, we have I';,T'5, '3, a0 : K+ €’ : A’ | ¢’ because of dom(I's) Ndom(T's, « :
K) ={. Thus, T_TABs derives I'1,I'2, T3 - Aa: K.e/ : Vo : K.A'® | 0.

Case T_TAppr: For some v, S, a, A’, ¢/, and K, the following are given:

—e=vS,
- A= A[S/a),
—e=¢[5/q],

15

- T, T3k v:Va: KA | 0, and
- I',I'3+S: K.
By the induction hypothesis and case (2), we have
— T1,T5, T3 v:Va: K.A° |0 and
T, T3FS: K.
Thus, T_TAPP derives I'1,T9, T3 -0 .S : A'[S/a] | €'[S/qa].
Case T_LET: Without loss of generality, we can choose = such that ¢ dom(I's). For some e, ez, and
B, the following are given:
—e=(letz = ¢ iney),
—TI'1,Tsk e : B|eg, and
—T1,T5,2: Bl ey: Ae.
By the induction hypothesis, we have
—I'1,T9,T3F e : B|eand
—I',T9,T3,2: BFex: Ale
because of dom(I'y) Ndom(Ts, z : B) = (). Thus, T_LET derives I';, T3, T3 - letz = ejiney: A | e.
Case T_SuB: For some A’ and ¢’, the following are given:
— T, Tske: A" |e and
-, TsF A e < A]e.
By the induction hypothesis and case (4), we have
—I',T9, T3k e: A" | & and
— I, T, T3 A |/ <: A e
Thus, T_SUB derives I'1,I'3,I's Fe: A | e.
Case T_Op: For some op, I, A’, B’, I, and J, the following are given:
- €=0p;gI T’
A= ([T 1B7)) S sy (BT /87,
—e=0,
—l:Val :Kloe =,
—op:VB' K" A =B € oS8T /al],
— FT,Ts,
— I, s+ ST K!, and
—Ty,Is+T7 . K",
By cases (1) and (2), we have
— FT'1,T9, T,
— Iy, 05,03+ ST K, and
— Ty, To,Ts+T7 . K7,
Thus, T_Op derives

Ty,T9, st op, g T : (A'[T7/87]) st (B'[T’/B7)) | 0.

Case T_HANDLING: For some N, ¢/, A’, ¢/, 1, SV, KV, h, and o, the following are given:
— e = handle; gv ¢’ with A,
— Iy, Tske: A€,
— l::VaN:KN.JGE,
= T4, T3 Fopgn jany bt A" =5 A,
— I, T3+ SY . KV, and
— (18N ee~e.
By the induction hypothesis and case (2), we have
— Do Tk e A | &,
— T4, T, T bopgn jam b A = A, and
— Iy, [, T3-SV KV,

16

Thus, T_HANDLING derives

I'1,T3,Ts F handle, gv ewithh : A | e.

Case H_RETURN: Without loss of generality, we can choose z such that z ¢ dom(I'y). For some e,, the
following are given:

— h={returnz — e},
—o={}, and
- I, T5,2: Ak e.: B|e.
By the induction hypothesis, we have I'y,I'5,T's,z : A e, : B | e. Thus, H_-RETURN derives
['1,T9, T3 kpy {returnz — e} : A =° B.
Case H_Opr: Without loss of generality, we can choose ,BJ and p and k such that:
— {8’} Nndom(I'y) = 0,
— p ¢ dom(T'y), and
— k ¢ dom(T'3).
For some I/, ¢’, op, A’, B’, and e, the following are given:
— h:h’w{opﬂ‘]:KkaH e},
—~o=0W{op:V38’ : K'. A = B'},
—T1,T3ks A1 A=° B, and
~T,T3,8 :K’,p: A k:B —.BlFe:B|e.
By the induction hypothesis, we have
— I, I3, '3k, B : A=° B and
—T1,05,05,8 K’ ,p: A k:B -.Bte:B]e.
Thus, H_OP derives I';,T3,Ts o b/ W{opB’ : K/ pk s e} : A=° B.
|

Lemma 3.6. For any 'y, T's, S, and K, if A(T1),I'2 - S : K and F T'; and dom(T';) N dom(T'y) = @, then
Fl, FQ FS:K.

Proof. By induction on the size of I'y. We proceed by case analysis on the rule lastly applied to this derivation.
Case C_EmpPTY: Clearly.
Case C_VAR: For some I'}, z, and A, we have
o'y =T,2: A4
e z ¢ dom(T")), and
eI A:Typ.
By Lemma 3.1, we have - I'}. By Definition 1.11, we have A(I'}),T'2 - S : K. By dom(I'}) C dom(T'y),
we have dom(I"}) Ndom(I'y) = 0. By the induction hypothesis, we have I'},T's F S : K. By Lemma 3.5(2),
we have I,z : A,Ty S : K as required.
Case C_TVAR: For some I'}, , and K', we have
oIy =T),a: K,
e T, and
o a ¢ dom(T').

By Definition 1.11, we have A(T"}),a: K/, Ts + S : K. By a ¢ dom(I"}) and dom(I"}) C dom(T";), we have
dom(T)) Ndom(a : K',T%) = (). By the induction hypothesis, we have I'j,a: K/,T'3 - S : K as required.
|

Lemma 3.7 (Substitution of values). Suppose that Ty v : A|0.
(1) If" Fl,ilf : A,FQ, then Fl,FQ.

(2) IfTy,z: AAToF S: K, thenT1,T3 - S: K.
(3) If T,z : A,Ts F B<: C, thenT1,Is F B <: C.
(4) Ifl“l,x : A7F2 F By |51 <: By | €9, then I'1,T's F By ‘81 < B2|<€2.

17

(5) IfT'y,z: ATokFe:Ble, thenT1,TaF e[v/z]: B |e.
(6) IfT1,z: A,To by h: B=< C, thenT'1,I's 4, h[v/z]: B=* C.

Proof.
(1)(2) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.

Case C_EmpTY: Cannot happen.
Case C_VAR: If 'y = (), then we have I';y = A : Typ. By Lemma 3.1, - I'; holds. If I'y # (), then we
have
—TIy=T%,y: B,
—Ty,z: AT, F B: Typ, and
— y ¢ dom(Ty,z: A, TY),
for some I'}, y, and B. By the induction hypothesis, we have I'y, T4 F B : Typ. Thus, C_VAR derives
Ty, T2 because y ¢ dom(I'y,T%).
Case C_TVAR: Since I'y cannot be (), we have
- Ty =T%a: K,
— FTy,2: AT, and
— aé¢dom(Ty,z: A, TY),
for some I'y, o, and K. By the induction hypothesis, we have - I'y,T,. Thus, C_TVAR derives
FT'1,T5 because a ¢ dom(T'y,T5).
Case K_VAR: For some «, the following are given:
- S =aq,
— FTIy,z: A, T, and
—a:Kely,z: AT,
By the induction hypothesis, we have - I'y,T's. Thus, K_VAR derives I';,I's F « : K because of

a: K el Ts.
Case K_FuN: For some B, C, and ¢, the following are given:
- 8=B-—.C,
- K =Typ,

—TI'y,z: A, Ts+ B: Typ,
—Iy,z: ATy Fe: Eff, and
—I'y,z: Ao C: Typ.
By the induction hypothesis, we have
- I'y,T's - B: Typ,
— I'1,Is ke Eff, and
- I, I = C: Typ.
Thus, K_FUN derives I'1,I's F B —. C' : Typ.
Case K_PoLy: For some o, K’, A’, and ¢, the following are given:
- S=Va:K A",
— K =Typ,
—TIy,z: A Ty,a: K'F A" : Typ, and
—Ty,2: A Ty,a: K'He: Eff.
By the induction hypothesis, we have
—I',I's,a: K'+ A" : Typ, and
— I, Ig,a: K' ¢ : Eff.
Thus, K_Pory derives I';,I'y - Va : K'.A’”° : Typ.
Case K_Cons: For some C, 87 and K, the following are given:
- S=cs’,
- C:IK' 5 Keyx,
— FTy,z: A, T, and
—Iy,z: AT -8 K.

18

By the induction hypothesis, we have - I';,T'5 and I',Ty - S' : K!. Thus, K_CoNs derives
I',IbFCS K.

(3)(4) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.

Case ST REFL: B=C and I'1,z: A,To F B : Typ are given. By case (2), we have I'y,I's - B : Typ.
Thus, ST_REFL derives I'1,I's - B <: B.
Case ST_Fun: For some A1, €1, A12, A21, €2, and Ao, the following are given:
- B = Ay =, A,
= C = A —¢, Ago,
—T,z: ATy F Ay <: Aqq, and
- I'y,z: A,Fg F A ‘ €1 <: Agg | £9.
By the induction hypothesis, we have T';,T's F Agy <: A1; and T'1,Ta b Ays | &1 <: Asgg | €2. Thus,
ST_FUN derives I'1, I'o = A1 =2, A12 <t Ao1 —2, Aga.
Case ST_Pory: For some a, K, Ay, €1, Ao, and e, the following are given:
— B=Va: K.A ",
— C=Va:K.A>*?, and
—Ty,2: AT, a: KF Ay e <t Ag | ea.
By the induction hypothesis, we have T';,T's, v : K F Ay | &1 <: Ay | 2. Thus, ST_PoLy derives
I',IasFVa: KA <:Va: K.A5%2.

Case ST_Comp: We have I'y,z : A, To F By <: By and I'1,z : A,Ts F €1 © e3. By the induction
hypothesis, we have I'1,I'y b By <: By. By case (2), we have I'1,I's F £; © 5. Thus, ST_CoMP
derives T'1,T'o F By | &1 <: Bz | &2 as required.

(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.

Case T_VAR: For some y, the following are given:
—e=y,
— =0,
— FTIy,z: A, T, and
—y:Bely,z: AT,
By case (1), we have - T'1,T's.
If y=x,then I';,To v : A| 0 holds because of T’y v : A | 0 and Lemma 3.5(5).
If y # z, then we have y : B € I'1,T'5. Thus, T_VAR derives I'1,T2 -y : B | 0.
Case T_ABs: Without loss of generality, we can choose f and y such that f,y # z and f,y ¢ FV(v).
For some €', A’, B’, and ¢’, the following are given:
e = fun(f,y,).
— B=A —re! B/,
— =20, and
—Ty,2: ATef: A - B y: A e B |¢€.
By the induction hypothesis, we have I'1,T9,9 : A’ =2 B,y : A’ e'[v/z] : B' | ¢’. Thus, T_ABS
derives I'y, Iy F fun (f, y, ¢’[v/z]) : A —o B’ |0, and since (fun (f, y, ¢'))[v/z] = fun (f, y, e'[v/z]),
the required result is achieved.
Case T_App: For some vy, v, and C, the following are given:
- €= 11 Vg,
—TIy,z: A TeF v : C—. B|0,and
—Ty,2: ATy wvy: C|O.
By the induction hypothesis, we have
- I'1,Tokwnv/z]: C—.B|0
—and I';, Ty - wlv/z] : C]o0.
Thus, T_APP derives I'y,I's = (v1[v/z]) (v2[v/z]) : B | €, and since (v; wo)[v/z] = (vi[v/z]) (v2]v/2]),
the required result is achieved.

19

Case T_TABs: Without loss of generality, we can choose « such that o ¢ FTV(v). For some K, e, B,
and ¢’, the following are given:

—e=Aa: K.¢,
— B=Va:K.B*,
— =20, and

—Tyz:AT,a: KFe B |€.
By the induction hypothesis, we have I'1,I's,« : K F ¢'[v/z] : B’ | ¢’. Thus, T_TABS derives
I',ToFAa: K.e'lv/z] : Vo : K.B" | 0, and since (Aa : K.e')[v/z] = Aa: K.e'[v/z], the required
result is achieved.

Case T_TApp: For some v, S, a, B, €', and K, the following are given:

—e=v09,
— B = B’'[S/q],
—e=¢[5/q],

—Ty,z: ATy v :Va: K.B* | 0, and
—TIy,z: AT FS: K.
By the induction hypothesis and case (2), we have
— T, T v'[v/z] : Vo : K.B'® | 0 and
DL TekS: K.
Thus, T_-TAPP derives I'1,I's - v'[v/z] S : B'[S/a] | €'[S/a], and since (v’ S)[v/z] = v'[v/z] S, the
required result is achieved.
Case T_LET: Without loss of generality, we can choose y such that y # z and y ¢ FV(v). For some ey,
ez, and C, the following are given:
— e=(lety = e;ineq),
—Ty,2: ATk e : C|e, and
—Ty,2: AT, y: Ckhey:Be.
By the induction hypothesis, we have
—I',To b efv/x]: C|eand
— I, T,y : CF exv/x]: Be.
Thus, T_LET derives I'1,T'y - let y = e1[v/z]in ex[v/z] : B | &, and since (let y = e;ines)[v/z] =
let y = e1[v/x] in ex[v/x], the required result is achieved.
Case T_SUB: For some B’ and ¢’, the following are given:
—Ty,2: A Teke: B | and
—TI,z: ATy B | <:B|e.
By the induction hypothesis and case (4), we have I'1,I's - e[v/z] : B’ | ¢ and T'1, T2 + B' | &/ <:
B | e. Thus, T_SuB derives I'1,T's F e[v/z] : B | €.
Case T_Op: For some op, g: T”, A’, and B’, the following are given:
- €=0p;g! T’
B = (A7) sy (BITY/87)),
— =0,
—l:Val :KloeE
—op:VB’ : K" A= B €[S /o],
—FTy,z: AT,
—Iy,2: ATy 8T K! and
~Tiz: AT, T K.
By cases (1) and (2), we have
— F Ty, Ty,
— Iy, To -8 K, and
~ T, Ty +T7 K7,
Thus, T_OP derives

L1,Ts b opy g T < (A'[T7/B7]) = sy (B'[T7/B87]) | 0.

20

Case T_HANDLING: For some N, ¢/, A, &', 1, 8V, o, K", h, and o, the following are given:

— ¢ = handle; g~ ¢/ with h,
— Tz ATk e A€,
—l=Va : KN e =,
—TIy,z: AT, SV KV,
=T,z ATy bggn jany bt A =° B, and
— (I8N ee~e.

By the induction hypothesis and case (2), we have
— Iy, ISV KV,
— I, Tk efv/z]: A | €, and
— T, To Fppgn jany hlv/z] : A" =< A

Thus, T_HANDLING derives

I'1,Is - handle; gv €'[v/z] with h[v/z] : B | e.

Case H_RETURN: Without loss of generality, we can choose y such that y # z and y ¢ FV(v). For some
e, the following are given:

— h={returny — e},

—o={}, and

—Ty,z2: AT, y:Bre.: Cle.
By the induction hypothesis, we have

— I, To,y: BFesfv/z]: C|e.
Thus, H_RETURN derives

['1,To bpy {returny — e.[v/z]} : B=° C.

Case H_Opr: Without loss of generality, we can choose ,BJ and p and k such that:
- pFI,
—k#ux,
~ p ¢ FV(v),
— k¢ FV(v), and
—{B/}NFTV(v) = 0.
For some I/, ¢’, op, A’, B’, and e, the following are given:
—h=hwi{opB’ : K’ pk s e},
~o=0cw{op:V8' : K'.A' = B},
—Ty,2: A Toko A : B=° C, and
~T,2:ATy,B K p: A k:B —-.CFe:C|e.
By the induction hypothesis, we have
—I',To ko B [v/2] : A=° B and
~T1,05,8" K’ p: A k:B —.BFelv/z]:B|e.
Thus, H_OP derives

[1,Ty by B [v/z] W {opB’ : K’ pk s ev/z]}: B=°C

|
Lemma 3.8 (Well-formedness of contexts in subtyping judgments).
o I[fT'F Ay <: As, then FT.
o [fTF Ay |ey <: Az | &g, thenT.
Proof. Straightforward by mutual induction on the subtyping derivations with Lemma 3.1. |

Lemma 3.9 (Well-formedness of contexts in typing judgments).
e [fT'Fe:Aleg, thenT.

21

o [fTF, h:A=°B, thenT.
Proof. Straightforward by mutual induction on the derivations with Lemma 3.1.]

Lemma 3.10 (Substitution of Typelikes). Suppose that Ty F ST : K.
(1) If F Ty, af : KT, Ty, then T, T3S /a’].

(2) IfTy,a’ : K'. Ty T : K, then T1,T,[S”/a’| F T[S /a] : K.
(3) IfTy,al - K' Ty A <: B, then T, T2[S"/a!| F A[S! /'] <: B[S'/a!].

(4) If T1,al : K'\To - Ay | e1 <t Ag | €2, then T'1,T2[S"/al] F A1[S7/al] | &1[S"/al] <: A3[ST/al] |
£9[ST/al].

(5) IfTy,af - K' Tyt e: A|e, then Ty, To[S/al| - e[ST/al] : A[ST/a!] | [ST/a].
(6) IfT1,a’ - KT T by h: A=< B, then T'1,T2[S /] Fors/a) h[S/a] - A[ST jal] =<187/2] B[ST/a]].

Proof.
(1)(2) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivations.

Case C_EmpTY: Cannot happen.

Case C_VAR: Since I'y cannot be), for some I'y, z, and A, the following are given:
- FQ = /27 Z A,
— z ¢ dom(I'y,a’ : K7, T}), and
~T,al : K' T, A: Typ.
By the induction hypothesis, we have I'y, (T[S’ /a!]) F A[S’ /'] : Typ. By z ¢ dom(I'y, (T4[S’ /a’])),
C_VAR derives F T'y, (T5[S’/a’]),z : A[ST/a!], and since T'5[S”/a!] = T4[S'/al],z : A[ST/a']
holds, the required result is achieved.
Case C_TVAR: If Ty = (), we have
— aI:KI:aJ:KJ,azv:Ki
—FIi,0’: K7, and
— a; ¢ dom(I'y,a” : K7),
for some J, a”, KJ, 1, o, and K;. By the induction hypothesis, we have - I';.
If T'y # (), for some I'y, 8, and K’, the following are given:
- Iy =T%,8: K,
— FIy,al - K1, T%, and
— B¢ dom(Ty,a! : KT, T%).
By the induction hypothesis, we have - I'y, (T4[S? /a!]). Thus, C_T'VAR derives - I'y, (T4[S* /a']), B :
K’ and since

I, (87 /al] =T, (T4[S!/al]), 5 : K’

holds, the required result is achieved.

Case K_VAR: For some 3, the following are given:
- T=p,
—FIy,0! : KI Ty, and
—-B:Kely,al : K T,.
By the induction hypothesis, we have F T'y,T5[S” /a!].
If B = o for some i € I, then I'y,T5[S”/a!] F B[S’ /a!] : K holds because of the following:
- -8 K
— Lemma 3.5(2),
S; = B[S /a!], and
- K, =K.
If B # «; for any i € I, then K_VAR derives I'y, T3[S? /a!] B : K because of 3 : K € T'1,I5[S!/a].
Since 8 = B[S!/a’], the required result is achieved.

22

Case K_FuN: For some A, B, and ¢, the following are given:

- S=A4-.B,
- K ="Typ,
—TI,al : KI.TyF A: Typ,
—I',a! : K' Tybe: Eff, and
—I'i,al : KI.TyF B : Eff.

By the induction hypothesis, we have
— Ty,15[8"/al]+ A[ST/al] : Typ,
— T,T5[8"/a!]+¢[S! /o] : Eff, and
— T1,05[8" /a1 + B[S /a!] : Eff.

Thus, K_FUN derives

Iy, o8 /a' |+ (A[ST/a']) =51 jan (B[S /a']) : Typ,
and since
(A —: B)[S'/a'] = (A[S"/a']) =.(s1jan (B[S /a'])

holds, the required result is achieved.
Case K_PoLy: For some 3, K', A, and ¢, the following are given:

- S=Vg3: K'A5,
— K =Typ,
—I'i,o! : KI.Ty,8: K'+ A: Typ, and
—I'1,ol : K Ty,8: K'+¢: Eff.

By the induction hypothesis, we have
—T1,05[87/a!],3: K'+ A[S"/al] : Typ and
— T, To[8"/al],8: K' e[S /o] : Eff.

Thus, K_PoLy derives

T,T5[S! /al] F VB : K. A[S! /a8 /D Typ .
Since we can assume that 8 does not occur in S’ and a! without loss of generality, we have
(VB: K'.A%)[S" ja!] = VB : K'.A[ST Ja!|EIS"/e])

Therefore, the required result is achieved.
Case K_Cons: For some C, 8’7, and K’’, the following are given:
- S=cs",
—-C: K" 5 Key,
—FTy,al : K1, Ty, and
~Tyal K\ Ih+8"7 K"
By the induction hypothesis, we have - I'y,T5[S?/al] and T';,T5[S’/a’] - S'[ST/al
Thus, K_CONS derives I'y,T5[S?/a!] F CS'[SI/aI]J K.

]J . K.

(3)(4) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.

Case ST_REFL: A= B andI';,a’ : K/, Ty A : Typ are given. By case (2), we have I';, T'5[S’ /a!] -
A[Sl/al] : Typ. Thus, ST_REFL derives

I, T5[87 /o] A[ST /al] <: A[S!/a]].

Case ST_FunN: For some Aq1, €1, A12, Ao1, €2, Bao, the following are given:
— A=A =, Ar,
— B = Ay —., Ao,
— T, KT Ty Ay <: Ajy, and

23

~Tal iK' Tk A | er <: Ay | €.
By the induction hypothesis, we have

— Ty, 19[S /ol A5 [ST/a!] <: A11[ST/al] and

— T, T[S/l - A1a[ST /o] | e1[ST/al] <: Ax[ST/al] | 28T /a].
Thus, ST_FUN drives

I, To[S" /alT - (An[S! /a]) = st jan (A12[ST/a’]) <t (A2 [S"/a']) =151 /0 (A22[S"/a'])
and since, for any i € {1, 2},
(Ai1 —e, Ai2)[S"/a’] = (A1[ST /")) = (51 jar) (Ai2[ST/a'])

holds, the required result is achieved.
Case ST_Pory: For some 3, K, A1, 1, Az, and &4, the following are given:
- A=Vp: K.A ",
— B=VfS:K.A5%?, and
~T,a! K!' Ty,B:KF Ay |6 <: Ag e
By the induction hypothesis, we have I'y, T5[S” /a'], 5 : K + A1[S7/a’] | e1[S7/al] <: As[ST/al] |
£9[S?/a!]. Thus, ST_PoLy derives

T1,T5[S /ol VB K.A[ST a8 /o) <o yp . K A,]ST /o) (18]

and since
— (V8 : K.A%)[ST/a!| =V : K.A[ST/a!|18"/«']) and
— (VB : K.Ay%)[ST /ol = VB : K.A,[S Jal](cIS"/a')
hold, the required result is achieved.

