Abstracting Effect Systems for Algebraic Effect Handlers

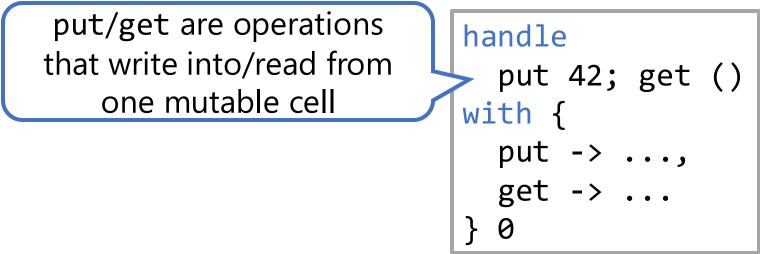
Takuma Yoshioka *1, Taro Sekiyama *2, Atsushi Igarashi *1

*1 Kyoto University, Japan *2 NII & SOKENDAI, Japan

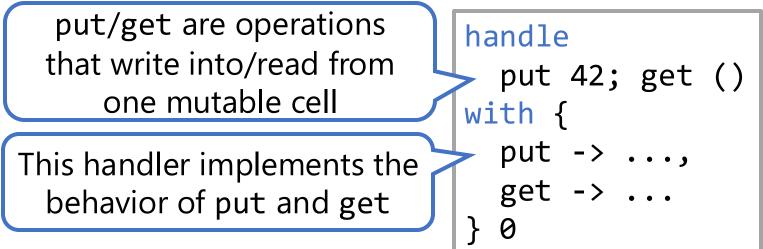
- Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some computational effects such as mutable states and exceptions
- They have two components, **operations** and **handlers**, which are similar to exception raising and handling, but can resume the computation after operation calls

```
handle
   put 42; get ()
with {
   put -> ...,
   get -> ...
} 0
```

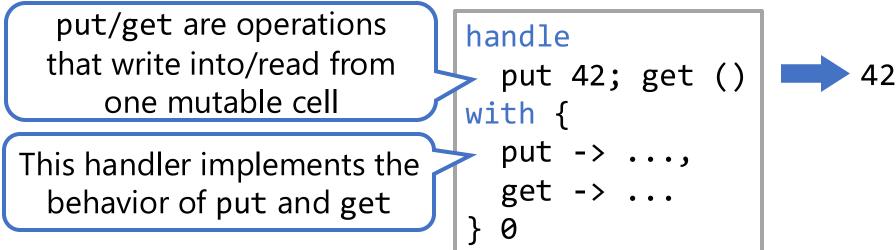
- Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some computational effects such as mutable states and exceptions
- They have two components, **operations** and **handlers**, which are similar to exception raising and handling, but can resume the computation after operation calls



- Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some computational effects such as mutable states and exceptions
- They have two components, **operations** and **handlers**, which are similar to exception raising and handling, but can resume the computation after operation calls

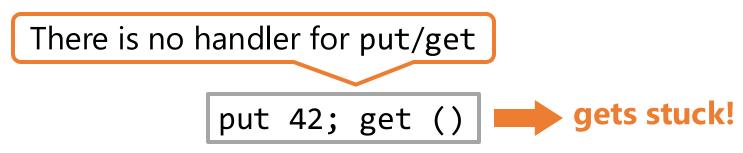


- Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some computational effects such as mutable states and exceptions
- They have two components, **operations** and **handlers**, which are similar to exception raising and handling, but can resume the computation after operation calls



Background: Unhandled Operations

• Unhandled operations cause runtime errors



• Their behavior are similar to uncaught exceptions

Background: Effect Systems

- Effect systems for algebraic effect handlers statically track unhandled operations as effects ε, and guarantee that every operation is handled appropriately
- E.g., an effect system that uses **sets** to represent effects ϵ $\Gamma \vdash e : A \mid \epsilon$

