
Abstracting Effect Systems for 
Algebraic Effect Handlers

Takuma Yoshioka *1, Taro Sekiyama *2, Atsushi Igarashi *1

*1 Kyoto University, Japan *2 NII & SOKENDAI, Japan



Background: 

Algebraic Effect Handlers

Abstracting Effect Systems for Algebraic Effect Handlers 2

• Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some 
computational effects such as mutable states and exceptions

• They have two components, operations and handlers,
which are similar to exception raising and handling, 
but can resume the computation after operation calls

handle
put 42; get ()

with { 
put -> ..., 
get -> ...

} 0



Background: 

Algebraic Effect Handlers

Abstracting Effect Systems for Algebraic Effect Handlers 2

• Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some 
computational effects such as mutable states and exceptions

• They have two components, operations and handlers,
which are similar to exception raising and handling, 
but can resume the computation after operation calls

handle
put 42; get ()

with { 
put -> ..., 
get -> ...

} 0

put/get are operations 

that write into/read from 

one mutable cell



Background: 

Algebraic Effect Handlers

Abstracting Effect Systems for Algebraic Effect Handlers 2

• Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some 
computational effects such as mutable states and exceptions

• They have two components, operations and handlers,
which are similar to exception raising and handling, 
but can resume the computation after operation calls

handle
put 42; get ()

with { 
put -> ..., 
get -> ...

} 0

This handler implements the 

behavior of put and get

put/get are operations 

that write into/read from 

one mutable cell



Background: 

Algebraic Effect Handlers

Abstracting Effect Systems for Algebraic Effect Handlers 2

• Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some 
computational effects such as mutable states and exceptions

• They have two components, operations and handlers,
which are similar to exception raising and handling, 
but can resume the computation after operation calls

handle
put 42; get ()

with { 
put -> ..., 
get -> ...

} 0

42

This handler implements the 

behavior of put and get

put/get are operations 

that write into/read from 

one mutable cell



Background: 

Unhandled Operations

Abstracting Effect Systems for Algebraic Effect Handlers 3

• Unhandled operations cause runtime errors

• Their behavior are similar to uncaught exceptions

put 42; get () gets stuck!

There is no handler for put/get



Background: 

Effect Systems

Abstracting Effect Systems for Algebraic Effect Handlers 4

• Effect systems for algebraic effect handlers statically track 
unhandled operations as effects ε, and guarantee that every 
operation is handled appropriately

• E.g., an effect system that uses sets to represent effects ε

Γ ⊢ handle put 42; get () with h : int -> int | {}

...    Γ ⊢ put 42; get () : int | {put, get}

Γ ⊢ e : A | ε



Background: 

Effect Systems

Abstracting Effect Systems for Algebraic Effect Handlers 4

• Effect systems for algebraic effect handlers statically track 
unhandled operations as effects ε, and guarantee that every 
operation is handled appropriately

• E.g., an effect system that uses sets to represent effects ε

Γ ⊢ handle put 42; get () with h : int -> int | {}

...    Γ ⊢ put 42; get () : int | {put, get}

means operations put and get are not yet handled
Γ ⊢ e : A | ε



Background: 

Effect Systems

Abstracting Effect Systems for Algebraic Effect Handlers 4

• Effect systems for algebraic effect handlers statically track 
unhandled operations as effects ε, and guarantee that every 
operation is handled appropriately

• E.g., an effect system that uses sets to represent effects ε

Γ ⊢ handle put 42; get () with h : int -> int | {}

...    Γ ⊢ put 42; get () : int | {put, get}

means operations put and get are not yet handled

The empty set means every operation is handled

Γ ⊢ e : A | ε



• Various effect representations, such as sets, have been studied
• These various implementations of effects are motivated by, e.g., 

type inference and expressive power

Background: 

Variations of Effect Systems

Abstracting Effect Systems for Algebraic Effect Handlers 5

language example

effect representations simple rowssets scoped rows

Eff
[Pretnar+ 2013]

Links
[Hillerström+ 2016]

Koka
[Leijen 2017]

Simple (resp. scoped) rows are sequences of operations 

without (resp. with) duplicating the same operations in one effect



• What are essential commonalities/differences among various 
effect representations?
• This unknown relationship suggests that there is no guide for language 

designers who will create a new style

Our Research Question

Abstracting Effect Systems for Algebraic Effect Handlers 6

language example

effect representations simple rowssets scoped rows

Eff
[Pretnar+ 2013]

Links
[Hillerström+ 2016]

Koka
[Leijen 2017]

Simple (resp. scoped) rows are sequences of operations 

without (resp. with) duplicating the same operations in one effect



Our Approach: 

Abstracting Effect Representations

Abstracting Effect Systems for Algebraic Effect Handlers 7



Our Approach: 