Case ST_Comp: We have I'1,a! : K!,Ts + A; <: A and I'y,a! : KT, T's - &1 © e5. By the induction
hypothesis, we have T';,T5[S’/a’] F A;[S"/a'] <: A3[S’/a!]. By Lemma 3.8, - I'j,a! : K' Ty.
Then, by case (2) and the fact that a typelike substitution is homomorphism for ® and ~, we have
Iy, T5[8" /o] F (1[87/al]) @ (e2[S” /a!]). Thus, ST_Comp derives T';,T5[S” /a!] F 4,[8"/a'] |
e1[8T/al] <: A5[ST/al] | e2[ST /al].

(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.

Case T_VAR: For some z, the following are given:
- e=z,
— =0,
—FTIy,0!: K1 Ty, and
—z:4el,al : KL T,
By case (1), we have - T';, T[S’ /a’].
Case : A €Ty: Since z: A € T',T5[S"/a'] and A[S/a'] = A hold, T_VAR derives

[, To[8T /o F a: A[ST/a!] | 0.

Case z: A € o : K': Cannot happen.
Case 1z : A € Ty: Since z : A[S'/a'] € T'1,T5[S?/a’] holds, T_VAR derives

[, To[8T /o F o A[ST/a!] | 0.

Thus, the required result is achieved because of :v[SI Jal] = z.
Case T_ABs: For some f, z, ¢/, A’, B’, and ¢’, the following are given:
— e=fun(f,z,¢),
— A=A —e! B/7
— =0, and
—TI,ol i KI Ty, f: A . B o:A+e:B | &

24

By the induction hypothesis, we have
Fl,Fg[SI/aI],f (A = B’)[Sl/oz]],x : A’[Sl/al] F e’[SI/aI} : B’[Sl/al] | a'[SI/aI].
Since
(A" =o B[S Ja!) = (A'[S"/a']) =51/ (B[S /')
holds, T_ABS derives
I, T5[S" /o] fun (f,z,¢'[S"/a']) : (A'[S"/a]) =gt 10y (B'[ST/a]) | 0.
Thus, the required result is achieved because
(fun(f,z,¢")[S"/a'] = fun (f,z, ¢'[S"/a'])

holds.
Case T_App: For some vy, 12, and B, the following are given:

— e =1 W,
—TI,al :K!Tobuv :B—. A | 0, and
~T,a! :K' TyFw:BJo.

By the induction hypothesis, we have
— Ty, 058" ol v [8T/a!] : (B —. A)[ST/a!] | 0[S’ /a!] and
— T, T9[ST /a1 - »[ST/a!] : B[S'/a!] | 0[ST/al].

Since
— (B = A)[8'/a’] = (B[S"/a']) (51 /o (A[S"/a']) and
—o[8'/al]=0

hold, T_APP derives
D1, D287/l (0 [ST/a]) (w[ST/a']) : A[S/a'] | ¢[S" /a]

as required.

Case T_TABs: Without loss of generality, we can choose § such that § # «; and 8 ¢ FTV(S;) for any
i € I. For some K, e¢', A’, and ¢’, the following are given:

—e=A3:K.¢,
— A=VB:K.A",
— =0, and

~T,a! K Ty,B:KFe:A <.
By the induction hypothesis, we have

Ty, To[S" jal], 81 K+ e/[S"/al): A'[ST/a!] | €[S o]
Thus, T_TABS derives
Ty, T[S /ol - AB: K.(/[S"/al)) : VB : K.A'[S! [a!)E18"/2D | g
and since
(AB: K.¢)[S"/al] = A : K (/[T /al])

holds, the required result is achieved.

Case T_TAPp: Without loss of generality, we can choose such that 8 # a; and 8 ¢ FTV(S;) for any
i € I. For some v, T, 3, A’, ¢/, and K, the following are given:

—e=0T,
- A=A'[T/p,
- e=¢[T/8],

Tyl K TorFv:V3: K.A% |0, and

25

—TI,al :K!THFT: K.

By the induction hypothesis, we have
— Ty, T[S /al] - u[ST /o] : (V3 : K.AF)[S!/al] | 0[S /a!] and
— Ty, 058" /a1 - T[S"/a!] : K.

Since
— (VB: K.A)[ST/al] =VB: K.A'[S Ja!]E15"/a') and
—0[87/a’] =0

hold, T_TAPP derives
D1, T2[8" /el (o[S!/a!)) (T[S! /') : (A'[S" /!)IT[S! /a']/8] | ('[S"/a'))T[S" /a']/5].

Finally, we have
~ (D[S /al] = (]S [al)) (T]S /al)),
— (A[8"/a!)[T[S" /a']/B] = (A'[T/B])[S" /a'], and
— (&[S' /! DITIS [al]/8] = ('[T/B))IS" /o]
because Vi € I.(8 ¢ FTV(S;)). Thus, the required result is achieved.
Case T_LET: For some z, e, e, and B, the following are given:
—e=(letz = e;in ey)
~T,a’ iK' Ty e :B|e, and
~T,0! iK' Ty,z:BFey:Ale.
By the induction hypothesis, we have
— T, 0587 /a1 + e[S /a!] : B[S /a!] | ¢[ST /'] and
—T1,05[8"/a!],z: B[ST/a!]F e[S /o] - A[ST/al] | e[S!/al].
Thus, T_LET derives

I, T5[87/al]Fletz = e[S /al]in (e[S /al]) : A[ST/al] | e[S /a!]
and since
(letz = e, in e)[ST /al] = let z = e;[S! /a!]in (ex[S! /al])

holds, the required result is achieved.
Case T_SuUB: For some A’ and €', the following are given:
~T,al iK' TyFe: A | and
~T,al :K' ToFA | < Ale.
By the induction hypothesis and case (4), we have
— T, 0587 /ol e[ST/al] : A[ST/al] | £'[8T /a!] and
— Iy, To[8" /ol - A'[ST/al] | £'[ST /ol <: A[S"/al] | e[S /al].
Thus, T_SUB derives

1, T2[8! /o] e[S!/al] : A[S!jal] | [S! /o]

as required.
Case T_Op: For some op, [, So™, T, o, ao™, Ko™, 37, K”‘], A’, and B’, the following are given:

— €=0pP; g, T/,
— A= (AT 187)) S sy (BT /87,
— =0,
— | = Vaph : Koo € 2,
—op:VB’ : K" A" = B € 0[So" /ag™],
—FI,al KTy,
~T,al : K' Ty So™ : Ko™, and
~Iy,al KL D17 K

By cases (1) and (2), we have
— F T, 19[S /al],

26

— I, D[S /al] - So[ST/al]™ : Ko®, and
— I, Te[8! /el - T[S /ol - K77

Since
— ((1S™)N)[S" /a!] = (1 S6[S" /al]")" and
- 0[87/a!] =0,

T_OpP derives
J J J
L1, Ta[S"/al] b op, g g1 oo TIST/a!]” - AYTST /'] /B7] = | o151 jaryoy BolT[S"/a']"/B7] | 0

where
op: VB’ K" Al = Bl € o[So[ST/a']" Jao™].
Without loss of generality, we can assume that, for any i € I, a; ¢ FTV(A’) UFTV(B’), and
({a;} UFTV(S;)) N ({ao™} U{B”}) = 0. Then,
- AT /878 o) = A T[S /ad]” /8] amd
- BT /87)[S" /a!] = BTIS" /al)’ /8]
hold. Therefore, the required result is achieved.
Case T_HANDLING: For some N, ¢/, A, €', 1, So™¥, oo™, Ko™, h, and o, the following are given:
— e = handle; g v ¢ with h,
~T,al iK' TobFe: A ¢,
— = Vao : KgV.o € E,
—TI',al : K1 Ty F S : KoV,
— Tyl K To by jagn) i A = A, and
— (l SON)T Oen~e.
By the induction hypothesis, case (2), and the fact that a typelike substitution is homomorphism for
® and ~,we have
— I, D[S /al] - So[ST/al]" : KoV,
— T, 0587 /a1 e'[8T/al] - A'[ST/a!] | €'[ST/al],
— D1, 12087 /@] sy jaohist jar] BIST /al] = A'[ST jal] =215"/'] A[ST/a!], and
— (18o[ST/ad))T @ e[S Jal] ~ &[S Jal].
Now, because we can assume that
—{ayn{ao™} =0 and
— {a"}NFTV(S) =0
without loss of generality, we have

I'1,To[S"/al] (WS /al]: A'[ST [al] =#18' /e 418 ja],

o[So[ST /0" 1" JaoV
Thus, T_HANDLING derives

I'1,T3[S?/a!] - handle N e[S’ /al]with h[ST /a!] : B[S /a!] | £[S!/al].

1So[ST/af
Case H_RETURN: For some z and e,, the following are given:
— h={returny — e},
— o={}, and
~Ty,al iK' Ty,z:AbFe.:B|e.
By the induction hypothesis, we have
— Ty, 058" /al],z : A[ST/al!|F e[S /al] : B[S /a!] | c[S!/al].
Thus, H_RETURN derives

1,Ts by {returnz — ¢,[S7/a’]} : A[ST/a’] =°15"/*7] B[ST/a].
Case H_Opr: Without loss of generality, we can choose ,BJ such that:

—{B'yn{a’} =0 and

27

—{B7}nFTV(ST) = 0.
For some b/, ¢’, op, A’, B’, and e, the following are given:
— h:h’w{opﬂ‘]:KkaH e},
—~o=0W{op:V38’ : K'. A = B'},
—I',o! iK' Tyby b/ : A=€ B, and
~T,0! :K' 15,8’ K’ p: A k:B —-.BFe:B|e.
By the induction hypothesis and Definition 1.10, we have
— o[S'/al) =d'[8TJa!|w{op: VB’ : K’ .A'[S"/a!] = B'[S'/al]},
— D1, T2[87 /@l] st jan W8T /@] A[ST jal] =215'/«'] B[S! /o], and
— T, 0587 /a!],87 : K7 p: A'[ST/a!], k : B'[S"/af] e8! jad] B[ST /o' e[ST/a!] : B[ST/a'] |
e[S /al].
Thus, H_OP derives

1, T[S /al] Fyist jar ST /el {opB” : K pk = e[S /al]} : A[ST/a!] 218"/« B[ST/al).

|
Lemma 3.11 (Well-kinded of Subtyping).
o I[fTFA<: B, thenT'FA:Typ and '+ B : Typ.
o IfTH A |e1<:As|e, thenTH A;: Typ and T ¢, : Eff for i € {1,2}.
Proof. Straightforward by mutual induction on the subtyping derivations with Lemma 3.6. |

Lemma 3.12 (Well-kinded of Typing).
(1) IfTFe:Ale, thenTHA: Typ andT'F ¢ : Eff.

(2) If Tty h: A=° B, thenTH A: Typ and '+ B : Typ and T+ ¢ : Eff.

Proof. By mutual induction on derivations of the judgments. We proceed by cases on the typing rule applied

lastly to the derivation.

Case T_VAR: We aregivene =0 and T and I' =T,z : A,T's for some z, 'y, and I's. Because - T, it is
easy to prove that 'y F A : Typ using Lemma 3.1. Then, by Lemma 3.5, I'1,z : A,I's - A : Typ. We
also have I' - 0 : Eff because 0 is well-formedness-preserving.

Case T_ABs: For some [, z, ¢/, B, C, and €', the following are given:

e=fun(f,z,¢e),
e A=B —. 07
e £ =0, and
elf:B—. C,x:BkFe:C|¢€.
Since 0 is well-formedness-preserving, we have I' - 0 : Eff. By the induction hypothesis, we have T, f :
B —. C,z:BF C:Typ. By Lemma 3.1, we have - I', f : B —. C,z : B. Since only C_VAR can derive
FI,f:B—. C,xz:B,wehaveI',f : B—. CF B:Typ. By Lemma 3.1, we have F ', f : B —./ C.
Since only C_VAR can derive FI',f : B —., C, we have ' - B —., C : Typ.
Case T_App: For some vy, vz, and B, the following are given:
® =y,
e'Fwv:B—.A]0, and
e'Fw:B|0.
By the induction hypothesis, we have ' - B —. A : Typ and I' - 0 : Eff. Since only K_FUN can derive
I'FB—.A:Typ,we have ' A : Typ and T' F ¢ : Eff as required.
Case T_TABs: For some o, K, ¢/, B, and ¢’, the following are given:
e e=Aa:K.¢,
e A=VYa:K.B,

e ¢ =0, and

28

el a:KFe:Ble.
Since 0 is well-formedness-preserving, we have I' - 0 : Eff. By the inducti/on hypothesis, we have I', « :
KFB:Typand I',a: K ¢’ : Eff. Thus, K_PoLy derives I' - Vo : K.B® : Typ.
Case T_TAppP: For some v, S, A’, ¢/, a, and K, the following are given:
e c=0S,
o A= A'[S/a],
e =¢€'[9/a],
o THu:Va: KA | 0, and
e 'S K.

By the induction hypothesis, we have I' F Va : KA . Typ. Since only K_PoLYy can derive I' F Va :

KA Typ, we have o : K + A" : Typ and ', : K F ¢ : Eff. By Lemma 3.10(2), we have
'k A'[S/a] : Typ and I' F €'[S/a] : Eff as required.

Case T_LET: For some z, €1, es, and B, the following are given:
e ¢ = (letz =eriney),
eT'Fe:Ble and
el z:Ble:Ale.
By the induction hypothesis, we have I';z : BF A : Typ and I' - ¢ : Eff. By A(T',z : B) = A(T") and
Lemma 3.2(2) and Lemma 3.6, we have I' - A : Typ as required.
Case T_SUB: For some A’ and ¢’, the following are given:
el'Fe: A |& and
e 'A< Ale.
By Lemma 3.11, we have ' - A : Typ and I' - ¢ : Typ.
Case T_Op: For some op, [, ST, T, 0, a!, K!, 87, K’ A", B', the following are given:
o c=opg T,
A= (AT B') sy (BITY/87)),
o l:Val i Kloez,
op:V8’ : K" A = B € o[ST/al],

o FT,
e I'F ST K! and
eI-T' . K".

Since 0 is well-formedness-preserving, we have I' = 0 : Eff. Without loss of generality, we can assume that
a! and 87 do not occur in I'. Then, because there exist some A” and B” such that

e al : K! g7 K"+ A" : Typ,

e al K" 8’ K"+ B": Typ,

A"[ST/al] = A, and

B"[8'/a!] = B,

Lemma 3.5 and 3.10(2) imply T' A’[TJ/ﬁJ] : Typ and T' + B'[T‘]/,BJ] : Typ. Thus, K_FUN derives
U'H (AT /B7)) = sy (B'[T7/B7]) : Typ.

Case T_HANDLING: For some 4’, o, N, oV, and 8", we have
Ihgisvjan b: Al =F A
By the induction hypothesis, we have ' - A : Typ and I' F ¢ : Eff.
Case H_RETURN: For some z and e,, we have
I'z:AF e :B|e.

By the induction hypothesis, we have

29

e z:AF B: Typ and
e I'z: Al e: Eff.
By Lemma 3.2(2), we have
e A+ B: Typ and
e AT Fe: Eff.
By Lemma 3.6, we have
e ' B: Typ and
o '+ c: Eff.
Now, we have T,z : A by Lemma 3.9. Since only C_VAR can derive - I',z : A, we have I' - A : Typ.
Case H_Op: For some b/ and ¢/, we have T' -,/ b’ : A =¢ B. By the induction hypothesis, we have I' - A : Typ

and ' B:Typand I' ¢ : Eff.
|

Lemma 3.13 (Inversion of Subtyping).
(1) IfTHC <: Ay —¢, By andT'F 0 : Eff, then C = As —., By such that '+ Ay <: As, '+ By <: By, and
'k g9 Qeq.

(2) IfTH C <:Va: K.A1** and T+ 0 : Eff, then C = Vo : K. A" such that T,a : K F Ay <: Ay and
INa: Kkey©eq.

Proof.
(1) By induction on a derivation of ' F C <: A; —., By. We proceed by case analysis on the subtyping rule
applied lastly to this derivation.

Case ST REFL: ' - A; —., By : Typ and C = A; —., B; are given. Because only K_FUN can derive
' Ay =, By :Typ, wehave ' - A; : Typ, ' F¢; : Eff, and I' - B; : Typ. By ST_REFL,
'+ A; <: Ay and '+ By <: By hold. By Lemma 3.3(1), I' - €1 © &1 holds.

Case ST_Fun: Clearly.
Case others: Cannot happen.

(2) By induction on a derivation of I' - C <: Vo : K.A;1°'. We proceed by case analysis on the subtyping rule
applied lastly to this derivation.

Case ST _REFL: ' - Vo : K.A1°* : Typ and C = Vo : K.A;°! are given. Because only K_PoLy can
derive ' F Vo : K.A1°' : Typ, we have I'a: K+ A1 : Typand ', : K I g1 : Eff. By ST_REFL,
I'a: K+ Ay <: A holds. By Lemma 3.3(1), T',a: K Fe1 ©¢;.

Case ST_Pory: Clearly.

Case others: Cannot happen.

Lemma 3.14 (Inversion).
(1) IfTFv:Ale, thenTHv:A]0.

(2) IfT +fun (f,z,e) : Ay =, Bi| ¢, thenT',f : Ay —¢, Ba,x : Ao b e : By | e2 for some Aa, €2, and Ba
such that T'F Ay —., Ba <: A1 —¢, Bi.

(3) IfTHAa: K.e:Va: K.A1® | e, thenT,a: KFe: Ay |e.

(4) IfT'Fop, gt T? : Ay —., By | ¢, then the following hold:
o l:Val i Kloeg,
e op:VB8’ : K" A= BecolS'/al],

o FT,
e I'+ST: K,
e T+HT': K",

Ik A < AT /87,
I'+ B[T?/B7) <: By, and

30

e TH(ISH g
for some a!, K, o, 37, K'’, A, and B.

(5) If T+ vy va : B | g, then there exists some type A such that T v : A=, B|0 and T v : A|0.

Proof.
(1) By induction on a derivation of ' - v : A | e. We proceed by cases on the typing rule applied lastly to

(4)

this derivation.
Case T_VAR: Clearly because of € = 0.
Case T_ABs: Clearly because of € = 0.
Case T_TABs: Clearly because of € = 0.
Case T_Op: Clearly because of ¢ = 0.
Case T_SUB: For some A’ and ¢’, the following are given:

eI'Fv:A"|¢& and

e I'HA < Ale.

By the induction hypothesis, I' - v : A’ | 0. Since only ST_Cowmp derives ' - A" | &/ <: A | ¢, we

have I' - A’ <: A and T' - ¢’ © . Because of Lemma 3.3(1), I' - 0 © 0 holds. By T_SuB, we have
I'v:A]0 as required.

Case others: Cannot happen.

By induction on a derivation of T' - fun (f,z, e) : Ay —., B1 | £. We proceed by cases on the typing rule
applied lastly to this derivation.

Case T_ABs: T',f : Ay =, Bi,z: A1 F e: By | g1 is given. By Lemma 3.12, we have ' - 4; —, By :
Typ. Thus, ST_REFL derives I' - A; =, By <: A1 =, By.
Case T_SuUB: For some C and €', the following are given:
e 'Hfun(f,z,¢): C|e and
e I'HC|e <Ay —¢ B e
Since only ST_CoMP derives I' H C | ¢’ <: A1 —,, By | &, we have ' F C <: Ay —., Bi.

By Lemma 3.13(1), C = Ay —., By for some As, €2, and Bs. By the induction hypothesis and
Lemma 3.4, the required results are achieved.

Case others: Cannot happen.

By induction on a derivation of T'+ Aa : K.e : Vo : K.A1°* | e. We proceed by cases on the typing rule
applied lastly to this derivation.

Case T_TABs: Clearly.

Case T_SUB: For some B and ¢’, the following are given:
e I'Aa: K.e: B|¢& and
e I'FB|e <:Va:K.A e
Since only ST_CoMP derives I' - B | ¢/ <: Va : K.A1°! | ¢, we have ' F B <: Va : K.A:°'. By
Lemma 3.13(2), we have B = Va : K.A5"? for some Ay and e such that
e a: K+ Ay <: Ay and
e [Na:KFey e,
By the induction hypothesis, we have I',a: K e : Ag | e2. Thus, T_SUB derives I',a: K - e: Ay |
€1, because ST_CoMP derives ', : K F Ag | 65 <: Ay | €1.

Case others: Cannot happen.

By induction on a derivation of I' - op; g1 T : Ay —., B | e. We proceed by cases on the typing rule
applied lastly to this derivation.
Case T_Op: For some o, K!, o, 87, K’J, A, and B, the following are given:

e l:Val :Kloez,

e op:V3’ : K’ A= B e[S /al],

o FT,

e I'tST: K’

31

e I'-T': K",

Ay = A[TY /8],

By = B[T’/B’], and

e = (181

By Lemma 3.12, we have I' F A; —., By : Typ. Since only K_FUN can derive I' - A; —., B; : Typ,
we have

e I'-A[T’/B"]: Typ,
o ' (18")T: Eff, and
e '+ B[T?/B’]: Typ.
Thus, the required results are achieved by ST_REFL and Lemma 3.3(1).

Case T_SUB: For some C and €', the following are given:
e 'Fop,gT/:C|¢e and
e I'HC|e <Ay —¢ B e
Since only ST_CoMP can derive I' = C | & <: Ay =, By | &, we have I' - C <: Ay —,, B;. By
Lemma 3.13(1), we have C = Ay —., By such that
o ' Ay <: AQ,
e ' By <: By, and
e 'Fey©eq.
By the induction hypothesis,
o l:Val i Kloez,
e op:VB8’: K’ A= BeolS'/a],
o T,
e I'+ST: K,
o T-T’ . K",
L+ Ay <: AT /B7],
I'+ BT’ /87| <: By, and
I'F(S8H ee,.
By Lemma 3.4 and Lemma 3.3(2), the required result is achieved.

Case others: Cannot happen.

(5) By induction on a derivation of T'F vy w5 : B | e. We proceed by cases on the typing rule applied lastly to
this derivation.
Case T_App: Clearly.

Case T_SuUB: For some B’ and ¢’, the following are given:
e I'Fwvy: B |e and
e I'-B'|e <:B|e.
By the induction hypothesis, we have
eT'Hu :A—, B |0and
eTHuw:A|0
for some A. By Lemma 3.12, we have ' H A : Typ and I' - 0 : Eff. Thus, ST_REFL derives

'+ A <: A and Lemma 3.3(1) derives I' - 0 © 0. Therefore, by ST_FuN and ST_Comp, '+ 4 — ./
B'|0<:A—.B|0. Then, by T.SuB,I'+v; : A —. B |0.

Case others: Cannot happen.