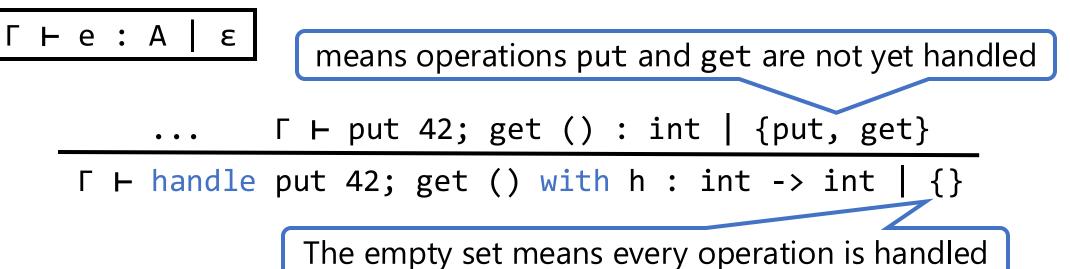
... Γ ⊢ put 42; get () : int | {put, get}
Γ ⊢ handle put 42; get () with h : int -> int | {}

Background: Effect Systems

- Effect systems for algebraic effect handlers statically track unhandled operations as effects ε, and guarantee that every operation is handled appropriately
- E.g., an effect system that uses **sets** to represent effects ϵ

Background: Effect Systems

- Effect systems for algebraic effect handlers statically track unhandled operations as effects ε, and guarantee that every operation is handled appropriately
- E.g., an effect system that uses **sets** to represent effects ϵ



Background: Variations of Effect Systems

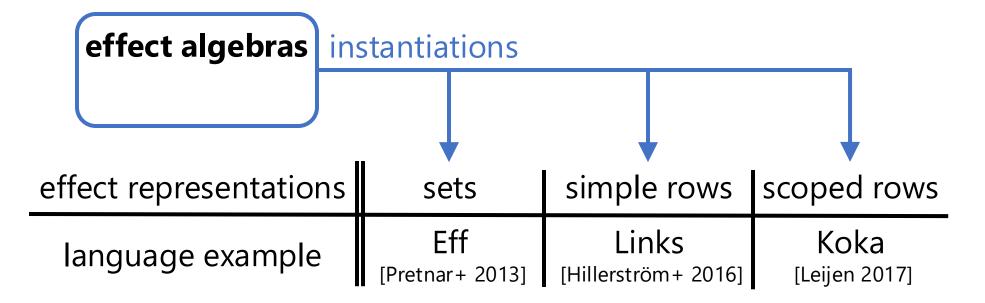
- Various effect representations, such as sets, have been studied
 - These various implementations of effects are motivated by, e.g., type inference and expressive power

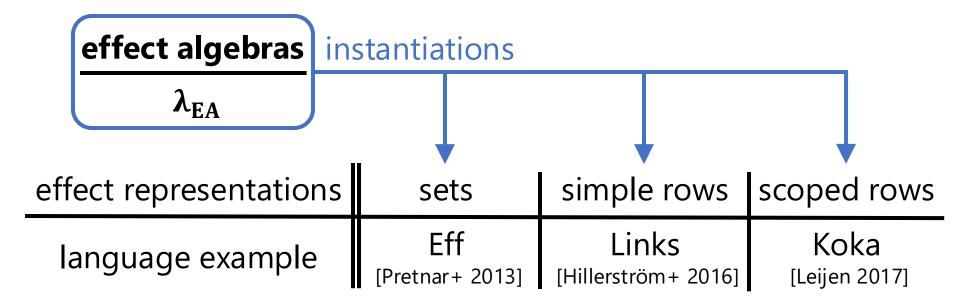
effect representations		sets	simple rows	scoped rows	
language example		Eff [Pretnar+ 2013]	Links [Hillerström+ 2016]	Koka [Leijen 2017]	
W	Simple (resp. scoped) rows are sequences of operations without (resp. with) duplicating the same operations in one effect				

