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Background: 

Algebraic Effect Handlers
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• Algebraic effect handlers [Plotkin and Pretnar 2009] can represent some 
computational effects such as mutable states and exceptions

• They have two components, operations and handlers,
which are similar to exception raising and handling, 
but can resume the computation after operation calls

handle
put 42; get ()

with { 
put -> ..., 
get -> ...

} 0
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Background: 

Unhandled Operations
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• Unhandled operations cause runtime errors

• Their behavior are similar to uncaught exceptions

put 42; get () gets stuck!

There is no handler for put/get



Background: 
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• Effect systems for algebraic effect handlers statically track 
unhandled operations as effects ε, and guarantee that every 
operation is handled appropriately

• E.g., an effect system that uses sets to represent effects ε

Γ ⊢ handle put 42; get () with h : int -> int | {}

...    Γ ⊢ put 42; get () : int | {put, get}

Γ ⊢ e : A | ε
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• Effect systems for algebraic effect handlers statically track 
unhandled operations as effects ε, and guarantee that every 
operation is handled appropriately

• E.g., an effect system that uses sets to represent effects ε

Γ ⊢ handle put 42; get () with h : int -> int | {}

...    Γ ⊢ put 42; get () : int | {put, get}

means operations put and get are not yet handled

The empty set means every operation is handled

Γ ⊢ e : A | ε



• Various effect representations, such as sets, have been studied
• These various implementations of effects are motivated by, e.g., 

type inference and expressive power

Background: 

Variations of Effect Systems
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language example

effect representations simple rowssets scoped rows

Eff
[Pretnar+ 2013]

Links
[Hillerström+ 2016]

Koka
[Leijen 2017]

Simple (resp. scoped) rows are sequences of operations 

without (resp. with) duplicating the same operations in one effect



• What are essential commonalities/differences among various 
effect representations?
• This unknown relationship suggests that there is no guide for language 

designers who will create a new style

Our Research Question
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Our Approach: 

Abstracting Effect Representations
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𝛌𝐄𝐀

effect algebras instantiations

Soundness!safety conditions
OK

language example

effect representations simple rowssets scoped rows

Eff
[Pretnar+ 2013]

Links
[Hillerström+ 2016]

Koka
[Leijen 2017]



Contributions

• Effect algebras
• Abstraction of effect representations and their manipulations

• 𝛌𝐄𝐀
• A λ-calculus with effect handlers, parameterized over effect algebras

• Safety conditions
• Requirements on effect algebras for soundness

• Main Theorem:
any instance of λEA is sound if it meets the safety conditions
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𝛌𝐄𝐀

effect algebras
instantiations

Soundness!safety conditions OK

lang. ex.

eff. repr. simple rowssets scoped rows

Eff Links Koka



Outline

• Effect algebras: abstraction of effect representations and 
their manipulations
• Manipulations of effect representations

• Definition

• Abstracted typing rules

• λEA: λ-calculus Parameterized over Effect Algebras

• Safety conditions and soundness

• Summary and other topics

Abstracting Effect Systems for Algebraic Effect Handlers 9



• Below are the manipulations of a set representation

...     Γ ⊢ e : A | ε {op} ∪ ε’ = ε

Γ ⊢ handle e with {op -> ...} : B | ε’

Background:

Manipulations of Effect Representations
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...    op : A -> B is given

Γ ⊢ op v : B | {op}

Γ ⊢ e : A | ε ε ⊆ ε’

Γ ⊢ e : A | ε’

injects the operation op
to the singleton set {op}

subeffecting is inclusion

removes the operation op from ε

[Op]

[SubEff]

[Handle]



Our Contribution:

Effect Algebras

• An effect algebra is a tuple ⟨𝑂, 𝐸, − ↑, ⊙, 𝟘⟩
• 𝑂 is a set of operations

• 𝐸 is a set of effects

• − ↑ : 𝑂 → 𝐸

• ⟨𝐸, ⊙, 𝟘⟩ forms a partial monoid

• E.g., an effect algebra for a set repr. is ⟨𝑂, 2𝑂, {−}, ∪, {}⟩

• Remark: our notations and basic idea are based on row algebras 
[Morris and McKinna 2019]
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effect concatenation
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operation injection the empty effect

effect concatenation



Typing Rules based on Effect Algebras
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(−)↑ injects the operation op
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Outline
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• Summary and other topics
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Our Contribution:

𝛌𝐄𝐀
• A λ-calculus parameterized over effect algebras

• Supporting:
• Explicit polymorphism over types, operations, and effects

• Deep effect handlers

• Not supporting:
• Bounded row polymorphism as in Links [Hillerström+ 2016]

• Other handling mechanisms
• Local effects [Biernacki+ 2019]

• Tunneling [Zhang and Myers 2019]

• Lexically scoped handlers [Biernacki+ 2020, Brachthäuser+ 2020]
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Our Contribution:

Safety Conditions for Soundness

• Condition (1): no op satisfies (op)↑ 𝟘
• Intuition: subeffecting cannot erase information about operation calls

• Recall that 𝟘 represents the empty effect

• This condition excludes undesired subeffecting like (put)↑ 𝟘

• Condition (2): if (op)↑ ε and (op’)↑ ⊙ ε’ = ε and op ≠ op’, 
then (op)↑ ε’
• Intuition: a handler for op’ can only remove (op’)↑ from an effect

• This condition excludes undesired removing like (put)↑ ⊙ 𝟘 = (get)↑

Abstracting Effect Systems for Algebraic Effect Handlers 16

<

<

<

<

requirements on effect algebras



Our Contribution:

Main Theorem: Soundness

Theorem (Soundness):
any instance of λEA is sound if it meets the safety conditions

• The safety conditions formalize a common nature of sound effect systems

• All we need to do when considering new style of effect representations
is to check that an instance meets the safety conditions

Corollary: instances of λEA for Eff, Links, and Koka, are sound

• Proof: their effect representations meet the safety conditions

• These instances are adaptations of the existing languages to our setting

Abstracting Effect Systems for Algebraic Effect Handlers 17



Summary
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𝛌𝐄𝐀

effect algebras

instantiations

Soundness!safety conditions
OK

lang. ex.

eff. repr. simple rowssets scoped rows

Eff Links Koka

Approach:

Contributions:

• Effect algebras: abstraction of effect representations and their manipulations

• 𝛌𝐄𝐀: a λ-calculus with effect handlers, parameterized over effect algebras

• Safety conditions: requirements on effect algebras for soundness

• Main Theorem: any instance of λEA is sound if it meets safety conditions



Other Contributions

• We adapt λEA to shallow handlers [Kammar+ 2013]

• We also make two language extensions to λEA and give
additional safety conditions for them
• Extension (1): lift coercions [Biernacki+ 2018]

• Lift coercions are introduced to prevent unintended handlings

• Extension (2): type-erasure semantics [Biernacki+ 2019]

• Type-erasure semantics would be a way to efficiently implement effect handlers

• Our additional safety conditions for these extensions reveal essential 
differences among various effect representations

Abstracting Effect Systems for Algebraic Effect Handlers 19
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