Lemma 3.15 (Canonical Form).
(1) If 0 v: A —. B | &, then either of the following holds:

e v =fun(f,z,e) for some f, x, and e, or

e v=o0p;g! T’ for some op, I, St and T’ .
(2) If v :Va: K.A%| &, then v = Aa : K.e for some e.
Proof.

32

(1) By induction on a derivation of ' v : A —. B | /. We proceed by cases on the typing rule applied lastly
to this derivation.

Case T_VAR: Cannot happen.

Case T_ABs: Clearly.

Case T_SuB: For some C, the following are given:
eI'Fv:C|e"” and
e I'FC|e"<:A—.B|¢.

By Lemma 3.13(1), we have C = A; —., By for some Ay, €1, and B;. By the induction hypothesis,
the required result is achieved.

Case T_Opr: Clearly.
Case others: Cannot happen.
(2) By induction on a derivation of ' - v : Vo : K.A® | /. We proceed by cases on the typing rule applied
lastly to this derivation.
Case T_VARr: Cannot happen.
Case T_TABs: Clearly.

Case T_SuB: For some B, the following are given:
eI'Fwv:B|e& and
e I'FB|e"<:Va: K.A® | €.

By Lemma 3.13(2), we have B = Va : K.A;°* for some A; and ;. By the induction hypothesis, the
required result is achieved.

Case others: Cannot happen.
|
Lemma 3.16 (Inversion of Handler Typing).
(1) If T\, h: A=< B, then there exist some x and e, such that returnz — e, € h andT,z: At e, : B|e.
(2) If Ty h: A=< B andop:YB’ : K/ A’ = B’ € 0, then
e opB’ K pkechand
o138 :K' p:Ak:B -.BFe:B|e
for some p, k, and e.
Proof. (1) By induction on a derivation of ' F, h : A =° B. We proceed by cases on the typing rule applied
lastly to this derivation.
Case H_RETURN: Clearly.
Case H_Op: Clearly by the induction hypothesis.

(2) By induction on a derivation of T' b, h : A =° B. We proceed by cases on the typing rule applied lastly
to this derivation.

Case H_RETURN: Clearly because there is no operation belonging to {}.
Case H_Op: For some h’, o', op’, ,6"‘]/, K’J/, A" B", p', k', ¢, the following are given:
e h="hW {op’ﬁ'J, K" p' K — e},
e 0 =0 W{op: VB'J/ LKA = B},
e ', A : A=*° B, and
. F,ﬁ"j/ : K'J/,p’ A" K :B”" —».BFe:B|e.
If op = op’, then clearly.
If op # op’, then clearly by the induction hypothesis.
|

Lemma 3.17 (Independence of Evaluation Contexts). IfI' - Ele] : A | e, then there exist some A’ and ' such
that

eI'Fe:A|é, and

33

o I'TVF E[e]: A e holds for any ¢ and I such that T, T ¢ : A" | €.

Proof. By induction on a derivation of I' - Ele] : A | e. We proceed by cases on the typing rule applied lastly
to this derivation.
Case T_LET: If E =0, then the required result is achieved immediately.

If £ # [, then we have
o F=(letz = F'iney),
e I'F F'le]: B|e, and
e z:Ble:Ale,
for some z, E’, es, and B. By the induction hypothesis, there exist some A’ and ¢’ such that
eI'Fe:A"|€, and
e for any e’ and IV such that I',\TV - ¢’ : A’ | &/, typing judgment I', TV I E’[¢] : B | € is derivable.
Let ¢’ be an expression and I be a typing context such that T', T - e’ : A’ | /. Without loss of generality,
we can assume z ¢ dom(I"”). The induction hypothesis result implies I', I" F E’[¢'] : B | e. By Lemma 3.5
and T_LET, it suffices to show that + I, I, which is implied by Lemma 3.9.
Case T_SuB: For some A’ and €', given are the following:
o I'-Ele]: A’ | ¢ and
e T'HA | < Ae.
By the induction hypothesis, there exist some A” and ¢” such that
eT'Fe:A"|e" and
e for any e’ and I such that I'\TV I e’ : A” | £, typing judgment T',T" - E[e] : A’ | & is derivable.
Let €’ be an expression and I'" be a typing context such that I' TV - ¢’ : A” | €”. Since only ST_COMP can
deriveI'F A’ |’ <: A|e,wehaveI'F A’ <: Aand T'F &' ©ec. Wehave I'T"F A’ <: Aand I\ I &' ©@¢
by Lemma 3.9, Lemma 3.5(2), and Lemma 3.5(3). Thus, because I, TV F E[¢'] : A’ | & by the induction
hypothesis result, ST_Comp and T_SUB derive I',T" - E[e'] : A | e.
Case T_HANDLING: If E = [0, then the required result is achieved immediately.
If £ # 0O, then we have
e £ =handle,gv E' with h,
e ' E'le]: A" | €, and
e ISMToen~e,
for some I, SV, E’, h, A’, and ¢’. By the induction hypothesis, there exist some A” and &” such that
eI'Fe:A"|e" and
e for any e’ and I such that T',T' F ¢’ : A” | £, typing judgment T', TV - E’[e’] : A’ | £’ is derivable.
Because the premises of T_HANDLING other than the typing of handled expressions are independent of

the handled expressions, the required result is achieved by Lemma 3.9, Lemma 3.5, and Lemma 3.2(2).

Case others: Clearly because F = [.
|

Lemma 3.18 (Progress). If 0+ e: A | e, then one of the following holds:
e ¢ is a value;

e There exists some expression e such that e — ¢€’; or
e There exist some op, I, 8T, T’ v, E, and n such that e = Elop; g1 T’ v] and n—free(1S', E).

Proof. By induction on a derivation of § F e : A | e. We proceed by cases on the typing rule applied lastly to
this derivation.
Case T_VAR: Cannot happen.

Case T_ABs: e is a value because of e = fun (fi, z1, e1) for some f, 21, and e;.

Case T_App: For some vy, vz, and B, the following are given:

34

® €= 171 Vg,
e v :B—.A]|0, and
e Jlw:B]loO.
By case analysis on the result of Lemma 3.15(1) on @ - v; : B —. A | 0.
If vy = fun (fi, 21, e1) for some fi, z1, and ey, then R_ApPp derives e — e [fun (fi, z1, e1)/f1][v2/z].
If v1 = op;gr T for some op, I, S', T, then the required result is implied by Lemma 3.14(4) and the
fact that e = O[op; g: T).

Case T_TABs: e is a value because of e = Aa : K.ey for some «, K, and e;.

Case T_TApp: For some v, a, S, K, Ay, and €1, the following are given:
e c=1u0S,
o A= Ay[S/a],
o = =¢1[5/q],
e P v:Va:K.A® |0, and
e S K.
By Lemma 3.15(2), we have v = Ao : K.e; for some e;. Thus, R_TAPP derives e — e1[S/a].

Case T_LET: For some z, €1, es, and B, given are the following:
e ¢ =(letz =eriney),
e)¢ :Ble, and
e z:BFey:Ale.
By the induction hypothesis, we proceed by cases on the following conditions:
(1) e is a value,
(2) There exists some e] such that e; —],
(3) There exist some op, I, S, T”, v, E, and n such that ¢; = E[op, gt T’ v] and n—free(1 8’ E).
Case (1): R_LET derives e — ez[v1/x] because e; is a value ;.
Case (2): Since only E_EVAL can derive e — €], we have
e ¢; = Fifen],
e ¢ = Ey[ers], and
® €11 — €12,

for some Ej, €11, and ejp. Let E = (letz = Ejiney). E_EVAL derives e — FE[eja] because of
e = E[elﬂ.

Case (3): Clearly because e = (let z = E[op, s T” v]in e;) and n—free(l 87 let z = Ein ey).
Case T_SuUB: Clearly by the induction hypothesis.
Case T_Op: e is a value because of e = op; g1 T for some op, I, S, and T.

Case T_HANDLING: For some ey, h, [, SV, o, K", A;, and e, given are the following:
e ¢ = handle; g~ ¢; with h,
o e : Ay e,
o l:VaV : KN oseg,
e 0 SV KV,
® Digignjany h: Ay = A, and
e (ISM)T@e~e.
By the induction hypothesis, we proceed by cases on the following conditions:
(1) e is a value,
(2) There exists some e] such that e; — €],

(3) There exist some op’, I/, S’N/, T, v, E, and n such that e; = E[Opll/ g7 T’ v] and n—free(l’ S’N/, E).

35

Case (1): By Lemma 3.16(1), there exists some z and e, such that returnz — e, € h. Thus,
R_HANDLE] derives e — e,[v1/z] because e; is a value v;.

Case (2): Since only E_EVAL can derive e — e, we have
o ¢ = Elern],
e ¢ = E[ern], and
® €11 — €12,
for some E, €11, and ej3. Let E = handle; gv F; with h. E_EVAL derives e — Fejs] because of
e = Elen].
Case (3): If ISN £ .S"N/7 then e = (handle; gv E with h)op,, o T’ v] and
n—free(l’ S”N/7 handle; gv F with h).
ISy =v S'N/7 then by Lemma 3.17 and 3.14(4), we have
o 'V K'Y o' € = and
o op’ V3" K} A = B¢ U’[.S”N//cx’]\[/]7

N’ N’ J . N’
for some o’ , K’V , o/, 8’7, A’, and B’. Therefore, since [8" =1’ '™, we have

e 0=0,

o ol :a’N/, and

o KV = K,V
By 0 Fopgvjany h i Ap =° A and op’ : va'’ . K(;J.A’ = B’ € 0[SV /a] and Lemma 3.16(2), we
have

op’ﬁ’J:K(;kaH ech

for some p, k, and ¢’. If n = 0, the evaluation of e proceeds by R_.HANDLE2. Otherwise, there exists
some m such that n = m + 1 and m—free(l SV, handle, gv E with h).

Lemma 3.19 (Preservation in Reduction). If@te: A|c and e — ¢/, then e’ : A|e.

Proof. By induction on a derivation of I' e : A | e. We proceed by cases on the typing rule applied lastly to
this derivation.

Case T_VAR: There is no ¢’ such that e — ¢’.
Case T_ABS: There is no e’ such that e — €’.

Case T_APP: Since only R_APP can derive e — ¢’, we have
e ¢ = (fun(fi,z1,e1)) v,
o fFfun(fi,z1,e1): Ay = A0,
o fFwy: A0, and
o ¢/ =efun(fi, 21, e1)/fi][v2/m1]
for some fi, z1, €1, v2, and A;. By Lemma 3.14(2), we have
o fii Ay —., Ba,xy i Ao b eg : By | g2 and
o Ay =, By <: 4] —. A.

for some A, €2, and By. Thus, T_ABS derives § - fun (fi, 71, e1) : Aa =, B2 | 0. By Lemma 3.13(1), we
have

.@l—A1<:A2,
e) By <: A, and
.@"62@8.

By Lemma 3.9 and Lemma 3.5(3), we have f; : Ay —., Bo, 11 : Ao b By <: A. Because Lemma 3.5(2),
ST_CoMP derives fi : Ay =, Ba, 21 : Ao b By | g9 <: A | . Therefore, T_SUB derives fi : Ay =, Ba, 21 :
As b e : A e. Since T_SUB derives () - v9 : A | 0, Lemma 3.7(5) makes 0 - e [fun (fi, 21, 1) /fi][ve/m1] :
A | € hold as required.

36

Case T_TABs: There is no e’ such that e — €’.

Case T_TAPP: Since only R_-TAPP derives e — ¢’, we have
e e=(Aa:K.e) S,
o A= Ay[S/q],
o = =¢1[5/q],
e P Aa: K.eq:Va: K.A1' |0,
e)-S: K, and
o ¢/ = e[S/
for some «, K, €1, S, 41, and 1. By Lemma 3.14(3), we have ac: K €1 : A1 | 1. Thus, Lemma 3.10(5)
makes 0 F e1[S/a] : A1[S/a] | £1[S/a] hold as required.
Case T_LET: Since only R_LET derives e — €', we have
e e=(letz=vine),
e PF-v:B|e,
e z:BlFe:Ale, and
o ¢ =¢i[v/x]

for some z, v, e;, and B. By Lemma 3.14(1) and Lemma 3.7(5), we have 0 b e;[v/z] : A | ¢ as required.

Case T_SuB: For some A’ and ¢/, we have
e Ple:A"|e and
e A< Ale.
By the induction hypothesis, we have) - ¢’ : A’ | /. Thus, T_SUB derives e’ : A | ¢ as required.

Case T_Op: There is no e’ such that e — ¢’.

Case T_HANDLING: We proceed by cases on the derivation rule which derives e — ¢'.
Case R_HANDLE1l: We have
e ¢ = handle, g: v with h,
e returnz — e, € h,

e)Fv:B|¢,
o l:Val i Kloez,
e I'+S': K,

o () Folsijar) bt B =° A,

(18" T@e~¢, and

e = e lv/z)

for some I, 8T, a!, K', o, v, h, B, and ¢’. By 0 Foisijai) b B =° A and returnz — e, € h and
Lemma 3.16(1), we have

z:BFe :Ale.

By Lemma 3.14(1), we have | - v : B | 0. Thus, Lemma 3.7(5) makes () - e.[v/z] : A | ¢ hold as
required.
Case R_HANDLE2: We have
e ¢ = handle, gv E[opg; gv T’ v] with h,
o l:VaV : KNoe =,
o 0 SV K",
o opo By’ 1 Ko’ poko — eg € h,
O—flree(lSN7E)7
o 0 Elopy;gv T’ v]: B| ¢,
) '_U[SN/aN] h:B=*° A7
e (18T oen~e, and

37

o ¢ = e[T? /By [v/po][\z.handle, gv E[z] with h/k]
for some I, SN, E, opo, T, v, h, o, KV, o, Bo”, Ko”’, po, ko, €0, B, and &’. By Lemma 3.17,
there exist some B; and &7 such that

o O Fopo,gn T’ v: By | ey, and

e for any ¢” and I'', if T - e” : By | e1, then T" + E[e”]: B | &'.
By Lemma 3.14(5), we have) - opg;gv T” : Ay =, By | 0 and 0 F v : A; | 0 for some A4;. By
Lemma 3.14(4) and 3.16(2), we have

e opy: VB, : Ko’ . Ay = By € 0[S Ja],

e)+ SV . KN,

e 0FT’: Ko/,

o D Ay <: Ao[T” /By,

e 0+ By[T?/B,”] <: By, and

e 0F (18N oe.
for some Ag and By. Thus, T_SUB with (} - 0 © 0 implied by Lemma 3.3 derives

D v: Ao[T?/B,7]] 0.

By Lemma 3.11, we have () - Bo[T”/B,”] : Typ. Thus, C_VAR derives - z : Bo[T”?/B,”’]. By
0+ 0:Eff,) e : Eff implied by Lemma 3.12, and 0 ©®&; ~ 1, we have) - 0 © £1. Since T_VAR
and T_SUB derives z : Bo[T” /Bo”| F 2 : By | €1, we have

z: By[T?/B,’] - handle, gv E[z] withh : A | ¢
by the result of Lemma 3.17, Lemma 3.5, and T_HANDLING. Thus, T_ABS derives
0 - Az.handle, gv E[z] withh : By[T”/B,”] —. A | 0.

Since
,BOJ:KO‘],pO:Ao,kQ:BO—>5A}—eO:A|5

by 0 Fognjany b+ B = A and opy : V,E)’OJ : Ko’ . Ag = By € U[SN/aN} and Lemma 3.16(2),
Lemma 3.10(5) and Lemma 3.7(5) imply

0+ eo[T’ /By |[v/po][\z.handle, gv E[z] with h/ko] : A | e

as required.

]

Lemma 3.20 (Preservation). If@e: A|ec ande —> ¢, thenDk e : Ale.
Proof. Since only E_EVAL derives ¢ — ¢/, we have

o c = E[el],

o ¢/ = Eles], and

® ¢ —— €.
By Lemma 3.17, there exist some A’ and &’ such that

e PFe :A'|e, and

o forany ef and IV, if IV e : A’ | &/, then IV - Efej] : A | €.
By Lemma 3.19, we have O F ey : A’ | &’. Thus, § - Efez] : A | € holds as required. []
Lemma 3.21. If n—free(L, E), then n = 0.
Proof. Straightforward by the induction on the derivation of n—free(L, F). |

Lemma 3.22. IfT'+ Efop;g: T' v]: A | ¢ and n—free(1 8’ E), then (18")T @ ¢.

Proof. By induction on a derivation of I' - Efop, g1 TY v] : A | . We proceed by case analysis on the typing
rule applied lastly to this derivation.
Case T_Aprp: For some B, we have

o E=10]

38

eT'Fop T/ :B—. A0, and
el'Fv:B|0.
By Lemma 3.14(4), we have T' (1 87)T @ e. Thus, the required result is achieved.
Case T_LET: For some z, Fy, e, and B, we have
e = (letz=FEjine),
e '+ Eyfop;g: T' v]: B| e, and
elz:Ble:A|e
By n—free(1 87, E1) and the induction hypothesis, we have (I ST @ ¢ as required.
Case T_SuB: For some A’ and ¢/, we have
o T+ Elop; gt T? v]: A’ | ¢ and
eNHA < Ale.

Since only ST_CoMP can derive ' A’ | &/ <: A | ¢, we have ' - ¢’ © e. By the induction hypothesis, we
have (187)" @ ¢’. By the associativity of ®, we have (187)T @ ¢ as required.

Case T_HANDLING: For some [’, S’I,, Ey, h, B, and €', we have
o = handlel, Pt FEy with h,
e '+ Ejfop; gt T/ v]: B| ¢, and
o ('S e~

By Lemma 3.21, we have [S’ #1 s and O—free(lSI,El). By the induction hypothesis, we have
(181" @ ¢’. Thus, safety condition (2) makes (I S”)" @ ¢ hold as required.

Case others: Cannot happen.

Lemma 3.23 (Effect Safety). If T'+ Elop, gt T’ v] : A | e and n—free(1S*, E), then € = 0.

Proof. Assume that € ~ 0. By Lemma 3.22, we have (1 87)" @ . Therefore, we have (1S8")" ®¢’ ~ 0 for some
¢’. However, this is contradictory with safety condition (1). []

Theorem 3.24 (Type and Effect Safety). If0Fe: A |0 and e —* ¢’ and ¢ —/>, then €’ is a value.

Proof. By Lemma 3.20, 0 ¢’ : A | 0 (it is easy to extend Lemma 3.20 to multi-step evaluation). By Lemma 3.23,
e’ # Elop; gn T’ v] for any E, I, S¥, op, T”, and v such that n—free(l 87, E) for some n. Thus, by Lemma 3.18,
we have the fact that ¢’ is a value.]

3.2 Properties with Shallow Handlers

This section assumes that the safety conditions in Definition 1.45 hold.

Lemma 3.25 (Weakening). Suppose that - T'1,Ty and dom(I'y) Ndom(I's) = 0.
(]) Ifl_ F17F3, then F17F2,F3.

(2) IfT1,T3 - S: K, then Ty, T, T3 - S : K.

(3) IfT1, T3+ A<: B, thenT1,T9, T3+ A <: B.

(4) IfT1, T3k Ay | e <: Ao | &g, then T1,T9, T3 Ay | &1 <: Ao | &s.
(5) IfT1, T3k e: Ale, thenT1, T3, Tske: A|e.

(6) If T1, T3 b, h: A< = B, then 1, T'5,Ts by h: A5 =€ B,

Proof.
(1)(2) Similarly to Lemma 3.5(1) and (2).

(3)(4) Similarly to Lemma 3.5(3) and (4).

39

(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.
Case T_SHANDLING: For some N, ¢/, A', &', 1, S¥, K", h, and o, the following are given:
— ¢ = handle; gv ¢/ with h,
—TI,Tske: A,
—l:Va KN o eg,
— Iy, s+ SY . KV,
~ T1,Ts Fyignjan h s A = A, and
- (18N oen~e.
By the induction hypothesis and case (2), we have
— I, T, Tsk e : A | €,
— 1,0, T3+ 8V . KV and
— T4,Ta, Ty bypgn jqm b A”F =5 A,
Thus, T_SHANDLING derives

I'1, T, 75 + handle; gn ewithh : A | e.

Case SH_RETURN: Without loss of generality, we can choose z such that z ¢ dom(I'3). For some e,,
the following are given:

— h={returnz — e},

- J:{}a
- I, T5,2: Ak e.: B|e, and
- Fl,F;gF&/SEﬁ..

By the induction hypothesis, we have I';,I'3,I's,z : A+ e, : B | e. By Lemma 3.25(2), we have
['1,T2,T3 ¢ Eff. Thus, SH_RETURN derives I'y, T'y, T'3 3 {returnz — e, } : A€ =< B.

Case SH_Op: Without loss of generality, we can choose 87 and p and k such that:
—{B}yndom(Iy) = 0,
— p ¢ dom(T'y), and
— k ¢ dom(T'3).
For some b/, o', op, A’, B’, and e, the following are given:
—h=nWw{opB’ : K pk— e},
~o=0w{op:V8' : K'.A' = B},
—T1,T3 by B 2 A5 =° B, and
—I,13,8 K7, p: A k:B —. BF e:B|e.
By the induction hypothesis, we have
— T4,T9, D5 bo b+ A5 =€ B and
~ T, T9,05,8” : K’ p: A k:B —. Bre:B|e.
Thus, SH_OP derives I'1, 'y, ' -, 2" W {op B’ K pkw— e}: A¢ =< B.
Case others: Similarly to Lemma 3.5(5) and (6).

Lemma 3.26 (Substitution of values). Suppose that Ty Fv: A |0.
(1) Ifl_ Fl,m : A,FQ, then Fl,rg.

(2) If T1,z: A,To - S: K, thenT1,ToF S : K.

(3) If T,z : A,Ts F B<: C, thenT1,Is F B <: C.

(4) If T,z : A,Ta b By | &1 <: By | €9, thenT'1,I's b By | &1 <: By | ea.

(5) IfT'y,z: ATokFe:Ble, thenT1,TaF e[v/z]: B |e.

(6) If U1,z : A,To kg h: BS =° C, then T1,Ty by hlv/z] : BS =< C.
Proof.(1)(2) Similarly to Lemma 3.7(1) and (2).

40

(3)(4) Similarly to Lemma 3.7(3) and (4).

(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.
Case T_SHANDLING: For some N, ¢/, A, &', 1, S¥, a¥, KV, h, and o, the following are given:
— ¢ = handle; g~ ¢/ with h,
—Ty,z: ATy ke A€,
l:Va : KN.o ez,
—Ty,2: AT, 8N KV,
1,2 : A,Ts Fygn jan) h: ¥ = B, and
— (I8N oen~e.
By the induction hypothesis and case (2), we have
- I, Tokefv/z]: A | €,
— I, Ty SY: KV and
~ T1,Ta Fyignjan hlv/z] s AF =< A,
Thus, T_.SHANDLING derives

I'1,Ts - handle; gn €'[v/z] with h[v/z] : B | .