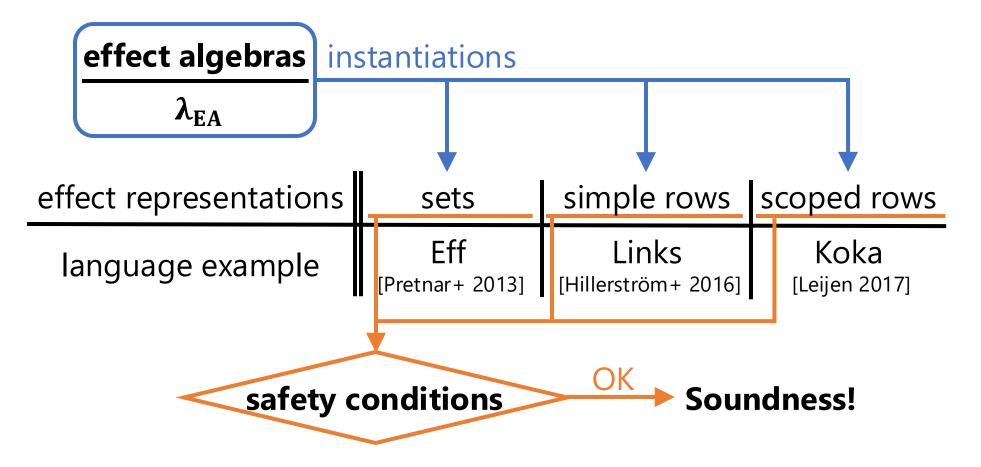
Our Research Question

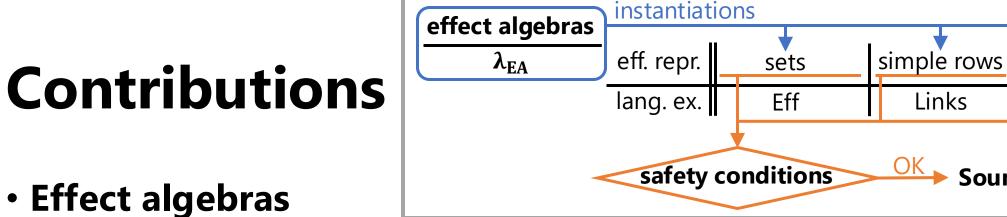
- What are essential commonalities/differences among various effect representations?
 - This unknown relationship suggests that there is no guide for language designers who will create a new style

effect representations	sets	simple rows	scoped rows			
language example	Eff [Pretnar+ 2013]	Links [Hillerström + 2016]	Koka [Leijen 2017]			
	Simple (resp. scoped) rows are sequences of operations without (resp. with) duplicating the same operations in one effect					









• Abstraction of effect representations and their manipulations

• λ_{EA}

• A λ -calculus with effect handlers, **parameterized over effect algebras**

Safety conditions

• Requirements on effect algebras for soundness

Main Theorem:

any instance of λ_{EA} is sound if it meets the safety conditions

scoped rows

Koka

Links

Soundness!

Outline

- Effect algebras: abstraction of effect representations and their manipulations
 - Manipulations of effect representations
 - Definition
 - Abstracted typing rules
- λ_{EA} : λ -calculus Parameterized over Effect Algebras
- Safety conditions and soundness
- Summary and other topics

Background: Manipulations of Effect Representations

• Below are the manipulations of a set representation

op : A -> B is given [Op] injects the operation op $\Gamma \vdash op v : B \mid \{op\} \leftarrow [Op]$ to the singleton set $\{op\}$ subeffecting is inclusion $\frac{\Gamma \vdash e : A \mid \varepsilon \quad \varepsilon \subseteq \varepsilon'}{\Gamma \vdash e : A \mid \varepsilon'}$ [SubEff] **removes** the operation op from ε $\Gamma \vdash e : A \mid \varepsilon \{op\} \cup \varepsilon'$ = ε [Handle] $\Gamma \vdash handle e with \{op -> ...\} : B$ 5

Our Contribution: Effect Algebras

- An effect algebra is a tuple $\langle 0, E, (-)^{\uparrow}, \odot, \mathbb{O} \rangle$
 - *O* is a set of operations
 - *E* is a set of effects
 - $(-)^{\uparrow}: O \rightarrow E$
 - $\langle E, \odot, @ \rangle$ forms a partial monoid
- E.g., an effect algebra for a set repr. is $\langle 0, 2^0, \{-\}, \cup, \{\} \rangle$
- Remark: our notations and basic idea are based on row algebras [Morris and McKinna 2019]