Abstracting Effect Representations

Abstracting Effect Systems for Algebraic Effect Handlers 7

effect algebras instantiations

language example

effect representations simple rowssets scoped rows

Eff
[Pretnar+ 2013]

Links
[Hillerström+ 2016]

Koka
[Leijen 2017]



Our Approach: 

Abstracting Effect Representations

Abstracting Effect Systems for Algebraic Effect Handlers 7

𝛌𝐄𝐀

effect algebras instantiations

language example

effect representations simple rowssets scoped rows

Eff
[Pretnar+ 2013]

Links
[Hillerström+ 2016]

Koka
[Leijen 2017]



Our Approach: 

Abstracting Effect Representations

Abstracting Effect Systems for Algebraic Effect Handlers 7

𝛌𝐄𝐀

effect algebras instantiations

Soundness!safety conditions
OK

language example

effect representations simple rowssets scoped rows

Eff
[Pretnar+ 2013]

Links
[Hillerström+ 2016]

Koka
[Leijen 2017]



Contributions

• Effect algebras
• Abstraction of effect representations and their manipulations

• 𝛌𝐄𝐀
• A λ-calculus with effect handlers, parameterized over effect algebras

• Safety conditions
• Requirements on effect algebras for soundness

• Main Theorem:
any instance of λEA is sound if it meets the safety conditions

Abstracting Effect Systems for Algebraic Effect Handlers 8

𝛌𝐄𝐀

effect algebras
instantiations

Soundness!safety conditions OK

lang. ex.

eff. repr. simple rowssets scoped rows

Eff Links Koka



Outline

• Effect algebras: abstraction of effect representations and 
their manipulations
• Manipulations of effect representations

• Definition

• Abstracted typing rules

• λEA: λ-calculus Parameterized over Effect Algebras

• Safety conditions and soundness

• Summary and other topics

Abstracting Effect Systems for Algebraic Effect Handlers 9



• Below are the manipulations of a set representation

...     Γ ⊢ e : A | ε {op} ∪ ε’ = ε

Γ ⊢ handle e with {op -> ...} : B | ε’

Background:

Manipulations of Effect Representations

Abstracting Effect Systems for Algebraic Effect Handlers 10

...    op : A -> B is given

Γ ⊢ op v : B | {op}

Γ ⊢ e : A | ε ε ⊆ ε’

Γ ⊢ e : A | ε’

injects the operation op
to the singleton set {op}

subeffecting is inclusion

removes the operation op from ε

[Op]

[SubEff]

[Handle]



Our Contribution:

Effect Algebras

• An effect algebra is a tuple ⟨𝑂, 𝐸, − ↑, ⊙, 𝟘⟩
• 𝑂 is a set of operations

• 𝐸 is a set of effects

• − ↑ : 𝑂 → 𝐸

• ⟨𝐸, ⊙, 𝟘⟩ forms a partial monoid

• E.g., an effect algebra for a set repr. is ⟨𝑂, 2𝑂, {−}, ∪, {}⟩

• Remark: our notations and basic idea are based on row algebras 
[Morris and McKinna 2019]

Abstracting Effect Systems for Algebraic Effect Handlers 11



Our Contribution:

Effect Algebras

• An effect algebra is a tuple ⟨𝑂, 𝐸, − ↑, ⊙, 𝟘⟩
• 𝑂 is a set of operations

• 𝐸 is a set of effects

• − ↑ : 𝑂 → 𝐸

• ⟨𝐸, ⊙, 𝟘⟩ forms a partial monoid

• E.g., an effect algebra for a set repr. is ⟨𝑂, 2𝑂, {−}, ∪, {}⟩

• Remark: our notations and basic idea are based on row algebras 
[Morris and McKinna 2019]

Abstracting Effect Systems for Algebraic Effect Handlers 11

operation injection



Our Contribution:

Effect Algebras

• An effect algebra is a tuple ⟨𝑂, 𝐸, − ↑, ⊙, 𝟘⟩
• 𝑂 is a set of operations

• 𝐸 is a set of effects

• − ↑ : 𝑂 → 𝐸

• ⟨𝐸, ⊙, 𝟘⟩ forms a partial monoid

• E.g., an effect algebra for a set repr. is ⟨𝑂, 2𝑂, {−}, ∪, {}⟩

• Remark: our notations and basic idea are based on row algebras 
[Morris and McKinna 2019]

Abstracting Effect Systems for Algebraic Effect Handlers 11

operation injection

effect concatenation



Our Contribution:

Effect Algebras

• An effect algebra is a tuple ⟨𝑂, 𝐸, − ↑, ⊙, 𝟘⟩
• 𝑂 is a set of operations

• 𝐸 is a set of effects

• − ↑ : 𝑂 → 𝐸

• ⟨𝐸, ⊙, 𝟘⟩ forms a partial monoid

• E.g., an effect algebra for a set repr. is ⟨𝑂, 2𝑂, {−}, ∪, {}⟩

• Remark: our notations and basic idea are based on row algebras 
[Morris and McKinna 2019]