Case SH_RETURN: Without loss of generality, we can choose y such that y # z and y ¢ FV(v). For
some e,., the following are given:

— h={returny — e},

-o={},

—Ty,2: A Ts,y: Bk e : C|e, and

—Ty,z: ATy ¢ : Eff.
By the induction hypothesis, we have I'y, T,y : B F e [v/z] : C | e. By Lemma 3.26(2), we have
I'1,Ts k¢’ : Eff. Thus, SH_RETURN derives

', Ty by {returny — e, [v/z]} : B =¢ (.

Case SH_Op: Without loss of generality, we can choose ,8‘] and p and k such that:
- p#Fa,
- k#ux,
p ¢ FV(v),
k ¢ FV(k), and
—{B'}NFTV(v) = 0.
For some I/, ¢’, op, A’, B’, and e, the following are given:
—h=nw{opB’ : K’ pk— e},
—o=0W{op:V3’ : K'. A = B'},
—T1,2:A,To by b/ 2 BE =¢ O, and
—T,2:ATy,B K’ p: A k:B -, Cke:C|e.
By the induction hypothesis, we have
— I, Do by Bv/2] Af =¢ B and
—T1,19,8" :K’,p: A k:B —. Bt e[v/z]: B|e.
Thus, SH_OP derives

Iy, ok, hv/z]w{opB’ : K’ pk s e[v/z]}: B =° C

Case others: Similarly to Lemma 3.7(5) and (6).

Lemma 3.27 (Substitution of Typelikes). Suppose that Ty F ST : K.
(1) If F Ty, af : KT, Ty, then T1,T5[S/a’].

41

(2) IfTy,al - K' Ty T : K, then T, T5[S" /a!| F T[S"/a!] : K.
(3) IfT1,al - KT, Ty A <: B, then T'1,T5[S"/a!| F A[S! /'] <: B[S'/al].

(4) If T1,a! : K'\To - Ay | e1 <t Ag | €2, then T1,To[S"/a!] F A1[S/al] | 1[ST/al] <: A3[ST/a] |
EQ[SI/(XI].

(5) IfTy,af - K' Tyt e: A|e, then Ty, To[ST/al| - e[ST/al] : A[ST/a’] | [ST/a].

(6) If Ti,al : K',Ty by h: A< =< B, then T'1,T2[S"/a!] Fois/a h[S/a] : A[ST/al]18"/'] Sel8'/e]
B[ST/al].
Proof.(1)(2) Similarly to Lemma 3.10(1) and (2).
(3)(4) Similarly to Lemma 3.10(3) and (4).
(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.
Case T_SHANDLING: For some N, ¢/, A, ', I, So, ao™, Ko», h, and o, the following are given:
— e = handle; g v ¢ with h,
~Tal iK' Tyke A ¢,
— l=Vao : KogV.o € =,
—I',ol : KTy So™ : Koo,
—Ti,al i K Do bygon jagn bt AF =€ A, and
— (1S oen~e.
By the induction hypothesis, case (2), and that a typelike substitution is homomorphism for ® and
~, we have
— T, 0587 /a1 e[8T/al] - A'[8T/a!] | €'[ST/al],
1, D[S Jal] F So[ST/a’]" @ KoV,
— D1, 12087 /@] Fyison jaoNiist jar] ST /l] : A'[ST Jal]'[87/e] =" /o'l A[ST /o], and
(1So[S" /o])T ©c[S! /al] ~ e[S jal].
Now, because we can assume that
—{a'}n{ao™} =0 and
— {aoV}NFTV(ST) =9
without loss of generality, we have

/ I a] 1 aI
L1, T[S /] g st /a0 jag IS /'] - A'[ST/al)? [S7/e] elST /] 4187 /o).

Thus, T_.SHANDLING derives

I',I5[S"/a!] - handle v e[S'/al]with h[S'/a!] : B[S!/al]| e[S /al].

18So[S! /e
Case SH_RETURN: For some z and e,, the following are given:
— h={returny — e},
—o={}
I',al iK' Ty,z: A e :B|e, and
—I',al : KI.Ty e : Eff.
By the induction hypothesis, we have
— T, To[8"/al],z : A[ST/a!| F e.[ST/a’] : B[S'/a!] | e[S!/al].
By Lemma 3.27(2), we have
— Ty,15[8" /ol €'[ST/al] : Eff.
Thus, SH_RETURN derives

Iy,Ty by {returnz — e,[S7/a’]} : A[ST/al]'[8"/a 5218"/2'] pIgl /o 1].

Case SH_Op: Without loss of generality, we can choose 87 such that:

42

—{B’}n{a’} =0 and
—{B7ynFTV(S!) = 0.
For some h', o/, op, A’, B’, and e, the following are given:
—h=nw{opB’ : K’ pk— e},
— a:a’&,l{op:v,@‘] K7 A = B},
Ii,al i K' Toby b/ i A5 = B, and
~Ty,al K' 13,8/ :K’,p: A k:B —. BFe:B]|e.
By the induction hypothesis and Definition 1.10, we have
—o[S'/a!]=d'[S"/al W {op: VB : K7 A'[ST/a!] = B[S /al]},
— I, Da[S”/a] st jan WS o] - A[ST ja!]15" /] =el8"/e'] B[S /o], and
- T1.To[8"/a!],B8” + K'.p : A'[S"/a!)k : B'[S'/a’] —.s1/01 BIS'/a] - e[ST/al] :
B[S'/al] | e[ST/al].
Thus, SH_OP derives

1, T[S /al] Fyist jar ST /el {opB” : K7 pk s e[ST/al]} : A[ST /o] 187/l 22187/ BIsT /o).

Case others: Similarly to Lemma 3.10(5) and (6).

|
Lemma 3.28 (Well-formedness of contexts in typing judgments).
o [fTFe:Ale, thenFT.
o IfTk, h: A =B, thentT.
Proof. Straightforward by mutual induction on the derivations. |

Lemma 3.29 (Well-kinded of Typing).
o [fTHe:Al|e, thenT'H A: Typ and '+ ¢ : Eff.

e IfTF, h: A" =B, thenTHA:Typ and "¢’ :Eff and '+ B : Typ and I' + ¢ : Eff.

Proof. By mutual induction on derivations of the judgments. We proceed by cases on the typing rule applied
lastly to the derivation.
Case T_SHANDLING: For some A’, ¢/, o, N, ¥, and SV, we have

T bopsvjan b A =5 A,
By the induction hypothesis, we have ' A : Typ and ' - ¢ : Eff.

Case SH_RETURN: For some z and e,, we have

el z:Al e :B|eand
o I'¢ : Eff.

By the induction hypothesis, we have
e z:AF B: Typ and
o z: At e: Eff.

By Lemma 3.2(2), we have
e AT+ B: Typ and
e AT Fe: Eff.

By Lemma 3.6, we have
e ' B:Typ and
o 'e: Eff.

Now, we have - T,z : A by Lemma 3.28. Since only C_VAR can derive - I",z : A, we have I' - A : Typ.

Case SH_OP: For some h' and o, we have T' b, h/ : A5 = B. By the induction hypothesis, we have
I'rA:TypandT'Fe :Eff andT'F B: Typ and I' - ¢ : Eff.

43

Case others: Similarly to Lemma 3.12(1) and (2).

Lemma 3.30 (Inversion).
(1) IfTFv:Ale, thenTHwv:A|O0.

(2) If T+ fun(f,xz,e): Ay =, By | e, thenT,f : Ao —., Bo,z: Ao b e : By | g9 for some As, €3, and By
such that T'+ Ag ey By <: Aq —e B.

(3) IfTHAa: K.e:Va: K.A1® | e, thenT,a: KFe: Ay |e;.

(4) IfT'Fop, g1 T? : Ay —., By | ¢, then the following hold:
o l:Val i Kloeg,
eop:V3 K" A= B¢ o[8/al],

o T,
e I'+ ST K,
e T+T': K",

T+ A4, <: AT’ /B7],

I'+ B[T7/B7) <: By, and
eTH(SHog

for some a!, K, o, 37, K"], A, and B.

(5) IfT'F vy v : B | €, then there exists some type A such thatT'F vy : A —. B|0and T v : A]0.

Proof. Similarly to Lemma 3.14; Lemmas 3.28 and 3.29 are used instead of Lemmas 3.9 and 3.12, respectively.

[|
Lemma 3.31 (Canonical Form).
(1) If 0 v : A—. B|&, then either of the following holds:
e v =fun (f,z,e) for some f, x, and e, or
o U =o0p;g! T’ for some op, I, ST, and T”.
(2) If0Fv:Va: K.A%| &, then v=Aa: K.e for some e.
Proof. Similarly to Lemma 3.15.]

Lemma 3.32 (Invtlersion of Handler Typing).
(1) IfT b, h: A5 =° B, then there exist some & and e, such thatreturnz +— e, € h andT,z: At e, : B|e.
(2) If Ty h: A% = B andop : V3" : K7.A' = B’ € o, then
eopB’ K pksech and
eT,8/ K’ p: A k:B —. BFe:B|e
for some p, k, and e.
Proof. (1) By induction on a derivation of ' -, h : A" =¢ B. We proceed by cases on the typing rule applied
lastly to this derivation.
Case H_RETURN: Clearly.
Case H_Op: Clearly by the induction hypothesis.
(2) By induction on a derivation of T' -, h : A¥ =< B. We proceed by cases on the typing rule applied lastly
to this derivation.
Case H_RETURN: Clearly because there is no operation belonging to {}.
Case H_Op: For some b/, o', op’, ,6"‘]’, K'J/, A", B" p', k', ¢’ and €, the following are given:
e h="hW {op’ﬁ'J, K" p' k' — e},
e o =c"W{op: V,B'Jl LKA = B},
o 'y I/ : A° = B, and

44

oI.8" K). A" K :B" 5. Bre:B|e
If op = op’, then clearly.
If op # op’, then clearly by the induction hypothesis.
|

Lemma 3.33 (Independence of Evaluation Contexts). IfI' - Ele] : A | e, then there exist some A’ and €' such
that

eT'He:A|e, and
o I'T"F E[e]: A|e holds for any €' and T’ such that T, T e’ : A" | &'
Proof. Similarly to Lemma 3.17; Lemmas 3.25 and 3.28 are used instead of Lemmas 3.5 and 3.9, respectively. W

Lemma 3.34 (Progress). If) e: A | e, then one of the following holds:
e ¢ is a value;

e There exists some expression e such that e — €’; or
e There exist some op, I, ST, T?, v, E, and n such that e = Elop,; g T’ v] and n—free(lSI,E).

Proof. Similarly to Lemma 3.18; Lemmas 3.30, 3.31, and 3.32 are used instead of Lemmas 3.14, 3.15, and 3.16,
respectively. []

Lemma 3.35 (Preservation in Reduction). If0te: A|c and e — ¢/, then Dk €' : A|e.

Proof. By induction on a derivation of I' F e : A | e. We proceed by cases on the typing rule applied lastly to
this derivation.
Case T_SHANDLING: We proceed by cases on the derivation rule which derives e — ¢’.
Case R_HANDLELl: We have
e ¢ = handle; gr v with h,
e returnz — e, € h,

e)Fv:B|¢,
o l:Val i Kloez,
e 0+ ST: K,

[] @ Fo’[sl/al] h : BEI :>E A,
o (18T ®e~¢, and
o ¢/ =e¢ fv/x]

for some I, ST, a!, K!, o, v, h, B, and ¢'. By 0 Forstjan b B =¢ A and returnz > e, € h and
Lemma 3.32(1), we have

z:BlFe :Ale.

By Lemma 3.30(1), we have) - v : B | 0. Thus, Lemma 3.26(5) makes 0 I e.[v/z] : A | € hold as
required.
Case R_HANDLE2: We have
e ¢ = handle, gv E[opy, gv T’ v] with h,
o l:VaV . KNoeg,
e)+ SV . KV,
e opo By’ : Ko’ poko — e € h,
0—free(1 SN, E),
e - Elopo; g T’ v]: B | ¢,
° @ '_O'[SN/QN] h: BE/ =€ A,
o (1SN ®en~e, and
o ¢ = o[T” /By’ [0/ pol Nz El2] /o)

for some I, SN, E, opo, T, v, h, o, KV, o, Bo”, Ko”’, po, ko, €0, B, and &’. By Lemma 3.33,
there exist some B; and €1 such that

° (Z)I—opolSNT‘]v:Bl|51,and

45

o for any ¢” and I, if I - e” : By | e1, then I'' + E[e"] : B | €.
By Lemma 3.30(5), we have) - opg;gv T” : Ay =, By | 0 and 0 F v : A; | 0 for some A;. By
Lemma 3.30(4) and 3.32(2), we have

e opg :V,BO‘] : Ko’ . Ay = By € U[SN/aN],

o 0 SV KN,

e 0T’ : Ko/,

e DAy < AO[TJ/BOJL

e O+ By[T?/B,”] <: By, and

e (18N oe.
for some Ag and By. Thus, T_SUB with (} - 0 © 0 implied by Lemma 3.3 derives

O v: Ao[T? /8,71 0.

By Lemma 3.11, we have @) F BO[TJ/ﬂOJ] : Typ. Thus, C_VAR derives I z : BO[T‘]/,E)'OJ}. By
0+ 0:Eff,) e : Eff implied by Lemma 3.12, and 0 ©®&; ~ 1, we have) - 0 © £;. Since T_VAR
and T_SUB derives z : By[T? /By’ 2 : By | €1, we have

z: Bo[T? /By’ Elz): B| €
by the result of Lemma 3.33. Thus, T_ABS derives
0+ \z.E[z] : Bo[T’ /By’] =< B | 0.

Since
Bo” : Ko’ ,po: Ao, ko: By —o BFey: Ale
by O Fyisv jany bt BS = Aand opg : V3" : Ko’ .Ag = By € o and Lemma 3.32(2), Lemma 3.27(5)
and Lemma 3.26(5) imply
0+ eolT”/Bo”][v/po] [Nz El2] /Ko : A | €
as required.

Case others: Similarly to Lemma 3.19; Lemmas 3.30, 3.25, 3.28, 3.29, 3.26, and 3.27 are used instead of
Lemmas 3.14, 3.5, 3.9, 3.12, 3.7, and 3.10 respectively.

|
Lemma 3.36 (Preservation). Ifec: A|c ande — ¢, then e : A|e.
Proof. Similarly to Lemma 3.20; Lemmas 3.33 and 3.35 are used instead of Lemmas 3.17 and 3.19.]
Lemma 3.37. If ' Efop;g: T' v]: A | ¢ and n—free(1S’, E), then T+ (18" ©¢.
Proof. Similarly to Lemma 3.22; Lemma 3.30 is used instead of Lemma 3.14. |
Lemma 3.38 (Effect Safety). If '+ Elop,; gt T’ v] : A | ¢ and n—free(1S', E), then € = 0.
Proof. Similarly to Lemma 3.23; Lemma 3.37 is used instead of Lemma3.22. |

Theorem 3.39 (Type and Effect Safety). If0e: A |0 and e —* ¢’ and ¢ —/>, then €’ is a value.
Proof. Similarly to Theorem 3.24; Lemmas 3.36, 3.38, and 3.34 are used instead of Lemmas 3.20, 3.23, and
3.18, respectively. [|

3.3 Properties with Lift Coercions

This section assumes that the safety conditions in Definition 1.45 and the safety condition for lift coercions in
Definition 1.46 hold.

Lemma 3.40 (Weakening). Suppose that - T'1,Ty and dom(I'y) Ndom(I's) = 0.
(.Z) If" Fl,rg, then].—‘17].—‘2,].—‘3.

(2) IfT1,T3 - S: K, thenT;,T3,T5 - S : K.

46

(3) IfI‘l,I‘g FA<: B, thenT'1,T'5,T's A<:B.
(4) IfI‘l,I‘g F A | €1 <: As | €9, then Fl,FQ,Fg F A | €1 <: As | £92.
(5) IfT'1,Tst-e:Ale, thenT'1, T3, Tske: A|e.
(6) If T1,Tsts h: A= B, thenT'1,I'9, T3 -, h: A=< B.
Proof.(1)(2) Similarly to Lemma 3.5(1) and (2).
(3)(4) Similarly to Lemma 3.5(3) and (4).
(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.
Case T_LIFT: For some €', L, and €', the following are given:
— e = ey,
- I, Tske:A|e,
— I'y,I's - L : Lab, and
- (D)Tod ~e.
By the induction hypothesis and case (2), we have
— Fl,rg,rg Fe:A ‘ 8/ and
— I'1,I9,T's = L: Lab.
Thus, T_L1FT derives I'1, T2, T3 F [e]L: 4 | €.
Case others: Similarly to Lemma 3.5(5) and (6).

Lemma 3.41 (Substitution of values). Suppose that 'y v : A | 0.
(.Z) If" I‘l,x : A,FQ, then Pl,PQ.

(2) IfT1,z: AToFS: K, then T1,Ta b S : K.
(3) If T1,z: A,ToF B <: C, then 1,5 + B <: C.
(4) If T,z : A\ToF By | g1 <: By | &2, thenT1,To - By | &1 <: By | es.
(5) IfT1,z: A,ToFe: B|e, thenT1,Ia - e[v/z]: B|e.
(6) If Ty,z: ATy b4 h: BS =< C, then Ty, Ty by hlv/z] : B =< C.
Proof.(1)(2) Similarly to Lemma 3.7(1) and (2).
(3)(4) Similarly to Lemma 3.7(3) and 3.7(4).

(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.
Case T_LIFT: For some €', ¢/, and L, the following are given:
- e=[€]L,
—TIy,z: ATk e: B¢,
—I'y,z: A, T9 F L: Lab, and
- (D)o ~e.
By the induction hypothesis and case 3.41(2), we have
—I'1,ToF €[v/z]: B| e and
— T,,TyF L: Lab.
Thus, T_L1FT derives I'1, s F [e'[v/z]]L : 4 | €.
Case others: Similarly to Lemma 3.7(5) and (6).

Lemma 3.42 (Substitution of Typelikes). Suppose that Ty F ST : K.
(1) If F Ty, af : KT, Ty, then +T1,T5[S7/a’].
(2) IfTy,a! : K'. Ty T : K, then T1,T5[S” /o' F T[ST/a!] : K.

47

(3) IfTy,al - KT Ty A <: B, then T'1,T5[S”/a!| F A[S! /'] <: B[S'/a!].

(4) IfFl,aI : KI,FQ [A1 I g1 < A2 | E9, then Fl,Fg[SI/aI] = Al[S]/aI} | 51[.5’[/04]] <t AQ[SI/QI] |
£2[ST/al].

(5) IfT,al - KT Tobe: A|e, then Ty, To[ST/al| F e[ST/al] - A[ST/a!] | €[ST/al].
(6) IfT1,a’ - KT T by h: A=< B, then T'1,T2[S” /] Fors/a) h[S/a] - A[ST jal] =<157/2] B[ST /a]].
Proof.(1)(2) Similarly to Lemma 3.10(1) and (2).
(3)(4) Similarly to Lemma 3.10(3) and 3.10(3).

(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.
Case T_LIFT: For some €', ¢/, and L, the following are given:
— e=[€]L,
Ial i K Tybke A€,
—TI'i,a! : K!',TyF L: Lab, and
- (L)'oed ~e.
By the induction hypothesis, case 3.42(2), and the fact that a typelike substitution is homomorphism
for ® and ~, we have

— T, To[87/al]+ e'[ST/al] - A[ST/a!] | '[8! /o],
— T, T[8"/a!]+ L[S /al] : Lab, and
— (D)1[ST /el 0[S /al] ~ [T /al].
Thus, T_LIFT derives I';, T[S’ /a!] [e’[SI/aI]]L[Sz/az] CA[ST/al] | e[ST/al].
Case others: Similarly to Lemma 3.10(5) and (6).

]
Lemma 3.43 (Well-formedness of contexts in typing judgments).
o [fTFe:Ale, thenT.
o [fTF, h:A=°B, thentT.
Proof. Straightforward by mutual induction on the derivations. |

Lemma 3.44 (Well-kinded of Typing).
e [fTFe:Al|e, then'F A: Typ and ' ¢ : Eff.

o IfFl—gh:AE,:>EB, thenT'H A: Typ and T : Eff and '+ B : Typ and '+ ¢ : Eff.

Proof. By mutual induction on derivations of the judgments. We proceed by cases on the typing rule applied
lastly to the derivation.
Case T_LIFT: For some €', &', and L, the following are given:

o e=[€]L,
eI'Fe:A|e,
e ' L: Lab, and
° (L)T @& ~e.
By the induction hypothesis, we have I' - A : Typ and I' - ¢/ : Eff. (—)", ®, and ~ preserve well-

formedness, we have I' - ¢ : Eff.

Case others: Similarly to Lemma 3.12(1) and (2).

Lemma 3.45 (Inversion).
(1) IfTFv:Ale, thenTHv:A|O0.

(2) If T+ fun(g,z,e) : Ay =, B1 | e, thenT,g: Ay —., Ba,x : Ay F e : By | g9 for some As, €2, and By
such that T' + Ay —eq By <: Aq e B.

48

(8) fTFAa: K.e:Va: K.A1"' |e, thenT,a: K+ e: Ay |e;.
(4) IfT' Fop,gi T? : Ay —., By | ¢, then the following hold:

o l:Val i Kloeg,

. op:V,@‘]:K’J.AéBEU,

o FT,
e I'+ ST K,
e T+T': K",

L+ A <: AlST/a][T? /B8],
I+ B[S'/a!][T’/B7] <: By, and
e TH(ISH og
for some a!, K, o, 37, K"], A, and B.

(5) IfT'F vy v : B | g, then there exists some type A such thatT'F vy : A —. B|0 and T v : A]0.

Proof. Similarly to Lemma 3.14; Lemmas 3.43 and 3.44 are used instead of Lemmas 3.9 and 3.12, respectively.
|

Lemma 3.46 (Canonical Form).
(1) If 0 v : A —. B | &, then either of the following holds:
e v =fun (g, z,¢) for some g, x, and e, or

e v =o0p;gI T for some op, I, ST, and T”.
(2) If v :Va: K.A%| &, then v=Aa: K.e for some e.
Proof. Similarly to Lemma 3.15. [|

Lemma 3.47 (Independence of Evaluation Contexts). IfT'+ Ele] : A | e, then there exist some A’ and &' such
that
eI'Fe: A€, and

o "IV E[e]: A e holds for any ¢ and I such that T, T+ ¢ : A" | €.

Proof. By induction on a derivation of I' - Ele] : A | e. We proceed by cases on the typing rule applied lastly
to this derivation.
Case T_LirT: If E = [, then the required result is achieved immediately.