Our Contribution: Effect Algebras operation injection

- An effect algebra is a tuple $\langle O, E, (-)^{\uparrow}, \odot, @ \rangle$
 - *O* is a set of operations
 - *E* is a set of effects
 - $(-)^{\uparrow}: O \rightarrow E$
 - $\langle E, \odot, @ \rangle$ forms a partial monoid
- E.g., an effect algebra for a set repr. is $\langle 0, 2^0, \{-\}, \cup, \{\} \rangle$
- Remark: our notations and basic idea are based on row algebras [Morris and McKinna 2019]

Our Contribution: Effect Algebras operation injection

- An effect algebra is a tuple $\langle O, E, (-)^{\uparrow}, \bigcirc, \mathbb{O} \rangle$
 - *O* is a set of operations
 - *E* is a set of effects
 - $(-)^{\uparrow}: O \rightarrow E$
 - $\langle E, \odot, @ \rangle$ forms a partial monoid
- E.g., an effect algebra for a set repr. is $\langle 0, 2^0, \{-\}, \cup, \{\} \rangle$
- Remark: our notations and basic idea are based on row algebras [Morris and McKinna 2019]

effect concatenation

Our Contribution: Effect Algebras

operation injection the empty effect

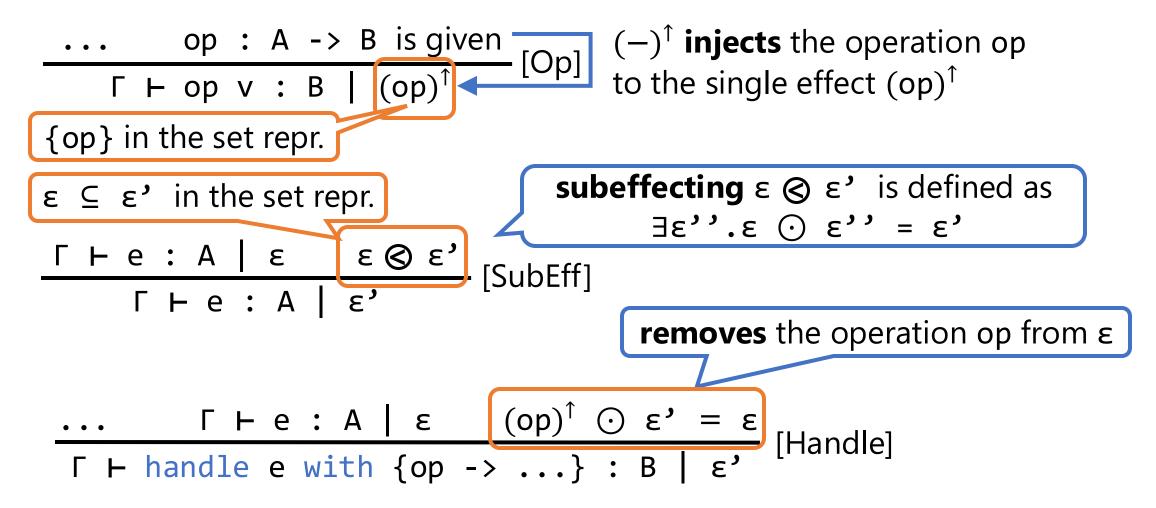
effect concatenation

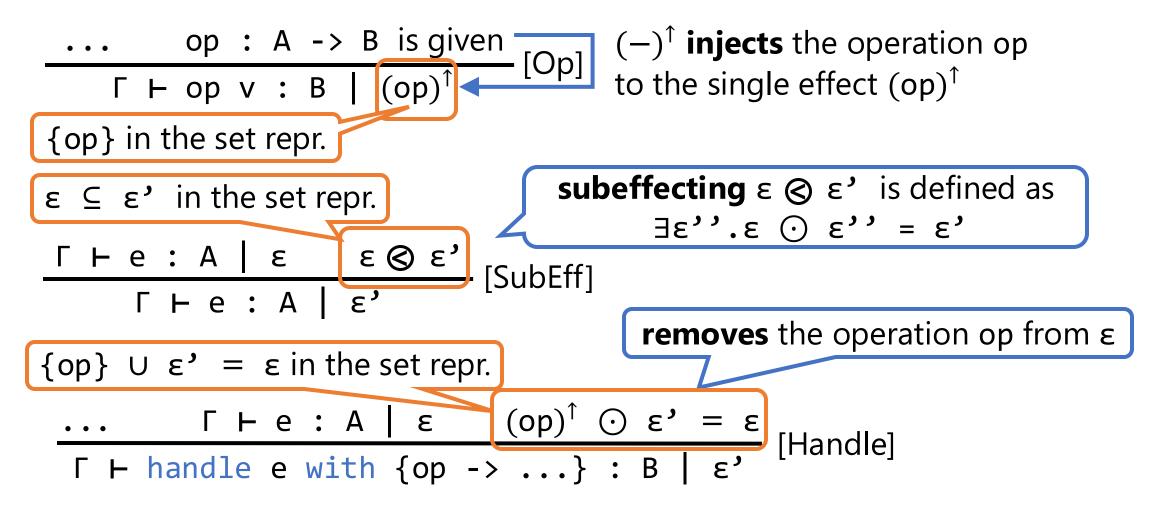
- An effect algebra is a tuple $\langle 0, E, (-)^{\uparrow}, \bigcirc, @ \rangle$
 - *O* is a set of operations
 - *E* is a set of effects
 - $(-)^{\uparrow}: O \rightarrow E$
 - $\langle E, \odot, @ \rangle$ forms a partial monoid
- E.g., an effect algebra for a set repr. is $\langle 0, 2^0, \{-\}, \cup, \{\} \rangle$
- Remark: our notations and basic idea are based on row algebras [Morris and McKinna 2019]

op : A -> B is given [Op]
$$(-)^{\uparrow}$$
 injects the operation op
 $\Gamma \vdash \text{op v} : B \mid (\text{op})^{\uparrow} \leftarrow [\text{Op}]$ to the single effect $(\text{op})^{\uparrow}$

op : A -> B is given [Op]
$$(-)^{\uparrow}$$
 injects the operation op
 $\Gamma \vdash \text{op v : B} \mid (\text{op})^{\uparrow} \leftarrow [\text{Op}]$ to the single effect $(\text{op})^{\uparrow}$