Abstracting Effect Systems for Algebraic Effect Handlers 11

operation injection the empty effect

effect concatenation



Typing Rules based on Effect Algebras

Abstracting Effect Systems for Algebraic Effect Handlers 12



Typing Rules based on Effect Algebras

Abstracting Effect Systems for Algebraic Effect Handlers 12

...    op : A -> B is given

Γ ⊢ op v : B | (op)↑
(−)↑ injects the operation op

to the single effect (op)↑
[Op]



Typing Rules based on Effect Algebras

Abstracting Effect Systems for Algebraic Effect Handlers 12

...    op : A -> B is given

Γ ⊢ op v : B | (op)↑
(−)↑ injects the operation op

to the single effect (op)↑
[Op]

{op} in the set repr.



Typing Rules based on Effect Algebras

Abstracting Effect Systems for Algebraic Effect Handlers 12

...    op : A -> B is given

Γ ⊢ op v : B | (op)↑

Γ ⊢ e : A | ε ε ε’

Γ ⊢ e : A | ε’

(−)↑ injects the operation op

to the single effect (op)↑
[Op]

[SubEff]
<

subeffecting ε ε’ is defined as

∃ε’’.ε ⊙ ε’’ = ε’
<

{op} in the set repr.



Typing Rules based on Effect Algebras

Abstracting Effect Systems for Algebraic Effect Handlers 12

...    op : A -> B is given

Γ ⊢ op v : B | (op)↑

Γ ⊢ e : A | ε ε ε’

Γ ⊢ e : A | ε’

(−)↑ injects the operation op

to the single effect (op)↑
[Op]

[SubEff]
<

subeffecting ε ε’ is defined as

∃ε’’.ε ⊙ ε’’ = ε’
<

{op} in the set repr.

ε ⊆ ε’ in the set repr.



...     Γ ⊢ e : A | ε (op)↑ ⊙ ε’ = ε

Γ ⊢ handle e with {op -> ...} : B | ε’

Typing Rules based on Effect Algebras

Abstracting Effect Systems for Algebraic Effect Handlers 12

...    op : A -> B is given

Γ ⊢ op v : B | (op)↑

Γ ⊢ e : A | ε ε ε’

Γ ⊢ e : A | ε’

(−)↑ injects the operation op

to the single effect (op)↑

removes the operation op from ε

[Op]

[SubEff]

[Handle]

<

subeffecting ε ε’ is defined as

∃ε’’.ε ⊙ ε’’ = ε’
<

{op} in the set repr.

ε ⊆ ε’ in the set repr.



...     Γ ⊢ e : A | ε (op)↑ ⊙ ε’ = ε

Γ ⊢ handle e with {op -> ...} : B | ε’

Typing Rules based on Effect Algebras

Abstracting Effect Systems for Algebraic Effect Handlers 12

...    op : A -> B is given

Γ ⊢ op v : B | (op)↑

Γ ⊢ e : A | ε ε ε’

Γ ⊢ e : A | ε’

(−)↑ injects the operation op

to the single effect (op)↑

removes the operation op from ε

[Op]

[SubEff]

[Handle]

<

subeffecting ε ε’ is defined as

∃ε’’.ε ⊙ ε’’ = ε’
<

{op} in the set repr.

{op} ∪ ε’ = ε in the set repr.

ε ⊆ ε’ in the set repr.



Outline

• Effect algebras: abstraction of eff. repr. and their manipulations

• 𝛌𝐄𝐀: 𝛌-calculus Parameterized over Effect Algebras

• Safety conditions and soundness

• Summary and other topics

Abstracting Effect Systems for Algebraic Effect Handlers 13



Our Contribution:

𝛌𝐄𝐀
• A λ-calculus parameterized over effect algebras

• Supporting:
• Explicit polymorphism over types, operations, and effects

• Deep effect handlers

• Not supporting:
• Bounded row polymorphism as in Links [Hillerström+ 2016]

• Other handling mechanisms
• Local effects [Biernacki+ 2019]

• Tunneling [Zhang and Myers 2019]

• Lexically scoped handlers [Biernacki+ 2020, Brachthäuser+ 2020]

Abstracting Effect Systems for Algebraic Effect Handlers 14



Outline

• Effect algebras: abstraction of eff. repr. and their manipulations

• λEA: λ−calculus Parameterized over Effect Algebras

• Safety conditions and soundness
• Safety conditions

• Main theorem

• Summary and other topics

Abstracting Effect Systems for Algebraic Effect Handlers 15



Our Contribution:

Safety Conditions for Soundness

• Condition (1): no op satisfies (op)↑ 𝟘
• Intuition: subeffecting cannot erase information about operation calls

• Recall that 𝟘 represents the empty effect

• This condition excludes undesired subeffecting like (put)↑ 𝟘

• Condition (2): if (op)↑ ε and (op’)↑ ⊙ ε’ = ε and op ≠ op’, 
then (op)↑ ε’
• Intuition: a handler for op’ can only remove (op’)↑ from an effect

• This condition excludes undesired removing like (put)↑ ⊙ 𝟘 = (get)↑

Abstracting Effect Systems for Algebraic Effect Handlers 16

<

<

<

<

requirements on effect algebras



Our Contribution:

Main Theorem: Soundness

Theorem (Soundness):
any instance of λEA is sound if it meets the safety conditions

• The safety conditions formalize a common nature of sound effect systems

• All we need to do when considering new style of effect representations
is to check that an instance meets the safety conditions

Corollary: instances of λEA for Eff, Links, and Koka, are sound

• Proof: their effect representations meet the safety conditions

• These instances are adaptations of the existing languages to our setting

Abstracting Effect Systems for Algebraic Effect Handlers 17



Summary

Abstracting Effect Systems for Algebraic Effect Handlers 18

𝛌𝐄𝐀

effect algebras

instantiations

Soundness!safety conditions
OK

lang. ex.

eff. repr. simple rowssets scoped rows

Eff Links Koka

Approach:

Contributions:

• Effect algebras: abstraction of effect representations and their manipulations

• 𝛌𝐄𝐀: a λ-calculus with effect handlers, parameterized over effect algebras

• Safety conditions: requirements on effect algebras for soundness

• Main Theorem: any instance of λEA is sound if it meets safety conditions



Other Contributions

• We adapt λEA to shallow handlers [Kammar+ 2013]

• We also make two language extensions to λEA and give
additional safety conditions for them
• Extension (1): lift coercions [Biernacki+ 2018]

• Lift coercions are introduced to prevent unintended handlings

• Extension (2): type-erasure semantics [Biernacki+ 2019]

• Type-erasure semantics would be a way to efficiently implement effect handlers

• Our additional safety conditions for these extensions reveal essential 
differences among various effect representations

Abstracting Effect Systems for Algebraic Effect Handlers 19



Summary

Abstracting Effect Systems for Algebraic Effect Handlers 20

𝛌𝐄𝐀

effect algebras

instantiations

Soundness!safety conditions
OK

lang. ex.

eff. repr. simple rowssets scoped rows

Eff Links Koka

Approach:

Contributions:

• Effect algebras: abstraction of effect representations and their manipulations

• 𝛌𝐄𝐀: a λ-calculus with effect handlers, parameterized over effect algebras

• Safety conditions: requirements on effect algebras for soundness

• Main Theorem: any instance of λEA is sound if it meets safety conditions


	Slide 1: Abstracting Effect Systems for Algebraic Effect Handlers
	Slide 2: Background:  Algebraic Effect Handlers
	Slide 3: Background:  Algebraic Effect Handlers
	Slide 4: Background:  Algebraic Effect Handlers
	Slide 5: Background:  Algebraic Effect Handlers
	Slide 6: Background:  Unhandled Operations
	Slide 7: Background:  Effect Systems
	Slide 8: Background:  Effect Systems
	Slide 9: Background:  Effect Systems
	Slide 10: Background:  Variations of Effect Systems
	Slide 11: Our Research Question
	Slide 12: Our Approach:  Abstracting Effect Representations
	Slide 13: Our Approach:  Abstracting Effect Representations
	Slide 14: Our Approach:  Abstracting Effect Representations
	Slide 15: Our Approach:  Abstracting Effect Representations
	Slide 16: Contributions
	Slide 17: Outline
	Slide 18: Background: Manipulations of Effect Representations
	Slide 19: Our Contribution: Effect Algebras
	Slide 20: Our Contribution: Effect Algebras
	Slide 21: Our Contribution: Effect Algebras
	Slide 22: Our Contribution: Effect Algebras
	Slide 23: Typing Rules based on Effect Algebras
	Slide 24: Typing Rules based on Effect Algebras
	Slide 25: Typing Rules based on Effect Algebras
	Slide 26: Typing Rules based on Effect Algebras
	Slide 27: Typing Rules based on Effect Algebras
	Slide 28: Typing Rules based on Effect Algebras
	Slide 29: Typing Rules based on Effect Algebras
	Slide 30: Outline
	Slide 31: Our Contribution: E A.  
	Slide 32: Outline
	Slide 33: Our Contribution: Safety Conditions for Soundness
	Slide 34: Our Contribution: Main Theorem: Soundness
	Slide 35: Summary
	Slide 36: Other Contributions
	Slide 37: Summary