If £ # 0O, then we have
o F=[F]L,

Tk E'le]: A€,

e '~ L: Lab, and

o (D)ToOE ~k,

for some E’, L, and &'. By the induction hypothesis, there exist some A’ and & such that
eI'Fe:A | and
e for any e’ and I' such that I\ TV ¢’ : A’ | ", typing judgment I',T" F E'[e’] : A | ¢’ is derivable.

Let e’ be an expression and I'” be a typing context such that I', TV I ¢’ : A’ | ¢’. The induction hypothesis
gives us I')TV + E’[¢/] : A | €. By Lemma 3.40(2), we have I',T' + L : Lab. Thus, T_LIFT derives
I,T' - [E'[¢']]L : A | € as required.

Case others: Similarly to Lemma 3.17; Lemmas 3.40 and 3.43 are used instead of Lemmas 3.5 and 3.9,
respectively.
|

Lemma 3.48 (Progress). If 0 e: A | e, then one of the following holds:
e ¢ is a value;

e There exists some expression e such that e — ¢€'; or

49

e There exist some op, I, 8T, T’ v, E, and n such that e = E[op, g: T’ v] and n—free(1S', E).

Proof. By induction on a derivation of § F e : A | e. We proceed by cases on the typing rule applied lastly to
this derivation.
Case T_LIrT: For some e, L and €1, the following are given:

e ¢ =ei]r,
o e :A|er,and
e (L) Oe ~e.
By the induction hypothesis, we proceed by cases on the following conditions:
(1) e is a value,
(2) There exists some ef such that e; — ef,
(3) There exist some op, I, St T, v, E, and n such that e; = Elop,; g T’ v] and n—free(1 S, E).
Case (1): R_LIFT derives [e];, — e; because e; is a value.
Case (2): Since only E_EVAL can derive e — €], we have
e ¢ = Fifen],
e ¢ = Ej[ers], and
® €11 — €12,
for some Ej, e11, and ejo. Let E = ([E1]). E_EVAL derives e — Eej2] because of e = E[e;q].
Case (3): If L# 1 S”, then we have n—free(1 S’ [E]L).
If L =187, then we have n + 1—free(lS”, [E].).

Case others: Similarly to Lemma 3.18; Lemmas 3.45 and 3.46 are used instead of Lemmas 3.14 and 3.15,

respectively.
|

Lemma 3.49 (Preservation in Reduction). If@te: A|c and e — ¢/, then O e’ : A |e.

Proof. By induction on a derivation of T' e : A | e. We proceed by cases on the typing rule applied lastly to
this derivation.
Case T_LIFT: Since only R_LIFT derives ¢ — €', we have

o ¢ =[v]L,
o DFw:Aley,
e)~ L:Lab,
o (L)'®ey ~¢, and
o ¢/ =w.
for some v, L, and ;. By Lemma 3.45(1), we have P v : A | 0. By 00e ~¢, we have v : A | e as

required.

Case others: Similarly to Lemma 3.19; Lemmas 3.45, 3.40, 3.43, 3.44, 3.41, and 3.42 are used instead of

Lemmas 3.14, 3.5, 3.9, 3.12, 3.7, and 3.10 respectively.
|

Lemma 3.50 (Preservation). IfQFe: A|e ande — ¢, then Dk e : A]e.
Proof. Similarly to Lemma 3.20; Lemmas 3.47 and 3.49 are used instead of Lemmas 3.17 and 3.19.]
Definition 3.51 (Label Inclusion).

Label Inclusion

Lo)T ~
LI_EmMPTY e (D) O ~e

LI_HANDLING
Lele Lo e,

L@n €1 (L/)TQ{:‘l ~ &9 L#L/
LO" e

LI_NOHANDLING

50

Lemma 3.52. I[f L©" ¢y and 1 ® ey ~ g3, then L™ 3.

Proof. By induction on a derivation of L ©" ;. We proceed by case analysis on the rule applied lastly to this
derivation.

Case LI_EMPTY: We have n = 0. LI_EMPTY derives L @° 3 as required.
Case LI_HANDLING: We have

e n=n+1,

o Lo €4, and

o (I)TOey~e,

for some n’ and 4. By the induction hypothesis, we have L ©" e5 such that g4 ®ey ~ e5. Thus,
LI_HANDLING derives L @™ *! g3 as required.

Case LI NOHANDLING: We have
o LO" ey,
o (I')"®ey ~eq, and
o LA,

for some L' and &4. By the induction hypothesis, we have L @™ e5 such that 4 ®ey ~ e5. Thus,
LI_NOHANDLING derives L ©" 3 as required.

|
Lemma 3.53. If L&" ! ey and (L)' © ey ~ ey, then L™ ¢;.

Proof. By induction on a derivation of L&" ! e,. We proceed by case analysis on the rule lastly applied to this
derivation.

Case LI_EMPTY: Cannot happen.
Case LI_HANDLING: We have

e Lom™e] and

o (D)TOE] ~ey

for some €]. By safety condition (3), we have g1 ~ &}

. By Lemma 3.52 and €] ®0 ~ ¢, we have L@" &,
as required.

Case LI_ NOHANDLING: We have
e Lontl €3,
o (I')T®e3 ~ ey, and
o LA,

for some L' and e3. By safety condition (2) and L # L', we have (L)' ©®es ~ e3 for some g4. By

safety condition (3), we have 1 ~ (L')T ®e4. By the induction hypothesis, we have L ©" g4. Thus,
LI_NOHANDLING derives L @™ € as required.

|
Lemma 3.54. If L@" &3 and (L) ©e; ~ ey and L# L', then L™ ¢;.

Proof. By induction on a derivation of L @™ €5. We proceed by case analysis on the rule lastly applied to this
derivation.

Case LI_.EMPTY: We have n = 0. LI_LEMPTY derives L &° &, as required.
Case LI_HANDLING: We have

en=n+1,

o Lo €3, and

° (L)T@ég ~ E9,

for some n’ and e3. By safety condition (2) and L # L, we have (L')T ®e4 ~ 3 for some g4. By safety

condition (3), we have e; ~ (L)T ®e4. By the induction hypothesis, we have L&™ ;. Thus, LI_HANDLING
derives L @™ ! ¢ as required.

51

Case LI_NOHANDLING: We have
o LO"es,
o (I'")T®e3 ~ g9, and
«LAL,
for some L” and e3.
If I/ = L”, then we have €1 ~ €3 by safety condition (3). Thus, Lemma 3.52 gives us L@" €1 as required.

If I' # L, then we have (L')T ® &4 ~ e3 for some g4 by safety condition (2) and L’ # L". By safety condi-
tion (3), we have e; ~ (L')T ® 4. By the induction hypothesis, we have L&" e4. Thus, LI_LNOHANDLING
derives L @™ e as required.

|
Lemma 3.55. If 0 E[op,g: T v] : A | ¢ and n—free(1S*, E), then 1 ST @' ¢,

Proof. By induction on a derivation of § - Efop,g: T” v] : A | e. We proceed by case analysis on the typing
rule applied lastly to this derivation.
Case T_App: For some B, we have

o =[]
e OFop,grT’:B—. A|0, and
e F-v:B|o0.
By Lemma 3.45(4), we have () - (1 87)" @ e. Thus, the required result is achieved.

Case T_LET: For some z, F, e, and B, we have
e F=(letz = Fine),
e O+ Eifop, gt T? v]: B | e,
o n—free(1S!, Ey), and
e z:BlFe:Ale.
By the induction hypothesis, we have 1STontle as required.

Case T_SUB: For some A" and ", we have
o 0+ Elop; gt T' v] : A’ | ¢ and
e A < Ale.
By the induction hypothesis, we have [87 ©"+! ¢/, Since only ST_COMP can derive) - A" | &/ <: A | ¢,
we have) ¢/ © e. Thus, Lemma 3.52 derives [87 ©"*! ¢ as required.
Case T_LirT: For some L, &/, and E’, we have
° B =[EL,
e 0 E'lop,g: T/ v]: A€,
e)~ L:Lab, and
o (D)o ~e.

If 1 S’ # L, then n—free(1S’, E'). By the induction hypothesis, we have [87 ©@"+! ¢/. LI_NOHANDLING
derives [ST ©"*1 ¢ as required.

If 1S’ = L, then there exists some m such that n = m + 1 and m—free(I1S’, E’). By the induction
hypothesis, we have [ST @™+ ¢/, LI_HANDLING derives [ST ©™%2 ¢ as required.
Case T_HANDLING: For some !, S’I/7 Ey, h, B, and €', we have
o = handlel, Pt FEy with h,
e 0+ Eifop,g: T’ v]: B| ¢, and
° (l/ S,I/>T®E ~ el
18t £ S'I,7 then n—free(I S’, E;). By the induction hypothesis, we have [S’©"t1¢’. By Lemma 3.54,
we have [ST @nt1e,

irist = v S’[,, then n + 1—free(1S?, ;). By the induction hypothesis, we have 187 @"*2 ¢/. By
Lemma 3.53, we have [ST @nt! ¢

52

Case others: Cannot happen.

Lemma 3.56 (No Inclusion by Empty Effect). If L@" ¢ and e ~ 0, then n = 0.

Proof. By induction on the derivation of L ©™ €. We proceed by case analysis on the rule applied lastly to this
derivation.
Case LI_EmpTY: Clearly.

Case LI_HANDLING: This case cannot happen. If this case happens, we have (L)' ®¢’ ~ ¢ for some m and &’.
Thus, we have (L)' ®¢’ ~ 0 by € ~ 0. However, it is contradictory with safety condition (1).

Case LI_NOHANDLING: This case cannot happen. If this case happens, we have (L')T ®¢’ ~ ¢ for some L/
and ¢’. Thus, we have (L')T ©&’ ~ 0 by € ~ 0. However, it is contradictory with safety condition (1).
|

Lemma 3.57 (Effect Safety). If 0 - E[op, gt T’ v] : A | e and n—free(1S*, E), then € = 0.

Proof. Assume that e ~ 0. By Lemma 3.55 and Lemma 3.52, we have [S @1 0. However, it is contradictory
with Lemma 3.56.]

Theorem 3.58 (Type and Effect Safety). If0e: A |0 and e —* €’ and ¢’ —/>, then €’ is a value.

Proof. Similarly to Theorem 3.24; Lemmas 3.50 , 3.57, and 3.48 are used instead of Lemmas 3.20 , 3.23, and
3.18, respectively. []

3.4 Properties with Type-Erasure Semantics

This section assumes that the safety conditions in Definition 1.45 and the safety condition for type-erasure
semantics in Definition 1.47 hold, and that the semantics adapts R_HANDLE2’instead of R_HANDLE2.

Remark 3.59. The change of semantics only affects Lemma 3.18, Lemma 3.19, Lemma 3.20, Lemma 3.22,
Lemma 3.23, and Theorem 3.24. Therefore, we can use other lemmas in this type-erasure setting.

Lemma 3.60 (Progress). If 0 e: A | e, then one of the following holds:
e ¢ is a value;

e There exists some e’ such that e — ¢€’; or
e There exist some op, I, ST, T’ v, E, and n such that eE[op; g1 T’ v] and n—free(l, E).

Proof. By induction on a derivation of § - e : A | e. We proceed by case analysis on the typing rule applied
lastly to this derivation.
Case T_HANDLING: For some I, SV, h, e1, A1, e1, o, KV, o, given are the following:

e ¢ = handle; g~ ¢ with h,
o e : Ay e,
o l:VaV : KN oseg,
e 0 SV . KV,
o Dbgignjany h: Ay =% A, and
e (ISM)Toe ~e.
By the induction hypothesis, we proceed by case analysis on the following conditions:
(1) € is a value,
(2) There exists some ef such that e; — e, and
(3) There exist some op’, I', S’N/, T7, v, E, and n such that e; = Elop’;, g T7 v] and n—free(l’, E).
Case (1): By Lemma 3.16(1), there exists some z and e, such that returnz — e, € h. Thus,
R_HANDLE] derives e — e,[v1/z] because e; is a value vy.

Case (2): Since only E_EVAL can derive e — €], we have
e ¢ = Eilen],
e ¢ = Ey[ers], and

53

® €11 — €12,
for some FEi, e11, and ejp. Let F = handle,gv Fy with h, E_EVAL derives e — FE[ej2] because
e = Elen].
Case (3): If I # I, then e = (handle; gv Ewithh)[op’, o/n' T v] and n—free(l’, handle, gv E with h).
If I = I’, then by Lemma 3.17 and 3.14(4), we have
o I:vaN KN o' € 2 and
o op V8’ K} A = B eo[SN oM,

N’ N’ J .
for some o’ , K’ |, o', 3’7, A’, and B’. Therefore, since | = I’, we have

N/
e aV =o',

N/
e KN = K’ , and
e 0 =70.

By 0 Forshjany b A1 =° A, op’ : Vﬁ"] : K(’)J.A” = B" ¢ U[SN/aN} for some A” and B”, and
Lemma 3.16(2), we have
on'B K} pkse eh

for some p, k, and e’. If n = 0, the evaluation of e proceeds by R_HANDLE2’. Otherwise, there
exists some m such that n = m + 1 and m—free(l, handle; gv E with k).

Case others: Similarly to Lemma 3.18.

Lemma 3.61. If n—free(l, E), then n = 0.
Proof. Straightforward by the induction on the derivation of n—free(l, F). |
Lemma 3.62. If T Efop;g: T' v]: A | ¢ and n—free(l, E), then (18")' @e¢.

Proof. By induction on a derivation of I' - E|op, g T’ v] : A | e. We proceed by case analysis on the typing
rule applied lastly to this derivation.
Case T_Aprp: For some B, we have

o =[],
eT'Fope:T/:B—. A0, and
el'Fv:B|0.
By Lemma 3.14(4), we have I' - (1 8')" @ e. Thus, the required result is achieved.

Case T_LET: For some z, Fy, e, and B, we have
o F=(letz = Fyine),
e '+ Ejfop;g: T' v]: B| e, and
elz:Ble:A|e
By the induction hypothesis, we have (1 87)" @ ¢ as required.
Case T_SuB: For some A’ and €', we have
o T+ Elop; gt T? v]: A’ | ¢ and
e T'HA | < Ale.
Since only ST_COMP can derive '+ A’ | &/ <: A | &, we have ' - ¢’ © e. By the induction hypothesis, we
have (1 87)T @ ¢’. By the associativity of ®, we have (1 8')T @ ¢ as required.
Case T_HANDLING: For some [’, S’I,7 Ey, h, B, and €', we have
e E =handle, ., £y withh,
o T+ Eifop, gt T? v]: B| ¢, and
o ('S Yoen~e.

By Lemma 3.61, we have | # I’ and O0—free(l, E1). By the induction hypothesis, we have (I1S')T @ ¢’
Thus, safety condition (2) makes (I 87)" @ ¢ hold as required.

54

Case others: Cannot happen.

Lemma 3.63 (Preservation in Reduction). If0te: A|e and e— ¢/, then Dk ¢’ : A e.

Proof. By induction on a derivation of ' - e : A | e. We proceed by case analysis on the typing rule applied
lastly to this derivation.
Case T_HANDLING: We proceed by case analysis on the derivation rule that derives e — €.

Case R_HANDLEL: Similarly to Lemma 3.19.
Case R_HANDLE2’: For some [, SV, E. opy, S’N, T, v, h, o™, K", 0, Bo”, Ko/, Ao, Bo, po, ko, €o,
B, and €', we have
e ¢ = handle; gv Efopg, g/~ T’ v] with h,
o l:Va . KNoeg,
e NSV KN,
e opoBo” : Ko’ po ko e € h,
0—free(l, E),
e O+ Elopy,gn T’ v]: B | €,
[(Z)l_o.[sN/aN] h: B =*¢ A7
o 18SMToen~¢, and
o ¢/ =¢[T’/Bo”][v/po][\2-handle,; gv E[z] with h/ko).
By Lemma 3.62, we have (18’")! @ ¢’. Thus, we get 8’ = SV by (18¥)'©e ~ ¢ and safety
condition (4). By Lemma 3.17, there exist some By and £ such that

o O Fopo,gn T’ v: By ey, and

o forany ¢ and IV, if IV ¢’ : By | e1, then IV - E[e’] : B | €.
By Lemma 3.14(5), we have () - opo;gv T” : A1 —., By |0 and § - v : A; | 0 for some A;. By
Lemma 3.14(4) and 3.16(2), we have

e opg :V,@OJ : Ko’ . Ag = By € U[SN/aN],

o O+ SV . KV,

e VT’ : Ko,

e D= Ay < AO[TJ/EOJ],

e OF By[T’/By”] <: By, and

o Wi (18N e,
for some Ag and By. Thus, T_SUB with () - 0 © 0 implied by Lemma 3.3 derives

O v: Ao[T?/By7]] 0.

By Lemma 3.11, we have () - Bo[T”/B,”] : Typ. Thus, C_VAR derives - z : Bo[T”?/B,”’]. By
0+ 0:Eff, 0 e : Eff implied by Lemma 3.12, and 0 ©®&; ~ €1, we have) - 0 © £1. Since T_VAR
and T_SUB derives z : Bo[T” /Bo”| F 2 : By | €1, we have

z: Bo[T’/By’] + handle, gv E[z] withh: A | e
by the result of Lemma 3.17, Lemma 3.5, and T_HANDLING. Thus, T_ABS derives
0 Az.handle; gv E[z] with i : Bo[T”7 /B,”] —: A | 0.

Since
,BOJZKOJ,pOIAo,kolBo—)gA}_eoiA|€

by 0 yisv/qn) b2 B =° A and opy : V8o’ : Ko’ . Ay = By € o[S" /a¥] and Lemma 3.16(2),
Lemma 3.10(5) and Lemma 3.7(5) imply

0+ eo[T”/Bo”|[v/po][\2-handle, gv E[z] with h/ky] : A | ¢
as required.

Case others: Similarly to Lemma 3.19.

55

Lemma 3.64 (Preservation). IfQFe: A|e ande — ¢, then Dk e : A]e.

Proof. Similarly to Lemma 3.20; Lemma 3.63 is used instead of Lemma 3.19.]
Lemma 3.65 (Effect Safety). If T'+ Eop; gt T” v]: A | € and n—free(l, E), then € = 0.

Proof. Similarly to Lemma 3.23; Lemma 3.62 is used instead of Lemma 3.22.]
Theorem 3.66 (Type and Effect Safety). If0e: A |0 and e —* ¢’ and ¢ —/>, then €’ is a value.

Proof. Similarly to Theorem 3.24; Lemmas 3.64 , 3.65, and 3.60 are used instead of Lemmas 3.20 , 3.23, and
3.18, respectively. []

3.5 Properties with Lift Coercions and Type-Erasure Semantics

This section assumes that the safety conditions in Definition 1.45 and the safety conditions for type-erasure
semantics and lift coercions in Definition 1.47 and 1.46 hold, and that the semantics adapts R_HANDLE2’ instead
of R_HANDLE2.

Lemma 3.67 (Progress). If 0+ e: A | e, then one of the following holds:

e ¢ is a value;
e There exists some expression e such that e — ¢’; or
e There exist some op, I, 8T, T, v, E, and n such that e = Elop; g1 T’ v] and n—free(l, E).

Proof. Similarly to Lemma 3.48.

Definition 3.68 (Label Inclusion with Type-Erasure).
Label Inclusion with Type-Erasure where P :=eo | ST » P

=l 1 Salo)? N
LITE_EMPTY 0" e (IS0°) ©er~e

n 7 2 LITE_HANDLING
le*e 1©50"»P ¢,

1o e (D)'oep~ey VS™.(L#18Se™)
1eF ¢

LITE_NOHANDLING

If n =0, then S S, e P means P.
Lemma 3.69. If 1 ©% ¢; and g1 @ ey ~ €3, then [@7 e3.

Proof. By induction on a derivation of [©” ;. We proceed by case analysis on the rule applied lastly to this
derivation.
Case LITE_EMpPTY: We have P = eo. LITE_EMPTY derives [©° €5 as required.
Case LITE_HANDLING: We have
e P=S»p,
o |07 &4, and
o (ISHT Oey~ey,
for some P’, €4, and ST. By the induction hypothesis, we have 1 9P &5 such that e, ®es ~ €. Thus,
LITE_HANDLING derives [&5 »7’ €2 as required.
Case LITE_NOHANDLING: We have
o [O7 £4q,
o (L)' ®ey ~ e, and
o VS'.(L#18"),

for some L and 4. By the induction hypothesis, we have 1 ©F &5 such that €4 ®eg ~ e5. Thus,
LITE_NOHANDLING derives [@F &3 as required.
[|

56

Lemma 3.70. If | eS'»P g9 and (lSI)TQsl ~ gq, then 1 ©F €.

Proof. By induction on a derivation of [oS'»P €2. We proceed by case analysis on the rule lastly applied to
this derivation.

Case LITE_EmpTY: Cannot happen.
Case LITE_HANDLING: We have
o [P &} and
o (I SI)T Oe] ~ e
for some &}. By safety condition (3), we have e; ~ €. By Lemma 3.69 and £; ® 0 ~ &1, we have [©% &,
as required.
Case LITE_NOHANDLING: We have
o/ @SIVP €3,
o ()T ®ez ~ &g, and
o VS (L #18p™),

for some L and e3. By safety condition (2) and L # [S”, we have (IS')T @&y ~ e3 for some 4. By

safety condition (3), we have e ~ (L)' ®¢e4. By the induction hypothesis, we have | ©% ¢;. Thus,
LITE_NOHANDLING derives [@F &, as required.

|
Lemma 3.71. If 1 ©% 5 and (L)T © ey ~ e and V8T .(L # 187), then 1 &P &,.

Proof. By induction on a derivation of [©% 5. We proceed by case analysis on the rule lastly applied to this
derivation.

Case LITE_EmMpPTY: We have P =e. LITE_EMPTY derives [©° £1 as required.
Case LITE_HANDLING: We have
e P=S"»P,
o [0 €3, and
o (18T @es ~ ey,
for some P, €3, and S’. By safety condition (2) and L # 1.8’ we have (L)t ©e4 ~ e3 for some 4. By
safety condition (3), we have g1 ~ (IS8))T ®ey. By the induction hypothesis, we have | @7 4. Thus,
LITE_HANDLING derives [@5 P’ €1 as required.
Case LITE_NOHANDLING: We have
o [0F g3,
o (I'T®e3 ~ ey, and
o VSI.(I #£187),
for some L’ and e3.
If L= L', then we have £, ~ 3 by safety condition (3). Thus, Lemma 3.69 gives us [©7 ¢, as required.