{op} in the set repr.

... op : A -> B is given [Op]
$$(-)^{\uparrow}$$
 injects the operation op
Γ ⊢ op v : B | (op)[↑] [Op] to the single effect (op)[↑]
{op} in the set repr.
 $ε ⊆ ε^{,}$ in the set repr.
Γ ⊢ e : A | ε ε ⊗ ε[,] [SubEff]
Γ ⊢ e : A | ε[,]





Outline

- Effect algebras: abstraction of eff. repr. and their manipulations
- λ_{EA} : λ -calculus Parameterized over Effect Algebras
- Safety conditions and soundness
- Summary and other topics

Our Contribution: λ_{EA}

- A λ -calculus parameterized over **effect algebras**
- Supporting:
 - Explicit polymorphism over types, operations, and effects
 - Deep effect handlers
- Not supporting:
 - Bounded row polymorphism as in Links [Hillerström + 2016]
 - Other handling mechanisms
 - Local effects [Biernacki+ 2019]
 - Tunneling [Zhang and Myers 2019]
 - Lexically scoped handlers [Biernacki+ 2020, Brachthäuser+ 2020]

Outline

- Effect algebras: abstraction of eff. repr. and their manipulations
- λ_{EA} : λ -calculus Parameterized over Effect Algebras

Safety conditions and soundness

- Safety conditions
- Main theorem
- Summary and other topics

Our Contribution: requirements on effect algebras Safety Conditions for Soundness

- Condition (1): no op satisfies $(op)^{\uparrow} \bigotimes \mathbb{O}$
 - Intuition: subeffecting cannot erase information about operation calls
 - Recall that ^(II) represents the empty effect
 - This condition excludes undesired subeffecting like $(put)^{\uparrow} \bigotimes \mathbb{O}$
- Condition (2): if $(op)^{\uparrow} \bigotimes \varepsilon$ and $(op')^{\uparrow} \odot \varepsilon' = \varepsilon$ and $op \neq op'$, then $(op)^{\uparrow} \bigotimes \varepsilon'$
 - Intuition: a handler for op' can only remove (op')[↑] from an effect
 - This condition excludes undesired removing like $(put)^{\uparrow} \odot \mathbb{O} = (get)^{\uparrow}$