If L # L', then we have (L)' ® &4 ~ e3 for some g4 by safety condition (2) and L # L'. By safety condition
(3), we have &1 ~ (I')T ®e4. By the induction hypothesis, we have | @7 ¢4. Thus, LITE_NOHANDLING
derives | ©F £, as required.

|
Lemma 3.72. If [©5°°"P ¢ and (1S")T @ ¢, then S = So™.

Proof. By induction on a derivation of [@S »P o We proceed by case analysis on the rule lastly applied to
this derivation.

Case LITE_EMmpTY: Cannot happen.
Case LITE_HANDLING: We have

o [©F ¢y and
° (ZSOIO)T@E1 ~ €

o7

for some £7. By safety condition (4), we have S I'— 8y as required.

Case LITE_NOHANDLING: We have
. l@SOIOnD £1,
o (I)T®e; ~e, and
o w5l (L # 8T

for some L and e;. By safety condition (2) and L # [S!, we have (1 87)T @ e;. Thus, by the induction
hypothesis, we have ST = S, as required.

]
Lemma 3.73. If) - E[op, gt T’ v] : A| e and n—free(l, E), then [@51 »»Su".S'>e o,

Proof. By induction on a derivation of () - E|op, g T’ v] : A | e. We proceed by case analysis on the typing
rule applied lastly to this derivation.
Case T_App: For some B, we have

o F=10],
e fFop,gt T/ : B —.A|0, and
e)luv:B | 0.
By Lemma 3.45(4), we have 0 - (187)" @¢. Thus, LITE_EMPTY and LITE_HANDLING derive [©5 >*¢.

Case T_LET: For some z, F1, e, and B, we have
o = (letz=FE ine),
e OF Eyfop, gt T’ v]: B |,
e n—free(l,), and
er:Ble:A]le

By the induction hypothesis, we have [©51 b8, .STe o ag required.

Case T_SuB: For some A’ and €', we have
o 0+ Elop, gt T' v] : A’ | ¢ and
e A< Ale.
By the induction hypothesis, we have [@51 »=»S.".S">e o/ Gince only ST_COMP can derives) - A’ |
g/ <: A|e, we have) - ¢’ © e. Thus, Lemma 3.69 derives [@S >SS o ag required.
Case T_LIFT: For some L, ¢/, and E’, we have
o BE=[EL,
e 0 E'lop,g: T/ v]: A€,
e)~ L:Lab, and
o (L)Toe ~e.
IfL#1 s for any S’I/, then we have n—free(l, E’). By the induction hypothesis, we have @S em S S he

K I In ol .
¢’. Thus, LITE_NOHANDLING derives [@51 ®»S.".5">¢ o a5 required.

If L= 18" for some S, then there exists some m such that n = m+1 and m—free(l, E'). By the induc-

. . L. I T . 1’ La.. I, T
tion hypothesis, we have [©51 ' »®Sn ™S ®eo/ Thys LITE_HANDLING derives (@5 »S171%»Sn,S e
€ as required.

Case T_HANDLING: For some [’, .S"I/7 Ey, h, B, and €', we have
o F = handlel, ot FEy with h,
e 0+ Eifop,g: T? v]: B| ¢, and
. (l’S'II)TG)E ~e.

58

If I # ', then n—free(l, E1). By the induction hypothesis, we have 1@S1 1 >» 5. S be o/ By Lemma 3.71,
we have [@51 % »8.".8">e o a9 required.

If [= I, then n + 1—free(l, E1). By the induction hypothesis, we have [©S00.S11b S, STbe o1 By
Lemma 3.72, we have Sp = st By Lemma 3.70, we have [@51 »»5.".8"»¢ o 45 vequired.

Case others: Cannot happen.

Lemma 3.74 (Preservation in Reduction). If0te: A|e and e— ¢/, then DF e’ : A e.

Proof. By induction on a derivation of I' - e : A | e. We proceed by cases on the typing rule applied lastly to
this derivation.
Case T_HANDLING: We proceed by cases on the derivation rule which derives e — ¢'.
Case R_HANDLEL: Similarly to Lemma 3.49.
Case R_HANDLE2: We have
e ¢ =handle, gv E[opo, gv T v] with h,
o l:VaV :KNose =,
e)+ SV KN,
o opoBo”’ 1 Ko’ poko — eg € h,
o O Elopy,gn T’ v]: B | €,
o () FG[SN/QN] h: B =* A7
(I1SM) oen~e,
0—free(l, E), and
e’ = e[T”7 /By’ 1[v/po][\z.handle; gv E[z] with h/k)
for some [, SV, E, opo, SN .17 v, h,aVN, KN, o, Bo’, Ko”, po, ko, €9, B, and ’. By Lemma 3.73,
we have [@5 »* ¢/, By Lemma 3.72 and (ISV)T©e ~ &', we have 8 = S'N. By Lemma 3.47,
there exist some B; and &7 such that
e O Fopo,gn T’ v: By ey, and
e for any e” and I, if T - €” : By | &1, then T" + E[e"]: B | ¢'.
By Lemma 3.45(5), we have) - opg;gv T’ : Ay =, By | 0 and 0 F v : A; | 0 for some A4;. By
Lemma 3.45(4) and 3.16(2), we have
e opy: VB, : Ko’ Ay = By € o[SY /],
e O+ SV KN,
e 0T’ : Ko,
o D Ay <: Ao[T” /By,
e 0 F Bo[T? /By’ <: By, and
o D (ISM)Tae,
for some Ag and By. Thus, T_SUB with (} - 0 © 0 implied by Lemma 3.3 derives

O v: Ao[T? /8,71 0.

By Lemma 3.11, we have (0 - By[T’/By”] : Typ. Thus, C_VAR derives - z : By[T’/B,”]. By
0+ 0:Eff,) e : Eff implied by Lemma 3.12, and 0 ©®&; ~ 1, we have) - 0 © £;. Since T_VAR
and T_SUB derives z : By[T? /By’ 2 : By | €1, we have

2: By[T?/By”] + handle, gv E[z] withh: A | e
by the result of Lemma 3.17, Lemma 3.5, and T_HANDLING. Thus, T_ABS derives
0 - Az.handle, gv E[z] with h : By[T”/B,”] —. A | 0.

Since

,BOJ:KO‘],pO:AO,kO:BO%EA}—eO:A|5

by 0 yigv/an) b2 B =° A and opy : V8o’ : Ko’ . Ay = By € o[S" /a] and Lemma 3.16(2),
Lemma 3.10(5) and Lemma 3.7(5) imply

0+ eo[T”/Bo”|[v/po][\z.handle, gv E[z] with h/ky] : A |

as required.

59

Case others: Similarly to Lemma 3.49.

Lemma 3.75 (Preservation). IfQFe: A|e ande — ¢, then Dk e : A]e.
Proof. Similarly to Lemma 3.50; Lemma 3.74 is used instead of Lemma 3.49. |
Lemma 3.76 (No Inclusion by Empty Effect). If [©F € and ¢ ~ 0, then P = .

Proof. By induction on the derivation of I ©F . We proceed by case analysis on the rule applied lastly to this
derivation.
Case LITE_EMpPTY: Clearly.

Case LITE_HANDLING: This case cannot happen. If this case happens, we have (I SOIO)T ®¢’ ~ ¢ for some &’
and So™. Thus, we have (1 SOI”)T ©e’' ~ 0 by e ~ 0. However, it is contradictory with safety condition

(1).

Case LITE_NOHANDLING: This case cannot happen. If this case happens, we have (L)T © &’ ~ ¢ for some L
and ¢’. Thus, we have (L)T ©®¢&’ ~ 0 by ¢ ~ 0. However, it is contradictory with safety condition (1).
|

Lemma 3.77 (Effect Safety). If 0 - E[op,; gt T’ v] : A | e and n—free(1S', E), then € = 0.

Proof. Assume that ¢ ~ 0. By Lemma 3.73 and Lemma 3.69, we have [@51 »=»S.".S">e o fowever, it is
contradictory with Lemma 3.76. []

Theorem 3.78 (Type and Effect Safety). If0Fe: A |0 and e —* ¢’ and ¢/ —/>, then €’ is a value.

Proof. Similarly to Theorem 3.58; Lemmas 3.75 , 3.77, and 3.67 are used instead of Lemmas 3.50 , 3.57, and
3.48, respectively.]
3.6 Safety Conditions about Instances

Lemma 3.79. In Example 1.23, we write a and b to denote {} or p or {L}. If a1 U -+ Uy ~set b1 U -+ Uby,
then

o foranyi e {1,...,m}, a; = {} or there exists some j such that a; =b;, and
o forany j e {1,...,n}, bj ={} or there exists some i such that a; =b;.
Proof. By induction on the derivation of a1 U «-- Uy, ~get b1 U -+ Ub,. [|

Theorem 3.80. Ezample 1.23 meets safety conditions.

Proof.
(1) Clearly by Lemma 3.79.

(2) Clearly by Lemma 3.79.
|

Lemma 3.81. In Example 1.2/, we write a and b to denote {} or p or {L}. Ifar U -+ Uam, ~Mset b1 U -+ Uby,
then
o for any a such that a # {}, the number of a; such that a; = a is equal to the number of b; such that b, = a.

Proof. By induction on the derivation of a1 U -+ Ua, ~MSet b1 L -+ LUby,. |
Theorem 3.82. Ezample 1.24 meets safety conditions (for lift coercions).

Proof.
1) Clearly by Lemma 3.81.

(1)
(2) Clearly by Lemma 3.81.
3)

3) Clearly by Lemma 3.81.

Lemma 3.83. In Ezample 1.25, we write a and b to denote () or p. If (L | (- (Lm | a)--+)) ~simpr (L] |
(- (L [B)---)), then

60

o a=1b,

e for anyi € {1,...,m}, there exists some j such that L; = L}, and
e for any j € {1,...,n}, there exists some i such that L; = L.
Proof. By induction on the derivation of (Ly | (-+- (Ly, | @) -+ +)) ~simpr (L4 | (- (L}, | b)---)). |

Theorem 3.84. Ezample 1.25 meets safety conditions.

Proof.
(1) Clearly by Lemma 3.83.

(2) Clearly by Lemma 3.83.
|

Lemma 3.85. In Ezample 1.26, we write a and b to denote () or p. If (L1 | (--+(Lm | a)--+)) ~scpr (L} |
(- (L [0) -)), then
e a=>band

e for any L, the number of L; such that L; = L is equal to the number of L;- such that L; =L
Proof. By induction on the derivation of (Ly | {--- (L, | @) -+)) ~scpr (Li | (- (L0, | b) -+)). [|
Theorem 3.86. Ezample 1.26 meets safety conditions (for lift coercions).

Proof.
(1) Clearly by Lemma 3.85.
(2) Clearly by Lemma 3.85.
(3) Clearly by Lemma 3.85. u

Lemma 3.87. In Example 1.27, we write a and b to denote {} or p or {L}. Ifa1 U -+ Uay, ~Eset b1 U -+ Uby,,
then

o for any i € {1,...,m}, a; = {} or there exists some j such that a; = b; or label names of them are the
same, and
o for any j € {1,...,n}, b; = {} or there exists some i such that a; = b; or label names of them are the
same.
Proof. By induction on the derivation of a1 U « -+ Uay, ~gset 01U -+ Ub,,. [|

Lemma 3.88. In Example 1.27, we define the function FO as follows:
FO(L,{})=1 FO(L,L{1})=L1 FO(l,p)=L1 FO(,{18"})=8" FO(U{I'S"})=1 (wherel#]1)

FO(L,es) (if FO(l,e1) = L)

FO(l,e1Uer) =
(l,e1Ue2) {FO(Z’E]_) (otherwise)

If €1 ~Eset €2, then for any |, FO(l,e1) = FO(l,e3).
Proof. By induction on the derivation of €1 ~gget €2. |
Theorem 3.89. Ezample 1.27 meets safety conditions.

Proof.
(1) Clearly by Lemma 3.87.

(2) Clearly by Lemma 3.87 and 3.88.

(4) Clearly by Lemma 3.88.
[]

Lemma 3.90. In Example 1.28, we write a and b to denote {} or p or {L}. Ifar U -+ Ua,, ~EMset b1 U -+ Ub,,
then
e for any a such that a # {}, the number of a; such that a; = a is equal to the number of b; such that b; = a.

61

Proof. By induction on the derivation of a1 U -+ La,;, ~gMmset b1 L -+ Ub,. [|

Lemma 3.91. In Exzample 1.28, we define the function FO as follows:
FO(L,{})=1L FO(L,{u})=L FO(l,p)=L FO(L,{I8"))=8" FO(U{I'S"})=1 (wherel#1)

FO(Z7€2) (’Lf FO(I,€1) = J—)

FO(l,e1 U =
(l,e1Ueog) {FO(Z,&) (otherwise)

If €1 ~EMSet €2, then for any I, FO(l,e1) = FO(l,¢e2).
Proof. By induction on the derivation of €1 ~gnSet €2. [|
Theorem 3.92. Ezample 1.28 meets safety conditions.

Proof.
(1) Clearly by Lemma 3.90.

(2) Clearly by Lemma 3.90.

(4) Clearly by Lemma 3.91.
|

Lemma 3.93. In Ezample 1.29, we write a and b to denote () or p. If (L | (---(Lm | @)--+)) ~Esimpr (L] |
(- (L [B)---)), then

e a=1,
o for anyi € {1,...,m}, there exists some j such that L; = L} or label names of them are the same, and
e for any j € {1,...,n}, there exists some i such that L; = L;- or label names of them are the same.

Proof. By induction on the derivation of (Ly | {--- (Ly, | @) --*)) ~Esimpr (L4 | {--- (L}, | b)---)).]

Lemma 3.94. In Example 1.29, we define the function FO as follows:

FO(l,()) =L FO(l,p)=1 FO(l,(18"|e))=8" FO(,(I' S" |¢)) = FO(l,e) (wherel#1")
FO(l,{¢t|e)) = FO(l,¢)

If e1 ~ESimpR €2, then for any I, FO(l,e1) = FO(l,¢3).
Proof. By induction on the derivation of €1 ~ESimpRr €2- [|

Theorem 3.95. Ezample 1.29 meets safety conditions (for type-erasure).

Proof.
(1) Clearly by Lemma 3.93.

(2) Clearly by Lemma 3.93 and 3.94.

(4) Clearly by Lemma 3.94.
]

Lemma 3.96. In Ezxample 1.30, we write a and b to denote () or p. If (L1 | {--- (L | @) --)) ~Escpr (L] |
(- (L [B)), then
e a=1"band

e for any L, the number of L; such that L; = L is equal to the number of L;- such that L;- =1L
Proof. By induction on the derivation of (L1 | {-+- (L, | a)--+)) ~msepr (Li | (- (L), | b)Y ---)). []
Lemma 3.97. In Example 1.30, we define the function FO as follows:

FO(l,()) =L FO(l,p)=1 FO(l,{18" |e))=8" FO(,(I' " |e)) = FO(l,e) (wherel#1)
FO(L,{¢| €)) = FO(l,¢)

If e1 ~Escpr €2, then for any I, FO(l,e1) = FO(l,¢e2).

62

Proof. By induction on the derivation of €1 ~ggcpr €2- [|

Theorem 3.98. Ezample 1.30 meets safety conditions (for lift coercions and type-erasure).

Proof.
(1) Clearly by Lemma 3.96.
(2
(
(

)

) Clearly by Lemma 3.96.
3) Clearly by Lemma 3.96.

)

4) Clearly by Lemma 3.97.

Theorem 3.99 (Unsafe Effect Algebras with Lift Coercions). The effect algebras EAge;, and EAgimpr do not
meet safety condition (3). Furthermore, there exists an expression such that it is well typed under EAge and
EAsimpr, but its evaluation gets stuck.

Proof. We consider only EAg¢ here; a similar discussion can be applied to EAgimpr. Recall that the operation
©® in EAget is implemented by the set union, so it meets idempotence: {L}U{L} ~ {L}. Furthermore, we can
use the empty set as the identity element, so {L} U{L} ~ {L}U{}. If safety condition (3) was met, {L} ~ {}
(where {L}, {}, and 0 are taken as £;, 2, and n, respectively, in Definition 1.46). However, the equivalence
does not hold.

As a program that is typeable under EAget, consider handleg,. [raisegxc Unit ()]gxc with h where Exc :: {raise :
Vo : Typ.Unit = a}. This program can be typechecked under an appropriate assumption as illustrated by the
following typing derivation:

0 F raisegxc Unit () : A | {Exc} {Exc}U{Exc} ~ {Exc}

{Exc}U{} ~ {Exc} () I [raisegxc Unit ()]exc @ A | {Exc}
0 - handleg, [raisegx Unit ()]gxc with h : B | {}

T_LirFT
T_HANDLING

However, the call to raise is not handled because it needs to be handled by the second closest effect handler. W

Theorem 3.100 (Unsafe Effect Algebras in Type-Erasure Semantics). The effect algebras EAget, EAmset,
EAsimpr, and EAgcpr do not meet safety condition (4). Furthermore, there exists an expression that is well
typed under these algebras and gets stuck.

Proof. Here we focus on the effect algebra EAget, but a similar discussions can be applied to the other algebras.
Recall that ® in EAge is implemented by the union operation for sets, and therefore it is commutative (i.e.,
it allows exchanging labels in a set no matter what label names and what type arguments are in the labels).
Hence, for example, {lInt} U{lBool} ~ge; {IBool}U{lInt} for a label name [taking one type parameter. It
means that EAg violates safety condition (4).

To give a program that is typeable under EAg.; but unsafe in the type-erasure semantics, consider the
following which uses an effect label Writer :: Vo : Typ.{tell : @ = Unit}:

handlewiter Int handlewiter gool
tellwriter nt 42
with { returnz — 0} W {tell p k£ — if pthenOelse 42}
with {returnz — z} W {tell pk — p}

This program is well typed because
e the operation call tellwyiter Int 42 can have effect {Writer Bool} U {Writer Int} via subeffecting {Writer Int} ©
{Writer Bool} U {Writer Int} (which holds because Writer Int and Writer Bool are exchangeable),

e the inner handling expression is well typed and its effect is {Writer Int}, and

o the outer one is well typed and its effect is {}.
Note that this typing rests on the fact that the inner handler assumes that the argument variable p of its tell
clause will be replaced by Boolean values as indicated by the type argument Bool to Writer. However, this
program reaches the stuck state: because the operation call is handled by the innermost handler for the label
name Writer, the inner handler is chosen and then the Boolean parameter p of the tell clause in it will be
replaced by integer 42. []

63

4 Comparison of Instances and Previous Work

4.1 Comparison to []

We define the targets of comparison: one is an instance of Aga (Example 1.23), and another is a minor changed
language of |].

Definition 4.1 (Minor Changed Version of [D). Change list:
e removing Boolean and if expressions,

e removing handlers from values and handler types from types,
e adding well-formedness of contexts and type, and

e adding well-formedness of dirt to the return rule.

The syntax of a minor changed version of [| is as follows.
AB == A->C (value types)
C,D == AlA (computation types)
A = {opy,...,0p,} (dirt)
v = z|funzw—c (values)
¢ = returnv |op(v;y.c) | dox < crincy | vive | (computation)
with h handlec
h == handler {returnz — c,,op;(z1;k1) = c1,...,0p,(Tn;kn) — cn} (handlers)
Y == {op;: 41— By,...,0p,: Ap — Bp} (signature)
r == §|z:A (typing contexts)

Well-formedness rules consist of the following.

Contexts Well-formedness

z¢dom(I) T'HA

— Cp_EmPTY CpP_VAR
H B FT,x: A
Kinding
'rA ACdom(X) T'HB
Kp_Fun
I'-A— BIA
Typing [TFv: A 'kte:C
FI' 2:Ael TP VAR Me:AkFc:C T ABs F'Fv:A A Cdom(X) Tp.RETURN
FFx:A - 'funz—c:A—C N I' - returnv: A'A N
F}—UliA—>Q F"UQZA
Tp_ApPP
I'toviv: C
op:A—-BeX¥Y Thrv:A T,y:Bkc:A)A opeA
Tp_OrPAPP
I Fop(v;y.c): AglA
I'ke i AIA T,x:AbFc: BIA I'te:C THA:C=D
- Tp_Do - TpP_HANDLE
I'Fdox < cjincy : B'A I' F with hhandlec : D

Handler Typing ‘F Fh:C= Q‘

I,z:AbFc¢ :BIA" A\{opy,...,0p,} CA’
Vi € {1,...,n}.(opi A, > B ey T,x;: ALk B; —>B!A’|—ci : B'A/)

Hp_HANDLER
' F handler {returnz + c,,op; (z1; k1) + c1,...,0p, (Tn; kn) — ¢} o AIA = BIA'

64

Definition 4.2 (Translation from Pretnars to An Instance). We assume that!:
e there exists a unique partition of 3,

e any dirt is a disjoint union of the partition results of 3, and

e target operations of any handlers must be one of the partition results of 3.

We write S2s(X) to denote the set of the partition results of . We write d21 to denote the function that assigns
unique label I such that | : Lab € Y, to s € 82s(X).

We define d21(A) as the labels whose label is d21(s) where dom(s) C A and s € 82s(X). We define d21(h)
as d21(s) where h = handler {returnx — ¢,,op;(z1;k1) — c1,...,0p, (Tn; kn) — ¢} and s = {op; : A1 —
By,...,op, : An — Bp}.

We define P21 as follows.

Types
P2I(A — BIA) = P2I(A) —pyr(a) P2I(B)
Dirts
P21(0) = {} P2I(A Wdom(s)) = P2I(A)U{d21(s)} (if s € S2s(X))
Values
P2I(z) = = P2I(funz —¢) = fun(f,z,P2I(c)) (where f is fresh)
Computations
P2I(returnv) = P2I(v)
P2I(vyv2) = P2I(vy)P2I(vs)
P2I(dox < c1incy) = letz =P2I(c;)inP2I(cy)
P2I(op(v;y.c)) = lety = opsy(s)P2I(v)inP2I(c) (where op € dom(s))
P2I(with i handlec) handleg,; () P2I(c) with P21(h)
Handlers
P2I(h) = {returnz — P2I(c,)} W {op;x1 k1 — P2I(c1)} W - W {op,, Tn kn — P2I(cy)}
(where h = handler {returnz — c¢,,opy(z1;k1) = c1,...,0p,(Tn; kn) — cn})

Effect contexts

PI(S) = U,cse(){d21(s) = {op; : P2I(A1) = P2I(By),...,0p,, : P2I(A,) = P21(B,)}}
(where s = {op; : Ay = Bi,...,0p,, : A, = B,})

Typing Contexts
P2I(0) = 0 P2I(T,x: A) = P2I('),z:P2I(A)
Lemma 4.3. dom(T") = dom(P2I(T")).
Proof. Clearly by definition of P21I. |

Lemma 4.4. If A Cdom(X), then ' - P2I(A) : Eff for any T such that FT.

Proof. By induction on the size of T'.