Our Contribution: Main Theorem: Soundness

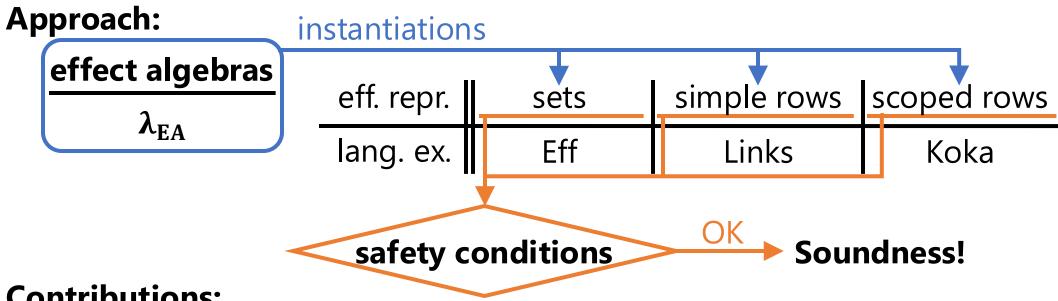
Theorem (Soundness): any instance of λ_{EA} is sound if it meets the safety conditions

- The safety conditions formalize **a common nature** of sound effect systems
- All we need to do when considering new style of effect representations is to check that an instance meets the safety conditions

Corollary: instances of λ_{EA} for Eff, Links, and Koka, are sound

- Proof: their effect representations meet the safety conditions
- These instances are adaptations of the existing languages to our setting

Summary



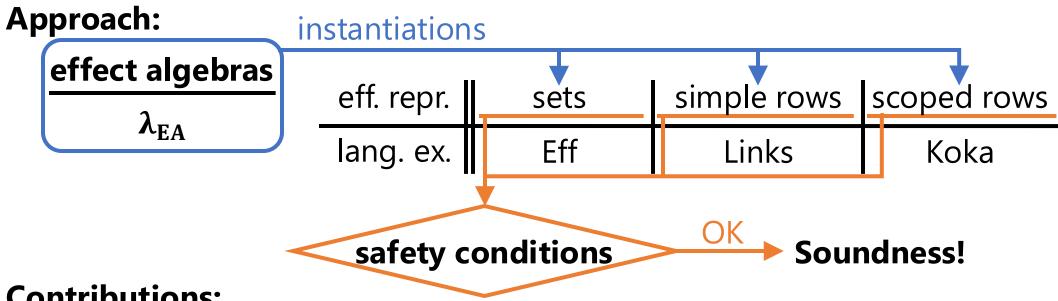
Contributions:

- **Effect algebras:** abstraction of effect representations and their manipulations
- λ_{EA} : a λ -calculus with effect handlers, parameterized over effect algebras •
- Safety conditions: requirements on effect algebras for soundness
- **Main Theorem:** any instance of λ_{EA} is sound if it meets safety conditions

Other Contributions

- We adapt λ_{EA} to shallow handlers $_{[Kammar+\ 2013]}$
- We also make **two language extensions** to λ_{EA} and give **additional safety conditions** for them
 - Extension (1): lift coercions [Biernacki+ 2018]
 - Lift coercions are introduced to prevent unintended handlings
 - Extension (2): type-erasure semantics [Biernacki+ 2019]
 - Type-erasure semantics would be a way to efficiently implement effect handlers
 - Our additional safety conditions for these extensions reveal essential differences among various effect representations

Summary



Contributions:

- **Effect algebras:** abstraction of effect representations and their manipulations
- λ_{EA} : a λ -calculus with effect handlers, parameterized over effect algebras •
- Safety conditions: requirements on effect algebras for soundness
- **Main Theorem:** any instance of λ_{EA} is sound if it meets safety conditions