If A =0, then clearly because P2I()) = {}.

If A = A’wdom(s) for some A" and s € 52s(X), then P2I(A) = P2I(A’) U{d21(s)} where d21(s) : Lab €
Yiab. Let T be a typing context such that - T'. By the induction hypothesis, we have I' - P2I(A’) : Eff. Thus,
K_Cons derives I' F P2I(A’)U{d21(s)} : Eff because we have I' - {d21(s)} : Eff. |

Lemma 4.5. If+T and x: A €T, then x : P2I(A) € P2I(T").

1These assumptions arise from our formalization of labels and operations. They are easily removed if we omit labels.

65

Proof. By structual induction on I.

If T =0, then x : A € ' cannot happen.

IfT =T,y : B for some y, B, and I, then we have P2I(T") = P2I(I"),y : P2I(B). In this case, if z = y,
then we have A = B and y : P2I(B) € P2I(T") as required. If = # y, then we have x : A € I". By the induction
hypothesis, we have = : P2I(A) € P2I(I"). Thus, we have z : P2I(A) € P2I(T") as required. []

Theorem 4.6.

(1) If T, then b P2I(T).

(2) IfT'+ A, then P2I(T") - P2I(A) : Typ.

(3) IfT' Fv: A, then P2I(T") - P2I(v) : P2I(A) | {}.

(4) IfT Fc: AIA, then P2L(T) F P2I(c) : P2I(A) | P2I(A).

(5) If T h: AIA = BIA', then P2I(A)Ue ~ger d21(h) UP2I(A’) for some e and there exists some o such
that P21(T") F, P2I(h) : P2I(A) =F2(A) P21(B) and d21(h) :: o € P2I(X).

Proof.(1)(2) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule
applied lastly to the derivation.

Case Cp_EmMPTY: Clearly.

Case Cp_VAR: We have
—I'=I"2:A,
— x ¢ dom(T”), and
-I"F A,
for some z, A, and I". By the induction hypothesis and Lemma 4.3, we have x ¢ dom(P2I(I")) and
P2I(I") F P2I(A) : Typ. Thus, C_VAR derives - P2I(I"),z : P2I(A) as required.
Case KpP_FUN: We have
- A=A - BlA,
- I'F Ay,
— A Cdom(X), and
- TI'F By,
for some Ay, By, and A. By the induction hypothesis and Lemma 4.4, we have
— p21(T") F P2I(4,) : Typ,
— p21(T") - P2I(A) : Eff, and
— p21(I") - P21(B,) : Typ.
Thus, K_FuN derives
P2I(I") - P2I(4,) —p21(A) P2I(B;): Typ
as required.

(3)(4)(5) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivation.
Case Tpr_VAR: We have
—v=ux,
— T, and
—x:AeT,
for some z. By Lemma 4.5 and Theorem 4.6(1), we have
— FP2I(T") and
— x:P2I(A) € P2I(T).
Thus, T_VAR derives
P2I(I") + z : P2I(A) | {}
as required.

Case TrP_ABS: We have
—v=funz — c and

66

—T,z:AFc:BA
for some x, ¢, A, B, and A. By the induction hypothesis, we have

P21(T),z : P2I(A) - P2I(c) : P2I(B) | P2I(A).

Without loss of generality, we can choose f such that
- [¢ FV(P2I(c)),
- f#u
— f ¢ dom(T"), and
— P2I(funz — ¢) = fun(f, z,P2I(c)).
By Lemma 3.12 and Lemma 3.2(2) and Lemma 3.6, we have
— P2I(T") F P2I(B) : Typ and
— P2I(T") - P2I(A) : Eff.
By Lemma 3.9, we have - P2I(I"),x : P2I(A). Since only C_VAR can derive - P2I(T"),z : P2I(4),
we have P2I(T") F P2I(A) : Typ. Thus, C_VAR derives

- P2I(T), f : P2I(A) —por(a) P2I(B).
Thus, Lemma 3.5 and T_ABS derives
P21(T) b fun(f, ,P2I(c)) : P2I(A) —por(a) P21(B) | {}

as required.

Case TP_RETURN: We have
— ¢ =returnv,
—T'Fov: A, and
— A Cdom(%),
for some v. By the induction hypothesis and Lemma 4.4, we have
— P2I(T") F P2I(v) : P2I(A) | {} and
— P21(T") - P2I(A) : Eff.
Thus, T_SUB derives
P2I(T") + P2I(v) : P2I(A) | P2I(A)
as required.
Case TrP_ApPpP: We have

— ¢ =010,
—T'Fuv:B— AlA, and
—TFuv: B,
for some vy, v9, and B. By the induction hypothesis, we have
— P2L(T") F P2I(v;) : P2I(B) —par(a) P2I(A) | {} and
— P21(T") - P2I(vy) : P2I(B) | {}.
Thus, T_App derives
P2I(T") F P2I(v1) P2I(ve) : P2I(A) | P2I(A)
as required.
Case Tp_OrAprpr: We have
— c=op(v;y.c'),
—op: A =B ex,
Fkov: A,
—T,y: Bk :AlA, and
—op €A,
for some op, v, y, ¢/, A’, B’, and A. By op € A, there uniquely exists some s such that
— s €82s(%),
—op: A" — B €s,
— dom(s) C A.

67

Thus, we have
— 10 eP2I(X),
— op : P2I(A4’) = P2I(B’) € 0, and
— {d21(s)} Ue ~get P2I(A),
for some ¢. By the induction hypothesis, we have
— P2I(T") F P2I(v) : P2I(4") | {} and
— P21(I"),y : P2I(B') - P21(¢) : P21(A) | P2I(A).
Thus, T_Op and T_ApPP derives

P2I(T') F Opgpy (s) P2I(v) : P2I(B') | {d21(s)}.

Thus, T_SuB and T_LET derives

P2I(T') F lety = opgyy(s) P2I(v) inP2I(c) : P2I(A) | P2I(A)
as required.

Case Tp_Do: We have

— c=dox + cpincy,
— I'Fe: B'A, and
—T,xz:BlFcy: AIA,

for some z, ¢q, co, and A. By the induction hypothesis, we have
— P2I(T) P2I(¢y) : P2I(B) | P2I(A) and
— P2I(T"),x : P2I(B) F P2I(cy) : P2I(A) | P2I(A).

Thus, T_LET derives

P2I(T') F let © = P2I(cy) inP2I(cy) : P2I(A) | P2I(A)

as required.

Case Tp_HANDLE: We have

— ¢ = with hhandlec/,
— Tk :ANA and
—TFh:ANA = AA.

for some ¢’, h, A’, and A’. By the induction hypothesis, we have
— P2I(T) F P21(¢') : P2I(A') | P2I(A/),
— d21(h) :: 0 € P2I(X),
— P2I(T') -, P2I(h) : P2I(A’) =P?1(A) p21(A), and
— P2I(A/) Ut ~ger d21(h) UP2I(A),

for some ¢ and o. Thus, T_SUB and T_HANDLING derive

P2I(T') - handlepyy () P2I(¢) with P2I(h) : P2I(A) | P2I(A)

as required.
Case Hp_HANDLER: We have
— h = handler {returnz — c,,op;(21; k1) — c1,...,0p, (Tn; kn) — cn},
—T,z:AkFc.: BIA,
—op;: A; > B;eX foranyie{l,...,n},
—D,a;: Aj,k; : Bi — BIA’F¢; : BIA for any i € {1,...,n}, and
— A\{opy,...,0p,} C A,
for some n, z, ¢, op;, ©;, ki, ¢;, A;, and B;, where i € {1,...,n}.
By the assumptions, we have
— s€82s(X) and
— d21(h) = d21(s)

68

where s = {op; : Ay — Bi,...,op, : A, — Bp}. Thus, we have d21(h) :: ¢ € P2I(X) where
o = {op, : P2I(A;) = P2I(By), ..., op, : P2I(A,) = P2I(B,)}.
By A\ {op;,...,0p,} € A’, we have A C dom(s) UA’. By the assumptions, we have either
dom(s) C A’ or op; ¢ A’ for any 4. In any case, we have P2I(A)Ue ~ger d21(h) UP2I(A’) for some
€.
By the induction hypothesis, we have

— P2I(T), z : P2I(A) F P2I(c,) : P2I(B) | P2I(A’) and

— P21(T),2; : P2I(A;), ki : P2I(B;) —por(ar) P2I(B) F P2I(¢;) : P2I(B) | P2I(A') for any i €

{1,...,n}.

Therefore, H_.RETURN and H_OP derive P2I(I') I, P2I(h) : P2I(A) =F2L(A) p21(B).
Thus, the required result is achieved.

4.2 Comparison to []

We give the targets of comparison: one is an instance of Ags (Example 1.25), and another is a minorly changed
language of |].

Definition 4.7 (Minor Changed Version of [). Change list:
e removing variants and records,

e removing presence and handler types,
e removing computation kinds, and

e adding well-formedness rules of contexts.

The syntaz of a minor changed version of [] is as follows.
V,W = x| . M| AK.M (values)
M,N === VW |VT|returnM |letxz + Min N (computations)
| (do!V)¥ | handle M with H
H := {returnz— M} |HW{lpr— M} (handlers)
AB = A—C|VoE.C|a (value types)
C,D AlE (computations types)
E {R} (effect types)
R l:P;R|p]|- (row types)
P == Pre(A— B)|Abs (presence types)
T == A|C|E|R (types)
K == Type| Row, | Effect (kinds)
L = 0|{i}wL (label sets)
r == -|Tz:A (type environments)
A == |Aa:K (kind environments)

Well-formedness, kinding, and typing rules consist of the following.
Kinding Contexts Well-formedness

FA «¢dom(A)

— KCH_EmMPTY KCH_TVAR
F- FAa: K
Contexts Well-formedness
FA CrLEMPTY AFT z¢dom(l') AR A:Type CILVAR
—_— H_ T H_
AR AT z: A

69

Kinding

FAa: K AFA:Type AF B:Type AF E: Effect
KH_Var Ku_Fun
Aa:KFa: K AF A — BIE : Type
Aja: KFHA:Type A,a: KF FE: Effect AF R : Rowy
¥e Ka_ForaALL, —— ——— KH_EFFECT
A FVa"™ AE : Type A+ {R} : Effect

Vie{l,...,n}.(P; = Abs or (P, = Pre(A; — B;) and A+ A; : Type and A+ B; : Type)) FA
AFl:Pyy--- 50,0 Py -t Rowy

KHu_CLOSEROW

Vie{l,...,n}.(P, = Abs or (P, =Pre(A; — B;) and AF A; : Type and A F B; : Type))
AFp:Rowg L={l1,...,l}

KH_OPENROW
Al Py 5y Poyp: Rowg

Typing \A;FH/:A\ \A;NM:C\

AFT z:AeTl ATz AEM : C
TH_VAR = TH_LAM
ATz A ATE M M:A—C
Aa: K;T'HFM:C ART ATHFV:A—-C ATEW:A
Ve e TH_PoLYLAM TH_APP
AT Aa™. M :Va™.C ATEFVW: C
ATHV :Vof.C AFT: K ATHV:A AF E: Effect
TH_POLYAPP TH_RETURN
ATHVT:CIT/a A;T'FreturnV : AlE

ATHEM:AE AT x: A-N:BIE

- TH_LET
A;T'Hletx <~ MinN : B'E

ATHFV:A E={l:Pre(A— B);R} AF E: Effect

= TH_DO
A;TH (dolV)” : BIE

A TEM:C ANTEH:C=D

- TH_HANDLE
A;T F handle M with H : D

Handler Typing ‘A;F FH:C= D‘

C = AYly : Pre(A; — By);--- ;1 : Pre(A, — B,); R}
D=BYly:Py;--;l,: Py;RY H={returnz— M} W {liy1r — N1} W "W {l, yprn — Ny}
A;Tye: AFM:D Vie{l,...,n}. (AT, y; : A;,ri: Bi— DE N; : D)

AN THFH:C=D

Hu_HANDLER
Definition 4.8 (Translation from Hillerstr6m’s to An Instance). We assume that:

o there exists a unique set that has any label (we call it L),

o there exists a unique partition of L,

e for any row, a set of presence labels in that row is a disjoint union of the partition result of I,

e for any handler, target labels of that handler is one of the partition result of L, and

e a unique closed type can be attached to l as presence.
We write L23(IL) to denote the set of partition results of L, r21 to denote the function that assigns a unique
label | such that | : Lab € Yeg to £ € L23(L). We write r21(H) to denote | such that r21({ly,...,1l,}) =1
where H = {returnz — M}W{lyp1r1 — N1} W---{l, ppnrn — Np}. We define 12T as the function that takes
a label I and returns the type that corresponds to the unique presence type of l. We define 120p as the function
that takes a label | and returns a unique operation name. We also assume that

r21({l1,...,1n}) = {120p(l1) : 12T(L1),...,120p(l,) : 12T(l,)} € X.

70

We define H2I as follows.

Kinds
H2I(Type) = Typ H2I(Row,) = H2I(Effect) = Eff
Types
H2I(A — BIE) = H2I(A) =y H2I(B) H2I(VaX.AIE) = Va:H2I(K)H21(A)™'P)
Effects
H2I({R}) = H2I(R)
H2I(ly : Prs---5ly 2 Poys) = ({1 ¢-- 1 (UL, 10))) (where I, =x21(L;) and L1 W --- Ly, = {l; | P; # Abs})
H2I(ly : Pis---5ly i Posp) = (|- || p)) (wherel, =121(L;) and L1 W --- Ly, = {l; | P; # Abs})
Values
H2I(z) = =z H2I(Aa®.M) = A«:H2I(K).H2I(M)
H2I(AzA. M) = fun(z,z,H2I(M)) (where z is fresh)
Computations
H2I(V W) = H2I(V)H2I(W) H2I(VT) = H2I(V)H2I(T)
H2I(return M) = H2I(M) H2I(letz + MinN) = letax =H2I(M)inH2I(N)
H2I((do!V)F) = 120p(l)yo1(c) H2I(V) (wherel € L € L2S(L))
H2I(handle M with) = handle,, g)H2I(M)withH2I(H)
Handlers
H2I({returnz — M}) = {returnz — H2I(M)}
H2I({ipr— M}wWH) = H2I(H)w{120p(l)pr — H2I(M)}
Contexts
H2I(-) = 0 H2I(I',z: A) = H2I(I"),z : H2I(A)
H2I(A,a: K) = H2I(A),«a:H2I(K)

Lemma 4.9.

(1) If+-T1,a: K,z: ATs and =T,z : A, thentTq,2: A,a: K,T3.
(2) IfT1,a: K,z: ATstES: K andt-Ty,2: A, thenTy,z: Aja: K, T3+ S: K'.
(3) IfTy,a: K,x: ATsF B<:C andbFTy,2: A, thenT1,2: A,a: K, T3+ B <: C.
(4) IfT1,a: K,x: AATsk By |e1 <: By |lea and -Ty,2: A, thenTy,2: Aja: K, T3 F By | g1 <: By | e.
(5) fT1,a: K,z: Al'ste:Bleand-T1,2: A, thenT1,z: A,a: K,I'ske: B|e.
(6) IfT1,a: K,z: ATst, h: B=°C and+T1,2: A, thenT1,2: A,a: K, T'sk, h: B=°C.
Proof. Straightforward by mutual induction on the derivations. |

Theorem 4.10.

(1) If- A, then - H2I(A).

(2) If AT : K, then H2I(A) H2I(T) : H2I(K).

(3) If AET, then - H2I(A),H2I(T).

(4) If ;T =V 2 A, then H2I(A),H2I(T") - H2I(V) : H2I(A) | 0.

(5) If A;T F M : AlE, then H2I(A),H2I(T) - H2I(M) : H2I(A) | H2I(E).

71

(6) If A;T + {returnz — M} W {lyp1r — N1} W W {l,p,rn — Np}: AIE = BIE', then
e H2I(A),H2I(T) b, H2I(H) : H21(A) =F21(F") H21(B),
e r21(H):0 € X, and
e (r21(H) | H2I(E")) ~gimpr H2I(E),
where o = {120p(ly) : 12T(l1),...,120p(l,) : 12T(1,)}.

Proof.

(1) Straightforward by induction on the derivation.

(2) By induction on a derivation of the judgment. We proceed by case analysis on the rule applied lastly to
the derivation.

Case KH_VAR: We have

- T =aq,
—FA a: K, and
- A=A a: K,

for some A'.
By definition of H2I, we have a : H2I(K) € H2I(A', o : K). By case (1), K_VAR derives H2I(T") F « :
H2I(K)
Case KH_FUN: We have
- T=A— B!E,
— K =Type,
— A+ A: Type,
— A+ B : Type,
A+ E : Effect,
for some A, B, and E. By the induction hypothesis, we have
— H2I(A)FH2I(A) : Typ,
— H2I(A) F H2I(B) : Typ, and
— H2I(A)F H2I(FE) : Eff.
Thus, K_FUN derives

H2I(A) - H2I(A) —H21(E) H2I(B): Typ
as required.
Case KH_FORALL: We have
— T =VaX AE,
— K = Type,
— A,a: K'+ A: Type, and
— A,a: K'+ E : Effect,
for some a, K’, A, and E. By the induction hypothesis, we have
— H2I(A,a: K') F H2I(A) : Typ and
— H2I(A,a: K') F H2I(E) : Eff.
Thus, K_Povry derives
H2I(A) b Vo : H2I(K') H21(A)™) Typ
as required.
Case KH_EFFECT: Clearly by the induction hypothesis.
Case KH_CLOSEROW: Clearly by the assumptions and K_CONS.
Case KH_OPENROW: Clearly by the assumptions and K_CONS.
(3) By induction on a derivation of the judgment. We proceed by case analysis on the rule applied lastly to
the derivation.
Case CH_EMPTY: Clearly because case (1).
Case CH_VAR: We have

72

—I'=TI",z: A,

— AFT,

— x ¢ dom(T”), and

— AF A: Type,
for some I, z, and A. By the induction hypothesis and case (2), we have

— F H2I(A),H2I(I") and

— H2I(A) FH2I(A) : Typ.
By F H2I(A),H2I(I”) and Lemma 3.5(2), we have H2I(A),H2I(I") - H2I(A) : Typ. By definition of
H2I, we have © ¢ dom(H2I(A),H2I(I")). Thus, C_VAR derives

FH2I(A),H2I(I"), z : H2I(A)
as required.

(4)(5)(6) By mutual induction on derivations of the judgments. We proceed by case analysis on the rule applied
lastly to the derivations.
Case TH_VAR: We have
- V=uz,
— AFT, and
—xz:A€eT,
for some xz. By Theorem (3), we have - H2I(A),H2I(T"). By definition of H2I, we have x : H2I(A) €
H2I(T"). Thus, T_VAR derives

H2I(A),H2I(T') F o : H2I(A) | 0p

as required.

Case TH_LAM: We have
— V = Xzho.M,
— A=Ay — AE, and
— ATz AgE M : AlE,
for some x, Ay, A1, E, and M. By the induction hypothesis, we have

H2I(A),H2I(T), 2 : H2I(Ag) - H2I(M) : H2I(A,) | H2I(E).

Without loss of generality, we can choose z such that
— z ¢ FV(H2I(M)),
- z#u,
— 2z ¢ dom(H2I(A),H2I(T)), and
— H2I(Az?°.M) = fun(z, 2, H2I(M)).
By Lemma 3.12 and Lemma 3.2(2) and Lemma 3.6, we have
— H2I(A),H2I(T") F H2I(A;) : Typ and
— H2I(A),H2I(T) - H2I(FE) : Eff.
By Lemma 3.9, we have - H2I(A),H2I(T"), x : H2I(Ap). Since only C_VAR can derive this judgment,
we have H2I(A),H2I(T") - H2I(Ap) : Typ. Thus, C_VAR derives

FH2I(A),H2I(T"), 2 : H2I(Ag) —rpor(e) H2I(A1).
Thus, Lemma 3.5(5) and T_ABS derives
H2I(A),H2I(T) - fun(z, 2, H2I(M)) : H2I(Ao) —rmor(r) H2I(A1) | Op

as required.
Case TH_PoLyLAM: We have
-V =AaK .M,
— A=VYaX . B\E,
— A,a: K;T'HM: B!E, and

73

~AFT,

for some «, K, M, B, and E. By the induction hypothesis and case (3), we have
— F H2I(A),H2L(T") and
— H2I(A), o : H2I(K),H2I(T') - H2I(M) : H2I(B) | H2I(E).

By applying Lemma 4.9 repeatedly, we have

H2I(A),H2L(T'), o : H2I(K) b H2I(M) : H2I(B) | H2I(E).
Thus, T_TABS derives
H2I(A), H2L(T') F Aa : H2I(K).H2I(M) : Yo : H2I(K).H21(B)*™" %) | g

as required.
Case TH_AprpP: We have

- M=VW,
— A;THV . B— AlE, and
- A THW B,

for some V', W, and B. By the induction hypothesis, we have
— H2I(A),H2I(T) - H2I(V) : H2I(B) —por(p) H2I(A) | Dp and
— H2I(A),H2I(T) - H2I(W) : H21(B) | 0.

Thus, T_ApPP derives

H2T(A),H21(T) F H2T(V) H2I(W) : H21(A) | H21(E)

as required.
Case TH_POLYAPP: We have

- M=VT,
- A= (BIE)[T/a),
— AT HV : Vo .BE, and
- AFT: K

for some V, T, a, K, B, and E. By the induction hypothesis and case (2), we have
— H2I(A),H21(T") F H21(V) : Vo : B21(K).H21(B)*™ &) | gy and
— H2I(A) F H2I(T) : H2I(K).

By Lemma 3.9 and Lemma 3.5(2), we have H2I(A),H2I(T") + H2I(T) : H2I(K). Thus, T_TApP
derives

H2I(A),H2I(T) - H2I(V)H2I(T) : H2I(B[T/a]) | H2I(E[T /)
as required.

Case TH_RETURN: We have
— M =returnV,
— A;THV A and
— A+ FE: Effect,
for some V. By the induction hypothesis and case (2), we have
— H2I(A),H2I(T) F H2I(V) : H2I(A) | 0 and
— H2I(A) b H2I(E) : Eff.
Thus, T_SUB derives
H2I(A),H21(T) - H2I(V) : H2I(A) | H2I(E)
as required.
Case TH_LET: We have
— M =letx < Myin M,
— A;T'F My : B'E, and
— A;Tz:BE M, : AE,
for some x, My, M;, and B. By the induction hypothesis, we have
— H2I(A),H2I(T) F H2I(M,) : H2I(B) | H2I(E) and

74

— H2I(A),H2I(T), & : H2I(B) F H2I(M;) : H2I(A) | H2I(E).
Thus, T_LET derives

H2I(A),H2I(D) - let = = H2T(M) inH2I(M;) : H2I(A) | H2I(E)

as required.
Case TH_DO: We have
M = (dol V)%,
- A THV B,
— {l: Pre(B — A); R}, and
— A+ E: Effect,
for some [, V, E, B, and R. By the induction hypothesis and case (2), we have
— H2I(A),H2I(T) - H2I(V) : H2I(B) | 0 and
— H2I(A) F H2I(E) : Eff.
There uniquely exists some £ such that
— £ e L2s(L),
—le L, and
— £ Cdom(E).
Thus, we have
- r2l(L) o€,
— 120p(1) : 12T(l) € o, and
— (r21(£) | &) ~simpr H2I(E),
for some o and €. Because Lemma 3.9 gives us - H2I(A),H2I(T"), T_OpP and T_ApP and T_SuUB
derive

H2I(A), H2I(T') F 120p(I)ro1() H2I(V) : H2I(B) | H2I(E)
as required.

Case TH_HANDLE: We have

— M = handle N with H,
— A;T'F N :B!E' and
— A;T-H:B'E'= AE,

for some N, H, B, and E’. By the induction hypothesis, we have
— H2I(A),H2I(T) F H2I(N) : H2I(B) | H2I(E'),
— H2I(A),H2I(T) F, H2I(H) : H2I(B) =F21(E) H21(A),
— r21(H) 0 € X, and
— (r21(H) | H2I(E)) ~simpr H2I(E').

for some o. Thus, T_HANDLING derives

H2I(A), H21(T) + handle,, ;) H2I(N) with H2T(H) : H21(A) | H21(E)

as required.
Case HH_HANDLER: We have

— A;Tyz: A+ M : B'E/,
— ATy 0 Agjyry : B — BIE'E N, : BIE for any i € {1,...,n},
— E={l1:Pre(A1 = By);--- ;1 : Pre(4,, — B,); R}, and
— E' ={ly:P1; - ;ly: Py; R},

for some A;, B;, and P;, where i € {1,...,n}. By the assumptions, we have
—A{l,...,l,} € L2s(L),
— 12T(I;) = H2I(4;) = H2I
— r21({ly,...,1l,}) :: {120p

B;) for any i € {1,...,n},

l) :127(1y), ..., 120p(l,) : 12T(1,)} € &, and
—Vie{l,...,n}.(P,=Abs) or Vi € {1,...,n}.(P, = Pre(A; — B;)).

Thus, we have (r21(H) | H2I(E’)) ~simpr H2I(E).

By the induction hypothesis, we have

—~ v = —

(0]

— H2I(A),H2I(T), z : H2I(A) - H2I(M) : H2I(B) | H2I(E’) and
— H2I(A),H2L(T), y; : H2I(A;),7; : H21(B;) —mor(pr) H2L(B) F H2I(NV;) : H2I(B) | H21(E') for any
ie{l,...,n}.
Therefore, H_-RETURN and H_OP derive

HQI(A),HQI(F) l_{120p(l1):12T(l1),...,120p(ln):12T(ln)} HQI(H) : HQI(A) :>H21(E,) HQI(B)-

Thus, the required result is achieved.

4.3 Comparison to []

We give the targets of comparison: one is an instance of Ay (Example 1.26), and another is a minorly changed
language of |]

Definition 4.11 (Minor Changed Version of |). Change list:
e changing implicit polymorphism to explicit polymorphism,

e removing constants from values,

e removing the assumption that the initial environment has effect declarations, and adding such declarations
to 3,

e adding type variables to contexts, and

e adding well-formedness of contexts.

The syntaz of a minor changed version of [] is as follows.
e v|e(e) | e(m%) | valz = e1;es | handle{h}(e) (expressions)
v u= x|op|Ar.e|AaF.e (values)
h == returnz — e | op(x) — e;h (clauses)
TF u= ok | bokn) ok pk ok (types)
ko= x|e|k]|(ki,....kn) >k (kinds)
o = VYaFo|T* (type scheme)
I' == Q|T,z:0]|T,a (typing contexts)
Y = 0|%,0:{opy,---,0p,} (signature environment)
— = —— o (ke%) 2% (functions)
H = e (empty effect)
(=]=) = (ke)—e (effect extension)
I = ckn)=kphe ok (effect labels)

Well-formedness rules, free type variable, and typing rules consist of the following.
Contexts Well-formedness

— CL_EmPTY FT z¢dom(T) frv(r*)\{o"} CT Vk.({o*}NT =0)

— CL_VAR
= FT,z:Vak .7*

FT Vk(a* ¢T)

FT, o
Free Type Variable |ftv(7%)| |ftv(o)

ftv(a®) = {aF} fv(rf — 75 75) = frv(r) Uftv(m5) Uftv(73) fiv(() =0 frv((rf | 75)) = ftv(r)) U ftv(rs)

CL_TVARr

fru(cho b=k gy =) fv(rf) fv(Veb o) = fiv(o) \ {of}

»Tn
i€{l,...,n}

76

FT T(x)=0 ftv(e) CT
Fkz:o|e

Fktej:op|e Tha:okbey:7|e

TL_VAR

Mx:mbe:ry|e ftv(e) CT

TL_LAM
FEXze:m —émyle

Fkej:mg—er|e Ther:imy|e

TL_LET TL_ApP
Fkvalz =ej;eq:7 € Thei(es): 7€
Lok ke ftv(e) CT L'k e:Vak. ftv(rF) C T
e RY 7\/(6) — TL_TABS e | - V(E) = TL_TApp
'k Aak.e:Vak.r|e Lre(rf) :rlak — 78] | €
Fke:7|{|e) Tya:7hke.:7,|¢€
3(1) = {opr,-- op,} Thopim = (L1(0) 73| ()

a7, resume : 7 — €T, Fe; 7, |¢€

TL_HANDLE

I+ handle{op;(z1) — e1;- -

Fke:r = (...,

;0p,(Tn) = en;returnae — e }(e) @ T

In |)Y]e ftv(e)CT

v e

TL_OPEN

I'kFe:n

Definition 4.12 (Tranblatlon from Leijen’s to An Instance).

T .,k‘n)ﬂk‘

0, (=] =) and ¢

=l oy | €)Yy | €

We assume that there is no constants other than

We define c21 as the injective function that assigns a label name [

such that l (belonging to an instance) to cF1-Fn)=kK (belonging to Leijen’s). We define L2I, h21, and c21 as

follows. We require c21 to be injective.
Kinds

L2I(x) = Typ L2I(e) = Eff L2I(k) = Lab
Types
L2I(c*) = « L2I(rf = 75 75) = L2I(7{) —rar(rg) L2I(75)
L21(() = L21((I | €)) = (L21(1) | L2I(e))
LQI(Va .0) = Va:L2I(k).L2I(c0)"
L2T(cFrreeskn)—>k(conEn)) = c21(cF k) SR LT (71 - L2T (7
(c(k1 kn)=ky =1 (where 1 : L2I(kp) x ... x L2I(k,) — Lab € Y.q)
Expressions
L2I(z) x
L2I(op) OP 01 () I2T(7F) (where op € X(c(T*)))
L2I(Az.e) fun(z,z,L2I(e)) (where z is fresh)
L2I(Aak.e) Aa : L21(k).L2I(e)
L2I(eq(e2)) let z = L2I(e;)inlety = L2I(ez)inxy
L2I(e(T")) let z = L2I(e) in 2 L2I(7%)
L2I(valz = e;;eq) let z = L2I(e;)inL2I(eg)
L2I(handle{h}(e)) handley, () L2I(e) with L2I(h)
Handlers
L2I(returnz —e) = {returnz — L2I(e)}
L2I(op(x) — e;h) = L2I(h)W {op z resume — L2I(e)}
Contexts
L21(0) = 0 L2I(l,z:0) = L2I(I),z:L2I(¢) L2I(T,af) = L21(I), o :L2I(k)
Effect Contexts
L21(0)
L21(2, ¢(7k) : {opy,...,0p,}) L2I(X),c21(c) :: Vo : L21(k).o

(where T'g 2 op,; : 7; — <C<ﬁ> |)i
and o[L2I(TF

)/a)={opy:my =1/,...,0p, T, = T,/ })

7

Translation from Handlers to Labels

h21(op,(x1) — e1;- -+ ; 0p,(Tn) — en;returnz — e)
B l (if | = c21(c) and {opy,...,0p,} = X(c(---)))
| undefined (otherwise)

Lemma 4.13. If ¢ ¢ dom(T"), then x ¢ dom(L2I(T")).

Proof. Straightforward by structual induction on I' and the definition of L2I.
Lemma 4.14. o* € T iff o : L21(k) € L21(T).

Proof. Straightforward by structual induction on I' and the definition of L21I.
Lemma 4.15. Ifz:0 €T, then x : L2I(0) € L2I(T").

Proof. Straightforward by structual induction on I' and the definition of L2TI.
Lemma 4.16. IfT'Fe:0 |¢, then FT.

Proof. Straightforward by induction on a derivation of T'Fe: o | €.

Theorem 4.17.

(1) If ftv(7%) C T and - L21(T), then L2I(T) - L2I(7%) : L2I(k).
(2) If = T, then - L2I(T").
(3) IfT+e:o|e then L21(T) F L2I(e) : L2I(0) | L2I(e).

Proof.

(1) By structual induction on 7*.

Case 7% = oF: We have o € T'. By Lemma 4.14, we have « : L2I(k) € L2I(T"). Thus, K_VAR derives
L21(T) F « : L21(k)

as required.

k

Case 17" = 1 — 75 75+ We have

By the induction hypothesis, we have
e L2I(T) + L2I(77) : Typ,
e L2I(I") F L2I(75) : Eff, and
e L21(I) - L2I(7%) : Typ.
Thus, K_FuUN derives
L21(T) F L2I(7y) —L21(rs) L2I(73) : Typ
as required.

Case 7 = (): We have k = e. Thus, by - L2I(I"), we have
L2I(T) + () : Eff

as required.
Case 7" = (71| 75): We have

o k=e,

78

By the induction hypothesis, we have

e L2I(T) - L2I(7f) : Lab and

o L21(I) F L2I(7S) : Eff.
Thus, K_CONS derives

L21(T) F (L21(7f) | L21(7%)) : Eff
as required.
Case 7F = cFrkn)=k(ph 0 rkny: We have ftv(r?) C T for any i € {1,...,n}. By the induction

hypothesis and definition of c21, we have

o L21(D) - L2I(7/) : L21(k;) for any i € {1,...,n},

o c21(cF k) =K) 12T (k) x ... x L2I(k,) — Lab € Yug.
Thus, K_CONS derives

L21(T) F c21 (ki kn) 2Ky 121 (781 .. 121 (757) : Lab
as required.

(2) By induction on a derivation of the judgment. We proceed by case analysis on the rule applied lastly to
the derivation.
Case CL_EMPTY: Clearly by C_EMPTY and the definition of L21T.
Case CL_VAR: We have
o I'=1"z:Va .7,
o FIV,
e = ¢ dom(I”),
o ftv(7*) \ {a¥'} C T, and
o VE.({aF} N1 =),

for some IV, z, o', and 7*. By the induction hypothesis and Lemma 4.13, we have
e FL2I(IV) and

o 1 ¢ dom(L2I(I)).
By Lemma 4.14 and C_TVAR, we have

FL2I(I), @ : L2I(k').

By ftv(7*) C I",a*" and case (1), we have

L2I(I"), @ : L2I(K') - L2I(7") : Typ.
Thus, K_PoLy and C_VAR derives

FL2I(IY), z : L2T (Vo .7*)

as required.
Case CL_TVAR: We have

o I'=T1" aF,
e FTV and
o Vk.(aF ¢ 1),

for some IV and o*. By the induction hypothesis and Lemma 4.14, we have
e HL2I(I") and
o o ¢ dom(L2I(I")).

Thus, C_TVAR derives

FL2I(IV), o : L2I(k)

as required.

(3) By induction on a derivation of the judgement. We proceed by case analysis on the rule applied lastly to
the derivation.

Case TL_VAR: We have

79

o c=uz,
e I'(z) =0, and
o ftv(e) CT
for some x. By Lemma 4.16 and case (2), we have - L2I(T"). By case (1), we have

L2I(T") - L2I(e) : Eff.
By Lemma 4.15, we have = : L2I(0) € L2I(I"). Thus, T_VAR derives
L2I(T) F z : L2I(o) | ().

By Lemma 3.12, we have L2I(T") - L2I(o) : Typ. Thus, ST_REFL and Lemma 3.3(1) and T_SuB
derive

L2I(T) F x : L2I(o) | L2I(e)
as required.
Case TL_LAM: We have
o c=)\u.¢,
e o=1 >,
el z:m ke :m|€, and
o ftv(e) CT
for some x, €/, 7y, €, and 7. By Lemma 4.16, we have - I',z : 7;. Since only CL_VAR can derive

FT,z: 7, we have - T'. By case (2), we have F L2I(T"). By the induction hypothesis and case (1),
we have

o L2I(T",x : 7qy) F L2I(¢') : L2I(7y) | L2I(€¢') and
o L2I(T") F L2I(e) : Eff.
Without loss of generality, we can choose z such that
o z ¢ FV(L2I(¢')),
o 2z Fux,
e 2z ¢ dom(L2I(T")), and
e L2I(\x.¢') = fun(z,z,L2I(e')).
By Lemma 3.12 and Lemma 3.2(2) and Lemma 3.6, we have
e L2I(I") F L2I(7,) : Typ and
o L21(T") - L21(¢') : Eff.
By Lemma 3.9, we have - L2I(I"),z : L2I(7). Since only C_VAR can derive - L2I(T"), z : L2I(7y),
we have L2I(T") F L2I(ry) : Typ. Thus, K_FUN derives

L21(T) F L2I(7) —L21(e) L2I(7,) : Typ.
Thus, C_VAR derives
FL2I(T"), z : L2I(7y) —rpor(ery L2I(7y).
Thus, Lemma 3.5 and T_ABS derives

L2I(T) F fun(z, z,L21(¢")) : L21(1) —L21(e’) L2I(7y) | ().

Thus, ST_REFL and T_SUB derive

L2I(T) F fun(z, z, L2I(e")) : L2I(7;) —1or(er) L2I(7y) | L2I(e).

as required.
Case TL_LET: We have
e e =valx =eq;eq,
e o=rT,
e T'kep:o'|e and
el z:0'bey:7|e

for some z, e1, es, 7, and ¢’. By the induction hypothesis, we have

80

e L2I(T") F L2I(ey) : L2I(0’) | L2I(€) and
o L2I(T",x : 0') F L2I(eq) : L2I(7) | L2I(e).
By definition of L2I and T_LET, we have

L2I(T") F let = L2I(ey) inL2I(es) : L2I(7) | L2I(e)
as required.

Case TL_APP: We have

e e =¢e1(ea),
e 0o =T,

elke 7 —eT e and

Pkex:my|e,

for some eq, es, 7, and 7,. By the induction hypothesis, we have
o L2I(T) F L2I(e1) : L2I(7y) —pa1(e) L2I(7) | L2I(¢) and
e L2I(T") F L2I(ez) : L2I(7y) | L2I(e).

Without loss of generality, we can choose x and y such that
«z#y,
e z ¢ dom(L2I(T")), and
e y ¢ dom(L2I(T)).

Because Lemma 3.12(1) and C_VAR give us
o - L2I(T"), z : L2I(7y) —pa1(e) L2I(7) and
o FL2I(I"), z : L2I(7y) —rar(e) L2I(7), ¥y : L2I(7y).

Thus, T_VAR and T_APP derive

L2I(T"), z : L2I(7y) —bpo1(e) L2I(7), ¥ : L2I(7y) F wy : L2I(7) | L2I(e).

By Lemma 3.5(5), T_LET derive

L2I(T"), z : L2I(7y) —ror(e) L2I(7) - lety = L2I(es) inzy : L2I(7) | L2I(€).
Thus, T_LET derives

L2I(T) F letx = ej inlet y = L2I(ey) inzy : L2I(7) | L2I(€)
as required.
Case TL_TABs: We have
o c = Aak.¢,
o 0 =Vak.r,
e T,oF ke :7|(),and
o ftv(e) C T,
for some ¥, ¢/, and 7. By Lemma 4.16, we have I, a*. Since only CL_TVAR derive L, ok, we
have F I'. By case (2), we have - L2I(T"). By the induction hypothesis and case (1), we have
o L2I(T), @ : L2I(k) F L2I(¢') : L2I(7) | () and
e L2I(T") - L2I(e) : Eff.
By applying T_TABS repeatedly, we have

L21(T) F Aa : L21(k).L2I(€) : Vay : L2T(ko).(- - - (Yay,, : L2T(ky,).L2I(7)Y) -)0 | ().
Thus, T_SuB derives

L21(T) F A@ : L21(k).L21(¢') : Yoy : L21(ko).(- - (Yay,, : L21(k,).L21(7)V) .-)0 | L21(e).
as required.

Case TL,TAPP:iWe have

o c=c (1),

o 0 =r1[aF — 7k,

81

e I'Fe :VYakr|e and
o ftv(r§) C T,

for some €', %, and of. By Lemma 4.16, we have F I. By case (2), we have - L2I(T"). By the
induction hypothesis and case (1), we have

e L2I(T) - L2I(¢') : Vayg : L2I(kg).(- - - (Ve : L2I(ky,).L2I(7)0) ---)0 | L2I(¢) and
o L21(D) F L21(7F) : L21(k).
Without loss of generality, we can choose x such that ¢ dom(L2I(I')). By Lemma 3.12(1) and
C_VAR, we have
FL21(T), @ : Yayg : L2I(ko).(- - - (Vav, : L2I(k,).L2I(7)")).

By Lemma 3.5(2), we have

L21(T), z : Vay : L2T(ko).(- - - (Va,, : L2 (ky,).L2I(7)) -)9 F 78 L21(k).
Thus, T_VAR and applying T_TAPP repeatedly derive
L21(T), z : Vay : L2T(ko).(- - - (Va,, : L2T(ky,).L2I(7)) -)0 b 2 L2T(rF) : L21(7)[7E /] | ().

Because Lemma 3.12(1) and Lemma 3.5(2) give us
o L21(T),z : Vay : L2T(ko).(- - (Va, : L2T(k,).L21(7)0) -)0 - L21(7)[r /o] : Eff and
e L2I(T),x : Vag : L2I(ko).(- - - (Va,, : L2I(k,).L2I(7)0) -)0 - L21(e) : EfF,

ST_REFL and T_SUB derives
L2I(T), z : Yoy : L2 (ko). (- - - (Y, : L2T(ky).L21(7)) -)0 F 2 L2T(7F) : L21(7)[7F /aF] | L21(e).
Thus, T_LET derives

L2I(T) F let z = L21I(¢/) inz L2I(7f) : LQI(T)[%/O/C] | L2I(e)

as required.

Case TL_HANDLE: We have

o h=op,(xz1) > e1; - ;0p,(Tn) = en;returnc — e,
e ¢ = handle{h}(¢'),
e 0=r1,

F)—e’:7‘|<c<ﬁ>\e>,
Dyz:thke i, ¢,

E(C<Tk>) - {Opla;' ’ 0])”},

o ['kopi:m = (™) [()7 | (), and
o I' resume: 7}, —e7,,x;: 7, e 7, |eforanyie{l,...,n},

for some h, €', z, e, op;, x;, €;, T;, T;, and c<7’7k> where i € {1,...,n}. By the induction hypothesis
and definition of L2I, we have

e L2I(I') - L2I(¢) : L2I(7) | (c21(c)L2I(7*) | L2I(e)),

o L2I(T),z : L2I(r) F L2I(e,) : L2I(r,) | L2I(e),

o L2I(I"),x; : L2I(7;), resume : L2I(7]) —por(e) L2I(7,) b L2I(e;) : L2I(7,.) | L2I(e) for any

ie{l,...,n},
o c21(c) = Va : L21(k).o € L21(%), and
° U[m/a] = {Opl -7 :>Tllv"-50pn:7-n :>T;z}

Because H_RETURN and H_OP derive

L21(T) L2I(h) : L21(7) =2 121(7,),

l_J[LQI(Tk)/E]
T_HANDLING derives
L2I(T) F handleys () L2I(e') with L2I(R) : L2I(7,) | L2I(€)

as required.

82

Case TL_OPEN: We have
e o=1 = (l1,..., 0, | €)1y,
elke:m = {l1,..., 0|)75 | € and
o ftv(e') C T,
for some 7, 79, l1,...,ln, and €. By Lemma 4.16, we have F I". By case (2), we have - L2I(T"). By
the induction hypothesis and case (1), we have
° LQI(F) [LQI(e) : LQI(Tl) —P(L21(l1),...,.L21(1)] () LQI(TQ) | LQI(G) and
e L2I(T") - L2I(¢') : Eff.
By Lemma 3.12(1), we have

LQI(F) H L2I(Tl) _><L2I(l1),L21(ln)|(>> L2I(72) : Typ

Since only K_FUN can derive this judgment, we have
e L2I(T") - L2I(ry) : Typ,
o L2I(T") - L2I({L2I(ly),...,L2I(l,) | ())) : Eff, and
e L2I(T") - L2I(7y) : Typ.
Thus, by ST_REFL and ST_FuN and Lemma 3.3(1) and T_SuB, we have

L2I(F) = L2I(6) : LQI(Tl) 4)(L2I(ll),.4.,L2I(ln)|s’) LQI(TQ) | LQI(G)

as required.

References

[Hillerstrom et al.(2017)] Daniel Hillerstrom, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017.
Continuation Passing Style for Effect Handlers. In 2nd International Conference on Formal Structures for
Computation and Deduction, FSCD 2017, September 3-9, 2017, Ozford, UK (LIPIcs, Vol. 84), Dale Miller

(Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 18:1-18:19. https://doi.org/10.4230/LIPIcs.
FSCD.2017.18

[Leijen(2017)] Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 486-499. https:
//doi.org/10.1145/3009837.3009872

[Pretnar(2015)] Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. Invited tutorial
paper. In The 31st Conference on the Mathematical Foundations of Programming Semantics, MFPS 2015,
Nijmegen, The Netherlands, June 22-25, 2015 (Electronic Notes in Theoretical Computer Science, Vol. 319),
Dan R. Ghica (Ed.). Elsevier, 19-35. https://doi.org/10.1016/j.entcs.2015.12.003

83

https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1016/j.entcs.2015.12.003

	Definitions
	Example
	Properties
	Properties with Deep Handlers
	Properties with Shallow Handlers
	Properties with Lift Coercions
	Properties with Type-Erasure Semantics
	Properties with Lift Coercions and Type-Erasure Semantics
	Safety Conditions about Instances

	Comparison of Instances and Previous Work
	Comparison to pretnarintroduction2015
	Comparison to hillerstromcontinuation2017
	Comparison to leijentype2017

